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ON SOME POINT PROCESS MODELS FOR REPAIRABLE SYSTEMS 

SUMMARY 

MARTIN NEWByt 

Eindhoven University of Technology 
and 

Frits Philips Institute for Quality Management 

The use of a model driven approach to the analysis of repairable is considered 
and shown to be useful as a way of understanding the characteristics of a system. 
However, the statistical problems that arise from the use of a set of standard 
model building elements are shown to be considerable. In particular 
identification problems arise in many of the models. The conclusion is that in 
many cases the exploratory data analysis approach is as effective as the use of 
more sophisticated models. 

Keywords: Reliability modelling; modulated renewal process; identifiability; 
estimation. 

1. Introduction 

The successful use of stochastic models and the application of statistical techniques in 

the study of complex repairable systems seems to remain rather limited. There seems to be 

a gap between a model driven approach and the statistical ( data analysis) approach. 

Models can be used to give insight into system behaviour but are difficult to analyse 

statistically III terms of finding estimators of their parameters. Simpler approaches 

based on what is intuitively attractive in statistical terms also seem to lose the 

essential features of the systems studied. In other words, given knowledge of the 

structure of the system and the behaviour of the components we can model it successfully, 

but when we must estimate model parameters in order to extrapolate the behaviour of a 

system we meet problems. 

t Address for correspondence: Faculty of Industrial Engineering and Management, Eindhoven 
University of Technology, Den Dolech 2, PO Box 513, 5600 MB Eindhoven, The Netherlands. 
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In this paper I outline some of the models and indicate theoretically why estimation 

through likelihood methods is not always successful. Secondly on the basis of a few 

examples the difficulties with likelihood are also illustrated. The conclusions to be 

drawn are that in most cases the exploratory data analysis approach outlined by Bendell 

and Walls (1985) and Ansell and Phillips (1989) yield as much information as the data is 

capable of giving. In particular the lack of identifiability in some of the model based 

approaches means that observation of explanatory variables adds nothing to the knowledge 

obtained from the event data. 

2. Dependency in system modelling 

Some of the difficulties seem to lie with our feelings about what a model should describe 

and with a lack of clarity about what we want to know. The problems mainly seem to arise 

from the desire for simplification so that statistical analysis is possible. The 

difficulty forms a sub-theme in Ascher and Feingold (1984) where they discuss extensively 

the problems of aggregation. In a complex system subsystems and components follow 

different processes, but the data are often recorded without reference to these 

subprocesses. Thus we try to analyse the data with one of the simpler or better known 

point processes. The history of the subject also plays a part. Engineers have always 

been more concerned with models which deal with structural dependence, until relatively 

recently mostly in a deterministic sense, but also through the use of Markov models, for 

example (Billinton and Allan, 1983 & 1984). These models capture the essence of system 

behaviour, allow different scenarios to be explored but are usually difficult from the 

point of view of statistical analysis. On the other hand, many of the methods of dealing 

with dependence on explanatory variables have been borrowed from other areas of 

statistics, medical statistics in particular (Gore et at., 1984; Gail et at., 1980; 

Prentice et at., 1981). The questions asked in medical statistics are frequently about 

the effect of a particular treatment on survival, they deal rarely with the times between 

reoccurrences of an illness, and pay little regard to the structure of the system. Recent 
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developments in econometrics have lead to techniques for dealing with the statistical 

analysis of stochastic processes that more closely resemble the problems faced in 

reliability modelling (Heckman and Singer, 1984; Lancaster, 1990). 

Below some natural approaches to dealing with dependency on covariates for repairable 

systems are outlined. The common feature of this approach is the assumption that the 

intervals between failures depend only on the state at the beginning of an interval. The 

development through time is reflected in the parameters of the distribution of the 

interval, and these parameters are often in their turn modelled as functions of 

explanatory covariates. The covariates may be as simple as the index number of the 

failure interval or a measure of maintenance effort. Most of the models fall in the class 

of semi-Markov processes, but in only one is the state transition matrix explicitly 

required (Brown and Proschan, 1983). 

3. What do we want from the models? 

The requirements can be divided into three statistical aspects, and into a number of 

probabilistic or statistical representations of the characteristics of the physical 

process. The statistical properties are: the model should fit observed data; it should be 

possible to discriminate between models; and on the basis of a chosen model we should be 

able to make predictions. We shall see that models can be fitted to many data sets, but 

the the problem of discrimination and prediction is much more difficult (Lawless, 1983). 

