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Introduction 

1.1 Introduction 

In this report the results and conclusions of my first intern al practical training are 
presented. The used control strategy is a quite modern, still developing one. Starting 
in the early 1980's Model Predictive Controllers (or related strategies) has developed 
as a very powetfui control strategy, among others due to the MPC abiiity of ta~ing 
constraints of the system into account. Now computer capabiiiiies are increasing fast, 
the computational demands of MPC controllers can be provided. A real-time 
implementation of a (state space) Model Predictive Controller can now be very 
interesting for a certain class of systems, which are not easy controllable with the 
conventional control strategies. 
To introduce the principles of the class of controllers which are investigated a short 
overview will be given. This report does not give a complete overview of the whole 
class of Model Predictive Controllers, but just a brief introduction. In the next sections 
the problem and proposed approach will be stated. 

1.2 Statement of the problem 

The main objective of this traineeship is to design a real-time implementation of a 
model predictive controller. As a starting point a Matlab simulation script was 
available. This MPC controller was well implemented in a very clear structure. The 
separate elements of this controller are quite well distinguishable. Minor objectives of 
this traineeship were genericity (the controller should be model independent), and the 
design of a user-friendly interface for the user-inputs. 

1.3 Approach 

During this traineeship the first step was to understand the principles of MPC, in 
specific the MPC controller in state space approach which was available for 
simulation in Matlab. 
Starting from a well-structured Matlab 
simulation the first step to a real-time 
implementation is the transcription to a 
~at lab/~imul ink function. This function 
represents the controller. Simulations 
with this sirnulink element and a (non- 
linear) process model will increase 
knowledge of the closed loop behaviour 
of this MPC controller. Parameters can 
easily be adapted, such that this 
controller simulation can be very well 
used for demonstrating the working of - - 
MPC controllers. 
In case of an experimental or industrial , ., Sirnulink 
setup, this (non-linear) process model 
can -be replaced with a; interface to a real-time processor board, like dSpace. To 
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obtain a real-time implementation, the simulink system can be compiled with a tool 
like Real-Time Workshop (RTW). This method to obtain a real-time implementation is 
chosen over direct implementation in a low-level programming environment such as 
C/C++, because the intermediate stage in which the Sirnulink controller is obtained, 
is considered valuable. 
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2. Model Predictive Control 

2.1 Introduction of MPC 

Model Predictive Control is a class of discrete time controllers, which base the input 
signal on a prediction of future outputs of the system (process). These predictions 
are based on a model of the system (process) that is to be controlled. The main 
technique behind this concept is the principle of receding or moving horizons. Due to 
the model-based approach the online optimisation can take constraints in to account 
with respect to input signals, controlled and uncontrolled states. Because of the large 
czlculations due to this princ~ple, MPC is most suitable and most appiied for reiaiiveiy 
'slow' processes. Although due io fast increasing processor capabilities an increasing 
number of processes could be controlled with a Model Predictive Controller 
nowadays. 
In the following sections a brief overview of the principles and features of MPC will be 
given. More information can be found in the lecture notes [Van Essen, 20001. 

2.2 Concept of MPC 

The scheme presented in figure 2.1 describes the principle of receding horizons that 
is applied to Model Predictive Controllers. For convenience only one input and one 
state is considered but for MlMO systems this principle holds just as well. 

........................ *--*--*---*---*---*- 
reference r(k) . predicted output y(k+llk) 

I / 
prediction horizon 

. 
input u(k) . 

- 

[Figure 2.1 : Concept of Model Predictive Control] 

- 

At present time k, the response of the output is predicted over a prediction horizon 
with a length of p samples. The prediction is based on past inputs, current model 
states (or estimates of the states), latest process measurements, proposed future 
inputs, and if possible the predicted setpoint disturbances. The manipulated variables 
are allowed to vary over a control horizon with a length of m samples. The optimal 
input changesAu are calculated by minimising a quadratic objective function in the 
tracking error (y-r) and the input changesAu. Only the input(change) of the next 
sample is implemented. The next sample the whole procedure is repeated. This way 
the horizons are moving in time: receding horizons. 
To minimise future deviations of the controlled variables from their reference values 
(setpoints or trajectories), while preventing the inputs from changing inadmissibly 
fast, the next (common for MPC) quadratic objective function (in y - r and Au ) is 
used. 

