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PROBLEMS AND SOLUTIONS

EpiteEp BY Murray S. KLaMkIN

AUl problems and solutions should be sent to Murray S. Klamkin, Physics T-434, AVCO
Research and Advanced Development Division, Wilmington, Massachusetts, and should be
submitted in accordance with the instructions given on the inside front cover. An asterisk placed’
beside a problem number indicates that the problem was submitted without solution.

Problem 61-8, A Coin Tossing Problem, By D. J. NEwMaN (Yeshiva University
and WaLTER WEISSBLUM (Sylvania Electronic Systems).

Two persons are gambling by tossing a fair coin. If at the end of 2n tosses they
break even, what is the probability that the first man was ahead k/n of the time..

Equivalently: How many sequences can be formed from = plus ones and n
minus ones such that exactly k of its odd partial sums are positive.

Problem 61-9*, A Definite Integral, By W. L. Bape (Avco Research and Ad-
vanced Development Division).

Evaluate the integral
Q= [z @),
0
where
/2
v(z) = f {1 — 7P sec’ df.

Physically, @ is proportional to the cross-section corresponding to the expo--
nential repulsive potential ¢ = Ae™"" in the limit of high relative velocity.

A numerical integration for @ gives a value of 0.3333. Consequently, it is con-
jectured that @ = 3

Problem 61-10, The Expected Value of a Product, by LAWRENCE SHEPP (Uni-
versity of California, Berkeley).

Let E, be the expected value of the product zzsws - - - 2, , where 2, is chosen
at random (with a uniform distribution) in (0, 1) and z; is chosen at random
(with a uniform distribution) in (23—, 1),k = 2,3, --- , n. Show that

lim B, = L.
(4

[ ad

SOLUTIONS
Problem- 60-4*, Vorticity Interaction, by SiN-I CuENG (Princeton University)

The shock wave over the blunt nose of a slender body in a hypersonic stream:
leaves a large vorticity in the downstream flow field. This vorticity interacts:
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330 PROBLEMS

with the displacement flow of the boundary layer over the body to produce an
induced pressure gradient. For hypersonic flow at very high altitudes, this self-
induced pressure gradient along the body surface is so large as to govern the
development of the boundary layer itself. This is distinctly different from or-
-dinary boundary layers for which the pressure gradient acting on the boundary
layer is known and essentially is independent of the downstream development
-of the boundary layer.

The mathematical analysis of one such an interacting boundary layer leads to
the following proposed problem:

Determine o and L such that

lim F'(z) = L,

‘where F(z) satisfies the differential equation
(1) (D* 4+ 2°D* — zD + 1}F(z) = «a,

.and boundary conditions

F(0) =0,
F'(0) =0,
F”(0) = 1.

Solution by J. Ernest Wilkins, Jr. (Nuclear Development Corporation of
America, White Plains, N. Y.).
Introduce new independent and dependent variables as follows:

s = —2%/3, F = a + zw, v = dw/dz.
Then v satisfies the confluent hypergeometric equation

d* dv
s(—i—s§+(c—s)‘—i§—av—0

if @ = %, ¢ = §. Therefore the general solution of the original differential equa-
tion may be written in the form [p. 252, Egs. 1, 2, 3. All references are to Erdelyi
et al. Higher Transcendental Functions, vol. 1].

z X
Featum [ 68—t/ d+x [ Co(-4k -3
0 z
in which g, A and X are arbitrary constants, and ¢(a, ¢; s) is the standard con-
fluent hypergeometric function regular at the origin. Determining the constants
in such a manner that F satisfies the boundary conditions when z = 0, we find
that
F=ox f le(—3%% — £/3) — 1]dt + (2/2) f ¢(3,%; — £/3) dt
. 0 0

Since it is known [p. 278)] that ¢(a, ¢; s) ~ I'(c)(—s)"*/T(c — a) as's > — o,
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ol'(3) 31 (3)
B~ [{3__"%(%)} + { 5TH) }] zhnz,

2/3
o= — S TATE) _ 5599

2r(H)r#)

if F/(x) has a limit at «. If « is selected in this manner, then

L=F(x») =%[[ 3,4 —£'/3)

3’ r(3)r($) P 11 _4/3) —
—(T)—fZ%T— {¢( 3 3 t/3) 1}]dt

Let u = £*/3 and make use of the Kummer relation [p. 253, Eq. 7]

it follows that

and hence

¢(a, c; x) = €'d(c — a, ¢; —2),
and the definition of the irregular solution of the confluent hypergeometric equa-
tion [p. 257, Eq. 7]

r'(l —c¢)
Tea—c+1)
Then we see that

I‘(l) . — . 3I‘(z)u-2/3 —2/3
L=373W3(%5 A [—6 ¢('§;'§';u)+—;—(%5—— u " du.

Since d[z*¥(a, ¢; x))/dx = a(a — ¢ + 1)2* Y (a + 1, ¢; 2) [p. 258, Eq. 13], this
can be written as

o(a,c; ) + ———= (e —1) 2¢(a —c+ 1,2 —¢; z).

