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THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE 

SEPARATE REALIZATION OF THE NEXT-STATE AND OUTPUT FUNCTIONS 

L. Jozwiak 

ABSTRACT - The decomposition theory of sequential machines aims to 

find answers to the following important practical problem: how to 

decompose a complex sequential machine into a number of simpler 

partial machines in order to: simplify the design, implementation 

and verification process; make it possible to process (to optimize, 

to implement, to test, ••. ) the separate partial machines al though it 

may be impossible to process the whole machine with existing tools; 

make it possible to implement the machine with existing building 

blocks or inside of a limited silicon area. 

For many years, decomposition of the internal states of 

sequential machines has been investigated. Here, decomposition of 

the states, as well as, the inputs and outputs of sequential machines 

is considered, i.e. full-decomposition. 

In [16], classification of full-decompositions is presented and 

theorems about the existence of different full-decompositions are 

provided. In this report a special full-decomposition strategy is 

investigated - the full-decomposition of sequential machines with 

the separate realization of the next-state and output functions. 

This strategy has several advantages comparing to the case where a 

sequential machine is considered as a unit. In the report, the 

results of theoretical investigations are presented; however, the 

notions and theorems provided here have straightforward practical 

interpretations and they can be directly used in order to develope 

programs computing different sorts of decompositions for sequential 

machines. 

INDEX TERMS - Automata theory, decomposition, logic system design, 

sequential machines. 
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1. Introduction 

The decomposition theory of sequential machines aims to find 

answers to the following question: 

How to decompose a complex sequential machine into a number of 

simpler partial machines in order to: simplify the design, 

implementation and verification process; make it possible to 

process (to optimize, to implement, to test, ..• ) the separate 

partial machines although it may be impossible to process the 

whole machine with existing tools; make it possible to implement 

the machine with the existing building blocks or inside of a 

limited silicon area. 

The solution of this problem is very important, because the 

control units and the serial processing units of today's large 

information processing systems are often functionally defined in 

the form of a big sequential machine or of a number of such 

machines. 

For many years, decomposition of the internal states of 

sequential machines has 

[2][3][8][9][11][12][13][17] •. [21]; 

been 

however, 

investigated 

together with 

progress in LSI technology and the introduction of array logic 

(PAL, PGA, PLA, PLS) into design of sequential circuits, a real need 

has arisen for decompositions of the states of sequential 

machines, as well as, inputs and outputs, i.e. for full­

decompositions. 

An approach to the full-decomposition of sequential machines 

has been presented in [14] and [15]. 

In [16], classification of full-decompositions and formal 

definitions of different types of ful-decompositions for Mealy 

and Moore machines are presented and theorems about different 

full-decompositions are provided. 

In this report, another type of full-decomposition is 

considered - the full-decomposition of sequential machines with 

the separate realization of the next-state and output functions. 
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2. Two full-decomposition strategies 

DEFINITION 2.1 A sequentia~ machine M is an algebraic system 

defined as follows: 

M = (I, S, 0, ~, ~) , 

where: 

I - a finite non-empty set of inputs, 

S - a finite non-empty set of internal states, 

o - a finite set of outputs, 

~ - the next-state function: ~: SxI ~ S, 

~ - the output function, ~: SxI -7 0 (a Mea~y machine), 

or ~: S -7 0 (a Moore machine). 

When an output set 0 and the output function ~ are not defined, 

the sequential machine M = (I, S, ~) is called a state machine. 

Let M = (I, S, 0, ~, ~) be the sequential machine to be 

decomposed. In [16) such a full-decomposition is presented, that 

it is necessary to find two partial sequential machines M1= 
(I1tS1t01tSl,~I) and M2= (I2tS2'02tS2,~2) each having fewer 

states and/or inputs and/or outputs than M. Each calculates its 

next-states and outputs using only the information about the 

input of M and, in combination, forming a sequential machine M' 

that imitates the behaviour of M from the input-output, or state­

output and input-output, point of view (Fig. 2.1). 

r -- -- -- -- -- -- -- -- -- -- -- , 
I II _ ~ 1 0 1 I 

-(Mlr- -
I 

_ ~1 

I 

I -J f- OdS l ...... 9 I 
I f- 0z/S 2 r-

I 
..... ~ 2 

I 
12 O2 

I - ..1M2 \- - I ,-'.I ~2 

M 
L 

__________ J 

Fig. 2.1 The full-decomposition of a sequntial machine M 

with two partial sequential machines Ml and M2 . 

o 
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Here, another kind of a full-decomposition will be considered. 