A model which fits the data well allows us to determine trends and to find indications of 

dependency, but inability to discriminate between models means that there is no effective 

way to choose between the predictions made by different models (Lawless, 1983). In such a 

situation judgement must be made on non-statistical grounds. When viewed in this way, the 

non-homogeneous process with a suitable rate function frequently appears good enough to 

characterise the behaviour of the process through time. The discrimination problem 

appears as identifiability problems in the models described below. 
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When we consider the physical basis of models for repairable it is easiest to think in 

terms of the hazard rate for the current interval (Ansell and Phillips, 1989). We want to 

model three aspects of the development of the system, the rate of aging between events, 

the effects of repair, and the superimposition of processes or properties of components 

(in short, heterogeneity). Some of these aspects can be captured in the behaviour of the 

hazard rate between failures, and the values of the hazard rate at the beginning of each 

interval. Since a hazard rate describes the rate of aging a change of time scale or a 

simple scaling up of the hazard rate can capture the effects of explanatory factors 

between failures. The effects of repair can be captured in the initial value of the 

hazard rate. A hazard rate that is zero at time zero indicates that a repair has removed 

all age effects. In the following paragraphs the behaviour within an interval and at a 

repair is discussed. The comments and observations apply equally well to the analysis of 

data from non-repairable systems where a common underlying model is assumed to be modified 

by field or experimental conditions. 

The knowledge of component behaviour obtained from survival analysis can be used as a 

building block in the study of complex systems. A renewal process describes a system 

where after a failure it is simply replaced by a new system with the same characteristics 

so that the life distribution of the system is enough to deduce all the properties of the 

system. In more complex cases if a system has regeneration points and the distribution of 

time between regeneration points is known a great deal can be learnt about the system's 

behaviour. The simplest interpretation of a regeneration point is an event at which the 

state of the system is, probabilistically, identical to the initial state. Many models 

for non-repairable systems can reappear in what Cox (1972) calls modulated renewal 

processes. Proportional hazards extensions of modulated renewal process idea are 

discussed in detail by Prentice et al. (1981). 
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As well as studying the effects of the measurable covariates on the life of the component 

we may also have to deal with heterogeneity in the observed systems. The heterogeneity 

may be intrinsic, for example different suppliers may deliver systems of differing 

qualities, or there may be errors of measurement in the duration data and the covariates 

(Lancaster, 1990j Vaupel, Manton and Stallard, 1979). In the following paragraphs the 

basic models are outlined and illustrated, they can be used alone or in combination as 

building blocks to model system behaviour. 

4. Accelerated Failure Time Models 

Perhaps the most intuitively attractive model is the accelerated failure time model. In 

this model the effect of the covariates is assumed to be seen as changes in the time scale 

for the system. Suppose that the duration is a random variable T and that the covariates 

are summarised in a vector Z=({l '{2' (3 ... (A;)' The assumption is that the duration of 

a system under standard conditions is To and its duration under conditions described by Z 

is 

T = 1jJ(z)To . (1) 

The life is increased or decreased according to whether 1jJ>1 or 1jJ<1. The behaviour of the 

model is most easily understood by considering the effect of the transformation (1) on a 

one-parameter family of distributions. Suppose that Fo(x;a:) is a one parameter 

distribution function with density function fo(x;a:) and hazard rate ho(xja:). The system 

operating with covariate Zj=({jl, {j2, (j3l ... (js) has 

Fj(x;zj,a:) = Fo[ 1jJ(~j) ;a:J 

Estimation and inference for this model are particularly straightforward if the 

acceleration factor 1jJ is taken to be a quasi-linear in the sense that 1jJ can be written as 

1jJ(Z,(3) = 1jJ((3'z) 
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where (3 is a vector of parameters. A detailed treatment of estimation and interpretation 

for such models can be found in (Newby & Winterton, 1983; Newby, 1985 & 1988). 

Models with a location parameter offer the possibility of including more of the features 

of a process as it unfolds through time. These models can be written in terms of the 

baseline distribution and densities as 

The presence of the location parameter allows the effects of accumulated aging or 

imperfect repair to be more effectively represented. The likelihoods for these models are 

not much more complicated than those for the two parameter models although care has to be 

taken with the estimation of location parameters (Newby, 1988; Smith and Naylor, 1987). 

Generally a grouped likelihood performs better than the likelihood itself (Cheng and Amin, 

1983; Cheng and lIes, 1987). 

5. Proportional Hazards 

One of the most widely used methods for the study of the effects of covariates is the 

proportional hazards model. The basis of the model is the simple assumption that the 

hazard rate is affected in a mUltiplicative way by a relative risk factor. Since the 

hazard rate is a measure of aging an increase in relative risk is an indication of more 

rapid aging. The model is simply expressed in terms of a baseline hazard rate ho(x) and a 

relative risk factor W(z) dependent as above on a covariate vector z. The system 

with the assumption that for standard conditions W(z) = 1. Naturally, W must be 

non-negative and the commonest choice is the Cox - Model in which 

w(z;(3) = exp((3'z) 
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The basic properties of the model are easy to deduce. However, the most valuable property 

is that if we are prepared to leave the baseline hazard rate unspecified the analysis of 

the effects of covariates can proceed on the basis of a partial likelihood that is 

independent of ho. The problem can be studied through the use of the partial likelihood 

alone. With such a non-parametric approach the importance of covariates can be explored, 

and predictions can be made about the effect of covariates on the relative risk, however, 

to make predictions about the future behaviour of systems a parametric model generally has 

to be employed. The details of these models are readily accessible in the literature 

(Ansell and Phillips, 1989 & 1990; Cox and Oakes, 1984; Prentice et al., 1981) and are 

also available in statistical packages such as BMDP. 

