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Abstract

This paper concemns the question of continuity of the mapping from observed time series to models. The
behavioral framework is adopted to formalize a model identification problem in which the observed time series
is decomposed into a part explained by a model and a remaining part which is ascribed to noise. Neither the
observed time series nor the set of candidate models are assumed to have an input-output structure. The misfit
between data and model is defined symmetric in the system variables and measured in the £, or amplitude norm.
It is shown that the misfit function continuously depends on the data and the identified model. The consequences
of the continuity of the misfit function for optimal and suboptimal models are discussed.

Keywords
System identification, Linear systems, Continuity, Behaviors

1 Introduction

The central question in system identification amounts to finding models which give a “good” description of the
observed data. An important issue in the qualitative study of system identification procedures is the continuity
of identified models as function of the observed data. This question is particularly relevant for the issue of well-
posedness and robustness of identification algorithms with respect to variations in the observed data. Also, many
model validation techniques assess the quality of identified models on the basis of large numbers of data sets and
therefore implicitly test the continuity of identified models as function of the data.

In this paper we analyze a system identification problem in which neither the observed data nor the class of
candidate models are required to have an input-output structure. One of the advantages of such a formalism is that
system variables are treated in a Symmetric way, without making a distinction between input and output variables.
We introduce a notion of misfit between model and data in which the noise part of the observed data is measured
in the £, (or amplitude) norm. The main result of the paper shows that the misfit function is continuous in both
the data as well as the model provided suitable topologies are defined on the set of data sequences and the class of
candidate models.
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The Netherlands. .
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The issue of continuity and consistency of models has been a main topic of research in the area of system
identification. See e.g. [4]. The results presented in this paper closely resemble recent work in [5] where a
stochastic approach is taken to investigate continuity and consistency properties of dynamic factor models. In
this paper we investigate amplitude norms for the purpose of system identification and provide weaker topological
conditions for the continuity of misfit functions. The consequences of the continuity results for optimal £, models
are discussed.

The paper is organized as follows. In section 2 we formalize the ¢, optimal identification problem. Section 3
considers the duality between models and their laws by using orthogonal complements of subspaces of Banach
spaces. The main results are collected in Section 4 and conclusions are defered to section 5.

Notation

Let Z, denote the set of non-negative integers and suppose that g is a positive integer. Then we define

o ¢, the real normed linear space of all vector valued, magnitude bounded sequences w : Z, — R? with
norm

| wlleo:=. max sup |w;(t)|.
i€(l,....q) rez,

. Co the subspace of 22, consisting of all sequences w € 22, which vanish in the_, limit, i.e.,
— q 3 —_
- {weew | tlglow(r)_o}.

o ¢7 the real normed linear space of all vector valued sequences w : Z,. — R? whose entries are absolutely
summable functions. The norm is defined

q o0
Twili= )" lwi@)l.
i =0

We will drop the integer ¢ when dimensions are clear from the context. It is well known that £, co and ¢; are
Banach spaces and that ¢ is a closed linear subspace of £,,. The prefix U will be used to indicate the closed unit
sphere of normed linear spaces, €.g. Uy 1= {w € € | |lw]oo < 1}.

2 The identification problem

Let a multivariable time series
w:Z,y—> R?

be observed. Throughout, it will be assumed that w(t) converges to 0 ast — oo, i.e., we assume that w € cg . The
identification problem amounts to finding linear models which explain the data w up to some level of accuracy.
Here, by model (or system) we mean any collection B of time series mapping the (discrete) time set Z ; to the
real valued signal space R?. A model B is called linear if B is a real linear subspace of (R?)%+. It is called
time-invariant if o B C B where o is the left-shift defined for given v : Z, — R?as (ov)(t) := v(t + 1). See
[6, 7] for more details on the behavioral framwork. We will be particularly interested in £.,-systems which are
defined as follows.

Definition 2.1 An £.,-system is a linear, time-invariant and closed subset B of cg .



