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In this section the literature on the mixing of immiscible liquids is reviewed. It is shown 

that well-defined experiments, restricted by a number of simplifying assumptions and 

describing isolated elementary steps of the mixing process, are helpf-U: and illnslmtive fcjï 

the understanding of practical mixing problems. 

The modelling of the basic processes starts with large dispersed drops and thus at Capillary 

numbers much larger than Cacrit (i.e. the criticd ratio between the (deforming) shear 

stress and the (conservative) interfacial stress, above which no stable equilibrium drop 

shape exists). In that case, the interfacial stress is overruled by the shear stress (passive 

int erfaces) and the (simple) principles of distributive mixing emerge, where deformation 

rate and time are interchangeable. Stretching and folding in a periodic flow should be 

realized for efficient mixing and the occurence of regular islands is to  be avoided. The 

mathematical tools are available to numerically model distributive mixing even in 3-D 

transient flows, although the necessary computing time could be a constraint. 

As the local lengthscale decreases during the mixing process, the interfacial stress becomes 

of the same order as the shear stress (Ca N Cacrit ) and the long slender bodies formed 

disintegrate into lines of small droplets (dispersive mixing). Interfaces are active and 

deformation rate and time are each important. Therefore, in transient flows the timescales 

of the competitive processes of deformation of the filaments, retraction, endpinching, and 

growth of interfacial disturbances, determine the size of the resulting dispersed fragments. 

Also for these problems numerical models have been derived. 



For large local deformations viscoelasticity has a pronounced effect on the typical 

timescales of the distinct processes, due to the orientation of the macromolecules, and thus 

influences the final morphology of the system. More research is needed in this area. The 

same holds for coalescence, which causes a coarsening of the morphology. The final average 

dropsize can be considered a resuit of a dynamic equiiibmum between bïeakip and 

coalescence. For high volumefractions of the dispersed phase or low values of the viscosity 

ratio between dispersed phase and matrix, phase inversion can occur. A promising analogy 

of these processes, which complicate the extrapolation from single step experiments with 

model liquids to application to practical polymer blending, codd be found in recent results 

of the computer modelling of the rheology of foam. 
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4.1. Introduction 

In polymer technology two main routes can be discerned in order to reach specific material 

properties that homopolymers often cannot accomplish (e.g, a high notched impact 

strength combined with a reasonable modulus and coaatiniaoias use temperature necessary 

for engineering applications of polymers). One way is to blend or modify polymers in the 

reactor (in situ), like (block) copolymerization of for example Polyurethmes (PUR), 

Styrene-Butadiene-Styrene block copolymers (SBS), Reactor Modified Polypropylene 

(RMPP), High Impact Polystyrene (BIPS), and Acrylonitrile-Butadiene-Styrene (ABS). 

The other way is the (extrusion) melt blending of different existing (homo)polymers. The 

versatility of melt blending techniques offers some advantages over the more traditional 

reactor modification. In reactive extrusion, moreover, in situ blending is promoted by 

specific reactions at the interface. 

Since most polymer combinations of interest are thermodynamically immiscible on a 

molecular scale, a specific microstructure of the separate phases results from the melt 

blending process; this morphology partly determines the final properties of the blend. In 

Figure 4.1, some examples of such morphologies are given for the model-system 

Polystyrene (PS) / High Density Polyethylene (HDPE). 

At the end of the melt blending process the morphology, which is not necessarily in an 

equilibrium state, is frozen-in in the solid state. In a subsequent processing step, such as 

injection moulding or film blowing, the morphology achieved may be altered due to the 

typical processing conditions there. Since the resulting morphology depends on the 

processing technique and conditions, the volume fractions and viscosity ratio of the 

polymers, the meltelasticity and most important the time of mixing, it is of great concern 

to model the mixing process in a principally transient approach. However, since polymer 
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blending involves complex, non-isothermal, non-Newtonian, time dependent flows, direct 

research on industrial compounding equipment generally yields compound- and machine 

limited results which might be useful for the specific problem under investigation, but are 

not conclusive in a more general sense. 

Figure 4.1 Morphologies of some blends of PS and : spheres or fibers an a 

matriz, a cocontinuouq and a iamei€ar stmcture (Meijer et al. 1988). 

Reprinted with pemnission of Hüthig und Wep f Verlag. 

As a consequence, most of the fundamental research on the mixing of immiscible liquids 

has been focussed on idealized systems: using single drops of Newtonian model liquids in 

well-defined flow fields at roomtemperature. The results of this research are generally 

given in dimensionless representation and are scaled to practical processes in the areas of, 

for example, polymer blending and foodtechnology . 
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4.2. Mixing Mechanisms 

In the mixing of immiscible liquids, e.g. in polymer blending, the minor component is 

geizerally present as the dispersed phase (drops or filaments) in a continuous phase of the 

major component An elementary step in the mixing process is the deformation ~f dispersed 

drops in the flow field, yielding an increase in the interfacial area between the two 

components accompanied by a decrease in local dimensions perpendicular to the flow 

direction: the striation thickness. The interfacial area and the striation thickness both can 

be used its a measure for the quality of mixing. Deformation of drops is promoted by the 

shear stress 7 exerted on the drops by the flow field and counteracted by the interfacial 

stress a/R (with a the interfacial tension and R the local radius) minimizing the surface to 

volume ratio, thus tending to a spherical shape. The ratio between these two stresses is 

called the Capillary number Ca: 

r R  Ca = - a 

Sometimes in the literature, the ratio between shear stress and interfacial stress as referred 

to as the Weber number. According to Catchpole and Fulfort (1988), foztr different Weber 

numbers, two Capillarity numbers, and one Capillary number may be defined, depending on 

the process under consideration. Weber number 1 relates inertia to the interfacial stress: 

P @ A  We, = - a 

with p the density, U the characteristic velocity, and L the characteristic lengthscale (for 

esample the local radius R of a drop). Since the Reynolds number represents the ratio 

between inertia and viscous stress: 



the Capillary number (Equation 4.1) equals: 

Ca = We,/Re 

where the (viscous) shear stress exerted on the drop is expressed as r = q U/ R. Generally, 

in the mixing of immiscible liquids, especially molten polymers, the Regnolds number is small 

and the interfacial stress (g /R)  should be compared to the shear stress (r) ,  with neglect of 

inertia. Therefore the Capillary number is the relevant dimensionless number. In the case of 

liquid drops or threads in a gas medium, Reynolds may be larger so that the interfacial stress 

(u/R) should be compared to inertia (p u2) and Weber number i is the governing number. 

If the Capillary number exceeds a critical value, CacBt, the viscous shear stress overrules 

the interfacial stress, no stable equilibrium drop shape exists, the drop is extended and 

finally will breakup into smaller droplets. If Ca < Cacrit, the interfacial stress competes 

with the shear stress and the drop will only slightly deform in the flow field, yielding a 

stable drop shape. Taylor (1932, 1934) was the first to, theoretically and experimentally, 

investigate the critical conditions for breakup of dispersed drops. 

Taylor originally attempted to predict the viscosity of an emulsion, a liquid containing 

de formable drops of another (immiscible) liquid, via an extension of Einstein’s ( 1906, i91 1) 

relation for the viscosity of a suspension, a liquid containing rigid spheres: 

17 = qa (1 + 2.54) (4.5) 
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with 4 the volumefiaction of rigid spheres and 70 the viscosity of the surrounding liquid. As 

Einstein's goal was not so much to initiate the dispersion rheology (his aim was to obtain, 

fiom viscosity measurements in a dilute solution, quantitative information on the radius of 

gyration of molecwles)? Taglor did not intend to giue a siad in the mndelli'ng ef dispemiw 

mixing. Via a calculation of the pow inside and around a dispersed liquid drop, Taylor 

(1932) derived the eqression: 

the viscosity ratio between the dispersed and the continuous (matrix) phase, which for p + 00 

renders Einstein's original result. In order to verifg his assumption that the drop would stay 

almost spherical, Taylor had to investigate under which circumstances a drop would severely 

deform and breakup. The results of this research, the genuine start of the modelling of 

dispersive mixing, were published in 1934. 

Taylor found that, in simple shear flow, a dispersed drop with viscosity ratio p = 1 

becomes unstable and breaks up if Ca > 0.5, thus Cacnt is of the order unity. Apparently, 

breakup occurs when both competitive stresses (7 and a/R) are of the same 

magnitude. Cacnt depends on the type of flow, simple shear versus elongational flow, and 

on the viscosity ratio p, see below in Figures 4.26 and 4.34. Also the rate of drop 

deformation and the time to breakup strongly depend on p. All  microrheological processes 

generally occur faster for low viscous drops in a highly viscous continuous phase (p < i) 

than in the opposite case (p > 1). 
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A useful subdivision of the mixing process can be based on the value of the (local) 

Capillary number, which continuously decreases during the process, due to the decrease of 

the typical lengthscale (in polymer blending roughly from 1 mm to 1 pm): 

(9 Distributive mixing when Ca >> Cacrit (large dispersed domains, passive 

interfaces); drops are extended affinely with the matrix but do not develop 

capillary waves leading to breakup, since the interfacial stress is overruled by the 

shear stress. 

(ii) Dispersive mixing when Ca N Cacrit (locally small radii of curvature, active 

interfaces); a/R competes with T and causes &st ances a4 the interface to grow, 

leading to breakup into smaller droplets and thus to a fines dispersion. 

Although in reality distributive and dispersive mixing do not occur separately in a mixing 

device (see, e.g., Figure 4.38), this distinction is useful for a better understanding of the 

mixing process. 

Apart from a tendency towards finer morphologies resulting from distributive and 

dispersive mixing, a coarsening of the morphology may occur during mixing due to 

coalescence of the dispersed droplets. As is indicated in Paragraph 4.5, coalescence 

preferentially takes place at almost quiescent regions of the flow, in contrast to the two 

mixing mechanisms described above. In the next paragraphs distributive mixing, dispersive 

mixing, and coalescence are discussed subsequently. 
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4.3. 

4.3.1 Affine Deformation 

Distributive Mixing (Ca >> Cacnt) 

Recently, some attention has been given to lamehi starting ioiphdogierr CGF the u i i l r i n m  b 

process, see e.g. G h h  et d. (1991). These stratified structures omginate from the melting 

process of polymers in an extruder, characterized by drag removal. Sheets of the dispersed 

phase become unstable and break up into threads, which then may break up into drops. 

Here however, a drop in matrix structure, with the dropsize of the same order of magnitude 

as the granular polymeric feedstock ( N  1 mm), is considered as a typical starting 

morphology. This dropsize might be considered as an upper bound in terms of the 

characteristic lengthscale. For immiscible polymer melts, an order of magnitude estimate o€ 

the local Capillary number yields: 

with 

r = shear stress [Pa] 

= viscosity continuous phase [Pa. SI 
= shear rate [s-'1, (defined in Paragraph 4.4.5) 

qc 

7 
a = interfacial tension [N/m] 

R = drop radius [m] 

Note that in Equation 4.8 the Newtonian constitutive equation is substituted; the 

knowledge of the mixing process is largely limited to the mixing o€ Newtonian liquids. 

