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Abstract

Currently, most industrial manipulators use controllers that do not take the flexibility of links

into account. To position the final link that holds a tool or a payload (end-effector), often

classical PD-controllers are used. In most cases these controllers give an acceptable

performance because of the extreme rigidity of the links.

In order to develop a new generation of industrial manipulators that can operate at higher

speeds or with lower power consumption, the mass of the rigid links must be reduced, The

reduction of the link mass leads to a more flexible construction in which it is no longer

acceptable to neglect the deformation of the link due to bending forces. Such a link will

be referred to as a flexible beam. To maintain accuracy in positioning the end-effector,

the displacement due to the flexibility must be taken into account by the controller.

The model of a flexible beam presented by I. Kruise (Chapter 3) shows that we are dealing

with a non-minimum phase system. Simulations with this model using a feedback controller

show that the first mode of the flexible beam is the most significant one. It is possible to

position the beams tip (with limited accuracy) by controlling this mode.

In literature many flexible beam controllers are presented. Computed torque controllers

show the best performance, but this is hardly verified by experiments.

This report deals with the realisation of an experimental flexible beam set-up to test different

controllers presented in literature. Up to now a feedback controller is implemented on the

set-up. This controller rapidly damps out the occurring oscillations but is restricted by input

saturation of the servo-amplifier.

Subjects that require further investigation are the influence of the non linearity of the servo

amplifier, the effect of the sensor mass on the flexible beam, the modelling of the friction

occurring in the system and the implementation of more advanced controllers.

Realisaflon of an experimental flexible beam set-up
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Chapter 1

Introduction

In a recent survey (Journal A, ABB survey on Robotisation today, MUnchen, 1992) on world

wide robotisation, Japan is being pointed out as world leader in the deployment of robots.

Japan has 16 robots stationed for each 1000 production workers. With an average of 2 or 3

robots per 1000 workers, the rest of the industrialised world forms an enormous potential

market. Furthermore, market analyses reveal a continued growth even for Japan itself. As a

result optimists among the producers of industrial automation systems believe that their

mean annual turnover will keep growing by 10% for the next number of years. In absolute

figures, 300.000 robots are being deployed world-wide (of which 180.000 in Japan).

The estimations of the future market for industrial manipulators justify further research on the

improvement of these products. The survey also mentioned the expectations regarding the

future of robotisation; besides more quality and reliability of the production process,

approximately 60% of the automated industry expected production costs to decrease and

production speed to increase. In this respect, improvement can be achieved by increasing

the working speed, and by decreasing power consumption of the actuators. Either of these

goals can be reached by lowering the weigth of manipulator links. Because of the heavy

weight link constructions, in present manipulator configurations the payload to robot mass

ratio varies between 3 to 5%.

Robots (in general: industrial manipulators) can be used for trajectory tasks (welding,

assembly or glueing) and pick and place tasks (materials handling or spot welding), In this

report only position control will be considered. The rigid heavy weight links allow the

deformation due to the bending forces to be neglected. Therefore controllers that position

the end-effector (this is the point on the final link with the payload) only need to control as

many degrees of freedom as there are links. With a position sensor attached to every link,

the end-effector can be positioned for instance with a PD-controller, In general, when the

link’s weight is reduced it becomes more flexible. In case of a flexible link, negligence of

bending forces is no longer acceptable and the effect of flexibility has to be compensated

by the controller. The aim of this report is to give an introduction to the modelling and

control of a flexible beam. It must be emphasised that the controllers presented in this

report are no solution to the general problem of flexible manipulators.

Realisation of an experimental flexible beam set-up
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At TNO Institute of Applied Physics (TPD) a project is initiated to obtain an experimental set

up to be able to test flexible beam controller performance. Although many arlicles have

been published about different concepts of flexible beam control, very few articles deal

with the practical verification of these theories. The experimental set-up enables us to

implement and compare the controllers presented in literature, In Chapter 2 a literature

review on this subject is presented. The review is divided in static deflection-, feedback-

and computed torque controllers.

In Chapter 3 a model for the flexible beam is presented. It shows that a flexible beam has

an infinite number of DOE’s (degree of freedom) or modes. Theoretically speaking an

infinite number of sensors is necessary to control the beam with a feedback controller.

However in our case only a few of the doffs are significant for the displacement of the end

effector. This allows the feedback of these significant modes in order to control the end

effector.

Chapter 4 describes the experimental set-up that is recently installed at TPD. The

experimental set-up of a flexible beam will be used to verify the results of the simulations

described in Chapter 5. The actuator of the system is a servomotor/gearbox combination

with amplifier. On the shaft of the gearbox a hub is installed which clamps the flexible

beam.

A design for a feedback controller is given in ChapterS. In this controller only one vibration

mode (the most significant mode) is fed back. The performance of this controller is

compared with a conventional PD-controller as used for rigid links.

Chapter 6 presents conclusions and recommendations for future research.

Realisation of an experimental flexible beam set-up
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Chapter 2

Literature Review

2.1 Introduction

To be able to control light weight links, a thorough knowledge of the consequences of

flexibility is necessary. By reducing the weight of the links, the displacements due to

bending forces can no longer be neglected. The links change from rigid to flexible beams

and the payload to robot mass ratio can now be increased to a 100 % or more. An existing

example of a light weight link is the cable of a building-crane, with link to payload mass

ratios of far over 100%. The deformations due to bending forces in the link, make accurate

position control of the end effector more difficult than in the rigid case.

An often used solution to the problem of flexibility is to only compensate for the static

deflection. Literature concerning this kind solution is regarded in the next section.

The dynamic flexible beam controllers can be divided into two groups. The first group

consists of controllers based on feedback of the displacement (and eventually time-

derivatives) of the end-effector. The second group calculates the input signal of the system

by using the known system dynamics. These controllers are known as computed torque

controllers, and are sometimes combined with a feedback controlloop.

In this Chapter a literature review is presented. The three kinds of controllers will be

discussed separately in sections 2.2, 2.3 and 2.4.

2.2 Static compensation control

In Modelleringsalgoritmen voor Industriele robots wriften by F, Lucassen (‘90) a solution to

static deflection with FEM methods is presented. The control methods suggested are both

model based, i.e. MRAC (Model Reference Adaptive Control) and Inverse dynamics

(equals computed torque), but they do not account for the flexibility during the

movements. Additionally an advanced measurement system for the position of the end

effector is used. This is a Laser interferometer that is capable to detect displacements less

than 0.1 mm so that the amplitudes of the higher modes (above 100 Hz) can be detected

(this is necessary in case of dynamic control of flexible links).

ReaIisat~on of an experimental flexible beam set-up
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Implementation of a flexible link model in a designed robot system using finite element

method by K. Drent (‘88), discusses the deflection of the end effector due to flexibility of

the link. The goal set by Drent is to improve positioning accuracy by compensating the

static deflection (deflection due to gravity forces). After compensation a payload of 35 kg

can be positioned with an accuracy of 0,05 mm, which is a remarkable result,

2~3 Output Feedback controllers

These controllers use the measurements of the systems sensors to create an input signal.

Often these controllers use known system dynamics to observe states, or to calculate the

feedback gain.

In Perturbation techniques for flexible manipulators AR. Fraser (‘91) describes different

modelling techniques to simulate the system response. Some feedback controllers are

tested at different positions in the closed loop. The goal of the controller is to provide extra

damping of the transversal vibration modes. The best overall performance was given by

the controller in the feedback path. This result supports the controller design of the

experimental set-up. A second useful conclusion concerns the influence of the endmass on

the system stability; a varying payload might result in an unstable closed loop responce of a

non varying controller.

In “Aktive schwingungsdampfung an einem elastischen knickarmrobot H. Henrichfreise

(‘87) uses state-feedback control. Because not all states can be measured a (model

based) observer is added, This observer is non-linear and can observe the unknown states

much beffer than its linear version. This improved performance is compared to

conventional observers, and is found to be superior.

