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The dynamic analysis of structural systems should frequently be based on systems with a 
very limited number of degrees of freedom. This is for example the case when there are non- 
linearities involved or when the mathematical model has to play a central role in a control 
st rat egy. 
To reduce the order ofthe system (the number of degrees of freedomj methodoiogies have been 
developed based on fysical understanding, the so-called Component-Mode-Synthesis (CMS) 
techniques. 
An important step in the development of these procedures is the assumption that the (sub)systems 
should be weakly damped or at  least be based on so-called proportional or Rayleigh damping. 
In many situations this will not be so such as in the case of models for mechatronic systems, 
motorcar suspension models etc. In that case a formalism based on real vibration modes will 
give very bad results. 
In this report a well-known CMS-procedure (the RUBIN-CMS technique) will be generalized 
for the case of general  damping leading to a transformation based on (residual) flexibil- 
ity modes and free-free dynamic modes, (Complex RITZ-vectors). The fysical meaning of 
these modes will be illustrated and an example will be presented and discussed showing the 
potential of this extension of the CMS-procedure. 
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Chapter 1 

INTRODUCTION 

In the analysis of nonlinear dynamical systems we frequently have to deal with systems which 
in general will be described sufficiëntly accurate by linear models and where the nonlinearities 
will have a local character. 
This is for example the case in complex vehicle models where frame, cabin, etc. can be mod- 
elled by a linear model but where the (local) nonlinear behaviour of the engine-suspension 
has to be taken into account. 
The number of degrees of freedom (dof’s) of the assembled model should be very limited 
in order to make a numerical evaluation not excessive time-consuming. Therefore reduction 
techniques such as the CMS (Component Mode Synthesis) technique have been developed 
(see for example Fey [i] and v.d. Vorst [2]); 
In such a reduction technique a structure will be subdivided into several components (or sub- 
structures) which will be reduced individually. After the reduction of each (linear) component, 
the components are coupled, nonlinearities are added and the final, nonlinear equations are 
solved. 

In general, for a linear component the equations of motions can be written as : 

where 

o n=number of degrees of freedom (dof’s) 

o q(t)=column (n*i), containing the dof’s 

o M = (n*n) symmetric Massmatrix 

o B = (n*n) symmetric Dampingmatrix 

o K = (n*n) symmetric Stiffnessmatrix 

o f(t) = column of external loads 

In general, reduction of the number of degrees of freeLam (n) is hane by writing t--e dof’s 
”q” as a linear combination of a (much) smaller number ( n p )  of generalized coordinates p by 
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means of a transformation matrix T ( n  * np): 

Introduction of this transformation in the expression for kinetic energy, potential energy and 
virtual work of the external loads leads to a reduced set of differential equations: 

MTedj(t) -t BTedlj(t) + KTedp(t) = f e d ( t )  (1.3) 

where 

This reduction proces can be seen as a special variant of the Ritz-method. The columns of 
the transformation matrix T are often called the Ritz-vectors. 
In the literature a number of methods are presented to select these Ritz vectors, but only two 
of them seem to be really important, namely the Graig-Bampton method (see [ 5 ] )  and 
the Rubin  method (see[2]). In chapter 2 the standard Rubin method will be presented. In 
chapter 3 a modification, mainly consisting of a formulation in first order differential equations 
(so-called state-space form) together with an extrapolation of the strategy will be given. It 
will also give an illustration of the state flexibility modes and the special attention which is 
needed for the state rigid body modes. 
In chapter 4 an example will be discussed to demonstrate that the method is able to generate 
reduced state-space models, accurate in a preselected frequency band. 
In chapter 7 finally some conclusions and recommendations are given. 
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Chapter 2 

THE RUBIN METHOD 

The RUBIN reduction method (or CMS method) in its standard form is based on the un- 
damped n-dof system described by the equations: 

If we suppose for free vibrations the solution: 

we get the eigenvalue problem: 
[ P M  + Klu = o 

For a component with Rigid Body Modes some of the eigenvalues Xk (k=1,2, ... n) will be 
zero. Suppose we have r of these rigid body modes ui7 (i=1,2, ... r) for each of which: 

Ku: = o (2.4) 

The rigid-body modes are assumed to be ”mass-normalized” which means that: 

(2 .6)  T UT MUT = I T ,  

with I,, a (r*r) identity matrix. 

