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Summary 

This report deals with the calculation of aperture field and radiation 

pattern, from Fresnelfield measurements of both amplitude and phase 

distributions radiated by large (D » A) reflector antennas. 

A microwave measurement system based on the concept of microwave complex 

holograms is introduced. 

The use of an existing antenna scanning system suggests measurements with 

a spherical scan. Equations for the Fresnel field of a large reflector 

antenna on a spherical surface will be derived. Also, the transformations 

necessary to calculate aperture and far fields will be given. 

The cross-polarisation properties in the Fresnel zone will be investigated. 

For small boresight angles (large D/A) the co-polarised and cross-polarised 

field distributions can be shown to result independently of co-polarised 

and cross-polarised aperture fields respectively. 

It will be shown that an antenna test range of about 15 times the diameter 

of the reflector (D) is necessary to carry out Fresnel field measurements. 

Equations defining the angular test interval and the sampling distance 

will be derived. 

In Ch. 4 results of measurements and calculations on the field of a 

small reflector antenna (D~IOA) will be given. 

Finally the authors wishes to thank Mrs. v.d. Ven - Pellegrino for typing 

the manuscript. 
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1.1 Introduction 

The investigation of the far field characteristics of large reflector 

antennas often encounters a lot of problems because of the long distance 

and great altitudes at which a source (or receiver) has to be placed. 

Several methods of obtaining these characteristics from measurements at 

much shorter distances than 2D2/X were proposed. An excellent review of 

these methods is given by Ashton et al [1] and Hollis et al [2]. 

The three fundamental methods of obtaining the far field when measured in 

the near field are by: 

a) arranging for the antenna to be illuminated by a plane wave generated 

within a short distance; 

b) measuring the radiated fields in phase and amplitude of an antenna in 

the near field and calculating the far field; 

c) changing the antenna to be tested in a prescribed way so that the field 

over a certain area in the near field closely resembles that of the far 

field of the true antenna. 

Variations on these three methods have been developed, but· all systems may 

be classified among one or occasionally two of these methods. 

The plane waVe illumination method (a), presently known as the compact range 

method, can be used for antenna pattern measurements, radar reflectivity 

measurements, etc. and yields accurate results [2]. 

The defocussing method (c) yields a rough approximation of the required 

far field pattern [1] and can only be used with systems that can be defocussed. 

Method (b) uses phase and amplitude information of the near field to 

calculate the far field. The field measured at some plane, cylindrical or 

spherical surface is thereby transformed into the far field pattern. Use of 

this Field Transform Method requires also measurement of the phase pattern 

which was a prime difficulty at microwave frequencies. For this reason, 

only little attention has been paid to the measurement of the phase patterns 

in the past, hence calculations of aperture fields were not usually possible 

and information regarding aperture blocking and aperture field deformations 

was not obtained. 

Using microwave holography and optical data handling, the Russian investigators 

Bakhrakh and Kurochkin [3], were the first to reconstruct the optical analogon 

of the radiation pattern of a large reflector antenna. Other authors proposed 

numerical data handling [4,5]. It is the purpose of this report to present 
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the necessary transformations for the calculation of the far f.ield and 

aperture field measurements from Fresnel field·measurements on a spherical 

surface and to introduce a measurement bridge based on the principle of 

microwave complex holograms. 

1.2 Literature 

[1] R.W. Ashton et al "A study of the prediction of antenna performances 

from near fie ld measurements", June 1975, Final Report Marconi Res. 

Labs. ESA contract 2239/75/HP. 

[2] Johnson et aI, "Determination of far field antenna patterns from near 

field measurements", Proc. IEEE Dec. 1973. 

[3] L.D. Bakhrakh, A.P. Kurochkin, D.A. Dimitranko, W.M. Tseitlin and 

D.L. Arutyuny<lIt, "Determination of the radiation pattern of a receiving 

antenna by means of a source in the Fresnel zone using holography and 

optical processing", Sov. Phys. Doklady, Vol. 16 no. 11 pp. 1004. 

[4] R.H.T. Bates, "Holographic approach to radiation pattern measurements", 

pp. 1107-1208, Int. Jrnl Engng Sci., Vol. 9 - 1971. 

[5] R.H.T. Bates and P.J. Napier,"A suggestion for determining antenna 

pattern phase from holographic type of measurement", Austr. Electr. Connn. 

p. 164, April 1971. 
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2. Field equations 

2.1. Introduction ------------

Radiation patterns of electrically large reflector antennas (D » A) can 
2 only be measured at distances greater than 2D lA, i.e; sometimes several 

kilometers. Measurements of the radiation patterns with the help of 

sources in the very far field like radio stars [1] and satellites are very 

well possible, but require accurate and often difficult tracking of these 

sources. Measurement at much shorter distances, i.e. in the Fresnel region, 

yield a Fresnel diffraction pattern instead of the Fraunhofer diffraction 

pattern (or radiation pattern), in which we are mainly interested. However, 

measurements of both phase and amplitude distributions in the Fresnel zone, 

for instance with microwave holographic techniques, give a complete picture 

of the radiating source under investigation. Therefore, with the use of 

appropriate transformations, the field in any plane from aperture to far 

field can be calculated accurately. 

Measurements in the Fresnel region are very meaningful for large reflector 

antennas (large D) which are used at very high frequencies (small A). The 

cross-polarisation characteristics of these antennas, which are important 

because of frequency re-use, will have to be investigated in the Fresnel 

region, too. 

The Fresnel diffraction field of a large reflector antenna can be calculated 

by the scalar aperture method or by the current distribution method. The 

latter is a vectorial method and can be used to calculate cross-polarisation. 

The scalar aperture field method assumes a linearly polarised aperture field; 

consequently, only co-polarisation can be calculated by it. Silver [2] states 

that as a first approximation cross-polarisation can also be computed by 

applying the scalar aperture field method to the cross-polarised aperture 

field. Silver also shows that the radiation pattern calculated by the 

current distribution method is essentially the same as that calculated by 

the aperture plane method. Co-polarised and cross-polarised Fresnel fields 

can thus be calculated by using the current distribution method with the help 

of approximations Which are similar to those used in the aperture field 

method. Using these methods, it will be shown that co-polarised and cross

polarised fields in the Fresnel and Fraunhofer region can be treated 

individually by applying the aperture field method to co-polarised and cross-
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polarised aperture fields. 

It is the purpose of this chapter to compare these two methods in order to 

derive field equations for the co-polar and cross-polar fields in the Fresnel 

zone and Fraunhofer region. The relations between these fields are given, 

and finally field reconstruction errors will be investigated. 

Assuming an aperture diameter D which is much greater than wavelength A, and 

a linearly pOlarised aperture field E (x,y), Silver [2] shows that the scalar 

aperture field method can be used to calculate the diffraction field E in P 
p 

(Fig. 2.2.1, page 40). 

E 
P 

-jkr 

= 4; jjE(X,y).e r 1 
A 1 

[(jk + _1_) e.e + jk e .e ]dxdy 
r

1 
z r z s (2.2.1.) 

with: E(x,y): the aperture field, which is linearly polarised in the aperture A 

r
l

: distance from source point to field point 

e : direction unit vector from source to field point 
r 

e : direction unit vector 
z 

normal to the aperture 

e : direction unit vector s _ 1 _ _ defining the direction of the magnetic 

field H = --z e x E(x,y) , s 
o d' x,y: aperture coor Lnates 

k: the wave number k = 2IT/A. 

The aperture field can be represented by its amplitude and phase distribution: 

J' '''(x y) 
E(x,y) = A(x,y)e ~. , 

Silver [2, p. 161] shows that: 

and uniform phase distribution ~ = constant then yields: 

e • e ="1. 
s z 

(2.2.2.) 

(2.2.3.) 

Depending on the mathematical approximations of the integral (2.2.1.), the 

space for z > 0 .can be divided into 3 zones: the near- field zone. the 
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Fresnel field zone and the Fraunhofer zone. 

Again, Silver states that for the near zone region of points in the immediate 

neighbourhood of the aperture no simplifying approximations can be made. This 

region extends several wavelengths outward of the aperture. 

In the Fresnel region, several simplifying approximations are possible: 

- the term I/r
l 

in square brackets is negligible with respect to k. 

- I/r
l 

::: I/R. 

- the term e.e can be approximated because R » r where x2 + y2 = z r 

so ez.eR = cos S 

the phase 
-jkr I 

term e can be approximated using: 

r l = r e = Rea - re 
I r r 

2 
(rl·t) R2 2 

2rRCer·eR)· r l = = + r -
Hence 

2 2 R2 [I r - 2rR(er .eR)J r l = + 
R2 

A binomial expansion yields 

2 -- 2 --2 
If -2rRCer ·eR») I (r -2rRCer eR»)' 

r = R[I + -'t - - ---,;~~ 
I 2 R2 8 R2 

....... J 

(2.2.4.) 

(2.2.5.) 

Neglecting all terms of the second and higher orders, this equation simplifies 

to the Fresnel approximation: 

2 
r 

+ --2R 

with a maximum error of 

Applying spherical coordinates: 

x = R sinS cosq, = Rex 
p 

yp = R sinS sinq, = Ri3 

z = R cosS 
P 

C2.2.6.) 