I I I I 
k k i l  k42 kim k ip  - 

control horizon 
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Inspecting the quadratic objective function in the (filtered) process output, the 
reference signal and the input changeAu we see two weighting matrices. Q 
represents the weightings of the setpoints over the prediction horizon. The matrix R 
represents the weighting of the input changesAu over the control horizon. These 
weightings may change over the horizons. Furthermore, y(k + 1 1 k) denotes the 
estimate of y(k + 1)obtained at sample k, taking into account all (available) 
information up to and including the current sample k. 

2.3 Tuning parameters in MPC 

Summarising the tuning parameters from the previous sections, the next parameters 
are obtained: 

- the number of samples in (or the length of) the prediction horizon 
- the number of samples in (or the length of) the control horizon 
- the sample interval 
- the setpoint weighting factors 
- the input weighting factors 

The controller must be able to observe the consequences of its control actions. 
Therefore the prediction horizon should exceed the largest time constant of the 
controlled system, periods of dead-time and periods of inverse response. 
System speed decreases when the prediction horizon is increased with respect to the 
control horizon, although the open-loop robustness of the system increases in this 
case. A good compromise should be chosen. Basic guidelines for tuning are 
formulated by [Morari, 19931 on basis of open-loop stable, minimum phase 
processes, that show responses corresponding to first-order responses. 
Increasing lengths of prediction and control horizons, and decreasing the sample 
interval will increase computation times substantial as the number of d.0.f. in the 
optimisation rises exponential. 

2.4 !rnp!ementatian of Linear MPC 

In case of a linear optimisation and a non-linear process model an error in 
introduced. This error can be corrected for by implementing a filter. This filter can be 
model-based (e.g. (Extended) Kalman filter) or non model-based like the 
implemented output disturbance filter. 

k 

[Figure 2.2: Schematic view of MPC Implementation] 

xcor(k) - f x(k+l) 

Controller I 
u(k) ! 3- u(k+l) 

YP (k) f yP (k+l ) 
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The MPC controller is fed with the current input, the desired setpoint, previous 
prediction of the states and latest measurements of the process states (outputs). The 
controller calculates a prediction of the process outputs over the prediction horizon 
based on the current (unchanged) input and corrected state prediction by means of 
the (Internal) Prediction Model (IPM). This prediction vector and the current input 
vector are fed into the Internal Optimisation Model (IOM). The calculation in this 
optimisation algorithm results in an optimal input change. This input change is 
summarised with the current input resulting in a new optimal input for the process. 

k k+ 1 
[Figure 2.2: Schematic view of MPC Controller] 

8 ~ ( k l k - 1 )  Prediction 
Model 
I PM 

Details and priciples of the optimisation algorithms can be found in the lecture notes 
[Van Essen, 20001. There are roughly two classes of optimisation algorithms. The 
relatively simple unconstrained optimisation models (e.g. Least Squares LS), and the 
optimisations that can take constraints into account (e.g. Quadratic Programming 
QP). Constraints can be formulated with respect to the inputs or the states. Even 
uncontrolled states can be constrained. These constraints can be upper or lower 
limits due to safety of physical limitations of the system, or move constraints, like 
limitations to the actuator. 
These QP problems are in most cases solved by standard routines, as they are 
available in NAG routines, Fortran, C/C++ and Matlab MEX files. In the implemented 
controller the Matlab routine QUADPROG is used, but other routines can easily be 
applied. 

