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ON AGGREGATION IN PRODUCTION PLANNING 

J. Wi jngaatd 

Eiadhoven University of Technology, 
Department of Industrial Engineering, 
Eindhoven, Netherlands 

There is a renewed interest in aggregate planning and hierarchical pro- 
duction planning, see for instance Axsster 111 andHax and Pieal CO]. But 
there are not yet many results on the relationship between the character- 
istics of the production system and the right stratification of the pro- 
duction planning process. That relationship is the subject of this paper. 
Some (illustrated) ideas will be given and some suggestions for future 
research. In seceion 2 some simple deterministic cases with 2 or 3 pro- 
ducts are considered. Section 3 discusses the role of deterministic models 
in a stochastic environment. In section 3 a pl-lrely stochastic case with 
N products and fixed production quantities is discussed. 

1. IlVTROfrUCTPON 
In production planning, as in all other 

kinds of planning, the planning horizon and 
the level of aggregation are important cha- 
rateristics. Generally there are more plan- 
ning levels and the planning horizon and the 
level of. aggregation are related to each 
other. The lower level plannirrz is detailed 
and has a short planning horizc ,. In the 
higher level planning the variables are more 
aggregated and the planning horizon is lon- 
ger. The higher level planning determines 
restrictions(budgets) for the lower level 
planning. The structure of the complete plan- 
ning process necessary to control an organi- 
zation depends on one hand on the flexibility 
of the organization and on the other hand on 
the instability of the environment. A higher 
flexibility makes it easier to aggregate, to 
work with shorter planning horizons for the 
detailed planning. A higher degree of varia- 
bility makes it necessary to work with de- 
tailed plans over a longer planning horizon. 

In production planning we can distinguish 
four kinds of aggregation: 
1. Aggregation over types of product. 
2. Aggregation over production stages. 
3. Aggregation over capacities. 
i. Aggregation over time. 
We will consider in particular aggregation 
over types of products and aggregation over 
(parallel) capacities. 

There is a renewed interest in aggregate 
?lannPng and hierarchical production plan- 
ling, see for instance Axszter C I] and Ha% 

and Meal 141. But there are not yet aany re- 
sults on the relationship between the charac- 
teristics of the production system and the 
right stratificatior of the production plan- 
ning process. That relationship is the sub- 
ject of this papet. Some (illustrated) ideas 
will be given anL Jome suggestions for future 
research. 

In the next section we will illustrate 
with some very simple exampiesthat the right 
level of aggregation depends as well on the 
flexibility of the organization as on the in- 
stability of the enviro‘...lent. The possibility 
to switch production easily from one product 
to another makes it possible to aggregate 
over products. The mobility between capaci- 
ties (substitutability of capacities) makes 
it possible to aggregate over capacities. But 
in boLh cases the variability of the demand 
restricts the possibility to aggregate. 

The demand in the exai.dples treated in sec- 
tion 2 is assumed to be determir,istic. Of 
course deterministic models are frequently 
used in production planning, but mainly in the 
rolling plan context. Important characteris- 
tics of such a rolling plan are the structure 
of the deterministic model used each period 
(level of aggregation, planning horizon, 
etc.) and the kind of forecasting procedures. 
These charircteristics being fixed the quality 
of the rolling plan depends on tbe instabili- 
ty and the inpredictability of the environ- 
ment (demand, capacity, etc.). This is short- 
ly discussed in section 3. 

In section 4 we consider the case of one 
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production unit with many products. Demand is 
assumed to be partly unpredictable. It is 
clear that in such casesthere is alweys -n 
aspect of stored capacity in the individual 
item inventories. This aspect is especially 
important in cases with a rigid production ca- 
pacity. In such cases the spread of the indi- 
vidual inventories around the average inven- 
tory is rather sltable and may be estimated 
rather well without being very specific about 
the precise production strategy. This estimate 
leads to an approximation of the inventory 
cost function for the whole system which only 
depends OQ the total inventory. So, one can 
dpli: up Ithe problem of the construction of a 
complete strategy in the construction ,f a 
strategy controlling total inventory and total 
capacity usage and a rule to distribute the 
total capacity usage over the different pro- 
ducts. The best way to distribute the total 
capacity usage is in general according to 
shortest run-out time. 

i. SIMPLE EXAMPLES OF AGGREGATION 
In this section some simple examples of 

aggregatio? will be given, aggregation over 
products a~ d aggregation over capacities 
(productica units). 

2.1 On- Erolduction unit, two products 
Ye< nsider the situation-of two oroducts 

made by tm same production unit (see fig. I). 