Instead of considering the realization of a machine M as the 

whole, the realization of the next-state function 5 is considered 

separately from the realization of the output function 1. 

It is possible to abstract from the output function 1 and first 

to decompose the state machine defined by I, S and the next-state 

function 5. Then, it is possible to realize the output function 1, 

where 1 is treated as a function of the primary inputs to a 

sequential machine M (in the Mealy case), and of the states of 

partial state machines Ml and M2 obtained from a full 

decomposition of the state machine defined by I, Sand 5 (Fig. 

2.2) • 

,- - - - - - - - - - - - --1 
I II 51 SI I I 
I 

Ml 
I 

I 
'" 

~ SI - 1* I 
I ~ S2 -

I 
52 

I 
12 S2 

I M2 I 

o 

M 
L 

_____ J 

Fig. 2.2 The full-decomposition of a sequential machine M 

with the separate realization of the next-state 

and output functions. 

3. The full-decomposition of state machines 

Let M = (I, S, 5) be the state machine to be decomposed and M 1 = 
(I l 'SI,a l ) and M2= (I 2,S2,5 2) be two partial state machines. 

In a full-decomposition of a state machine, it is necessary to 

find the partial state machines Ml and M2 each of which having 

fewer states and/or inputs than the state machine M and together 

forming a state machine M' that imitates the behaviour of M from 

the input-state point of view. 

The following types of full-decomposition are feasible for a 

state machine: 
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- g parallel full-decomposition, where each of the component 

state machines calculates its own next-state independently of 

the other component state-machine, using only information 

about its own internal state and partial information about the 

inputs (Fig. 3.1). 

,--------------, 
I II 8 1 I 
I 

MI 
I 

I 
'" 

r- - !11 I 
I r- - 8 

I I 
I 

12 8 2 
I M2 

M 
L 

__ J 

Fig. 3.1 The parallel full-decomposition of a state machine 

M into component state machines MI and M2. 

- g serial full-decomposition of ~ P8 (present-state), where 

one of the component state machines uses the information about 

the present-state of the second component state machine and 

partial information about the inputs in order to calculate its 

own next-state (Fig. 3.2). 

- g serial full-decomposition of ~ N8 (next-state) , where one 

of the component state machines uses the information about the 

next-state of the second component state machine and partial 

information about the inputs in order to calculate its own next­

state (Fig. 3.2). 

- g general full-decomposition, where each of the component state 

machines uses information about the state of the other 

component machine and partial information about the primary 

inputs in order to calculate its own next-state (Fig. 3.3). 
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,--------------, 
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Fig. 3.2 The serial full-decomposition of a state machine 

M into component state machines M1 and M2 • 

, - - - - - - - - - - - - - - , 
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M1 

I 

I 
'" 

- 51 '- ~ I 
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5 

Fig. 3.3 The general full-decomposition of a state machine 

M into component state machines M1 and M2 • 

For a general full-decomposition, two types are feasible: -

type P5 (each of the submachines uses information about the 

present-state of the other submachine) ; and type PN5 (one of the 

submachines uses information about the present-state of the 

second and the other submachine about the next-state of the 

first). However, in this paper, only type P5 will be considered 

and the term "general decomposi tion" is assumed to mean "general 

decomposition of type PS". 

Before considering the different types of full-decompositions 

for state machines, a definition of realization must be 

formulated. 
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DEFINITION 3.1 The state machine M' = (I' , S ' , a ') real izes a state 

machine M = (I, S, a) if, and only if, the following relations 

exist: 

y,: I ~ I' (a function) 

and 

m: s' ~ S (a surjective partial function), 

such that: 

m(S'l3 x= m(s'a'y,(X)' 

In a full-decomposition of state machine M, it is necessary to 

find the partial state machines Ml and M2 as well as the mappings: 

y,: I ~ I 1 XI 2 and m: SlXS2~ S. 