2.5 Filter and rec~nstaustisn 

- 

To correct the predicted states towards the actual measurements of the process a 
filter has been implemented. Besides differences due to errors in the used models 
and the linear predictions of non-linear systems, noise can introduce errors too, 
which are to be corrected. 
The implemented first order non-model based filter corrects the current predicted 
states {x, ( k  + 1  I k )  . . . x, ( k  + p 1 k )  ) with the difference between the previously 

predicted state x, ( k  I k  - 1) and the current process measurement x, (k  I k )  . This 

Optimisation 
Model IOM 

and 
optimisation 

class of filters is called output disturbance filters. 

t x(k+lI  k )  

2.6 Non-linear predictive control 

The previous principles all hold for the standard linear Model Predictive Control 
problem. The unconstrained (Least Squares) optimisation and the constrained 
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optimisation problem (Quadratic Programming) are proven algorithms. Linear 
approaches will not always be adequate, because most processes behave quite non- 
linear and can not always be linearised with satisfying results. 
Non-linear MPC concepts are developed to deal with these cases. These MPC 
concepts calculate non-linear predictions over the horizon. Most of these algorithms 
are computational very demanding because of the increased complexity of the 
problems. A less demanding solution can be found in successive linearising. In that 
case the prediction model is linearised around the current setpoint each sample. This 
extension increases the computational demand, since it requires a sequential (SQP) 
optimisation problem instead of a single QP problem over the horizon. 
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3 MatlabISimulink implementation 

As an intermediate between MPC simulation and real-time implementation a 
MatlabISimulink S-function was designed. This function can be applied in a Simulink- 
model in which simulations can be conducted and under some limitations the Real 
Time Workshop tool ( R W )  can convert the simulated system from Sirnulink to 
executable code for a real-time (control-) processor like dSpace or the TUeDACS 
device. 

3.1 Design criteria 

As stated earlier the main target of this practical training was to implement real-time 
version of a generic Linear Model Predictive Controller. 
The first part of that goal consists of the word real-time. This implies that the 
generated code is able to measure the outputs at certain moments in time and apply 
inputs to the process, for example by means of the processor on the available 
dSpace systems. There are some tools available to create the necessary code such 
as the Real Time Workshop (RTW). Nevertheless this tool implies some limitations to 
the used functions and settings in the Simulink model. Not only the function itself has 
to be compiled but also the external functions or subroutines that are called by the 
main function are to be compiled. 
The second part of the goal consists of the word generic. This means that the code 
can be easily be adapted to another model or controlled system. The controller itself 
should be model independent. The original MPC simulation was applied on a system 
of cross-linked water tanks (described in 3.2 Verification systems). 
Besides these two hard design-criteria there are of course some criteria that are as 
important as the main target. These criteria are stated with respect to user-friendly 
interfaces, easy replaceable prediction models and extendable controller features. 
Of course the S-function simulations should give exactly the same results as the 
original Matlab simulations in case the same systems, parameters and features are 
used. 
Let's now recite all design criteria; The intermediate s-function first of all should give 
exactly the same output as the reference simulations in case same systems, 
parameters and features are used; The s-function should be RTW compatible, no 
variable step ODE-solvers may be used; The controller should be generic, no model 
dependent elements should exist within the controller; Parameters should be easily 
adaptable via a user-friendly interface (no messing around in the code). 

3.2 Verification systems 

Model Predictive Controllers are of course model-based controllers. The controller 
uses information of the model of the controlled system to predict its response and 
optimise the current input. In this practical training the main goal was to design a 
generic controller, one that could be applied on all systems of which a state space 
model is supplied. To verify that the controller works correct two systems have been 
chosen as verification systems. The first one was supplied in the original simulation 
code, the second one was chosen from [Franklin et al, 19941 as an arbitrary non- 
linear system. 
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3.2.1 Cross-linked water tanks 

The first used verification system consists of 4 cross-linked water tanks, two pumps 
and a buffer-tank (figure 3.1 : Cross-linked water tanks). The first pump (1) pumps up 
water from the buffer-tank and pumps the water into the upper left tank (3) and into 
the lower right tank (1). The second pump (2) pumps the water from the buffer into 
the lower left tank (2) and into upper right tank (4). The two upper tanks (3 and 4) 
are emptying into the lower tanks (respectively 1 and 2). The water levels in all tanks 
are supposed to be the (measured) states and the charge of the both pumps are 
suppesed te be the t:.:~ inputs ~f the system. 
Of course the tanks have a finite height and the tanks cannot have a water level 
beneath zero. 

