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Chapter 1 

In this report a combination of two worlds, i.e., (i) a theoretical and (ii) a tutorial part, will 
be presented. The theoretical part is a bases for the tool presented. Since optimal estimation 
theory, first presented by Kalman and others (circa 1960) [i], resulted in the extended kalman 
filter, a short introduction will be given on this theory. A larger contribution in this report will 
be the tutorials belonging to the toolbox. 

P .I Optimal Estimation 
Before going into detail with respect to the Extended Kalman Filter (EKF) itself a general idea 
on optimal estimation is necessary. Gelb [i] gives a good definition for the optimal estimation 

An optimal estimator is a computational algorithm that processes measurements to 
deduce a minimum error estimate of the state of a system b y  utilizing: knowledge of 
system and measurement dynamics, assumed statistics of system noises and measure- 
ment errors 

This idea can be depicted as in Figure 1.1 where u( t )  are the system inputs, x ( t )  the system 
states, x ( t )  the observations and ?(i) the estimated system state. The optimal estimation enables 

System M easu rem ent Prior 
disturbances errors informa tion 

l i 

Figure 1.1: Optimal Estimation. 

a sequential way of processing the measurement data, also called a recursive estimator. For both 
the system and measurements nothing is said about the class it belongs to. They might be 
classified with discrete or continuous, and linear or nonlinear. 
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Three different types of estimation tasks can be defined on the bases of optimal estimation 
theory, which are shown in Figure 1.2: 

o Filtering, where an estimate is desired at the time instant of the last measurement point. 

o Smoothing, where an estimate is desired at a time instant which falls within the span of 
available measurement data. 

o Prediction, where an estimate is desired at a time instant after the last available measure- 
ment. 

Available measurement data c 
t 

1.2 

t 

t 

Figure 1.2: Three types of estimation tasks. 

Tutorial 
In the present toolbox, we focus on the filtering task for the identification of nonlinear dynamic 
continuous-time models. Here, the considered type of models can be written as 

where f and g are nonlinear vectorfields, x: the model states, u the model inputs, y the model 
outputs, t the time and 0 the model parameters. An additional objective in the context of 
prediction, i.e., simulation, will be presented to evaluate the accuracy of the identified models. 

The objective of this toolbox is to present a methodology that is able to  identify simulation 
models that yield accurate long-term prediction. The modelling procedure consists of two parts, 
i.e., 

o Identification of the model with limited available knowledge of the system to be mod- 
elled. This prior information must contain observations or measurements of the system. 
Additional a priori knowledge can be included in the choice of model structure. 

o Validate to what extend the identified model is able to represent the system under consid- 
eration. This is done by simulating the system with the identified model and compare the 
real system response to  the model response. 
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Both modelling parts can be performed by this toolbox which enables the engineer to quickly 
adjust model structures and to evaluate different identified models. 

In Chapter 2 of this manual we present the Extended Kalman Filter (EKF) used in this 
toolbox. The adjustment of the filter to identify model parameters is given and additionally 
the filter parameters are explained. The model definitions and use of the toolbox in Matlab are 
discussed in Chapter 3. Two ways of using this toolbox are possible: (i) as a function which is 
used at the matlab prompt and (ii) via a Graphical User Interface which allows you to define 
and set the filter parameters. In Chapter 4, this manual will be closed by some examples which 
present the possible use of this toolbox. 
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Chapter 2 

In this chapter the Extended Kalman Filter (EKF) will be discussed and the procedure for the 
identification of model parameters is given. The EKF is based on optimal estimation for linear 
systems and extends the estimation for nonlinear dynamic stochastic systems as in (1.1) and 
(1.2) with 

where f and g are nonlinear vectorfields, x the model states, u the model inputs, y the model 
outputs, t the time, w(t)  zero mean gaussian noise with a covariance matrix Q(t )  and v ( t )  
zero mean white noise with covariance matrix R(t). Here, the class of estimation problems 
for nonlinear dynamic continuous-time systems with discrete-time measurements is considered. 
This reflects many practical situations where dynamic continuous-time processes are observed by 
measuring the system outputs at a certain sampling frequency. This type of estimation can be 
used in various engineering fields, e.g. , mechanical, physical, electrical and chemical engineering. 

