

Real-time implementation of Model Predictive Control (MPC)

Citation for published version (APA):
Keij, J. J. A. M. (2001). Real-time implementation of Model Predictive Control (MPC). (DCT rapporten; Vol.
2001.024). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/35ae916b-e4eb-450d-a7a4-2d8a91f8d048

Faculty of Mechanical Engineering
Dynamics & Control Group

Real=+im 'mnl mnn+ +i n ni
I L I I I I ~ I I I I ~ I ~ I I IGI IL~LIOI I w

Model Predictive Control (MPC)

J.J.A.M. Keij BSc

DCT 2001.24

Supervisor: dr. ir. H.A. van Essen

Real-time implementation of Model Predictive Control

Table of Contents

1. lntroduction
1.1 lntroduction
1.2 Statement of the problem
1.3 Approach

2. Model Predictive Control
2.1 inirociuctisn sf ivWC
2.2 Concept sf MPC
2.3Tuning parameters in MPC
2.4 Implementation of Linear MPC
2.5 Filter and reconstruction
2.6 Non-linear predictive control

3. MatlabISimulink implementation
3.1 Design criteria
3.2 Verification systems
3.3 Generic Multimask MPC
3.4 Simulation results

4. Real-time impPementation
4.1 RTW model

5. Conclusions
6. References

Procedure to implement a new prediction model
Procedure to append arguments into controller

Appendix A
Appendix B

Real-time implementation of Model Predictive Control

Introduction

1.1 Introduction

In this report the results and conclusions of my first intern al practical training are
presented. The used control strategy is a quite modern, still developing one. Starting
in the early 1980's Model Predictive Controllers (or related strategies) has developed
as a very powetfui control strategy, among others due to the MPC abiiity of ta~ing
constraints of the system into account. Now computer capabiiiiies are increasing fast,
the computational demands of MPC controllers can be provided. A real-time
implementation of a (state space) Model Predictive Controller can now be very
interesting for a certain class of systems, which are not easy controllable with the
conventional control strategies.
To introduce the principles of the class of controllers which are investigated a short
overview will be given. This report does not give a complete overview of the whole
class of Model Predictive Controllers, but just a brief introduction. In the next sections
the problem and proposed approach will be stated.

1.2 Statement of the problem

The main objective of this traineeship is to design a real-time implementation of a
model predictive controller. As a starting point a Matlab simulation script was
available. This MPC controller was well implemented in a very clear structure. The
separate elements of this controller are quite well distinguishable. Minor objectives of
this traineeship were genericity (the controller should be model independent), and the
design of a user-friendly interface for the user-inputs.

1.3 Approach

During this traineeship the first step was to understand the principles of MPC, in
specific the MPC controller in state space approach which was available for
simulation in Matlab.
Starting from a well-structured Matlab
simulation the first step to a real-time
implementation is the transcription to a
~at lab/~imul ink function. This function
represents the controller. Simulations
with this sirnulink element and a (non-
linear) process model will increase
knowledge of the closed loop behaviour
of this MPC controller. Parameters can
easily be adapted, such that this
controller simulation can be very well
used for demonstrating the working of - -
MPC controllers.
In case of an experimental or industrial , ., Sirnulink
setup, this (non-linear) process model
can -be replaced with a; interface to a real-time processor board, like dSpace. To

Real-time im~lementation of Model Predictive Control

obtain a real-time implementation, the simulink system can be compiled with a tool
like Real-Time Workshop (RTW). This method to obtain a real-time implementation is
chosen over direct implementation in a low-level programming environment such as
C/C++, because the intermediate stage in which the Sirnulink controller is obtained,
is considered valuable.

Real-time im~lementation of Model Predictive Control

2. Model Predictive Control

2.1 Introduction of MPC

Model Predictive Control is a class of discrete time controllers, which base the input
signal on a prediction of future outputs of the system (process). These predictions
are based on a model of the system (process) that is to be controlled. The main
technique behind this concept is the principle of receding or moving horizons. Due to
the model-based approach the online optimisation can take constraints in to account
with respect to input signals, controlled and uncontrolled states. Because of the large
czlculations due to this princ~ple, MPC is most suitable and most appiied for reiaiiveiy
'slow' processes. Although due io fast increasing processor capabilities an increasing
number of processes could be controlled with a Model Predictive Controller
nowadays.
In the following sections a brief overview of the principles and features of MPC will be
given. More information can be found in the lecture notes [Van Essen, 20001.

