

A collection of modelling problems carried out in the academic
year 1991-1992 by the ECMI-students at the Eindhoven
University of Technology
Citation for published version (APA):
Boer, den, A., Bonekamp, J. G., Brand, P., du Croo De Jongh, R. J. H., Hendriksen, A. H. M., Herczog, A., Pruis,
G. W., & Tijink, P. J. A. (1994). A collection of modelling problems carried out in the academic year 1991-1992
by the ECMI-students at the Eindhoven University of Technology. (Opleiding wiskunde voor de industrie
Eindhoven : student report; Vol. 9401). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1994

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/c1748f8b-e9f4-4ff7-8f63-67f09f631c43

;>~ .! 9~-11
,~,::-

Technische
Universiteit
Eindhoven

ECMI
Den Dolech 2
Postbus 513
5600 MB Eindhov

Opleiding
Wiskunde vaar de Industrie
Eindhoven

Student Report 94-01

ACollection of Modelling
Problems

1991 - 1992

Anjet den Boer
Hans Bonekamp
Peter Brand
Richard du Croo de Jongh
Andre Hendriksen
Aime Herczog
Gerard Pruis
Paul Tijink

December 1993

ECMI tfacml

A collection of Modelling Problems carried out in the

academic year 1991 - 1992 by the ECMI-students at the

Eindhoven University of Technology

Anjet den Boer

Hans Bonekamp

Peter Brand

Richard du Croo de Jongh

Andre Hendriksen

Aime Herczog

Gerard Pruis

Paul Tijink

Table of contents

The Gutter Problem

Ecologically Justifiable Insect Plagues Prevention

Simulation of Needling Processes on Surfaces

How to Place the Wiper on a Windscreen

1

7

36

65

THE GUTTER PROBLEM

1

Rept[l]

1 Introduction and Problem Description

In this report we handle the question of how large a gutter should be so that
it will not overflow, given a certain amount of rainfall during a given period
of time. With a certain amount of rainfall we mean a heavy shower One
intuitively understands that this problem depends on the size and the angle
of the roof.
Now a producer of gutters wants to have tables which he can use to recom­
mend sizes of a gutter, given the size and the angle of the roof.
Modelling the income and outcome of water from a gutter we make the fol­
lowing assumptions:

• A roof has two leaning sides. The slope of a side varies between 30°
and 60°.

• Every side is rectangular.

• A gutter hangs horizontally and has only one rain-pipe.

• A gutter can have two different shapes:
-round
-rectangular

• For every type of gutter there is a suitable type of rain-pipe.

• A gutter is hanged just below the edge of the roof.

• While it is raining there is no wind blowing, this means the rain falls
vertically.

In the next section we give some results

2

Rept[2]

2 Numerical Results

Using the model derived in the next section we can give some numerical
results. (Using the fact that a heavy shower will be 1 mm of rainfall per
minute, during 1 hour). The numbers in the tables represent the height of a
gutter in centimeters and a is the angle of the roof.

Remark: we restrict ourselves to round gutters, because a hemispherical
gutter with radius p and a rectangular gutter with height p and width PiP
give the same results.

Table I: size of gutters with a = 30°

b\l 10 25 50
5 0,0004 0,027 0,011
10 0,0017 0,011 0,043

Table II: size of gutters with a = 45°

b\l 10 25 50
5 0,0003 0,002 0,007
10 0,0011 0,007 0,029

Table III: size of gutters with a = 60°

b\l 10 25 50
5 0,0002 0,0009 0,0036
10 0,0006 0,0036 0,0143

Looking at these results we see that the values that occur remain small, even
when the roof is big (i.e. 10 x 50 m). Assuming that a normal gutter will

3

Rept[3]

have a height of about 15 em, it is not nessecary for the producer to use
tables to recommend a gutter.
However the question becomes important when the roof gets bigger, for ex­
ample a roof of a large factory hall or when the rainpipe gets choked. In
these cases one might need a gutter with a height of more than 15 em. But
then it will be better to reformulate the question in: "How many rain-pipes
does one need, given a certain (very big) roof'.
To see how this affects the results we have to look at the model. So in the
next paragraph, we will derive the model.

3 Mathematical modelling

The question is of how large a gutter should be. So we have to find a minimum
size of the gutter so that it will not overflow by a heavy shower. When the
gutter is totally filled this means:
the amount of water coming into the gutter must be equal to the amount of
water going out of the gutter.
We use the following notation:

4

Rept[4]

.v speed of the water at the beginning of the rainpipe [m/sec]

eg gravitational acceleration [m/sec2]

.d diameter of the rainpipe [m]

.1 length of the roof [m]

.b width of the roof [m]

.<»ol volume of the water going out of the gutter [m/sec3
]

e<]}i volume of the water coming into the gutter [m/sec3]

.a angle of the roof [rad]

.h height of the gutter [m]

eN the amount of rainfall [m/sec]

One easily sees that:

<Pi = b1cos(a)N

To derive <POl we consider the speed of the water at the beginning of the
rainpipe. There holds:

v = J2hg

(This follows from: kinetic energy equals potential energy===} mt =mgh)
So <POl equals:

5

where S is the surface of the rainpipe with diameter d.
Now we put <Pi = <Pu which gives us the following equation for the minimal
height of the gutter:

When we look at this formula we see that the relation between hand 1 is
quadratic. This means a roof that is twice as small needs a gutter which is
four times as small.
So when the formula says we need a gutter of 60 cm using one rain-pipe, we
can also use a gutter of 15 cm and two rain-pipes.

6

Rept[5]

ECOLOGICALLY JUSTIFIABLE INSECT PLAGUES

PREVENTION

7

Rept[21

Contents

1 Description of the problem 3

2 Results 5

3 The Model 8

4 Analysing the model 10
4.1 The one-dimensional case. 10
4.2 Scaling the model 11
4.3 The two-dimensional case 12
4.4 The three-dimensional case . 15

5 Conclusions 19

6 Appendix 20

8

Rept[3]

1 Description of the problem

In this report we consider a problem of a gardener who is growing vegetables
in a glasshouse. During the growing cycle of the vegetables the plants suffer
from insects which are eating their leaves. Since these insects (we will call
them 'wammels') have a negative influence on the profit of the gardener, he
wants to find a remedy for keeping the number of wammels as small as pos­
sible.
In this report we shall answer the following questions:

• How can we prevent an insect plague ?

• How can we keep the number of wammels (on average) as small as
possible during the growing time?

• How can we achieve that a very small number of wammels is still on
the vegetables when they are being sold ?

It is clear that an insect plague is the first thing to avoid, since it ruins his
vegetables.
The second question is due to the fact, that the vegetables must grow, without
being affected by the insects. Finally the gardener prefers clean vegetables,
when they are being sold.

We shall discuss two possibilities for answering these questions:

• The gardener can spray the vegetables with an insecticide. In this case
we assume that only 1 % of the wammels stay alive after spraying.

• He can add other species of insects to the glasshouse environment,
where he can choose out of two possible insect species, so called 'wim­
mels' and so called 'wummels'. These insects display the following
behaviour

9

Rept[4]

- wimmels(w2) only eat wammels(wl)

- wummels(w3) eat wammels(wl) as well as wimmels(w2)' but they
strongly prefer wimmels.

We have modelled all the above mentioned possibilities. The results are given
in the next section, while the mathematical model is discussed in section 3
and 4.

10

Rept[5]

2 Results

We analysed the described possibilities to exterminate the wammels:

• The gardener can spray the vegetables with an insecticide. By assum­
ing that only 1 %of the wammels stays alive, the wammels-population
will recover in 7 days if the population has a doubling-time of one day.
So keeping the amount of wammels small means spraying once a week.
It is clear that this method is not ideal. Therefore we shall concentrate
on biological remedies for the wammel-plague, in that way avoiding the
use of environment damaging insecticides.

• By adding other species of insects to the population the gardener can
control the number of wammels during the growing-cycle. He only has
to know at what time and how many insects of each specie he has to
add. In the tables, showed below, we give some numerical results. In
these tables we only consider adding wimmmels, because in our opinion
it is the best way to fight the wammels. The only assumption we make
is, that the gardener has a rough estimate of the existing number of
wammels in the glasshouse.
Having this estimate, he can use Table I to determinate how many
wimmels he should add to reach in a certain amount of time a situa­
tion in which the amount of wammels in the glasshouse is as small as
possible.
If the gardener has determinated, with the help of the first table, what
amount of wimmels he is going to add, he can use Table II to get the
time at which the amount of wammels becomes the same again as at
the time at which he added wimmels, knowing that by adding wimmels
the number of wammels in first instance decreases.
Table III gives the gardener information about the growing cycle of the
insect-populations. If he knows the amount of wammels and wimmels
in the glasshouse, he knows how many days it takes to be in exact the
same situation again.
Figure 2.1 shows the periodic behaviour of the populations. (see para­
graph 4.3)

11

Repr[6]

• By adding wimmels and wummels, he has to be careful. It can either
happen that all tree populations explode and keep growing (this is cer­
tainly not what he wants), or, in the other case, the wummels die out,
but the wammels and wimmels form a biological balance as above.
By doing experiments, he may find situations in which it can be lucra­
tive adding wummels too.

Remark: The numbers in the tables are all divided by 1000 .