The total set of dof’s q(t) is devided in socalled boundary dof’s q b ( t )  (number is b) and 
internal dof’s q i ( t )  (number=i, i=n-b): 

Then eq. (2.1) can be written: 
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We assume that forces are only present at the interface dof's, so fi = O. 
For the definition of socalled Inertia Relief Modes we assume a set of interface forces f b  
leading to  rigid-body accelerations of the substructure. Taking: 

qT = UTt (2.9) 

we get: 

The Inertia Relief Modes are assumed to be the quasi-static deformation modes corresponding 
to a force-system f b  and - MqT (which is in equilibrium): 

qT = uTuTfb (2.iU) 

If we put a unity force at each of the interface dof's 
unloaded we can write: 

where O,, means a (p'q) nulmatrix. 
So, we get, 

FB = [ U . , ]  

MuTu?)fb (2.11) 

whereas the other interface dof's are 

KUineTt = ( I  - M U U T ) F B  = PFB 

(2.i2) 

(2.13) 

Due to the singularity of the stiffnessmatrix K, system (2.13) cannot be solved directly. For 
this an alternative procedure will be chosen. 
If we split the internal dof-set qi in a set qw (with w elements), and a set qT (with r elements, 
i=w+r, r=n-b-w): 

r 

(2.14) 

we can write (2.13) as: 

The r-set qr has been suppressed . If these dof's have been chosen well, the stiffness matrix 
K will become positive-definite and due to the equilibrium of the force-system (fb and -MiT, 
the reaction forces RTb will be zero. 
The Flexibility matrix G is now defined as: 

G = [ z:r ] with ICe, = [ zb zw ] 
It can be shown that: 

Ge = P T G P  = U,A~'U,T 

(2.16) 

(2.17) 

where U, contains the vibration modes of the eigenvalueproblem (2.3) corresponding to the 
non-zero eigenvalues (stored in the diagonalmatrix Aee ). 
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If we divide these nonzero-eigenvalues in a number k which is kept in the analysis and a 
number d which will be deleted ( based on some frequency criterion), so: 

we can write : 

The Residual Flexibility Modes are now defined as: 

(2.20) @ = [ U d A i j U z ]  FB = [Ge - U k A k k  -1 Uh T ] FB 

For these modes not the complete eigenvalueproblem has to be solved. They can be extracted 
from one matrix-inverse and the modes Ur, which have to be preserved in the analysis. The 
transformation matrix T (n  t ( T  + b f I C ) )  will be: 

T = [a, U T ,  ukj (2.21) 

The influence of u k  in @ can also be removed, so instead of using residual flexibility modes, 
we can also use flexibility modes Q:  

This has some advantages: 

Q := G , F ~  (2.22) 

o Using the coupling procedure (see next) of Martinez the numerical proces will be more 
robust numerically. 

o When taking more and more modes into account the flexibility matrix will not change, 
so updating can be avoided. 

SUBSTRUCTURE COUPLING 
For the coordinate-transformation we have found: 

(2.23) 

where m=r+k. 
Coupling of substructures using the generalized coordinates p is rather difficult. Therefore 
we use a procedure for re-introduction of the fysica1 boundary degrees of freedom q b .  
From (2.23) we can see: 

We can define a second coordinate transformation: 

The total coordinate-transformation will be: 

4 = [ ] = TT2P2 = Tt [ Fm ] 

(2.24) 

(2.25) 

(2.26) 
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In the final dof-set, the interface dof’s q b  are still present which makes the substructure- 
coupling straight forwar d. 
It can be shown that is regular if n-r-k > b. For flexibility modes instead of residual 
flexibility modes we use the inverse @i1 which is independent of the number of modes uk 
which will be taken into account in the CMS procedure. 
It can also be shown that in case of flexibility modes the reduced matrices will become more 
”sparse”, so less computer memory is needed (see 121). 
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Chapter 3 