(2.2.7.) 
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the Fresnel approximation now yields 

r2 
r 1 = R + 2R - (xcx + yfl) 

hence the Fresnel diffraction field yields 2 2 

-jkL ff E = jk (I + cosS)e -,re E(x ) 
pFre 21TR _ 2 ,y 

-jk(x2~ Y - (xcx + yfl» 
re e dxdy 

-,re 

2 For large values of R _ the term r /2R becomes negligible and the -,re 
Fresnel pattern transforms into the 'Fraunhofer or far field pattern. 

E = pFra 
+ cosS) 

2 
"Fra -jkP. If 

e E(x,y) 

(2.2.8.) 

(2.2.9.) 

Using the current distribution method or physical optics approximation, it is 

possible to calculate cross-polarised field components because here the field 

has a vectorial character [Silver, p. 88j(Fig. 2.3.1, page 40) 

. 2 -jkr2 
E = -4 Jk If {J - (i'.e 2).e 2} e dS p 1TWE r r r

2 
(2.3.1.) 

The current density J is given by 

J = 2 (Ii x ii.) 
1 

n being the normal to the reflector surface and H. the magnetic field 
1 

incident on the reflector 

H. m 
1 

with 

where 

(2.3.2.) 

(2.3.3.) 

(2.3.4.) 



P
T 

total radiated power 

G
f 

gain of the feed 

e. polarisation vector. 
1 

If the feed is linearly polarised 

- 8 -

in the e direction: 
x 

Equation (2.3.1.) can be simplified using the Fresnel and Fraunhofer 

approximations of section (2.2.). 

(2.3.5.) 

Using (2.2.4.) with the vector e pointing to the reflector according to 
p 

Fig. 2.3.1., one can write 

(J.(Rer - pep»' (ReR - p.ep) 

= IR'~R - p.epl2 

(2.3.6.) 

I - - I-I -I With ReR - pep ~ R this equation becomes 

Because p2 « R2, one term can be neglected and 

(2.3.7.) 

The third term of J' only contributes to the longitudinal field. If, in 

addition, 

p « R, (2.3.8.) 

the last two terms of (2.3.7.) can be neglected, and only the transversal 

field components of J (i.e. the e and $ components) will contribute to J': 

(2.3.9.) 

The exponent in (2.3.1.) can be approximated using (2.2.5.) hy replacing r by p: 
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r = R_ + 2 -.. re 

The Fresnel field can thus be calculated from 

E 
PFre 

where 

-jk[R_ + -.. re 

dS = p2 sin~ sec % d~d~ 
The current density J is given by Collin and 

p 1 
g 2[(£)1 -I.]I 

Gf (~,O -jkP -
J e .(n x (ep x 11 211 P 

Zucker 

e. )) 
1 

dS (2.3.10) 

[4] : 

with e. defining the polarisation of the field incident on the paraboloidal 
1 

reflector, and n being the normal vector to this surface. 

The vector product 1S given by [4]: 

(2.3.11) 

Here e. defines the polarisation of the ray reflected at the paraboloid, hence 
1 e. describes the polarisation of the field in the aperture plane. 

1 

The aperture distribution is [4]: 

-jkp -jkpcos~ -
e • e I e. 

1 
(2.3.12) 

The current density J can now be expressed in terms of the aperture field as 

(2.3.13) 

The Fresnel field can be expressed in the aperture field using (2.3.9) to 

(2.3.13). 

The ez term in (2.3.13) will not contribute to E$ and its contribution to 

Ee is proportional to sine which is nearly zero for the narrow beams we are 

concerned- with. Keeping in mind that JI can be replaced by J in (2.3.10) if 

one does not account for the eR component of the electric field (2.3.10) this 



substitution in (2.3.10) yields 

E' pFre 
jk 

= -=--.!.:::..-
2~R_ 

-Yre 

-jkRyre Jf 
e '} Eap 

S 
J 
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+jk(2f-p) 
e 

Dropping the e
R 

component, we obtain 

E =(O,E' pFre pFre8 
E' ) 
pFre~ 

2 

jk[~Ry 
re 

e 

Here 51 is the 

while 2f - P = 
aperture plane and dS

I 
= r dr ds and r = psin~ 

pcos~ is the definition of the paraboloid. 

The inner product (~P'~R) is given by 

(2.3.14) 

1 
= 2 f tan 1'f1 

(2.3.15) 

In Appendix I it is shown that for small angles .8, the Fresnel integral yields 

E' pFre 

E pFre 

= 
jk e-jk~re((E 

2~R- .1.1 ap -Yre 

= (0, E' pFre 8 
E' ) 
pFre~ 

2 
. r 
Jk2R_ 

-Fre 
e .e 

jkrsin8as (s-~) 

r dr ds 

(2.3.16) 

For large values of R- the quadratic phase term becomes negligible and the 
Fre 

Fraunhofer Or far field pattern is obtained 

-, 
E pFra 

= jk e-jk~rarrE 
2~R- J'J . ap -Yra 

ejkrsin8cos(s-~)rdrds 

The true far field is then given by 

E pFra 
= (0 E' , pFra ' 

8 

(2.3.17) 
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The Fresnel field obtained with the aperture field method (2.2.8) can be 

written as 

jk -jk1). 
E = =;!,-"'--- ere 

pFre 2rrR_ -Fre 
(1 + cose)jj E 

2 r.J -ap 

2 
jk2R

r +jkrsinecos(~-¢) 
-Fre 

e rdrd~ 

(2.4.1) 

Comparison of (2.4.1) with (2.3.16) shows that for small angles 0 the same 

radiation patterns are obtained by the aperture field method (2.2.8) 

applied to both aperture polarisations and with the aperture field approxi

mation obtained from the P.O. method (2.3.16). 

In general, a somewhat more accurate pattern is obtained from the surface 

currents directly rather than by the use of the aperture field, which 

involves a second application of Snell's law with its optical approximations 

[4] . 

Again, for small e, both methods lead to the same equation of the far field. 

The aperture integrals (2.2.8) and (2.3.16) always yield far field components 

which are parallel to the aperture plane; hence, the ~R directed (longitudi

nal) component does not vanish. This is inherent in the aperture field method 

(2.2.8) because the basic equation (2.2.1) assumes a scalar field in the 

aperture. 

The aperture field method (2.3.16) derived from the physical optics method 

yields an e
R 

component; however, this component may not be taken into 

consideration when calculating the actual field. In fact (2.3.16) yields 

(x,y,z) components of the calculated field since all (x,y,z) components of 

J are unequal to zero. In spherical coordinates: 

ER sine cos¢ sine sin¢ cose E 
x 

Ee = cose cos¢ cose sin¢ -sine E y 

E¢ -sinq, cos¢ E 
z 

with 



(2.4.2) 

i = (x,y,z) 

since the aperture field method (2.3.16) only takes into account E and E 
x y 

(E z was neglected in (2.3.13», the values of E~ and Ee calculated by this 

method will be different from the actual field ER, Ee' However, because 

J~ = 0 (Eq. 2.3.9), also ER = O. From (2.4.2.) 

ER = sinS cos~ • E + sinS sin~ • E + cosS • E = 0 x y z (2.4.3) 

and E' = sine cos~ E + sine sin~ . E R x y 
hence ER = E' + cose E = 0 R z 
Hence, 

-E' sine 
Ez 

R (cosS E s in~ E ) = --= - cose + cose x y (2.4.4) 

and 

Ee cose cos~ E + cose sin~ E - sinS E x y z (2.4.5) 

E' = cose cos~ E + cose sinej> E 
e x y 

(2.4.6) 

Ee = E' - sine E 
8 z 

Substitution of (2.4.4) and (2.4.6) in Eq. (2.4.5) leads to a correction of 

E ' • e . 

. 28 
E = E' + S1n (cos~ E . ~ ) e e cose ~ x + S1n~ Ey (2.4.7) 

The actual E~,ej> field can thus be calculated by the aperture field method 

(2.3.19) if the resultant ER, Ee fields are modified according to (2.4.7) 

and (2.4.3). This correction then leads to: 

~e) = (CO~8 + 

E = - S1nej> ej> 

. 2e S1n ) 
cos e cosej> (cose + 

cosej> 

Sin2e)Sin~) (E ) cos e x 

E 
y 

(2.4.9) 
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with ER = O. 

Using 

. 2S 
cosS 

S1n 
+ cosS 

= 
cosS 

we may write 

E (COS<P Sin<p) (E) S cosS cosS x C, -.i., 00.' . " (2.4.10) 

Here E and E are the components calculated by the aperture field method x y 
(2.4.2). 

The distant radiation field from a linearly polarised antenna can be 

completely specified in terms of two spatially orthogonal vector components. 

The definition of these vectors in terms of co-polarised and cross-polarised 

components is to some extend an arbitrary one, and at least three different 

definitions are commonly used in the literature. The definition employed here 

has the particular advantage that the calculated field components at any point 

in space, correspond directly to the components measured using standard 

antenna-range techniques. 

This definition given by Ludwig [5] depends on the antenna axis, giving the 

principal electric vector, which is taken as reference polarisation. 

Taking the x-axis as a reference, the co-polar (R-E.eference) and the cross

polar (C-~ross-polar) field components can be related to the field components 

ES and E<p [5]: 

(R) = (c~s<P 
C S1n<p 

(2.5.1) 

With (2.4.10) the co-polar and cross-polar fields can be expressed 1n E 
x 

and E : 
y 



(
R) = (1 + (CO!e - 1) cos

2
<1> 

c (--l-e - 1) sin<l> cos<l> 
COB 

For small values of e: 

- 14 -

1 (-- - 1) 
cose s in<l> c. OS2<1». (Ex) 

1 + (1 1) s 1n <I> E cose - y 

and (2.5.2) yields around the boresight axis: 

(2.5.2) 

(2.5.3) 

For e = 0, Eq. (2.5.3) is exact and the choise of the x-axis as a reference 

now becomes obvious. Hence, if the y-axis was chosen as a reference, Rand 

C should be interchanged in (2.5.1) to (2.5.3). 