2.2 Concept of MPC

The scheme presented in figure 2.1 describes the principle of receding horizons that
is applied to Model Predictive Controllers. For convenience only one input and one
state is considered but for MlMO systems this principle holds just as well.

........................ *--*--*---*---*---*-
reference r(k) . predicted output y(k+llk)

I /
prediction horizon

.
input u(k) .

-

[Figure 2.1 : Concept of Model Predictive Control]

-

At present time k, the response of the output is predicted over a prediction horizon
with a length of p samples. The prediction is based on past inputs, current model
states (or estimates of the states), latest process measurements, proposed future
inputs, and if possible the predicted setpoint disturbances. The manipulated variables
are allowed to vary over a control horizon with a length of m samples. The optimal
input changesAu are calculated by minimising a quadratic objective function in the
tracking error (y-r) and the input changesAu. Only the input(change) of the next
sample is implemented. The next sample the whole procedure is repeated. This way
the horizons are moving in time: receding horizons.
To minimise future deviations of the controlled variables from their reference values
(setpoints or trajectories), while preventing the inputs from changing inadmissibly
fast, the next (common for MPC) quadratic objective function (in y - r and Au) is
used.

I I I I
k k i l k42 kim k ip -

control horizon

Real-time implementation of Model Predictive Control

Inspecting the quadratic objective function in the (filtered) process output, the
reference signal and the input changeAu we see two weighting matrices. Q
represents the weightings of the setpoints over the prediction horizon. The matrix R
represents the weighting of the input changesAu over the control horizon. These
weightings may change over the horizons. Furthermore, y(k + 1 1 k) denotes the
estimate of y(k + 1)obtained at sample k, taking into account all (available)
information up to and including the current sample k.

2.3 Tuning parameters in MPC

Summarising the tuning parameters from the previous sections, the next parameters
are obtained:

- the number of samples in (or the length of) the prediction horizon
- the number of samples in (or the length of) the control horizon
- the sample interval
- the setpoint weighting factors
- the input weighting factors

The controller must be able to observe the consequences of its control actions.
Therefore the prediction horizon should exceed the largest time constant of the
controlled system, periods of dead-time and periods of inverse response.
System speed decreases when the prediction horizon is increased with respect to the
control horizon, although the open-loop robustness of the system increases in this
case. A good compromise should be chosen. Basic guidelines for tuning are
formulated by [Morari, 19931 on basis of open-loop stable, minimum phase
processes, that show responses corresponding to first-order responses.
Increasing lengths of prediction and control horizons, and decreasing the sample
interval will increase computation times substantial as the number of d.0.f. in the
optimisation rises exponential.

2.4 !rnp!ementatian of Linear MPC

In case of a linear optimisation and a non-linear process model an error in
introduced. This error can be corrected for by implementing a filter. This filter can be
model-based (e.g. (Extended) Kalman filter) or non model-based like the
implemented output disturbance filter.

k

[Figure 2.2: Schematic view of MPC Implementation]

xcor(k) - f x(k+l)

Controller I
u(k) ! 3- u(k+l)

YP (k) f yP (k+l)

Real-time im~lementation of Model Predictive Control

The MPC controller is fed with the current input, the desired setpoint, previous
prediction of the states and latest measurements of the process states (outputs). The
controller calculates a prediction of the process outputs over the prediction horizon
based on the current (unchanged) input and corrected state prediction by means of
the (Internal) Prediction Model (IPM). This prediction vector and the current input
vector are fed into the Internal Optimisation Model (IOM). The calculation in this
optimisation algorithm results in an optimal input change. This input change is
summarised with the current input resulting in a new optimal input for the process.

k k+ 1
[Figure 2.2: Schematic view of MPC Controller]

8 ~ (k l k - 1) Prediction
Model
I PM

Details and priciples of the optimisation algorithms can be found in the lecture notes
[Van Essen, 20001. There are roughly two classes of optimisation algorithms. The
relatively simple unconstrained optimisation models (e.g. Least Squares LS), and the
optimisations that can take constraints into account (e.g. Quadratic Programming
QP). Constraints can be formulated with respect to the inputs or the states. Even
uncontrolled states can be constrained. These constraints can be upper or lower
limits due to safety of physical limitations of the system, or move constraints, like
limitations to the actuator.
These QP problems are in most cases solved by standard routines, as they are
available in NAG routines, Fortran, C/C++ and Matlab MEX files. In the implemented
controller the Matlab routine QUADPROG is used, but other routines can easily be
applied.