I Buffer tank 

Pump l A P2: Pump2 

TI :  Tank1 
T2: Tank 2 
T3: Tank 3 
T4: Tank 4 

Distribution valve 0 
(not controilea) 

[figure 3.1: Cross-linked water tanks] 

It is not easy to follow a certain setpoint reference on the both lower tanks, because 
of the emptying of the upper tanks without any knowledge of the system. If a pump 
pumps water into a iow-ievelled tank the other tank wiii be filled as well, direct 
through the pump or indirect via an upper tank. Nevertheless if the controller uses 
knowledge of the system this system can be controlled with quite satisfying results. 
To illustrate the reference system some results of the original simulations will be 
presented. As can be seen the results with the Model Predictive Controller are quite 
acceptable. Because MPC is widely applied in process industries this example is a 
good illustration of the power of this control strategy. 

3.2.2 Hanging crane 

To be sure the controller does not contain any water tank dependent elements a 
second model was chosen to verify the correct performance of the designed s- 
function. This model describes a horizontally moving cart with a hanging pendulum 
beneath it (hanging crane) in a gravitational force field (figure 2.2: Hanging crane). 
This model describes some friction in de moving of the cart, but no damping in the 
pendulum. The (rotational-) position and speed of both cart and pendulum are 
measured. 
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I I 

[Figure 3.2: Hanging crane] 

A crane-driver for example could want to move the crane from position A to B having 
the pendulum at least at the end of the trajectory in a vertical equilibrium position. 
MPC can take several constraints in account, such as maximum speeds and 
maximum positions of cart and pendulum and calculate optimal control inputs for this 
system with 4 measured states and 1 input. 
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3.3 Generic Multimask MPC 

A MPC simulation is available as well as two test models. The intermediate 
MatlabISimulink s-function is written in Matlab format, in stead of C/C++ format. This 
choice can still be made if this turns out to be better. 
The controller could be constructed from 3 subsystems (controller, model and filter) 
in a simulink style, with basic simulink library elements. This does not appear to be 
the optimal choice with respect to the user-interface and replaceable models. In this 
case the filter is integrated within the controller in one single s-function, because of 
rL ,,I,. -a:-- *LA A:-+. .rL--rr- rr$ +he rrrnrl;rr+;nr\ t.r;+h rn nnnt tn thn 
LI le easier ~ a r ~ u h u r  I UI r l  lt: ulaiurual lbt; UI LI I= PI F~UIC.LIVI I V V ~ L I  I I +SC.L LV LI IG 2cfd2l 
measurement. The prediction model is implemented in an external function, which 
can be called by the controller. The optimisation is done by means of the Matlab 
routine QUADPROG. 

3.3.1 S-function 

A Simulink s-function has a very stringent format. To illustrate this, let's now analyse 
the header to understand the working of s-functions better. 

function [sys,xO,str,Ts] = sfunname(t,x,u, flag) 

Input argument t (time) will be called by Simulink. The next three input arguments 
deserve some more attention. Simulink have defined s-functions in general, so x and 
u describing respectively the state and input of the function. In this special case of 
the MPC describing s-function the state of the controller describes the current input- 
signal of the process and the input of the controller are the current measured states 
of the process (See figure 3.3: Simulink Model). Current process inputs and states 
are denoted as x,(k) (state x of the process at time k), or xpk. The inputs are denoted 
analogue. So if x is replaced by upk, and u by xpk in the header of the s-function, 
variables are denoted intuitive. 

function [sys,xO,str,Tsl = sfunmpc(t,upk,xpk, flag) 

Next input argument is the flag argument. This is a variable that Simulink uses to 
describe the status of the function. Next a short table is included from a Matlab 
template in 

8 FLAG 
% ----- 

% 0 
% 
% 
% 1 
% 2 
% 3 
8 4 
% 
% 5 
% 9 
% 

which the use of the flag argument is described. 

RESULT 
------ 
[SIZES,XO, STR, TS] 

DX 
DS 
Y 
TNEXT 

DESCRIPTION 
............................................ 
Initialization, return system sizes in SYS, 
initial state in XO, state ordering strings 
in STR, and sample times in TS. 
Return continuous state derivatives in SYS. 
Update discrete states SYS = X(n+l) 
Return outputs in SYS. 
Return next time hit for variable step sample 
time in SYS. 
Reserved for future (root finding) . 
Termination, perform any cleanup SYS=[] . 