The Ph.D. thesis Modelling and control of a flexible beam and robot arm” wriften by I. Kruise

(‘90) discusses the complete process of modelling, controller design and experimental set

up. An abstract of the model is printed in Chapter 3 and Appendix A of this report. The

controller design is based on feedback of the systems state. Two state-feedback controllers

are presented, namely a LQG controller and a pole placement controller. Furthermore a

robust controller design is presented. These controllers are compared to a conventional PD

controller that neglects the flexibility of the beam. Although the model of the flexible beam

has an infinite number of modes, Kruise assumes that fo the beam deflection only the first 3

modes are significant. Next to a one-link experimental set-up, he also describes a two-link

Realisation of an experimental flexible beam set-up
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robot arm including controller design. Both set-ups operate in a horizontal plane and show

an acceptable performance compared to the PD-regulator.

Active vibration control of a motor system by H,,, control by Shigeto Ouchi et al. (‘92) deals

with a H,, controller that reduces the torsional shaft vibrations by filtering (weighting) in- and

output signals. Only one vibration mode is regarded and the higher modes are treated as

plant uncertainty. This uncertainty can be translated into an output weighting function.

Weighting functions together with known systems dynamics result in a feedback controller

(fourth order) that suppresses higher vibration modes. The performance of this control

approach is compared to a traditional P1-controller and is found to be superior in

suppressing higher vibration modes. This result might also be useful in case other model

uncertainties like friction occur.

2.4 Computed torque controllers

Computed torque controllers use the known system dynamics to calculate the system input.

The desired setpoint or trajectory is used as an input for the inverse dynamics. The output of

this calculation is equal to the input signal needed to make the system follow the desired

movement. A problem with computed torque controllers, is that the flexible beam system

has

more doffs than outputs. The flexible beam with payload has a regular system matrix but

when calculating on-line we can encounter numerical problems, Mostly these problems

result in an unstable solution for the desired movement.

‘An inverse dynamics based closed-loop trajectory tracking control for a flexible arm by E.

Bayo (‘91) presents a controller that combines the output of an inverse dynamics algorithm

with a Linear Quadratic Gaussian regulator (LQG). Because the model used for inverse

dynamics is never exact (due to friction or other unmodelled dynamics), the LQG controller

is added for compensation of tracking errors. A major disadvantage is that the inverse

dynamics process is executed off-line, A movement can only be performed after some

calculation time and the off-line algorithm leaves no hope for possible adaptive features.

Nevertheless the simulations show that in spite of the rapid movement, no vibrations are

excited. Furthermore the control algorithm seems robust against disturbances at the hub

and errors in the tip position.

“Tracking control of a non-minimum phase flexible manipulator” wriffen by D. Kwon and W.

Book (‘91) presents the same kind of controller as the above mentioned paper. Again the

computation of the system input is done off-line. Besides the input torque, the desired

ReaIisat~on of an experimental i9exible beam set-up
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trajectories of flexible co-ordinates are calculated. These flexible co-ordinates enable

additional feedback control for optimal tracking performance. The controller designs are

tested on an experimental set-up for zero- and non zero initial conditions. For the non zero

conditions the flexible co-ordinates are divided into a rigid body component, a causal and

an anticausal part. In this way the effect of the non zero initial condition will only influence

the anticausal part, For the rigid body component and the causal part a known non zero

condition will be canceled by taking it into account in the calculation of the system input.

The controller presented in the article is said to have a fast tracking convergence in spite of

small initial tracking errors. The author explicitly states that the non-minimum phase

behaviour of the flexible beam can be cancelled by the inverse dynamics controller.

A recent Ph.D. thesis by I. Lammerts called “Adaptive Computed Reference Computed

Torque Control of Flexible Manipulators (‘93) describes an on-line method to calculate an

input signal with an extended version of computed torque control (CTC). In spite of the

numerical problems in the case of on-line computation of unknown reference trajectories,

the results are satisfying. If a numerical solution for the on-line computation problem can be

found, adaptive CRCTC will enhance the performance of this controller. The control

technique presented by Lammerts offers a general solution to the problem of flexibility, and

it might be interesting to implement it on an experimental flexible beam set-up.

In a masters thesis wriffen by D. Heijman various control techniques are presented. A fuzzy

logic controller defined in an article by J.V. Kim (Vibration control of a flexible beam using

Fuzzy Control Theory) is found to perform very badly. Furthermore a pole placement

controller is described for setpoint control and its results were said to be good. For trajectory

control, part of CRCTC theory is used, to generate bounded desired trajectories.

Analytically determined trajectories result in good performance, however if this done by

numerical integration the results are not satisfying. The model presented for a flexible beam

also includes (high speed) non linear terms. Therefore it might be interesting to use this

modelling in future research.

Realisation of an experimental flexible beam set-up
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Chapter 3

Model of a flexible beam

3.1 Introduction

In order to simulate the behaviour of flexible beams we must derive a model. We also need

this model to implement the model based controllers. In many arllcles models are given for

flexible beams. In this report an abstract of the derivation in Modelling and control of a

flexible beam and robot arm by I, Kruise is given. Because the model of a flexible beam

carrying a payload is fairly general, this derivation is presented. In section 3.2 the model of

the system actuator will be added to the flexible beam model.

3~2 Model of a flexible beam with payload

The derivation of the model can be found in Appendix A. 1 The assumptions made for this

derivation are:

— The material behaviour is isotropic linear elastic with Young’s modulus E

— The beam axis is inexlensible

— The delections due to flexibility of the beam are small compared to the length of the

beam(W(X,t)<< L)

— In the stress-free situation the beam cross section is rectangular with cross sectional area

A and length L

— There is no shear deformation

— The velocity of the imaginary rigid body movement is small compared to the lowest

angular velocity of the occurring flexible modes (0b <<o~)

— Translations as a rigid body are suppressed by fixation of the hub (origin, see figure 3.1)

to the ground.

The deflection of the beam is approximated by the function W(X,t) that is a sum of products
of a time depending part q(t) and a position depending part p(X):

W(X, t) = ~ p1(X)q1(t) (3.2.1)

Realisaflon of an experimental flexible beam set-up
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Figure 3.1 Definitions for the flexible beam.
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The derivation in Appendix A. 1 yields a set of ordinary differential equations for the time

depending parts of W(X,t):

where:

o~2q~ +2C~o~~~ +~, = c~fleb ~

= eigen mode frequency clamped free beam
= eigen mode relative damping coefficient

(3.2.2)

=~~+m~~*

pAL
I,Ln

‘In

— m~p~(L)q~(L)

‘In

The index ‘n’ represents one of the beams infinite number of modes. Because the hubangle

eb will be measured and not it’s second time derivate, we modify equation 3.2.2 by

integrating it twice:

+ 2~o~3~ + ~n = —afl eb — ~ (3.2,4)

The simulation of the flexible beam behaviour is performed in matrix notation, therefore the

differential equation has to be converted to the form:

where:

Wp+Rr5+~=-aeb -F~

pT=[p1p2p3}

(3.2.5)

/ 0 e=o

Realisation of an experimental flexible beam set-up
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0)2 ~ 2~o~ QT

w= 0 U)~ 2~2co2
• •

0 ~ 0)2 o •.. o ~

~11 ~12 ~1n

aT = ‘~2 ,a3 , . ..], F = 1~21 ~22

l3flfl

If we order the term of equation 32.5 properly, we obtain:

(I+F)~+R~+Wp=—c~b; ~5=q (3.2.6)

In this equation for the modal motion q the term ‘(l+F)’ represents the influence of a

payload in the systems equation ( F solely contains B terms, which in turn contain the
payload m~ ). An increase of payload will decrease the eigenmode frequencies of the

(clamped free) beam. The R term represents the damping coefficients of the

eigenmodes. The W term contains the square of the eigenmode frequencies. The right-
hand term represents the system input i.e. the hub angle eb multiplied by the vector c~

that depends on the material and geometrical properties of the link and the mass of the

payload.