2.5 Filter and rec~nstaustisn

-

To correct the predicted states towards the actual measurements of the process a
filter has been implemented. Besides differences due to errors in the used models
and the linear predictions of non-linear systems, noise can introduce errors too,
which are to be corrected.
The implemented first order non-model based filter corrects the current predicted
states {x, (k + 1 I k) . . . x, (k + p 1 k)) with the difference between the previously

predicted state x, (k I k - 1) and the current process measurement x, (k I k) . This

Optimisation
Model IOM

and
optimisation

class of filters is called output disturbance filters.

t x(k+lI k)

2.6 Non-linear predictive control

The previous principles all hold for the standard linear Model Predictive Control
problem. The unconstrained (Least Squares) optimisation and the constrained

Real-time im~lementation of Model Predictive Control

optimisation problem (Quadratic Programming) are proven algorithms. Linear
approaches will not always be adequate, because most processes behave quite non-
linear and can not always be linearised with satisfying results.
Non-linear MPC concepts are developed to deal with these cases. These MPC
concepts calculate non-linear predictions over the horizon. Most of these algorithms
are computational very demanding because of the increased complexity of the
problems. A less demanding solution can be found in successive linearising. In that
case the prediction model is linearised around the current setpoint each sample. This
extension increases the computational demand, since it requires a sequential (SQP)
optimisation problem instead of a single QP problem over the horizon.

Real-time implementation of Model Predictive Control

3 MatlabISimulink implementation

As an intermediate between MPC simulation and real-time implementation a
MatlabISimulink S-function was designed. This function can be applied in a Simulink-
model in which simulations can be conducted and under some limitations the Real
Time Workshop tool (R W) can convert the simulated system from Sirnulink to
executable code for a real-time (control-) processor like dSpace or the TUeDACS
device.

3.1 Design criteria

As stated earlier the main target of this practical training was to implement real-time
version of a generic Linear Model Predictive Controller.
The first part of that goal consists of the word real-time. This implies that the
generated code is able to measure the outputs at certain moments in time and apply
inputs to the process, for example by means of the processor on the available
dSpace systems. There are some tools available to create the necessary code such
as the Real Time Workshop (RTW). Nevertheless this tool implies some limitations to
the used functions and settings in the Simulink model. Not only the function itself has
to be compiled but also the external functions or subroutines that are called by the
main function are to be compiled.
The second part of the goal consists of the word generic. This means that the code
can be easily be adapted to another model or controlled system. The controller itself
should be model independent. The original MPC simulation was applied on a system
of cross-linked water tanks (described in 3.2 Verification systems).
Besides these two hard design-criteria there are of course some criteria that are as
important as the main target. These criteria are stated with respect to user-friendly
interfaces, easy replaceable prediction models and extendable controller features.
Of course the S-function simulations should give exactly the same results as the
original Matlab simulations in case the same systems, parameters and features are
used.
Let's now recite all design criteria; The intermediate s-function first of all should give
exactly the same output as the reference simulations in case same systems,
parameters and features are used; The s-function should be RTW compatible, no
variable step ODE-solvers may be used; The controller should be generic, no model
dependent elements should exist within the controller; Parameters should be easily
adaptable via a user-friendly interface (no messing around in the code).

3.2 Verification systems

Model Predictive Controllers are of course model-based controllers. The controller
uses information of the model of the controlled system to predict its response and
optimise the current input. In this practical training the main goal was to design a
generic controller, one that could be applied on all systems of which a state space
model is supplied. To verify that the controller works correct two systems have been
chosen as verification systems. The first one was supplied in the original simulation
code, the second one was chosen from [Franklin et al, 19941 as an arbitrary non-
linear system.

Real-time implementation of Model Predictive Control

3.2.1 Cross-linked water tanks

The first used verification system consists of 4 cross-linked water tanks, two pumps
and a buffer-tank (figure 3.1 : Cross-linked water tanks). The first pump (1) pumps up
water from the buffer-tank and pumps the water into the upper left tank (3) and into
the lower right tank (1). The second pump (2) pumps the water from the buffer into
the lower left tank (2) and into upper right tank (4). The two upper tanks (3 and 4)
are emptying into the lower tanks (respectively 1 and 2). The water levels in all tanks
are supposed to be the (measured) states and the charge of the both pumps are
suppesed te be the t:.:~ inputs ~f the system.
Of course the tanks have a finite height and the tanks cannot have a water level
beneath zero.