The inversion of (2.5.2) yields 

(

1 + (_1 __ 1) sin2
<1> 

_ :ose 

(cosS - 1) sin<l> cos<l> 

1 
- (cosS - 1) sin<l> :OS<l».(R) 

1 + (_1_ - 1) cos <I> C 
cose 

(2.5.4) 

Using the Fourier transform pair 

00 00 

-j 21T 
(ax + By) ff(a,B) "'I t#a.~ = F f(x,y) e {e (a,B)} A A (2.6.1) 

-00 -00 

00 00 j2~ (ax + By) 
e(a,B) f ff(X,y) -1 

= e dxdy = F {f (x,y)} (2.6.2) 
-00 -00 

the far field ... distribution (2.3.17) for one vector component can be written 
': .. '. 

as the invers'eE'o~rier transform of the aperture distribution: 

E (a,S) = 
PFra 

-'kL 
jk J Fra - 1 21TR e .F {Eap (x,y)} 
-'Fra 

(2.6.3) 
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with E (x,y) = 0 outside the aperture. 
ap 

From (2.6.3) it is apparent that Fourier transformation of the far field 

yields the aperture distribution: 

E (x,y) = -jkR 
ap -"ra 

+'kR J -.. ra 
e P {E (a,S)} 

PFra 
(2.6.4) 

However, in the above Fourier integrals the integration limits of a and p, 

are infinite, but in practice the observed far field pattern can only be 

known for a and S with 

2 S2 . 2e a + = S1n < I. 

For this reason it is theoretically impossible to calculate the aperture 

distribution from a measured far field pattern. In practice, however, 

Fourier integration over limited a and S with a 2 + S2« I, yields good 

results if it can be shown that the contribution of the integrand 1S 

negligible for values of a and S above the integration limits. 

Similarly to (2.6.3) the Fresnel field can be calculated from 

-jkR 
e -.. re p-I {E (x,y) 

ap 

2 2 
-jk~R.,+ Y 

e re} 

Thus the aperture field can be calculated from the Fresnel field: 

2 2 
. x + Y 

'kR- Jk2R-
J Fre -Fre 

E (x,y) = -jAR e .e ap -"re 

Substitution of (2.7.6) in (2.7.3) yields 

Ep (a,S) = 
Fra 

jk(R- --.. re 
e 

F{Ep (a,S)} 
Fre 

In Appendix II a two-dimensional convolution is derived from (2.6.7): 

(2.6.5) 

(2.6.6) 

(2.6.7) 



e 

-jkRFre 
2 

jkR_ (aa'+SS') 
.e -~re da'dS' 
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(2.6.8) 

The last term of (2.6.8) shows that this equation is an inverse Fourier 

transform of the (a',S') domain to the (a~_ ,SR ) domain. -Tre -Tre 
Defining s = a.R

-~re 

t = S ~re 
(2.6.8) can be formulated as a Fourier transform: 

Ep (a,S) = 
Fra 

-jkR-
_-,,-~=re.:.. -1 s 

e 2 F {Ep (~ 
Fre -~re 

~) 
~re 

. ( 2 -JkR- s + -r're 
e 

Instead of using a two-dimensional convolution, the far field can be calculated 

from the measured Fresnel field with the help of an inverse two-dimensional 

Fourier transform. Again, it must be stated that Fourier integration may be 

limited to certain maximum angles a and S if the contribution of the field 

beyond these angles is negligible. 

In the previous sections it was stated that e must be small in order that the 

aperture field method should yield good results. 

Approximation of the phase factor exp(jkr) leads to a truncation of a 

binomial (alternating) series with a maximum error of (2.2.7) 

Here we state 

11Ir 1 I < A /128 (2.7.1) 

as a reasonable criterion, because errors involved 1U phase measurements 
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are of the same order. 

(2.7.2) 

Since ~r.eR = sinS cos(I;-CP) an upper limit for [sinSI is found from (2.7.2) 

Isinsl < 

The minimum of the right-hand term of (2.6.3) is found for r 

I sinS I < ~ AR - ~ 
16D2 4R 

(2.7.3) 

D 
= 2. So 

(2.7.4) 

If we define m as a ratio between 

2D
2

/A, equation (2.7.4) leads to 

R- and the usual far field criterion -"re 

IsinSI < ~(l_ ~(~) 1Biii 8D 

m 

(2.7.5) 

(2.7.6) 

In the far field the term r2/2~_ is neglected; thus the far field criterion -"ra 
states a mimimum distance R

f 
giving a maximum phase contribution for the 

ar 
neglected term of: 

2 
= kD (2-) = 'IT 

8 • 2D2 "8 (2.7.7) 
max 

with 

(2.7.8) 



- J 8 -

2.8. ~_1~~~!_1!~!~_~~_~~gl~_~_~~2_~~_~~~!~~~!~~_~i_!~~_~!!~!~_~~!!~2~~~2 

hy_~!~~~~!~~g_~~~_~~gl~_~i_~~~~~!~~~~~ 

In order to apply the field equations of section 6, the Fresnel field can 

only be recorded for angles e satisfying Eq. (2.7.5). If the measurement 

of the Fresnel field is truncated at some angle e, errors will occur in the 

aperture field which has been reconstructed from the recorded data. 

From the point of view of measurement and data processing the angle 8 should 

be kept as small as possible, while the field transforms (2.6.6) and (2.6.9) 

still yield accurate results. In order to find a lower limit for e, the 

errors involved in the use of field transforms with truncated integration 

limits, have to be calculated. > 

It is convenient here to investigate only the one-dimensional case since in 

the two-dimensional case the calculations become rather laborious without 

yielding any fundamental new insight [6]. 
Truncation of the Fresnel field measurements to 

yields a measured Fresnel field: 

with 

~ 

p~ (a) = J for I al < ~ 
a 2 

pex(a) ! for I al 
a 

= = '2 , . 
~ 

p~(a) = 0 for I al > a 
a '2 

Application of (2.6.6) in the one-dimensional case yields 
jkx2 
-- '" 
2~re f ( E (x) = C.e EF a)P~(a) ap re a 

+jkax d e a 
>:" 

With 

(2.8. J) 

(2.8.2) 

(2.8.3) 

(2.8.4) 
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o (TTa ) 
s~n A x 

and (2.6.5), a one-dimensional convolution yields: 

E (x) ap = e 

Ok 2 J x 

2l).re 
[E (x) ap 

a ° (TT~X)] X s~nc 1\ 

(2.8.5) 

(2.8.6) 

For very large values of a, (2.8.5) approaches a a-function and (2.8.6) 

yields the exact aperture distribution . 

. For small values of a, equation (2.8.6) cannot be evaluated analytically 

(because of the quadratic phase factor); hence computer calculations should 

be performed for various values of a, ~ and E (x) in order to find a _ -Tre ap 
lower limit for a yielding enough information to reconstruct E (x) accurately ap 
(see the next chapter for a computer reconstruction) • 

Here we are mainly interested in an analytic expression for the lower limit 

of a, which can be obtained from the transform of the Fresnel field into 

the far field. Calculation of the aperture field from the truncated far 

field then yields an expression for the minimum number of side lobes which 

are necessary to calculate an accurate aperture field. 

Assuming that the truncated far field was obtained exactly, a lower bound 

of a,. yielding an accurate aperture field, can be given. 

With (2.6.8), the far field can be calculated from the truncated Fresnel 

field [7]. 

-jTTR -Tre 
Ep (a) 

Fra 
P-(a') e X 

a 

Substitution of (2.6.5) yields 

(a'-a)2 da' (2.8.7) 

'" '" 
= cj f Eap(x) 

a' + j2TTA x 
-jTTR 
-~-r=--= Tr-=.e (' ) 2 X a-a 

dx. P- (a') e da' 
a 

--00 --00 (2.8.8) 

where C and C' are important factors. 

Because 
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exp[-j~ R (a'-a- ~ )2) exp[jkax) 2 -'Fre ~_ 
-'Fre 

equation (2.8.8)· can be formulated as 

'" '" 
Ep (a) = e'fEa (x) 

Fra p 
e

jkax 
dx fp;.<a') exp [-j~ 

-00 -00 

and with definition of 

B~(a) = fp~(a') exp[-j~ L (Cl-Cl,)2)dCl' 
cl a 2 Fre 

-00 

the Fraunhofer field yields 

'" 
Ep (cl) = e'f Ea (x) Ba:(a + R x ) e

jkax 
dx 

Fra -00 p -'Fra 

With the well-known Fresnel integrals [8) 

x 

e(x) = -e(-x) = {If cos t 2 dt 

o 
_ x 

S(x) = -S(-x) = ~~ f sin t 2 dt 

o 

formula (2.8.10) can be calculated: 

R_ (Cl' -Cl-~) 2) dCl' -'Fre R . 
-'Fra (2.8.9) 

(2.8.10) 

(2.8.11) 

(2.8.12) 

B&(a) = ~2~re [{e(~rr~re (~+cl» +e(~rr~re (~cl»}+ 
- j{ S ( ~ rrR (£ + cl» + S ( ~ rrR (~- cl»}) 

A 2 A 2 
(2.8.13) 

Assuming that. 