6. Additive Hazards 

In this case the baseline hazard ho is assumed to be modified in an additive way by the 

effect of covariates (Pijnenburg, 1991; Sander, 1991), 

The cumulative hazard functions are 

the survivor functions become 

Rj(x) = exp[-Hj(x)] 

and the densities 

On considering the competing risks model in the following section it is clear that the 

additive hazards model is a form of competing risks model with two, possibly fictional, 

components in series. However, the failing component, or cause of failure, can not be 

determined. This remark is useful for simulating data from an additive model, since the 

failure time T a is simply the minimum of a random variable T e sampled from the exponential 
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distribution with parameter 1/'j and a random variable To sampled from the baseline 

distribution. Mercer (1961) showed how an additive form arose naturally in a wear 

dependent renewal process in which a stochastic wear process contributed additively to the 

failure rate of a component. 

If observations are made at n values of the covariate, Zh Z2, Z3, ... Zm 1/'j = 1/'(f3'Zj) , 

L(j)(f3,O), f3ERP and OeRq, denotes the contribution to the log-likelihood for the 

observations (actual and censored) at Zj, 1/'j = 1/'j(Zj;f3) , Xji is the i-th observation at 

level Zj' Cj is the index set of censored observations, and Dj the index set for the 

observed failures, then the required log-likelihoods are 

LU)(f3,O) = [ tnfliXji;1/'j)] + L tn[Rj (Xji;1/'j)] 

iEDj iECjuDj 

= [ tn[1/'j + hO(Xjil] 

iEDj 

- L Ho(xjd 

iECjuDj 

where () is the parameter vector for 10' The overall log-likelihood is 

£, i[ LU)(f3,O) 

j=l 

The likelihood equations fall into two linked sets, one for the model parameters 13k and 

the other for the parameters of the baseline hazard Or. For the baseline hazard rate 
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and for the model 

(2) 

Where hor and Hor denote the derivatives of ho and Ho with respect to er. Equation (2) 

shows that for a fixed e there is always the solution 

L x j i = 0 ,j=1,... ,n 

iECjUVj 

(3) 

and that the existence of other solutions depends on the rank of the matrix ('l/Jjk«(3)). In 

particular if it is assumed that the 'l/Jj are not functionally related but that each is 

simply a parameter of the j-th distribution, ('l/Jjk) is an identity matrix and (3) gives the 

unique solutions. When p<n the rank of ('l/Jjk) is at most p and there are solutions 

determined by its null-space as well as those from (3). Further (Watson and Leadbetter, 

1964) hazard rates in general satisfy the following form of (3) 

E [ h ( ;) ] = E[ x] (4) 

thus if 'l/Jj+ho(t) is a hazard rate it should satisfy (4) whose empirical version is just 

(3). This means that solutions determined by the null-space of ('l/Jjk) that do not also 

satisfy (3) do not yield hazard rates. Conversely solutions of (3) which are not in the 

null-space of ('l/Jjk) do not allow the values of (3 to be estimated. Furthermore, for fixed 

13k (3) must be satisfied bye. In short there is an identifiability problem in which the 

values of 'l/J can be estimated, but not its parametric form. 

7. Competing Risks 

The competing risks model (David and Moeschberger, 1978) has two interpretations, the 

first, as its name suggests, it describes the lifetime of a system subject to 

statistically independent risks of failure, the second corresponds describes the lifetime 
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of a series system of components which fails as soon as one of the components fails. The 

occurrences of the potential failures can be regarded as a vector of independent random 

variables (TIl T2) T3 ... Tn) so that the failure time is the minimum of the T i• If the 

survival function for Ti is Ri(x), the system survival function is easily found to be 

with hazard rate 

i=n .r hi(t) 
i=l 

Competing risks arise naturally in reliability problems, in particular in the analysis of 

series systems and from "weakest link" arguments for system reliability. The ,8-factor 

method for dealing with dependency is also a version of a competing risks model since it 

in effect splits the system to be analysed into one part composed of independent 

components and a common-cause component in series (Lewis, 1987). The 

(non- )identifiability results reported in Crowder (1991) can be used constructively to 

construct competing risks models which correctly reflect the behaviour of the system. 

8. Frailty or Mixtures 

The idea of frailty or mixture models can be used in two ways, the first simply as a way 

of introducing an idea of heterogeneity into the construction of a model, and secondly as 

an object of interest in itself. In demography and econometrics the identification of a 

mixing distribution is of some importance, in reliability the use of mixing distributions 

is more commonly a step in model building, the most common reasons for using mixing 

distributions are that systems are built from components whose characteristics are random 

variables, and that data are frequently observed simply as a list of failure times which 

may be event times from a number of different but unknown processes. 
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Frailty (Vaupel, et al., 1979) is defined rather like proportional hazards, but differs in 

that the relative risk factor is in this case a random variable. Vaupel et al define 

frailty A in terms of the hazard rates of individuals in a population. They write 

h(X;A) = Aho(X) 

for the hazard rate of an individual with frailty A, ho is again a standardised, or 

baseline, hazard rate. If the frailty at time t has a density Wt(A), then the average 

hazard rate at time t is 

Now if the frailty At decreases with time, the weakest die young, so will Xt and we see 

the apparent effect of the average hazard rate for the population declining more rapidly 

that the hazard rate for individuals. 