I Buffer tank

Pump l A P2: Pump2

TI : Tank1
T2: Tank 2
T3: Tank 3
T4: Tank 4

Distribution valve 0
(not controilea)

[figure 3.1: Cross-linked water tanks]

It is not easy to follow a certain setpoint reference on the both lower tanks, because
of the emptying of the upper tanks without any knowledge of the system. If a pump
pumps water into a iow-ievelled tank the other tank wiii be filled as well, direct
through the pump or indirect via an upper tank. Nevertheless if the controller uses
knowledge of the system this system can be controlled with quite satisfying results.
To illustrate the reference system some results of the original simulations will be
presented. As can be seen the results with the Model Predictive Controller are quite
acceptable. Because MPC is widely applied in process industries this example is a
good illustration of the power of this control strategy.

3.2.2 Hanging crane

To be sure the controller does not contain any water tank dependent elements a
second model was chosen to verify the correct performance of the designed s-
function. This model describes a horizontally moving cart with a hanging pendulum
beneath it (hanging crane) in a gravitational force field (figure 2.2: Hanging crane).
This model describes some friction in de moving of the cart, but no damping in the
pendulum. The (rotational-) position and speed of both cart and pendulum are
measured.

Real-time implementation of Model Predictive Control

I I

[Figure 3.2: Hanging crane]

A crane-driver for example could want to move the crane from position A to B having
the pendulum at least at the end of the trajectory in a vertical equilibrium position.
MPC can take several constraints in account, such as maximum speeds and
maximum positions of cart and pendulum and calculate optimal control inputs for this
system with 4 measured states and 1 input.

Real-time imdementation of Model Predictive Control

3.3 Generic Multimask MPC

A MPC simulation is available as well as two test models. The intermediate
MatlabISimulink s-function is written in Matlab format, in stead of C/C++ format. This
choice can still be made if this turns out to be better.
The controller could be constructed from 3 subsystems (controller, model and filter)
in a simulink style, with basic simulink library elements. This does not appear to be
the optimal choice with respect to the user-interface and replaceable models. In this
case the filter is integrated within the controller in one single s-function, because of
rL ,,I,. -a:-- *LA A:-+. .rL--rr- rr$ +he rrrnrl;rr+;nr\ t.r;+h rn nnnt tn thn
LI le easier ~ a r ~ u h u r I UI r l lt: ulaiurual lbt; UI LI I= PI F~UIC.LIVI I V V ~ L I I I +SC.L LV LI IG 2cfd2l
measurement. The prediction model is implemented in an external function, which
can be called by the controller. The optimisation is done by means of the Matlab
routine QUADPROG.

3.3.1 S-function

A Simulink s-function has a very stringent format. To illustrate this, let's now analyse
the header to understand the working of s-functions better.

function [sys,xO,str,Ts] = sfunname(t,x,u, flag)

Input argument t (time) will be called by Simulink. The next three input arguments
deserve some more attention. Simulink have defined s-functions in general, so x and
u describing respectively the state and input of the function. In this special case of
the MPC describing s-function the state of the controller describes the current input-
signal of the process and the input of the controller are the current measured states
of the process (See figure 3.3: Simulink Model). Current process inputs and states
are denoted as x,(k) (state x of the process at time k), or xpk. The inputs are denoted
analogue. So if x is replaced by upk, and u by xpk in the header of the s-function,
variables are denoted intuitive.

function [sys,xO,str,Tsl = sfunmpc(t,upk,xpk, flag)

Next input argument is the flag argument. This is a variable that Simulink uses to
describe the status of the function. Next a short table is included from a Matlab
template in

8 FLAG
% -----

% 0
%
%
% 1
% 2
% 3
8 4
%
% 5
% 9
%

which the use of the flag argument is described.

RESULT

[SIZES,XO, STR, TS]

DX
DS
Y
TNEXT

DESCRIPTION
..
Initialization, return system sizes in SYS,
initial state in XO, state ordering strings
in STR, and sample times in TS.
Return continuous state derivatives in SYS.
Update discrete states SYS = X(n+l)
Return outputs in SYS.
Return next time hit for variable step sample
time in SYS.
Reserved for future (root finding) .
Termination, perform any cleanup SYS=[] .