Table I

Time (in days) to reach minimal WI

W2\WI 10 20 30 40 50
6 0.80 0.91 0.98 1.05 1.39
5 0.74 0.84 0.93 1.03 1.21
4 0.62 0.75 0.87 1.02 1.15
3 0.56 0.68 0.84 1.02 1.13
2 0.41 0.56 0.83 1.10 1.11

Table II

Time (in days) to reach same value of WI

W2\WI 10 20 30 40 50
6 2.57 2.99 3.39 3.93 4.26
5 2.14 2.79 3.11 3.66 3.99
4 1.83 2.19 2.75 3.38 3.74
3 1.30 1.82 2.28 2.97 3.56
2 0.85 1.16 1.79 2.64 3.55

12

Rept[7]

Table III

Period of curves (in days)

W2\Wt 10 20 30 40 50
6 7.41 6.53 6.20 6.13 6.18
5 7.03 6.14 5.78 5.73 5.81
4 6.65 5.71 5.40 5.32 5.43
3 6.28 5.43 5.06 4.99 5.09
2 6.00 5.06 4.80 4.74 4.81

figure(2.1)

3.5,----r-----,----,----.,.---.,....----.,....-----:-----,

1 .

2.5' •

, (WI)

~,,'- -

I
I
I

(W2) j
I
I,
I
I
I
I
I
Il _

I
I
I
I
I
I
I
I
I
I
I

:
I

.._- .._~ ._------- _.- --_._------------------_..__._---------------- -_ .. - -
I
!

1 -

2 -

()

15·

05 .

32.521.50.5()

.0.5 L.--__L-__'-__-'-__-'--__-'--__.L-_---'

·o.s

13

Rept[8]

3 The Model

In the model described here we use the following notations:

wammels: Wl

wimmels: W2
wummels: W3

The model is based on the following assumptions and simplifications:

1. The Wl eat only vegetables and there is always enough food (vegeta­
bles) for them.

2. The W3 only eat W2. In reality W3 can eat Wl, but they prefer W2 to Wl'

So, if there are enough W2, this assumption is justifiable.

3. Without the presence of W2 and W3, the growth of Wl in a certain time
period b.t is proportional to the existing number of Wl in that (very
small) period of time, so Wl will grow exponentially. This is a biologi­
callly justifiable assumption.

4. Every single insect W2 eats a fraction (j3Wl)b.t of the total amount of
Wl during a time period b.t of one day. Analogous remarks can be
made about W3 eating W2.

Using the above assumptions we can derive the following balance- equations:

Wl(t +b.t) = Wl(t) +b.t(awl(t) - j3Wl(t)W2(t))
W2(t +b.t) = W2(t) +b.t(-KW2(t) + AWl(t)W2(t) - J-lW2(t)W3(t))
ws(t +b.t) = W3(t) +b.t(-7]W3(t) +OW2(t)W3(t))

All the parameters in these equations are positive. The dimension of t, [t],
is T (in days). The dimension of the parameters a, ,O is T- l (in per day).

14

Rept[9]

Taking Wl(t), W2(t), and W3(t), to the left hand side in these balance equa­
tions, dividing all terms by ti.t and further taking the limit for ti.t ---+ 0, we
get the following differential equations:

Wl(t) = aWl(t) -l3wl(t)w2(t)
W2(t) = -KW2(t) + AWl(t)W2(t) - jlW2(t)W3(t)
W3(t) = -1]W3(t) + OW2(t)W3(t)

The terms for example in the first equation can be explained as follows:

• Wl = aWl
This term causes an exponential grow of the Wl .

• Wl = -l3wlw2
This term tells us about the amount of W2 eaten by Wl. For further
comment see item 4 listed above.

The terms in the other equations can be explained in the same way_

15

Rept[lO]

4 Analysing the model

4.1 The one-dimensional case

First we analyse the situation in which W2 = W3 = o. So the only equation
left, is

and its solution is given by

It is important to know how fast the WI is growing. One could for example
measure the time T in which the amount of WI is doubled. We call T the
'doubling-time'. The value of T can be derived from the following equation:

2WI(0) = wI(O)eQT.

So T = In(2)
a

For small insects it can be realistic to take T = 1, meaning that the in­
sect population doubles itself in one day. And so we get a value for a:
a = In(2) per day.

From this estimation for a we conclude that if the gardener chooses to spray
with an insecticide, instead of using a biological prevention-method, he has
to spray at least once a week, otherwise the population of WI will still grow.
For we did assume that spraying means killing 99 %of the insect-population,
so after spraying, 1 % of the WI population is left, meaning that in 7 days
the population doubles 7 times. And because 27 > 100 it follows that a week
after spraying the insect population will be greater than before.

16

Rept[ll]

4.2 Scaling the model

The next step will be the scaling of the parameters in the three-dimensional
system of differential equations. Scaling is done in order to get a better com­
parison for the parameters in the model. We could get rid of 4 parameters,
but instead, we choose a scaling in the following form:

tt = at, with a = In(2)

Which results in:

i 1 = Zl - bZ1 Z 2

i 2 = -aZ2 + bZ1 Z 2 - CZ2Z3

is = -dz3 +CZ2Z3,

with a = ~ b = I!. C =! d = !l..
a' a' a' a

This system gives us a good impression of the original system provided that
~, i, a, b, c, d are of 0(1). (i.e. all events are of the same order)

17

Rept[12]

4.3 The two-dimensional case

In this section we analyse the system in which only W2 is added, so W3 = 0.
Using the scaled differential equations from section 4.2, we get:

it = Zt - bZ1Z2
i 2 = - az2+ bZ1Z2

The matching equilibrium-points are:

(0,0) with eigenvalues A1 = 1 and A2 = -a,

(i,!) with eigenvalues A1 = iva and A2 = -iva·
So (0,0) is an instable point. About the point (~, t) we can't say yet if
it is stable or unstable. In the appendix we shall prove that (~, t) is a stable
centerpoint. (Linearily it is stable, but this is not enough)

The integral-curves are easy to find. They satisfy

dZ2 Z2(-a + bz2)- - -------'-
dZ1 - Z1 (1 - bz2)

and so In(z2) +aln(z1) - b(Z2 + Z1) = constant.

For different initial-values, some of these integral-curves are drawn in fig­
ure(4.3.1).
In the appendix we prove that these curves are closed.

By looking at the sign of ddz2, it follows that their direction is counterclock­
Z1

wIse.

18

Rept[13]

3.5

3·

2.5 -

2
Z2

L5

0.5 -

£)

,,
I
I
I
I
I
I
I
I,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I,­
I
I
I
I
I
I
I
I
I
I
I
I
I

:----Ir--------- ---~I
!

32.521.50.5o
-0.5 '-__-'-__--'I...-__--'- .J-__--'-__-..l

-0.5

figure (4.3.1)

The period of such a curve is difficult to calculate explicitly. In the neigh­
bourhood of the cri tical point (t, t) we can find a linear approximation.
In the appendix this is done, by using perturbation series for Hamiltonian­
systems, up to second order.
Linearizing the system around (~,~) gives the equation

z == Az with A = [~ ~ 1The eigenvalues of A are ±i.J(i

So the solution of this equ,ation is

19

z(t) = Al cos(vat) +A 2 sin(vat) ,

They have a period: p' = ~.

So for the original system we obtain an estimation for the period p of the
curves

1
p= -p'

0:

In the appendix it is proved that, in going away from the critical point (~, ~),

the period p first decreases a bit. From numerical results we can deduce that
further away from the critical point the period will grow again.
For example, choose initial points on the line:

l: {(Zl,Z2)lzI E (0, ~),Z2 = l},

and 0: = f3 = In(2) per day, '" = In;2) per day.

From this we can conclude: p = 12.8 days.
By taking some initial points we get the following estimations for the period:

Z(O) = (0.4,1) -+ period: 12.60 days
z(O) = (0.3,1) -+ period: 12.70 days
z(O) = (0.2,1) -+ period: 12.85 days

In Table III in section 2 there are some more results concerning the pe­
riod of the curves.

20

Rept[l4]

Rept[15]

4.4 The three-dimensional case

In this situation we consider the complete system, with W1, W2 and W3. SO
we have the following (scaled) equations:

i 1 = Zl - bZ1 Z2

i 2 = - az2 + bZ1Z2 - CZ2Z3

i 3 = -dz3 +CZ2Z3

The matching equilibrium-points, when d =1= C, are

(0,0,0), (0, ~, -t) and (~, t, 0).

And in the special case that d = C there is an extra line of critical points

The matching eigenvalues are

(0,0,0): A1 = 1, A2 = -a, A3 = -d =? unstable point.

(~, t, 0): A1 = f - d, A2 = iva, A3 = -i.ja =? if f > d then this point is
unstable, if f :::; d we will prove it to be stable.

If ~ = d the eigenvalues of the line 1are:

Al = 0, A2 = iJ>.t + a + AC, A3 = -iJ>..t +a + AC.

We shall also prove stability for these points.

A family of solutions we find immediately by comparing the first and the
third equation:

21

Rept[16]

i l i 3
c- + b- = c - db :::}

Zl Z3

- c (c - db)t
Z3 = Cz;7i exp()

b

In the appendix we prove stability for the point (~, t, 0), if f ~ d, using
this solution.
It is clear that if f < d, Z3 tends to zero if Zl is bounded away from zero.
In the appendix it is also proved that if c < db,

lim Z3(t) = °
t-+oo

holds for every initial condition z(O) = (Zl(O), Z2(0), Z3(O)),
and the curve converges to a closed curve in the Zl, Z2 plane, given by the
equation:

In(z2) +aln(zl) - b(z2 +Zl) = constant. (see figure (4.4.1)

If c = db then all solutions are periodic, given by:

see figure (4.4.2)

If c > db then

lim Z3(t) = 00
t-+oo

and we see in figure (4.4.3) that also Zl and Z2 tend to infinity.
In all tree the pictures the ground plane is the Zl, Z2 plane.