Mixture models also arise naturally in reliability (Lancaster, 1990; Littlewood and 

Verrall, 1973) when we write the hazard rate as a conditional hazard rate h(t;Z,A) where 

as usual z is a covariate and A is a random variable with density w, the unconditional 

density and survivor function for tare 

f(t;z) = ff(t;Z,A)W(A)dA = f h(t;z,A)exp[-H(tjZ,A)]W(A)dA 

R(t;z) = fR(t;Z,A)W(A)dA = feXP[-H(t;z,A)]W(A)dA 

But note that the hazard rate defined in terms of frailty is not the hazard rate of the 

unconditional distribution, that is 

h(tiZ) f(tjz) f R(t;z):t= h(t;z,A)W(A)dA = h(tjz) 

This observation also applies when we interpret the mixing model as a Bayesian model with 

prior W(A) for a parameter A, for again care has to be taken over the choice of meaning 

for a hazard function, particularly when we wish to estimate a hazard function from data. 
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For example, the Littlewood-Verrall model (1973) mixes the density functions of the 

inter-failure times between the appearance of faults in a piece of software. However, the 

mixing process also seems to carry with it identification problems (Lancaster, 1990; 

Ridder, 1990). 

9. Repairable Systems 

The choice of an appropriate model depends on what is expected of the data. In a 

repairable system, a renewal process typifies the behaviour of system in which a failed 

component is replaced by an identical new component. A lamp with the replacement of 

failed bulbs is a perfect example of a renewal process. The two points about the renewal 

process are that the system returns to an "as new" state and ages in exactly the same way 

as before. If the ideas of a renewal process are extended, then the system can be 

returned to the working state, but in a condition between the new state and the failed 

state, and after a repair the system may age more rapidly than before. All of the above 

models can incorporate each of these features, although not always in one model. The 

questions that are asked about such a system are can the development of the system through 

time be predicted, can the effects of different operating conditions be incorporated in 

the model, for example, can the effects of modification or a different maintenance regime 

be modelled. The easiest assumption is that the interval lengths remain statistically 

independent, the use of covariates models changes in the distribution of lengths. If the 

process is described by an intensity function A(t) which gives the probability that the 

current interval ends in [t,t+dt) as A(t)dt then when A is a continuous function for all 

values of t we have a non-homogeneous Poisson process, and if the interval after event ti 

has hazard rate Ai(t-ti) the process can be called a modulated renewal process (Thompson, 

1981; Cox, 1973; Prentice et al., 1981). In this second case A is a discontinuous 

function with a discontinuity at each failure time. It is also possible to have an 

intermediate situation in which the rate A has discontinuities only at certain events and 

not at others (Brown and Proschan, 1981). 
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The techniques outlined for a single sample can be extended following Cox (1973) to a 

modulated renewal process by assuming that in place of the ordinary renewal process where 

the assumption of independent and identically distributed intervals is dropped and 

replaced that of interval length depending only on the state at the beginning of the 

interval. The assumption is that the j-th interval Xj is distributed as F x .(x). The aim 
:I 

is use changes in the F x. to model the changes in the system as its history unfolds. 
:I 

Through such models it is hoped to discover whether the system improves or deteriorates 

through time, and for example, to determine optimal maintenance or replacement policies. 

The simplifying assumptions that the j-th interval has distribution F x .(x) means that the 
:I 

durations of the j-th interval can be treated simply as a sample from F x .( x) and used to 
:I 

construct a log-likelihood L(j) for that interval alone, the overall log-likelihood is the 

sum 

This log-likelihood also provides log-likelihoods for the parameters of F x .(x) as 
:I 

functions of explanatory variables. The estimators are, in principle, obtained as 

solutions of the likelihood equations obtained by setting the appropriate derivatives of C 

equal to zero. Systematic use of the chain rule frequently produces simple relationships 

between the ordinary log-likelihoods and those where there is assumed to be an underlying 

model. 

Techniques for the analysis of renewal processes can also be carried over, in principle, 

to the modulated renewal process, although explicit closed formulas for measures of 

interest are mostly not available. If the explanatory variables are deterministic, 

interval number for example, we can proceed as for a renewal process: the time of event n, 

tn is simply the sum of the n independently distributed interval lengths Xi, 
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so that the Laplace transform of gn(t), the density of tm can be written as 

and the renewal function V(t) has Laplace transform 

i=oo 

V(s) = 1 L gn(S) 
i=l 

When it comes to using these building bricks a number of points are clear. Proportional 

hazards and accelerated failure time approaches can only model the rate of aging between 

events. However, if these models are based on a baseline hazard rate ho(t) with the 

property ho(O)=O, every interval hazard rate h j also satisfies ho(O)=O. If the hazard 

rate is zero at time zero, the system is instantaneously as good as new after a repair, 

even though thereafter it may age faster. A means of generating interval hazard rates 

which have ho(O»O is required: one is the additive hazards approach; the second is a 

version of the imperfect repair idea obtained through the use of a location parameter as a 

virtual age. It is worth remarking that hardly any of the commonly used distributions 

fulfil the requirements of a hazard rate (and thus density function) that is non-zero at 

time zero and has an increasing hazard rate. Apart from the exponential all the commonly 

used distributions have a zero or an infinite hazard rate at time zero. 