The EKF is, like the Kalman Filter for linear systems, based on the minimization of the 
variance of the estimation error. The solution of this nonlinear minimum variance estimation 
problem as the minimum variance estimation problem (Kalman Filter) can be found in Gelb [i]. 
The resulting filter algorithm will be outlined below. 

The filter algorithm is a recursive formulation that updates the estimates at discrete-time 
instants, i.e., when the outputs of the system are measured m(ti) i = 1 , 2 , .  . .. This update 
consists of the propagated state estimate ?(t i)  corrected with a gain matrix K(ti)  times the 
innovation signal s ( t i )  

?(ti)+ = ?( t i )  + K(ti)S(ti> 
= ?(t i)  + K(ti )  [m(ti) - g(2, u, t i ) ]  

where + denotes the new update and A is the state estimate. The gain matrix K is chosen to 
minimize the variance of the reconstruction error E ,  i.e., E = x - 2 .  At each discrete-time instant 
the gain matrix is computed by 

K(ti)  = P(ti)GT(2,u,ti) [G(?, u ,  ti)P(ti)GT(?,u, ti) + R(ti)]-' (2.4) 
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and the error covariance matrix P(ti) is updated with 

P(ti)+ = [I - K(ti)G(2, U, ti)] P(ti) 

Between two discrete-time instants ti and ti+l the state estimate and error covariance are prop- 
agated by integration of 

i = f(?,u,t) 

P ( t )  = F ( 2 ,  U, t )P ( t )  + P(t )FT(2 ,  U, t )  + Q(t)  

Here, as stated before, are the model errors v(t) and w(i)  considered to  be zero mean gaussian 
noise having a spectral density matrices Q(t )  for the state errors and R(t) for the measurement 
errors. Furthermore, are the state errors and measurement errors assumed to be uncorrelated. 
The matrices F(t,u,t) and G(rL-,u,t) are Jacobian matrices of the nonlinear model functions 
f(x,u,t) and g(x,u,t) with respect to x which are evaluated at x = 2.  For the initial state 
estimates Ic(to) our confidence or error variance can be expressed by the initial diagonal covariance 
matrix P(to) .  Diagonal elements unequal to zero express uncertain initial state estimates where 
zero elements express infinite confidence. 

The nonlinear parameter estimation for general nonlinear dynamic continuous-time models 
as described in (1.1) and (1.2) can be transformed in a state reconstruction problem by defining 
the augmented state 

Consequently, Eq. (1.1) has to be augmented with an additional k differential equations 8 = O, 
where k is the number of model parameters. Hence, the model parameters are considered as 
constants. This state reconstruction problem can be solved by the EKF as discussed above. 

Due to computational and practical convenience the EKF is used off-line in this toolbox. This 
results in the situation where only a finite number of measurements of the system inputs and 
ouputs can be used for the identification of the models. Since this finite number of measurements 
is also the maximal number of filter estimates, the parameter estimates of the augmented state 
might not be converged to constants yet. In the situation where the model parameters are 
converged to constants the filter parameter estimates become smoothed parameter estimates 
which implies that effectively an output error criterion is minimized. One way to deal with this 
limited system information is to  design an iterative EKF where the data is passed through the 
filter several times until1 the parameter estimates are converged. After each filter pass, the initial 
state estimates 2(to) and the corresponding confidence P(2(t))  are re-initialized with the initial 
estimates of the first pass. The parameters 0 and the corresponding covariance matrix P(ê(t))  
are reset to the final estimates of the previous filter pass. 
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Chapter 3 

Identification Toolbox 

In this chapter the installation and usage of the toolbox will be discussed. This version 1.1 is 
written for MATLAB 5.2 or higher. The version has been tested under MATLAB 5.2 for  WINDOWS^ 
95 on an IBM compatible PENTIUM. 

3.1 Installing the toolbox 
The toolbox consists of two zip-files, i.e., 

o ekf.zip which is actually the toolbox itself. This file should be copied and unzipped to one 
directory. Additionally it is necessary that this directory is added to the matlabpath. 

o examples.zip consists of two examples which will be explained in Chapter 4. For each 
example the model definition files are given together with the corresponding system in- 
put/output measurements. This file can be unzipped either in the toolbox-directory or in 
anot her matlabpat h-directory. 