N2.~ »A (2 8 4) ~ . .1 re 

then Ba(a) is nearly constant if lal ~ ~ 
Hence Ba(a~) - constant if 

I I 
1 ~ D 

cl ~(2 cl.- --) 
. ~re 

(2.8.15) 
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and with asymptotic expansion of the Fresnel integrals: 

R R 
. Fre 2 Fre 2 

~ 
jA exp{-J'lT-A- A) exp{-j'lT ~ ) 

B~{a + ~) a R 
- (1- j ) - =oL:.:...... { + ---,,--"-'----} 

'lTl).re 2'lT~re A B 
(2.8.16) 

with 

A a'+ £+ x 
= 

2 l).re 

B a' a x 
= - '2-

~re 

Using the fact that 

substitution of (2.8.16) in (2.8.11) yields 

EF (a) ra 
l+j~ & -j'lTR 

= EFra (a) + Tn R &2 [E
PF 

{- '2)exp {-A-{a 
-"'Fre re 

& {j'lTR & 2 
+ Ep {'2)exp -X- ('2 -a) }] 

Fre 
(2.8.17) 

From (2.8.17) ,it may be seen that the error in pattern reconstruction may 

be small because of condition (2.8.14). Therefore in order to reconstruct 

the pattern in the interv~l [: a~ . ~l it is necessary to know the Fresnel 

field in the interval [- ~ • ~l with 

a af D 
'2~2+2R (2.8.18) 

. h (A) M b . • or W1t a f = MD' '2 e1ng the approx1mate number of sidelobes and (2.7.6): 

~ , ~(M + ~) a , D. 2 (2.8.19) 

The upper limit of a or sinS from equation (2.7.5) then gives 
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- - m(-) ¢ " m D 

The solution of this equation yields [6]: 

m~ 
4 --M 

15 

and the minimum value of R is then: -Tre 

~re ) 

2 
(2D ) 

" 
I 20

2 

-1-S-0-2"",/r-3--4 - = X-
I(5,,) - -15 M 

~ 

m max 

(2.S.20) 

(2.8.21) 

(2.S.22) 

In order to find a lower limit for a, the minimum number of side lobes M /2 

yielding an accurate aperture field, has to be calculated using (2.S.6), 

keeping in mind that the quadratic phase term is negligible in reconstructions 

from the far field 

~ 

E (x) = E (x)' ~ sinc(a·X·TI) 
ap ap 1\ 

For a uniform aperture distribution 

Eap(X) = ri Ixl 
Ixl 
Ixl 

< !!. 
2 

= 0/2 

> D/2 

The reconstructed field is given by 

~ ~ 

Eap(X) = *[Si{~ (¥ + x)} + Si{TI~ (¥ - x)}] 

with 

y 

Si(y) = f s~nx dx 

o 

Starting from a tapered aperture field 

(2.S.23) 

(2.S.24) 

(2.8.25) 

(2.8.26) 

(2.8.27) 
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where E (x) is given by (2.8.24), the reconstructed field is: ap 

E' (x) ap 
2 -= (1 - ax ).E (x) + R(x,a,a) 

ap 

where 

~ 

R(x,a,a) 2aA 
2 

{ . D 
= 3A2 (S1nS 2 -

1T a 

. h R 1Ta Wlt = X--

SxsinS¥- sinSx} 

and where E (x) is given by Eq. (2.8.25). 
ap A 

Putting & = M(n) , then M/2 is the approximate number of sidelobes and 

(2.8.28) becomes: 

2 
2aD { . M1T M1T + -- (sln- --
M21T 3 2 2 

Substitution of x = yD and 

a = 

yields: 

(1 - 4 
c)'2 

D 

M1T) M1TX M1TX . M1T . M1TX} 
cos2 cosj) - j) Sl~ Slun 

c) { . M1T M1T M1T). . M1T. } SlU2 - 2 cos2 COSM1TY - M1TY su-z slnM 1Ty 

(2.8.28) 

(2.8.29) 

(2.8.30) 

(2.8.31) 

Hence E' (yD) is only dependent on the edge illumination C and the number of ap 
sidelobes M/2. Numerical evaluation of (2.8.31) shows a small oscillatory 

error in the reconstructed field and a large overshoot of about 9% at the 

edge known as the Gibbs effect (Fig. 2.8.1 - 2.8.4). 

This overschoot always appears when reconstructing a discontinuous distribution 

like (2.8.24) or (2.8.26) from their truncated spectra. 

Apart from this unevitable overshoot at the edge, the aperture distribution 

can be reconstructed accurately (Table 2.8.1 and 2.8.2). 
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A maximum relative error of 3% within 90% of the aperture yields ME' = 60 

for uniform illumination as can be seen from Table (2.8.1). 

The overshoot at the edge yields large relative errors, but it is of 

minor importance when calculating the far field from this distribution 

if the edge is weakly illuminated. This is due to the fact that in that 

case the contribution of the field at the edge to the far field is small. 

Since the far field is calculated by performing (Fourier) integration 

over the aperture and the fact that errors in reconstructing the aperture 

field are oscillatory, the first lobes of the far field can be calculated 

accurately for small values of M. (In fact, here the true far field truncated 

to M/2 lobes yields the calculated aperture fieldl). 

Figures (2.8.1) to (2.8.2) give some insight into the behaviour of the 

reconstructed aperture field distribution for various values of M 

assuming F(x) is uniform. Note that the amplitude of the error F(x)-F(x) 

becomes smaller for larger values of M, and that the point of maximum 

overshoot shifts to y = 0.5 for larger values of M. 

In figures (2.8.3) to (2.8.4) the reconstructed field in the case of a 

15 dB tapered aperture field (2.8.27) is given for M = 20 and M = 60 

respectively. 

Numerical';alculations show a maximum overshoot of 9.5% for the uniformly 

illuminated aperture and a somewhat larger overshoot of 11.5% in the 

tapered case (M = 20) due to the error term (2.8.29). 

Finally it can be concluded that the Fresnel field for M = 6 yields enough 

information to calculate a few sidelobes of the far field, but that for 

calculating an accurate aperture field the value of M should be 

approximately 60. 
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Table 2.8.1 Absolute relative error E, for uniform aperture illumination 

F (x) 
D 

F(YI) = 1 

M 
Y 

0<y<0.3 

0.3 - 0.35 

0.35 - 0.40 

0.40 - 0.45 

0.45 - 0.46 

0.46 - 0.47 

0.47 - 0.48 

0.48 - 0.49 

0.49 - 0.50 

20 

2.4% 

4.2 

5.4 

7.8 

9.5 

7.1* 

13.5 

31 

= I F (x) - F (x) I = 100 
E F(x) 

40 60 80 

1.6 0.9 0.7 

2.0 1.1 0.8 

2.8 1.3 1.0 

2.9 2.2 2.7 

5.2 3.5 2.6 

6.4 3.4 2.8 

7.4* 4.0 1.8 

13.5 7.4* 7.0 

--* 

* Denotes the interval with maximum overshoot. 

100 120 

0.5 0.4 

0.8 0.5 

1.1 0.7 

1.6 1.2 

2.1 1.8 

2.7 1.6 

3.4 0.7 

5.0 1.8 

--* --* 

Table 2.8.2. Absolute relative error E:, for -15 dB tapered illumination 

F(x) =. 1 2 
- ax 

F(x) 
D 2 

= F(Y2) = 1 - ax ; a = 0.822 

M 
20 40 60 80 100 120 Y 

0 - 0.3 4.7 % 2.4 1.6 1.2 1.1 0.5 

0.3 - 0.35 6.7 2.8 2.2 1.7 1.3 0.9 

0.35 - 0.40 7. 1 3.4 3.1 2.3 1.9 

0.40 - 0.45 14 5.5 4.4 2.6 2.7 1.6 

0.45 - 0.46 11.5* 7.3 5.1 3.9 3. 1 2.6 

0.46 - 0.47 7 5* 5.4 3.9 3.7 2.4 

0.47 - 0 .. 48 15.7 9.9 7.2' 1.8 4.6 1.5 

0.48 - 0.49 38 9.7 5.6 5.7' 6.4 8.3 

0.49 - 0.50 20 15 --* 

Note: Since calculations were performed with y-steps of 0.01, some of the 

given percentages are averages for the given interval. 
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since a given maximum truncation error in exp(jkr) yields a maximum value 

of e for a particular value of ~re' a truncation error of 

where y > 1.0 yields a more general result than (2.7.1)(where y = 8). 

Then (2.7.5) changes into 

1 sin 81 < ~ 1 - ~(~) (2.9.2) m.y 8 D 

Figure (2.9.1) gives some idea of 8 for various m and y. Then (2.8.22) 
max 

yields 

2 
L (2D ). 
-7re > A 8 D 2/3 1 4 

(5 >:) • 7f - IT M 

For values of A/D > 100 this equation can be approximated by 

R > A -"Fre 

or 

R > 1 7 ~·D.,D + -.. re ,Y r A 

(Figures 2.9.2 to 2.9.4). 