A number of the possibilities are illustrated in Figures 1-8, in each figure an 'x' on the 

abscissa with a stippled line above it denotes an event time, the solid curves the 

interval hazard rates,. Figure 1 shows a standard renewal process and the hazard rate 

clearly repeats itself after each event. Figure 2 by contrast show a non-homogeneous 

Poisson process with a continuous intensity function, the hazard rates can be regarded as 

being patched together at the event times to make up the continuous intensity function. In 
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Figure 3 can be seen an imperfect repair process where sometimes the repair is perfect, 

and at other times it is just enough to restore the system to the state instantaneously 

before the failure; the hazard rate or intensity function repeats itself between the 

perfect repairs when it is restored to zero. Figure 4 gives an impression of a 

proportional hazards modulated renewal process, after each repair the hazard rate is 

restored to zero, but thereafter rise more steeply in each succeeding interval; thus the 

system is instantaneously as good as new after a repair, but has an increasing tendency to 

age between events. Additive hazards are used to show imperfect repair in Figure 5, there 

the rate of aging between events repeat itself, the aging is seen in the rising initial 

value for the interval hazard rate. In Figure 6 imperfect repair is shown, this time using 

a virtual age model, the aging pattern between events has a fixed functional form, but 

aging shows in the rising trend in the initial values of the interval hazard rate as well 

as in the increasing steepness of the curve. For completeness, two order statistic 

processes are given in Figures 7 and 8, one process for an exponentially distributed 

failure time, the Musa model (Littlewood, 1991) and an order statistic process for a 

Weibull distributed failure time with an increasing hazard rate. Clearly, the Weibull 

order statistic process shows two opposed trends, the initial value of the hazard rate 

after an event begins to decline, but the hazard rate between events becomes steeper. 

There are a few simple point-process models which allow the kinds of analyses available 

for non-repairable systems to be extended to deal with repairable systems. The two simple 

models are a non - homogeneous Poisson process and a renewal process which have as the 

unique common model the ordinary Poisson process. These two models also enable some more 

complicated models, imperfect repair and alternating renewal process, to be analysed with 

the same techniques. 

The history of the simplest processes is described by a sequence of times 

t I , t2 , t3 , ... tn ... at which events, usually called failures, occur, in effect repair 
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times are ignored. The process can also be described in terms of the inter-failure times. 

Define to=O for consistency, then the inter-failure times are 

The type of repair considered here fall into three classes, a perfect repair which returns 

a system to its new state, a minimal repair which returns the system to working order but 

in exactly the same state as just before the failure, and an imperfect repair which 

produces a working state that is better than immediately before the failure but not as 

good as the original state. 

10. The Non-Homogeneous Poisson Process 

This process has two evocative names, bad-as-old and minimal-repair (Ascher and Feingold, 

1984, their warnings about the ROCOF and hazard rate apply particularly here). The 

assumptions are that after a failure the system is instantaneously restored to the state 

in which it was immediately before the failure. That is only sufficient work is done 

(minimal repair) to restore the system to working order, and after repair the system is as 

exactly as it was before the breakdown. The meaning of this assumption is that if we look 

at a system immediately after a breakdown at time S we cannot distinguish it from a system 

of the same type which has had no breakdown up to time Sj all breakdowns can be regarded 

as the first breakdown after a period s with no breakdown. The survival function for the 

time to the first breakdown is R(t). Thus the conditional survival function for the 

waiting time w to the next breakdown can immediately be written as 

The hazard rate for the waiting time w is 

d d 
(lw{ -In[Rs(w)]} = Tw{ -In[R(s+w)] - In[R(s)]} h(s+w) 

in other words, the intensity for the process is just the current value of the hazard rate 

for the time to first failure regarded as a function and evaluated at the current time. A 
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standard argument (Cox and Lewis, 1978) shows that the process so defined is a 

non-homogeneous Poisson process (NHPP). If Nt denotes the number of events up to time t, 

the intensity A( t) and mean value A( t) given by 

A(t) = h(t) , A(t) = E[Nt ] = H(t) 

and the probability mass function is 

= An(t)exp[-A(t)] 
n! --

t f h(u)du 
o 

The survivor function for the time to the first failure is 

R(t) exp[-A(t)] , 

revealing again the connection between the mean value function and the time to first 

failure. 

The NHPP is widely used in reliability growth modelling (the Duane model, Ascher and 

Feingold, 1984) and in software reliability growth modelling (Miller and Keiller, 1991). 

The strength of the model is that it is simple and relatively flexible, and the weakness 

is that it tends to be used as a black-box approach to data from repairable systems. It 

can provide a useful way to detect trends and dependency in data. The case of A constant 

is a standard Poisson process, and many results from the standard Poisson process can be 

used by noting that in the time scale 1" = A( t) the process becomes a standard Poisson 

process with unit rate. Time dependency is revealed through a non-constant A. 