A modified version of this equation (See appendix C) is used to simulate the behaviour of

the flexible beam. Theoretically the dimension of the matrix in equation 3.2.6 is of infinite

order (n —~ oo), therefor we have to limit the number of matrix entrances by decreasing the

number of modes that are taken into account. This reduction will be carried out later on in

this report.

Since we are mainly interested in the position of the end-effector i.e. the payload and
W(X,t) only expresses the deflection from the imaginary rigid body ( hub-) angle eb, the

angle €~ (see figure 3.1) is defined:

e0 Z~eb + W(L,t) eb +~~(Pfl(L)~fl(t)=eb~ (3.2,7)
n=1 ri=1

Realisation of an experimental flexible beam set-up
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The given relation is applicable only if W(L,t) << L. From now on €~ will be the controlled

output of the flexible beam system.

3.3 Actuator model

To actuate the flexible beam a servo motor is used. The assumptions made for the servo

motor system are:

— The servo system provides an angular velocity to the flexible beam system

— The servo system can perfectly be modelled by a first order system

The system input is the servo-amplifier input signal u. In Kruise (‘90) the following equation

for the servo system is given:

= KPA , u; eb =KAu (3.3,1)
n(Km+Kd )

We must also account for the torque that the link will impose on the hub, for this will affect

the equation of motion of the hub. This is carried out by a feedback loop (see figure 3.2) in

Where n represents the gear ratio,

Km Motor constant (Nm/A)

KPA = Gain of the power amp. C-)

Kd = Velocity feedback gain (Vs)

Kd’ =~-~-Kd (3.3.2)

q=~1

I I
Figure 3.2 block diagram of the servomotor.

Realisafion of an experimental flexible beam set-up
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El “ 0which the feedback torque is represented by the term The feedback loop can
n

also be regarded as feedback of the elastic energy present in the flexible beam. The total
equation of motion for eb can be obtained from the block diagram of the servomotor (see

figure 3.2).

The resulting equation of motion for the hubangle is denoted by:

€~b=r~(p (0)~S~+KAu (3.3.3)
1=1

where:

r= ElRe = KPA R~= Rotor resistance (~) (3.3.4)
n m m+d m d

When equation 3.3.3 is substituted in equation 3.2.7 the equation of motion for the
controlled output €~ is obtained. The state space matrices that are used to simulate the

flexible beams behaviour are defined in appendix C.

ReaUsation of an experimental ~exible beam set-up
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Chapter 4

Experimental set-up

4.1 Introduction

The freedom in the design process of the experimental set-up was restricted by a number

of predetermined conditions. These conditions will be brought up in the following sections

Besides these conditions a number of design demands where stated in the description of

the assignment:

1. The experimental set-up will be used to test experimental flexible beam controllers.

Besides testing the controller performances, demonstrations must be performed,

2. The experimental set-up should be able to function in a horizontal as well as in a vertical

plane. This can demonstrate the performance of controllers that take gravitational

forces into account.

3. The set-up should offer possibilities to vary parameters such as the beams Young’s

modulus or payload. These varying parameters will be used to test adaptive and/or

robust controllers.

In the next section the dimensioning of the flexible beam will be considered. The choice of

sensors is explained in section 4.3. In section 4.4 the selection of the servomotor/gearbox

combination is discussed. Section 4.5 deals with the assembly of all components in the

entire set-up.

4.2 Dimensioning of the flexible beam

A design demand for the experimental set-up was that it would be suitable for

demonstration purposes. After implementation of the flexible beam controller a spectator

should be able to notice the difference between a classical controller and the flexible

beam controller. As the human vision is capable of following oscillating movements up to

20 Hz, the frequency of the first flexible mode must be lower than 20 Hz. To obtain a slowly

oscillating beam, the actual frequency is designed to be approximately 5 Hz.

Realisation of an experimental flexible beam set-up
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The material of the beam was chosen to be aluminium because of its low Young’s modulus.

Design demand 2 implies that the plane in which the beam moves can be changed by an

operator. This constrains the weight and dimensions of the total set-up. The housing of the

total set-up is a steel cube with edges of 400 mm. The weight (gravitational force) of the

cube is presumed to invoke enough friction to fix the set-up to its foundation.

Using equation A.2.6. we can calculate the eigenfrequencies of each mode.

~2 El(~)4 ~=2~f (4.2.1)
pAL

1 El(’~A ~14
L=41 ‘‘ / (4.2.2)

~ pA(2icf)~

with:

E =7,0*1010 [N/m2]

I =2,5*10_12 [m4]

71L=1,87510 [—]

p =2,7*103 [Kg/me]

A =b*h=3*102*1*10~=3*10~ {m2j

f =5 [Hz]

This results in L = 405,6 mm for the length of the beam. The length of the beam is chosen to

be 430 mm. This results in the following frequencies of the eigenmodes (unloaded):

Table 4. 7. Frequencies of the first five elgenmodes,

~ [Hz]

1 4,4485

2 27.8781

3 78.0594

4 152.9653

5 252.8626

The mass of the beam can easily be derived by:

m=pAL =2,7.10~ *0,03 *0001*043=003483[Kg] (4.2.3)

Realisation of an experimental flexible beam set-up
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To verify the accuracy of the model presented in Chapter 3, an auto-powerspectrum is

calculated from a measured time-domain impulse response. The time-domain signal is

generated by an accelerometer and sampled with a frequency of 256 Hz by a bk 2032

(Bruel & Kjcer) signal processing unit. The acceleration signal is printed in figure 4.1.

Cl)

C

0)
0)
C.)
C.)
C’~

0 1 2 3 4 5 6 7 8

time [sJ

Figure 4.1 Time-domain impulse response.

If we use a hanning window and perform a FFT calculation on the windowed signal, the

frequency components of the flexible beam system can be determined. The resulting auto

powerspectrum is printed in figure 4.2.

Since the impulse was invoked by a flick of a fingernail, we don’t know the exact frequency

contents of the input. Therefore, we can not obtain any absolute values of transfer

functions. However the frequencies of the eigenmodes and the damping of these

eigenmodes can be retrieved form this measurement. The damping of each mode can be

found by filtering the signal from figure 4.1. This filtering is carried out by a fifth order

Bufferworth filter (see Appendix D). The resulting bandpass filters are tuned to filter out one

eigenfrequency. Figure D.2 (Appendix D) shows the first three filtered eigenfrequencies.

(The same results were obtained using Kalman filters).

Impulse response of flexible beam
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m
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8
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Auto-powerspectrum impluse response of flexible beam

Figure 4.2 Auto-powerspectrum of the flexible beam.

The impulse response of an undercritically damped system can be approximated by the

function:

q1(t) = A,sin(2~tI~t + 0.). e~°>’ (4.2.4)

with e_t~i as the damping term. The value of ~ is determined by the exponent of the

best matching curve to the amplitude decrease. The damping terms of the first two modes

are determined in Appendix D (figure D.3 and D.4). In table 4.1 the first three frequencies of

the eigenmodes from figure 4.2 are compared to the calculated values of these modes.

The calculated values refer to a beam with an accelerometer ( mass: 10 grams):

Table 4, 1 First three elgenmode frequencies

n f~ (Hz) measured f~ (Hz) calculated ~m I ~c (~ ~n ~

1 3.56 3.92 0.91

2 23.6 25.1 0,94

3 67.3 71.7 0.94

0.00 19

0.0018

60 80
frequency [Hz]
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The difference in the calculated frequencies might be explained by a difference in

payload. To transport the acceleration signal to its amplifier, a cable is attached to the

beam. The mass of this cable can affect the eigenfrequencies of the beam. Also a

difference in Young’s modulus might explain the difference between the frequencies.

The first eigenfrequency of the unloaded system was designed to be 4.45 (Hz), due to the

sensor (acts as payload) this frequency has shifted to 3.56 (Hz). Since the mass of the

accelerometer is of the same order as the mass of the beam t would be advisable to

investigate sensors-systems that have less influence on the system, for example

(piezoelectric) strain-gauges.