For a given £,-system B the observed time series w admits a decomposition
w = w+ W, where ¥ € B. 2.1

Here, @ represents a component of the observed time series which can be explained by the £..-system B in the
sense that @ € B. The time series @ is an unexplained part of the observed data w and represents the noise. The
trajectory w will therefore be interpreted as a component of the observed time series which results from the error
w — W due to the approximation of w by a trajectory & € B. Obviously, the decomposition (2.1) is non-unique.
For a given £.-system B, we will call & € B an optimal approximant of w if the noise or error signal i := w — O
is minimal in some norm. In this paper we focus on the amplitude norm of the noise or error signal .

Definition 2.2 (Misfit) The misfit between a time series w € ¢ and the £c.-system B is

u(w, B) := inf || w - [loo 2.2

The misfit is therefore expressed in terms of the distance between the data point w and the element w € B (f it
exists) which is closest in the €., sense to w. Note that, because B is a closed subset of cg the misfit w(w, B) = 0if
and only if w € B. In that case B is said to be an unfalsified model for the data w and the noise component & = 0
for some decomposition of the form (2.1).

Let B denote a class of £.,-systems. Given the data w, the identification problem amounts to finding those models
B € B which minimize the misfit «(w, B), i.e. we wish to find optimal models

B*(w) := arg Iélel]g u(w, B). 2.3)

Note that B* (w) may be empty, as the minimum in (2.3) need not exist. A suboptimal version of this problem
amounts to characterizing all models B € B which have a guaranteed misfit level. For ¢ > 0 we define the level set

B(s, w) := {BeB | ww, B) <¢). 2.4
Itis clear that B(e, w) is empty if & < s®(w) where
opt . 3
e (w) = él;{mu(w, B)

is the optimal misfit level for the data w. In what follows we will be interested in the continuity properties of the
misfitmap 1 : ¢ x B —> R.

3 Duality

For the analysis of consistency and continuity we exploit the interrelations between a normed linear space and its
corresponding dual. For a normed linear space X, its dual will be denoted X'* and consists of all bounded linear
functionals on A'. A'* is a complete normed space when equiped with the usual definitions of addition and scalar
multiplication of linear functionals. The value of a bounded linear functional x* at x € X is denoted (x, x*). Its
norm is defined as .

Il x* I:= sup |(x,x"}|.
I=i<1

It is well known [1, 2] that for any ¢ > O the normed space £7 is the dual of ¢ and €%, is the dual of €7, i.e.

¢! = (c?)* and € = (£7)*. Borrowing terminology from the theory of Hilbert spaces, we call w € ¢f and r € ¢¢
orthogonal if (w, r) = 0. This induces the following notions of orthogonal complements of subsets in ¢§ and £7.

3



Definition 3.1 The orthogonal complement of a subspace B C ¢ is the set
B :={ret! | (w,r)=0forallweB). 3.1)
The orthogonal complement of a subspace £ of €7 is the set
TL:={wecl | (wr)y=0foralrel}. (3.2)
Remark 3.2 A subspace £ C £7 defines a second orthogonal complement £ in £, by putting
£t ={vedd | (v,r)=0}.
We will however not use this subspace.

Definition 3.3 The laws of amodel B C ¢{ are the elements of the orthogonal complement £ := B*.

Hence, every model B C ¢ uniquely defines a set of laws. Conversely, a set of laws £ C ¢7 defines a model
B := 1 L. Since *(B*) may be a proper superset of B, the laws £ := B+ need not uniquely define B. For closed
subsets of ¢] this is however the case (see [3, 1]) and thus we have

Proposition 3.4 For an {-system B, the laws £ := B* uniquely define B in the sense that B = - L.

The following result is standard [3, 2] and characterizes the misfit in terms of dual spaces.

Theorem 3.5 The misfit between w € ¢ and an £o.-system B satisfies

w(w, B) := ,;‘,22 | w—10 [lo= rg;,agl(w, r) v (3.3

where the maximum is achieved for some r™ € UB*.