From Equation 4.8 it follows that Ca >> Cacrit since Cacrit x 1, Consequently, the 



8 

conservative interfacial stress (a/R) is overruled by the deforming shear stress and the 

(millimeter sized) drops deform affinely with the matrix, i.e. distributive mixing with 

passive interfaces. Note that for miscible liquids (no interfacial tension) distributive mixing 

is, the only process o€ interest (apart: of copiise, &om &ffmim) 

Figure 4-2 Affine deformation of a liquid drop in, simple shear J ! Z ~ ~ .  

Figure 4.2 ihstrates the affine deformation in simple shear flow of a sphere with diameter 

'a' (=2R) into an ellipsoid with length L and width B. The extent of drop deformation is 

defined as: 

D =  L - B  
L + B  (4.9) 

and changes fro O (sphere) to 1 (infinitely extended thread). The drop deformation can be 

calculated from the eigenvalue problem of the right Cauchy-Green tensor C (= FC-F, with 

F the deformation tensor). In simple shear flow this yields: 

(4.10) 

(4.11) 
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D =  (4.12) 

which can be simplified for total shear values y 2 5: 

Lla N y (4.13) 

B/a % y-1/2 (4.14) 

D N  (4.15) 

The affine deformation of a drop is a function of the total shear y (= 9) only. The shear 

rate ? and the time t are completely interchangeable; thus a slow deformation during a 

long time will give exactly the same result as a fast deformation during a short time, 

provided that the total shear remains constant. 

Note that a lower limit for the shear rate ? is present because always Ca >> C a c ~ t  must be 

fdf i l led.  Moreover, in simple shear, affine deformation can only be realized af p < 4. This 

additional limitation follows &om the fact that for higher values of the viscosity ratio, the 

cdacal CapGEarg number for drop breakup goes to i~finity, see Figure 4-26. 

In simple shear flow the relative length L/a almost linearly increases with the total shear y. 

As will be shown in the next paragraph, this is not a very efficient way of mixing. 
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In elongational flow, the length of an affinely deforming drop increases exponentially: 

~ / a  = e' 

%/a = e-e/2 

(4.16) 

(4.17) 

(4.18) 

Once more, only the totd strain is important: e = it, the product of the elongation rate E 

and time. As demonstrated in Figure 4.3, in elongational flow L/a and D increase much 

faster than in simple shear. 

3 I / /' I 
/ I  1 

Figure 4.3 

el ongat iona I 

_----- -------- 

-----___ --- 
B/a 

1 1 

O 1 2 3 4 5 6 7 8 9  

+ elongation, snear 

Progress of affine deformation in simple shear and elongational Jow. 
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In elongational flow the elongated drop remains oriented in the direction of the principal 

axis of strain, while in simple shear the drop rotates towards the direction of the 

streamlines. This is the principal difference between so-called strong (mainly irrotational) 

and we& (mainly rotational) flows. The presence of rotation in simple shear flow is also 

responsible €OT the more complicated expressions for affine drop deformation (compare 

Equations 4.10-4.12 to 4.164.18). The practical problem in realising efficient irrotational 

flows, like unidirectional extension, is that it is quite impossible to sustain these flows long 

enough to realize a sufficient total strain (convergencies are either finite or yield no 

throughput). 

4.3.2 Eficient Mixing: Folding and Reorienting 

The main difference between (irrotational) elongation and (partially rotational) simple 

shear can also be seen from the efficiency parameter ef, defined as the scalar product of the 

principal direction of strain and the transient drop orientation. Figure 4.4 illustrates the 

change of the efficiency ef with increasing rmation in different flows. 

1 

T elongation 
I 

simple s h e a r  
T i  

- E  O 

Efficiency e (scalar product of the principal direction of strain and the 

drop orientation) for an arbitmy initial orientation. 
f Figure 4.4 
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In elongation the efficiency ef approaches 1, irrespective of the initial orientation (the drop 

tends to orient along the principal axis of strain), while in simple shear ef shortly reaches a 

value of 1, when the orientation of the drop is at 450 relative to the direction of the velocity 

i/@ caused by the rotation of the extended chop to the direction of the flow. By 

repeatedly reorienting extended drops in simple shear, with their main axis perpendicular 

to the streamlines, this maximum (ef = 1) can be obtained more than once, yielding a more 

efficient mixing process. However, only a combination of folding and reorienting changes 

the efficiency of the distributive mixing from a linear dependence on the total shear into an 

exponential dependence. The principle of this "stretching and folding" mechanism is 

depicted schematically in Figure 4.5. To maintain the Interfacid area gained, the surface of 

the stretched material should, of course, be surrounded by matrix materid. 

rli. 'o I 1  
~ stretching ifoldingp stretching \ folding 7 stretching 

U 

Figwe 4.5 Stretching and folding during distributive mizing; the matenal is folded 

after every extension equal to the initial length lo (baker's 

transformation). 
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This transformation, resulting in the exponential way of mixing, is familiar to housewives. 

It is called the baker’s transformation, named after the way dough is mixed by repeatedly 

rolling (which is a stretching operation) and folding. 

In the past, when the maximum clttainable temperature in ovens (ca. i100 OC) was below the 

melting point of iron (ca. 1500 OC), iron could only be separated from the ore because 

melting temperature depression occurred, caused by the difjksion of carbon from the cokes in 

the firniture. Cast iron resulted with infem’or mechanical properties. Upgrading to steel 

proved to be possible via ozydative removal ofthe e z k a  carbon in the iron by  forging. Daring 

forging, the iron is heated, hammered (which is stretching), folded, heated again, and so on. 

In this way, the striation thickness, which is the typical distance f ir  déiffwion of ozygen and 

carbondiozide, is e fficiently decreased, while M e  sarface wees is increased. Good steel 

required a 5000 times repetition of this bahr’s transformation, which apparently has been 

known for a long time, see Gordon (1968, 1978). 

Ng and Erwin (1981) performed experiments, using polymers, to illustrate the efficiency of 

the baker’s transformation in a Couette fiow. By alternating black and white coloured 

strokes of the same polymer in the gap between two concentric rotors, see Figure 4.6, and 

(after melting) rotating one of the cylinders over a total angle ytot, mixing is visualized. 

Quantitatively, the mixing efficiency can be measured and calculated with the striation 

thickness, the total number of layers or the total interfacial area A: 

A “o ?tot (4.19) 

By dividing the total shear y,, in n equal intervals and reorienting the flow, once a shear 

of is reached, in a perfect manner (by cutting the ring into square pieces and 



14 

subsequently rotating every individual piece over goo), the interfacial area increases 

exponentially with shear: 

(4.20) 

Figure 4.6 Shear with reorientation of black and white segments fafier Ng and 

Enoin 2981). 

Distributive mixing can be s marized as (i) affine deformation, with no influence of the 

interfacial tension (passive interfaces), (ii) stretching, with equivalency of shear rate and 

time, since only the total shear is important, and (iii) folding and reorienting, which yields 

the exponential mixing coefficient n. 

4.3.3 Static Mixers 

A perfect illustration of the application of the efficient baker’s transformation in practical 

mixing is realized in almost all well-designed static mixers. The working principle of a 

static mixer is based on the stretching and folding mechanism illustrated in Figure 4.5. 

Three major steps can be distinguished (Figure 4.7): stretching, cutting and stacking. The 

last two steps are equivalent to the folding in Figure 4.5. 
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n 
after n elements 2 layers 

cutting into four yields 4" layers 

Figure 4.7 Working principle of static migers: I )  stretching, 2) cutting, 3) stacking. 

Multiflux 

Primus inter pares of all static mixers is the Marltiflux mixer, originally developed by Akzo, 

see Sluijters (1965) and Schil0 and Ostertag (1972). By acceleration aard deceleration 

between trapezoidal shaped blocks the material is stretched, cut, and stacked. As can be 

seen in Figure 4.8, this mixer almost ideally approaches the theoretical baker's 

transformation and yields 2n layers, n being the number of elements. 

In their book "Order out of Chaos" (198,$), which tries to give an answer to the apparent 

contradiction between the (optimistic) evolution law and the (pessimistic) second law of 

thermodynamics via a "far @om equilibrium" approach, Prigogine and Stengers use the 

principle of Figure 4.8 to illustrate the influence of the initial configuration on a general 

transient process. They consider the development of a mathematical line, which is something 

with a length but without any width, during a repetitive baker's tramfornation. 

Consequently, the initial configuration of the line determines what will happen in time: a 

vertical line yields a completely different result compared to a horizontad line, since the first 

will cover the total available area while the second will vanish. In an eqeriment obeying 

consermation of mass, however, the first ~ransfo~at ion continuously transfers into the 

second and vice versa. 
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horizont ai now 
sections 

1 

2 

3 

Figure 4.8 The Multijlm static mixer (Akzo); schematically. 

Ross 

The second static mixer, which closely approaches the ideal working principle of the 

baker’s transformation, is the Ross ISG (interfacial surface generator), developed by DOW, 

see Figure 4.9. 

Figure 4.9 The Ross (ISG) static mixer; outside view only. 

Stretching takes place inside the trapezoidal shaped blocks, cutting during the inflow in the 

four small tubes and, finally, stacking is realized by the twist of the tubes. Because there 

are four tubes, 4n layers result after n elements. 



17 

Sulzer 

One of the most complex static mixers is, without doubt, the Sulzer mixer. Seemingly, the 

interior part looks like randomly stacked wirenetting, although the distinct elements are 

consistently and dternatingly rotated over 900 - Poblications cm this a k e r ,  m~stly 

originating from the manufacturer, repeatedly show the experimental result of the one split 

mixer, fed with a differently coloured polymer and longitudinally cut into two halves after 

quenching? which proves that the mixer works. The flow inside is, however, much less well 

defined compared to the two mixers already discussed. An outline of the working principle 

is given in Figure 4.10. Two crossed screens form the basis of one element. Fed by a black 

and a white liquid, half of the black material flows through the openings in the lower part 

of the screen while half of it runs along the screen towmds the top half (stretching). FQT the 

white material? the opposite occurs. Subsequently, the black and white materid have to 

flow around the last obstacles, where the white cuts the black (and vice versa) and stacking 

takes place. From the schematic representation of the flow in Figure 4.10, it is clear why 

the next element has to be rotated over 900. Because in the example the flow is split into 

four streams, 4n layers result. 