[Table 3.1 : Use of the flag arguments (The Mathworks)]

Real-time implementation of Model Predictive Control

To illustrate the flag-call the outputs of the function at flag=O are described as
follows:

When SFUNC is called with FLAG = 0, the following information
should be returned:

SYS(1) = Number of continuous states.
SYS (2) = Number of discrete states.
SYS(3) = Number of outputs.
SYS (4) = Number of inputs.

Any of the first four elements in SYS can be specified
as -1 indicating that they are d.i.r,cical LLY sized. The
actual length for all other flags will be equal to the
length of the input, U.

SYS(5) = Reserved for root finding. Must be zero.
SYS(6) = Direct feedthrough flag (l=yes, O=no). The s-function

has direct feedthrough if U is used during the FLAG=3
call. Setting this to 0 is akin to making a promise that
U will not be used during FLAG=3. If you break the promise
then unpredictable results will occur.

SYS(7) = Number of sample times. This is the number of rows in TS.

XO = Initial state conditions or [I if no states.

STR = State ordering strings which is generally specified as [I .

TS = An m-by-2 matrix containing the sample time
(period, offset) information. Where m = number of sample
times.

[Table 3.2: Outputs at initialisation (The Mathworks)]

In the initialisation stage (flag 0) the controller calculates initial parameter values,
(linearised) system matrices and sets initial state and input values. The required
parameters are save to disk. This is not very positive to minimise the used time per
sample, because it implies disk activity.
During the control stage the controller can load the needed values from disk and use
these parameters to calculate the next input signal for the process. Because in this
case there are no continuous states, the only state update of the controller is
implemented under flag 2 (update discrete states of the s-function) when all
calculations that are needed that sample are finished, the controller saves all needed
parameters to disk again. Flag 3 works as a 'C matrix' in control theory. It describes
which (updated) states are used to describe the output of the function. In this case all
states are used.
The flag 4 call calculates the 'time of next hit'. This is of course strongly dependent
on the set sample time. By means of this calculation simulink is able to synchronise
the timing of the elements (process model, controller) within the system In this
special case, the process model does not calculate a 'time of next hit' but supplies a
process state value whenever the controller asks for it. Within the controller a zero
order hold is applied to feed the process continuously with the current calculated
input signal. Finally the flag 9 call terminates the function.

3.3.2 Simulink model

To simulate the working of the implemented Model Predictive Controller a test case is
needed. In this case the model of cross-linked water tanks described in 3.2.1 is used.

Real-time implementation of Model Predictive Control

The (non-linear) equations of this system were implemented in a continuous s-
function. This means that the states (water heights) are available 'whenever' they are
needed in the controller and the discrete inputs are applied continuously.
The general structure of the designed simulink model is shown here. It may be clear
that t h e s-function describing the
non-linear Plant model will be
replaced with the interface with the
real process. In case a real-time
processor is available (e.g. dSpace)
the simulink block Plant model will be
replaced with a communication
block, which is supplied with the reai-
time processor. This block will cope
with the communication to and from
the process.

[Figure 3.3: Simulink model]

3.3.3 Graphical User Interface

Figure 3.4: System mask

To make an easy-lo-use controller a GUI has been designed in which a user can
make adaptations to the parameters of the controller, such as e.g. sample time,
horizon lengths and filter configuration.
To prevent 'messing around in the code' and supply a clear overview of the chosen

parameters a Simulink 'mask' has
been designed. If a user now double
clicks on the controller in the simulink
model, this mask will be opened. It
contains four masks (system,
controller, constraints and filter) which
lead the user through all needed
parameters, such as prediction model,
sample time, filter gain and constraints.
Clicking System, Controller,
Constraints or Filter buttons will open
the different masks. In this case some
parameters of the cross-linked water
tanks are filled in.

A short manual for extending the mask
if the features of the controller are
extended is supplied in appendix B.

If the controller has to be installed from
scratch, all masks should be passed
through. A manual for this procedure is
supplied in Appendix A. Starting top-to-
bottom (System mask to Filter). Some

parameters are filenames (e.g. prediction model, setpo.int model), some are scalars
(e.g. sample time), and others are vectors or matrices (e.g. constraints, initial state
approximations). The controller uses some external files and functions, which are

Real-time implementation of Model Predictive Control

described in the next section. If all parameters are filled in values can be confirmed
by pressing Apply or Ok. If everything is in place, the simulation can start.