Conversely, an NHPP with intensity A defines a bad-as-old or minimal-repair model. The 

important distinguishing feature is that the intensity A is a continuous function of time 

(Thompson, 1979). 

The scope for the use of covariates is somewhat limited, the problem is that because A is 

a continuous function, for non-time varying covariates the effect applies once and for all 
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at the start of the process. When restricted to time independent covariates it is 

impossible to model the effect of changes in a system (for example maintenance policy, 
.. 
I' improved components) during its lifetime. Continuously time varying covariates can, 

however, appear simply in the rate function. A once and for all effect can be determined 

. ,. 

by comparing the ROCOF under different policies. What the ROCOF can tell us is whether 

the system performance changes over time, and this aspect is widely used in modelling 

reliability growth and software reliability. Moreover for this system the expected number 

of failures in a fixed interval is easy to calculate. 

Both accelerated failure time and proportional hazards versions are easy to construct 

using a baseline intensity Ao, the models are 

and A(Xjz) ='¢'(z)Ao(x) . 

respectively. In the light of the above remarks it is clear that estimation of '¢'(z) 

requires data from a number of systems operating with different values of z, and a single 

process history will not allow '¢' to be estimated unless Ao is known a priori. 

11. Imperfect Repair 

The imperfect repair model is easy to describe. It is assumed that two sorts of repair 

can take place after a failure: the first kind is a perfect repair that returns the system 

to its original statej the second type restores the system to the working state, but only 

to the state just before the failure (an imperfect repair). We shall not examine this 

model in detail, but remark that the sequences of time of a perfect repair are 

regeneration points for the process, and the process of intervals between imperfect repair 

is a renewal process (Brown and Proschan, 1983). The techniques applied to renewal and 

modulated renewal processes can be borrowed to determine many of the properties of this 

model. The treatment is analoguous to the treatment of the alternating renewal process 

(Whittaker and Samaniego, 1989). 
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12. Additive Hazards Revisited 

This approach arises naturally from the desire to model a system that after a repair is 

better than it was just before the repair, but not as good as new. Thus if a new system 

has interval hazard rate ho(x) after the (j-l)-st failure the interval hazard rate is 

'lfJj + ho(x). The attraction of this model is that it appears as a simple additive analogue 

of the proportional hazards approach, and that each failure contributes something to the 

age of the system. Moreover, this model offers hazard rates that are not zero at time 

zero. However, in view of the problems of estimation described above it can only be used 

in a phenomenological way to measure the magnitude of the jumps 'lfJj in the hazard rate, 

models for the 'lfJj which make use of explanatory variables are unlikely to produce 

satisfactory estimators of the parameters (Pijnenburg, 1990; Sander, 1990). The 

statistical problems are unfortunate since in this case the Laplace transforms required 

for a renewal process approach are likely to be more readily obtained. The Laplace 

transform of gn(t), the density of tn the time to the n-th event, can be written as 

i=n _ 

II f O(S+'lfJi) 
i=l 

13. Virtual Age Model 

Here after a repair the system returns to working order and the interval hazard rate is 

that of a system which is not new, but is better than a system which has undergone a 

minimal repair. This can be modelled by assuming the that after j-th repair the system 

begins to operate as a system with an age Tj' The parameter Tj is the virtual age after a 

repair. This is also an approximation to Downton's model for the analysis of data from a 

non-homogeneous Poisson process (Downton, 1969) in which several copies of the process are 

observed, but the failure times and the identities of the processes are not recorded, only 

the inter failure times are known. The reliability function for the interval is 
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If the model is written as 

Pj represents the relative survival chance immediately after repair. The hazard rate is 

Thus it can be seen that if T j o for all j the system is a renewal process, and if 

Tj :;:;: tj for all j the system becomes an NHPP. This makes the model attractive in that it 

lies naturally between the NHPP and the renewal process. The model can be extended in two 

ways using proportional hazards ideas or accelerated failure time ideas. The two versions 

are 

and 

respectively. With this proportional hazards model the presence of the Tj means that a 

parametric likelihood function must be used to estimate the parameters of 1p and T. 

Later the accelerated failure time version will be illustrated. The parameter T is a 

measure of accumulated aging and the parameter 1p is a measure of the rate at which aging 

occurs. In its most general form the 1p and T are assumed to be functions of explanatory 

variables, for instance a simple trend model would have 1p constant and T T(a+(3j) or vice 

versa. However, just as with the additive hazards model there are, as yet unresolved, 

identification problems. 

This model also solves a trivial seeming difficulty with hazard rates. For the most 

commonly occurring distributions, apart form the exponential, the hazard rate and density 

at time zero are either zero or infinite. On examining data from repairable systems the 

interval density almost always appears to be non-zero at time zero. Noting that the j-th 

interval density is 

22 



shows that 

The mean and variance of the j-th interval are clearly the mean residual life for the 

baseline distribution and the variance of the mean residual life of the baseline 

distribution calculated at 'rj' Explicit expressions for the mean residual life of a 

number of standard distributions are given by the author (Newby, 1988). 