M2 
+ y-] 

18 

(2.9.3) 

(2.9.4) 

Since (D/A)I/3 varies slowly if (D/A) varies from 150 to 500, which is an 

interesting range here, a rule of thumb for L can be derived from (2.9.4) . -.. re 

R > 20 D + 
-"re y = 8 

(2.9.5) 

R > 10 D -.. re y = 1 

Equations (2.9.5) would hold if they were derived for the aperture field 

method; however, the aperture field method derived from the more accurate 

physical optics method requires some terms containing p/R neglected. 
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From (2.3.7) 

and from appendix I, for small e and small p/R: 

A(e) ~ 0 

which leads to the Fresnel integral (2.3.16). 

Hence, if ~ = 10 D, maximum errors of about 5% are introduced in the 
Fre 

(2.9.6) 

(2.9.7) 

integrand of the Fresnel field equation (2.3.10), as can readily be seen 

from (2.9.6). Also, because e. is generally smaller for smaller values of m1n 
m (Eq. 2.8.19), (2.9.7) will be satisfied better for larger values of R , 

~ l're 
hence 

~ > 20 D 
l're 

will give better results. 

If only one aperture polarisation is considered (x-polarised), the gain 

function is given by Silver [2]: 

g (Ct.,S) x 
! ~E (x y) ejk(Ctx + By) dxdy!2 

411 11. x ' 

= \2 j!E
x

(x,y)!2 dxdy 

A 

(2. 10. I) 

Taking cross-polarisation into account, the power per unit solid angle in 

the far field is given by 

+ !~ Ey(X,y) ejk(Ctx + By) dxdy!2} 

A 

and the power transmitted through the aperture 

.,,-

(2.10.2) 
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IE:
1/
2f\ \2 \ \2 P = -2 (-) { E (x,y) + E (x,y) } dxdy 

ap jJ x y (2.10.3) 

A 

Hence the gain becomes 

f {\E (x,y)\2 + \E (x,y)\2}dxdy 
A x y (2.10.4) 

The max~mum gain generally occurs at the main axis ~ = S = a,where the far 

field cross-polar component is also zero: 

g (a, 0) 
max 

I[ f 2 -, \ Ex(x,y) dxdy\ 
411" A 

= A 2 -'fr\-E-(X-, y-)-\""2-+-\ E-(-X ,-y-) """"\2;-}-dx-d-y 
A x y 

(2.10.5) 

The gain calculated from the reconstructed aperture field thus becomes 

f - 2 \ E (x,y) dxdy\ 
41! A x 

'2f \- '1 2 \- \2 A ,{ E (x,y) + E (x,y) 
A x y 

(2.10.6) 
dxdy 

-
Becaus'e the reconstructed field E is the aperture field as "seen" from a 

ap 
distance R before the aperture, this equation takes into account aperture 

-~re , ' 
blocking and phase errors, but also the introduced reconstruction errors. 

Fortunately the latter errors will largely cancel out because integration is 

performed over the whole aperture as was already stated in section 2.8. 

Using (2.6.3) 

Ep (~,s) 
Fra 

with 

= C(L )ifE (x,y) ejk(x~ + Sy) dxdy 
-~ra '.J ap 

-jkL 
C(~ ) = jke -Fra 

ra 271~ra 

The gain (2.10.1) or (2.10.5) can also be calculated from the Fraunhofer 

field distribution, using Parsevals theorem: 

(2.10.7) 
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(2.10.8) 

Substitution of (2.10.7) and (2.10.8) in (2.10.1) then leads to 

(2.10.9) 

Similarly, (2.10.6) leads to 

g(O,O) (2.10.10) 

Since the side lobes of the far field contain little power, the integral in 

the denominator of (2.10.10) can be approximated by integration over the main 

instead of integration to infinity. lobe and a few side lobes, 

The Fresnel field gain for 

(2.10.2) and (2.10.3) using 

one polarisation for a = e = 0 can be derived from 

gFre(O,O) 

(2.6.5) : 

-jk(x2 + i) 
/ JE (x,y) e 21).re 

'A ap ,x 

ji (E (x ,y) /2 dxdy 
ap,x 

A 

(2.10.11) 

Frpm (2.6.5) and (2.6.3) it can be 

Ep (0,0) 2 

seen that the gain reduction factor: 

y = 
gFre(O,O) 

g(O,O) 

With (2.7.6): 

I Fra I 
= Ep (0,0) • 

Fre 

this equation reduces to 

I 
Y = 2 

m 

,
E

PFra 
(0,0),2 

Ep (0,0) 
Fre 

(2.10.12) 

(2.10.19) 
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For a tapered circular aperture field: 

2 2 
E (x,y) = 1 - a(x + y ) ap 

the gain reduction is easily shown to be 

1 
Y = 2" 

m 

. { 16a . (TIm) J -- S1n-
TIm 16 

TI 1 a - ( - - -) 
4 2 4 

For a uniform illumination a = 0, which leads to 

as was already stated by Silver [2]. 

(2.10.20) 

(2.10.21) 

For m = 16, 32,48, etc., the value of y = 0 because the Fresnel field on 

axis is then zero. From (2.10.21) it can also be seen that for m = 0, 24, 

40, 56 the value of y reaches relative maxima. 

Fig. (2.10.1) shows the value of y, for tapered illuminations, to have a 

similar behaviour. 

Evaluation of the Fresnel field outside the z-axis (~ or B # 0) requires 

numerical calculation of (2.6.5). Analytical evaluation of (2.3.16) in case 

of the circular, uniformly illuminated aperture leads to a Hankel transform, 

which in turn lead,s to Lommel functions, as was shown by Papoulis [9]. From 

these functions it can be seen that the Fresnel field on the z-axis is not 

always a maximum, as is the case in the far field. 

Application of the gain reduction factor y which is derived on the z-axis, 

thus not always yields maximum recieved power; 

Since evaluation of Hankel transforms, is difficult for nonuniform aperture 

distributions and only restricted to circularly symmetrical aperture fields, 

the Fourier integrals from section 2.6 are preferred for further analysis. 
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Appendix I 

The exponent of (Z.3.16) can be evaluated using (Z.3.14) and (Z.3.15): 

Z 
exp{jk[Zf - p -p(cosW cos8 - sinW sin8 cos(~-~» + ~p~ 

Zl).re 

- z~Z (cosZW cosZ8 - isinZwcosZ8 cos(~-~) + sinZW sinZ8 cosZ(~-~»l} 
re 

exp{jk[Zf - p -p(cosW + cosW(cos8-1) - sinw sine cos(~-~» 

Since p + p cosW = Zf 

exp{} = exp{jk[-p(cosW(cos8-1) - sinW sin8 cos(~-~» 

+ 

With i = psinW 

Z pZ Z 2 
(I-cos W) + 2~~ (cos W(cos 8-1) 

-"Fre 
- ~inz~ sinZ8 cos(s-~) 

exp{} = exp{jk[+ pcosW(I-cos8) + rsin8 cos(~-~) 

2 Z 2 Z 
+ -;;;r~_ + ZRP (cos w (cos 8-1) 

Zl).re -"Fre 
-i sin2W sin28 cos(~-~» 

exp{} = exp{jk[rsin8cos(~-~) 
2 

+ r ]} 
2l).re 

exp{jkA(8) } 

For small angles.8 and p «l).re A(8) 18 ... 0 = o. 
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Hence 

2 
exp{} = exp{jk[2a: + rsinecos(~-~)]}. 

re 

Appendix II 

The Fraunhofer field can be expressed as 
2 2 

jk(~ +y ) 

Ep = C
1 

p-l{P{Ep (a,S)}.e ~re} 
Fra Fre 

since the inverse Fourier transform of a product of two Fourier transforms 

can be expressed as a convolution, we calculate 
. (x2+y2) . 1T (2 2) 2 
Jk 2L r 1 JXR x +y j2(ax+Sy) 

p- 1{e -7re} = e -7re e A dxdy 
-., 

[ 
. 1T~re 

= exp -J A 

.1T~re 2 2) = exp[-J X (a +S ]. 

With the well known Fresnel integral: 

this equation· yields: 
2 2 

jk(~ +y ) 

p- 1{e ~re} = jAL 
-7re 

-j1TR. -7re 
e A 

~~ re 2 1T 
+ A a) +( A Y + 

~re 

Using the definitions (2.6.1) and (2.6.2), it is not hard to show that 

E Pra 
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Hence 

Ep (ex, 8) 
Fra Joo 1 -j1Tl).re 

= C2 Ep (ex' ,8') e A 
"'00 Fre 

[ (ex-ex' ) 2 + (8 8') 2] - dex'di3' 
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3. Computer simulations of Fresnel field measurements 

Fresnel field integrals can be evaluated with the well-known Fourier trans

froms, which c.an be calculated at equidistant points with the use of discrete 

Fourier transform techniques. In this chapter a short review of this trans

form will be given in order to explain the calculated bandwidth and sampling 

distance. The Fresnel field distribution will be given for the special case 

of a circular symmetric illuminated aperture. In order to simulate measurements, 

the calculated distribution will be truncated to some "measurement" interval, 

in order to reconstruct aperture and far field distributions. 

Information concerning the required dynamic range of the measurement equipment 

will be obtained from reconstructions of the aperture distributions from 

simulated low dynamic range Fresnel field measurements. 

Fouriet integrals can be approximated accurately with the use of the discrete 

Fourier transform [1,2]. 