The machines Ml and M2 together with the mappings y, and ~ 

realize the behaviour of the machine M. 

A full-decomposition of a state machine M is said to be non­

trivial if, and only if, the number of inputs to each of the 

partial state machines is less than the number of inputs to 

machine M and/or the number of states of each of the partial state 

machines is less than the number of states of a machine M. 

From the considerations above, it is evident that full­

decompositions of state machines can be characterized by the type 

of connection between the component state machines. The forma1 

definitions of all the machine connections considered in this 

paper and the formal definition of the full-decomposition of a 

state machine are given below. 

DEFINITION 3.2 A parallel connection of two state machines: 

M 1 = (I1'S1'a l
) 

and 

is the machine: 

where: 



DEFINITION 3.3 A serial connection of type PS of two state 

machines: 

and 
I 

M2= (I 2 ,S2,a 2), 

for which 12 

is the machine M1~ M2 

where: 

DEFINITION 3.4 A serial connection of type NS of two state 

machines: 

and 
I 

M2= (I 2 ,S2,a 2), 

for which 12 = SlxI2' 

is the machine M1~ M2 = (I1XI2,slxs2,a*), 

where: 

DEFINITION 3.5 A general connection of type PS of two state 

machines: 

and 
I 

M2= (I 2 'S2,a 2), 

for which 12 = SlxI2 and 11 = S2XI1 

is the machine: 

where: 
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DEFINITION 3.6 The state machine Ml <Do M2 is a fu~~ decomposition 

of type <Do of state machine M if, and only if, the connection of a 

given type <Do of the state machines Ml and M2 realizes M, 

where: 
PS NS PS 

<Do = II , ~ , ~, ~ 

In order to analyze the information flow inside and between the 

state machines, the partition and partition pairs concepts, 

introduced by Hartmanis [11][12], are used here. 

Let: S be any set of elements. 

DEFINITION 3.7 Partition ~ on 

~ = {Bil BisS and BinBj = 0 

S is defined as follows: 

for i~j and VBi= S}, 
1 

i. e. a parti tion ~ on S is a set of disj ointed subsets of S whose 

set union is S. 

For a given SfS, the block of a partition ~ containing s is 

denoted by: [s] ~ while [s] ~ = [t] ~ denotes that sand t are in the 

same block of ~. Similarly, the block of a partition ~ containing 

S', where S'sS, is denoted by [S']~. 

A partition containing only one element of S in each block is 

called a zero partition and is denoted by ~s(O). A partition 

containing all the elements of S in one block is called an identity 

or one partition and is denoted by ~s{I). 

Let: ~l and ~2 be two partitions on S. 

DEFINITION 3.8 Partition product ~ 1 • ~ 2 is the partition on S such 

that [S]~1·~2 = [t]~1·~2 if and only if [S]~l= [t]~l and [s]~'= 

[t]~2· 

From this definition, it follows that the blocks of ~l ·~2 are 

obtained by intersecting the blocks of ~l and ~2. 

Let: ~s' Ts' ~I be the partitions on M = (I, S, 3), in 

particular: ~s' Ts on S, ~I on I. 
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DEFINITION 3.9 

(i) (1I;.Ts) is an s-s [lar~i~ion [lair if and only if 

\l BE1I s \Ix €I: B~xs;B' I B' E T S . 
is an I-S [lar~i~ion [lair if and only if 

\lAE1Ir \lSES: sa ASB , BE1Is . 

The practical meaning of the notions introduced above is as 

follows: 

- (11 S , T s) is an S-S partition pair if and only if the blocks of 11 S 

are mapped by M into the blocks of Ts. Thus, if the block of 1Is 

which contains the present-state of the machine M is known and the 

present input of M too, it is possible to compute unambiguously 

the block of T s which contains the next-state of M for the states 

from a given block of 1Is and a given input. The interpretation of 

the notion of an I-S partition pair is similar. 