Al l  static mixers discussed, make use of more or less forced elongational flow fields for the 

stretching operation. That is why, for example, the Sulzer mixer is well-suited for mixing 

liquids with large differences in viscosity. Moreover, this mixer is more frequently used 

than the first two, due to its smaller effective pressure drop necessary for a specified 

increase of the number of striations. 
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Siilzer SMX 
element 

+ 
I 

Figure 4.1 O An idea of the Sulzer SMX static mixer, with rather schematical worhng 

principle. 

Kenics 

The last static mixer to be discussed shortly is the frequently used Kenics mixer, the ody  

one that is based on simple shear for stretching, see Figure 4.11. The elements inside the 

tube resemble 1800 twisted platelets, like butterfly ties, with each successive element, 

again, rotated over 900. The working principle is most easily demonstrated if the platelets 

are thought to be straight, while the relative motion between wall and platelets, during the 

passage of the flow, is kept the same by adding an imaginary rotation of the barrelwall over 

the very same 1800. The approximated drag- and pressure flow inside the cross section of 

each half of an element are shown in Figure 4.11, as well as the resulting streamlines. 

Stretching caused by the rotation increases the cross sectional interface typically fiom 0.5 

to 1 tube diameter. Cutting and stacking is cleverly realized by placing the next element 

under 900. Although the Kenics mixer, which yields 2n layers as readily deduced from its 
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working principle, shows roughly the same performance in terms of effective pressure drop 

as the Sulzer mixer, it is not suited for mixing liquids with diverging viscosities since the 

low viscous material will form sliplayers at the wall, which is fa td  for the simple shear 

based wa%ing principle. 

. 

pressure streamlines drag 

Figure 4 ,  i i The Kenics static miser; inside view and idealized working principle. 

4.3.4 Dynamic Mixers 

As has been demonstrated in the discussion of static mixers, the principles of efficient 

distributive mixing can be realized in practice. In operating static mixers, a pressure flow is 

responsible for the throughput. Consequently, a pressure generating device is needed. 

Mixing can also be directly improved in these pumps, typically extruders because of their 
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viscosity independent working principle. This is the area of the dynamic mixers. Although 

less efficient than in static mixers, also in the continuous flow field of a dynamic mixer 

stretching, folding, and reorienting can be realized. An illustrative example is the closely 

intermeshing arad, copisequeit3y, self wiping cirilutiug t w i ~  screw extrnder, which i~dirces 

folds and reorientations with respect to the streamlines during take-over of the material 

from one screw to the other, see Figure 4.12. 

Figwre 4. i 2 Folding and reorienting in an intermeshing corotating twin screw 

eziruder, dwing take-over ofthe material from one screw to the other. 

In contrast to (corotating) twin screw extruders, single screw ext rs are inferior mixers, 

since, despite the helically movement of the flow inside the extruder channel, no 

reorientation occurs, see e.g. Ottino and Chella (1983, 1985). In order to study the mixing 

efficiency in extruders, a survey e different approaches to the modelling can be found 

in Elemans (1990). Here, it is sufficient to mention that all different mixing elements added 

to a standard screw - some examples are given in Figure 4.13 - should be designed to 

induce folds and reorientations. Two specific mixing principles are worthwhile mentioning: 

(i) The static-dynamic cavity transfer mixer (CTM), which only allows axial transport via 

a zig-zag type of streamlines, transporting the material from the rotor to different cavities 

in the stator and from each cavity in the stator back again into all cavities in the rotor. 

Thus the efficient mixing principle which children apply in the shaking of playing cards is 
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introduced. (ii) The cokneader, which couples an axial oscillation to a tangential rotation, 

thus weaving or knitting the material during the axial transport. - u 
Couette 

eccenter 

J U O O C I  

pineapple 

non circular cross section 

Esa 
screw 

discs 

cokneader 

Fagwe 4.13 Schematic of various e&Ctruder S C T ~ W  elements. 

4.3.5 Continuum Modelling 

A systematic approach to the modelling of distributive mixing, valid in general three 

dimensional flows, is attributed to Ottino's group, publishing a large number of papers on 

this subject. Of special interest and great didactic value is their numerical and 

experimental work on periodic (chaotic) flows in 2-D geometries, see e.g. Ottino (1989, 

1990). An example of some of their results is shown in Figure 4.14. 
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Figure 4.14 Distributive r n i r i ~ g  in a cauity; top and bottom wall are translated 

periodically (ûtt ino 1990). Rep&.tted with p ? m i S S i Q %  of Annual 

Reviews Inc. 

The top and bottom wall of a rectangular duct, a so-called cavity, can be translated 

independently and periodically. The resulting flow pattern is visualized with two 

fluorescent tracer drops. No interfacial tension is present between the tracer drops and the 

continuous phase, so only distributive mixing is studied. In the example of Figure 4.14, one 

of the blobs is stretched, fol and transferred back to its initial position, before the 

periodic movement is repeated, thus undergoing efficient mixing (involving horseshoes). 

The second blob, however, is only rotated and convected, without any significant 

deformation. It moves inside a dead zone, cailed a regular island. The presence or absence 

of those important zones in general flows, can be analysed by numerical calculation of the 

local deformation tensor (e.g. the Finger tensor) and multiplication with the blob 

orientation tensor. Thus the deformation history of 'every particle' can be followed, 

including folding and reorienting. The importance of folding and reorienting is finally 

clearly illustrated in Figure 4.15. In these experiments, the tracer was originally placed as a 
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vertical line in the middle. The resulting deformation patterns are shown for the same total 

deformation, obtained via a continuous wall movement (Figure 4.15a) and via a 

discontinuous, periodic movement aimed at the introduction of folds and repetition (Figure 

4.?Sb). The difference betweei 1inei and eqmmtid xxi'Y'y~g is d e d y  deamstrsted %u6 

the results can directly be compared to the working principle of static mixers, see e.g. 

Figures 4.5 and 4.7. 

a b 

Figure 4. i 5 Comparison of a) ~ o ~ t i ~ u ~ ~ s  and b) a i s ~ ~ n t i n u ~ ~  movenze~t o! the 

cavity walls; the total displacement of the walls is equal in both cases 

(Leong and Wino 1989). Reprinted with permission of Cambridge 

University Press. 

Mathematically, the prerequisites for these so-called chaotic ~ Q W S  are known (implying the 

introduction of horse-shoes in the flow), see Ottino (1989, 1990). Therefore, in principle 

three dimensional continuous mixers can be designed according to optimal principles of 

mixing. Also existing designs can be analysed with respect to the occurence of regular 

islands, which should be avoided anyway, and to the chaotic character of the flow, which 

should be incorporated. Even in 2-D geometries, the computing time could be excessive. 

Nevertheless, this rigorous approach yields the most systematic route to most of the mixing 

problems met in polymer processing and chemical technology, but also in geology, 

oceanography, or air pollution, since apart from multiphase flows also diffusion and 

chemical reaction can be incorporated straightforwardly in this concept, see Paragraph 

4.4.8 (Ottino 1991). 
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4.4. 

4.4.1 Rayleigh Disturbances 

Dispersive Mixing (Ca x Cacnt) 

When the orignd wpillimete~ sized liquid dmps %re exte~ded into leng s!eaUer Yime:ts, 

due to the affine deformation, local radii are decreased such that the interfacial tension 

starts playing a role (active interfaces). In polymer melts, the shear stress and the 

interfacial stress become of the same order of magnitude if the radius (R) of the threads is 

decreased to 1 p: 

(4.21) 

The interfacial tension tends to minimize the interface between the two phases, minimizing 

the surface tu volume ratio. As a consequence, small disturbances present at the interface 

of the liquid cylinder grow and finally result in the disintegration of the thread into a line 

of drops. These so-called Rayleigh disturbances can be investigated experimentally every 

morning in the shower and are illustrated for a molten Polyamide4 (PA-û) filament, in 

an otherwise quiescent melt of PS, in Figure 4.16. It should be noted that a major 

difference between the two processes indicated is the value of the Reynolds number. In the 

shower the interfacial stress mainly compares to inertia (We,), see Weber (1931), while in 

molten polymer blends it compares to viscous shear stresses (Ca); see Equations 4.14.4.  
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3 

Figure 4-16 Disintegration of u PA-6 thread (diameter 55; pm) in it quiescent PS 

matrix at 230W (Elernans et al. 1990), see also Figure 4 . A . l .  Rep~RteE 

with permission of the Society of Rheology. 

Since in Figure 4.16 the viscosities are high and the thread is relatively thick, implying a 

small driving force (a/R), the timescaie of the experiment is typically minutes in 

comparison with the timescale of seconds in the free water jets breakup. Inbetween the 

drops, small satellite droplets are formed in the last stage of the disintegration process, due 

to fast growth of Rayleigh disturbances on the fine filaments (c/R large) formed between 

adjacent drops. Tjahjadi et al. (1992) numerically investigated the formation of satellite 

and sub-satellite droplets and found that the smaller the viscosity ratio p between thread 

and matrix, the more satellite droplets are formed. 

Figure 4.17 explains that only disturbances with a wavelength larger than the 

circumference of the original thread (A > 27rR0) result in a monotonic decrease of the 

interfacial area with an increase of the amplitude. Disturbances with a smaller wavelength, 

initially result in an increase of the interfacial area and therefore damp and extinguish. 
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Figure 4. i 7 Relative hterfacial area of a § i ~ ~ § o i d a l l y  disturb~d cylinder versus the 

relative amplitude a/R0 of disturbance, for different wavelengths. The 

interfacial area monotonically decreases if X > dnRo. 

4.4.2 Disintegration of Threads at Rest 

Classical theories exist for the mathematical description of the disintegration of a 

Newtonian thread embedded in a quiescent , Newtonian continuous phase, with neglect of 

inertia, see Rayleigh (18 and Tomotika (1935). 

Figure 4.18 Sinusoidal Rayleigh disturbance on a liquid cylinder. 
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Figure 4.18 shows a sinusoidal Rayleigh disturbance on a liquid cylinder with radius: 

where the average radius equals: 

The disturbance amplitude a [m] grows exponentially in time: 

a! 

with growth rate q [s-l]: 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

where 

a. = original disturbance amplitude [m] 

Ro = radius of the undisturbed thread [m] 

52 is the dimensionless growth rate of the disturbance, a function of the viscosity ratio p 

and the wavelength X (Tomotika 1935, Chappelear 1964, Palierne and Lequeux 1991). In 

the beginning, small amplitudes of, in principle, all wavelengths are present. For a given 

value of p, however, only one disturbance with the dormlmant wavelength (Am) grows 

fastest and finally results in disintegration of the thread. Figure 4.19 shows the dominant 
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wavenumber Xm (= 2'lrR0/Xm) and the corresponding dimensionless growth rate Rm as a 

function of p. 

Figure 4.19 

P 1-1 
Dominant wavenumher Xm (= 2'lrRdXm) and corresponding gyowth 

rate Rm of interfacial disturbances versus viscosity ratio p (= qd/qJ. 

