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Background and abstract. Since 1999 DOW and Eindhoven University of Tech­
nology {EUT) cooperate in a project entitled "Property prediction from molecular 
structure". The information about the molecular structure of a polymer blend is 
contained in the SCBD-MWD {Short Chain Branching-Molecular Weight} distribu­
tion. The experimental determination of this distribution via cross fractionation is 
an expensive and time consuming task. During the meeting of June, 2001, the idea 
was proposed to estimate this distribution from integrated partial information, which 
is much simpler obtained. The present report deals with the mathematical aspects 
of the idea to reconstruct the full distribution from partial data. It is shown that 
the method can be very successful if the distribution to be reconstructed consists of a 
limited number of smooth peaks. 
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Introduction 

In the project 'Property prediction from molecular structure' a cooperation be­
tween DOW and EUT one tries to predict the solid state properties of polymer 
blends from information on the molecular structure of the blends. As determin­
ing molecular parameters the Molecular Weight Distribution (MWD) and the Short 
Chain Branching Distribution (SCBD) are used. The MWD indicates the fraction 
of molecules with a given molecular weight. The structures of two chains with the 
same molecular weight may differ considerably, since the number and location of the 
branches may vary. In the context of this project we only deal with chains consist­
ing of a long backbone with short branches. The SCBD gives the fraction of the 
molecules with a given branching content. It can be measured by the Crystaf device. 
We shall not explain this method here in detail. The polymer is fractionated at vary­
ing temperatures and to each temperature a definite branching content corresponds. 
The Crystaf device yields per temperature the total molecular weight of the fraction 
of molecules with a specific branching content. The SCBD is therefore a function of 
the temperature. Both the MWD and the SCBD contain partial information. The 
full information on the molecular structure of the blend is contained in the SCB-MW 
distribution which gives the fraction of molecules with given branching content and 
given molecular weight. This full distribution can be measured via fractionating 
according to branching followed by molecular weight analysis or vice-versa. How­
ever, this experimental procedure is expensive and time consuming. Still, the full 
SCB-MW distribution is needed, since some macro-properties of the blend essen­
tially depend on the full distribution and not only on MWD or SCBD. An example 
of such a property is Tie-Chain. The experimental procedures to obtain MWD and 
SCBD separately are standard and relatively cheap nowadays. This raises the ques­
tion whether it is possible to reconstruct the full distribution from the partial ones. 
From an experimental and financial point of view such a reconstruction method is 
highly attractive. In the present report we deal with the mathematical and practical 
aspects of the reconstruction and show that this approach is very promising. 

Problem formulation 

For the sake of conciseness we shall denote the full SCB-MW distribution by F(m, T) 
with m denoting molecular weight and T temperature. The distribution F thus 
depends on two independent variables and can be plotted as a surface in the 3-
dimensionale place. A characteristic example is given in Fig. 1. For F it holds that 
F(m, T) ~ 0 for all (m, T). The distribution typically consists of a limited number 
of smooth peaks. Partial information about F is contained in the functions 

G(m) = J F(m, T) dT , 
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(1) 

H(T) = J F(rn, T) drn . 

where rn and T range over the relevant intervals. From the definitions it is clear 
that G contains information on F integrated along lines parallel to the T-axis, and 
H contains information on F integrated along lines parallel to the m-axis. 
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In terms of F, G and H the central question is: 

Is it possible to reconstruct F from given G and H data? 

We first discuss a naive approach that certainly fails, but provides some insight in 
the problem. After that it is shown how the question can be answered positively. 
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Fig. 1. Example of an SCB-MW distribution with 3 peaks. 

Naive approach 

· .. 