DEFINITION 3.10 Partition 1Is has a subs~i~u~ionproper~y (it is 

an SP-partition) if and only if (1Is,1Is) is an S-S pair. 

considering a state machine M = (I, S, a) to be a special case of 

a Moore machine M'= (I, S, 0, 6, 1), where 0 = Sand 1 is an identity 

function or a special case of a Mealy machine M"= (I, S, 0, a, 1), 

where 0 = Sand 1 = ~; the definitions for the full-decompositions 

of state machines are special cases of the appropriate 

definitions presented in [16] for sequential machines. 

Thus, the theorems about the existence of full-decompositions 

of state machines can be obtained directly from the appropriate 

theorems proved in [16], therefore, they are given below without 

proof. 

THEOREM 3.1 The state machine M = (I, S, ~) has a non-trivial 

parallel full-decomposition if two partitions 1Ir and Tr on I and 

two partitions 1Is and Ts on S exist, such that the following 

conditions are satisfied: 

( i) (1I s ,1I s ) is a s-s partition pair, 

( ii) (1I r ,1I s ) is an I-S partition pair, 

( iii) (Ts,T s ) is a S-S partition pair, 

(iv) (Tr' Ts) is an I-S partition pair, 

(v) 1I s ·Ts = 11 S on , 
(vi) 11Irl<IIIAIT r l<IIlvI1l s l<lsIAI Tsl<l s l 
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The interpretation of theorem 3.1 is as follows: 

Let: M = (I, S, a) be the state machine to be decomposed. 

Let: Ml = (~I,~s,al) and M2= (TI,Ts,a 2) be two state machines 

for which the parti tions ~ I , ~ S , T I and T s satisfy the conditions of 

Theorem 3.1 and let the functions a I and a 2 be defined as follows: 

and 
VB1E~s VA1E~I: al(Bl,Al) = [a(Bl,Al)l~s 

VB2ETs VA2ETI: a 2 (B2,A2) = [a(B2,A2)lTs 

where 

and 
S(Q,X) = ca(s,x) ISEQ~XEX} for Xs1 and QsS . 

Let: ~: I ~ ~IXTI be an injective function, 

and 

~: ~SXTs ~ S be a surjective partial function 

Hx) = ([xl ~I' [xl TJl , 
~(Bl,B2) = BlnB2 if BlnB2 ~ ~. 

since (~s'~s) is a S-S partition and (~I'~S) is an 1-S 

partition pair, S (Bl,Al) will be included in only one block of ~s. 

This means that a I (Bl, AI) can be defined unambiguously. So, based 

only on the information about the block of ~I containing the input 

of M and the block of ~ s containing the state of M (1. e. 

information about the input and present-state of Ml ), state 

machine Ml can calculate unambiguously the block of ~s in which 

the next-state of M is contained (i.e. Ml can calculate its own 

state) • 

Similarly, since (T s , T s) is a S-S partition pair and (T I' T s) is 

an 1-S partition pair, "6 (B2 ,A2) will be included in only one block 

of Ts meaning that a 2 (B2,A2) is defined unambiguously. 

Thus, state machine M2, based only on the information about its 

input and state (i. e. knowledge of the adequate block of T I and the 

block of TS)' can calculate unambiguously its next-state (i.e. 

the adequate block of Ts)' 
Since ~s·Ts= ~s(~), with information about the blocks of ~s 

calculated by Ml and the blocks of Ts calculated by M2 (i.e. 

information about the states of Ml and M2), it is possible to 

calculate unambiguously the state of M. 
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THEOREM 3.2 ThestatemachineM= (I, 5, a) has anon-trivial type 

P5 serial full decomposition if two partitions 1Ir and Tr on I and 

two partitions 1Is and Ts on 5 exist, such, that the following 

conditions are satisfied: 

(i) (1Is,1Is) is a 5-8 partition pair, 

(ii) 

( iii) 

(iv) 

(v) 

(1Ir,1Is) is an 1-8 partition pair, 

(Tr,Ts) is an 1-5 partition pair, 

1IS"TS = 1Is 0') , 
111 r I < I I 1/\ 111 s I " I T r I < I I I V 111 S I < I 5 1/\ ITs I < I 5 I 

If the partial state machines are defined as follows: 