The time required for breakup can be calculated from Equation 4.24: 

where cxb is the amplitude at breakup. Breakup occurs when the amplitude equals the 

average radius of the thread R, yielding the amplitude ab: 

= J 2/3 Ro Ìz 0.82 Ro ab (4.27) 
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Kuhn (1953) proposed an estimation of the initial amplitude a0, based on temperature 

fluctuations due to Brownian motion. With T the absolute temperature and k Boltzmann's 

constant ( 1 . 4 ~ 1 0 - ~ ~  J/K), he derived: 

= i" 
Combination of Equations 4.25-4.28 results in: 

(4.28) 

(4.29) 

From Equations 4.25 and 4.29 it can be seen that the characteristic timescale for the 

a-driven development of interfacial disturbances is t0 = qCRo/g and time can be 

non-dimensionalized: 

thus: 

t; - - 

a t- 
qcR0 

-In 1 (10 23 a Ro 2 IT) 
m f2 

(4.30) 

(4.31) 

Please note that some authors (Stone and Leal 1989 a,b; Tjahjadi and Ottino 1991) multiply 

qc in tg b y  (l+p), which is equivalent to a substitution of  q, by (q,+qd)J in order to 

incorporate the effect of the viscosity ratio in Uze dimensionless timescale. The estimation of 

the initial amplitude aQ by  Kuhn (1953) yields values of about lo-' m that are somewhat 
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arbitrary. Mikami et al. (1975) suggest au to be 

Equation 4.26 should be used rather than 4.29 or 4.31. 

to 10 -' m; in that case, of course, 

a Ro 7 127r/X, (4.32) 

For instance, given the viscosity ratio p = 1, X, = 0.56 (see Figme 4.19) and the diameter 

of the new droplets equals twice that of the original thread. 

The theory outlined above applies to Newtonian liquids at rest. In case the thread is 

viscoelastic, orientational stresses build up during formation of the thread, provided that 

the Deborah number De = û/tG 2 O(l), where 8 is the relaxation time of the fluid and tG 

the timescale of the flow. If these stresses relax slower than the growth rate of interfacial 

disturbances, i.e. De = B/tg 2 0(1), the drainage of the filaments into the developing drops 

(extensional flow) is retarded due to the increased extensional viscosity. Typical dumbbell 

shapes develop (Figure 4.20b) rather than sinusoids (Figure 4.20%) and the growth of the 

disturbances almost stagnates. Consequently, the resulting breakup time is larger than in 

the equivalent Newtonian case. The theory for Newtonian liquids sometimes proves to be 

useful even for molten polymers, as evidently shown by the sinusoidal disturbances on the 

polymer thread in Figure 4.16. The diameter of the thread in this model experiment is 

relatively thick as compared to the typical microfibers formed in the dynamic mixing 

process in extruders and, consequently, the timescale to breakup is large. An application of 

this theory to measure the interfacial tension in molten polymer systems is discussed in 

Appendix 4.A. 
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Figure 4.20 a Disintegration of a 0.35 mm Newtonian thread (castor oil, w 0.7 

P a s )  in a quiescent Newtonian matrix (silicon oil, q = 0.9 P a s ,  a = 

O. 004 N/m)  tzf rssmntempertzntztre; swxessive photographs afiei eve- 

second. 

Figure 4.20 b Disintegration of a 0.07 mm viscoelastic thread (80% corn  syrup/ 20% 

water/ 0.01% polyacylamide, N 0.5 Pa.s, d N 10 s) in a quiescent 

Newtonian matria: (silicon oil, 7 = 2 P a s ,  o = 0.025 N/m)  at 

roomtemperature; successive photographs a@er every 3 seconds. 
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4.4.3 Disintegration of Threads during Flow 

In a flowing medium, breakup of threads is delayed, since the extension of a thread causes 

inere.&&.;lng w.&-$&ngth th2 &sturbaneea in eûm~;n.&t;lûii -w-;th a &eïe.&sing th-ead 

diameter. Consequently, the initially dominant wavenumber Xm(0) = 27rR0(0)/Xm(0) 

decreases continuously in time. It will not represent the fastest growing disturbance during 

dl distinct time steps and eventually can damp and become extinct. A new disturbance, 

with wavenumber Xm(t) = 27rR0(t)/Xm(t), grows faster and will become dominant despite 

of its start with a smaller amplitude. On any moment, a particular wavenumber Xm(t) is 

dominant and grows fastest; disturbances continuously grow and damp. In the end, the 

amplitude of m e  disturbance equals the time dependent average radiai; of the thread and 

causes disintegration of the thread, see Figure 4.26. 

t 

- time 

Figure 4.21 Progress of the average radius R of a thread - which is eztending at a 

uniform rate - and of the amplitude CE of disturbances with diflerent 

initial wavelengths. 
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More time till breakup is required if this external flow field is present since the flow 

stabilizes the thread morphology and allows a further decrease in thread diameter; a finer 

dropletsize will result. A number of researchers investigated this practically important 

~h€TìOfTIE?iiOIìj for NeWtOBhn f i q ~ d s  Qdy, (TGmOtik2 1936, &!&&Pl & d. 1975, Kh&&&r 

and W i n o  1987, Tjabjadi and Wino  1991). The analysis is based on affine extension of 

the thread which maintains a circular cross section. No simple explicit equations result and 

Figure 4.22 was calculated to give access to the results of the analysis. 

iu-r 

104 - 

a~ 103- 

Rdrops 

102 - 

Figure 4.22 

\ '  

101 
ioo 
10' 

Dimensionless drop radius resdting from disintegration of a Newtonian 

liquid thread which is eztending at a t~nijorm rate i. 

Upon an increase of the extension rate of the thread, smaller droplets result from the 

disintegration process. The extension rate i can be defined formally in any type of flow: 

clearly in extensional flows but also in simple shear flow where E is in principle time 

dependent because of variation in time of the thread orientation. Since both quantities 

and i) are presented in dimensionless form, the curves in Figure 4.22 hold for any (Rdrops 
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realistic range of material parameters and processing conditions. The different curves 

correspond to different viscosity ratios p. For low enough values of the dimensionless 

parameter qc2ao/o a larger p yields smaller droplets, since disturbances grow more slowly 
on viucons thread icornpare for a tFEe&d &i l?:-.w.n I 1 l j U l . C  -f.lol. /i 1n\ T, I + L  other 

m 
situations, the optimal value of p for obtaining the smallest final dropsize depends on the 

value of qckao/o that can be realized in practice. 

Note that the initial radius of the thread has no effect on the resulting dropsize, although it 

evidently determines the breakup time. The time for breakup can be roughly approximated 

kom the affine deformation of the extending thread, starting with the initial drop radius and 

ending with Rdrops. As mentioned in the previous paragraph, the vake  of cto is, 

unfoduntltelg, quite arbitrary (i O-8 m seems reasona file), thus absslute pr-edictions of the 

minimum attainable dropsizes still deal with some uncertainties. A physical lowerlimit for 

the dropsize arises from the fact that the average thread radius cannot decrease below ao. As 

indicated in Paragraph &&i?, viscoelasticity of the thread will have a pronounced in$?uence 

on these transient processes, if the relevant Deborah numbers are of order unity. This aspect 

is stdl under investigation in our laboratory. 

4.4.4 Experimental Devices 

After affine deformation, at Ca >> Cacrit, and disintegration of the threads formed, into 

lines of droplets, finally these droplets are subjected to deformation caused by the flow 

field. Since now Ca Cacrit, breakup will depend upon the strength of the flow field and 

the viscosity ratio p. This is the classical subject of study in dispersive mixing and 

excellent reviews are given by Acrivos (1983) and Rallison (1984). Experimentally, drops ( N 

1 mm) of low viscous (non-)Newtonian model liquids are Injected at roomtemperature IR a 

well-defined shear field, like simple shear between two infinite bands or in a Couette 
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device (see Figure 4.23) and elongational flow in a four roll mill (see e.g. Taylor 1934, 

Grace 1971, Bentley 1986 a,b, Stone and Leal 1989 a,b, Meijer and Bos 1989, Elemans 

1989, de Bruin 1989). 

Figure 4.23 The Couette device (simple shear $ow) and the four roll mill (2-0 

elongational $ow). 

In our laboratory, recently a computer controlled opposed jets device was developed, 

(Janssen et al. 1991), to study the transient deformation and breakup of viscoelastic drops, 

see Figure 4.24. It consists of four solid blocks, fixed between two parallel plates. From two 

opposite directions, the continuous phase is pumped into the cell, yielding a stagnation flow 

which is very similar to the flow field in the four roll mill, at least in a region near the 

centre of the cell. 

The main difference as compared to the four roll mill is the separation of functions realized 

by this flow: (i) The deformation rate is set by the overall flow rate through the cell. (ii) 

The type of flow (see also Paragraph 4.4.5) is determined by the shape of the four blocks, 

and, finally: (iii) The control of the, principally unstable, position of the de€orming drop at 

the stagnation point is carried out by a computer controlled variation of the ratio of both 
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exit flow rates (by a small rotation of a valvesystem mounted between exit channels and 

reservoir) thus shifting the actual position of the stagnation point just beyond the displaced 

drop. The control mechanism developed, proves to be fast and efficient, i.e. within 

&.up~#&c2meE~s of +,he GrÛF ûf ûdy UEe of the &&i& image. zn ifie r& mill 

three functions are carried out by varying the individual roller speeds, yielding a complex 

control strategy (Bentley and Leal 1986 a). The four roll mill is flexible, however, since a 

variation of the type of flow is possible even within one experiment. The opposed jets 

device is small, on the contrary, the inner cell dimensions are only a few centimeters 

without experiencing problems with unwanted wall effects, as followed from numerical 

simulations of the internal flow field and confirmed by laser Doppler anemometry of the 

real 3-D velocity profile. Since the cell is small and can be designed as a dosed loop, the 

system is accessible for research to pu lpe r  melts at elevated temperature as well. 

Figure 4.24 

T 
The opposed jets device: in a fixed geometry two liquid jets are forced to  

collide, resulting in an elongational flow in the stagnation point (Janssen 

et al. 1991). 