[Table 3.1 : Use of the flag arguments (The Mathworks)] 
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To illustrate the flag-call the outputs of the function at flag=O are described as 
follows: 

When SFUNC is called with FLAG = 0, the following information 
should be returned: 

SYS(1) = Number of continuous states. 
SYS (2) = Number of discrete states. 
SYS(3) = Number of outputs. 
SYS (4) = Number of inputs. 

Any of the first four elements in SYS can be specified 
as -1 indicating that they are d.i.r,cical LLY sized. The 
actual length for all other flags will be equal to the 
length of the input, U.  

SYS(5) = Reserved for root finding. Must be zero. 
SYS(6) = Direct feedthrough flag (l=yes, O=no). The s-function 

has direct feedthrough if U is used during the FLAG=3 
call. Setting this to 0 is akin to making a promise that 
U will not be used during FLAG=3. If you break the promise 
then unpredictable results will occur. 

SYS(7) = Number of sample times. This is the number of rows in TS. 

XO = Initial state conditions or [ I  if no states. 

STR = State ordering strings which is generally specified as [ I .  

TS = An m-by-2 matrix containing the sample time 
(period, offset) information. Where m = number of sample 
times. 

[Table 3.2: Outputs at initialisation (The Mathworks)] 

In the initialisation stage (flag 0) the controller calculates initial parameter values, 
(linearised) system matrices and sets initial state and input values. The required 
parameters are save to disk. This is not very positive to minimise the used time per 
sample, because it implies disk activity. 
During the control stage the controller can load the needed values from disk and use 
these parameters to calculate the next input signal for the process. Because in this 
case there are no continuous states, the only state update of the controller is 
implemented under flag 2 (update discrete states of the s-function) when all 
calculations that are needed that sample are finished, the controller saves all needed 
parameters to disk again. Flag 3 works as a 'C matrix' in control theory. It describes 
which (updated) states are used to describe the output of the function. In this case all 
states are used. 
The flag 4 call calculates the 'time of next hit'. This is of course strongly dependent 
on the set sample time. By means of this calculation simulink is able to synchronise 
the timing of the elements (process model, controller) within the system In this 
special case, the process model does not calculate a 'time of next hit' but supplies a 
process state value whenever the controller asks for it. Within the controller a zero 
order hold is applied to feed the process continuously with the current calculated 
input signal. Finally the flag 9 call terminates the function. 

3.3.2 Simulink model 

To simulate the working of the implemented Model Predictive Controller a test case is 
needed. In this case the model of cross-linked water tanks described in 3.2.1 is used. 
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The (non-linear) equations of this system were implemented in a continuous s- 
function. This means that the states (water heights) are available 'whenever' they are 
needed in the controller and the discrete inputs are applied continuously. 
The general structure of the designed simulink model is shown here. It may be clear 
that t h e  s-function describing the  
non-linear Plant model will be 
replaced with the interface with the 
real process. In case a real-time 
processor is available (e.g. dSpace) 
the simulink block Plant model will be 
replaced with a communication 
block, which is supplied with the reai- 
time processor. This block will cope 
with the communication to and from 
the process. 

[Figure 3.3: Simulink model] 

3.3.3 Graphical User Interface 

Figure 3.4: System mask 

To make an easy-lo-use controller a GUI has been designed in which a user can 
make adaptations to the parameters of the controller, such as e.g. sample time, 
horizon lengths and filter configuration. 
To prevent 'messing around in the code' and supply a clear overview of the chosen 

parameters a Simulink 'mask' has 
been designed. If a user now double 
clicks on the controller in the simulink 
model, this mask will be opened. It 
contains four masks (system, 
controller, constraints and filter) which 
lead the user through all needed 
parameters, such as prediction model, 
sample time, filter gain and constraints. 
Clicking System, Controller, 
Constraints or Filter buttons will open 
the different masks. In this case some 
parameters of the cross-linked water 
tanks are filled in. 

A short manual for extending the mask 
if the features of the controller are 
extended is supplied in appendix B. 