GENERALIZED RUBIN 
REDUCTION 

For a dynamic system with n degrees of freedom under the assumption of viscous damping a 
system of n coupled, 2nd order differential equations can be given: 

where: 

o M: Massmatrix, (n*n), positive definite 

o B: Viscous dampingmatrix, (n*n) 

o K: Stiffness matrix, (n*n), positive definite 

o q(t): (n*l), column of generalized coordinates 

o f(t): (n*l), column of generalized forces 

The n, 2nd order differential equations (3.1) can be transformed into 2n, lSt order differential 
equations by adding the n equations: Mq( t )  = Mq( t )  and introducing the state-vector y ( t ) :  

where: 

(3.4) c = [  B M  M 0 I;.= [ K 0 - M ] ; g ( t ) = [  o ,(i)] 

If the stiffnessmatrix K is singular, the system will have a number (r) of Rigid Body Modes 
uf (i=1,2,..r), which are collected in the matrix :Vr = [u:, u:, ... u:]. For these modes: 
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For the homogeneous part of (3.3)’ we can write the eigenvalue problem: 

It can be shown that the existance of r rigid body modes leads to some eigenvalues X k  equal 
to zero. The number of zero-eigenvalues (R) will be 5 2r .  For the eigenvalue problem (3.6) 
we can write : 

+ ET{ = 0 (3.7) 

Using the rigid body modes u, defined before in chapter 2, it can be shown (see appendix A) 
that two situations can exist: 

Situation 1: A double root XI, = O and Bu, = o 
In this case we have an eigenvalue X k  = O with multiplicity 2 leading to  one regular 
eigenvector and one generalized eigenvector. This is obvious the case for undamped 
systems but can also be valid for damped systems. In this case the matrix A will not 
be a diagonal matrix but will have Jordan blocks on the diagonal. 

Situation 2: Bu, # o . 
The system is nondefective, there is no generalized eigenvector corresponding to XI, = O. 
In fact X I ,  = O is not a repeated root but a single root of the eigenvalue problem. In 
this case the matrix A will be a diagonalmatrix with the eigenvalue XI, (which is zero) 
on the diagonal. 

We assume that all the state-rigid body modes (regular or generalized) can be determined 
and stored in the matrix VR, (2n*R) matrix ,R 5 2r. 

For a certain substructure the ”n” dof’s q can be split up into the ”b” boundary dof’s q, 
and the ”i” internal dof’s qi with n=i+b: 

as indicated in Fig. 3.1. 

I I 
r - -  

Substructure 2 

I I L - -  

Fig 3.1. Substructures with internal and boundary dof’s. 
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In general, internal dof’s where external forces are acting or with prescribed displacements 
will also be selected in the set q b .  

After renumbering the dof’s according to (3.8) a (N*l) state-vector z ( t )  can be formed: 

where: 
’ N = 2n; B = 2b;I  = 2i;n = b +  i; N = B + I (3.10) 

The differential equations for the dynamic behaviour of the substructure can, according to 
(3.3) now be written as: 

C*2(t) t D*z(t)  = g*(t) (3.11) 

where the matrices C* and D* follow from the corresponding matrices C and D by simply 
shifting rows and columns. 
In the partitioned form we than get: 

(3.12) 

where we assume that gf = o. 
For simplicity we further omit the t symbol. For the corresponding eigenvalue problem R 
eigenvalues A, = O will be found with corresponding eigenvectors (regular or generalized) 
wf, (i = 1,2,  .A). These vectors are put in the matrix VR: 

We define a matric C m  (not necessarily diagonal) as: 

INERTIA RELIEF MODES 
We assume a set of interface forces gb leading to ”rigid body accelerations” in a state-space 
sence: 

c2r = gb (3.15) 

If we assume that we can write these rigid body accelerations as a linear combination of the 
colums of the rigid body matrix VR : 

2, = VRi (3.16) 

(3.17) 

(3.18) 
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The inertia relief modes are assumed to be the quasi-static modes according to a force 
system of gb and - Ca, (which is in equilibrium): 