4.4.5 Flow Classification 

Before turning to the experiments on drop deformation and breakup, it is useful to shortly 

&cuss the c~assij+&iûn 

Fuller and Leal (1981) or Olbricht et al. (1982). A general class of experimentally and 

numerically accessible flows is that of the linear 2-D flows given by: 

&fferent types ûf flow, %ftel QieSekUs (1962), Tmzer (IgTq, 

-+ ++ c -+ + 
u = (Vu) *x = Lmx (4.33) 

with t the velocity vector, i the gradient operator, x the position vector, and L the 

velocity gia&ennt tensor: 

l+a 1-a! o 
L = 2- -l+a -1-a o with - l < a S l  (4.34) 

" [ o  o , ]  

~ n i  Cartesian coordinates X (x,y,z> the velocity components of If (u,v,w) are respectively: 

= g[ (I+a)x + (1-a)y 1 
= g[t-l+a)X + (4.35) 

w = o  

G (s-l) is the (scalar) velocity gradient and the type of flow is characterized with one single 

parameter a. In Figure 4.25 streamlines are shown for various values of a yielding as many 

specific types of flow. 
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Figure 4.25 

a =  1 

a = O  

a =-1 

Streamlines of some specific linear 2-D flows: a = I plane hyperbolic 

flow; a = O simple shear flow; a = -1 pure rotational flow. 

the velocity components are: u = Gx, v = -Gy, w = O .  

This represents plane hyperbolic or 2-D elongational flow, G is usually denoted E .  

the velocity components are better defined relatively to a basis which is rotated 

over 45O: u’ = Gy’, vf = O, w’ = O. 

This is simple shear flow, G is usually denoted ;r. 
the velocity components read: u = Gy, v = -Gx, w = O. 

This represents pure rotational flow. 

Values of a inbetween these extremes yield combined flows. As usual, L is split into a 

symmetric part D and a skew-symmetnic part 88: 



L = D + Q  (4.36) 

with D the rate of deformation tensor: 

(4.37) 

and fl the spintensor: 

n = i ( L - L C )  - - (4.38) 

Plane hyperbolic flow ( a  = 1) is free of rotation (Q = O) and therefore cdled strong in 

deformation, while in pure rotational flow ( a  = -1) no deformation results (D = O). Simple 

shear flow (a = O) shows both contributions. 

In order to be able to define a Capillary number in all these types of flow, it is consistent to 

use a scalar value for the shear rate, obtained for pure deformation, consequently after 

substraction of rigid rotation. Using the definition: 

I . -  - J-GG (4.39) 

the rotational components of L are eliminated. Using Equation 4.39, the Capillary number 

now may be uniquely defined for Newtonian systems: 

r p  
Ca = - o (4.40) 
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In the definitions for Ca and p, only shear viscosities are used. With help of Equation 4.39, 

the shear rate ? can be defined in any linear 2-D flow (given by Equations 4.33-4.34) from 

pure rotational to irrotational elongational flow: 

7/ = (l+a) G (4.41) 

Definition 4.39 is calibrated POE simple shear flow where the shear rate 7/ must equal the 

velocity gradient G .  In plane hyperbolic flow (a! = i) apparently ;U = 2G (= 2E), while for 

pure rotational flow (a = -1) the Capillary number becomes zero as it should, since no 

shear stress can be applied on the drop: ;U = O. Summarizing: 

in hyperbolic flow 
qc2 GR 

a Ca = 

qcGR 
Ca = - in simple shear fiow a 

Ca = - = O  in rotational flow 
0 

(4.42) 

(4.43) 

(4.44) 

To exert the same Capillary number on a drop, the shear rate in simple shear flow must be 

twice the elongation rate in 2-D elongational flow. Note that this does not originate from a 

faulty modified Trouton ratio but is simply due to the fact that in simple shear half of the 

rate of deformation is used for rotation, while in elongational flow it is completely used for 

effective deformation. As a consequence, especially the flows with O < Q! 5 1, the so-called 

strong flows, are of interest for dispersive mixing. 
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The definitions of ?. and Ca, given here, are in accordance with those used by Taylor (1934)) 

Grace (1971)) and Ottino (1991). The group of Leal substitutes ps t  the velocity gradient G 

in the CapiElarg number, instead of 7 (= (l+a)G), yielding a difference of a factor 2 in Ca 

for all results on 2-U eiönyctfii'oniil %o.m. 

As a final example, a linear 3-D axisymmetric elongational flow is considered, defined with 

velocity gradient tensor: 

(4.45) 

G 
2 y, and w = - - z. Like in 2-D elongational flow, also here G consequently u = Gx, v = - - 2 

D = L and 621 = O, the flow is free of rotation. According to Equation 4.39 the shear rate 

equals ;r = G 43. Because of rotational symmetry, this flow is often used in numerical 

studies. It can be realized by suction of fluid from the area between two trumpet shaped 

dies. 

4.4.6 Experiments on Drop Deformation 

The most extensive experimental study originates from Grace (1971). He determined the 

critical Capillary number, in more or less equilibrium situations by slowly increasing the 

velocity gradient G ,  in simple shear and elongational flow, until no more stable drop shape 

could be obtained. Below Cacrit, the interfacial tension dominates and the drop will 

slightly deform but not breakup; a typical internal circulation flow maintains a stable 

equilibrium drop shape. Just above Cacrit, no stable drop shape exists, the shear stress 

dominates and, after some time, leads to breakup. PR Figure 4.26 Grace's results are 

summarized. 
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Figure 4.26 
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Q*tmtical Capillary number versus viscosity ratso p (= qd/q&, in simple 

shear and in elongational flow (after Grace 1971). 

As for distributive mixing, also for dispersive mixing elongational flow is more efficient 

than simple shear flow, especially for p > 4, where the absence of rotational components in 

elongational flow still leads to breakup. Independent of the type of flow, the minimum 

value of Ca&s found around p = 1. 

This does not necessarily imply that always at p = 1 the smallest droplets can be obtained, 

since in a dynamic mixing process small droplets are not formed by successive breakup at 

. Rather than formed under equilibrium conditions, small droplets originate from a Camit 
large drop extended by the flow into a thin thread, stabilized by the same flow, that finally 

disintegrates at once into a row of small droplets, as described in Paragraph 4.4.3. Figure 

4.27 compares the dropsizes generated by the two distinct processes. The full curves 

originate from Figure 4.22. The dashed curves were based on Grace's values of the critical 

Capillary number (for plane hyperbolic flow) from which a minimum attainable dropsize 
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can be calculated for given values of qc1c6/o and p. It is evident that in the dynamic process, 

p = 1 is not generally the optimum viscosity ratio. If droplets have been formed by the 

dynamic process while the quasi equilibrium process would result in smaller droplets 

(iypic&ly a* ~@ values ïi ;ig), they just “uie& uUce m~ie.  .& pï&ccical s;itu.&~~ciii, 
C 

extra point to consider is whether the time for each of the processes is sufficiently large. In 

the dynamic process the time for breakup is mainly determined by afhne deformation. In 

the quasi equilibrium process the time for breakup was measured by Grace (1971), as 

discussed later in this paragraph. 

The dashed curves in Figure 4.2’7 can be calculated for dropsizes down to irrealistic small 

scales. Of cou’ice, Me dmpsaze U iamited by  a lengthscale (N l O-’ m) helm which continuum 

mechanics cannot be applied. Changing the arbitrary vahe ofa0 (IO-’ in the figure) has the 

effect of shi jbg the (fill) curves ofthe dynamic process along the -450 diagonal. The value 

of q,E/g typically ranges from 1 to lo5 m-’ for model liquids in an experimental device 

(e.g. opposed jets, four rog mill, OT Couette) and from 1 d to 1 O8 m-i for polymer melts in 

an eztruder. 

Figure 4.28 illustrates the deformation and breakup of a Newtonian drop in simple shear 

flow at Ca just above Cacnt. From preliminary experiments in the opposed jets device it 

has become clear that moderate viscoelasticity of the drop affects Cacrit only slightly (see 

also Milliken and Leal 1991, 1992). 
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drop 

Figure 4.27 

10-2. 

103 \ 

Minimal attainable dropsize resulting from (i) the dynamic process of 

thread breakup during edension, with co = m (@l czlrves) and 

(ai) quasi equili~~um drop breakup at Cacrit in 2-0 eztension (dashed 

curves). Parameter is the viscosity ratio p. 

Figure 4.28 Breakup of a drop (N i mm) in simple shear flow just above the critical 

Capillary number (Newtonian model liquids, p = 0.24). 
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Depending on the viscosity ratio p, Rumscheidt and Mason (1961) distinguish four classes 

of deformation and breakup in simple shear flow. For p > 1 the deformed drop has rounded 

ends while for smaller p these become pointed. If p < 0.1 extremely small droplets break off 

Îrom the sharply pointed ends. This phenomenon, caiied tipstreamirig, is caused by 

gradients in the interfacial tension due to convection of surfactants along the drop surface. 

At the tips the interfacial tension is locally lowered so that tiny droplets break off (de 

Bruijn 1991). 

As already stressed, it is important to focus on the dynamics of the process and the time 

necessary for deformation and breakup. This was measured by Grace and his results, again 

obiained under quasi equilibrium conditions, are given in Figure 4.23. The dimensionless 

breakup time tb proves to be strongly depemdeat on p. 
* 

Figure 4.29 Dimensionless time (Equation 4.30) for drop breakup at Ca slightly 

above Cacriit as a finction of the viscosity ratio (Grace 1971). Reprinted 

with permission of Gordon and Breach Science Publishers Inc. 
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Upon exceeding Cacrit in simple shear flow, the breakup time decreases, according to 

Grace, see Figure 4.30. However, these experimental results could not be reproduced. As 

experimentally found by Elemans (1989) a supercritical simple shear flow stabilizes the 

f!XkIl&ng &OpS. P~û'U~"ui~, GráCe COiiS&ïed eEdj$iiChhìg (diup bji dïGp bEa?áag2 from 

both ends of the thread) in stead of complete disintegration of the thread. 

. , . . . . . , . . . . . . . ,  

. . .  . . <  . . . . . . .  < . . . . . . . .  . . . . . . .  . . . . . . . .  
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Figure 4.30 

---> Ca / Cacrit 

P =  
V 1.78e-4 

13 1.79e-3 

O 1.69e-2 

A 0.107 

o 1.0 

ff 0.933 

e'O.135 

Dimensionless time (Equation 4 .SO) for drop breakup in supercritical 

simple shear (open symbols Grace 1971; solid symbols Elemans 1989). 
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In fact, the parameters along the axes of Figure &30 are quite arbitrary, since the figure 

combines three distinguishable stages of the experiment. The first stage is the initial 

deformation of the main drop, that takes more time as Ca reduces to Cacrit; the relevant 
firnescaie is i = ,~ 3 1- rn - ^ _ ^ ^ _  1 1 /u. i he seC0TL.u sbGge Cû~~GtUriîz3 %fie iiJES-liie streteh-lïy of Me %ït&tilbb a c drop 
drop; the relevant timescale is tG = i/?. The last stage is the growth of the fatal disturbance 

(Figure 4.21)) where ta = q,Rthread /a is the relevant timescale. Consequently, it is not very 

conclusive to capture all three stages by only one dimensionless time, based on the first stage. 

Moreover, the breakup time is dependent on the initial dropsize, which, however, is fairly 

constant in most ezperiments with model liquids (" 1 mm). 