Ml= (1I r ,1I s ,a l ) and M2= (1IsXTr,Ts,a2), 

the partitions 1I s ,1I r ,tr and ts will satisfy the conditions of 

Theorem 3.2 and the functions a l and a 2 will have the following 

definitions: 

VBI€1IS VAI€1I r : al(BI,AI) = [a(BI,AI)J1I s 

VBI€1Is VB2€Ts VA2€Tr: a 2 (B2,(BI,A2» = [~«BlnB2),A2)JTs 

and, if the functions of, and !I) will be defined in the same way as for 

Theorem 3, I, then the interpretation of Theorem 3.2 is like that 

of Theorem 3.1. 

THEOREM 3.3 The state machine M = (I, 5, a) has a non-trivial type 

N5 serial full-decomposition, if two parti tions 11 sand t s on 8 and 

two partitions 1Ir and Tr on I exist, such, that the following 

conditions are satisfied: 

(i) (1Is,1Is) is a 8-8 partition pair, 

(ii) (1Ir,1Is) is an 1-5 partition pair, 

(iii) Vs,t€8 VX l ,X 2 €I: 

if [sJTs=[tJTs /\ 

then [sax JTs=[tax JTs ' 
1 2 

(iv) 1IS"Ts = 1Is (.0). 

(v) 111 r I < I I 1/\ 111 S I • ITs I < I I I V 111 S I < I 5 1/\ Its I < I 8 I 

If the partial state machines are defined as follows: 

Ml = (1I1'1I p a l ) and M2= (1IsXtr,tpa2), 

the partitions 1Ir,1Is,Tr and Ts will satisfy the conditions of 
Theorem 3.3 and the functions a l and a 2 will have the following 
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definitions: 

VB1'f~S VB2fTS VA2fTI: 

6 2 (B2,(B1',A2» = [{6(s,x)lsfB2,XfA2,6(s,X)fB1'l]Ts 

and, if the functions", and m will be defined in the same way as for 

Theorem 3.1, then the interpretation of Theorem 3.3 is like that 

of Theorem 3.1. 

THEOREM3.4 The state machine M= (I, S, 6) has anon-trivial type 

PS general full decomposition, if, and only if, two parti tions ~ I 

and TI on I and two partitions ~s and Ts on S exist, such, that the 

following conditions are satisfied: 

(i) (~I'~S) is an I-S partition pair, 

(ii) (TI,Ts) is an I-S partition pair, 

(iii) ~s ·Ts = ~s (JIl), 

(i v) ITS I • I ~ I I < I I 1111 ~ s I • I T I I < I I I v I ~ s I < I S 1111 T s I < I S I 

If the partial state machines are defined as follows: 

M1= (TsX~rr~sr61) andM 2= (~sXTrrTsrS2), the partitions ~rr~srTI 

and T s will satisfy the conditions of Theorem 3.4 and the 

functions 6 1 and 6 2 will have the following definitions: 

VBlf~s VB2ETS VAlf~I: 

6 1 (Bl,(B2,A1» = [6«BlnB2),A1)1~s , 

VB1f~S VB2fTs VA2fTI: 

6 2 (B2,(B1,A2» = [6«BlnB2),A2)]Ts' 

and, if the functions", and m will be defined in the same way as for 

Theorem 3.1, then the interpretation of Theorem 3.4 is like that 

of Theorem 3.1. 

In [14], a theorem similar to Theorem 3.2 is proved; however, 

there are two important differences between Theorem 3.2 and the 

theorem proved in [14]: Theorem 3.2 is formulated with weaker 

assumptions (e.g. it is not required to fulfil the condition: 

~I • T I = ~I (JIl), but it is required in [14 J) and another definition 

of nontriviality is used. So, Theorem 3.2 is more general than the 

one proved in [14]. 
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4. The realization of an output function 

Let: M = (I, S, 0, 6, l) be the sequential machine to be 

decomposed. 

Let: M'= (I, S, 6) be the state machine expressing the next­

state function of M that is implemented as a given type <1> (<1>, = 

II, ~, ~, f4) of connection of partial state-machines 

M 1 = ( I 1'S l' 6 1) and M 2 = ( I 2 , S 2 ' 6 2) . 