DZineTt = gb - c.& = [I - CVRc&vz]gb := Pgb (3.19) 

All the inertia relief modes can be found by successively putting a force on each interface dof: 

where 

(3.21) 

Due to the singularity of K, the equations (3.20) cannot be solved directly. 
The internal dof-set ZI will therefore be split-up in a set zw  with W components and a set 
ZR with R components, (with N = B t I = B t W t R ): 

We can than write: 

(3.22) 

IB B 
OWB ] (3.23) 
ORB 

If the dof's ZR are chosen well and suppressed, the system can be solved. 
The Flexibility matrix G is defined as 

(3.24) 

where E = B + W = N - R. 
The socalled elastic flexibility matrix GE can be defined as: 

(3.25) 

where AEE contains the nonzero eigenvalues, VE contains the corresponding eigenmodes and 
CEE is defined as: 

cEE = VZCVE (3.26) 

GE = VEA&CË~VE 1 T  

It can be shown (see appendix B) that GE can also be written as: 

GE = PTGP (3.27) 

RESIDUAL FLEXIBILITY MODES 
For the flexibility matrix GE according to (3.25) we can write: 

(3.28) 
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where VK contains the eigenvectors from VE which axe kept in the analysis and VD the eigen- 
vectors of VE which will be deleted, base on some frequency considerations. 
The diagonal matrices AI.K respectively ADD contain the corresponding (nonzero) eigenval- 
ues. 
The residual flexibility matrix will now be defined as: 

@ B  = [ V D A ~ ~ C ~ ~ V ~ ] F B  
(3.29) or [ GE - V K A ~ ~ C K ~ V $ ~ F B  

The final transformationmatrix T N ~  is based on rigid body modes VR, residual flexibility 
modes C P B  and free-free "kept" eigenmodes VK: 

T = [@B,VR,VK] (3.30) 

As already mentioned in chapter 2 the effect of the modes VK in the matrix @B can also be 
neglected. In that case we use flexibility modes !PB: 

XPB = GEFB (3.31) 

and the transformation matrix reads: 
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3.1 Illustration of the flexibility modes 

In the preceeding chapter socalled (residual) flexibility modes have been determined as com- 
ponents of the transformation matrix T for the reduction of a substructure. 
In this paragraph these components will be studied in detail in order to get some physical 
understanding as in the case of the classical, undamped reduction strategy. 
As an example we look at a straight bar in longitudinal vibration modelled with 3 equal 
(standard) bar-elements: (see also appendix A). 

Fig. 3.2. Simple 4-dof bar problem. 

As boundary dof’s we select the dof’s 1 and 4, so the internal dof’s are the nr’s 2 and 3, 
which leads tu  the state-space column: 

CASE 1 : b l  = O.lmboxandb2 = O 
We can see that: B = a c K + R = 2 

1 ;CRR= [ 08 1 1 0 1 0 1 0 1 0  
0 1 0 1 0 1 0 1  I v; = 

So we have one regular and also one generalized eigenvector for the state-space eigenvalue 
problem. We take: z$ = [ug, Ug], so EZ;,  z$] = [UI, UI,  u 4 , 6 4 ,  u 2 ,  2121 

See Fig 3.3. 

, 

I 

u3 

Fig 3.3. Constraint problem for flexibility evaluation. 
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1 e=- 
14 

. , . _ _  . .~.. . . ___ . . 

‘ 2 8  O O O 14 O O O 
0 - 8  O O O 2 0 0  
O O 1 4  O O O 0 0  
o o 0 - 7  o O 0 0  
14 O O O 1 4  O 0 0  

Fig. 3.4. Plot of the 4 flexibility modes. (d) indicates displacement dof’s and (v) the 
corresponding velocity dof’s 

The modes 1 and 3 (corresponding to the end displacements) show only a displacement 
contribution and can be seen as a combination of a pure flexibility and some rigid body dis- 
placement. The modes 2 and 4 (corresponding to  the velocity dof’s) only have a velocity 
contribution and they look like a flexibility mode but not based on the stiffness matrix, but 
on the massmatrix (due to the inversion of matrix D). 