4.3 Sensors

One of the conditions of the assignment was that the movements of the beams end were

to be measured with accelerometers. At TPD two accelerometers (Bruel & Kjcer) were

available, and also the knowledge and the peripheral equipment to operate the sensors

were present. To be able to use the accelerometer as an absolute sensor of the

acceleration at a certain location on the beam, the accelerometer has to be calibrated.

This is done by connecting it to a calibrator that generates an acceleration signal of

1O(m/s2) (RMS). The value measured from the acceleration sensor can now be compared

to the calibration value.

Equation 3.2.7 shows that the deflection at each point X on the beam, contains
contributions of all modes. The values of ~p~(X) (see equation A.1.13) determine the ratio

between the maximum contributions (amplitudes). For instance at the location X=L these

values equal _1~1) (see figure A.4). can be determined by solving equation A.2,23,

However, besides the amplitude also the value of the modal motion (~(t)) is necessary to

bring back the acceleration value to the individual contributions of each mode, The

measured acceleration signal contains the acceleration due to the deflections of the arm

plus the acceleration due to the hub movement (èbxo) that can be calculated from the

measurements of eb. The measured signal can be written as:

uacc Kacc[~2~~ ,t) ~ ebXO Kacc[~~i(Xo) ~q~(t) + (4.3.1)

where:
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Uacc = voltage accierometer system

Kacc = amplifier constant
X0 = position accelerometer

In matrix form equation 43.1 can be written as:

~acc =D~KGCCebXO (4.32)

where:

x~=[x1,x2,...j
~.cc =[uacc(Xi,t),uacc(X2,t),...j
D1~ =Kaccq~j(Xj)

~T =[qi,q2,.-]

Now we can calculate the modal modes contributions from the measurements U0~~ by

inverting the decoupling matrix D:

~=D_1(Uacc _Kacc~bXO) (4.3.3)

This method will be referred to as the decoupling of the accelerometer signals. Because of

the inversion of matrix D the number of accelerometers must be equal to the number of

modes that one wants to disentangle.

In chapter 3 it was already mentioned that theoretically the number of modes is infinite, This

implies that an infinite number of accelerometers should be installed. Of course this is an

impracticable task. Due to the limited bandwidth of our servo system (see section 4.4)

higher modes will hardly be excited. Furthermore these higher modes damp out fast. In our

case this results in a concentrated aftention to the lowest modes for our controller design.

The number of accelerometers to install is limited by the two input channels of the DSP. One

channel will be used to measure the shaft position, which leaves one input channel to

measure the acceleration at one location on the beam. At the free end of the beam at X

430 (mm) (X = L) all modes have a contribution unequal to zero. If we eventualy want to

use the information of all present modes we must locate our sensor at X L. Since we can

only measure one acceleration and are interested in the lowest mode, we must treat the

contributions of the higher modes as measurement noise. The disturbing effect of higher

modes can be decreased in two ways. The first method is to position the accelerometer at
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a location where the contribution of the closest higher mode equals zero. These locations

can be calculated by solving X from equation A.2.23 with a zero left hand term, The

second method is to make the system closed loop response slower than the disturbing

modes. This ensures that disturbing higher modes will not be amplified and finally damp out.

The second method can be implemented by inserling a suitable filter in the control loop

(see figure 4.4).

Since equation 3.2.8, defining the controlled output, contains the position and not the

acceleration, the acceleration signal has to be transformed into a position signal.

Integrating the acceleration signal twice, the position signal could be obtained. However,
because we are only dealing with position control and a linear model, q1 can also be

determined analitically. From equation 3.2,6 follows that the free response of the beam is

an oscillation:

= Asin(w1t+Ø1)
A . 1 .. (4.3.4)

qi =—-—~-sin(co~t+~); q~ =—-—~-q~
(ol

o~ equals the angular velocity of the modal motion and is calculated in section 4.2. The

calculation is carried out by the control algorithm in the DSP and yields the modal motion
position q1 that is used for the feedback loop.

Our flexible beam controller also requires measurement of the shaft position. The restriction

of the shaft-position sensor was that it should supply an analog signal. This analog signal

was necessary to comply with the input standard of the DSP units (Stochi and Octopus)

used by the Active Noise Control department. One way to obtain such an analog signal

was to use an advanced servo system (with position control). However these systems

generally make use of non standard programming languages. Additionally the system

analysis is complicated by the indistinct control loop inside the servo system. A second more

easy, clearly less expensive solution is the application of a precision potentiometer. When

the potentiometer is connected to a power supply, and its tuning axis is affached to the

rotation axis of the beam the output voltage of the potentiometer is linear in the axis

position (shaft position).

Technical data of the sensors can be found in Appendix F.
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4.4 Servomotor

To actuate the flexible beam a servo system is selected, The most important selection

criteria were:

— small mechanical time constant

— small electrical time constant

— good low speed behaviour

Since it is our intention to implement computed torque (model based) controllers we must

have a full description of the servo system. Unlike the inertia terms, that are very accurately

given by the manufacturer, we know almost nothing about the friction within the servo

system. The manuals only give maximum values of the friction but do not mention whether

this is Coulomb- or viscous friction. This subject should be handled in future research.

Input-output relation servo-amplifier
4C —

30

/ : k-” ••~

20 /
~.10 .•.‘!~•~•

o : .

~

— . - .=Vout(dc):

10

--=V~ut(ac)

-20 : .:... ..

= Amplifier g~in (33 [i])
-30 . •::. . ::.~.: :

Offset~= 2.9 [V~
I I I I I

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Vin [VI (do)

Figure 4.3 Servo ampilfier gain.

After assembly of the different modules, the linearity of the servo-amplifier was measured.

This can be done by uncoupling the servomotor and measuring the output voltage as a

result of a varying input voltage. The measured values are put together in figure 4.3 to

visualise the input-output relation of the amplifier.

Realisation of an experimental flexible beam set-up



TNO-report

TPD-HAG-RPT-94-0 109 February 1994 page 24

Because the implemented controller is based on linear servo system theory, the influence of

the non linear relation shown in figure 4.3 should be investigated. The controllers

implemented on the system don’t account for any servo system non-linearity yet.

In section 3.3 the relation for our servo system was given:

eb=KAu (4.4.1)
To use this equation in the control design and the simulations the value of KA must be

known. The servo system manufacturer gives for KA the value 50 (rpm! V) = 7,96 (rad,’s I V).

However this value has not yet been determined experimentally and therefor it is set to ‘1’
during simulations. The real value of KA can be determined by measurement of the relation

between the angular velocity eb and the input voltage of the servo amplifier.

Technical data of the servomotor and gearbox can be found in Appendix F

4.5 Composition of the set-up

The control loop is completed by a DSP board inside a PC. It’s characteristics are

summarized in Appendix F. This processor board must be programmed in C. A major

disadvantage of this DSP is that up to now it can only be controlled by a debugger” that

operates under MS-Windows.

The overview of the entire experimental set-up is displayed in figure 4.4.

position sianal _______________

potentiometer

_______________ flexible beam____________ hub

Igearbox

rrservo
motor

-I

__________ tacho

signal servo

_________ amplifier

housing

acceleration signal

LH acceleration
sensor

tachogenerator—

digital signal processor board

input signal

figure 4.4 Schematic overview of the experimental set-up.
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Chapter 5

Controller design for a flexible beam

5.1 Introduction

Since the main goal of this report is to design an experimental set-up to illustrate the

possibilities of flexible beam control, the controllers implemented are not really advanced.

This is mainly due to the restriction of time. However in the long term other, more advanced

controllers should be implemented. Other restrictions, like the number of in- and output

signals, constrained the number of eigenmodes to be controlled, The PD-controller that will

be discussed in section 5.2 will not deal with the flexibility of the beam. The output-

feedback controller in section 5.3 is designed to damp out the deflections resulting from the

beam flexibility, Both a reduced output-feedback (although two modes are simulated, only

one mode is controlled) and a full output-feedback are regarded. In all cases the input

signal (desired shaft position; dsp) used for the simulations is a step at t = 0 of magnitude

n/4 (rad)

5.2 P-controller

In this section only the P-action of this controller will be discused. The D-action is already

realized within the servo system. Altough this will not be explicitly stated, the velocity

feedback loop will also be applicable for the controllers discused in the next sections.