Consider .a periodically continued time function f(t) with the two side band

width Band periode T. The Fourier spectrum of f(t) is then given by 

T 

F(f) = f f (t) e -j 21Tftdt 

o 

(3;2.1) 

According to the sampling theorem the function f(t) is uniquely defined by 

N = B.T equidistant samples at a time distance 

'( 
s 

= 
T 

= 
N B 

The time,function can be represented by a Fourier series 

. ~ j21T~ t 
f(t) = ~ A(m)e T 

o 

with 

T 

A(m) ~f f(t) 
a 

'2 m -J 1T- t 
e T dt 

(3.2.2) 

(3.2.3) 

(3.2.4) 
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Hence, samples in the time domain can be expressed in samples from the 

frequency domain 

'2 mn JlI
N 

e 

Similarly, using the periodically continued frequency function, 

2
. mn 

- JlI-
e N 

If we define the discrete Fourier transform as 

N-I '2 mn I"" J liN fo(n) = N~Fo(m)e 
o 

and the inverse discrete Fourier transform as 

2:
N- I _j211mn 

F (m) = f (n)e N 
o 0 

o 

(3.2.5) 

(3.2.6) 

(3.2.7) 

(3.2.8) 

then (3.2.7) and (3.2.8) form a discrete Fourier transform pair as can be 

seen from the substitution of (3.2.8) in (3.2.7). 

The inverse discrete Fourier transform F (m) 
o 

sample value of the Fourier integral (3.2.1) 

of f (n) = 
o 

apart from 

f(nT ) equals 
s -I 

a factor B 

the 

(3.2.9) 

Apart from a factor TIN the discrete Fourier transform (D.F.T) f (n) of 
o 

F (m) = F(~) is equal to f(t): 
o T 

n N 
f(-) = - f (n) 

B T 0 
(3.2.10) 

A time-limited function is not band-limited; hence, application of the discrete 

Fourier transform yields samples which are approximately equal to samples from 

the Fourier integral. This approximation is all the better as overlap owing to 

periodic continued spectra is less [I]. The error, called alaising distortion 

will be exactly zero for band-limited spectra. In order to apply D.F.T., the 

spectrum of the time limited function has to be so truncated that the contri

bution of the truncated part of the spectrum to the inverse transform yields 
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a negligible error [2]. 

Computer routines performing the discrete Fourier transform in a fast way 

are called "Fast Fourier Transform Procedures". The number of samples of 

these routines is generally a power of two, while the samples lie in the 

interval [0, N-I]. Application of F.F.T.-routines to N samples of a time 

function in the interval [0, N-I] always yields N samples in the frequency 

domain that also lie in the interval [0, N-I]. 

If the time function has non-zero values for the negative values of the 

argument, then with the use of the periodically continued function a new 

time function can be defined in the interval 0 ~ t < T, yielding the same 

Fourier transform. Since the (F.F.T.) frequency spectrum is also one period 

of a periodically continued spectrum, the samples for negative frequencies 

are in the interval [N/2, N-I]. 

A two-dimensional F.F.T. 

M-I N-I 2'~ + lnj 
X[k,l] = 2:2:X[m,n]e J M N (3.2.11) 

o 0 

can be performed with the one-dimensional F.F.T. applied to all rows of 

matrix X, followed by a one dimensional F.F.T. performed on all columns of 

the matrix (this is equal to a sequential summation over two different indices 

in a double sum). 

The Fourier transform of the Fresnel field distribution equals the aperture 

field (apart from a phase factor). According to the sampling theorem of 

Shannon, the sample distance (of the Fresnel field) should be thus that no 

overlap of spectra (aperture field) occurs. Because the aperture field is 

zero outside the aperture, its "bandwidth" is limited to D, the aperture 

diameter. 

The Fourier integral 

E(et,S) ff F(x,y) 
e j ~TT (etx + By) 

A 

can be approximated with D.F.T. as 

N-I M-I 
E (kllet, lllS) 

o = ~L: F(nllx, mlly) 
o 0 

dxdy (3.3.1) 

(3.3.2) 
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In the sample point the exponent of (3.3.2) can be written as 

[ .2 {kL'.x nL'lx mL'Iy lL'lB}] ['2 {ml + nk}] exp J 'IT A + A = exp J 'IT M N 

hence 

A 
NL'lx = 

and 

My 

The sampling theorem now states that 

NL'lx ~ D 

NL'ly ? D 

which leads to 

(3.3.3) 

(3.3.4) 

(3.3.5) 

(3.3.6) 

From these equations it can be seen that the sample distance 1n the Fresnel 

field, may not exceed the far-field beamwidth. 

Once the values of L'I~ and L'lS are chosen, the values of M and N determine the 

resolution L'lx and L'ly in the aperture. Calculation of the far field from this 

aperture field yields poor resolution since L'I~ and L'lB are the same as in the 

Fresnel field. 

An increase in the values of M and N yields smaller values of ~ and L'lR in 

the far field as can be seen from (3.3.3) and (3.3.4). This increase, by 

merely adding zero samples outside the aperture, unfortunately also increases 

computer time which is proportional to the number of complex mUltiplications 

F(M,N). If M and N are each a power of two [3]: 

F(M,N) 
_ 2 

MN log MN (3.3.7) 

Transformation of an 128 x 64 matrix by the author's Algol 60 FFT routine, 
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took nearly 100 seconds of computer time. An increase in M and N by a 

factor of 2 leads to more than 400 sees computer time for a twice better 

resolution. 

since data reduction depends on the sample distance ~a, the quantity of 

data within the measurement interval yields the value of N~x, giving only 

meaningful results for N~x ~ D. Because there is no optimum value of ~x, 

computer time can only be a compromise between resolution in the Fresnel 

field and resolution in the calculated aperture field. 

In section 2.8 it was already stated that general insight into Field 

transforms can only be obtained by computer calculations of two-dimensional 

field distributions of various parameters like aperture diameter, frequency, 

meas.urement interval, sample distance, aperture field distribution and the 

number of reductions. This, however, would consume too much computer time. 

Computer simulations for a particular aperture field, aperture diameter and 

wavelength yield enough insight into and confidence in the equations described 

in chapter 2. 

Recent Russian work [4] on far field reconstruction errors in the one-dimen

sional case yields a somewhat larger value of the minimal Fresnel field 

angular sector a then is given by (2.8.19) if a 1-3% inaccuracy of the main 

lobe is required. A larger value of the minimum & always yields more accurate 

results as was to be expected. Because the Fast Fourier transform of the 

Fresnel field requires the number of samples to be a power of two, extra 
~ 

samples of the Fresnel field taken outside the absolute minimum sector a 

can replace the zero samples without increasing computer time. 

Data reduction thus leads to measurement of the Fresnel field within the 

minimum sector &, yielding a minimum number of samples, while measurement 

outside this sector leads to more samples and a more accurate far field 

pattern in the same processor time (if N was chosen large enough). 

For the computer simulations an 128 x 64 matrix was chosen. The computer 

program, written in Algol 60, is given by [5]. 
In the present example we consider a circular ape,rture with diameter D=3 m 

and with a tapered aperture distribution 



E(r) 

E(r) = 0 

2 - ar Irl 
Irl 

< D/2 

> D/2 
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A IS-dB taper yields 
122 

a = (1 - 472)'(n) = 0.365 

The far field criterion now gives 

1800 m. 

According to (2.8.21) the maximum number of reduction is 

4 4 15 M = 30.65 - 15 M. 

For our calculations: m = 10 

then R_ - 180 meters. -r're -
The upper limit of the angle from boresight is (2.7.5) 

arcsin(~ 1 - ~(~)) = 6 .1790 
8m 8 D 

while the lower limit is given by 

arcs in (%[M;m ] ) = 1.430 if M = 5 

Because angles from boresight in the Fresnel field and far field are small, 

equation (2.5.3) is valid; hence the copolar field can be calculated directly 

from Fresnel or Fourier transforms of the aperture field without the use of 

the coordinate transform (2.5.2). 

In order to verify computer calculations, the field on the main axis will 

now be given (2.3.17): 

Efar(e,~) = ~~~ra e-jk~ra ~~ E(r) ejk rsinecos(~-~) rdrd~ 

b · . f D. e Su st1tut10n 0 U = kZ S1n 

and 

r' = 2r/D 

yields 
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Efar (8,cJ» = 
jk -jkl).ra 

"""21T-';L~- e 
-l'ra 

pith 

Jo(ur') = I1T ejur'cos(I:-cJ»dl: 

this equation leads to a Hankel transform of the aperture field: 

-jkR 
'k -l'ra _ J e 

Efar (8,cJ» - 21TR .. 
Fra 

(3.4.1) 

where J
1

(u) and J
2

(u) are the Bessel functions of the first and the second 

order. Note that the far field is a function of u only; therefore, the far 

field is circularly symmetric. The illumination efficiency n , defined by 

the relation [6] 
I fE (x,y) dxdyl2 

1 A ap 

n = A fiE (x,y)1 2 dxdy 
(3.4.2) 

A ap 
can be calculated with the help of (3.4.1), since the numerator of (4.3.2) 

equals the square of the far field modulus on the main axis, apart from a 

constant factor. 

For the given illumination it is easily shown [5] that 

122 (- -aD) 
2 

2 . 
n = 

aD2 a2D4 1 (- - 4+ """96) 2 

(3.4.3) 

Substitution of a = 0.365 yields 

n = 0.85975 

From (3.4.1) it follows that the field strength on the main axis in the far 

field is: 

IE (0,0) I = 0.23 
far 

and in the Fresnel field, using (2.10.2) 
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The Fresnel field of Fig. 3.4.1 was calculated from an aperture distriburion 

with sample spacing 

I'!.x 3 cm 

I'!.y = 6 cm 

with M = 64 and N = 128, 

A I'!.(J. = --= 0.0026 or Nl'!.x 

A 
I'!.S = Ml'!.y = 0.0026 or 

the Fresnel field sample spaeing is then: 

, 
8.95 

, 
8.95 

In Fig. 3.4.2 the same distribution, truncated at -50 dB,is given with a 

dB scale. 