CASE 2 : bl = 0.1 and b2 = 0.2 3 R = 1, 
It is shown in Appendix A that we have only one (regular) eigenvector with zero-eigenvalue 
for the state space eigenvalue problem, namely the obvious, fysica1 rigid body mode. In this 
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case we take only ZR = [uQ], the resulting flexibility modes are shown in Fig 3.5. 

. . . ... 

Fig. 3.5.Plot of the 4 flexibility modes for bz0.1. (d) indicates displacement dof's and 
(v) the corresponding velocity dof's 

One can see that in this case each flexibility mode has a "displacement part" as well as 
a "velocity part", although in two cases they have a different order of magnitude (modes 
1 and 3). Inspite of suppressing the fysical rigid body mode by displacement dof nr. 3 the 
res.flex.displacement part seems to  show a large contribution from this single rigid body mode. 
However it is not the rigid body mode but the eigenvector corresponding to the nonzero eigen- 
value, degenerated from the previous-generalized-eigenvector which is responsible for this. As 
given in appendix A, this eigenvector looks like: vT = [1,1,1,1,0.01,0.01,0.01,0.01]. The 
fysical interpretation of the flexibility modes of case 2 however is becoming difficult already. 

3.2 Coupling procedure of Martinez 

The starting point are the equations of motion of the substructure (3.11): 

C i ( t )  t DZ(t) = g ( t )  (3.33) 

We have defined a transformation matrix T for going from the (N) fysical coordinates z to  a 
(much) smaller set of (p) generalized coordinates p, where P=R+KtB: 

z = T p  (3.34) 

We used VM = [VR,VK] with M = R i- K < N - B. From (3.35) we can write: 

(3.35) 

(3.36) 
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The 

The 

second coordinate transformation now becomes: 

total transformation reads: 

(3.37) 

(3.38) 

where Tt is a N * ( B  4- M)matrix: 

(3.39) 

In the new coordinate set the fysica1 coordinates ZB (displacement and velocities of the bound- 
Zrry d=f's) are present which makes the substructure coupling straightforward. 

3.3 The reduced system 

We start from the basic expression for the dynamical behaviour of the substructure in state- 
space formulation: 

CZ(t) + D z ( t )  = g ( t )  (3.40) 

In' chapter 3 we have developed a coordinate transformation for the state vector z ( t ) :  

z ( t )  = GP2(t) (3.41) 

The transformationmatrixTt (size (N*r) with r=B+M) was based on rigid body modes, (resid- 
ual) flexibility modes and free-free normal modes developed for symmetric system matrices. 
Substitution of this coordinate transformation (4.1) into expression (3.10) and premultiplica- 
tion with the transposed of the transformation matrix gives: 

TtCTtj2(t) + T,TDTtp2(t) = T,Ts(t) (3.42) 

or 

with 

(3.44) 

Now a state-space form of the reduced system has been got, based on a generalized coordinate 
column in which the substructure boundary dof's have been preserved. The coupling of the 
substructures will now be a straightforward procedure. 
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Chapter 4 

TESTPROBLEMS 

For a numerical evaluation of the proposed substructure-reduction procedure we look at the 
bending vibration of a beam, clamped at one side and devided into two substructures (I and 

n=20 

n: 18 

11) as ihs t ra ted  in Fig 4.1. 

Fig. 4.1 TESTPROBLEM, Beam problem using 2 substructures 

The interface dof’s for substructure I are w10 and 410 and for substructure II the displace- 
ments w1 and wg and the rotations $1 and $9, Substructure I1 has 2 fysical rigid body modes 
(one translation and one rotation). 
Fig. 4.2 gives the 72 eigenvalues for the coupled structure in the complex plane and Fig 4.3 
the absolute values of the real and imaginairy parts (when an imaginary part is missing it 
means that it has been zero). 
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EIGENVALUE NR.: 