4 Main results

In this section we provide the main technical result of this paper which states that the misfit function is jointly
continuous in the observed time series and the model. Convergence of time series is defined in the strong £, sense
as follows. A sequence {w,}22, of elements w, € c{ is said to converge to an element w € ¢ if || w — wy lo—> 0
as n — oo. A sequence of {oo-systems {B,}3°, is said to converge to an £o-system B if the following two
conditions hold

1. For any sequence of laws r, € UB;- there exists a sequence of laws 0 € UB* such that for all w € ¢ the
functional
(w, r, — r,?) — 0

asn — oQ.

2. For all laws r° € UB* there exists a sequence of laws r, € UB; such that forall w € cf
(w, - rmy — 0

asn — oQ.



In words, the first requirement says that for all sequences of (normalized) laws r, € B;- of B, there exists a sequence

of laws 7? of the limiting model B such that r, — 70 converges in the weak-star sense to 0 € £; as n — co. This

means that the weak-star limit of all laws of B, constitute a subset of the laws of the limiting model B. It is easily
seen that the first requirement is equivalent to

1. For all sequences {rn}nez,» 7n € B;- for which there exists an r € £7 such that for all w € ¢
(w,rg=r) — 0
as n — 0, there holds r € BL.
Similarly, the second requirement states that for all laws in the limit model B there exist a sequence of laws of

B, that converges to it in the weak-star sense. Model convergence is therefore expressed in terms of weak-star
convergence of laws.

Definition 4.1 (Sequential continuity) A map f : X — R is called sequential continuous if for all x € X’ and all
sequences {X,}nez, With x, — x there holds f(x,;) — f(x).

Remark 4.2 Itis emphasized that we only introduced a notion of convergence for systems, but not a topology on
the set of all £,,-systems. For this reason continuity of maps is defined via convergent sequences.

The main result of this section is as follows.

Theorem 4.3 The misfit function u(w, B) is (sequential) continuous in its arguments (w, B).

Proof. Let w € cf, B be an £y-system and let {wn}nez, and {By}nez, be sequences of time series in ¢ and
£o-systems such that (w,, B,) — (w, B). Then, using theorem 3.5, we find that

w(Wy, By) — uw(w, B) = max (wy, rp) — max (w, r)
rneUB} reUBL

= W, 17") — max (w, r)

LH{wp —w4w, - (w, r,?)

= (wy — w, 7™ + (w, r* — 7Y,
Here, r&* € UB;- is such that (w,, r) = max,, eUBL{Wn, Tn) and r € UB* is the corresponding scquence of
laws satlsfymg, requirement 1 for convergence of models. Further, we used that max,cyps. (w, r) > (w, r°). Using

boundedness of || 7 ||; and the fact that | w, — w||« converges to 0 as n — oo it follows that the latter expression
converges to 0 as n — oo.

Similarly, we obtain that
ww, B) — w(wy,, By) = max {(w, r) — max {wy, )
reUB+ rneUB}
= (w, r®) — max {(wy, ry)
rncUBL
< (w, 1) = (wn, 1)
= (w, r'™ — r,(,)) + (w — wy, r,(,)).

Here, r® € UB* is such that {(w, r®) = max,yp: (w, r) and r,‘,’ € UB; is the corresponding sequence of laws
satisfying requirement 2 for convergence of models. Since 7 has bounded norm, and (w, r* — r2) converges to 0
as n — oc we obtain that the latter expression vanishes in the limit. Consequently,

Tim-[u(w, B) — awn, Bl = 0



which proves the sequential continuity of u. O

Theorem 4.3 implies that small amplitude variations in the observed data imply small perturbations of the misfit
function. Finite length observations of the data w are particularly relevant in this context. With w € cg , a truncated
observation

wn(0) :={ (‘)”(t) ;fz @.1)

clearly satisfies w, — w. The following results are an immediate consequence of the continuity of w(w, B). Let
& > 0 and consider the level set B(e, w) as defined in (2.4).