If the controller has to be installed from 
scratch, all masks should be passed 
through. A manual for this procedure is 
supplied in Appendix A. Starting top-to- 
bottom (System mask to Filter). Some 

parameters are filenames (e.g. prediction model, setpo.int model), some are scalars 
(e.g. sample time), and others are vectors or matrices (e.g. constraints, initial state 
approximations). The controller uses some external files and functions, which are 
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described in the next section. If all parameters are filled in values can be confirmed 
by pressing Apply or Ok. If everything is in place, the simulation can start. 

3.3.4 Callback functions 

Because of the vast amount of user input to configure the MPC controller, not all 
input can be put in one standard simulink mask. Therefore the parameters are 
distributed over four masks. This is no standard feature in simulink. To get the job 
done the advanced Matlab feature, Callback-functions has been used. 
To do so, first the whole, undistributed mask is applied to the control block. After that, 
the command set_param is used to set the callbacks. 

set_param(gcb, 'Maskcallbacks ' , { 'mpc_calllll ,..., 'mpc-call4' , ' ' , ..., " 1) ; 

This command sets the parameter MaskCallbacks of the current block (gcb = get 
current block). The Callbacks are defined in separate files called 
{mpc-call1 ... mpc-call41 and are called whenever the first four options in the mask 
are changed. Because these options are the check buttons of the four masks these 
files describe the commands that are to be executed when a button is pushed (set 
the check-mark to that option, remove the previous check-mark, hide all options that 
are not categorised into that mask, and fill in the known values for the visible 
options). 

To demonstrate the callback function, an example is now presented. 
First determine the visibilities, of course the first four mask options are 'on' (visible) in 
all four masks, there these options represent the buttons which should be visible at 
all time. 

setqaram(gcb, 'MaskVisibilities' , { 'on', 'on', 'on' ,..., 'off', 'off' ,..., 'off' } )  ; 

To 'remembet and fill in the known values at the correct places of the visible options, 
all variables are called from the current block (gcb). 

variable-namel=get-param(gcb, 'variable-namel'); 
variable-nameZ=getqararn(gcb,'variable_nae2'); 
0.. 

variable-namen=getqaram(gcb, 'variable-namen'); 

After recalling all variables, the known values are filled in at the correct piaces. 
Besides the recalled variables the first four options are set manual. Only the current 
called button is set to 'on' (checked) all other buttons are set to 'off' (not checked). 
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3.4 Simulation results 

3.4.1 Reference results 

To check the designed MPC controller s-function, the following experiment has been 
conducted. The (original) available simulation script is executed within Matlab with 
the model of the cross-linked water tanks with certain parameter settings. The same 
model and parameters are applied on the designed MPC s-function. If the s-function 
works correctly, both responses should be exactly the same. 

setpoints 

'"'"I 

reference level 1 
level 2 

- reference level 2 

Inputs 

iC- 

20 

Figure 3.5: Verification check (controlled states of simulation 
script (upper left) and s-function (upper right); calculated inputs 
of simulation script (lower left) and s-function (lower right) 

As can be seen in figure 3.5 (Verification check) the both responses are 
exactly the same. Numerical both the states as the inputs are identical. This is 
a confirmation of the correctness of the MPC controller s-function. 
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3.4.2 Verification results 

At this point the genericity will be checked. The main goal, designing a real-time 
implementation of a generic Model Predictive controller, contains the word generic. 
This means the controller must not contain any model specific elements. 
To check this a second model with a different number of inputs was implemented (for 
procedure to implement a new system, see Appendix A). This model of the hanging 
crane contains 4 states and one input (driving force of the crane), where the cross- 
linked water tanks contain 2 inputs (2 controlled pumps). Next the simulation results 
of this system are presmted. 

-1 0 2 1 4 6 8 10 12 14 16 18 20 1 0 0 2 4 6 8 10 12 14 16 18 20 

l ime (s) l ime (s) 

Figure 3.6: MPC Controlled hanging crane with an output 
weighting of 100 on the angle and 10 on the position (left); output 
weighting of 10 on the angle and 100 on the position (right). 