Fig. 4.2 Eigenvalues for the coupled system 
XlOS THE EIGENVALUES 

Fig. 4.3 Real 
REAL PART 

and imaginary parts of the eigenvalues 

It can be seen that we have to deal with a lot of complex conjugate eigenvalues pairs, some 
almost real eigenvalues and 4 eigenvalues without any imaginary part. For both the substruc- 
tures we used a selection criterion in which an eigenvalue and corresponding eigenvector are 
selcted when l imag(Ak)l  50.000[rad/s], indicated by the two straight lines in Fig. 4.3 

Substructure I has 4 flexibility modes corresponding to the chosen boundary dof’s (end trans- 
lation and -rotation and their time-derivatives). They are shown in Fig. 4.4. 
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FLEX -MODE s u a m  I ,  DISPL(O) and VELOCI+) 

025-  FLEXIBILITY MODE NR 2 

0 2 -  

015-  

0.1 - 

DISPLDOFNR. 
FLEX-MODESUBSTP. I ,  DISPL(o) aid =LOC(+) 

-0.002 - 

OISPLDOENR. 

Fig. 4.4 Flexibility modes of substructure I 

DISPLDOF.NR 

The flexibility modes have been split up in a uplacement part ank a velocity part. In 
can be noticed that two of the modes consist of a pure translation and two of them are pure 
velocity modes. 
The free-free eigenvalues of substructure I are given in Fig. 4.5 whereas the "kept" eigenvalues 
are given in Fig. 4.6. 
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3 

2 

-' 

4 

x105 EIGENVALUES SUBSTR. I 

o 

o 

-3000 -2000 -1000 O 10 -5000 -4000 

REAL PART 

Fig. 4.5 Free-free eigenvalues of substructure I 

REAL PART 

Fig. 4.6 Kept eigenvalues of substructure I 

The number of kept eigenvalues is 20 so the total number of dof's of substr. I after reduction 
will be 24. 

Substructure I1 has 2 fysica1 rigid body modes. In state-space form this resulted for this 
system in one single zero-eigenvalue (the translation mode) and one double zero-eigenvalue 
(the rotation mode). The translation r.b.m is shown in fig 4.7a whereas the regular- and 
generalized rotational rigid body mode are shown in the Fig's 4.7b and 4 . 7 ~ .  
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Fig. 4.7a Regular translational rbm. 

0.1 

0.05 

o -  

-0.05 

-0.1 

-0.15 

RB MODE SUBSTR. 11, DISPL. (o) and VELOC (+) 

RIGID BODY MODE NR 2 0.1L 
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2 -0.05 - 
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- 
' RIGID BODY MODE N 

- 

a 

- 

- 

- 

0 2 4 6 8 1 0  

;Loc. (t) 

14 16 18 

Fig. 4.7 Regular- (b) and generalized- (c) rotational rbm. 

Substructure I1 has 8 flexibility modes which are shown in Fig 4.8. 
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DISPLDOF NR 

< 

Fig. 4.8 Flexibility modes of substructure 11. 

It can be seen that for substructure I1 the flexibility modes not only have a displacement 
part but also a velocity part. In the flex.modes 1 t /m  4 the influence of the velocity-rigid- 
body-mode is clearly visible. 
The free-free (nonzero !) eigenvalues of substr. I1 are shown in Fig. 4.9, the kept eigenvalues 
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are shown in Fig. 4.10. 

o -  

-1 

-2 

o 

0 0  o 
% 0 %  0 

o 
o 

- 
o 

- o 

4 

Fig. 4.9 Free-Free eigenvalues substr. I1 

xi04 KEPT - NONZERO EIGENVALUES SUBSTR. I1 

Fig. 4.10 Kept eigenvalues substr. I1 

- 
30 -6000 -5000 -4000 -3000 -> 

REAL PART 

- 
o -1 

The number of kept eigenvalues for substr. I1 is 15, so the total nr. of dof’s after reduc- 
tion will be 26. 
After coupling the two substructures (leading to a system with 46 dof’s) the eigenvalues have 
been calculated. The result is shown in Fig. 4.11 which gives the eigenvalues of the unreduced 
(o) and the reduced (+) system. 
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Fig. 4.11 Eigenvalues of the reduced and unreduced system 