The tuning for the controller must yield a minimal rise time, furthermore the control action

may not result in an input saturation (maximum: 1 (Volt)) of the servo ampifier. Figure 5.1

gives a block scheme for the PD-controller

Since only the difference between the desired shaft position of it I 4 (rad) and the actual

position determines the input signal, the highest input signal will be found at t = 0 sec. From

the first order differential equation 3.3.1 follows that the resulting input signal will be a

Figure 5. 1. P-controller
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negative e-power (first order step response). We obtain a maximum input signal of 1 Volt if
we tune the controller gain (Kr) to the inverse of the maximum difference (K~= 1/dsp). This

strategy implies that a new control gain must be calculated for different step sizes. This

however can easily be done by the control algoritm in the DSP.

5.3 Output-Feedback controller

This controller is tuned to obtain minimal rise time, but also to provide maximum damping

for the flexible modes. The control actions may not result in input saturation (u ≤ 1 Volt).

~H±H~H~
~4~l

Figure 5.2 Block scheme of the controller.

Note that the dashed lines in figure 5.2 symbolise multi variable signals.

The value of K1 is determined by an iterative process of trial and error which yields K1 = 30 (-)

as the maximum feedback gain for the first mode. For the full output-feedback controller,

two controller parameters must be set. Since we only have the maximum input voltage

criterion, we must invent a second criterion to be able to set both parameters. The second

criterion will be:

(5.3.1)

This implies that althoug in absolute sense position errors due to one of the modes will result

in equal control efforts, the first mode will have the highest relative damping. This can be
derived from the definition of the relative damping coefficient ~:

e_t~0)j (5.3.2)

(5.3.3)

eigenvalue of[A — b kf C] (5.3.4)

kf=[K~ K1 K2 o] (5.3.5)

The initial value of K1 and K2 is 15. After several simulations, the values K1 12 and K2 = 17

U
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show to result in a maximum input of 1 Volt. The resulting relative damping terms follow

from the real part of the eigenvalues of the controlled system matrix. Table 5.1 provides an

overview for the relative damping terms of the uncontrolled, the reduced output-feedback

and the full output-feedback situation.

Table 5.1 Damping terms oveiview

n ~ (—) ~ (—) (red,) t~ (—) (full)

1 0.0019 2.348 0.95

2 0.0018 0.0018 0.09

5.4 Simulations

This section displays the results of the simulations with a PD-controller, a reduced output-

feedback controller and a full output-feedback controller. Figure 5.3 shows the PD-

controller simulation. Figure 5.4 shows the results of a reduced output-feedback controller

(the lowest of two simulated modes is controlled). Figure 5.5 shows the results of a full
output-feedback controller.

PD-controller stepresponse
1 !‘ ~‘

06 1 4~/\1’~1 Tip angle (theta 0)

-.=lnputvoltage(u)

~ 04 Hub angle (theta b)

I I ~. ~.

0 2 (pi/4) (1 exp( t K(1)))

C

-0.2 I I I
0 1 2 3 4 5 6 7 8

time [SI

Figure 5.3
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Reduced output-feedback controller stepresponse
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Output-feedback controller Stepresponse
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Figure 5,3 clearly shows a first order step response for the hub angle eb combined with a

second order damped oscillation for the eigen modes. Also the non-minimum phase
behaviour is visible as the beams tip angle E~ first moves in the opposite step direction.
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0
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Figure 5.5
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Figure 5,4 shows a very fast damping of the first elgenmode, but it still holds a ripple resulting

from an uncontrolled second mode. Due to the extra contribution of the second

eigenmode to the control input, the first mode in figure 5.5 can not be damped out as fast

as in the previous case, but the ripple due to the second mode is no longer visible. This

implies that the beams tip can be positioned with higher accuracy. Depending on the time

constants of the servo system the higher modes can be controlled to minimise their

contribution to the tip position.

5.5 Experiments

Because at the time this reporl was wriffen, it was not yet possible to communicate

(exchange information) with the DSP board, a performance measurement of the

implemented controller was not possible. To demonstrate the effect of the controller the

beam is positioned at a certain angle and excited by a flick of a fingernail or hand. The

demonstration clearly showed that once the controller is turned on, the oscillations damp

out within a second. Whereas without controller the oscillations persist for longer than half a

minute.
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Chapter 6

Conclusions

In this report the realisation of an experimental flexible beam set-up is described. A

literature review as well as a controller design of a relatively simple output-feedback

controller are shown.

Literature presents different models for a flexible beam system. The modelling used in this

report contains several linear approximations and therefore it will not be valid under all

conditions, for instance at high speed conditions. The literature review shows that although

a lot of research is done on flexible beam controllers, the computed torque controllers

seldom have a practical implementation. This in spite of the promising performance on

trajectory control of this type of controller; In general the authors state that the

performance of computed torque controllers is superior to the performance of output

feedback controllers.

In the case of position control the presented output feedback controller suppresses the

occurring oscillations very good. To obtain the highest position accuracy, a maximum

number of modes should be controlled. However because of the square decoupling matrix

(sensor signals are decoupled to individual mode contributions), we should use at least the

same number of sensors as modes to be controlled.

Our experimental set-up uses an accelerometer to detect the first mode. The mass of this

sensor is of the same order as the mass of the beam and therefore the sensor has a large

(undesired) influence on the beams behaviour. One sensor at the tip of the beam can

easily be modelled as a payload carried by the arm. However if we increase the number of

sensors, and place them at various locations along the beam, the modelling will increase in

complexity as well.

Recommendations

Because the performance of computed torque controllers described in literature is said to

be superior to that of output feedback controllers, they should be implemented and tested

on the experimental set-up. In that way we can compare the performances of different
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types of controllers and find out which one is the most suited for practical implementation

of trajectory control.

Since it is our intention to implement different model based controllers, it will be fruifful to

obtain a highly accurate model of our system. For instance, the measured non linear

behaviour of the servo-amplifier and its influence on the linearity of the total servo system

must be investigated. Also the influence of friction in the system should be investigated. The

parameters of the friction model can be determined by measurements on the system.

In the preset set-up the accelerometer has a relatively large influence on the beam system,

therefor it might be wise to investigate other ways of mode detection. The best solution

would be to find a way of mode detection whose influence on the model can be

neglected (contactless optical measurement or piezoelectric strain gauges).
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Appendix A

A. 1 Flexible beam model

In figure A. 1 the forces and moments on a beam element P are drawn. To simplify the

derivation the gravity terms are omiffed and all mass of the beam is concentrated on the

beam axis.

Y

F+—dX
M, 1F ____

W(X,t)

X X+dX
Figure A. 1. Force balance of a beam element

W(X,t) stands for the deflection of the neutral axis of the originally straigth beam. From the

balance of the bending moments follows:

(ALl)

From the bending theory of Timoschenko follows:

~2w(x t)
M(X,t)=—El 2 (A.1.2)

with Young or elasticy modulus E and area moment of inertia I.

with A. 1 for F follows:

a3W(X t)F(X,t)=El (A.1,3)

Applying Newton’s law to the beam element results in:

~F(X,t) =pAY (A.1,4)

with specific mass p and cross-section area A
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To describe the vibrations of the beam we need a co-ordinate frame as shown in figure

A.2.

Figure A.2. Co-ordinate frames used in the modelling

The superscripts refer to the co-ordinate frames X0, Y0 and X1, V1 that represent the co

ordinate frame fixed to the origin and the body aftached frame respectively. We assume

that the rotation axis of the beam is fixed in the origin. The angle between the two co
ordinate frames is represented by eb. This angle might also be referred to as the hub angle.

Acceleration of a beam element, perpendical to the beam axis, will be denoted by:

= ~ * ‘~b + ~N — W (eb )2

At this point we introduce terms concerning the occurring damping forces. Kruise (‘90) uses

the following terms:

(A1.5)

(A.1,o)

According to Ray (‘78); the first term represents the damping due to air friction, and the

second the damping due to the internal energy losses. However there is still a lot of

research to be done on the damping since there are no exact values mentioned for the
terms ~E and 6~. In our case the damping that will be provided by the controller is much

larger than the damping for the lowest mode.