MPC controlled Hanging crane - Angle MPC controlled Hanging crane - Position 

Above the principle of output weighting is demonstrated. It's clear that in the left 
situation the angle is very well controlled but the set position is reached slower in 
comparison with the right situation. 
To demonstrate another tuning parameter, take a look at the next example in which 
the prediction horizon is varied from 8 seconds (32 samples) to 1.25' second (5 
samples) while the MPC controlled Hangmg crane 
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Figure 3.7: Influence of the prediction horizon 
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4 Real-time implementation 

As stated before the main goal of this assignment was to design a real-time 
implementation of a generic MPC controller. In the previous section a description was 
given of the intermediate stage, a MatlabISimulink s-function. This s-function should 
be compiled or rewritten to obtain a code that is executable on a real-time platform. 

4.1 RTW model 

A first test was ccnducted to see if the controller itself, including all called functions 
(e.g. prediction models, optimisation routine) were compilable with the Real-Time 
Workshop (RTW) tool within Simulink. To prevent fatal errors during the compilation, 
the combination of continuous and discrete systems in the same model was 
excluded. In practice the Process model would be replaced by a block set that is 
supplied with the real-time platform (e.g. dSpace). In this test case the MPC 
controller was used with a prediction model of the cross-linked water tanks (See 
figure 3.1 : Cross-linked water tanks). In stead of the difficult implementation with the 
communication blocks, a fake system was set up. This means that the controller is 
fed with a constant fake measurement with appropriate sizes. Remember that this is 
iust a test to see if the controller is compilable. 

Constant 

Constant3 

u 
MPC Rsgalaar u pk 

Figure 4.1 : Simulink RTW test model with fake system 

If this model is build by RTW an error prompts which says the s-function should be 
remapped from Matlab format into C format. No extended conciusions can be drawn 
from this. Due to time lack no further actions are taken to fulfil the remapping of the 
controller s-function and its subroutines from Matlab to C format. 
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5 Conclusions 

Designing a real-time implementation of a generic Model Predictive Controller 
appeared to be a complex assignment with many aspects on several fields. First 
knowledge had to be obtained on the topic of MPC controllers and comparing the 
available MPC simulation script with other MPC controllers in literature. It seemed 
that the available controller was well structured and easy extendible with new 
features. 
To get to the point where the controller could be executed on a real-time platform an 
interiiiediate stage was iiitroduced. The available sirnulatioii script was implemented 
in a Matlab/Simulink s-function with a user-friendly (and extendible) interface. Future 
versions can be extended with a more sophisticated mask. For example a mask 
which checks the given inputs with the sizes of the used system. Such a s-function 
can be compiled under certain conditions with tools like Real-Time Workshop (RTW) 
into code for real-time processors, with respect to the used commands in the s- 
function. The controller was not only tested on the, in the simulation script supplied 
model of the cross-linked water tanks, but also on a second implemented model of 
the hanging crane. This model has a different number of states and inputs so the 
genericity of the controller could be tested. 
At this point a correctly working s-function of the generic Linear Model Predictive 
Controller was available. Due to time lack in this traineeship the next step to real-time 
implementation was not completed. A test was done with a fake system to see if the 
RTW was able to compile the controller. It is recommendable for future developments 
that the available s-function in Matlab format is rewritten in C/C++ to be executable 
on a real-time platform. Besides that point of course new features should be tested 
on the MPC controller. 
In my opinion the ever moving boundaries of MPC applications should be explored 
continuously. The increasing computational speed of computers implies an 
increasing number of applications for MPC controllers. It seems to be a very powerful 
class of controllers in which a lot of work still needs to be done. 
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Appendix A Procedure to configure the controller 

To get the generic multimask MPC controller up-and-running, a few settings are to be 
configured. This procedure is based on the simulation case. To setup a working 
simulink model the active directory should contain the files 

mpc-ca1lX.m (4 callback functions) 
mpcset.m (callback activator function) 
qpmat-m (QP argument builder for linear case) 

0 qpmatn1.m (QP argument builder for non-linear case) 
sfunmpcX (Generic Multimask controller block) 

In addition to these supplied files, the user has to design the (non-linear) process 
model in s-function format. For example: 

function [sys,xO,str,Ts] = sprocess(t,xpk,upk,flag) 