In practice m and T vary over discrete grid points mi and Tj. Let us for convenience 
assume that the number of grid points is the same along both axes and that both 
grids are uniform. The corresponding grid values of F are denoted as 

{2) 

Let us approximate the integrals in ( 1) by Riemann sums. Then, the values of G 
and H are estimated by 
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N-1 N-1 

Gi = G(mi) h1 L F(mi, Tj) = hr L Fij, 1::; i::; N . (3) 
j=l j=l 

N-l N-1 

Hj H(Tj) = hz L F(mi,Tj) = h2 L Fij, 1::; j::; N. (4) 
i=l i=l 

Here, h1 and h2 are the step sizes along them and the F-axis, respectively. 
We can formulate the central question as follows. Given N values of both G and 
H, so in total 2N data points, can the grid values Fij be estimated? The number 
of unknowns FiJ is N 2 • The number of (linear) equations (3) and (4) relating the 
unknowns to the data is 2N. Since N 2 > 2N for N > 2, this system of equations 
is underdetermined and has not a unique solution. This crude approach shows 
that in principle too little information is available. This shortage of data can be 
compensated by adding extra information, as shown in the following. 

Reconstruction of one peak 

Let us first deal with the situation that F consists of only one smooth peak. This 
situation will usually reveal itself in the data by G and H both showing one smooth 
peale A crucial step is to make assumptions about the form of the peak of F. We 
assume that this peak is Gaussian shaped and can be represented by a distribution 
of the form 

P(m,T) = aexp[-,B(m- m)2 - r(T- T) 2] 

with 

a: height of the peak 
,8: peak width of the cross-section through the top and parallel to the T-axis 
r: peak width of the cross-section through the top and parallel to the m-axis 
m: m-coordinate of the top 
T: T -coordinate of the top. 

(5) 

We remark that expression (5) is not the most general representation of a Gaussian 
peak in two variables. For the present purpose of investigating the general principles 
of reconstruction inclusion of extra terms (e.g., the cross term (m- m)(T- T)) is 
not yet relevant. Such a refinement can be incorporated if the regression models 
used in the project require it. 

According to (5), a peak is characterized by 5 parameters. To reconstruct the peak, 
these 5 parameters must be estimated from the partial data. Substituting (5) into 
(1) (with F = P} we find that 
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+oo 

G(m) = j P(m, T) dT 
-00 

00 

= ae-8(m-m)2 j e-7(T-T)2 dT 
(6) 

-oo 
= aj?f e-,B(m-m)2 . 

Similarly, for H(T) we obtain 

(7) 

So, G(m) contains the 4 parameters a,{3,"{, and m, and H(T) the 4 parameters 
a, {3, 'Y, T. This implies that not all parameters can be estimated from only G data 
or only F data. Since the number of parameters is 5, we need at least 5 data points. 
These could be 4G and lH data points, or 3G and 2H data points, or 2G and 3H 
data points, or lG and 4F data points. In practice one has much more data and 
the estimation could be performed in the least squares sense. For details see the 
Appendix. 
We conclude that reconstruction of one Gaussian peak from partial data is possible 
and requires in principle not many data points. The estimation procedure involves 
solving a set of equations. In the Appendix it is shown that this procedure is very 
simple and fast. 

Reconstruction of two peaks 

Above we have shown that reconstruction of one peak is possible if one introduces 
a specific representation of the peak. So, the form of the peak is assumed to belong 
to a restricted class. Since the details of the SCB-MW distribution are probably not 
very relevant for the prediction of polymer blend properties, the choice of this class 
is not crucial. Only a few characteristics of the peaks determine blend properties 
like Elastic Modulus and Tie Chain. In view of these considerations we represent a 
distribution F with two peaks as the sum of two Gaussian peaks: 

F(m,T) = P1(m,T) + P2 (m,T) (8) 

with P1 and P2 of the form (5). So, P1 contains the 5 parameters a~,f3b'YllmbTt 
and P2 the parameters a2, {32, "{2, m2, T 2• Representation (8) will be most reliable if 
the two peaks are clearly separated. If the peaks have much overlap a more subtle 
representation might be required. 

Analogous to (6) and (7), we have for two peaks: 
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(9) 

(10) 

Both G and H contain 8 parameters out of the 10 parameters in total. The coor­
dinates m 1 and m2 must be estimated from G data, and the coordinates T1 and 
T2 from H data. Since 10 parameters must to be estimated the minimal number of 
data points is 10. In practice more data is available. 