Definition 4.4 (Upper semicontinuity) Let B be a model class of £.,-systems. The level set B(g, w) < Bis called
upper semicontinuous if

{(en, Wn, Bp) = (¢, w, B), B, € B(en, wa)} = {B € Ble, w)}

In words, this property guarantees that if elements of level sets B(e, , w,) converge, then they converge to elements
of the limiting level set B(e, w). In particular, if w € ¢f and {£,}2°, is a sequence of non-negative numbers
converging to ¢ = &% (w), then upper semicontinuity of B(s, w) implies that any convergent sequence of £u-
systems B, € B(s,, w,) converges to an optimal model 5 € B* (w).

Proposition 4.5 The level set B(e, w) is upper semicontinuous.

Proof. Let (¢, wn, Bn) — (¢, w, B) and let B, € B(g,, w,). By continuity of the misfit we have that
w(wn, B,) = w(w, B). As u(wy,, By) < &, — ¢ it follows that u(w, B) < €. . .a

The following result shows that the optimal misfit level £*(w) is a continuous function of the data. The result is a
consequence of Theorem 4.3 and Proposition 4.5

Proposition 4.6 Let the model class B be sequentially compact (in the sense that every sequence {B,}a2, with B, €
B has a convergent subsequence with limiting element in B). Then e™(w) is a sequentially continuous function of
w.

Remark 4.7 Suppose that the data w is compatible with a model By € B in the sense that u(w, Bs) = 0 and
further suppose that By is the unique element in B with this property. A natural question is whether the model
By can be identified in a consistent way from finite length observations w,, as defined in (4.1), by minimizing the
misfit function p(w,, B) over elements B € B. If the model set B is sequentially compact then the set of optimal
models

B* (w,) := argmin u(w,, B)

: Beb

is non-empty. Furthermore, using the upper semicontinuity of the level sets (Proposition 4.5) and the continuity of
the optimal misfit levels (Proposition4.6) it follows that every convergent sequence of optimal models B,, € B* (w,)
converges to By. This property of convergence of optimal models can be viewed as a deterministic notion of
consistency. :

Remark 4.8 It follows that sequential compactness of model sets B is a relevant property to guarantee consistency
and continuity of optimal misfit levels. One of the most common model sets is defined as follows, see e.g. [6, 7].
Associate with alaw r € ¢, the set

B(r) :={wecl|(c'w,r)=0foralt > 0}.



Clearly, B(r) is an £ -system in the sense of definition2.1. Letry, ... ,r, € e‘{ be a set of laws which are assumed
to be independent and of finite supporti.e. 3N > Osuch thatr;(z) = Ofort > N,i =1,..., g. We associate
- with these laws the system

) .
B :=()B(r). 4.2)
i=1

Since r; has finite support we can introduce the polynomia] p;(z) := Zﬁvz o 7i(1)Z'. Then p;(o) denotes apolynomial
difference operator and we have ' )

B(ri) = {w € ¢ | pi(c)w = 0} = ker p; (o)

Introduce the matrix polynomial
n@)
P(z) =
pe(2)

Then the system (4.2) is represented by the autoregressive equation P(o)w = 0, i.e.
B=B(P):={wec | P)w=0}

For given integers ¢ and n, the model set B(g, n) is defined as the set of all models B(P) where the matrix
polynomial P has rank g and McMillan degree < n. It is an open question whether this model set is sequentially
compact with the notion of convergence as defined in Section 4.

5 Conclusions

A system identification problem has been addressed in which optimal models are defined as those elements in a
model class of linear systems which minimize the £, distance to the observed data. Models are defined in terms of
families of system trajectories and are not required to have an input-output structure. A misfit function is proposed
which measures the amplitude of the approximation error of the model with respect to the data and it is shown that
the misfit continuously depends on the data and the model. These results are imperative to prove that £, optimal
models also continuously depend on the observed data.
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