Y(a,c;2) = ON

_3°n(3) s o — LG & i
L= —I‘T%-)—- A { [u \0(3: 35U )] I‘(% d— }du
_ 31/311(%)

—u 1/3
L X4 , 5 u) du
OB v(3, %5 u)

after an integration by parts, since ¢ “u"*¢(3, §; u) — I'(3)/4"°T'(3) vanishes
when v = 0 [p. 257, Eq. 7] and when u = o« [p. 278, Eq. 1] It is known [p. 270,
Eq. 7] that

fﬁ “u W (a,c;u) du = T(W)T(b—c+1)/T(a+b—c+1)
0

ifb>0,c <b+ 1, and hence

31/3]:‘( ) 2\12/92/3 _
T T($)T(2) = {I(3)}?/38"" = 0.8815.

These lresults are consistent with those asserted by Lu Ting, Boundary Layer

L=2 -3/
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over a Flat Plate in Presence of Shear Flow. The Physics of Fluids, vol 3 (1960),
pp 78-81,-who claims that, for the solution f(%) of the system

3" + nf” — af +f = —B,£(0) = f(0) =0,
f/(w) =1,f7(0) = 0.7866, 8 = 0.8695.

If we set f(n) = 3°L7'F(z), 2 = 37%, B = —38"°L7'a, then F(z) is the
solution of the system discussed above and so we would get 8 = 3% THL) =
0.8695, f7(0) = 37°L = 3"*/T*(3) = 0.7866.

Solution by Yudell L. Luke (Midwest Research Institute, Kansas City, Missouri*)_

It is easy to see that F(z) = a is the particular solution of (1) and that
F(x) = zis a complementary solution. By the usual power series approach, the
other two complementary solutions of (1) may be expressed in hypergeometric
form [1] as

(2) Fi(z) = 2F2(—%, -55% - f),

e

(3) F?(x) = %xzﬁF'? %’ %7%,%; - E)E =

03‘8

Using the boundary conditions at the origin, it follows that
(4) F(x) = a — aF1(z) + Fo(z).

To determine the behavior of F(x) for x large, we appeal to the asymptotic
theory of hypergeometric functions. For the case at hand, we follow Meijer [2]
who shows that

I'(a)T(az) ( a1 ,as . ) -
T + )T + by Fa\y 4 g, 14 by ° Laa(2),

(5)
|2|— o,|argz] <’§r
where
- Z ' T(a)T (a2 — ay) <a1 , a1 — by, a1 — by _1)
(6) Laa(z) = T+ b — a)T'(A + b — ay) oF1 1+a,— a ) #

+ a like expression with a; and a; interchanged.

Note that for both (2) and (3) a; = a2 = b, and the expression for L, 2(2) must
be found by a limiting process. By L’Hospital’s rule,

—1l—ay _
Loa(z) = = Ta+1) 4F2<1,1,a1 +lLa+1 bz.z_l)

T'(by — a1) 2,2 )
(7 (e
A by 02 Wa) =¥+ b —a) (1),

* This solution was obtained using results of work supported by the Applied Mathematics
Laboratory of the David W. Taylor Model Basin.
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where ¥(z) is the logarithmic derivative of the gamma function.

As a remark aside, (7) is not given by Meijer. In some unpublished notes, we
study a more general function notated L, ,(z) for the case where two numerator
parameters of a given ,F, differ by an integer or zero.

Collecting (2-7), we get

a T(3) s 37 T(2) s
F(x)"‘a'l'é‘iIT;)f/G(ﬂ?)‘}'—g—i‘(—z)f IG(x)
aT(3) s _ 1y (2
(8) st [me=v(=5) v (5) v ]

n 3—-113;;% £ [ln E—y (%) —y (%) + \l/(l)],

¢ > w, |argg| <3,
where

(9) G( )_ F. 1,1,%,%_ ~1
) = 4l'9 2,2 ’E .

If lim,.. F'(z) = L, a constant, then the coefficient of In £ in (8) must vanish.
This determines

31’“1"(%)}2
10 = (2 138/
(10) * { T(3)
A straightforward calculation gives
T+ 2 (5) - ()]
L="— - PAVN (e B =) | = 0.88152.

(11) e 3+ 2y 3 2y 3 88

REFERENCES
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Inc., 1953.
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Proceedings, pp. 1165-1175, 1946.

Solution by Jan Petersson, Chalmers University of Technology, Gothenburg,
Sweden.