The rotation symmetry of the aperture field also yields rotation symmetry 

in the Fresnel field. From Fig. 3.4.2 a good symmetry is observed for 

amplitudes larger than about -45 dB. Sample values below -45 dB show that 

symmetry is disturbed owing to aliasing distortion. 

Fig. 3.4.3. shows the phase distribution in the Fresnel region which 

oscillates strongly beeause of constructive and destructive interference In 

this region. 

The calculated Fresnel field is now truneated from -20 23' to +20 23' in 

azimuth and elevation in order to simulate measurements over an interval for 

M = 40, yielding 32 x 32 samples. From this distribution, the aperture dis

tribution is reconstructed in Fig. 3.4.4.·Fig. 3.4.5. shows the reconstructed 

phase in the aperture. 

Numerical output of the program yields the relative construetion error E. 
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Table 3.4.1. Relative construction error in relation to taper and radius 

I~ 0<lrl<135 I 35<lrI' 144 I 44<1rj< ISO 

M = 40 <0.9% <5.6% <16.9% 

M = 40 <0.15% <3.3% <12.3% 

M = IS <6.3% <25.5% <73 % 

Table 3.4.2. Absolute reconstruction error 

The phase error was: 

taper 

M=40 IS dB 

M=40 30 dB 

M=15 0 dB 

abs~erval 
error 0<lrl<96 96< I rl< 138 

<0.0039 rad <0.0193 rad 

<0.0014 rad <0.0097 rad 

<0.0224 <0.0490 

Irl=150 

11.4% 

82% 

83.7% 

Taper 

IS dB 

30 dB 

o dB 

138< I r I < 14711 r I = ISO 

<0.02 0.079 

<0.0116 0.053 

<0.0678 0.19 

In Fig. 3.4.6 is given the amplitude of the far field reconstructed from 

the truncated Fresnel field. Owing to aliasing distortion the circular 

symmetry of the sidelobes is disturbed. 

In order to calculate the far field for a twice larger bandwidth, the 

Fresnel field resolution has to be twice better in the case of an equally 

large (128 x 64) matix. 

Truncation of this Fresnel field to lal < 2°23' and lsi < 2°23' then yields 

the far field distributions of Figs. 2.4.7 to 2.4.9. The numerical results 

of the computer ·calculations show that: 

- 1st sidelobe le~el is at -23.3 dB versus -23.6 dB being the true level 

from Eq. (3.4. I) 

2nd sidelobe level is at -31.3 dB versus -31.5 dB. 

the max. amplitude at Rf = 1800 m, is 0.23, which value is in perfect ar 
agreement with (3.4.1) 

- the calculated illumination efficiency is 

n = 0.863 versus 0.85975 exactly. 

In order to simulate a 20 dB dynamic range in Fresnel field measurements, 

the samples smaller than 20 dB below the maximum were replaced by zeroes. 
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Figs. 3.4.10 to 3.4.12 now yield calculated aperture distributions in 

the case of 20, 30 and 40 dB dynamic range measurements. From these 

figures it can be concluded that disturbances outside (and also inside) 

the aperture vanish as the dynamic range of measurements increases. 

This behaviour can be understood from Figs. 3.4.1 and 3.4.2, showing a 

fast decay of amplitude for larger azimuth and elevation angles. Hence 

low dynamic range measurements have here the same effect as truncation 

of the measurement interval to (too) small angles. 

The Fresnel field distribution for m=2 (R. = n2/A) in Fig. 3.4.13 already 
-~re 

shows a concentration of a main beam and a few sidelobes around the z-axis 

in the case of the far field. 

Fig. 3.10.14 shows the Fresnel field for m=IO, calculated from a uniformly 

circular aperture distribution. This field distribution was truncated for 

m=ls or from -1.190 to 1.190 in azimuth and elevation. The aperture field 

that was calculated from this "measured" Fresnel distribution is given in 

Fig. 3.10.15. The Gibb's effect is again clearly demonstrated. Owing to 

this eff·ect, large amplitude and phase errors occur c.L Fig. 3.10.16. 

The far field calculated from this Fresnel field, Fig. 3.10.17 yields 

reasonable circular symmetry for the first two sidelobes. Owing to aliasing 

distortion ,md reconstruction errors, higher lobes are disturbed. 

Numerical results show that: 

- the first sidelobe level is ·carrying from -17.2 dB to -17.9 dB and it 

should be -17.6 dB 

the second sidelobe level is from -23.3 to -24.7 dB versus the real value 

of -24.6 dB 

- the calculated illumination efficiency was n = 1.000. 

This equals exactly the theoretical value, which clearly shows that the far 

sidelobes contain very little power and hence their contribution to the 

calculated gain and illumination efficiency may be neglected (see section 

2. 10) . 
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4. Fresnel field measurements and results of field reconstructions 

Early in 1967, Bakhrakh and Kurohkin [1,2) investigated the use of holo

graphic techniques in order to record Fresnel field distributions totally. 

From the recorded field distribution, called a microwave hologram, an 

optical analogon was produced. Holographic reconstruction then yielded the 

optical analogon of the radiation pattern of the microwave antenna. 

Because of the low dynamic range of films used for the optical hologram, 

and the difficulty of obtaining phase distributions, optical reconstruction 

of the aperture and the far field distributions did not seem very suitable. 

Napier and Bates [3-7) proposed in 1971 to use the computer for simulating 

the (optical) holographic reconstruction process. Since then microwave 

holographic techniques have been used widely for mapping microwave field 

distributions, while computer reconstruction was mostly used in order to 

simulate the holographic reconstruction process [8-23) . 

The holographic recording process is basically a method of encoding spatial 

phase variations in an intensity modulation. The computer holographic re

construction process can then be seen as a demodulation process, which, 

however, requires some inherent approximations [3,4,12] • 

A much more straightforward method based on the principle of complex micro

wave holograms will be presented here. Some problems encountered in Fresnel 

field measurements will be treated and measurement results on an electrically 

small reflector antenna will be given. 

Dechamps [20) showed that product detectors, also called correlators in radio 

astronomy and interferometry, can be used for mapping microwave fields com

pletely. With two harmonic time functions, with complex amplitudes Rand S, 

such a product detector is defined as Re(R*S). 

: ___ :Gf---.' Re(R* S) 

Fig. 4.2.1. Product detector or correlator. 
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Here * denotes the complex conjugate, and Re the real part. Applocation of 

an extra 90 0 phase shift of the R signal then yields Re([+jR]*.S) = Im(R*S). 
* . A system yielding the real and imaginary parts of R S g1ves a complete 

recording of the S-signal if R is taken as the known reference. 

* S --"""'<:"----{ 1----11 = Re(R S) 
--'--./ 

R __ ...o:::.---j 1----'-2 = Im(R*S) 

Fig. 4.2.2. Recording of a complex hologram. 

With 

S = Islejq,g 
and 

R = I RI eHR 

the amplitude and phase distribution of S can be calculated from II and 1
2

: 

(4.2.1.) 

q, =q, + S R + 211n (4.2.2) 

For the purpose of Fresnel field measurements, amplitude and phase distri

butions are not very suitable since Fast Fourier transform-algorithms require 

real and imaginary parts of the field. The use of the measurement set-up of 

Fig. (4.2.2) is then obvious. 

Quadrature hybrids (Q) Fig. (4.2.3) can be combined to make a correlator, 

and with the use of an in-phase power devider (D) a complex hologram

measurement set-up is obtained. 

R =-~----1r-"l--.::-== R-j S 

Q 
S ::~.~--L-____ ~~--~--'~S-jR 

Fig. 4.2.3. Quadrature or 900 hybrid. 
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Fig. 4.2.4. Measurement set-up for complex microwave holograms. 

In the set-up of Fig. 4.2.4. the complex amplitudes a. are given by: 
1 

a
l = S - R 

a2 = S + R 

a3 = S + jR 

a4 S - jR 

(4.2.1) 

The power of the signals with complex amplitudes a. is then proportional to 
1 

2 2 2 
IS-RI = lsi +IRI -2ISRlcos(~S-~R) 

IS+RI 2 
= IsI2+IRI2+2IsRlcos(~S-~R) 

IS+jRI
2 = IsI2+IRI2_2IsRlsin(~S-~R) 

IS-jRI 2 
= IsI2+IRI2+2IsRlsin(~S-~R) 

The difference of the detected powers then yields: 

P 2 - PI = 41 RSI cos (</>S-</>R) ~ Re(R"S) 

P4 - P3 = 4IRSlsin(~S-<pR) ~ Im(R*S) 

(4.2.2) 

(4.2.3) 

The use of diodes with identical quadratic characteristics yields output 

voltages proportional to the incident microwave power P. (i = 1, 2, 3, 4). 
1 
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The voltage difference at the output of these microwave detectors then 

gives the wanted real and imaginary part of the S-signal if R is taken as a 

fixed reference signal. 

with the use ofshQrt slot hybrids as quadrature hybrids and an E-plane T, 

a ,Javeguide measurement set-up according to Fig. 4.2.4. was realised by 

the author [27]. The inherent difference in the diode characteristics was 

solved by applying a large reference signal yielding linear detector output 

giving a real time output signal with a small dynamic range of 23 dB. 