Let: ~ and ~ be two relations: 

~: I ~ I 1xI 2 (a function) , 

~: SlXS2 ~ S (a surjective partial function) , 

def ining mappings from the inputs of M (M') onto inputs of M 1 and 

M2 and 

M (M') 

from states of M1 and M2 into states of 

(~(x) = ([x]lljr[X]TI) where: xEI, 

~(sl,S2)= slns2 if slns2~~' where: SlES1=llS,S2ES2=Ts). 

When the conditions of one of the theorems presented in 

Paragraph 3 are satisfied and, in particular, the condition 

ll s ·Ts= lls(~)' then, each state s of M will be defined 

unambiguously by the states Sl of M1 and s2 of M2 . Now, it is 

possible to express the output function of M as a function of the 

states of M1 and M2 and, in a Mealy machine, a function of the 

primary inputs of M: 

and 

or 

and 

= { l(Slns2) = l(s) if Slns2 ~ ~ 
l*(sl,S2) 

- if Slns2 = ~ 
(in a Moore machine) 

l*: SlxS2xI ~ OU(-} 

(in a Mealy 

= { l(S~nS2'X) = l(S,x) if slns2 ~ ~ 

- ~f slns2 = ~ 
machine) , 

where "_" means "don't care". 

If the resultant function l* is not too complicated, then, it 

can be directly implemented with one matrix-logic building block, 

otherwise, it must be decomposed before implementation. 

Contrary to the states of a sequential machine, inputs and 

outputs of a sequential machine are pre-assigned in most cases, 
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because the inputs are considered by direct signals from around 

the machine, while, outputs are direct signals sent by the machine 

to its surroundings. Therefore, after assigning states of the 

machines Ml and M2 , the output fgunction 1 * can be represented by a 

set of Boolean functions {11 } (a multiple output Boolean 

function) of the input and state variables. So, in order to 

decompose the function 1 *, the methods for partitioning multiple 

output Boolean functions for matrix-logic implementation can be 

used. Describing those methods is beyond the scope of this report. 

In the state assignment process for Ml and M2 , information 

about the complexity of the resultant function ~ * can be used in 

order to choose the state assignment that minimizes the 

complexity of a resultant logic. 
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5. Conclusion 

The full-decomposition of a sequential machine can be done 

according to two different decomposition strategies. It is 

possible to consider a sequential machine as a unit and to find the 

partial sequential machines that realize the behaviour of a given 

sequential machine, or, the full-decomposition of the state 

machine, that expresses the next-state function a of a given 

sequential machine, can be considered separately from the 

realization of output function ,. 

The first strategy is described in [16] and the second in this 

report. 

In the first case, the output functions ,1 and ,2 for the 

partial sequential machines and the output decoder 9 must be 

implemented. In the second case, instead of ,1,,2 and 9, only the 

output function ,* need be implemented. This is especially 

attractive for Moore machines, where: ,* is only a function of the 

states of partial state machines. Additionally, if ,* need be 

decomposed prior to implementation, then, the methods for 

partitioning multiple output Boolean functions can be used for 

that purpose. 

The separate consideration of the next-state and output 

functions leads to the less time and memory consuming 

computations than the joint consideration. 

The notions and theorems presented in this report have 

straightforward practical interpretations and they constitute a 

theoretical basis for the algorithms and programs, that can be 

used for computing the different sorts of decompositions for 

sequential machines. 



16 

REFERENCES 

[1] M.A. Arbib: Theories of abstract automata, Englewood Cliffs, 
N.J.: Prentice-Hall, 1969. 

[2] G. Cioffi, E. Constantini, S. de Julio: A new approach to the 
decomposition of sequential systems, Digital Processes, vol.3, 
p. 35-48, 1977. 

[3] G. Cioffi, S. de Julio, M. Lucertini: optimal decomposition of 
sequential machines via integer nonlinear programming: A 
computational algorithm, Digital Processes, vol.5, p. 27-41, 
1979. 

[4] A.D. Friedman, P.R. Menon: Theory and design of switching 
circuits, Woodland Hills, Cal.: Computer Science Press, 1975. 