We remark that problems arise if the two peaks are nearly identical in shape. In Fig. 
2a and 2b the top positions of the two identical peaks are indicated. In Fig. 2a the 
coordinates of the two peaks are (mb T 1) and (m2, T 2), whereas in Fig. 2b these 
coordinates are (mb T2) and (m2, TI). Both configurations are clearly different, but 
they give rise to the same partial data G(m) and H(T). So, in this special case the 
partial data do not provide enough information to discriminate between the two 
configurations. It is not expected that this situation will often appear in a practical 
data set. If the estimation procedure yields parameter sets which are nearly identical 
for both peaks, the reconstruction under consideration should be treated with extra 
care. 

T a. 
T b. 

Fig. 2. Sketch of distributions with two peaks. The different distributions under a. 
and b. give rise to similar partial data if the peaks are very similar in height and 

shape. 
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Reconstruction of N peaks ( N > 2) 

The reconstruction of N peaks (N > 2) can be done along the same lines as outlined 
above. One could use, e.g., the representation 

N 

F(m, T) = 2.:: Pk(m, T) (11) 
k=l 

with each Pk containing the parameters ak, f3k, 'Yk, mkl and Tk. So, for N peaks 
the distribution F contains 5N parameters which must be estimated from at least 
5N data points. In the Appendix an efficient algorithm is presented to perform the 
estimation. Since many partial data points are available it is to be expected that 
the procedure works equally well for N peaks as for 1 peak, as long as the peaks 
have not much overlap. 
For overlapping peaks the representation (11) must be refined. Other complica­
tions may be met if the peak positions are such that the m-coordinates or the 
T-coordinates of different peaks are nearly equal. In Fig. 3 such a situation with 4 
peaks is sketched. Even if the peaks considerably differ in the parameters a, {3, and 
-y, the reconstruction may be hard in this case. One then needs extra information, 
e.g. the number of peaks. 

T 

Fig. 3. Sketch of a situation in which the reconstruction procedure outlined in the 
Appendix, section A4, is not directly applicable. 
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Conclusions 

We conclude that reconstruction of the SCB-MW distribution from partial (inte­
grated) data is possible if an appropriate representation of the distribution is avail­
able. Such a representation contains parameters which characterize the peaks. The 
problem then reduces to the estimation of these parameters. The estimates of these 
parameters are in general given by the solution of a set of nonlinear equations. The 
complexity of the reconstruction procedure depends heavily on the number of peaks 
and their configuration. The present analysis yields the following insights: 

a) Reconstruction of one peak is fast and simple since the estimation of the param­
eters can be reduced to solving five linear equations. 

c) Reconstruction of two or more peaks is simple if the problem may be reduced to 
repeated application of the procedure under a). However, if the configuration is 
as shown in Fig. 3 the estimation procedure is more complicated. It is then of 
great help if in advance the number of peaks is known. The general way to apply 
reconstruction in these cases is to use a general estimation procedure based on 
the least-squares approach as described in the Appendix. However, in practice 
one could rather develop an extension of the method under a) for one peak. 

Future research concerns the implementation of the reconstruction method proposed 
here and testing of its applicability to measured data. 
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Appendix 

In this Appendix we present some mathematical details of the reconstruction pro­
cedure. The resulting formulae can be used in the numerical implementation of 
the method. Before dealing with the problem in its general form, we give a simple 
application for illustrative purposes. Thereafter, we treat the problem in a general 
setting. 

Al. Reconstruction of one peak 

In general the data are given at N1 points mi, i = 1, ... , N1 and at N2 points Tj, 
j = 1, ... , N2 and we use the notations 

i = l, ... ,N1, (Al) 

j = l, ... ,N2. (A2) 

Let us first look at the reconstruction of one peak, with as data 4G values and one H 
value. So, we have N1 = 4, N2 = 1. We shall show that the parameters a, f3, 'Y, m, 
and T can be found via explicit formulae. Taking the natural logarithm of both 
sides of (Al) we obtain 

(A3) 

The parameter m follows from the equation 

(A4) 

which has the explicit solution 

(A5) 

where the factor pis shorthand notation for the lefthand side of (A4): 

(A6) 

If an estimate form is known, the parameters a, {3, 'Y directly follow from the equa­
tions (A3), which are linear in these parameters. For this purpose standard tech­
niques such as Gauss elimination can be applied to the first three equations of (A3). 
Eventually, the parameter T is found from the H data: 
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lnH1 =Ina+ Pn1r (A7) 

which is obtained by taking logarithms of both sides of (A2). So, the simple case of 
reconstruction of one Gaussian peak is thus straightforward. 