When equation (3) and (5) are combined with equation (4) and the damping terms, the

following result is obtained:

W=W(X,t)

~4W ~ ~W ~El-~— + pA—~-- ~ —~- +ö~ ~)(4~ = pA(Xeb —W(eb)2) +~(x L)Fye~;

(A,1,7)
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The term W(eb)2 from equation A.1.7 will be disregarded since in the set-up (eb)2 <<~1,

where o~ is the lowest eigenmode frequency of the beam. The force Fye°~ is introduced

(see figure A.2) in the equation which represents the force a payload would impose on the

beam. Since the equation A. 1.7 is valid for the entire beam and Fy~~ only acts at the end of

the beam (X~L) the Dirac function 8(X—L) is added.

To solve the differential equation A. 1.7 we must define boundary conditions. Basically the

beam is modelled as clamped free, but here we will restrict the degrees of freedom at the

side of the beam where the driving force is situated. This yields:

W(0,t)=0 (A,1.8)

______ = 0 (A. 1.9)

ax -

The other end is free and therefor the force F(X,t) and the bending moment M(X,t) are zero

at X = L. This yields:
(A. 1.10)

a2w(xt)
ax2

a3w(x,t) 1X-L = 0 (A. 1.11)
ax3 -

Note that with the presence of a payload the right-hand side of equation A. 1.11 is unequal

to zero. In the derivation of Kruise, however the eigenfunctions resulting from boundary

condition A. 1.11 are used for the loaded beam situation aswel.

In order to transform the fourth order partial differential equation into a finite set of ordinary

differential equations, the solution to equation A.1,7 is split up into a position depending

part and a time depending part.

w(x,tD~=~(p(x)q(t) (A.1.12)

The functions p~(x) (derived in Appendix A.2) equal the clamped free modal modes of the

beam, and have the following properties:

p1(L) = (_1)~1 (A. 1.13)

J(P(x)CPJ(x)dx=o i≠j (A.1.14)
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~d4(p1(X) = o~2q1(X); ~ = q(t) (A. 1.15)

Property A. 1.14 means that modal modes are orthogonal, this is proven by Kruise (‘90).

Property A. 1.15 is derived in Appendix A.2

When equation (A.1 .13) is substituted in equation (A. 1.7) the partial differential equation is

transformed into an infinite set of ordinary differential equations. This yields:

~w12q~q1~ +~p~~j X~ + ~O(~~Fy~ (A.1.17)

where:

6E ~ (A.1.18)
2pAo1 2pA

To eliminate the X terms the equation A.1,17 is integrated over X and multiplied by q~,

This transformation is described in appendix B. 1 The resulting ordinary equations are given

by:

~+2~~ +~ —~fle~ + (A.1.19)
I-tn

where:

JXpnXdX L
I-L~=pAJq12(X)dX=P~ (A.1.20)

j~2(x)dx

Up to now the influence of a payload m~ has not been cleared. We need to define the

acceleration ‘~im~’ this the acceleration perpendicular to the beams axis, c,m~°is defined

by:

LE~b~°~ + W(L, t) Leb~°~ + q (L)~1 (t) (A. 1 .21)

In figure A.3 a flexible beam with payload is shown.

Realisaflon of an experimenta’ flexible beam set—up



TNO-report

TPD-HAG-RPT-94-01 09 February 1994 page 38

F (1) ——mp~m°~ _mP[L~b(°)~ (A.1.22)ye —

i=1

W(L,t)

Leb~°~

Figure A.3 Flexible beam with payload

The force Fyethat is applied perpendicular to the beams end is defined by:

Equation A. 1.22 is substituted in equation A. 1.19 which yields:

co~2q~ +2~~ ~ ~neb H-i (A,1.24)

— mpq~(L) m1~p1(L)q~(L) — pAL
~ —an+ f3ni , .t ( . )

I_tn

Equation A. 1.24 will be the basic equation for the derivation of our flexible beam model in

section 3.2.
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A.2 Derivation of p(X)

In this section a relation for the modal motions q(X) used in Appendix A.1 is derived.

Disregarding shear deformation and rotation of beam elements, Timoshenko’s beam

equation reduces to the so-called Euler Bernoulli equation for a beam:

(A.2.1)

This equation can be solved by separation of variables, For that purpose W(X,t) = wriffen as:

W(X,t) = ~p(X)q(t) (A.2.2)

Substituting equation A,2.2 into equation A.2. 1 and dividing it by W(X,t) yields:

~(t) Elq~”(X) (A,2,3)
q(t) pAq(X)

where:

d4 X’~iv = ~ (A.2.4)
dX4

and:

~(t) = d~t) (A.2.5)

In equation A,2.3 the left hand side depends on t only while the right-hand side depends

on X. This results in both sides being equal to the constant —co2. The resulting ordinary

differential equations are:

~(t)=—w2q(t); ~2 =_~Ly4 (A.2.6)
pA

(pIV =y4p(X) (A.2.7)

To obtain a solution to the differential equation (A.2,7), the following substitution is used:

Ce’~ (A,2,8)

where C and 2~ are constants, After substitution, this results in:

~ ~ =~ ~ ±‘~j (A.2.9)
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With the solutions of equation A.2,7 the eigenfunctions of the beam can be wriffen as:

(p(X)= c1 coshyX + c2 sinh’yX + c3 cos~yr+ c4 sin’yr (A.210)

where c1,.., c4 are integration constants. To calculate the values of c1 c4 we need to

define the boundary conditions of a clamped free beam. These boundary conditions are

(see equations A.1,8-11):

q(0)=0 (A.2.11)

(P1(X)lx_o = 0 (A,2, 12)

= 0 (A.2. 13)

q~”(X)l~_~ =0 (A.2. 14)

L represents the length of the beam. Substituting equation A.2. 10 into equations A.2. 1 1-14

yields:
c1+c3=0 (A.2.15)
‘y(c2+c4)=0 (A.216)

‘y2(c1 coshyL + c2 sinh’~t — c3 cosyL — c4 sinyL) = 0 (A.2. 17)

‘y3(c1 sinh’yL + c2 coshyL + c3 sin’yL — c4 cosyL) = 0 (A.2. 18)

A non trivial solution to these equations is:

cosh’~tcosyL=—1, c1 =—c3 and c2 =—c4 (A.2.19)

The first equation in A.2.19 is known as the frequency equation (Meirovitch, 1967).

Numerical solutions of this equations are given in table A. 1.

Table A. 1 Numerical solutions to the frequency equation.

y1L

1 1.87510

2 4.69409

3 7,85476

4 10.99554

5 14.13717

6 17.27876
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The values of yL were calculated with the Matlab sub-routine gammi.m which is listed in

appendix E. The frequency equation has more than one solution. The solutions indexed with
i are all eigenfunctions of the beam system. Up to now the values of c1 c4 only could be

expressed relatively to each other. If we apply property A. 1 13:

(p1(L) = (_1)~1 (A.2.20)

This results in the following absolute values of C1,..., C4:

c11 =—c~3 =~ (A.2.21)

and

c~2 = —cl4 1 cos y~L + coshyL (A.2.22)
2 s~ny~L+sinhy~L

c12 is calculated for some values of i in table A.2

Table A.2 some values of c12

cl2

1 -0.367048

2 -0.509234

3 -0.499612

4 -0.500017

5 -0.500000

00 -0.5

To calculate these values a program is wriften called ci.m which is listed in appendix E. The
values of c12 lead to a general description of q(X):

q~(X) = c11(coshy1X — cosy~X) + c12(sinhy1L — siny1L) (A,2,23)

The first three eigenfunctions according to A.2,23 (i = 1,2,3) are ploffed in figure A,4.
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Eigen functions of a flexible beam

-=fjrstrnode / “

-0.4 ....•.••..~....••... 7~,....
-.=secondmbde //

-0.6 ~—:—>

--=thirdmode
-0.8 ..