22

Rept[17]

(ftgure (4.4.1) c < db)

6 a=O.5

5·
b=1

c=2

4 -
d=2

3 .

2

o

-I

-2

,,,,,,,,,
,,,,,,,,,

.. ,"---~----

...::;;;~ ---.
.........'

. - _---- - ... _-

765432o-I-2
-3 ~__-'-_--'-__'--_....l..-_..........__L...-_-'--_-L_---'L.-_

-3

(figure (4.4.2) c = db)

23

20

15

10

5

0

-5

-10
-10 -5 0 5

..

~a=O.5

b=1
c=2
d=1

10 15

._----

20

Rept[18]

(figure (4.4.3) c> db)

24

. Rept[19]

5 Conclusions

• To prevent a wammels(wl) plague, adding only a large enough quantity
of wimmels(WI) is sufficient.

• To minimize the number of wammels(wI)' we have to follow a strategy
of adding wimmels(W2) at particular times, using the given tables.

• With a growing time taking several weeks, the adding of wummels(w3)
gives (on average) a smaller number of wammels(wl) and wimmels(w2)
during this period.

• It is not wise to minimize the number of wammels(WI) by adding
wummels(W3) because, it is difficult to calculate the right number to
add, and making a small mistake can cause disastrous effects.

25

Rept[20J

6 Appendix

We have a system differential equations in the following form:

it = Zt - bzt z2
i 2 = -az2 + bztzz - eZZz3
i 3 = -dz3+ eZZZ3

By introducing new variables:

x := lnzt, Z := In Z3

We transform the system in the new variables:

x = 1 - beY
iJ = -a + be:l: - eeZ

i = -d + eeY

One solution is found directly by combining the first and third equation
d + bi = e - bd =?

-ex e - bd
eZ = Aexp ((-b-) +(b) t) , for certain constant A > O.

Substituting this equation for eZ in the second differential equation gives:

x = 1 - bexp(y)
-ex e - bd

if = -a + bexp(x) - eAexp (-b- +(b) t)

with A > 0 arbitrarily.

This is a time dependent Hamilton system, and the Hamiltonian is given
by:

26

Rept[21]

-ex e - bd
H = b(exp(y) +exp(x)) - y - ax +bAexp (-b- +(b) t)

where A > 0 follows from the initial values.

such that
. dH
x=--

dy
and

. dH
y=­

dx

Theorem 6.1

If e - bd < 0 then

lim z(t) = -00
t--+oo

and the Hamiltonian converges to the time-independent Hamiltonian for the
system with the original W3 = 0:

b(eY + e~) - y - ax = constant.

If e - bd > 0 then

lim z(t) = 00
t--+oo

If e - bd = 0 then all solutions are periodic, the projection in the x - y plane
of these curves are given by the integrals:

-ex
b(eY + e~) - y - ax +bA exp (-b-)= constant.

Proof

First we consider the case e - bd < O.

Def. I(x,y):= b(eY + e:ll) - y - ax

27

H = 1+ bez

We shall prove that

lim z(t) = -00
t-+oo

, with the consequence that

lim H (x, y, t) = I (x, y)
t-+oo

and that I(x, y) is the Hamiltonian of the system with z = 0:

x= 1 - beY
if = -a + be:t

Suppose

lim z(t) # -00
t-+oo

then since

-cx c - bd
lim exp(-b- +(b)) # 0
t-+oo

follows necessary

lim x(t) # -00
t-+oo

In this case

3T1 such that Vt > T1 : e:t(t) < c, 0 < c~ 1.

But then with if = e:t - a - eZ => if < c - a =>

y(t) < (c - a)t + Cll Vt> T1 •

28

Rept[22]

Rept[23]

But that would significate y(t) ----+ -00 ,however with x = 1 - eY

this would significate 3T2 s.t. 1 - eY > 0, "It > T2 •

But this is a contradiction with the assumption, so

lim z(t) = -00
t-+oo

and

lim H (x, y, t) = I (x, y)
t-+oo

But I(x, y) is the Hamiltonian of the 2-dimensional system:

x = 1 - bexp(y)
-ex e - bd

if == - a + bexp(x) - eA exp (-b- +(b) t)

Since x = - dI and if = dI
dy dx

Since z(t) ----+ -00 is equivalent with W3(t) ----+ 0 in the original sys-
tem, our theorem is confirmed by picture (4.4.1).

if c-bd > 0 then an analogous story can be hold, and it follows that z(t) ----+ 00

and equivalent W3(t) ----+ 00, the curves diverge.

If c - bd = 0 then the Hamiltonian becomes time-independent, the system
holds two degrees of freedom, and is integrable.
All solutions are periodic, given by:

-ex
b(eY + e:l:) - y - ax +bA exp (-b-) = constant.

Now we look at the case W3 = 0 and keep the following equations:

x= 1 - beY

29

o

Rept[24]

if = -a + bez

Since eigenvalues of the unique critical point (In(~), Inn)) are purely com­
plex, and the system is a Hamilton system, we can conclude that the critical
point is a center point, and that all curves in the (x,y) plane are closed.

We look for an approximation for the period T close to the critical point

Define p := x - In(~), q:=y-In(i)

Substituted in the Hamiltonian gives:

H = (eq +aeP) - q - ap- constant,

where the constant (= In(i) +aIn(t)) we can omit.

Now we develop H in a taylor series around (p = 0, q = 0):

We scale in the neighbourhood of the critical point

p = tp, q = tij, O<t~l

The following step is introducing Action-Angle variables, defined by :

[2T.
p := V~ sm r.p

ij := -J2jyla cos r.p

It's easy to prove that by this canonical change of variables the system re-

30

Rept[25]

mains Hamiltonian, so by substituting c.p, j for p, q in H holds:

. dH(c.p, j)
c.p = dj and

'. dH(c.p,j)
J=-

dc.p

By introducing a generating function S(J, c.p) , transforming (j, c.p) -+ (J, 1»
and applying Hamilton-Jacobi theorem, we can eliminate c.p one order of € ,

Doing this N times, you can get:

rp = dH~~,j) = w(j) + O(€N) =>

c.p(t) = (w(j)t +c.p(0) +O(€N)) (mod 2 71")

271" N
T = w(j) + O(€)

We will calculate the perturbation serie till N =3,

Substituting j and c.p in H gives:

fI := ~(ap2 +q2) + ~€(aii + q3) + 214€2(apl +t)+ ...=

vaj + € (tfjVJcos3 c.p - ~v'2atjVJ sin3 c.p) + c2 (~P cos4 c.p +~ap sin4 c.p)+
at

Now we define a canonical variable transformation (j, c.p) -+ (J, 1» by in­
troducing a generating function

We choose S such that:

. dS(J,c.p)
J= dc.p

and 1>= dS(J,c.p)
dJ

It can be proved again that H(J, 1» remains Hamiltonian.

For notation we define:

31

Rept[26]

\!2(j, cp) := ~p COS
4 cp + ~ap sin4 cp

Substituting j = ~~ in H and setting the Hamilton-Jacobi equation gives:

dS dS 2 dS
H = va dcp +d)(dcp , cp) + f 112(dcp) =

Ko(J) + d{l(J) + f2 K2(J) + f3 K3 (J, ¢) =?

H r:: (J dSl(J,cp) 2dS2(J,CP)) TT (J dSl(J,cp))
= Va + f + f + ... + f vl + f + ... ,cp +

cp cp cp

2lT (dSl(J, cp))
f V2 J+c + ... ,cp +... =

cp

Ko(J) + cKl(J) + c2K2(J) + c3 K3 (J,¢)

For comparing powers of c, V1 and V2 have to be developed in Taylor se­
ries round J .
We want to eliminate cp till O(c2

), so we have to resolve:

Ko(J) = vaJ

vadSld~' cp) + V1 (J, 'P) = K l (J)

r:: dS2 (J,cp)+dV1 (J,cp)S(J)+V:(J)=K(J)
V a dcp dj l, cp 2, cp 2

These are the equations to solve, since for O(to) cp does not appear, we start
for O(cl).

32

Rept[27]

c;d51(J, c.p) 1 rc; 3'Ii 3 1 rc; 3 , r: . 3 T.((J)Va d + -v2a"iJ J cos c.p - -v 2a"iJyJ sm c.p = l' 1
c.p 3 3

We choose 51 such that c.p becomes eliminated.
This can be done by developing 51 in his Fourier-serie, the details are omit­
ted, but we arrive at:

I<1(J) = 0 A

C; d51(J,c.p) 1 rc; 3 r;(r:: . r::,)
va d = --v2a"iJvJ 3cosc.p+cos3c.p-3avasmc.p+avasm3c.p

c.p 12

51 (J, c.p) = - AV2a~ JVi (3 sin c.p + ~ sin 3c.p + 3ay'a cos c.p - ~ay'a cos 3c.p)

Since](1 (J) = 0 it is necessary to look at higher order terms:

, where

We derive that:

dy;' 1 rc; r. r;. 1 1 r::
5 1 -

d
= --v2a"iJvJ (3smc.p + -sin3c.p + 3avacosc.p - -avacos3c.p).