Another disadvantage of the system was the small bandwidth of the X-band 

waveguide structure of approximately 100 MHz. 

A solution to these problems is given by the use of co-axial components 

yielding a large frequency range, and the use of real time computer proces

sing of the various diode characteristics [26]. The main advantage of this 

concept is that components are commercially available up to 200 GHz, yielding 

a relatively cheap and simple set-up capable of accurate amplitude and phase 

measurements in a frequency range where network analysors are not yet 

available (above 40 GHz). 

The field equations derived in chapter 2, assume a coordinate system which 

is centered in the aperture plane. In practice, however, it is not possible 

to rotate a test antenna around the aperture centre or focal point. As a 

result, in the measured Fresnel field distribution a quadratic phase error 

is included due to the additional pathlength between the aperture centre 

and the test probe. 

OA = R-. 
-"re 

00' = 00" = L 

A)-
Probe 

Fig. 4.3.1. Geometry with centre of rotation behind the aperture. 
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In all formulae the distance 

if the antenna rotates at 0" 

R- has to be replaced -"re 
instead of at o. Simple 

by the distance O'A 

geometry then yields: 

O'A 
2 2 2 I/ Z 

= [(LsinS) + (L - L cosScosa+ R ) + (L sincxcosS) ] 
Fre 

A binominal expansion then yields: 

LZ 
O'A = ~ + L(\-cosScosa) + -=- {I 

re 2~re 
. 20 . 2 20 

+ 81n p + S1n a cos ~ + 

2 2 + cos S cos a - 2 cosS cosa} 

Usually L2 «R giving -l're 

O'A = R + L(I - cosBcosa) -.. re 

for small values of a and S, a quadratic phase error is apparent from: 

O'A = R -.. re 
I 2 I 2 

+ L(tx + is ) (4.3.1) 

The angles a' and S' of the line 0"0' with the line O'A do not equal the 

values a and 8 as can be seen from the one-dimensional case. 

0" ~~-L __________ L-________________ L-__ ~~A 

L a 

Fig. 4.3.2. Geometry for calculating S'. 

It can easliy been seen that 

8' = 8 + <5 

where 

L sin 8 
<5 ~ arctan ( R- ) 

Fre 

L 8 
~re 
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if L sin S «R and S ~ sin S giving 
~ l're 

for L «~ the error becomes negligible. -l're 

(4.3.2) 

The two-dimensional case is much more difficult, but for small angles it can 

be seen from the one-dimensional case that 

a' :: a(l + _L_) 
R 
Fre 

and again for small values of a 

Ct t 
:::. Ci. 

(4.3.3) 

If the errors are too large, the sample distances ~a'and ~S' are easily 

corrected using (4.3.2) and (4.3.3). 

Generally the test antenna is capable of rotating and then it is obvious 

that the test antenna will receive instead of send because in that case a 

reference signal can easily be received too. 

data 
logger 

measurement 
bridge 

s prob~e rv 
1----- R ~--~, ~ 

Fre I 

2 

3 

reference probe 

Fig. 4.4.1. Fresnel field measurement set-up. 
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In the case that the test antenna is used as a transmitter, the sampling probe 

should be small' enough to neglect the averaging effect of the aperture since 

sampling requires measurement of the field in a point of space. 

Kurochkin [8] showed that Fresnel field measurements on a linear test antenna 

with length D, require a linear probe with maximum dimension 1 in order to 
max 

neglect the influence of the finite dimensions of the probe: 

(4.4.1) 

The proof of (4.4.1) in [8], yields for the two-dimensional case that (4.4.1) 

is also a good criterion if I is the maximum dimension of the two-max 
dimansional probe. 

Relation (4.4.1) shows that the maximum angular dimension of the probe as 

seen from the centre of the antenna being investigated, should be 

approximately one order of magnitude smaller than the width of the lobes 

of this antenna. Because of reciprocity the probe should have the same 

dimensions, if used as a transmitter. In order to perform Fresnel field 

measurements within an anechoic chamber of 2.5 m length, a small reflector 

antenna was chosen. This antenna rotated at the aperture centre and: 

- D = 25 cm 

- f = 9.2 GHz (X = 3.26 cm) 

- dipole feed 

The far field is at: 

- R = 2D2/A = 3.83 m 
far 

Calculation of M = 5 lobes requires 

21 < Jc(BD) 3 
m _ 2 SA 

4 "3 = 2.43 

The angle of measurement is limited (2.8.19 & 2.B.21) to 

25 0 < e < 550 if m = 1.5 or ~re = 2.54 m -
270 < e < 450 

if m = 2 or ~re m 
2.04 m 

The sample distance in the Fresnel field is limited to AID: 

(4.4.2) 

(4.4.3) 



~a or ~S < ~ = 7.50 

-D 

o Here we chose: ~a = 2 

~S = 40 

and measurements were performed for 

m = 1.5 and m = 2 

-300 
< a < 300 

-32
0 ~ S ~ 320 
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The prcbe was an open-ended X-band waveguide, as chosen in agreement with 

(4.4.1). The measurements were carried out with an H.P. network analyser, 

yielding amplitude and phase distribution of the Fresnel field. 

The Fresnel field measured at 2.54 m was used to calculate the amplitude 

and phase distribution in the aperture, Figs. 4.4.2 and 4.4.3. The aperture 

distribution shown in Figs. 4.4.4. and 4.4.5 was calculated from the field 

measured at ~_ = 2.04 m. A good agreement of both reconstructed aperture 
~re 

fields is apparent. Interpretation of the calculated amplitude and phase 

distribution for the aperture field requires a separate investigation; 

however, some obvious conclusions can be made here. 

- The dip in the amplitude of the aperture field is due to aperture blocking 

by the feed. 

- The lobes outside the aperture, where the field should be zero, are due to 

the fact that the Fresnel field was measured over too small an angle (~320 ). 

The same effect can be observed from Figs. 3.4.10 to 3.4.12, since truncation 

of the dynamic range of measurement resembles a measurement interval which 

~s too small. This resemblance is due to the fact that the Fresnel field 

intensity decays fast for larger boresight angles. However, measurement of 

the Fresnel distribution over larger angles is hardly possible, because then 

a and S are proportional to sine instead of e, and, hence, sample distance 

requires nonconstant azimuth and elevation steps. 

- The calculated aperture phase distribution is strongly nonuniform yielding 

high levels of the far sidelobes of the radiation pattern [27]. However, 

no far sidelobes may be predicted in case of strongly nonuniform phase 

distributions because of the assumptions made in sec. 2.2. 

The reconstructed field within the aperture was used to calculate the far 

field patterns 4.4.6 to 4.4.8. The radiation pattern of the antenna was 

measured in another anechoic chamber, which unfortunately exhibited a strong 
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reflectivity, yielding high interlobe levels (Fig. 4.4.6) and making the 

recorded radiation pattern highly inaccurate below -28 dB. 

In spite of the small Fresnel field measurement interval, the reconstructed 

and measured main lobe exhibits good agreement in the E and H planes. 

The reconstructed sidelobe levels agree within approximately 0.5 dB with 

the measured levels. 

Note that the predicted levels between main lobe and first sidelobe are 

much lower than the measured values, which are too large due to reflections 

in the anechoic chamber. 
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4.5 Conclusions 

The relative simplicity of the Fourier-Fresnel transforms used and the high 

speed of F.F.T. algorithms are the major advantages of the method described 

in comparison with near field-far field methods (cf. ref. 1 & 2 of ch. 1). 

Another advantage of Fresnel field measurements is the use of an often 

existing antenna mount instead of a special scanning system. 

Calculation of radiation patterns from measurements in the Fresnel zone 

is only meaningful for large D/X ratios because small ratios yield a 

small far field distance and a small number of reductions m. Another 

advantage of a large D/X ratio is the small angle of measurement yielding 

a simple relationship between Fresnel field co-polar and cross-polar and 

aperture field polarisations (cf. 2.5.3 & 2;5.4). 

The small measurement angle however might still be too large as in case of 

the 3 m. Cassegrain antenna of our university which is presently operated on 

a very special mount [28] at frequencies of 30 and 11.6 GHz. The special 

mount already mentioned is very stable and accurate, but has SOme inherent 

disadvantages being the limited scan angle of 30 and the small rotation and 

translation as the antenna is scanned. The translation of a few centimeters 

make accurate pha~e measurements impossible, while cross-polar measurements 

are no longer meaningful I due to a small rotation of the antenna. 

The most severe restriction is however the limited scan angle of 30
, and a 

test range of about 16 meters: 

D = 3 m; y = I (eq. 2.9.2); M = 5 (s idelobes) 

f X D/X X/D ~ra M ~re miD e e min - - max max 
30 GHz I cm 300 0.19 1800 m 60 30 m 5.97 0.21 

11.6 GHz 2.58 cm 116 O.49
v 

696 m 31.2 22.3 m 8.36
v 10.22v 

Equations 2.8.2 2.9.3 2.9.2 2.8.19 

Figs 2.9.3 - 2.9. I -

For small D/X ratios, Fresnel field measurements are meaningful as far as 

knowledge of the aperture field distributions is concerned. The interpretation 

of these distributions and also probe correction could be subject of further 

study. 
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