The problem is solved by Laplace transforms. Since F’ is bounded on the
interval (0, =), the Laplace integrals [§ ¢ **F" (z)dx (k = 0, 1,2, ---) are
convergent, at least in the half-plane Re s > 0. Putting

LF") = y(s) = f: TR (3) da

and obsérving the initial values F(0) = F’(0) = 0, F”(0) = 1, we obtain
L(F") = sy — 1, L(zF") = 4", L(—zF’) = (s'y)’ and L(F) = s ’y. Hence
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y(s) satisfies the differential equation

(2) vV +syY +Fsy=1+as"

Since lim,.. F'(z) = L, we have ([1], p. 455)

(3) y(s) = L+ o(1), (s—0,|args| =y < 7/2).
Furthermore, F”(0) = 1 implies ([1], p. 473) that

(4) y(s) = s (1 +0(1)), (s— =,|args| =¥ <n/2).

Making use of the principal branch of the transformation ¢ = 2s*? it turns out

that v(¢) = y(s) satisfies Bessels equation

(2" w” + o+t = (3 + «(3)

The asymptotic properties of v(¢) are described by

(3") v(t) = L+ o0(1), (t—0,|argt| =y <3r/4)
(4") o(t) = 3L+ o(1), (t— =, |argt| = ¢ < 3n/4).
From (2’) and (3’) we conclude that

(5) v(t) = LJo(t) 4+ (3)s150(t) + a(3)"*s_1m0(t),

where

suol) = 5 [¥e0) [ #e) b = o) [ 7ol i |

are Lommel functions. (See [2], p. 346).
Introducing the Lommel functions S,,0(¢), ([2], p- 347)

8po(t) = 8,0(8) + 27T (“ '2F 1) [sm BT 7o(t) — cos BT Yo(t)]

we find that »(¢) has the representation
2 2/3 2 4/3
v(t) = (§> Sl/a,o(t) + a (g) S—1/3,0(t)
1 a2 (2 @ o (1
(6) + [L §3 T <§) + 3 3 (3)] Jo(t)

[ )+ )]

Next we observe the following estimates

Jolt) = (7%)1/2 [cos (t - g) + O(t“)]
vy = (2) [sn (+ = 7) + 0 |3 (1= o lore el < v < 2

Sysa(t) = 7711 + 0(£™)]
S—1/3,0(t) = t_m[l + O(t_z)]
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Combining these estimates with (6), we find that the coefficients in (6) belong-
ing to Jo(t) and Y,o(¢) must vanish. Hence

0 (/) -
(8) L =37r(3).

REFERENCES

1. G. DoErscH, Handbuch der Laplacetransformation I, Basel 1950.
2. G. N. WaTsoN, Theory of Bessel functions, 2nd ed., Cambridge 1944.

The next solution by P. J. de Doelder and J. H. van Lint, jointly (Technische
Hogeschool, Te Eindhoven, Nederland) and M. S. Klamkin (AVCO) are
essentially the same.

Differentiating Eq. (1);
{D* + X’D + X}F” = 0.
Multiplying thru by ¢*"’® and using the exponential shift theorem;
4
2 - f_ n x3/6 =
{D 4} F’¢ 0.

This is a modified Bessel equation whose solution is given by

(2) F"(z) = Ve =" {AIW (%3) + BI_ys (%3)}
Here,

_ (z/2)n (z/2)* (z/2)*
L@ =50 5w {1 trarnteasoer T }

Since F”(0) = 1,

r()
B =t

From Eq. (1) it follows that F”/(0) = a. Consequently, by differentiating
Eq. (2),
A = 12"°T(})a.

It now follows that

’ i —z3/6 7 x3 T ( 3 ) x3
(3) F'(z) = j(; \/56 {12”61‘ (6) alys (g) + T.?T%-/“- Iy (—6- dx.
Since

62
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the integrand (of Eq. 3) is asymptotic to

L () 1) .

Thus for arbitrary «,
F'(z) ~clogx.
In order for lim,_., F'(z) to exist,

— I‘(E) =
i

and then

F(e) = ool [* (L) = Tusw) T

From a table of Laplace transforms,
K, 412(at) D "/{E I'(p —»)T(p 4+ v + 1)s*P,*(p/a).
where s = /p?* — @2

Since

K,(z) =

o (1) = L@},

O i)

Also solved by the proposer and incompletely by William Squire (Southwest
Research Institute, San Antonio, Texas).

Editorial note: Even though the expressions for « and L in the different solu-
tions are dissimilar, it is easy to show that they are equivalent.

Problem 60-8, Another Sorting Problem, by J. H. vaN LiNT (Technische Hoge-
school, Te Eindhoven, Nederland).

Consider all sequences of length M consisting of py 1’s, p2 2%s, -+« pr ks
(k = 2) whose maximal monotonic non-decreasing subsequences of contiguous
numbers are of length n where n satisfies the inequalities

(1) n>M—p; t1=1,2,--- k.

Determine the number N(p;, p2, -+, px ; n) of sequences with this property.
Editorial note: This problem is similar to that of Brock’s Optimum Sorting Pro-
cedure, Problem 59-3. However, in the latter problem, contiguity is not required.
Solution by the proposer. As a consequence of (1) the subsequence must contain
every number 1, 2, - -- , k at least once and hence it starts with the number 1
and ends with the number k.