J 12 3 3

1 J2 (. 1. r:: 1 r::)-82 3 sm c.p +- sm 3c.p + 3av a cos c.p - -av a cos 3c.p
4 a 3 3

33

(3 cos c.p - cos 3c.p + 3ava sin c.p - ay'a sin 3c.p)

This expression is used in the equation we want to solve:

j;;d52(J, c.p) + d~(J, c.p) 5 (J) + v: (J) = J{ (J)
V a dc.p dj 1, c.p 2, c.p 2

Again we develop 52 in it's fourier series, and derive:

We remark that it is also possible calculating J{2(J) directly, by
using ... (*) and formulas like

sin4 c.p = ~ - ~ cos 2c.p + ~ cos 4c.p,

and leave out all the c.p-dependent terms.

For the Hamiltonian, we have derived:

H = vaJ + 116E2J2(1 +a) +O(E3
) and

rp = ~~ = va + ~E2 J (1 +a) +0 (E3
)

c.p == (va + ~E2J(1 +a))t +O(E3
) =

w(J)t +O(E3
)

For the period T we get the following approximation :

34

... (*)

Rept[28]

2~ 1 2 1) 3
va-47l"Je(1+~ +O(e)

The conclusion is that close to the critical point, the period T decreases, if
The radius J becomes bigger.

35

Rept[29]

SIMULATION OF NEEDLING PROCESSES

ON SURFACES

36

Rept[2J

Contents

1 Description of the problem 3

2 Numerical results 4

3 Simulation method 7

4 Conclusions 9

5 Computer programs 10

37

Rept[3]

1 Description of the problem

In many chemical processes crystals can appear on the surfaces of substances,
which cool down. These phenomenons have the following properties:

• A crystal has the form of a needle: They appear in a point (kernel) at a
certain time and grow in opposite directions across a straight line. The
position of such a kernel as well as the tangent of the corresponding
line and the initial growing time are all random. (figure 2.1 page 4)

• The speed, under which a crystal grows, appears to be constant.

• An crystal-end stops growing, when it hits an other crystal.

We made a computer program Kristal2.pas (see section 5) , which simulates
the crystal growing proces. In this report both the program and the results
are demostrated. Furthermore the following question is answered:

• What can be said about the amount of active crystal ends per square
unit at any time of the process? Herefore we also made a computer
program, called Kristaleinden.pas given in section 5.

In section 2 are given the numerical results, while the working of Krista12.pas
is set out in section 3. Section 4 is reservated for conclusions and section 5
gives the two computer programs, written in Turbo Pascal.

38

Rept[4]

2 Numerical results

For simulating the crystal growing process, we made a computer program,
called Krista12.pas, written in Turbo-Pascal. (In section 5 the program is
given and in section 3 it's working is explained)
vVhen the program is being runned, we get pictures like figure 2.1, which
gives a situation of a certain crystal growing process, on a rectangle in lR2

•

figure 2.1 (random crystal growing)

39

Rept[5]

Since the processes are random, it is not possible to find an analitical
solution for the number of a.ctive crystal ends at a certain time.
Therefore is made a program called Kristaleinden.pas, which calculates the
number of active crystal ends at each time step for the running process. Fig­
ure 2.2 gives such a result. On the vertical axis is set out N(t): the number
of active ends as a function of time t. On the horizontal axis the time.
By running the program several times (for example 1000 times) and a.verag-
ing N(t), we get figure 2.3. .-

4'l -...

'10 \

I

,II'

N(t) 7:;

T
711

1:;

-+t

figure 2.2 (N(t) for one proces)

40

35 -

30

2.~

Rept[6]

N(l)
i 20

15

10

o __L.'_--1.1_---'-,

I) 1 2 3 4

-tt

5 (, 7 8 9 II)

ngm(~ 2.:1 (The average N(i) of 1000 processes)

41

3 Simulation method

In this section the working of Kristal2.pas is explained. A proces is simulated
on a grid of size M*M in lR? and is considered as a discrete time process.
For a better explanation we introduce the following notation:

Rept[7]

t
N(t)
H(t)

(Xi,Yi)
Ai
T:l
M
J(

MT(i,j)
MI(i,j)

: Time
: Number of active ends
: Number of marked elements

(element = sqare of size ir * ir)
: Coordinates of the kernels
: Tanger:ts of corresponding lines
: Origintimes of the kernels
: Grid size
: Number of kernels
: Marking time of grid element (i,j)
: Index for the kernel which enters

element (i,j) first

J((number of kernels), (Xi,Yi) (coordinates of the kernels), Ai (tangents of
corresponding lines) and Ti (Origintimes of the kernels) are determinated
by a standard Randomizer of Turbo-Pascal, the first three from a uniform
distribution and Ti from an exponential distribution with parameter A. We
consider A as a linear function of t: A(t) = Ao(1 + t)
The program acquires from the user:

1) The grid size M (:wosteromvang)
2) Ao for the exponential distribution (lambda-begin)
3) The end time of the process (eindtijd)

Then the program starts to simulate the process using a discrete time step
ir. This indicates that a horizontal and vertical movement in one time step
is at most one grid element. (see figure 3.1)

42

Rept[8]

t= T + it

t=T

figure 3.1

Once an active end has reached a grid element, two situations can occur:

• The active end is the first end that reaches the element. The marking
time and the marking index for the element are changed.

• An other crysbl was in the element before. the active end stops grow­
mg.

In this way Kristal2pas evaluates for each time step the situation, until the
given end-time is reached.

43

Rept[9]

4 Conclusions

We succeeded in simulating a crystal growing process, but could not find an
analitical solution for N(t): the number of active ends as a function of time t.
Figure 2.3 tells us something about its behaviour on average, however more
theoretical research can be done. We suppose that it might be possible to
derive a differential equation for N(t), using Markov-chains.

44

Rept[lO]

5 Computer programs

PROGRAM Krista12;

Uses
Crt, Graph;

Const Nmax = 1000;
Mmax = 103;

TYPE arr = ARRAY [1 .. Nmax] OF real;
ari = ARRAY [1 .. Nmax] OF integer;
mat = ARRAY [0 .. Mmax 0 Mmax] OF real;
matpointer = -mat;
mti = ARRAY [0 .. Mmax , 0 Mmax] OF integer;
mtipointer = -mti;

VAR i1, i2, jl, ~2, k, M, N, code: integer;
HokjesTeller, EindenTeller, KernenTeller, KernenErbij: integer;
x, y, hst, vst, T, EindTijd, Lambda_begin: real;
KernX, KernY, HoekKern: arr;
Bx, By, Ox, Oy: arr;
BeginTijdKern. EindBoven, EindOnder: ari;
MarkeerTijd: matpointer;
MarkeerIndex: mtipointer;
uitvl, uitv2: text;
Gd, Gm, LowMode: integer;
Color: word;

FUNCTION Lambda (T: real): real;
BEGIN

Lambda := Lambda_begin * T + Lambda_begin;
END;

PROCEDURE Tijdstipp'3n (VAR BeginTijdKern: ari; EindTijd: real;
M: integer; VAR N: integer);

45

Rept[ll]

VAR i: integer;
x, interval: real;

BEGIN
x := (random (10000) / 10000);
WHILE (x < 1E-30) DO x := (random (10000) / 10000);
interval := - In (x) * Lambda (0);
BeginTijdKern [1] := trunc (M* interval);
i := 2;
WHILE ((i <= N) AND (BeginTijdKern [i - 1] < EindTijd * M)) DO
BEGIN

x := (random (10000) / 10000);
WHILE (x < 1E-30) DO x := (random (10000) / 10000);
interval := - In (x) * Lambda (BeginTijdKern [i - 1] / M);
BeginTijdKern [i] := BeginTijdKern [i - 1] + trunc (M* interval);
i := i + 1

END;
N := i - 1;

END;

PROCEDURE Coordinaten (VAR KernX, KernY: arr; Aantal: integer);
VAR i: integer;
BEGIN

FOR i := 1 TO Aantal DO
BEGIN

KernX [i] := (random (10000) / 10000);
KernY [i] := (random (10000) / 10000);

END
END;

PROCEDURE Hoeken (VAR HoekKern: arr; Aantal: integer);
CONST pie = 3.1415;
VAR i: integer;
BEGIN

FOR i .- 1 TO Aantal DO HoekKern [i] := pie * (random (10000) / 10000)
END;

PROCEDURE Initialisatie (VAR MarkeerTijd: matpointer;
VAR Markeerlndex: mtipointer;
Aanta11, Aantal2: integer;

46

Rept[12]

KernX, KernY: arr; VAR Bx, By, Ox, Oy: arr;
VAR EindBoven, EindOnder: ari);

VAR i, j:integer;
BEGIN

NEW (MarkeerTij d);
NEW (MarkeerIndex);
FOR i := 0 TO Aanta11 - 1 DO

FOR j := 0 TO Aanta11 - 1 DO
BEGIN

MarkeerTijd~ [i, j] := 1000;
MarkeerIndex~ [i, j] := 0

END;
FOR i := 1 TO Aanta12 DO
BEGIN

Bx [i] := KernX [i];
By [i] := KeruY [i];
Ox [i] := KernX [i];
Oy [i] := KernY [i];
EindBoven [i] := 0;
EindOnder [i] := 0;

END
END;

FUNCTION Doorgaan (HokjesTeller, M: integer; T, EindTijd: real): boolean;
BEGIN

Doorgaan := ((HokjesTeller < (M * M)) AND (T < EindTijd))
END;

FUNCTION RondAf (Getal: real): integer;
VAR teken: integer;
BEGIN

IF (Getal >= 0) THEN teken := 1 ELSE teken := -1;
RondAf := teken * trunc (abs (Getal))

END;