I,(t) 

Demand for both products is assumed to be 
known. Let dl (t)(d2(t)) be the demand for pro- 
duct 1 (2) in period t. The production rate 
for both products is the same. The total pro- 
duction capacity may vary from period to peri- 
od and is denoted by C(t). There are two types 
of cost: inventory costs and production costs. 
Let xl(t)(x2(t)) be the production of product 
1 (2) in period t. The production cost in pe- 
riod t depends only on xl(t) + x2(t) and is 
given by f(xl(t) + x2(t)). Let I 
be the inventory of product 1 (2 j 

(t) (12(t)) 
at the end 

of period t. The inventory cost for product 
1 (2) in period t is assumed to be I1 (t) 
1I,(t)l(/I2Wl. Th e starting inventories are 
assumed to be zero (1, (0) = 12(O) = 0). The 
purpose is to minimize the total costs over 
the next T periods. This probiem can be repre- 
sented in the following way: 

Min E l[Il(t)I 
t=l 

+ II*(t) 1 + f(x,W + x,(t)) 

such that 

I, (t+1) = Il(t)+xl(t+l)-d+t+l), t=O,...,T- 

12(t+U = 12(t)+xL(t+l)-d2(t+l), t=O,...,T- 

I (C) 2 I I 2 
(0) - 0 

x1(_) 1 0, x2(t) 2 0, t=1 ,a**, T 

xl(tj + x2(t) g C(t) t=l,...,T 

The obv:‘ous aggregated version of this pro- 
blem is 

Min T iII(t)l + f(x(t)) 
t-1 

such that 

I(t+l)=I(t)+x(t+l)-d,(t+l)-d2(t+l), 

t=O ,...,T-I 

I(0) = 0 

x(t) 2 0, t=l,...,T 

It is clear that the optimal cost for the ag 
gregated problem is less than or equal,,,to th 
optimal cost of the detailed problem. Let 
x*(t) betheoptimal (total) productionderivec 
fromtheaggregated model. Ifit is possibletc 

construct a solution x’(t), x:(t) for the 
‘0 detailed problem with xl(t) + xi(t) - x*(t) 

and the corresponding inventories such that 
they never have opposite signs then 

x:(t), x0(t) has the same cost (in the detai, 
2 

led problem) as x*(t) in the aggregated pro- 

blem and x!(t), x:(t) isoptimal therefore. It 

is clear that if x*(t)Zld,(t)-d,(t)1 for all 

t then one can construct a solution 

x:(t), x’(t) for the detailed problem such 
2 

that xy(t)+xi(t)=x*(t) and the correspondin 

inventories are in all periods equal to eat 

other. So x*(t)Zld, (t)-d2(t) 1 is a sufficie 

condition for aggregation. The detailed T- 
period problem can be solved by first 
the T-period aggregated problem and then di 
tributing the total production such that 
inventories remain equal. In this distribu- 
tion step it is not 1:ecessary to look ahead 
further than I period. The total T-period 
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planning problem is split up in two levels, 
a T-period aggregated problem and a l-period 
detailed problem. As mentioned in the intro- 
duction the higher level planning determines 
a budget (the total production) for the lower 
leve t planning. 
It is a little unsatisfactory that in the 
condition for aggregation the optimal solu- 
tion of the aggregated problem is used alrea- 
dy. In case of a convex production cost func- 
tion we know that x*(t))lminfd, (t)+d2(t)l. 

So a sufficient condition for aggregation in 
that case is 

min!dl(t)+d2(t)1z(d,(c)-d2(t)[ for all t 

It is clear that in case of variable demand 
this condition is not as easily satisfied as 
in case of a stable demand. The instability 
of the environment, mentioned already in the 
introduction, is indeed important. 

It is not essential here that the invento- 
ry costs are linear. In case of a general in- 
ventory cost function one gets the same con- 
dition for aggregation. But the aggregated 
inventory cost function is no longer identi- 
cal to the inventory cost functions for the 
individual products. Suppose h(x) is the in- 
ventory cost function for the individual pro- 
duct. Then the aggregated inventory cost 
fun-tion should be ih($). In case h(x)=x2 x2 
the aggregated lnventory cost function 15 7. 