All files, compressed in the zip-files, are compatible for use with UNIX or WINDOWS versions of 
MATLAB 5.2 or higher. 

3.2 Using the toolbox 
The toolbox is built around the matlab function ekf which is actually the Extended Kalman 
Filter algorithm. A Graphical User Interface started with ekf-gui enables the user to specify 
all filter settings graphically. The identification or validation can be started from this interface. 
The model functions f and g can be defined in one M-file. A template M-file is available, i.e., 
temp1ate.m. On the following pages these different matlab functions and M-files will be described 
as in the Matlab manuals. 

MS-WINDOWS is a trademark of MICROSOFT CORPORATION 
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e kf 

Purpose Solve Extended Kalman Filter Algorithm 

Syntax [Xaug,Ymod,Trace] = ekf(xO,ThetaO,U,Y,T,model,R,Q,P,. . . 
passes,order,s,inverse) 

Arguments xo 
Theta0 
U 

Y 

T 

model 

R 

Q 

P 

passes 
order 

S 

inverse 

Initial state estimates ?(i,). 
Initial model parameter estimates e ( t 0 ) .  

System input measurements. 
Size: [# of inputs, # of measurements] 
System output measurements. 
Size: [# of outputs, # of measurements] 
Discrete time instants of measurements. 
Size: [i, # of measurements] 
String corresponding to  M-file defining the model 
functions f and g. 
Variance matrix of measureneilts. The elements specify the 
diagonal elements of the matrix R(t). Here, these variances 
are considered to  be constants. Hence, every output measure- 
ment over time of each output is equally weighed. 
Size: [# of outputs, i] 
Variance matrix of augmented state errors. The elements 
specify the diagonal elements of the matrix Q(t).  Here, 
these variances are considered to  be constants. 
Size: [# of augmented states, 11 
Variance matrix of initial augmented state estimates. The 
elements specify the diagonal elements of the matrix P(t0). 
Size: [# of augmented states, 11 
Number of filter passes. 
The input order hold during propagation of X ( t ) .  O specifies 
zero order hold and 1 first order hold. 
String correpsonding to  the integration scheme used. 
Example: s = 'ode23tb'. See help ode23 and others. 
Inversion of gain matrix. O specifies normal inversion and 
1 the pseudo inversion. 
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template 

Desc r i p t  ion template is not a command or function. It is a help entry how to cre- 
ate an M-file defining the model functions f and g to be used in the EKF 
algorithm. 

You can use the template M-file to  define model equations of the fol- 
lowing form: 

where: 

t 
X 

xaug 

U 

f 

is a scalar independent variable, it represents time. 
is a vector of dependent variables, it represents the model state. 
is a vector of dependent variables, containing model state x and 
model parameters 8. 
is a vector of dependent variables, it represents the model inputs. 
is a function of t ,  u and zaUg returning a column vector the same 
length as IC. 

Additionally, it is necessary to give the Jacobian of f with respect to 
xaug. This is defined in the matrix F 

which should be a matrix of size: 

[# of model states, # of augmented states] 

You can use the template M-file to define model equations of the fol- 
lowing form: 

where: 

t 
xaug 

is a scalar independent variable, it represents time. 
is a vector of dependent variables, containing model state x and 
model parameters 8. 
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template 

U 

Y 
is a vector of dependent variables, it represents the model inputs. 
is a function of t ,  u and xaUg returning a column vector the same 
length as the model output. 

Additionally, it is necessary to give the Jacobian of g with respect to 
Zaug. This is defioed io the matrix G: 

which should be a matrix of size: 

[# of model outputs, # of augmented states] 

In this file are some restricted areas for the user. These areas started 
with a !!!-line should not be edit by the user. Only areas started with a 
--line should be edit by the user. 

To use the template file: 
o Enter the command help template to display the help entry. 
0 Cut and paste the template file text into a separate file. 
o Edit the file to  your problem. 
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ekf-gui 

Purpose Graphical User Interface of EKF algorithm. 