V V V V V \
-1 I I I I I

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
location variable X [m}

Figure A,4 The first Three elgenfunctions of The flexible beam modeL
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Appendix B

B. 1 Differential equation transformation

In appendix A. 1 a set of ordinary differential equations was derived. The part depending
on X will be removed by multiplying it by the eigenfunction q~, and integrating the resulting

equation over X. This is done one term at a time. The differential equations are given by:

~1~2~q~ +~pj~j -X~ + 6~~~Fye (B.1.1)

Transformation of the first term on the left-side yields:

~ J(pfl(x)~coj2(p~(x)qj(t)dx =

(B. 1.2)

The integration over X in equation B.3 is reduced to the multiplication of two

eigenfunctions. Due to property A,1,15 the solution is unequal to zero if i equals n,

Applying this property yields:

~n2qn(t)J~n2(x)~ (B. 1.3)

Transformation of the second term on the left-hand side yields:

~~ =

(B. 1.4)

Applying property A. 1.15 yields:

2~n~n~n(t)J(pn2(X)dX (B. 1.5)

Transformation of the third term yields:

= 1~X~~(X)~t)= ~1~(t~XdX (B. 1.6)
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Applying property A. 1.15 yields:

~ (t)~ ~n2 (X)dX (B, 1.7)

The same transformation is carried out with the right-hand side terms. For the first right-hand

side term this yields:

-X~b ~ —Jpfl(X)X~bdX = —ëbJpfl(X)XdX (8.1.8)

Transformation of the second right-hand side term yields:

ö(X- L) Fye ~ J(Pn(X) ö(X— L) FyedX =

FYeJö(XL)(p(X)dX (Pna~)Fye (8.1.9)

When all terms of equation 8.1 are replaced with their transformed equivalents and the

resulting equation is divided by I pn2(X)dX, this yields:

L

fXq~(X)dX (L)F
+ L ye (8.1.10)

S~2~dx pAJq~2(X)dX

~~ +~ ——~fle~ ~ (8.1.11)
tin

where:

JX(Pn(X)dX L

an = J~Ln pAJ(pi2(X)dX~ (B.1.12)
j~2(x)dx

some values of Xn are calculated in Appendix B.2
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B~2 Calculation of c~

In equation B.1.12 c~ is defined as:

J Xp~ (X)dX
(B.2.1)

(X)dX

If we want to simulate the beams behaviour we need to calculate some values of c~. This

is done with a Matlab program called alphan.m which is listed in Appendix E. The results of

the first six values are listed in table B. 1.

Table B.3 some values of o~~(L) (L=O.430 m)

n ci~~(L)

1 0.48919

2 0.07806

3 0.02788

4 0.01423

5 0.00861

6 000576
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Appendix C

To obtain a suitable equation for state space notation equation 3.2.7 is transformed into:

(Cl)

or:

F’(-c~eb -R~—Wp) (0.2)

F~ =(l+FY~

Where I is the identity matrix. In state space notation equation 0.2 will be denoted as:

*=Ax+bu

xT[ebpl~lp2~2 ‘...‘Pn~Pn]

To obtain a suitable equation for state space notation we substitute equation 0.2 in

equation 3.3,3. This yields:

—rq F11R11 —rq F11W~1
—F~1R11

1 0
0

0 0

bT =[KA,O,0,...] (0.6)

The output relation in state-space notation will be described by the following equation:

yzzCx+du (0.7)

where:

and:

(0.3)

(0.4)

€~b~ +RF3+Wp)+KAu (0.5)

For matrix A this results in:

_rpflTF~a

0
—F~2cL2

- —F~nc~n

0
0

—F2R22

and:

—rq ~ —rq FnnWnn

0
0
0

~ ~
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where:

(C8)

1 0 0 0 0
—F11cx1 —F~1R11 —F~1W11 0 0

C= 0 (C9)
—F~~a~ 0 0 ~ ~
l~s1cJ —s1R11 —s1W11 —s~R~~ —s~W~~

d=0

Si = ~~-) F1~ (C, 10)
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Appendix D

In section 4.2 stated that the values ~ could be derived by matching the filtered time-

response with equation 4.2.4. The filters were designed with the Matlab routine Bufter.m, This

routine can design a bandpass filter of a specified order. Table D. 1 specifies the frequency

band of the used filters. Figure D. 1 shows the frequency response of the filters. The filters

were all of fifth order.

Table D. 1 frequency bands Butterworth filter

mode number frequency band (Hz)

1 2-5

2 21-26

3 65-70

Frequency responce of mode filters

1::

:~. -150 •-•-•~-~ ~

/ //
S / - = Filter first mode
~O -2001 .\~‘.,

E -- = Filte~ second mode

-250 1 . ...~.

-300 .- = Filtei third modes

-350
0 20 40 60 80 100 120 140

frequency [Hz]

figure D. 1
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After filtering the signal from figure 4.1 is divided into three components, representing the

eigenmodes, Form figure D.2 shows that in this case the second mode is dominant. Also the

start-up transients of the filters are clearly visible.

time [sj

Figure D.2

We will now focus on the damping terms of the first two modes. Since the sample

frequency is 256 Hz, the third mode won’t be very accurate (256 / 67.7 = 3.8 samples per

cycle). A Damped oscillation will be described by equation 4.2.4:

q1 (t) = A. sin(2itl~t + Ø~). e_t~i (D, 1)

Since the value of ~ is of no importance to determine the damping of the oscillation, it will

be set to zero. Figure D.3 and figure D.4 represent the fifing of the first and the second

mode. The resulting damping terms follow from:

~1w1=0,042; ~1=0042=0,O019 (D,2)

~2~2 =0265; ~2 0.265 =00018 (D.3)

First three filtered eigenmodes

-=First mode

-- ~Secondinode

-. ~. Third mo4le

a

a
0

0
0

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5
0 1 2 3 4 5 6 7 8
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Damping first filtered eigenmode

C

C
a

0
C.)

I

time [s]

figure D.3

Damping second filtered eigenmode

0 1 2 3 4 5 6 7

time [s]

figure D.4

8
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Appendix E

Program listings

SIMBEAM.M

This program defines or calculates all parameters or variables necessary to generate the

state-space matrices that can be used to simulate the dynamic behaviour of a flexible

beam.

% simbeam.m simulates the movement of a flexible beam actuated
% by a servo system who’s input is a desired position of the beam tip.
0!
JO

%clearing
clear; dc; clg;

%declare globals
global L ii

one=1;
zero~0;

%define actuator parameters

%voltage- and torque constant
km( 1 )=0. 19099; km(2)=0. 195;
%armature resistance and armature inductance
Re=7,3; le~409e-3;
%armature iner[ia
Jm=3,727e-5;

Km=km(1);

%define gearbox parameters

%transmission ratio and efficiency
ngear=10; %efficiency >90
%maximum backlash: 3 arc mm., torsional stiffness is 3.5 (Nm/mm.)
%moment of inertia reflected to input shaft
Jg=8e-6;

%define powersystem parameters
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%voltage- and current gain
Kpa=40; % Kpa(2);
%analog velocity feedbackgain (Vs)
Kd=1; Kdacc=Kpa*Kd/ngear;
%aprroximated transferfunction (constant gain) of motor
Ka=Kpa/(ngear*(Km+Kdacc));

%define desired movement

simt=4;
dt=0,01;
t=0:dt:simt;
%Desired Hub Angle
dha~pi/4
ftd=0;

%define mass payload
mp=0~010

%define flexible beam parameters

%length of the beam
%L=input(’ length of beam: ‘);

L=0.43; l=L;

%beam material: mat=1 => aluminum, mat~2 => steel
mat= 1;

%cross-section (0001*0030) Young’s modulus of elasticity, cross
%sectional area moment of inertia and the mass density
Opp=3e-5; E=(7e10 2,2e1 1); l=2.5e-12; rho=(2.7e3 7,8e3);
parm=(Opp E(mat) I rho(mat));