If the production cost function is linear, 
so f(x) - x, then the only function of the 
inventory i; -hat it stores capacity, it buf- 
fers the differences between total demand and 
capacity available. It does not matter in 
which product the capacity is stored as long 
as it is possible to prevent that the inven- 
tories get opposite signs. Also in cases 
where there is another kind of production 
function or where aggregation is not fully 
allowed thereisalwaysthisaspact of stored 
capacity in the inventories of the individu- 
al products. We will come back to this in 
section 4. 
The existence of set-up costs will complica- 
te the problem. As long as the production 
quantities are so small th’t one may expect 
,$n most periods both products being produced 

problem does not change much. But if that 
not the case the problem gets more compli- 

ted indeed. This shows that aggregation 
er time is related to aggregation over pro- 
cm. Xf the periods in the planning arc 

ylonger, problems of set-up costs are less se- 
*era. 

72.2 Two production units, two products 
1 We consider tne situation of two products 
‘,lnd two production units. Product 1 is made 
by production unit I, product 2 by production 
rnit II (see figure 2). 

Figure 2. 

The assumptions with respect to the produc>s 
are the same as in case 1. The production ca- 
pacity of the production units is restricted 
by the manpower capacity. Part of the people 
can only be deployed at either production 
unit I or production unit II. Another part of 
the people can be deployed at both production 
units. This leads to the following production 
restrictions 

xi(t) 5 pl(t)+b(t) 

x,(t) s p2(t)+b(t) 

x, (t)+x2(t) < p, (t)+p2(t)+b(t) 

Production costs are assumed to depend 
total production only, f(x,(t)+x,(t)). 

on the 
As in 

case i we want to minimize’the c6sts over the 
first T periods. This leads to a problem which 
is almost equal to the problem in the previous 
case. The production restriction in that pro- 
blem is replaced by the three restrictions gi- 
ven above. The aggregated problem is the same 
as in case 1 with C(t) replaced by 
pl (t)+p2(t)+b(t)* In this case a sufficient 
condition tor aggregation is 

q in (p, (t)+b(t), p2(t)+b(t) 9 x*(t)) 

;r Id1 (t)-d2(t)l for all t 

Disaggregation (distribution of the total pro- 
duction) is as in case 1. The part b(t) is 
the mobility between the two production units, 

2.3 Two production units, three products 
In this case we will introduce another kind 

of mobility between production units. We con- 
sider the situation of three products and two 
production units. Product 1 has to be made by 
production unit I, product 2 has to be made by 
production unit II, but product 3 may either 
be made by production unit I or by production 
unit II (see fig. 3). 



Figure 3. 

bow we assume that all demand has to be deli- 
vered in time and that the only costs which 
can be influenced are the linear inventory 
costs. The purpose is to minimize the total 
inventory costs over the first T periods. All 
starting inventories :are equal to zero. The 
problem may be presented in the following 
way : 

T 
min C II, (t)+12(t)+13(t)3 

t=l 
such that 

I, (t+l)=Il (t)+x, (t+l)-d, (t+l), t=o ,...,T-I 

12(t+J)=12(t)+xz(t’l)-d2(t+l), t=O,...,T-1 

13(t+P)=13(t)+x3(t+l)-d3(t+l), t=O ,...,T-I 

11(0) = I*(O) = 13(O) = 0 

I+) z o, TZ(t) 2 0, 13(t) 2 0, t’J,...,T 

x,(t+J)<c,(t), x2(t+l)<CII(t), t=l,...,T 

x,(t+l)+x2(t+l)+x3(t+I)<CI(t)+CII(t), 
t=l ,.*a, T 

x, ttpo, x2(t)‘0, x3(t)20, 

The aggregated model is 
I 

min C I(t) 
t=l 

such that 

t=1 ,**a, T 

I(t+l)=I(t)+x(t+l)-d,(t+l)-d2(t+’)-d3(t+l), 

t=o ). . . ,T-,l 

0 I x(t) i c 
I 

(t) + CII (t), t=l,... ,T 

I(O)=O, 1(t)r0, t=l ,a*., T 

A sufficient condition for aggregation is 

dl(t) 5 CI(t), d2(t) 5 CII(t) for all t. 

If this condition is satisfied then for x*(t) 

the optimal solution of the aggregated pro- 
blem, we have x*(t)ldl(t)+d2(t) for all t. 
One can construct the optimal solution of th$ 
detailed problem in the following way: Choose! 
x1 (t)=d,(t), x2(t)=d2(t) and x,(t)=x*(t) + 

- (d is a feasible solution 
of t i, 

(t)+d2(t)). This 
e detailed problem with costs equal to 

the costs of the optimal. solution of t’re ag- 
gregated problem. Hence, it is an optilaal sof 
lution of the detailed problem. 
This is a very trivial case of course, but 
nevertheless it shows something of the rela- 
tionship between mobility and aggregation. 
The higher the demand of product 3 as frac- 
tion of the total demand the higher the mo- 
bility and the easier the conditions for ag- 
gregation are satisfied. In case of very un-, 
stable demand dJ (t) and d2(t) che conditions 
fur aggregation are easily violated. So the 
unstability of the environment is also impor: 
tant again. 