Syntax ekf-gui 

Description This Graphical User Interface enables the user to  specify all the 
function inputs of ekf. The GIJTI has five menu items with each 
different subfunctions. The different menu items will be discussed 
below: 

Load 
Model 
Data set í", U and Y 
Identification results 
Validation results 

Identification results 
Validation results 

Identification 
Validation 
Trial identification 

Data set 
Identification 
Validation 

Integration Scheme 
Input order hold 
Inverse 

Save 

Start 

Show 

Advanced 

Most of these subfunstions are trivial and are discussed at the 
definition of the function ekf. The models that are loaded 
are represented in the GUI on the right hand side. Also is the 
name of the loaded data set given with additional information. 
On the left hand side of the GUI the filter parameters can be 
entered graphically. On the next page a screenshot of this GUI is 
given with the distinction between the right and left side. The 
message box on the left side gives information when incorrect 
actions are performed or other improper definitions are detected. 

13 



ekf-gui 
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Chapter 4 

Exampies 

4.1 Two-tank system 

In order to  illustrate the use of the EKF technique, a simulation study is performed on a two-tank 
system. The two-tank system is given in Fig. 4.1 and Table 4.1. For the two-tank system, the 
differential equations are 

A2h2 = -k2&+k.i&+F2 ( 4 4  

Due to  the nonlinear right hand side terms of the Eqs. 4.1, 4.2, e.g., A, a, the two-tank 
system is nonlinear. 

Symbol Value Unit Description 
Fi 0-0.2 l/s Flow, control input 

0-0.1 1/s 
i/s 

0- 1 dm 
0-0.5 dm 

10 dm2 
5 dm2 

O. 079 1 (1/s) dmp1I2 
0.1342 (l/s)dm-1/2 

Flow, control input 
Flow out 
Height in tank 1 
Height in tank 2 
Area in tank 1 
Area in tank 2 
Flow parameter tank 1 
Flow parameter tank 2 
Level sensor 

Table 4.1: Definition of symbols for the two-tank system. 

This two-tank system is used to obtain datasets for the identification of the model proposed in 
the remainder of this section. This is an ideal case where the model structure is exactly known, 
since the structure of the system, i.e., Eq. 4.1 and 4.2, is exactly known and the measured 
outputs are free of noise. 
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! 

w 

t 

Figure 4.1: Two-tank system. 

The model structure is chosen equal to the Eqs. 4.1 and 4.2 which results for the model 
differential equations in 

elkl = -e3fi+Fl 
e2k2 = - e 4 6 + e 3 f i +  F~ 

where the parameters to be identified are 

8 = [Al A2 kl ka]* 

The tank heights are measured, so the model outputs become: 

Y1 = x1 

Y2 = x2 

The model is given in the M-file Two-tank-mode1.m and the measured input-ouput dataset in the 
MAT-file Two-tank.mat which is shown in Figure 4.2. 
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o 100 i 3w 4W 5w 
Time [Sac] 

~ Flow in Tank, 
~ Flow in Tanp 

, 700 800 9W 1 

System a u p k  

0.05 - 

O 100 200 303 4w SW 600 700 8W SW 
Time [sec] 

IO 

Figure 4.2: Dataset corresponding to two-tank system. 

The system is identified with the following settings: 

o Filter passes: 10 

o Initial state estimates: 2 0  = Y(t0) 

o Initial parameter estimates: i o  = [20 20 1 i]' 

o Covariance on initial state: P(2o) = [O O]' 

o Covariance on initial parameters: ~ ( 4 , )  = [ io  IO 10 101~ 

o Covariance on model equations: Q = [O OIT, because of exact modeling 

o Covariance on measurements: R = [O.OOI 0.0011' 

The tuning of the EKF parameters is nontrivial and often based on trial and error. After 10 
filter passes the parameter estimates have indeed become constant and the average parameter 
values over the last filter pass are used to validate the identified model. The average parameter 
estimates of the last filter pass are 

410 = [9.9579 5.0238 0.07904 0.134391T 

and are close to  the true values as given in Table 4.1. The identification results are given in 
the MAT-file Id-two-tank.mat and the validation results in the MAT-file Val-two-tank.mat. The 
validation results are shown Figure 4.3, where the difference between the system outputs and 
model outputs are not observable in the left figure. The results are very good since the estimated 
parameters are very close to the true values. 
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Figure 4.3: Validation results. 