Figuur 4.12 gives a zoomplot of the eigenvalues of the reduced and unreduced system in 
the frequencyband of interest. 
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Fig. 4.12 Eigenvalues of the reduced and unreduced system, zoomplot 

It can be seen that within the frequency band the correspondence of the reduced and unre- 
duced eigenvalues is very good. 
Finally Fig. 4.13 gives the Frequency Respons Function for excitation and respons in the dis- 
placement dof. of the free end of the coupled beam. Here the same quality of approximation 
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can be noticed below the cutt-off frequency of 50.000 [rad/s]. 
FRF(35,35)ORIGINAL(-)AND REDUCED(--) 

10-3 , 
10-4 i- CRIT.TYPE = 1 

CRIT.IMAG.FREQ.(rad/s)= 50000 

O 1 2 3 4 5 6 7 

FREQUENCY [rad/s] xi04 

Fig. 4.13 Frequency respons function with and without reduction. 

The same system has also been analysed using an extension of the classical dynamic re- 
duction, thus by only using eigenmodes (including rigid body modes) but without residual 
flexibility modes. The original and reduced eigenvalues in this case are shown in the Fig’s 
4.14 and 4.15. 
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Fig. 4.14 Eigenvalues of the reduced and unreduced system without residual flexibility 
modes. 
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Fig. 4.15 Eigenvalues of the reduced and unreduced system without residual flexibility 
modes, zoomplot 
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Fig. 4.16 Frequency respons function with and without reduction. 

From these figures it is clear that the residual flexibility modes (also in this generalised 
form) play a very important role in getting an accurate reduced model. 

As a final test the frequency criterion was changed. Now we choose a limit for the abso- 
lute value of the imaginairy parts 20.000 [radls] instead of 50.000 [rad/s]. The number of 
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dof's (state space variables) of the reduced system now was 32. 
The reduced and unreduced eigenvalues are given in Fig. 4.17 and 4.18. 
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Fig. 4.17 Eigenvalues of the reduced and unreduced system with cutt-off frequency of 
20.000 [rad/s]. 
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Fig. 4.18 Eigenvalues of the reduced and unreduced system with cutt-off frequency of 
20.000 [rad/s], zoomplot 

The Frequency Response Function for this situation is given in Fig. 4.19 
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Fig. 4.19 Frequency respons function with and without reduction. 
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It can be seen that within the smaller frequency band the results relatively have the same 
accuracy, which means that the chosen frequency criterion can be used very well in this 
reduction scheme. 

10-9 

30 

. I  I r  I ,  

< <  
I ,  < I  

> .  

- 



Chapter 5 

CONCLUSIONS AND 
RECOMMENDATIONS 

In this report the standard RUBIN CIVIC: procedure is extended to the case of systems with 
general viscous damping, but still with symmetric system matrices. In its standard form 
the transformation matrix used for this reduction is build from real static modes (rigid body 
modes and residual flexibility modes ) and a frequency dependent selection of real dynamic 
modes. 
In the extended form (based on a state-space formulation in first order differential equations) 
the rigid body mode concept had to be modified with the possibility of generalized eigenvec- 
tors corresponding to  multiple zero eigenvalues and the use of complex, free-free state-space 
eigenmodes. 
The application of the procedure to a 2-substructure beamproblem showed: 

o The use of (residual) flexibility modes additional to complex eigenmodes is essential for 
getting an accurate, reduced model, 

o A simple frequency selection criterion can be used very well for the generation of a 
reduced model in an preselected frequency band. 

o The presence of fysica1 rigid body modes needs special attention when using a state- 
space description for a structural system. 

Finally it should be recommended that the possibility of the CMS extension for nonsymmetric 
system matrices (for example in the case of rotor-bearing systems) should be investigated. In 
that case however not only right eigenvectors but also left eigenvectors should be distinguished 
as well as left- and right (residual) flexibility modes. 
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Appendix A 

State rigid body modes 

For a system with n dof’s we can write: 

We assume that the Massmatrix is positive definite and that the stiffnessmatrix is singular 
with rank n-r. Therefore the system wil have r rigid body modes (rbm’s) u, for which: 

The rbm’s u, are linearly independent. The State-space formulation of the problem is: 

The eigenvalue problem corresponding to the homogeneous part is: 

[ A b c  f D ] V k  = o 

For each fysica1 rbm there will be one or two eigenvalues XI, = O if we solve the eigenvalue 
problem (A.5). 