Of great practical importance is the experimentril widenice that affim deformatioo o€ the 

drop with the flow field indeed occurs if Vacrit is sufficiently exceeded; see Figure 4.31 f o ~  

plane hyperbolic flow as measured in the opposed jets device. The full curve corresponds to 

Equation 4.18, as in Figure 4.3. Apparently, at high enough values of the Capillary number 

(Ca/Cacrit > 10) the shear stress dominates the interfacial stress completely when the 

drop is instantaneously subjected to the flow. Since these experiments involve a 2-D flow, 

affine deformation initially does not affect the width of the drop. A flattened ellipsoid 

results. As deformation proceeds, the cross section is contracted circular by the interfacial 

tension. According to Elemans (19891, in simple shear flow affine drop deformation already 

occurs at Ca/Cacrit > 2, see Figure 4.32b. 
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D 

Gt 

Figure 4.31 Drop deformation D (= (L -B)/(L+B)) in supercritical plane hyperbolic 

$ow as a function of the total applied deformation (or dimensionless 

time). The full curve corresponds to  affine deformation, Equation 4.18. 

Castor oil drop and silicon oil matris are both Newtonian, p = O. 19. 

At values of Ca/Cacrit < 1, the drop deformation after a step in the shear rate approaches 

a constant value, see Figure 4.32a (This is the experimental procedure traditionally used to 

determine Cacrit). 

Similar results have been obtained for viscoelastic drops, although these need a somewhat 

larger excess of Cacrit to be deformed affinely with the matrix. So, the elastic contribution 

makes the drops somewhat more difficult to deform than their viscous counterparts. 
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32 a Progress of drop deformation in subcritical simple 

0 Ca= 0.527 
C a =  OA63 

O Ca=0.430 
O Ca=0.393 

A Ca= 0.352 
O Ca= 0.295 
V Ca = 0.248 

shear pow as a 

function of Me dimensionless time (Eqzlution 4.30). A stable equilibrium 

drop shape is obtained (Meijer and Bos 1989). 

O 
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Figure 4.32 b Drop deformation in supercritical simple shear pow as a function of the 

total applied deformation (or dimensionless time). The f i l l  curve 

corresponds to affine deformation, Equation 4.12 (Elemans 2989). 
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The transient experiment shown in Figure 4.33 is realistic in the sense that it compares to 

the passage of a drop along a kneading flight of an extruderscrew, see Paragraph 4.6. A 

drop is stretched in an elongational flow and, after cessation of the flow, breaks via the 

so-caiieci necking mechanism. Once the flow is stopped, two competitive piûcesses pïûcwd, 

both driven by the interfacial tension: (i) relaxation back to the original sphere and (ii) 

development of capillary waves, which is principally equivalent to the growth of Rayleigh 

disturbances on an infinite liquid thread. The overall relaxation of the drop is caused by 

the pressure difference over the interface (with principal radii of curvature R, and Rz): 

Ap = .[t+:] (4.46) 

At the ends of the thread, where R, = R, = R, Ap = 2a/R, while in the middle of the 

thread, where R, = 00, Ap = a/R. Thus, a pressure flow from the ends of the extended 

drop towards the centre is generated. Once a disturbance is present at the interface, also a 

ence develops, according to the same Equation 4.46, between the centre of 

the disturbance (smallest diameter) and the bulbous ends (largest diameter). In the 

experiment of Figure 4.33 the timescale for the growth of disturbances apparently is 

smaller than that for overall relaxation. Note the satellite drop formed in the last stage of 

the process from the filament inbetween the two main drops. 

As has been shown, in dispersive mixing both are important: shear rate and time. This in 

contrast with distributive mixing, where only the total shear and the number of 

reorientations or folds govern the process. 



f l o w  on f l o w  off  

8 

1 7 10 0.0 
Figure 4.33 Deformation of a 1.5 mm drop in the opposed jets device (2-D 

e~ongat i~nal  Bow) and breahp via necking aj?ey cessation of the jllow. 

The castor oil drop and the silicon oib mletraz both have a Newtonian 

viscosity of 0.7 Pa- s. 

In a number of figures the time has been made dimensionless with respect to the 

characteristic time for interfacial tension driven processes (Equation 4.301, ta = 77, 

to is compared with the characteristic time of the flow, tG = 1/T7 it follows that the 

Capillary number - defined before as the ratio between the shear stress and the interfacial 

stress - can also be interpreted as the ratio between these two characteristic times: 
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4.4.7 Numencal Simulations 

Apart from experiment al research, numerous numerical simulations of the dispersive 

mixing process have been pdormed, mostly fûî low Xeynûlds jz~mber Bûws. S û ~ e  CJ the 

more recent studies will be summarized here. Mhakhar and Ottino (1986) calculated Cacrit 

as a function of the viscosity ratio p for all strong linear 2-D flows (O < a 5 1, see Figure 

4.25). In these quasi equilibrium calculations the criterion yields whether a stable drop 

shape exists in a specific shear field. In Figure 4.34 their numerical results are compared to 

the experiments of Grace (1971) and Bentley (1986 b). With his computer controlled four 

roll mill, Bentley (1985, 1986 a) could realize all combined flows with O < a 5 1, by varying 

the speed of his rollers (diagonally) pair by pair. 

f t  is remarkable that for moderate viscosity ratios both Bentley’s and Khalehar’s curves for 

the different types of flow practically reduce to one curue (Note that Bentley’s results do not 

include simple shear flow, Q = O). This cannot be recognized in the original figures of 

Bentley (1986 b) and Khakhar and Ottino (1986), since they define Ca as qcGIt/c rather 

than q,(l+ol)GR/c (Equations 4.40-4.41). Their definition results in a bunch of curves. 
103 

102 

Camit 
101 

1 o0 

Khakhar &z Ottino (1986) 
a= O .2 .4 .6 .8 1 

Bentley & Leal (1986 b) 
(Y=  .2 .4 .6 .8 1 

Grace (1971) 
a r = o  1 

10-6 1 0 3  1 O0 103 
P 

Figure 4 - 34 Critical Capillay number as a finction of the viscosity ratio for 

different types of flow (compare to Figure 4.26). Full lines are numerical 

results, dashed and dotted lines represent e ~ ~ e r i m e ~ t ~ l  results. 
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Stone and Leal (1989 a,b) investigated several transient phenomena, using Newtonian 

liquids, both experimentally, using Bentley’s apparatus, and numerically (for axisymmetric 

elongational flow), with an analysis based on the boundary integral method. Figure 4.35 

shows the numerical results for an extended &ûp, ï d s k - i g  towuds uquilibrinm shape 

(sphere) in a quiescent matrix for different values of p. In their publications the 

simulations are compared to experiments such as in Figure 4.33. Once more, the 

competitive processes are overall relaxation towards a sphere and growth of capillary 

waves. Since the drops are extended quite far, growth of disturbances does not yield 

breakup by necking (breakage of a short thread via a dumbbell shape, see Figure 4.33) but 

by endpinching (drop by drop breaking from the ends of an intermediately long thread). 

Depending on the viscosity ratio p between drop m d  matrix and on the initid ~ X ~ ~ S ~ Q I L ,  

either endpinching or overall relaxation dominates. The smaller the d u e  ~f p, the faster 

the capillary waves develop resulting in endpinching. 

p = 0.05 

p = 0.1 

p = l  

. p = 7.5 

p = 10 

Figure 4.35 Relaxation and breakup via endpinching of an initially estended drop in 

a quiescent matrix; the time steps between subsequent pictares increase 

with increasing viscosity ratio p (Stone and Leal 1989 a). Reprinted with 

permission of Cambridge University Press. 
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A combination of simultaneously occuring processes is shown in Figure 4.36, where for p=l  

initially only endpinching occurs, while at the end of the disintegration process, breakup 

via the more regular Rayleigh disturbances (the breaking mechanism for infinitely long 

threads) is found. in aU these simlriations, which cûmpaïe extremely weU to the 

experiments, the flow was stopped once the extension requested was reached (the initial 

shape of the extended drop was taken from the experiments). 

Figure 4.36 

* 
t = 100 3 

C 3 

- * 
t = 240 

-3- 

Evolution of capilla y waves (Rayleigh disturbances) during relazation 

and breakup (via endpinching) of an initially highly eztended drop in a 

quiescent matrix. Broken droplets are not shown an subsequent time steps 

(stone and Leal i989 a). Reprinted with permission of Cambridge 

University Press. 



Also a reduction of the shear rate to a non zero value below Cacrit can be realized, see 

Figure 4.37. This figure shows the transient velocity field inside and around an initially 

extended drop during relaxation in an elongational flow field at 0.5 Cacnt. At p = 1, 

necking occurs, while at, p = iw more time is needed io develop a &s”eurbance and miire 

extension will take place before breakup occurs. 

4 -  

p = l  p = 10 

Figure 4-37 Internal and estemal velocity fields during the relaxation and breakup of 

a drop after a step reduction in the Capillary number to 0.5 Cacfit; the 

velocity vectors have been scaled differently for the two viscosity ratios 

(Stone and Leal 1989 b). Reprinted with permission of Cambridge 

University Press. 

~- ~ ~ ~~~~ ~~~ ~~~~ ~ ~~~ ~ 

Similar drop relaxation experiments with viscoelastic drops hardly show any difference as 

compared to Newtonian drops. The reason is the relatively (s)low deformation that does 

not yield serious molecular orientation (De << i), in contrast to Figure 4.20b (De N 1). 



4.4.8 Continuum Modelling 

At the end of this review on dispersive mixing, we address to the rigorous continuum 

modelling of Ottino’s group. In this approach to mixing modelling (see Paragraph 4.3.5), 

ais0 two phase flow with interiaciai tension, aEne deÎormaiion at CajCacrit >> i and 

disintegration of extended threads via the growth of Rayleigh disturbances can be 

incorporated. In their experiments, Tjahjadi and Ottino (1991) make use of an excentric 

Couette flow, the so-called journal bearing flow, which allows independent and 

discontinuous rotation of each rotor in either direction, see Figure 4.38. 
Period 1 Period 2 Period 20- 

Figure 4.38 Dispersive mixing in chaotic time periodic journal bearing flow; viscosity 

ratio is 0.01 in ezperiment A and 0.07 in B (Tjahjadi and Ottino 1991). 

Reprinted with pemission of Cambridge University Press. 
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A blob of a second (immiscible) liquid is extended, folded and deformed further via the 

flow induced by discontinuous rotor displacements. Via simulations, it is known a priori in 

which regions of the periodic flow high or low deformations and deformation rates can be 

redized. Depending on the timescde of the disintegration process, which strongly depends 

on the viscosity ratio, relatively thick threads break up already into big drops in the 

quiescent regions such as the folds. In the high shear regions the thread is continuously 

stretched counteracting the growth of Rayleigh disturbances (see Paragraph 4.4.3). It 

decreases in thickness until the growth rate of a disturbance with a smaller wavelength 

yields a local amplitude equal to the average radius of the thread that finally disintegrates. 