[5] A. Ginzburg: Algebraic theory of automata, N. Y . : Academic Press, 
1968. 

[6] J. Hartmanis: On the state assignment problem for sequential 
machines I, IRE Trans. Electron. comput., vol. EC-10, p. 157-165, 
1961. 

[7] J. Hartmanis, R.E. Stearns: On the state assignment problem for 
sequential machines II, IRE Trans. Electron. Comput., vol.EC-10, 
p. 593-603, 1961. 

[8] J. Hartmanis: Loop-free structure of sequential machines, Inf. & 
Control, vol.5, p. 25-43, 1962. 

[9] J. Hartmanis: Further results on the structure of sequential 
machines, J. Assoc. comput. Mach., vol.lO, p. 78-88, 1963. 

[10] J. Hartmanis, R.E. Stearns: Some danger in state reduction of 
sequential machines, Inf. & Control, vol.5, p. 252-260, 1962. 

[11] J. Hartmanis, R.E. Stearns: Pair algabra and its application to 
automata theory, Inf. & control, vol.7, p. 485-507, 1964. 

[12] J. Hartmanis, R.E. Stearns: Algebraic structure theory of 
sequential machines, Englewood Cliffs, N.J.: Prentice-Hall, 
1966. 

[13] W .M. L. Holcombe: Algebraic Automata Theory, Cambridge University 
Press, 1982. (Cambridge studies in advanced mathematics, vol.1) . 

[14] Y. Hou: Trinity algebra and full-decompositions of sequential 
machines, Ph.D. thesis, Eindhoven University of Technology, The 
Netherlands, 1986. 

[15] Y. Hou: Trinity algebra and its application to machine 
decompositions, Information Processing Letters, vol.26, p. 127-
134, 1987. 

[16] L. Jozwiak: The full-decomposition of sequential machines with 
the state and output behaviour realization, Eindhoven University 
of Technology Research Reports, Eindhoven University of 
Technology, The Netherlands, January 1988. EUT Report 88-E-188 

[ 17] Yu. V . Pottosin, E. A. Shestakov: Approximate algorithms for 
parallel decomposition of automata, Autom.Contr. & 
Comput.Sci.,vol.15, No2, p. 24-31, 1981. (Translation of: Avtom. 
& Vytchisl.Techn.). 

[18] Yu.V. Pottosin, E.A. Shestakov: Decomposition of an automaton 
into a two-component network with constraints on internal 
connections, Autom.Contr. & Comput.Sci., vol.16, No 6, p. 24-31, 
1982. 

[19] Yu. V. Pottosin: Decomposi tional method for coding the states of a 
parallel automaton, Autom. Contr. & Comput. Sci., vo1.21, p. 78-
84,1987. 

[20] M. Yoeli: The cascade decomposition of sequential machines, IRE 
Trans. Electron. Comput., vol.EC-10, p. 587-592, 1961. 

[21] M. Yoeli: Cascade-parallel decompositions of sequential 
machines, IEEE Trans. Electron. Comput., vol.EC-12, p. 322-324, 
1963. 



Eindhoven University of Technology Research Reports 
Faculty of Electrlcal Englneering 

ISSN 0167-9708 
Coden: TEUEDE 

(205) Butterweck, H.J. and J.H.F. Ritzerfeld, M.J. Werter 
FINITE WORDlENGTH EFFECTS IN DIG~TAL FILTERS: A review. 
EUT Report 88-E-105. 1988. IS8N 90-6144-105-2 

(206) Bollen, M.H.J. and G.A.P. Jacobs 
~IVE TESTING OF AN AL~M FOR TRAVELLING-WAVE-BASEO DIRECTIONAL 
DETECTION AND PHASE-SELECTION BY USING TWONFIL AND EMTP. 
EUT Report BB-E-106. 1988. ISBN 90-6144-206-0 

(207) Schuurman, W. and M.P.H. Weenink 
STABILITY OF A TAYLOR-RELAXED CYLINDRICAL PLASMA SEPARATED FROM THE WALL 
BY A VACUUM LAYER. 
EUT Report 88-E-207. 1988. ISBN 90-6144-207-9 