3.3.4 Callback functions

Because of the vast amount of user input to configure the MPC controller, not all
input can be put in one standard simulink mask. Therefore the parameters are
distributed over four masks. This is no standard feature in simulink. To get the job
done the advanced Matlab feature, Callback-functions has been used.
To do so, first the whole, undistributed mask is applied to the control block. After that,
the command set_param is used to set the callbacks.

set_param(gcb, 'Maskcallbacks ' , { 'mpc_calllll ,..., 'mpc-call4' , ' ' , ..., " 1) ;

This command sets the parameter MaskCallbacks of the current block (gcb = get
current block). The Callbacks are defined in separate files called
{mpc-call1 ... mpc-call41 and are called whenever the first four options in the mask
are changed. Because these options are the check buttons of the four masks these
files describe the commands that are to be executed when a button is pushed (set
the check-mark to that option, remove the previous check-mark, hide all options that
are not categorised into that mask, and fill in the known values for the visible
options).

To demonstrate the callback function, an example is now presented.
First determine the visibilities, of course the first four mask options are 'on' (visible) in
all four masks, there these options represent the buttons which should be visible at
all time.

setqaram(gcb, 'MaskVisibilities' , { 'on', 'on', 'on' ,..., 'off', 'off' ,..., 'off' }) ;

To 'remembet and fill in the known values at the correct places of the visible options,
all variables are called from the current block (gcb).

variable-namel=get-param(gcb, 'variable-namel');
variable-nameZ=getqararn(gcb,'variable_nae2');
0..

variable-namen=getqaram(gcb, 'variable-namen');

After recalling all variables, the known values are filled in at the correct piaces.
Besides the recalled variables the first four options are set manual. Only the current
called button is set to 'on' (checked) all other buttons are set to 'off' (not checked).

Real-time imolementation of Model Predictive Control

3.4 Simulation results

3.4.1 Reference results

To check the designed MPC controller s-function, the following experiment has been
conducted. The (original) available simulation script is executed within Matlab with
the model of the cross-linked water tanks with certain parameter settings. The same
model and parameters are applied on the designed MPC s-function. If the s-function
works correctly, both responses should be exactly the same.

setpoints

'"'"I

reference level 1
level 2

- reference level 2

Inputs

iC-

20

Figure 3.5: Verification check (controlled states of simulation
script (upper left) and s-function (upper right); calculated inputs
of simulation script (lower left) and s-function (lower right)

As can be seen in figure 3.5 (Verification check) the both responses are
exactly the same. Numerical both the states as the inputs are identical. This is
a confirmation of the correctness of the MPC controller s-function.

Real-time implementation of Model Predictive Control

3.4.2 Verification results

At this point the genericity will be checked. The main goal, designing a real-time
implementation of a generic Model Predictive controller, contains the word generic.
This means the controller must not contain any model specific elements.
To check this a second model with a different number of inputs was implemented (for
procedure to implement a new system, see Appendix A). This model of the hanging
crane contains 4 states and one input (driving force of the crane), where the cross-
linked water tanks contain 2 inputs (2 controlled pumps). Next the simulation results
of this system are presmted.

-1 0 2 1 4 6 8 10 12 14 16 18 20 1 0 0 2 4 6 8 10 12 14 16 18 20

l ime (s) l ime (s)

Figure 3.6: MPC Controlled hanging crane with an output
weighting of 100 on the angle and 10 on the position (left); output
weighting of 10 on the angle and 100 on the position (right).

MPC controlled Hanging crane - Angle MPC controlled Hanging crane - Position

Above the principle of output weighting is demonstrated. It's clear that in the left
situation the angle is very well controlled but the set position is reached slower in
comparison with the right situation.
To demonstrate another tuning parameter, take a look at the next example in which
the prediction horizon is varied from 8 seconds (32 samples) to 1.25' second (5
samples) while the MPC controlled Hangmg crane

control horizon is kept at 8

a constant 1 second (4 7 - P r e d ~ c t ~ o n tmr 2 50 [SI

samples).
It might be elear that

6 -

decreasing the prediction - E 5-

horizon with respect to
the control horizon,
results in a more
aggressive controller,
although as stated earlier
also a less robust I- 9

Angle of pendulum [rad]
-

f
i - /

i
i

1
i
i

i

6

5

4

3

2 -

1 -

controller.
0

0 2 4 6 8 1 0 12 1 4 1 6 18 2 0
Time (s)

Figure 3.7: Influence of the prediction horizon

0

-

-
I

1 -

i
1
i

i
i
/---

6

5

4

3-

2 -

-

Real-time im~lementation of Model Predictive Control

4 Real-time implementation

As stated before the main goal of this assignment was to design a real-time
implementation of a generic MPC controller. In the previous section a description was
given of the intermediate stage, a MatlabISimulink s-function. This s-function should
be compiled or rewritten to obtain a code that is executable on a real-time platform.