Because of the low value of p in experiment A, relatively thick threads quickly render big 

drops that breakup in subsequent stages oÍ the mixing process. In experiment B, the 

viscosity ratio is higher and, consequently (smaller bim, see Figure 4.191, the threads will 

decrease further in diameter before they disintegrate into smaller droplets, thus taking 

before breakup but yielding a finer dispersion via a one step disintegration 

process (see Figure 4.27). The comparison with theoretical predictions, see Tjahjadi and 

Ottino (1991), is amazingly correct. Clearly, all stages of the mixing process, from affine 

extension of large drops, via disintegration of threads, to deformation and breakup of 

relatively small drops, are present in this experiment which closely resembles a real mixing 

operation. 

From this approach it might be concluded that, for Newtonian liquids, multiphase mixing 

in any 3-D transient flow can be numerically modelled, provided that sophisticated 

software and powerful hardware are available. 
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4.5. Coalescence 

Until now, most of the fundamental research on the mixing of immiscible liquids concerned 

--PT Wn&ngj and $so in foodtechndogy, only are isoiated drops. m o ~ i  á p p ~ l ~ ~ ~ ~ ~  I+L rv!JIuvL 

of practical interest if at least 20% of the dispersed phase is prsent. Elmendorp (1986) 

concluded from experiments that already in the presence of a few percent of the dispersed 

phase coalescence becomes extremely important in immiscible polymer blends. At  even 

higher volume fractions phase inversion occurs; the exact fraction strongly depends on the 

viscosity ratio p. 

*L.&A.- ;= na--- 

The phenomenon of phase inversion is e ~ s g  to understand (stones in water will not easily 

change into w a W  in stone, upon addition of stones), bat difficult to model. Recently, a 

possible solution to the phase inversion problem has been suggested during the discussions on 

a conference after a lecture of Kraynik (1991), notably on computer modelling of the 

rheologs, of foam, see Reinelt and Krayaik (I9 . In order to avoid too much ebrapolation, 

however, only some important proven results on coalescence are reviewed here. 

Important in the modelling of coalescence is knowledge of the volume fractions and the 

external flow field, since the chance on, or frequency of, the collision of drops, as well as the 

contact force and interaction time, are determined by these factors. For a number of 

simplified flows, expressions for these three parameters can be derived, see e.g. Chesters 

(1991). If two drops meet, they initially approach according to the global velocity field 

until their distance is of the order of their radius. From therm, they influence the local flow 

field and the internal flow has to be taken into account. Prerequisite for coalescence is that 

the matrix material between the colliding drops is removed, see Figure 4.39. 



A 
B---- 

Figure 4.39 Film drainage between two deformable colliding drops in simple shear. 

Once the liquid film is thin enough, instabilities rupture the film and the drops coalesce. If 

the critical filmthickness hc7 which is of the order of 50 1, is not reached during the 

interaction time, the drops do not codesee and separate. For co&escence o€ deformable 

drops in low Reynolds Bows, the drainage of the liquid film is the rate determining step. 

Two extreme models are available for this viscous controlled film drainage: one starts with 

fully mobile interfaces, causing drag flow in the liquid film, the other with immobile 

interfaces, thus only pressure flow is generated. Figure 4.40 gives an impression of both 

extremes. 

Figure 4.45 Flow field in the liquid film between two defomable colliding drops for 

the case of a) fully mobile and b) immobile interfaces. 

For both models, the filmthickness h only asymptotically approaches zero and, after some 

time (the coalescence time t,), reaches the critical thickness hc7 where filmrupture 

suddenly occurs. For fully mobile interfaces it is found: 
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znd for immobile interfaces: 

- 3qCR2F 1 
tc - 16na2 [e-?] 

+ tc N R 1nR (4.48) 

+ t C N  F R2 (4.49) 

ho is the initial filmthickness at the start of the collision, which is basically unknown but 

can be approximated by the radius R; moreover l /hO2 is negligible, since ho >> h,. 

Elmeradorp (1986) showed, using immiscible polymer blends, that Equation 4.48 

s the experimental coalescence time while Equation 4.49 gives an 

overprediction. The general trend that small drops coalesce much faster than big drops was 

however confirmed. Relatively recently, Chesters (1988, 1991) proposed a theory based on 

partially mobile interfaces. This model predicts coalescence times inbetween the two 

extremes: 

tc N F1/2 R3j2 (4.50) 

The validity of Chesters) model is restricted; for p >> 1, the model for immobile interfaces 

is the relevant one, while for p << 1 the model for fully mobile interfaces should be used 

(Moreover, if qd is too low, the film drainage becomes inertia controlled). Chesters' model 

is the only one of the three available models that contains qd rather than qc. It is in 

reasonable consonance with Elernans) (1989) results and, at least qualitatively, predicts the 

experimentally determined influence of the absolute value of the viscosity of the dispersed 

phase Td (van Gisbergen and Meijer 1991). 



61 

Apparently, both the mobility of the interface and the viscosity of the dispersed phase 

influence the flow inside the drops and thus the drainage rate of the Liquid film inbetween. 

In polymer blends, compatibilizers, such as diblock copolymers, added to the system could 

immobilize the interface ana, mûieûwï, pre;~e~t tag dose UE spprnach during collision ~f 

drops. The less coarse morphology, usudly experienced when compatlbilizers are added 

(thus a decreased), is consequently due to (i) a delay of thread breakup because of a lower 

driving force yielding thinner threads and thus smaller droplets, (ii) an 

Capillary number enabling the flow to break even smaller droplets before the limit Cacnt is 

reached, and (iii) a prevention of coalescence. 

In contrast to emulsions and low molecular weight swpensio~s,  not enough attention has 

been paid t o  f i l ly  understand the influence of compatibilizers in polymer blends, despite the 

overwhelming amount of literature on polymer blending) reactive enkusion and the synthesis 

of diblock copolymers, tapered or regular, with different molecular weights. One of the 

Teasons is that, e.g. concerning the molecular weight of the two blocks, contradictory 

demands esist for example with respect to the prevention of micel formation, migration rate 

towards the interface, and effective adhesion in the solid state. The results of van Gisbergen 

et al. (1990, 1991)) showing a su~stantial increase of impact strength of Polystyrene 

Ethylene-Propylene Pubber blends, wit;% a diblock copolymer added, after irradiation with an 

Electron Beam in the solid state (!I, demonstrate that less obvious routes might be of 

particular interest in this field. 

A contradiction seems to be present, concerning the influence of the contact force, since an 

increase in F results, according to the last two models for film drainage, in an increase of 

tc. The reason is, however, that an increase in F causes an increase of the flattened area 

between the two deformable colliding drops, thus more liquid has to be removed over a 

larger distance. An important consequence of the relation between contact force and 
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coalescence time is that, during mixing, in regions of high deformation rates (thus high 

contact forces, but small interaction times) no coalescence will occur, although the collision 

frequency is high. Because of the high Capillary numbers in these regions, deformation of 

the U ~ G ~ U ,  -find17 ;nlt3!&~g breahp, .,-;i3 take I;ia~e there. TSS iri cûritïasi with the 

quiescent regions of the flow where no deformation but the more coalescence will occur. 

This feature can also be expressed in terms of the coalescence probability Pc, usually 

defined as: 

Pc = exp(-tc/ti) (4.51) 

where tc is the time re 

shear flow Chesters' (1991) model for partially mobile interfaces predicts: 

red for coalesceme ar,d ti the Pniterxtioar time (i/?). In simple 

pc = exp [ - c , - p ~ a  R 3 1  "3 
h C  

(4.52) 

with c, an unknown constant of order unity. From this equation it is clear that coalescence 

is favoured by (i) small drop radii, (U) low drop viscosity, and (iii) low Capillary number 

(i.e. low matrix viscosity, low shear rate, or high interfacial tension leading to a smaller 

flattened area). 

The final morphology of a blend is the result of the dynamic equilibrium between breakup 

of the bigger drops (Ca large) and coalescence of the smaller ones (Pc large) during mixing. 

Both processes occur preferentially in different flow regions of the mixer. As a consequence, 

the influence of different processing conditions - like screw design, shear rate and residence 

time, but even the quenching conditions after the mixing process - on the morphogy of a 

blend might be substantial. 

Io 
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4.6. Polymer Blending in Practice 

In this paragraph, an example is given of a single small dispersed drop passing a kneading 

Uight in an extruder, in fact a transient flow situation, compare tu  Figure 4.33. Typically, 

the size and operating conditions of laboratory equipment are chosen, although scale up to 

industrial size is easy to realize. The screw, with a diameter D = 25 mm, can be one of the 

screws of a corotating twin screw extruder, part of the metering section of a single screw 

extruder, or basically part of any continuous or discontinuous mixing apparatus. Channel 

depth H = 4 mm, length L/D = 5, flight clearance S = 0.2 mm, and flight width B = 4 

mm. At a screw speed N = 400 rpm, the shear rate over the flight is typically: 

(4.53) 

As a model system, PS, with a viscosity at this shear rate qd = 100 Pass, is dispersed in 

HDPE, 7, = 150 Pass; therefore p A: 0.7, while the interfacial tension between PS and 

HDPE at the mixing temperature of 200W equals a = 5 - 1 O 3  N/m. The local Capillary 

number for a drop with diameter a = 2 pm equals: 

V c W  
Ca = -=75 a (4.54) 

The residence time in the gap between flight and barrel wall is small, however: 

B -3 t = -~8.10 s 
V 

(4.55) 

which yields a dimensionless residence time: 



a * 
t = t-= 0.3 

qcR 
(4.56) 

Although Caoit is largely surpassed (see Figure 4.26), the residence time is too short for 

coapktioiì of S ï e d c q ,  see figfire 4.30. Becaiise Ca :: Cacnt, afine deformation o€ the 

drop results. With the total shear in the clearance: 

y = y = 2 0  (4.57) 

the length L and width B of the extended drop, after the passage, equal according to 

Equations 4.13-4.14: 

L/a M y = 20 + L = 4 O p  

B/a N = 0.2 =+ B = 0.4 p 

The shear rate in the screw channel is much lower: 

- TDN - -1 - -- 125s 
6 0 B  

(4.58) 

(4.59) 

(4.60) 

- 6 3  At a typic& throughput Q = 5.10 m I s ,  the resdence time in tLxe screw channel equals: 

(4.61) FDLH t = -=$s 
Q 

This time is sufficient for the disintegration of the thread (extended drop) via Ftayleigh 

disturbances, see Equation 4.29. The final number and size of the droplets formed can be 

estimated from Equation 4.32 and roughly yields 15 droplets of 0.8 p. 
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This simple ezample clearly illustrates that usual gapsizes are more than sufficient for 

breakup of even the smallest drops, albeit via a diflerent sequence of local processes than 

generally thought. Standard compounding does not yield fine dispersions as predicted by this 

simple application of the existing knowledge of dispersive mising. An 03zr.io~us ~ e a s o ~  is the 

presence of coalescence, the importance of which was already stressed in the previous 

paragraph. Another cause is that not all material might pass the high shear region, as 

already clearly illustrated in the simplified modelling of the dispersive mazing of carbon black 

in rubber, using Banbuy type of batch mizers, see Manas et al. (1982, 1984). Since not only 

in batch migers, but atso in continuous eztruders, the fiequency of passages through the high 

shear section in the circulating flow directly depends on the gapsize, it sometimes might be 

wise to use worn screws. Manas et al. came to the same result, provided that the viscosity of 

the matriz was large enough to yield a shear stress which is Bigger thun $he cohesive stfess, 

even for non-optimal oriented particles. In the case of mixing immiscible liquids, a detailed 

investigation of the influence of Ca, p and t', but especially of the viscoelasticity of the 

dispersed phase on deformation and breakup during the passage through a narrow gap (i.e. 

transient flow conditions), could give more precise conditions for the optimal gapsize. 