PROCEDURE VeranderHokje (Snijtijd, Tijd: real; i, j, k, Index, N: integer;
VAR Waarde, HokjesTeller, EindenTeller: integer;
VAR EindBoven, EindDnder: ari; VAR MarkeerTijd: matpointl
VAR MarkeerIndex: mtipointer);

47

Rept[13]

BEGIN
IF (Snijtijd < Tijd)

THEN BEGIN
IF (Tijd > 900)

THEN HokjesTeller := HokjesTeller + 1
ELSE BEGIN

IF (Index <= N)
THEN BEGIN

IF EindBoven [Index] = 1
THEN EindenTeller := EindenTeller - 1:

EindBoven [Index] := 2
END

ELSE BEGIN
IF EindOnder [Index - N] = 1

THEN EindenTeller := EindenTeller - 1:
EindOnder [Index - N] := 2

END:
END:

MarkeerIndex~ [i, j] := k:
MarkeerTijd~ [i, j] := Snijtijd

END
ELSE BEGIN

Waarde := 2;
EindenTeller := EindenTeller - 1

END
END:

FUNCTION NieuweKernen (Tijd: real; BeginTijdKern: ari:
M, N, KernenTeller: integer): integer;

VAR k, som:integer;
doorgaan: boolean;

BEGIN
k := KernenTeller + 1;
som := 0:
doorgaan := (k <= N):
IF doorgaan THEN doorgaan := (Tijd >= BeginTijdKern [k] / M):
WHILE doorgaan DO
BEGIN

som := som + 1:

48

Rept[l4]

k := k + 1;
doorgaan := (k <= N);
IF doorgaan THEH doorgaan := (Tijd >= BeginTijdKern [k] / M)

END;
Ni.euweKernen := som

END;

FUNCTION BuitenRooster (i, j, M: integer): boolean;
BEGIN

BuitenRooster := ((i < 0) OR (j < 0) OR (i >= M) OR (j >= M))
END;

BEGIN {Hoofdprogramma}
ASSIGN (uitv1, 'Einden.uit');
REWRITE (uitv1);
ASSIGN (uitv2, 'Hokjes.uit');
REWRITE (uitv2);
T := 0;

HokjesTeller .- 0;
KernenTeller := 0;
EindenTeller := 0;
N := Nmax;
writeln ('Geef roosteromvang:');
readln (M);
writeln ('Geef beginwaarde van exponentiele verdeling:');
readln (Lambda_begin);
writeln ('Geef eindtijd van proces:');
readln (EindTijd);
Randomize;
Tijdstippen (BeginTijdKern, EindTijd, M, N);
Coordinaten (Kern!, KernY, N);
Hoeken (HoekKern, N);
Initialisatie (MarkeerTijd, MarkeerIndex, M, N,

KernX, KernY, Bx, By, Ox, Oy, EindBoven, EindOnder);
Gd := Detect;
InitGraph (Gd, Gm, 'C:\BIN\TP60\BGI\');
IF GraphResult <> 0 THEN Halt (1);

49

Rept[15]

SetGraphMode (LowMode):
Color := GetMaxColor:
Rectangle (0, 0, GetMaxX, GetMaxY):
WHILE Doorgaan (HokjesTeller, M, T, EindTijd) DO
BEGIN

KernenErbij := NieuweKernen (T, BeginTijdKern, M, N, KernenTeller):
FOR k := (KernenTeller + 1) TO (KernenTeller + KernenErbij) DO
BEGIN

il := RondAf (M* KernX [k]);
jl := RondAf (M * KernY [k]);
IF (MarkeerTijd- [il, jl] > 999)

THEN BEGIN
HokjesTeller := HokjesTeller + 1:
Bar (trunc (KernX [k] * GetMaxX - 1),

trunc (KernY [k] * GetMaxY - 1),
trunc (KernX [k] * GetMaxX + 1),
trunc (KernY [k] * GetmaxY + 1)):

EindenTeller := EindenTeller + 2:
EirdBoven [k] := 1;
EindOnder [k] := 1;
MarkeerTijd- [il, j1] := T;
Mar~eerlndex- [il, jl] := k

END
ELSE BEGIN

EindBoven [k] := 2;
EindOnder [k] := 2

END
END:
KernenTeller := KernenTeller + KernenErbij:
FOR k := 1 TO KernenTeller DO
BEGIN

IF (EindBoven [k] = 1) THEN
BEGIN

x := Bx [k] + cos (HoekKern [k]) / M;
Y := By [k] + sin (HoekKern [k]) / M;
il := RondAf. (M* Bx [k]):
jl := RondAf (M * By [k]);
i2 := RondAf (M * x):
j2 := RondAf. (M* y);

50

Rept[16]

IF BuitenRooster (i2, j2, M)
THEN BEGIN

EindBoven [k] := 2;
EindenTeller := EindenTeller - 1;
code := 0

END
ELSE code := abs (i2 - i1) + 2 * abs (j2 - j1);

CASE code OF
1: BEGIN

hst := T + abs ((i2 / M - Bx [k]) / cos (HoekKern [k]));
VeranderHokje (hst, MarkeerTijd- [i2, j2 J, i2, j2. k,

MarkeerIndex- [i2, j2 J, N, EindBoven [k J,
HokjesTeller. EindenTeller, EindBoven.
EindOnder, MarkeerTijd. MarkeerIndex)

END;
2: BEGIN

vst := T + abs ((j2 / M - By [k]) / sin (HoekKern [k]));
Vera~derHokje (vst, MarkeerTijd- [i2, j2 J, i2, j2. k,

MarkeerIndex- [i2, j2 J, N, EindBoven [k J,
HokjesTeller. EindenTeller, EindBoven,
EindOnder, MarkeerTijd, MarkeerIndex)

END;
3: BEGIN

hst := T + abs ((i2 I M - Bx [k J) / cos (HoekKern [k J));
vst ;= T + abs ((j2 / M - By [k J) I sin (HoekKern [k J));
IF (hst < vst)

THEN BEGIN
VeranderHokje (hst. MarkeerTijd- [i2, j1 J, i2, j1.

k. MarkeerIndex- [i2. j1 J. N,
EindBoven [k J, HokjesTeller.
EindenTeller. EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex);

IF (EindBoven [k J = 1)
THEN VeranderHokje (vst. MarkeerTijd- [i2, j2 J.

i2. j2, k.
MarkeerIndex- [i2. j2 J, N.
EindBoven [k J,
HokjesTeller. EindenTeller.
EindBoven, EindOnder,

51

Rept[17]

MarkeerTijd, MarkeerIndex)
END

E:.SE BEGIN
VeranderHokje (vst, MarkeerTijd- [il, j2 J, il, j2,

k, MarkeerIndex- [il, j2 J, N,
EindBoven [k J, HokjesTeller,
EindenTeller, EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex);

IF (EindBoven [k J = 1)
THEN VeranderHokje (hst, MarkeerTijd- [i2, j2 J,

i2, j2, k,
MarkeerIndex- [i2, j2 J,
N, EindBoven [k J,
HokjesTeller, EindenTeller,
EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex)

END
END

END; {CASE}
IF (EindBoven [k J = 1)

THEN Line (trunc (Bx [k J * GetMaxX), trunc (By [k J * GetMaxY),
trQ~C (x * GetMaxX), trunc (y * GetMaxY));

Bx [k J := x;
By [k J := y

END;
IF (EindOnder [k J = 1) THEN
BEGIN

x := Ox [k] - cos (HoekKern [k]) I M;
Y := Oy [k] - sin (HoekKern [k]) I M;
il := RondAf (M* Ox [k J);
jl := RondAf (M* Oy [k]);
i2 := RondAf (M * x);
j2 := RondAf (M* Y);
IF BuitenRooster (i2, j2, M)

THEN BEGIN
EindOnder [k] := 2;
Ei.ndenTeller := EindenTeller - 1;
co1e := 0

END

52

Rept[18]

ELSE code := abs (i2 - ii) + 2 * abs (j2 - ji);
CASE code OF

1: BEGIN
hst := T + abs ((i2 / M - Ox [k J) / cos (- HoekKern [k J));
VeranderHokje (hst, MarkeerTijd A

[i2, j2 J, i2, j2, k + N,
MarkeerlndexA

[i2, j2 J, N, EindOnder [k J,
HokjesTeller, EindenTeller, EindBoven,
EindOnder, MarkeerTijd, MarkeerIndex)

END;
2: BEGIN

vst := T + abs ((j2 / M - Oy [k J) / sin (- HoekKern [k J))i

VeranderHokje (vst, MarkeerTijdA

[i2, j2 J, i2, j2, k + N,
MarkeerIndex A

[i2, j2 J, N, EindOnder [k J,
HokjesTeller, EindenTeller, EindBoven,
EindOnder, MarkeerTijd, Markeerlndex)

END;
3: BEGIN

hst := T + abs ((i2 / M - Ox [k J) / cos (- HoekKern [k J));
vst := T + abs ((j2 / M - Oy [k]) / sin (- HoekKern [k J));
IF (hst < vst)

THEN BEGIN
VeranderHokje (hst, MarkeerTijdA

[i2, ji J, i2, ji,
k + N, MarkeerIndex A

[i2, ji J, N,
EindOnder [k J, HokjesTeller,
EindenTeller, EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex);

IF (EindOnder [k J = 1)
THEN VeranderHokje (vst, MarkeerTijdA

[i2, j2 J,
i2, j2, k + N,
MarkeerIndex A

[i2, j2 J,
N, EindOnder [k J,
HokjesTeller, EindenTeller,
EindBoven, EindOnder,
MarkeerTijd, Markeerlndex)