A2. Reconstruction in general 

Next, we present the general formulation of the reconstruction algorithm. It should 
be emphasized that this formulation is given for completeness' sake. In practice, 
application of the general formulae without incorporating extra expert knowledge 
may lead to badly converging numerical procedures. 
In the following we denote the number of peaks by N. If we integrate representation 
(11) over them and T variable respectively, we obtain expressions similar to (9) and 
(10): 

(AS) 

(A9) 

In total we thus have 5N unknown parameters ak, f3k, [k, ffik, Tk, k = 1, ... , N, which 
have to be estimated from the N1 + N2 data points 

Hi= H(Tj), j = 1, ... ,N2. 

The minimal number of necessary data points is N 1 + N2 = 5N. In practice one 
usually has N1 + N2 » 5N. This excess of information suggests to solve the esti­
mation problem via the least squares method. In this approach one introduces the 
object function 

M1 M2 

E = L (Gi- G(mi)? + L (Hj- H(Ti))2
• (AlO) 

i=l j=l 

This function depends on the parameter set ak, f3k, [k, mk, and Tk, k = 1, ... , N 
and measures for specific values of the parameters the discrepancies between the 
representations G(m) and H(T) and the data points. If E attains its minimal value, 
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the corresponding parameters are optimaL 
A necessary condition following from this minimization is that all derivaties of E 
with respect to the parameters vanish. This leads to 5N nonlinear equations that 
should be satisfied. However, in practice one rather minimizes the function of E 
directly in the 5N -dimensional parameter space. For this, many standard methods 
are available. The success of this approach strongly depends on the quality of the 
data and the initial guess which can be provided for the parameters. These initial 
values must follow from a separate (rough) estimation procedure. 

A3. Reconstruction in practice 

As already mentioned above, the procedure outlined in section A2 is hard to imple­
ment and does not give the guarantee of success provided that the initial values are 
chosen with great care. In practice, one could use extra information or SCB-MW 
distributions. In these distributions the peaks are mostly well separated from each 
other. Furthermore, in the application under consideration, i.e. prediction of bulk 
properties, the detailed form of the peaks is not important and a representation in 
the form of a sum of Gaussian peaks as in (8) and (11) suffices. Another important 
aspect is that in general the number N of peaks is known in advance. It may happen 
that one of the peaks is ver low or even invisible, but also then the reconstruction 
procedure can be applied with the N value fixed. 
The measured G(m) and H(T) profiles often provide direct information about the 
coordinates of the peaks. Given a rough estimate of these coordinates for one peak, 
information near this peak can be used to find reliable estimates for all parameters 
of the peak by means of the procedure worked out in section Al. 
A reconstruction algorithm, which is expected to yield satisfactory results, is given 
below. 

A4. Reconstruction algorithm 

1. Find from G(m) and H(T) data rough estimates for the peak coordinates (mk, Tk), 
k=l, ... ,N. 

2. Select per peak 5 data points which contain nearly only information on that peak 
and not on other peaks. Use the algorithm sketched in sectionAl to estimate the 
parameters, including improved estimates form and T, for each peak separately. 

3. Apply the algorithm sketched in section A2 using the results from step 2 as 
initial values. 
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Remarks 

a) It will often happen that step 3 can be omitted. 

b) The procedure in step 2 may fail in a situation as sketched in fig. 3. For 
that particular case the single-peak procedure in section Al is not applicable. 
However, it is not hard to extend this procedure to a two-peak procedure. We 
shall not work out this extension here in detail, but use can be made of the fact 
that estimates for the peak coordinates (m1, T1) and {ffi2, T2) can be deduced 
from the G and H profiles directly. 
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