(208) Lucassen, F.H.R. and H.H. van de Yen 
A NOTATION CONVENTION IN RIGID ROBOT MODELLING. 
EUT Report B8-E-208. 19B8. ISBN 90-6144-108-7 

(209) Jozwiak, L. 
MINIMAL REALIZATION OF SEQUENTIAL MACHINES: The method of maximal 
adjacencies. 
EUT Report 88-E-109. 1988. ISBN 90-6144-209-5 

(210) Lucassen, F.H.R. and H.H. van de Yen 
OPTIMAL BODy FIXED COORDINATE SYSTtMS IN NEWTON/EULER MODELLING. 
EUT Report 88-E-210. 1988. ISBN 90-6144-210-9 

(211) Boom, A.J.J. van den 
Hoo-CONTROL: An exploratory study. 
EUT Report 88-E-111. 1988. ISBN 90-6144-211-7 

(212) Zhu Yu-Cai 
orr-THE ROBUST STABILITY OF MIMO LINEAR FEEDBACK SYSTEMS. 
EUr Report 88-E-212. 1988. ISBN 90-6144-212-5 

(213) Zhu Yu-Cai, M.H. Driessen, A.A.H. Damen and P. Eykhoff 
A'NEW SCHEME FOR IDENTIFICATION AND CONTROL. 
EUT Report 88-E-213. 1988. ISBN 90-6144-213-3 

(214) Bollen, M.H.J. and G.A.P. Jacobs 
IMPLEMENTATION OF AN ALGORITHM FOR TRAVELLING-WAVE-BASEO DIRECTIONAL 
DETECTION. 
EUT Report B9-E-214. 1989. ISBN 90-6144-214-1 

(215) Hoe; jmakers, M.J. en J.M. Vleeshouwers 
EEN MODEL VAN DE SYNCHRONE MACHINE MET GELIJKRICHTER, GESCHIKT VOOR 
REGELDOELEINDEN. 
EUT Report 89-E-115. 1989. ISBN 90-6144-215-X 

(216) Pineda de Gyvez, J. 

(217) 

LASER: A LAyout Sensitivity ExploreR. Report and user's manual. 
EUT Report 89-E-216. 19B9. ISBN 90-6144-216-8 

Duarte, J.L. 
MINAS: An algorithm for systematic state assignment of sequential 
machines ~ computational aspects and results. 
EUT Report 89-E-217. 1989. ISBN 90-6144-217-6 

(218) KaFP' M.M.J.L. van de 
SO TWARE SET-UP FOR DATA PROCESSING OF DEPOLARIZATION DUE TO RAIN 
AND ICE CRYSTALS IN THE OLYMPUS PROJECT. 
EUT Report B9-E-118. 1989. ISBN 90-6144-21B-4 

(219) Koster, G.J.P. and L. Stok 
~ETWORK TO ARTWORK: Automatic schematic diagram generation. 
EUT Report 89-E-219. 1989. ISBN 90-6144-219-2 

(220) Willems, F.M.J. 
CONVERSES FOR WRITE-UNIDIRECTIONAL MEMORIES. 
EUT Report 89-E-220. 1989. ISBN 90-6144-220-6 

(221) Kalasek, V.K.I. and W.M.C. van den Heuvel 
L-SWITCH: A PC-program for computing transient voltages and currents during 
switching off three-phase inductances. 
EUT Report 89-E-221. 1989. ISBN 90-6144-221-4 



Eindhoven Universit of Technolo Research Re orts 
acu ty 0 lectrlcal nqineering 

(222) J6~wiak, L. 

ISSN 0167-9708 
Coden: TEUEDE 

THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE SEPARATE REALIZATION 
OF THE NEXT-STATE AND OUTPUT FUNCTIONS. 
EUT Report 89-E-222. 1989. ISBN 90-6144-222-2 

(223) Jozwiak, L. 
THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES. 
EUT Report 89-E-223. 1989. ISBN 90-6144-223-0 


	Abstract
	Contents
	1. Introduction
	2. Two full-decomposition strategies
	3. The full-decomposition of state machines
	4. The realization of an output function
	5. Conclusion
	References