4.1 RTW model

A first test was ccnducted to see if the controller itself, including all called functions
(e.g. prediction models, optimisation routine) were compilable with the Real-Time
Workshop (RTW) tool within Simulink. To prevent fatal errors during the compilation,
the combination of continuous and discrete systems in the same model was
excluded. In practice the Process model would be replaced by a block set that is
supplied with the real-time platform (e.g. dSpace). In this test case the MPC
controller was used with a prediction model of the cross-linked water tanks (See
figure 3.1 : Cross-linked water tanks). In stead of the difficult implementation with the
communication blocks, a fake system was set up. This means that the controller is
fed with a constant fake measurement with appropriate sizes. Remember that this is
iust a test to see if the controller is compilable.

Constant

Constant3

u
MPC Rsgalaar u pk

Figure 4.1 : Simulink RTW test model with fake system

If this model is build by RTW an error prompts which says the s-function should be
remapped from Matlab format into C format. No extended conciusions can be drawn
from this. Due to time lack no further actions are taken to fulfil the remapping of the
controller s-function and its subroutines from Matlab to C format.

Real-time implementation of Model Predictive Control

5 Conclusions

Designing a real-time implementation of a generic Model Predictive Controller
appeared to be a complex assignment with many aspects on several fields. First
knowledge had to be obtained on the topic of MPC controllers and comparing the
available MPC simulation script with other MPC controllers in literature. It seemed
that the available controller was well structured and easy extendible with new
features.
To get to the point where the controller could be executed on a real-time platform an
interiiiediate stage was iiitroduced. The available sirnulatioii script was implemented
in a Matlab/Simulink s-function with a user-friendly (and extendible) interface. Future
versions can be extended with a more sophisticated mask. For example a mask
which checks the given inputs with the sizes of the used system. Such a s-function
can be compiled under certain conditions with tools like Real-Time Workshop (RTW)
into code for real-time processors, with respect to the used commands in the s-
function. The controller was not only tested on the, in the simulation script supplied
model of the cross-linked water tanks, but also on a second implemented model of
the hanging crane. This model has a different number of states and inputs so the
genericity of the controller could be tested.
At this point a correctly working s-function of the generic Linear Model Predictive
Controller was available. Due to time lack in this traineeship the next step to real-time
implementation was not completed. A test was done with a fake system to see if the
RTW was able to compile the controller. It is recommendable for future developments
that the available s-function in Matlab format is rewritten in C/C++ to be executable
on a real-time platform. Besides that point of course new features should be tested
on the MPC controller.
In my opinion the ever moving boundaries of MPC applications should be explored
continuously. The increasing computational speed of computers implies an
increasing number of applications for MPC controllers. It seems to be a very powerful
class of controllers in which a lot of work still needs to be done.

Real-time im~lementation of Model Predictive Control

References

Van Essen, H.A.; Advanced control (lecture notes), Eindhoven University of
Technology, 2000.

Franklin, G.F.; Powell, J.D.; Emami-Naeini, A.; Feedback control of dynamic systems
(3rd Edition), Addison Wesley, 1994.

Morari, M.; Garcia, C.E.; bee, J.H.; Prett, D.M.; Model predictive control, Prentice
Hall, pre-print, 1993a.

Morari, M.; Ricker, N.L.; Model Predictive Control toolbox, Matlab functions for the
analysis and design of Model Predictive Control systems, The Mathworks, 1993b.

Oliveira, Numo M.C. de; Biegler, Lorenz T.; Constraint handling and stability
properties of model predictive control, AlChE Journal, Vol. 40, p. 1138-1 155,
1994.