14. Examples 

Software reliability 

The two most common forms of model used in software reliability are versions of the NHPP 

(Goel and Okumoto, 1979) and mixture models based on order statistics (Littlewood, 1991). 

In this example a family of NHPP models based on a mean value function is used to analyse 

a data set from Musa (1980). The distinguishing feature of many analyses of software 

failure is that it is almost always possible to obtain a good fit to the data, but the 

forecasting power of the models is poor. The class of models used is described by Al 

Ayoubi et al. (1990) and Miller et al. (1991), the mean value for a software failure 

process is bounded because there is a finite initial number of faults, indeed the process 

generated is indistinguishable from an order statistics process. The observation about 

the boundedness of the failure rate suggest that the mean value can be written as 

E[Nt l = OlF(t) 

where F(t) is a distribution function and Ol is the unknown initial number of faults. In 

this case the accelerated failure time approach is natural and the scale parameter of the 

distribution F is then a measure of the relative performance of the development of a 

particular piece of software. 
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Using the scale parameter model the mean value function is 

p,(t) = OlF(t/bj(3) 

r 
and the intensity function is 

"(t) = ~ = ~/(t/bj(3) 

Since the intensity function is a density function it must eventually decline to zero, 

suggesting that these models represent a situation in which the intervals between faults 

are increasing but that the expected time to the discovery of the last fault is infinite, 

The following familiar models are recovered by particular choices of distribution: 

p,( t) = Ol [ 1 - 1 ] j Pareto distribution, resembles the Littlewood model 
(l+t/b)P 

. . Il(t) -- ..... , [ 1 - e-(t/b,P ] W 'b 11 G 1 d G 1 & Ok t r..... ; el u, oe an oe umo 0 

p,( t} -(t/br(3 I d' 'b t' Ol e ; extreme va ue Istn u Ion 

The likelihood, i=s 
in this case for grouped data , {(fi,t i )}i=l with Ii failures in the 

i=8 r 
L(Ol,(3,b) ()( Olnexp[-OlF(u*)] II { F(Ui) - F(Ui_d } I 

i=l 

with u=t/b and u* the end of the observation period, In all cases the estimator for Ol is 

& n/F(u*) 

which can be used to give a profile likelihood 

i=s { F F }Ii L*«(3,b) IX II (Ui) - * (ui-d 
i=l F(u ) 
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The profile likelihood was maximised using NAG routine E04KBF and the results were rather 

unstable. The model is illustrated using a data set from Musa. What is striking about 

the likelihood is that there are multiple maxima and that the estimators are highly 

correlated. Although the model can yield a good fit to the data the interpretation 

requires some care. The results are summarised in Table 1 and the profile likelihoods can 

be seen in the contour maps in Figure 9. 

TABL~_l.:. Summary of resul ts 
1------

log-l ikelihood 

s.d. &, 

s.d. b 
A 

S • d. f3 

corr (a,b) 
A A 

cor r ( 0<, f3) 

cor r ( b,~) 

Kolmogorov- Smi rnov 
stat i stic 

1--------

Pareto 

-143.7 

377.5 

1.9 

0.2 

346.6 

1.2 

0.2 

-0.8 

-0.9 

0.9 

0.1889 

Weibull 

-143.9 

160.1 

10.7 

0.7 

21.0 

3.5 

0.1 

0.7 

-0.6 

-0.7 

0.2004 

ext. value 

-143.8 

502.7 

72.5 

0.2 

197.6 

100.7 

0.1 

0.97 

-0.9 

-0.96 

0.1999 

What is remarkable in the maps is that the likelihood for the Pareto based model exhibits 

multiple maxima along a ridge at about 45°. This ridge show also the high correlation 

between the shape and scale parameter in agreement with the estimated correlation in 

Table 1. The extreme value also gives a likelihood which indicates a second maximum for 

the log-likelihood function. The predictions from the three models also vary widely, but 

all the models fit the data satisfactorily as measured by the Kolmogorov-Smirnov statistic 

which does not reject the hypothesis that the models fit at the 596 level. Miller (Miller 

et al. 1991) included these models in a "super model" and showed that after different 

lengths of time different simple models where chosen on the basis of fit. What can be 
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seen form Table 1 is that there is again an identification problem in that the likelihood 

values are all more less the same and that in this particular case, the fits are also more 

or less the same. The "super model" fails to distinguish between the simple models on the 

basis of likelihood. 

McCollin et al. (1989) discuss more fully the use of explanatory variables to analyse the 

times between failure for a number of pieces of software. They indicate that the most 

widely used approach is the proportional hazards in combination with one of the other 

basic models described in this paper. Their conclusions were somewhat tentative but 

indicated that only two rather simple covariates could be used in modelling, the age of 

the software, and the sequence number of the fault. Although they fitted proportional 

hazards models in some cases, the fits were always marginal. With these two covariates 

the model reduces directly to one of the kind discussed above. 