For a positive definite massmatrix M this will lead to r regular state rigid body modes 
(srbm’s) O,: [a . ]  
If the eigenvalue Ak = O has multiplicity 2 there will also be a generalized srbm u+.. In this case 
it will not be possible to diagonalize C and/or D so there will not exist an eigenvectormatrix 
U such that: 

C U R $  DU = O ( A 4  
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where A is a diagonalmatrix. 
But it will be possible to find a linearly independent set of generalized eigenvectors which 
transform C or D into the almost-diagonal JORDAN-form : 

C V J  t DV = O (44.9) 

where: 

J =  

. A 1  0 0 IJ o n .  
0 x 2  1 o 0 0 .  
o o A Z  o o o .  
o o o x g o o .  

o o o o x q o .  

. . . . . . .  

(A.10) 

for example for one eigenvalue A Z  with multiplicity 2. 

The Jordan-matrix J will have Jordan-blocks on the diagonal having the multiple zero- 
eigenvalue on its diagonal and ones on the first co-diagonal. 
In this case, a repeated root X I ,  = O will then lead to: 

or : 
DvT = o  

which we already had, and: 
CwT + Dw, = O 

with: 

this gives: 

w T =  [ $ 1  
Bv,d t MU," + Kw: = o 

Mv,d - Mw," = o 
and: 

For a regular M (A.16) gives: 

( A . l l )  

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

w," = v,d = u,, and 1i-w: = -Bu, (A.17) 

o IF: Bu, = o, we can take w,d = o or w,d = uT. This gives the generalized state-rigid- 
body mode: 

(A.18) 

e IF: Bu, # o, there will not be a solution for corresponding columns of Kw,d and hence 
the assumption that XI, = O is a double root leading to both regular and generalized 
rigid body modes is not valid in this case. 
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EXAMPLE 

M = m  

qT = [ U I ,  q 341; 
2 1 0 0  1 - 1  o o 
1 4 1 0  

O 0 1 2  
We take m = 1 and k = 1. 

0 Case I: B = O orB = (Y * K + B * U ,  = o 

[A& + 01~1, = o + repeated root XI, = O with multiplicity = 2. 

For CRR = V ~ C V R  and DRR = V'DVR we find: 

The Non-diagonal CRR will be regular for positive definite massmatrix M. 

0 Case 11: For b=0.1 we get: 

O 

BUT = [ i ]  # o j XI, = O with multiplicity 1 

X I  = o p : =  [1,1,1,1,0,0,0,0]; 

X2 = -0.011; V: = [i, 1.0004,0.9993,0.9989, -0.011, -0.011, -0.011, -0.0111; 
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Appendix B 

Proof O f  S at ernent (3.27) 

Starting point: 

Suppose z = wext : 

The solution can be written as: 

C i + D z = g  

[AC + D]w = o 

where hm contains the zero-eigenvalues and VR the corresponding regular- or generalized 
state rigid body modes (number = R). AEE contains the nonzero eigenvalues. 
One can write: 

(B.4) VTCV = e* + c*-1 = V-IC-1V-T 

so : 

With: 

we can write: 

This gives: 

(B.lO) 

we get: 
P = - D v E A & c E ~ - ~ v ~ $  (B. l l )  
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For the elastic flexibility matrix GE = PTGP we than can write: 

With: 

The matrix D was singular, so we can write: 

where O is an (N*R) matrix. 
This gives: D R E D Ë ~ D E R  = DREO = DRR. 
Finally we get: 

DTGD = D 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

Equation (B.14) is only true when the number of suppressed dof's (R) is equal t o  the number 
of zero-eigenvalues. 
Using (B.15) we can write for (B.12): 

(B.16) 

(B.17) 
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