Real-time im~lementation of Model Predictive Control

Appendix A Procedure to configure the controller

To get the generic multimask MPC controller up-and-running, a few settings are to be
configured. This procedure is based on the simulation case. To setup a working
simulink model the active directory should contain the files

mpc-ca1lX.m (4 callback functions)
mpcset.m (callback activator function)
qpmat-m (QP argument builder for linear case)

0 qpmatn1.m (QP argument builder for non-linear case)
sfunmpcX (Generic Multimask controller block)

In addition to these supplied files, the user has to design the (non-linear) process
model in s-function format. For example:

function [sys,xO,str,Ts] = sprocess(t,xpk,upk,flag)

% non-linear equations:
xdotl = -al/Al*sqrt(2*g*xpk(l)) + a3/Al*sqrt(2*g*xpk(3))
xdot2 = -a2/A2*sqrt(2*g*xpk(2)) + cos(xpk(1) + gam2*k2/A2*upk(2);
xdot3 = -sin(xpk(l)*xpk(3)) + (1-gam2) *k2/A3*upk(2) ;
xdot4 = -a4/A4*sqrt(2*g*xpk(4)) + (1-gaml)*kl/~4*upk(l);

elseif flag == 0
sys = [4 0 4 2 0 0 1 I;

% This means 4 continuous states, 0 discrete states, 4 output-channels, 2
input-channels, reserved parameter (always 0), no direct feedthrough, 1 row
of sample times

x0=[12.2630;12.7832;1.6339;1.40901; % initial states of the process

str=' ' ;
Ts= [O 01; % continuous system

else
sys = [1 ;

end

% End of (non-linear) process

This s-function can be executed

s- function

in a simulink model by adding the standard simulink
block called 's-function' from the library and set the filename of the designed s-
function.

After this process model a prediction model has to be implemented in case a non-
linear prediction is wanted. The prediction model is implemented in a separate file,
like the example of the cross-linked water tanks on the next page. The filename has
to be set in the system-mask.

Real-time im~lementation of Model Predictive Control

function xdot=waterbak(t,xpk,opt,upk)

% non-linear prediction model of cross-linked water tanks

% parameters
A1=28;A2=32;A3=28;A4=32;
al=0.071;a2=0.057;a3=0.071;a4=0.057;
g=981; gaml=O.7; gam2=0.6;
k1=3.33;k2=3.35;

for i=1:4
if xpk(i) <0
xpkiij =O;
end

end

8 non-linear equations:
xdot(1) = -al/Al*sqrt(2*g*xpk(l)) + a3/~l*sqrt(2*g*xpk(3)) +
gaml*kl/Al*upk(l) ;
xdot(2) = -a2/A2*sqrt(2*gkxpk(2)) + a4/A2*sqrt(2*g*xpk
gam2 *k2 /A2 *upk (2) ;
xdot (3) = -a3/A3*sqrt (2*gkxpk(3)) + (1-gam2) *k2/A3*upk
xdot (4) = -a4/A4*sqrt (2*gkxpk(4)) + (1-gaml) *kl/A4*upk

To set the prediction matrices the supplied function predmat.m has to be adapted to
the wanted prediction model. In the supplied file an example is already given. The
example model has to be replaced with the wanted prediction model. The header and
rest of the body must not be changed.

To operate the controller at a certain setpoint a setpoint generating function has to be
defined. An example can be found in wbsetp0int.m. This file has to be saved in a
separate file. The filename can be set in the system-mask.

If all files are in place, the controller is ready to receive its settings. The user has to
open the multimask by clicking the controller block in the simulink model. If the
correct parameters (with correct sizes) are filled in the masks from top to bottom, the
controller is ready to run.

Real-time implementation of Model Predictive Control

Appendix B Procedure to append arguments to controller

Although the mask has been designed to prevent messing around in the code,
sometimes the arguments of the mask and controller have to be extended. For
example if a new feature is appended.

!mp!ement the RSW featlrre in the s-functinr! script sfm.mpcX..m
Make sure all needed vahes of the arguments are present in the script

Add the new arguments in the header's list of arguments

Now select the controller element in the simulink model and press ctrl-m to open
the mask dialog

Add all new elements in the mask (see Simulink manual for details)

Select the simulink option Look under mask to append new elements to the
sirnulink argument array

Edit the callback functions mpc-ca1lX.m and mpcset.m in the editor window and
append the new arguments in the correct order of the mask. Notice that all
arguments, both visible and invisible are to be added in all masks

Select the controller element in the Simulink system and execute the mpcset.m
script to assign the correct callback functions to the mask arguments

Run the Simulink system and assign values of correct size to the new options in
the multimask. Press apply and ok to check if values are set correctly

If all values are correct and the needed files (see appendix A) are in place the
system is ready to run. Remove the initially set values of the parameters from the
sfunmpcX.m controller function to make the controller calculate with the correct
parameters.