END
ELSE BEGIN

VeranderHokje (vst, MarkeerTijd A

[ii, j2 J, ii, j2,
k + N, MarkeerIndex A

[ii, j2 J, N.
EindOnder [k J, HokjesTeller,

53

Rept[19]

EindenTeller, EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex):

IF (EindOnder [k J = 1)
THEN VeranderHokje (hst, MarkeerTijd- [i2, j2 J,

i2, j2, k + N,
MarkeerIndex- [i2, j2 J,
N, EindOnder [k J,
HokjesTeller, EindenTeller,
EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex)

END
END

END: {CASE}
IF (EindOnder [k] = 1)

THEN Line (trunc (Ox [k] * GetMaxX), trunc (Oy [k] * GetMaxY),
trunc (x * GetMaxX), trunc (y * GetMaxY)):

Ox [k J := Xi

Oy [k J := y
END

END:
T := T + 1 I M:
Delay (10):
writeln (uitv1, T:8:5, EindenTeller:5):
writeln (uitv2, T:8:5, HokjesTeller:5):

ENDi
readln:
CloseGraph:
DISPOSE (MarkeerTijd):
DISPOSE (Markeerlndex):
CLOSE (uitvl);

CLOSE (uitv2):
END

54

Rept[20]

PROGRAM KristalEinden;

Const Nmax = 1000;
Mmax = 103;
Vitesse = 1;

TYPE arr = ARRAY [1 NmaxJ OF real;
ari = ARRAY [1 NmaxJ OF integer;
art = ARRAY [1 10 * Mmax] OF real;
mat = ARRAY [0 Mmax 0 MmaxJ OF real;
matpointer = -mat;
mti = ARRAY [0 .. Mmax • 0 MmaxJ OF integer;
mtipointer = -mti;

VAR i1. i2. j1. j2. k. M. N. code. p. proces, aantal: integer;
teller. HokjesTeller. EindenTeller, KernenTeller, KernenErbij: integer;
x. y, hst. vst. T. EindTijd, Lambda_begin: real;
KernX. KernY. HoekKern: arr;
Bx. By. Ox. Oy: arr;
BeginTijdKern. EindBoven, EindOnder: ari;
AantalEinden. AantalHokjes: art;
MarkeerTijd: matpointer;
MarkeerIndex: mtipointer;
uitv1. uitv2: text;

FUNCTION Lambda (T: real): real;
BEGIN

Lambda := Lambda_begin * T + Lambda_begin;
END;

PROCEDURE Tijdstippen (VAR BeginTijdKern: ari; EindTijd: real;
M: integer; VAR N: integer);

VAR i: integer;
x. interval: real;

BEGIN
x := (random (10000) / 10000);
WHILE (x < 1E-30) DO x := (random (10000) / 10000);
interval := - In (x) * Lambda (0);

55

Rept[21]

BeginTijdKern [1] := trunc (M* interval);
i := 2;
WHILE ((i <= N) AND (BeginTijdKern [i - 1] < EindTijd * M)) DO
BEGIN

x := (random (10000) / 10000);
WHILE (x < lE-30) DO x := (random (10000) / 10000);
interval := - In (x) * Lambda (BeginTijdKern [i - 1] / M);
BeginTijdKern [i] := BeginTijdKern [i - 1] + trunc (M* interval);
i := i + 1

END;
H := i - 1;

END;

PROCEDURE Coordinaten (VAR KernX, KernY: arr; Aantal: integer);
VAR i: integer;
BEGIN

FOR i := 1 TO Aantal DO
BEGIN

KernX [i] := (random (10000) / 10000);
KernY [i] := (random (10000) / 10000);

END
END;

PROCEDURE Hoeken (VAR HoekKern: arr; Aantal: integer);
CONST pie = 3.1415;
VAR i: integer;
BEGIN

FOR i := 1 TO Aantal DO HoekKern [i] := pie * (random (10000) / 10000)
END;

PROCEDURE Initialisatie (VAR MarkeerTijd: matpointer;
VAR MarkeerIndex: mtipointer;
M, N: integer; KernX, KernY: arr;
VAR Bx, By, Ox, Oy: arr;
VAR EindBoven, EindOnder: ari);

VAR i, j:integer;
BEGIN

FOR i := 0 TO M - 1 DO

56

Rept[22]

FOR j := 0 TO M - 1 DO
BEGIN

MarkeerTijd~ [i, j J := 1000;
MarkeerIndex~ [i, j J := 0

END;
FOR i := 1 TO N DO
BEGIN

Bx [i J := KernX [i J;
By [i J := KernY [i J;
OX [i J := KernX [i J;
Oy [i J := KernY [i J ;
EindBoven [i J := 0;
EindOnder [i J := 0;

END
END;

FUNCTION Doorgaan (HokjesTeller, M: integer; T, EindTijd: real): boolean;
BEGIN

Doorgaan := ((HokjesTeller < (M * M)) AND (T < EindTijd))
END;

FUNCTION RondAf (Getal: real): integer;
VAR teken: integer;
BEGIN

IF (Getal >= 0) THEN teken := 1 ELSE teken := -1;
RondAf := teken * trunc (abs (Getal))

END;

PROCEDURE VeranderHokje (Snijtijd, Tijd: real; i, j, k, Index, N: integer;
VAR Waarde, HokjesTeller, EindenTeller: integer;
VAR EindBoven, EindOnder: ari; VAR MarkeerTijd: matpoin1
VAR Markeerlndex: mtipointer);

BEGIN
IF (Snijtijd < Tijd)

THEN BEGIN
IF (Tijd > 900)

THEN HokjesTeller := HokjesTeller + 1
ELSE BEGIN

IF (Index <= N)

57

Rept[23]

THEN BEGIN
IF EindBoven [Index] = 1

THEN EindenTeller := EindenTeller - 1:
EindBoven [Index] := 2

END
ELSE BEGIN

IF EindOnder [Index - N] = 1
THEN EindenTeller := EindenTeller - 1:

EindOnder [Index - N] := 2
END;

END;
MarkeerIndex A

[i, j] := k;
MarkeerTijdA

[i, j] := Snijtijd
END

ELSE BEGIN
Waarde := 2;
EindenYeller := EindenTeller - 1

END
END;

FUNCTION NieuweKer.len (Tij d: real; BeginTij dKern: ari;
M, N, KernenTeller: integer): integer;

VAR k, som:integer;
doorgaan: boolean;

BEGIN
k := KernenTeller + 1;
som := 0;
doorgaan := (k <= N);
IF doorgaan THEN doorgaan := (Tijd >= BeginTijdKern [k] 1M);
WHILE doorgaan DO
BEGIN

som := som + 1;
k := k + 1;
doorgaan := (k <= N);
IF doorgaan THEN doorgaan := (Tijd >= BeginTijdKern [k] 1M)

END;
HieuweKernen := nom

END;

58

Rept[24]

FUNCTION BuitenRoo3ter (i, j. M: integer): boolean;
BEGIN

BuitenRooster := ((i < 0) OR (j < 0) OR (i >= M) OR (j >= M))
END;

BEGIN {Hoofdprogramma}
ASSIGN (uitv1, 'Einden.uit');
REWRITE (uitv1);
ASSIGN (uitv2, 'Hokjes.uit');
REWRITE (uitv2);
writeln ('Geef roosteromvang:');
readln (M);
writeln ('Geef beginwaarde van exponentiele verdeling:');
readln (Lambda_begin);
writeln ('Geef eindtijd van proces:');
readln (EindTijd);
writeln ('Geef aantal processen:');
readln (proces);
aantal := trunc (M* EindTijd) + 1;
writeln ('aantal=', aantal);
Randomize;
FOR i1 := 1 TO a~~tal DO
BEGIN

AantalEinden [i1] := 0;
AantalHokjes [i1] := 0

END;
NEW (MarkeerTijd);
HEW (MarkeerIndax);

FOR P := 1 TO proces DO
BEGIN
teller := 0;
T := 0;
HokjesTeller := 0;
KernenTeller := 0;
EindenTeller := 0;
N := Nmax;
Tijdstippen (BeginTijdKern, EindTijd, M, N)j

59

Rept[25]

Coordinaten (KernX, KernY, N);
Hoeken (HoekKern, N);
Initialisatie (MarkeerTijd, MarkeerIndex, M, N, KernX, KernY,

Bx, By, Ox, Oy, EindBoven, EindOnder);
WHILE Doorgaan (HokjesTeller, M, T, EindTijd) DO
BEGIN

KernenErbij := NieuweKernen (T, BeginTijdKern, M, N, KernenTeller);
FOR k := (KernenTeller + 1) TO (KernenTeller + KernenErbij) DO
BEGIN

il := RondAf (M* KernX [k]);
jl := RondAf (M* KernY [k]);
IF (MarkeerTijd- [il, jl] > 999)

THEN BEGIN
HokjesTeller := HokjesTeller + 1;
EindenTeller := EindenTeller + 2;
EindBoven [k] := 1;
EindOnder [k] := 1;
Ma~keerTijd- [il, jl] := T;
MarkeerIndex- [il, jl] := k

END
ELSE BEGIN

EindBoven [k] := 2;
EindOnder [k] := 2

END
END;
KernenTeller :: KernenTeller + KernenErbij;
FOR k := 1 TO KernenTeller DO
BEGIN