4.2 Mechanical System with Friction 
Another example for the use of the EKF algorithm is a study where in contrary to the previous 
example a practical lab-scale system is used. Hence, this example is less ideal and involves 
nonexact modeling and measurement noise. 

The rotating arm in Fig. 4.4 is a nonlinear mechanical system [2] with one degree of freedom 
q ,  where q represents the angular displacement of the arm. The state-space equations are 

where C( 4,û) represents friction, M ( 0 )  is the effective inertia of the motor-transmission-rotating 
arm combination, cm is the motor gain and u is the motor input current. We assume that 

Figure 4.4: Rotating arm. 

the friction torque C(4,O) is a nonlinear function of the angular velocity q and of the model 
parameters í3. Here, it is assumed that the friction can be modeled by an odd continuous 
function 

C ( q ; O )  = - C ( - Q , O )  q E IR (4.8) 

18 



For angular velocity equal t o  zero the friction model torque is zero, which results for the model 
in the same set of equilibrium points as for the system. 

Here, the friction will be modeled with a neural network. The neural network consists of two 
layers, i.e., one hidden layer and one output layer. The neural network represents a nonlinear 
mapping from the network input IRT into the network output IR". Here, this mapping is from 
angular velocity 4 (IR) to  friction model torque C(Y,8) (IR). Defining the weight matrices for the 
first and second layers as W, and W2, one can write the neural network output as 

C(4,S) = WTC(W1Q + b i )  + b2 

where bi represents the bias value for the neurons in the i-th layer and E(.) is a nonlinear operator 
with E(2) = [ o ( x i ) ,  . . . , o(zv)lT,  o(.) a differentiable, nonlinear, monotonic increasing function 
and u is the number of hidden neurons. 

To assure the system properties described above to  hold the following restrictions are posed 
on the neural network topology 

e Choose an odd function for o(.) which is equal to  zero if its argument is zero. 

2 
e2z; + i O(Xi )  = 1 - 

o The first choice together with the set of equilibrium points for the system implies that the 
bias terms should be zero. 

These two restrictions result for the neural network friction approximator in 

C(4, 8) = w:E(wlq) 

The linear part of the system dynamics, i.e., the viscous damper characteristic and the input 
term are modeled as in Eq. 4.4. In state space description the model becomes 

(4.9) 

where b is the viscous damper constant of the system. For the model parameters this results in 

0 = [WT w, b Ml' 
Since the angular position q and angular velocity 4 are measured, the model outputs become 

Y1 = 4 
Y2 = Y 

(4.10) 
(4.11) 

The model is given in the M-file Robot.m, where the Neural Network consists of 3 neurons. 
Hence, W1 and W2 contain each three parameters setting the total number of parameters to be 
identified to 8. The measured input-ouput dataset in the MAT-file Robot.mat which is shown in 
Figure 4.5. 
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Figure 4.5: Dataset corresponding to Mechanical system. 

The system is identified with the following settings: 

o Filter passes: 15 

o Initial state estimates: 20 = Y(t0) 

o Initial parameter estimates: Bo = [i i i i i i O 101' 

o Covariance on initial state: P(2o) = [O 

o Covariance on initial parameters: P(&)  = [i i i i i i 10 lolT 

o Covariance on model equations: Q = [O 0.001IT, because of nonexact modeling 

o Covariance on measurements: R = [ O . O O O ~  0.0011~ 

After 15 filter passes the parameter estimates have indeed become constant and the average 
parameter values over the last filter pass are used to  validate the identified model. The average 
parameter estimates of the last filter pass are 

015 = 

0.2069 
12.8021 
0.0428 
1.3460 
- 1.5092 
-0.0355 
-0.0778 
34.4013 

The identification results are given in the MAT-file Id-robot.mat and the validation results in the 
MAT-file Val-robot.mat.  The validation results are shown Figure 4.6, where in the left figure the 
dashed lines are the model outputs and the solid lines are the system outputs. 
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Figure 4.6: Validation results. 

These results can be interpreted as follows: (i) the inertia & = 0.0291[kg.m] and 
friction curve C(4, O) together with the viscous damping bq gives a curve as depicted in 
4.7. 

-c 
-20 -1 5 -1 o -5 O 5 10 15 20 

Angular velocity [radlsec] 

(ii) the 
. Figure 

Figure 4.7: Identified Friction curve. 
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