3. THE QUALITY OF RGLLIKG PLAhS 
In allcases considered in section 2 we as* 

sumed the planning horizon to be given and 
the demand to be known over the whole plan- 
ning horizon. This is a very severe assump- 
tion. Of course, deterministic models are 
frequently used in production planning, but 
mainly in the rolling plan context. In case 
a rolling plan is used, each period the fol- 
lowing activities have to be executed: 
1. The state of the system is observed. 
2. Forecasts are made for the values of the 

exogeneous variables over the planning 
horizon. 

3. A plan is made for the whole plimning ho- 
rizon. The models used in this step are , 
deterministic in general, the forecasts 
are assumed to be perfect. 

4. The first period decisions are implementedi 
In thinking about rolling plans it is ;m- l 
portant to be aJar@ of the fact that rolling 
plans are used in situations where the fore- 
casts are not perfect. The quality of a rol- I 
ling plan is influenced by the choice of the , 
forecasting procedure, the length of the ho- 
rizon and the kind of model used in step 3. 
ithe quality will depend on the unprcdictabi- I 
lity of the environment. One may expect that 
a long planning horizon and a vary detailed 
planning model ill not contribute much to 
thF quality of the planning in case of a hi,; 
unpredictability, 

Consider a system as in subsection 2.1, 
but with the capacity constant and with plrt+ 
ly unknown demand instead of known demand, 
If one wants to evaluate the quality of a 
rolling plan one has to model this unpredic- 
tability of the demand. 
One may assume for instance that the demand 
is generated in the iollowing way: 
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di(t+l)rqi(t+I)+pi(t+I)+c. 
1 

where c. 
1 

is some constant and 

The ai and hi(t) are independent normally 
distributed variables with mean 0 and stan- 
dard deviations ot and -t. The realizations of 
the hi(t) are assumea to be 
known beforehand, while the realization of 
ai becomes known during period t. Ihe 
standard deviation of is a measure of the 
unpredictability of the demand of product i. 
The forecasts fcr di(t+l), di(t+2),..., nee- 
ded at the beginning of eriod ttl are eq+lal 
to Pqi(t)+pi(t+l)* s P qi(t)+pi(tt2)**** l 

A reasonable measure of the quality of a rol- 
ling plan in such a stochastic environment 
is the average cost over an infinite horizon. 
The forecasting procedure being fixed, the 
only other possibilities to influence this 
average cost are the planning horizon and the 
planning model used in step 3. 

The interesting point here of course is 
the influence of the level of aggregation of 
this planning model. If for all t the fore- 
casts satisfy the conditions for aggregation 
given in the previous section the results for 
the aggregated model (plus a disaggregation 
step! are precisely identical to the results 
for the detailed model. But in case the de- 
mand is generated as described above the de- 
mand forecasts will not always satisfy the 
conditions for aggregation and it is important 
to know the difference in quality (average 
cost) between a rolling plan with a detailed 
planning model in step 3 and a rolling plan 
with an aggregated planning model in step 3. 

The choice of the aggregate inventory 
cost function is also relevant. Suppose the 
individual inventory cost function is a con- 
vex function h(x). If it is possible to keep 
the inventories equal from period to period 
then the right aggregate inventory cost fuhlc- 
tion is 2h(*). In case this is not always 
possible one may get a better rolling plan by 
using in step 3 an aggregate p’dnning model 
with a higher aggregate inventory cost func- 
;tion. 

In case of quadratic production cost and 
ilgventory cost it is possible to calculate 
n&nerically the average cost for a rolling 
p$an for this system. See Baker, Peterson 

21 and Baker, Smits. Wijngaard C33 for de- 
Fails. That paper is concentrated on the in- 
rluence of the planning horizon for different 
degrees of unpredictability. But the influen- 
ce of the level of aggregation can be calcu- 
lated in the same way. If the cost are non 
quadratic the calculation of the average cost 
ulder a rolling planning model is more diffi- 

cult. Sinulation is needed in such cases in 
general. 