IF (EindBoven [k] = 1) THEN
BEGIN

x := Bx [k] + cos (HoekKern [k]) / M;
Y := By [k] + sin (HoekKern [k]) / M;
il := RondAf (M* Bx [k]);
jl := RondAf (M* By [k]);
i2 := Rond1f (M* x);
j2 := RondAf (M* Y);
IF BuitenRooster (i2, j2, M)

THEN BEGIN
EindBoven [k] := 2;

60

Rept[26]

EindenTeller := EindenTeller - i;
code := 0

EN))
ELSE code := abs (i2 - i1) + 2 * abs (j2 - j1);

CASE code OF
1: BEGIN

hst := T + abs ((i2 / M - Bx [k]) / cos (HoekKern [k]));
VeranderHokje (hst, MarkeerTijd- [i2, j1], i2, j1, k,

MarkeerIndex- [i2, ji], N, EindBoven [k],
HokjesTeller, EindenTeller, EindBoven,
EindOnder, MarkeerTijd, MarkeerIndex)

END;
2: BEGIN

vst := T + abs ((j2 / M - By [k]) / sin (HoekKern [k]));
VeranderHokje (vst, MarkeerTijd- [ii, j2], ii, j2, k,

MarkeerIndex- [ii, j2], N, EindBoven [k],
HokjesTeller, EindenTeller, EindBoven,
EindOnder, MarkeerTijd, MarkeerIndex)

END;
3: BEGIN

hst := T + abs ((i2 / M - Bx [k]) / cos (HoekKern [k]));
vst := T + abs ((j2 / M - By [k]) / sin (HoekKern [k]));
IF (hst < vst)

7HEN BEGIN
VeranderHokje (hst, MarkeerTijd- [i2, ji], i2, j1,

k, MarkeerIndex- [i2, ji], N,
EindBoven [k], HokjesTeller,
EindenTeller, EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex);

IF (EindBoven [k] = i)
THEN VeranderHokje (vst, MarkeerTijd- [i2, j2],

i2, j2, k, MarkeerIndex- [i2, j~

N, EindBoven [k],
HokjesTeller, EindenTeller,
EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex)

END
1:.SE BEGIN

VeranderHokje (vst, MarkeerTijd- [ii, j2], ii, j2,

61

Rept[27]

k, MarkeerIndex- [il, j2], N,
EindBoven [k], Hokj esTeller,
EindenTeller, EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex):

IF (EindBoven [k] = 1)
THEN VeranderHokje (hst, MarkeerTijd- [i2, j2],

i2, j2, k, MarkeerIndex- [i2, j:
N, EindBoven [k],
HokjesTeller, EindenTeller,
EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex)

END
END

END: {CASE}
Bx [k] := x:
By [k] :'" y

END:
IF (EindOnder [k] = 1) THEN
BEGIN

x := Ox [k] - cos (HoekKern [k]) / M;
y := Oy [k] - sin (HoekKern [k]) / M;
il := RondAf (M* Ox [k]);
jl := RondAf (M* Oy [k]):
i2 := RondAf (M* x):
j2 := RondAf (M * Y):
IF BuitenRooster (i2, j2, M)

THEN BEGIN
EindOnder [k] := 2:
EindenTeller := EindenTeller - 1:
code := 0

END
ELSE code := abs (i2 - il) + 2 * abs (j2 - jl):

CASE code OF
1: BEGIN

hst := T + abs ((i2 / M - Ox [k]) / cos (- HoekKern [k]) ,
VeranderHokje (hst, MarkeerTijd- [i2, jl], i2, jl, k + N,

Markeerlndex- [i2, jl], H, EindOnder [k],
HokjesTeller, EindenTeller, EindBoven.
EindOnder, MarkeerTijd, MarkeerIndex)

62

Rept[28]

END;
2: BEGIN

vst := T + abs ((j2 / M - Oy [k]) / sin (- HoekKern [k]) ,
VeranderHokje (vst, MarkeerTijd- [ii, j2], ii, j2, k + N,

MarkeerIndex- [i1, j2], N, EindOnder [k],
HokjesTeller, EindenTeller, EindBoven,
EindOnder, MarkeerTijd, MarkeerIndex)

END;
3: BEGIN

hst := T + abs ((i2 / M - Ox [k]) / cos (- HoekKern [k]) ,
vst := T + abs ((j2 / M - Oy [k]) / sin (- HoekKern [k]) ,
IF (hst < vst)

THEN BEGIN
VeranderHokje (hst, MarkeerTijd- [i2, j1], i2, j1,

k + N, MarkeerIndex- [i2, j1], N,
EindOnder [k], HokjesTeller,
EindenTeller, EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex);

IF (EindOnder [k] = 1)
THEN VeranderHokje (vst, MarkeerTijd- [i2, j2],

i2, j2, k + N, MarkeerIndex- [i~

N, EindOnder [k],
HokjesTeller, EindenTeller,
EindBoven, EindOnder,
MarkeerTijd, Markeerlndex)

END
ELSE BEGIN

VeranderHokje (vst, MarkeerTijd- [i1, j2], i1, j2,
k + N, Markeerlndex- [i1, j2], N,
EindOnder [k], HokjesTeller,
EindenTeller, EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex);

IF (EindOnder [k] =1)
THEN VeranderHokje (hst, MarkeerTijd- [i2, j2],

i2, j2, k + N, MarkeerIndex- [i~

N, EindOnder [k],
HokjesTeller, EindenTeller,
EindBoven, EindOnder,
MarkeerTijd, MarkeerIndex)

63

• Repr[29]

END
END

END; {CASE}
Ox [k] := x;
Oy [k] := y

END
END;
T := T + 1 / (M* Vitesse);
teller := teller + 1;
AantalEinden [teller] := AantalEinden [teller] + EindenTeller;
AantalHokjes [teller] := AantalHokjes [teller] + HokjesTeller

END;
writeln (, proces nr. " p);

END;
FOR i1 := 1 TO aantal DO
BEGIN

AantalEinden [i1] := AantalEinden [i1] / proces;
AantalHokjes [i1] := AantalHokjes [i1] / proces;
T := i1 / M;
writeln (uitv1, T:9:5,) , AantalEinden [i1]);
writeln (uitv2, T:9:5,)) AantalHokjes [i1])

END;
CLOSE (uitv1);
CLOSE (uitv2);
DISPOSE (MarkeerTijd);
DISPOSE (MarkeerIndex)

END.

64

HOW TO PLACE THE WIPER ON A WINDSCREEN

65

Rept[1]

Contents

1 Foreword

2 Introduction

3 Mathematical introduction

4 Results

4.1 Results for Model I

4.2 Results Model II .

5 Mathematical Solution

5.1 Model I .

2

3

4

5

5

6

7

7

5.1.1 Parameters, Variables and Assumptions for Model I 7

5.1.2 Constraints on Model I 8

5.1.3 Analytical Approach Model I 9

5.1.4 Numerical Approach Model I 12

5.2 Model II . 13

5.2.1 Parameters, Variables and Assumptions for Model II 13

5.2.2 Constraints on Model II . . . 13

5.2.3 Analytical Approach Model II 13

5.2.4 Numerical Approach Model II 15

6 Recommendations

66

16

Rept[2]

1 Foreword

This report was written a.~ an exercise in applying mathematics with a real-life
problem at the Technischc Universiteit Eindhoven (NL). It is a part of the
post-graduate program 'Mathematics for Industry'.

First we will give an introduction to the problem in plain english, followed by
a mathematical formulation of the problem. Then we will give the results that
we found. In the fifth section we will present the methods used and in the last
section our recommendations for further investigation.

67

Rept[3]

2 Introduction

We were asked to give some mathematically ba.''1ed advise on where to place a
common wiper on the border of a windscreen of, for instance a car.

Figuur 1: Where to place the wiper.

Of course, this question is not compl<;;te. First, one has to decide what a 'good'
wiper must do. Second, there will be some restrictions on the shape and size
of both the wiper and the windscreen, given by the sponsor. Third, the place
the wiper may be put can not be choosen arbitrary.

68

Rept[4]

3 Mathematical introduction

The following assumptions are made to define the problem:

• The windscreen is flat (2D).

• The size of the windscreen is a polygon in general, but we will look only
at a rectangle and a trapezium.

• The shape of the wiper is a (mathematical) linesegrnent or two connected
linesegments with an angle in between.

• A 'good' wiper wipes as much space as possible.

The conclusions of these first assumptions is that the prohlem will be an op­
timization problem.

Optimization of the area wiped will be done according to:

• The length of a wiper or both the two lengths and the angle of the special
wiper,

• The place of the wiper.

Certain standard techniques are available to do this optimization, but, since
these require a lot of computing time, we will not use them and make our own.

69

Rept[5]

4 Results

In this section we will present our results. The first model used to analyze the
problem will use a rectangular windscreen and a simple wiper. The second
model will use a trapezium shaped windscreen and a special wiper.

4.1 Results for Model I

For an introduction to the model, see the appropriate section.

• case 1 : The window is wider than high.

We found that there exists a critical ratio between the heigt.h and the
width of the window. If this is smaller than 0.568, then the wiper will
be placed in the middle of the window and its lengt.h will be half of the
width of the window. If on the-:other hand, the ratio between the heigth
and the width is more than 0.568, the wiper will be placed at a distance
x from the left corner where x is equal to the heigt.h. The length of the
wiper is also equal to the heigth.

• case 2 : The window is higher than wide.

We found that there exists a critical ratio between the heigth and the
width of the window. If this is smaller than 1.414 then the wiper will
be placed in the lefthand corner and its length will be the width of the
window. On the other hand, if this ratio is more than 1.414 then the
wiper will be placed too in the left hand corner but its lengt.h will be the
heigHl of the windscreen.