In the practice of polymer blending, experimental evidence of the sequence of local 

processes in mixing of immiscible liquids can be found. A beautiful example is given in 

Figure 4.41, which shows a longitudinal section of a part of the strand formed after leaving 

the die of a corotating twin screw extruder. The blend consists of the model system 

PSIHDPE. Figure 4.41a was obtained, of course after staining, from a directly quenched 

strand. The matrix is HDPE; the extended filaments of PS have been formed in the 

converging flow to the die; hardly time for either disintegration of the filaments or 

coalescence was available. Figure 4.41b shows the same strand, now quenched only after a 

few seconds residence in the circumventing air by increasing the distance between the die 

and the waterbath somewhat. Disintegration of the thinner threads into lines of droplets 
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now has been completed. Notice the order of magnitude of the final dropletsize, compared 

to the prediction from the calculations in the simple example treated above. 

Figwe Breaking ?,§ threads in a H W E  matrix. The blends were prepared using 

a corotating twiiil smew extruder with: a) quenching immediately after 

the die or b) several seconds between die and waterbath (Meijer et al. 

1988). Reprinted with permission of fluthig und Wepf Verlag. 
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4.7. Conclusions 

In the initial stages of mixing of immiscible liquids, the typical lengthscale of the minor 

component is such large that Ca >> Cacrit and mixing is only distiiltütive (passive 

interfaces). The deformation of disperded drops is affine, just as if the liquids were 

miscible, only the total shear matters. Most important is the introduction of periodic folds 

via a practical realization of the baker’s transformation, yielding an exponentid increase of 

the interfacial area with total shear rather than a linear increase. In the analyses and 

design of efficient mixing equipment, attention should particularly be focussed on the 

avoidance of regular islands: regions in the flow that do not effectively deform, but only 

translate and rotate, since mixing quality is always determined by the non-mixed fraction. 

The a f h e  deformation in the flow causes the drops to extend into long slender threads, 

until local radii are reduced such that Ca z Cacrit (z 1). The quid threads become 

unstable and disintegrate caused by interfacial tension driven processes (active interfaces). 

The most important mechanisms are the growth of uniform Rayleigh disturbances in the 

mid part of the thread, endpinching at both ends, retraction, and necking in case of 

relatively short dumbbell shaped threads. During dispersive mixing deformation rate and 

time are not interchangeable such as in distributive mixing where only the total shear is of 

importance. Therefore attention should be paid to the timescales of the competitive 

processes which strongly depend on the viscosity ratio and on the elastic properties of 

especially the dispersed phase. Quasi equilibrium data can give evidence whether drops 

once formed will deform further leading to breakup or whether they will reach a stable 

deformed shape. Interestingly, the final results in terms of the average dropletsize of a fast 

deformation in a high shear region, sustained long enough to yield extremely large drop 

deformations, followed by disintegration of the dtrafine threads formed, in a quiescent 

region of the flow, should not necessarily be the same as a step by step process of repeated 
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extension and breakup, for the same total energy consumed in the mixing process. 

A morphology once formed may coarsen due to coalescence of colliding drops of the 
--J Al-- p - 7 3  &spersed pliave. Apart uol, the -volume fïaetiûiis ûf the Cûil3tiiüeniS auu b u t :  UOW Iiem 

externally applied by the mixer, the viscosities of both phases, the interfacial tension, and 

the mobility of the interfaces are the parameters that govern the mechanism of coalescence. 

In viscous controlled coalescence, the rate determining step is the drainage of the liquid 

film between the, somewhat flattened, colliding drops. From simple theories it can be seen 

that, in contrast to drop breakup, coalescence occurs in quiescent regions rather than in 

high shear (rate) zones. If a collision proceeds too fast, the liquid film has not yet drained 

sufficiently to disrupt and the drops separate. 

Appiication of the existing theories to blending of polymer melts, requires an extension of 

the research to viscoelastic liquids. Although a number of discrepancies can be found in the 

results of different researchers (Flumerfelt 1972, Chin and €Ian 1979 and 1980, Goren and 

Gottlieb 1982, Bousfield et al. 1986, Cruz-Mena et al. 1988 and de Bruijn 1989), 

experiments in our laboratory indicate that viscoelasticity has a pronounced effect on 

especially the timescale of the different processes involved in mixing if both the 

deformation and the deformation rate are sufficiently large (De large). 

Most results of the theoretical and experimental research on the different stages of the 

mixîng process are expressed in dimensionless numbers, like Ca, p, 7, t , D etc. In 

principle, an extrapolation of the results obtained with model liquids to practical systems 

with polymer melts is possible. Moreover, it has been shown that relatively simple 

experiments and restrictive models of elementary steps may already yield conclusive 

results. Apart from further refinement, a connection of the various models into an overall 

theory is an interesting challenge for future research. 

* 
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Appendix 4.A. Determination of Interfacial Tension 

Many methods have been developed to measure the interfacial tension between two 
iu l~s&ie  S q - ~ & .  For po~yuleT sy-Y~ems, spiiiïing in &fferent (qjeriaeiital 

setups, the pendent drop are frequently used. Carriere and Cohen (1991) use a technique 

for the determination of interfacial tensions, based on the relaxation of a deformed drop 

back to a sphere. They embed a short fibre in a matrix, heat the system and analyse the 

progress of the relaxation to a sphere. Since thick and short fibres are used, the timescale 

for the evolution of capillary Rayleigh instabilities is not reached within their experiments, 

that may last for even a few hours. 

In this review, the growth rate of Rayleigh disturbances, caused by the interfacial tension, 

has been summarized and it has been noticed that the quantitative theory of Tomotika for 

Newtonian liquids was already developed in 1935. Knowing that polymer melts are by far 

ideal Newtonian liquids, but realising that as long as the deformation rate is small, thus 

the typical process time t is long, compared to the relaxation time O of the melts (Deborah 

number De = O/t << i), the zero shear viscosities can be used and the problem can be 

inverted: From the growth rate of the disturbances on an infinite thread, the interfacial 

tension can be determined, see Elemans et al. (1990). Provided that no yield stress is 

present and somewhat care is taken in the sample preparation (uniformity of the thread, 

length to diameter long enough to prevent a disturbing influence of endpinching), this easy, 

flexible met hod gives reproducible results, without requiring accurate information on the 

densities of the polymers at the experimental, high temperatures. 

A thread of one polymer with a diameter of, for example, 20 pm obtained from a 

meltindexer, a Fanno process (tubeless spinning) from a molten granule, or from a 

somewhat more sophisticated spinning process, is placed between two films of the other 



74 

polymer at roomtemperature. The system is subsequently heated in a hot stage probe of a 

microscope. Since everything is slow (an experiment may reach from several minutes to a 

few hours, depending on the diameter of the thread, the viscosities and the interfacial 

tension), residual stresses, iÍ present, wid easily relax during the heating step. &%mitvring 

of the growth of the disturbances as a function of time (videotaping is instructive but 

simple photos are sufficient) and plotting the amplitudes on a semilogarithmic scale, 

directly yields the growth rate g ikom the slope of the line, compare Equation 4.24. §ee 

Figure 4.A.1. 
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Figure d .A* l  Plot of the relative amplitude versus time for the PA-6 thread (2R0 = 

55 pm, qd = 425 Pa- s) in Figure 4.16, in a PS matris (qc = 1000 Pa- s) 

at 230° C. Eqemmental and theoretical dominant wavenumber are close: 

0.60 and 0.61 (Elemans et al. 1990). 

From this growth rate, using Equation 4.25, the interfacial tension can be obtained: 

(4.A.1) 
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No information on the initial disturbances is necessary, neither on the final disintegration 

time, which always will show a somewhat local character. Moreover, a direct test on the 

quality of the experiment is available, since the experimental wavenumber X (= 27rR0/X) 

must be ideniicd io the theoreiicd dominant number Xm, see Figure 4.19. 

The influence on the interfacial tension of the presence of a compatibilizer, can be 

experimentally determined via mixing the compatibilizer in the first polymer, prior to 

spinning. The results of an addition of a Styrene-(hydr0genated)Polybut adiene &block 

copolymer to the model system HDPEIPS on the resulting interfacial tension, measured 

with this so-called breaking thread method, is given in Figure 4.A.2. 

Figu 4 . ~ ~ 2  

5 ,  I 

---> wt. % diblock-copolymer 

Interfacial tension between PS m a t ~ z  and HDPE thread (measured a, 

200OC using the breaking thread method) versw weight !% of a dibtock 

copolymer added to the thread phase (Elemans et al. 1990). 

No further decrease in interfacial tension is found if more than 1% compatibilizer is added. 

As expected, this is reflected in the final morphology of the blend after compounding as 

well, see Elemans (1989). 
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initial interfacial area 

diameter of a drop 

width of a deformed drop 

Capillary number ( qcqR/cr) 
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principal radii of curvature 
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absolute temperature 
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flow type parameter 

amplitude of a disturbance 
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viscosity of the continuous phase 

viscosity of the solvent 

relaxation time of a liquid 

wavelength of a disturbance 

dominant wavelength 

density 

interfacial tension 

shear stress 

volume fraction spheres 

dimensionless growth rate of a disturbance 
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-b 

U 

X 

$ gradient operator 

velocity vector with components (u,v,w) 

position vector with components (x,y,z) 
-b 

C 

D 

F deformation tensor 

E velocity gradient tensor 

right Cauchy-Green tensor ( FC - F) 

rate of deformation tensor ((L+Lc)/2) 

spin tensor ((L-L')/~) 