%number of modes to simulate
ns=2

%number of modes to control
nc=2

%damping terms
ksi=(4. 1 e-3;2.9e-3; 1 .7e-3;5e-4;3,8e-4;2,áe-4; 1 ,Oe-4);

%calculate coefficients frequency-equation
gmiL~gammi(ns);
(cii ,ci2)=cis(ns,gmiL);
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%calculate square angular resonace frequencies
(W,F)=calcw(mp,ns,gmiL,parm);
Fst=inv(eye(ns)+F);
Wmp=diag(sorl~(eig(Fst*W)));

%calculate G, phidxdxnul,phiL, alphan,
%compose damping matrix
G=zeros(nc,ns);
for ii=1:ns,

if ii <= nc,
G(ii ,ii)=one;

end
phidx2nul(ii)=phidx2(zero,gmiL,cil ,ci2);
phiL(ii)=phi(l,gmiL,cil ,ci2);
alfpan(ii)=alphan(mp,parm,phiL);
for j=1:ns,

if ii ==j,
R(ii j)=2~ksi(ii)sqrt(W(ii ,j));

else
R(ii j)~zero;

end
end

end
r=parm(2)*parm(3)*Re/((Km+Kdacc)Km~ ngearA2);

%compose state space system
(A,b ~C,d) =state(ns,W,R,Fst,G ,phidx2nul ,phiL,alfpan ,r,Ka);

%design optimal controler
(Ac,bc,Cc,dc)=state(nc,W,R,Fst,G,phidx2nul,phiL,alfpan,r,Ka);
Q=O. 1 *eye(2*nc+ 1); Rlqg=O. 1;
(K,S)=lqr(Ac,bc,Q,Rlqg);

disp(’Do you want to run a simulation now ?‘)

disp(’variables XX YY and U will be overwriften I’)
answer=input(’Yes or No? ‘,‘s’);
if strcmp(answer,’y’);

(VY XX U K KK KKK)=simulat(A,b,C,d,t,dt,dha);
end

STATE. M

function (A,b,C,d)=state(n ,W,R,Fst,G,phidx2nul,phiL,alfpan ,r,Ka)

%(A,b,C,d)=state(n ,W,R,Fst,G,phidx2nul,phiL,alfpan ,r,Ka)
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0/
JO

% state.m composes the statespace matrices for an actuated flexible beam
% system. the system is defined as:
0/
/0

% x=Ax+bu
% y=Cx+du
0/
/0

% x=(hubangle p1 p1 p2 p2.. pn pn); p = q
0!
/0

% y=(thetab ql q2.. qn thetaO); thetab=hub angle; thetaO=tip angle
% u=(input voltage/-current of the actuatorsystem)

global L

gm 1 =~rphidx2nul*Fst~alfpan~;
C=zeros(n+2,2*n+ 1); 0(1 .1 )= 1; C(n÷2,1 )= 1 _(phiL/L)*Fst( 1 .1 )*alfpan~;
for i=1 :n,

gm2( 1 ,2~i- 1 )=_R(i,i)*Fst(i,i)*rphidx2nul(D;
gm2(1 ,2*i)=_W(i,i)*Fst(i,i)*r~phidx2nul(i);
bm(2~i-1 ,1)=_alfpan(i)*Fst(i,i);
bm(2~i, 1 )=O;
Am(2*i_ 1 ,2~i- 1 )=-Fst(i ,i)*R(i,i);
Am(2*i_1 ,2~D=-Fst(i,i)~W(i,i);

Am(29,2~i-1)=1;
Am(2*i,2*i)=O;

C(i+ 1 .1 )=-Fst(i,iYalfpan(i);
C(i+ 1 ,2i)=-Fst(i,DR(i,i);
C(i+ 1 ,2*i+ 1 )=-Fst(i,i)W(i,i);
C(n+2,2*i)=_R(i,i)* Fst(i,iYphiL(i)/L;
C(n+2,2*i+ 1 )=_W(i,i)*Fst(i,i)phiL(j)/L;

end
A=(gml gm2

bm Am);

b=zeros(2*n+1 ,1);

b( 1 )=Ka;
d=zeros(n+2, 1);

GAMMI.M

function gmiL=gammi(n)

%gmiL=gammi(n)
0/
/0

% gammi.m calculates the first ‘n’ solutions to the
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% frequency-equation ~cosh(gmiL)*cos(gmil)+1=O~ with the initial
% values: (1.875,4.69, 4.69+i~pi). The accuracy of the calculation
% equals ‘epsil’. ‘epsil’= le-16

epsil= 1 e- 16;
gmm=(1 .875);
for i=2:n,

gmm(i)=4.69+(i~2)*pi;

end
for i=1:n,

gmiL(D=fzero(’freqeq’ ,gmm(i) ,epsil);
end

CI.M

function (cii ,ci2)=ci(n,gmiL)

%(cil ,c12)=ci(n,gmiL)
0
,0

% ci.m calculates the values of cii en c12 for the calculation of phi(x) of the
% first n modes. gmiL contains the coeficients resulting from the frequency
% equation and is generated with gammi.m.

for i=1:n,
gl=gmiL(i);
ci2(i>=_(cos(gl)+cosh(gl))/(2*(sin(gl)+sinh(gl)));

end;
cii =O.500*ones( 1 ,n);

SI MU LAT. M

function (YY,XX,U,K,KK,KKK)=simulat(A,b,C,d,t,dt,dha,nc)

%(YY,XX,U ,K,KK,KKK)=simulat(A,b,C,d,t,dt,dha)
0/
/0

% simulat.m simulates an actuated flexible beam system defined in simbeam.m.
% ‘A b C d’ represent the systems state space matrices. ‘t’ is the time-axis to
% simulate and ‘dt’ is the timestep of the simulation. ‘dha’ is the Desired Hub
% Angle (setpoint).

K=input(’angle feedback gain: ‘);

KK=input(’first mode feedback gain: ‘);

KKK~input(’second mode feedbackgain: ‘);
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%simulation
n=Iength(A);
T=Q; YY=Q; XX=Q; U=Q; X=zeros(2,n); u=(O; 0);
tk=zeros(n,1); tk(1)=-K; tk(2)=-KK; tk(3)=KKK;
%for i=1:nc,
% tk(2~i)=(~Kd*(10A(2+~)));
%end
for =1 :Iength(t);

u=(u(2) K~spd+Y(2,:)*tk);
(Y,X)=Isim(A,b,C,d ,u,(t(i); t(i)+dt) ,X(2,:));
YY=(YY; Y(1 ,:)); XX=(XX; XCI ,:)); U=(U u(2));

end
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Appendix F

Technical data

Accelerometer:

— Type:

— Mass:

Potentiometer:

— Type:
— Resistance:

— Independent linearity:

— Starling and running torque:

— Moment of inertia:

— Maximum rotation speed:

Servomotor:

— Type:

— Rated power:

— Rated Torque:
— Voltage constant:
— Mechanical time constant:

— Electrical time constant:

— Armature inertia:

Gearbox:

— Type:

— Reduction ratio (i):

— Maximum backlash:

— Rated output torque (mean):
— Mass moment of inertia:

Digital Signal Processor:

— Type:

— Peak performance:

— Continuous performance:

February 1994

Bruel & Kjcer 1704

2.11 g

MCB PP27
2.2 k≤2

±1%

≤0.Ol4Nm

≤i0~ kgm~

120 rpm 12.57 rad/s

GSC 5DA08 (DC Servomotor)

80W

0.260 Nm
20.0 * 10~ V/rpm = 333*1Q4Vs/ rad
5,5 ms; ~max = 182 Hz

0.57 ms; ~max = 1754 Hz

2.746 10~ kgm2

Micron planetary gearhead ‘size 6’ (single stage)

10 (-)

3 arc mm.

23 Nm (at 1000 rpm)
8,0*10~ kgm2 (reflected to input shaft)

Loughborough Sound Images Ltd. 69002

50 Mtlops

33 Mflops

page57
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