70

·Rept[6]

4.2 Results Model II

For an introduction to the model, see the appropriate section.

We have calculated the following results for a few popular cars:

name w h e a (OZ,OIl) I Surf % ~ ~:; ..
Panda 1.02 0.43 0.05 0.47 (0.51,0) 0.43 0.29 69.3 1 1
Kadett 1.10 0.67 0.09 0.46 (0.42,0) 0.67 0.47 70.1 0.67 0.67
Escort 1.11 0.70 0.09 0.46 (0.40,0) 0.70 0.50 70.2 0.65 0.65
Renault 0.35 0.51 0.13 0.42 (0.68,0) 0.51 0.41 65.4 1 1
Peugeot 1.17 0.62 0.10 0.50 (0.59,0) 0.58 0.52 78.9 1 1
Golf 1.17 0.50 0.12 0.43 (0.59,0) 0.50 0.39 74.4 1 1

where w is the width of the window, h the heigth, e the excentricity, (Oz, 011)
the place the wiper will be put, Surf the wiped area, % the percentage of wiped
area, and the rest speaks for itself.

\Ve found that the wiper will always be put at the border of the windscreen
and not below, that there is no angle between the two linesegments and even
that there are no two linesegments, but only one and thus that we are 'in
casu' in the same situa.tion as the ordinary wiper placed at the bottom of the
window. Why this is the ca.se? We suspect that it has something to do with
only allowing a maximum of 10% of the heigth below the bottom of the window
to be the place to put a wiper.

71

: Rept[7]

5 Mathematical Solution

We will introduce 2 models to discuss the problem. The first one is a rather
simple one and can be analyzed analytically, the second is not so simple and
will require a computer program.

5.1 Model I

5.1.1 Parameters, Variables and Assumptions for Model I

In this model we look at the case that the windscreen is a rectangle and the
wiper is a simple straigth linesegment.

The variables and assumptions in this case are :

• The width of the windscreen is d,

• The length of the wiper is dl,

• The heigth of the windscreen is dh,

• The wiper is placed at the border of the windscreen, at a distance x from
the lefthand corner.

• The wiper starts under an angle 0' with the positive x-axis and ends with
an angle f3 with the negative x-axis..

72

Rept[8]

~...---~
(-

Figuur 2: Model I.

5.1.2 Constraints on Model I

This model has a few limitations. First., ofcourse, a windscreen is not flat.
Second, a recrangle windscreen is not often used and third, the wipf'r is mostly
not situated on the border of the windscreen.

. 73

Rept[9]

5.1.3 Analytical Approach Model I

For a first introduction we assume

We now can deduce

dl < dh

dh < d

(1)

(2)

coso: -
d - dx 1- x

dl = -1- (3)

or

cosf3 (4)

The area wiped is

x -

1 -

cosf3

cosO' + cosf3

1

cosO' + cosf3

(5)

(6)

A _ d211" - a - f3 /2 (7)
2

_ d2 11" - 0: - f3 (8)
4(cosO' + cos(3)2

By now, we can take into account the restrictions (1) amt (2). The last one
means that h ::; 1 and from (1) we deduce

1 < h (9)
cosf3 + coso: -

Since obvious

o~
11"

0: <­
- 2

7r

O~ f3 ~2

we have the following domain for 0: and f3:

The shaded area in figure (3) is the area that is allowed for a and f3. Since the
problem has no global maximum, the maxima will be found on the boundary.
Thus, we will devide the boundary int.o 3 parts :

74

Rept[lO]

l'

O'-- -f-- ..-4---l

o

Figuur 3: Domain for Q' and /3, for h S 1

• I and I' : Since the problem is symmetrical for Q' and /3 we will only
consider the case /3 = 0,

• II: The curve is described by (9) and the obvious restrictions on Q' and
/3. Note that 0 S h S 1 and thus the curve will remain in the lower left
hand corner.

On II the area is
A = d21r - Q' - /3 h2

2
and since the curve II is convex, the maxima will be with Q' = 0 or /3 = o.
Taking the last case, the value of Q' can be calculated from

1
---=h
cosa +1

On I the area is
A = A(Q') = d2 1r - Q'

2(cosa + 1)

Differentiating to a and equating to zero yields

cosa +1 = (1r - a).sina

(10)

This can not be solved analytically. With a simple computer program one
yields

a' ~ 0.81047028

75

Rept[ll]

This value of a is not a maximum but a minimum. So a maximum will be
found on the endpoints of I:

where
1

---=h
cosa" +1

the same equation as (9) with f3 = o.
The critical value of a" is

a" ~ 0.70589947

which can be computed numerically easy and the corresponding h is

h(a,,) ~ 0.56785003

Thus, if h ::; h(O'h) then choose a = f3 = 0 else choose a = arccos (~ - 1) and
f3 = o.

76

Now consider instead of (1) and (2)

dl < dh

dh > d

~

o l.-O----~--rA-----J~

Figuur 4: Domain for 0' and {3, for h ~ 1

Rept[12]

(11)

(12)

The maxima will now lie in curve III and III', but, since the problem is sym­
metrical, we will only consider curve III (0' = i). This will give rise to the
same analysis and we will not write it out fully, but give only the results.

There exists again a critical value of {3

{3h ~ 0.78539816

and the corresponding h is

So, if h :::; h({3h) then choose 0' = i and {3 = 0 else choose 0'

{3 = arccos(l)

5.1.4 Numerical Approach Model I

- ~ and
2

The numerical work on Model I is very little. We have used a simple bisection
method to find the values of 0', 0h and {3h.

77

Rept[13]

5.2 Model II

In this case we will look at a windscreen with a trapezium shape and a wiper
which consists of two parts connected undf'r a certain angle.

5.2.1 Parameters, Variables and Assumptions for Model II

The variables and assumptions in this case are:

• The width of the windscreen is b,

• The heigth of the windscreen is h,

• The excentricity of the windscreen is e,

• The length of the wiper is 1 and k, where k is the first, part which does
not wipe and 1 is the second part which does wipe.

• The wiper is placed at or under the border of the windscreen, with a
maximum of O.lh

• The angle between the two parts of the wiper is f3

• The lefthandcorner of the windscreen will be placed in the Origin and
the wiper will be placed in (Oz, 011)

• The minimum angle the wiper must make is <Pmi'" and the maximum
angle is <Pmdz

5.2.2 Constraints on Model II

There are again a few constraints for this model. The first is of course that a
windscreen is not flat or a, trapezium but a more general shape. The second is
that the place the wiper may be put is limited rather arhitrairy.

5.2.3 Analytical Approach Model II

The analysis of this model is not an ea.<;y task. Therefore it will remain rather
introduetionary. However, a few things can be said.

A situation Oz, 0Il' f3, k, 1, m, /, 0' is allowed if the following equations hold:

78

Rept[14]

"-- --- ... ---..----- - .. -- ... -

t
•,

. J.

~~-------------')
b

Figuur 5: Va.riables a.nd Pa.ra.meters of Model II.

• a is the angle of the wiper with the positive x-axis,

• m 2 = p + P - 2klcos/3

• I2 = k2 + m 2
- 2kmcos1

• i::; /3 ::; 11"

• Oy + ksin(a +1) ~ 0

• Oy + ksin(a +1) ::; h

• Oy +msin(o) ~ 0

• Oy +msin(o) ::; h

• hO,,-eO, ::; 0 or hO,,-eO,
~1eluin(a+'Y)-hleC06(a+'Y) ele6in(a+'1)-hlec06(a +'1)

• -O,,-eO,+h(b-e)+eh ::; 0 or -O,,-eO,+h(b-e)+eh
~1ele6in(a+'Y)-hleC06(a+'Y) ele6in(a+'Y)-hlec06(a+'1)

• hO,,-eO, < 0 hO,,-eO, > 1
em6in(a)-hmco6(a) - or em6in(a)-hmco.(a) -

• -O,,-eO,+h(b-e)+eh ::; 0 or -O,,-eO,+h(b-e)+eh > 1
em6in(a)-hmco.(a) em.in(a)-hmco.(a) -

• 0 ::; Oz ::; b

• -O.1h::; Oy ::; 0

79

Rept[l5]

The object is now to find an 0'1 and an 0'2 such that these equations are met
for all 0'1 :::; 0' :::; 0'2

This, of course, is not an easy ta.<;k, especially analytically.

5.2.4 Numerical Approach Model II

We have written a computer program that will give us for a certain set of
variables (Ollt, 011' 13, k, I) the maximum area that can be wiped with it. The
idea behind this program is to intersect the wiper with the border of the
windscreen to find the maximum and minimum 0'. \\Tit h this procedure one
can easy build a grid in R&, evaluate this maximum in each grid point, refine
the grid accordig to the maximum maximum found and repeat all this until
the required precision is met. The only problem is that it takes a substa.ncial
amount of time.

80

Rept[l6]

6 Recommendations

Further investigation may be required for the same problem, but with a dif­
ferent shaped windscreen which does not neccesary have to be flat. Also, a
better algorithm for determining the optimum is usefull. Third, a different
wiper may be investigated.

81

	Voorblad

	Table of contents
	THE GUTTER PROBLEM
	ECOLOGICALLY JUSTIFIABLE INSECT PLAGUESPREVENTION
	SIMULATION OF NEEDLING PROCESSESON SURFACES
	HOW TO PLACE THE WIPER ON A WINDSCREEN