% non-linear equations: 
xdotl = -al/Al*sqrt(2*g*xpk(l)) + a3/Al*sqrt(2*g*xpk(3)) 
xdot2 = -a2/A2*sqrt(2*g*xpk(2)) + cos(xpk(1) + gam2*k2/A2*upk(2); 
xdot3 = -sin(xpk(l)*xpk(3) ) + (1-gam2) *k2/A3*upk(2) ; 
xdot4 = -a4/A4*sqrt(2*g*xpk(4)) + (1-gaml)*kl/~4*upk(l); 

elseif flag == 0 
sys = [4 0 4 2 0 0 1 I; 

% This means 4 continuous states, 0 discrete states, 4 output-channels, 2 
input-channels, reserved parameter (always 0), no direct feedthrough, 1 row 
of sample times 

x0=[12.2630;12.7832;1.6339;1.40901; % initial states of the process 

str=' ' ; 
Ts= [O 01; % continuous system 

else 
sys = [ 1 ; 

end 

% End of (non-linear) process 

This s-function can be executed 

s- function 

in a simulink model by adding the standard simulink 
block called 's-function' from the library and set the filename of the designed s- 
function. 

After this process model a prediction model has to be implemented in case a non- 
linear prediction is wanted. The prediction model is implemented in a separate file, 
like the example of the cross-linked water tanks on the next page. The filename has 
to be set in the system-mask. 
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function xdot=waterbak(t,xpk,opt,upk) 

% non-linear prediction model of cross-linked water tanks 

% parameters 
A1=28;A2=32;A3=28;A4=32; 
al=0.071;a2=0.057;a3=0.071;a4=0.057; 
g=981; gaml=O.7; gam2=0.6; 
k1=3.33;k2=3.35; 

for i=1:4 
if xpk(i) <0 
xpkiij =O; 
end 

end 

8 non-linear equations: 
xdot(1) = -al/Al*sqrt(2*g*xpk(l)) + a3/~l*sqrt(2*g*xpk(3)) + 
gaml*kl/Al*upk(l) ; 
xdot(2) = -a2/A2*sqrt(2*gkxpk(2)) + a4/A2*sqrt(2*g*xpk 
gam2 *k2 /A2 *upk (2 ) ; 
xdot (3) = -a3/A3*sqrt (2*gkxpk(3) ) + (1-gam2) *k2/A3*upk 
xdot (4) = -a4/A4*sqrt (2*gkxpk(4) ) + (1-gaml) *kl/A4*upk 

To set the prediction matrices the supplied function predmat.m has to be adapted to 
the wanted prediction model. In the supplied file an example is already given. The 
example model has to be replaced with the wanted prediction model. The header and 
rest of the body must not be changed. 

To operate the controller at a certain setpoint a setpoint generating function has to be 
defined. An example can be found in wbsetp0int.m. This file has to be saved in a 
separate file. The filename can be set in the system-mask. 

If all files are in place, the controller is ready to receive its settings. The user has to 
open the multimask by clicking the controller block in the simulink model. If the 
correct parameters (with correct sizes) are filled in the masks from top to bottom, the 
controller is ready to run. 
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Appendix B Procedure to append arguments to controller 

Although the mask has been designed to prevent messing around in the code, 
sometimes the arguments of the mask and controller have to be extended. For 
example if a new feature is appended. 

!mp!ement the RSW featlrre in the s-functinr! script sfm.mpcX..m 
Make sure all needed vahes of the arguments are present in the script 

Add the new arguments in the header's list of arguments 

Now select the controller element in the simulink model and press ctrl-m to open 
the mask dialog 

Add all new elements in the mask (see Simulink manual for details) 

Select the simulink option Look under mask to append new elements to the 
sirnulink argument array 

Edit the callback functions mpc-ca1lX.m and mpcset.m in the editor window and 
append the new arguments in the correct order of the mask. Notice that all 
arguments, both visible and invisible are to be added in all masks 

Select the controller element in the Simulink system and execute the mpcset.m 
script to assign the correct callback functions to the mask arguments 

Run the Simulink system and assign values of correct size to the new options in 
the multimask. Press apply and ok to check if values are set correctly 

If all values are correct and the needed files (see appendix A) are in place the 
system is ready to run. Remove the initially set values of the parameters from the 
sfunmpcX.m controller function to make the controller calculate with the correct 
parameters. 