The investigations of Pul (1990, 1991) into the likelihoods for the Musa and Littlewood 

models demonstrates that the number of observations needed to attain asymptotic normality 

in the maximum likelihood estimators is extremely large, of the order of thousands of 

observations. Moreover, not all samples yielded acceptable estimators of the parameters 

of interest. The problem appears to be two fold: firstly there is an identification 

problem in that the models cannot distinguish between a system with a large number of 

faults with a small rate of occurrence per fault and a system with few faults with a high 

rate of occurrence per fault (Wright & Hazelhurst, 1988); and secondly the likelihoods 

themselves are ill-conditioned. 

A mechanical system 

Downton (1969) studied the failure pattern of a fleet of buses, from data originally 

published by Davis (1952), see Table 2. Indeed, until now this data seems to have 

resisted statistical analysis. Pijnenburg (1990) showed that on the basis of a graphical 
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TABLE g.;. Frequency table of distances between repai r 
(Davis 1952; Downton 1969) 

1---

di stance Xl Xz X3 X4 Xs 
( 1000 miles) 

1---

0 10 3 8 12 15 19 
10 20 3 11 15 19 15 
20 30 6 9 13 9 17 
30 40 5 4 3 11 15 
40 50 7 6 9 2 8 
50 60 9 8 9 13 6 
60 70 9 6 6 12 4 
70 80 16 9 7 3 4 
80 90 14 7 5 3 2 
90 100 20 8 6 5 2 

100 110 25 2 9 1 1 
110 120 21 6 2 2 1 
120 130 23 1 1 1 
130 140 10 4 3 
140 150 11 2 0 
150 160 5 0 0 
160 170 0 1 0 
170 180 2 0 0 
180 190 1 1 1 
190 200 0 1 
200 210 0 1 
210 

1-----220 1 

total 191 105 101 96 94 
1----- I 
mean dis tance 96.62 70.05 53.61 41.35 32.98 
vari anc e 1403.14 2084.85 1558.06 951.83 657.16 
1-----
mean and variance of fitted distributions (Q=4.7) 

96.34 70.10 53.65 41. 37 32.87 
1393.17 2093.74 1556.24 946.31 677.31 

1-----

z (Q=4. 7) 1.20 13.34 13.03 8.64 1.67 X 
sig level 1.00 0.15 0.07 0.07 0.80 

1-----
relat i ve survival chance 

Q=4.70 1.00 0.69 0.43 0.40 0.23 
1-----
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Figure 10: Histograms and Fitted Density Functions 
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Figure 11: Empirical and Fitted Survival Functions 
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Figure 12: Empirical and Fitted Hazard Rates 
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TABLLQ.:. Estimated parameters and likelihoods 

a 4.70 5.04 5.50 

j 1pj Tj 1pj Tj 1pj Tj 

1 173.65 63.47 179.32 68.10 202.46 91.92 
2 319.85 260.52 258.59 198.58 388.47 331.89 
3 352.57 340.47 370.03 355.61 432.33 424.81 
4 283.19 278.20 401.38 435.58 346.99 345.62 
5 289.69 314.45 308.52 331. 57 361.12 392.12 

I 
1 ike 1 ihood -1506.54 -1513.73 -1506.33 

analysis an additive hazards model seemed plausible with the sequence number of the 

failure as an explanatory variable. Pijnenburg failed to find estimators for the additive 

hazards model 

The reasons for the lack of estimators are now clear from the above results. In the light 

of the difficulties with the additive hazards model, a virtual age model seems a 

reasonable alternative. Indeed, the interval lengths from a non-homogeneous Poisson 

process show a similar pattern. The model is formulated precisely as in the accelerated 

failure time version above with a Weibull as the underlying distribution. The model is 

xCI. 

f (x''''') rvxCl.-le-o ,"-"- = "-"-

As with many other data sets no covariates were reported and so the simplest version of 

the model was taken with interval hazard rate 

h)·(x) ~ h ( X+T i . a] 
1pj 0 1pj , 

A grouped a grouped likelihood was used. The likelihood function appears to have multiple 

maxima and the two parameters Tj and 1pj are also highly correlated. The likelihood was 

maximised using the PC-MATLAB package. Two different sets of parameters produced equal 
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values of the likelihood, but only one of these sets was not rejected on the basis of 

chi-square tests. Thus there are once more indications of an identifiability problem. 

The results are reported in Table 3 and illustrated in the Figures 10-12. 

15. Summary 

The discussion and examples given here show that although the parametric models can be 

fitted to failure data from repairable systems there are frequently identification 

problems, something not usually discussed in reliability analysis, and the unsatisfactory 

behaviour of the likelihood function and estimators. Remarkably, the conclusions seem to 

be that data analysis based on non-homogeneous Poisson processes or proportional hazards 

is likely to yield most of the information available in the data, even though they do not 

necessarily truly represent the underlying process and may even seem unlikely in certain 

situations. In particular proportional hazards appears very robust and requires few 

assumptions. Thus while the proportional hazards may not give an adequate representation 

of the process, it can frequently give a useful of the relative importance and influence 

of explanatory variables and allows the detection of dependencies. 
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