4. ONE PRODUCTION IJNIT WITH SEVERAL PRODUCTS 
In this section we will consider the case 

of one production unit and several products 
with (partly) unpredictable demand. In sub- 
section 2.1 it was mentioned that in all such 
cases there is always an aspect of stored ca- 
pacity in the indivfdual product inventories. 
We will concentrate on that aspect here. 
In cases with a high utilization rate one may 
expect that this stored capacity aspect is im- 
portant. In such cases there is not much short 
term flexibility in the capacity usage and 
the best one can do is to use the available 
capacity to make the run-out times of the dif- 
ferent products as ,zqual as possible. The pos- 
sibility to keep run-out times equal depends 
mainly on the unpredictable variability of the 
demand of the individual products, the produc- 
tion leadtime and the minimal production quan- 
tities. Hence, one may get a good estimate 
for the equality of the run-out times without 
using the precise form of the complete pro- 
duction strategy. This estimate may be used 
to construct an aggregate inventory cost func- 
tion. In this way it is possible to find a 
good production strategy in a hierarchical 
way. In the first place one determines an ag- 
gregate production strategy in which the to- 
tal production is given as function of the 
total inventory. Here the aggregate inventory 
cost function is used. In the second place 
the total production is distributed over the 
individual prociucts according to run-out 
times, taking into account the minimal pro- 
duction quantities. 
We will illustrate this with a specific exam- 
ple. 

4.1 Special case with N identical products 
Let there be N identical products. Custo- 

mers arrive according to a Poisson process 
with intensity h and order with probability 
I/N one unit of product i. The fixed produc- 
tion quantity is q. The duration ofaproduction 
run is d. At the end of each prodll?tion run 
one has to dea:ide to start a new production 
run or to wait un-.il the inventories are lo- 
wer. Suppose i new production run is started 
at time t. Then it is generally best to take 
the product with the lowest inventory posi- 
tion (= inventory on hand plus on order minus 
backorders). 

Of sor,r:ye the pattern of replenishment de- 
pends on the complete production strategy. 
But we know the average intensity (A/q) and 
we may expect that the spread of the indivi- 
dual inventories around the average inventory 
is insensitive for other chn-acteristics of 
the replenishment process. Therefore we assume 
the replenishment process to be ?oisson. But 
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we may not assume 0f course that the probabi- 
lity of a replenishment for an arbitrary in- 
dividual product is l/N. The products with 
the lowest inventory levels have the highest 
probability to get a :eplenishment. This cau- 
ses in fact that the spread of the individual 
inventories around the average inventory 
tends to a steady state. The spread is the 
set of deviations of the individual product 
inventories from the average inventory. If 
there are many products the dependency be- 
tween these inventory deviations is small in 
the steady state. If there were no dependency 
at all the steady spread would be characteri- 
zed only by the steady state distribution of 
the individual product inventory deviation. 
We assume that this is the case indeed. The 
distribution function F of this steady devi- 
ation can be used to construct an aggregate 
inventory cost function. Let the individual 
inventory cost be given by the function h(x). 
Then one may choose as aggregate inventory 
cost function +- 
N _J h($ + y)dF(y) 

Here x is the total inventory (and hence x/N 
the average inventory). A way.to estimate the 
distribution function F is described in the 
next subsection. 

4.2 Approximation of the distribution func- 
tion of the steady state deviation 

We assume first that d-0. 
Supp:se the inventories at a certain time are 
xi, then the inventory deviations are 

N 
yi := xi - x/N where x := C x.. 

i=l 
1 

If a customer for product 1 arrives the inven- 
tory deviations become 

1 I I 
Y1 + i - 1, Y2 + jp”.‘YN + 5 

If a replenishment for product 1 arrives the 
inventory deviations become 

YI -++ q, Y2’$..‘YN--9 
N N 

The calculation of F is iterative. Let FO be 
a first estimate. Suppose the inventory devia- 
tion of product i at time t is yin We assume 
that the other deviations are distributed ac- 
cording to FP. That means that the possibili- 
ty that the inventory of i is the smallest is 
(I-FO(yi))N”. So the probability that the in- 
ventory of product i is replenished between 

t and t + At is (A/q)At. (l-FO(yi))N-‘. 

The behaviour of the inventory deviation of 
product i is described by a Markov process 
with the following properties: 
Prom each state y transitions can Occur to 

The probabilities of these transitions to 
take place between t and t + At, given that 
the state at time t is y, are 

(X/q)At(l-(l-Fe(y)) N-‘Wq)At(~-PO(y))N-l, 

XAt (l-i), iA+ 

It is easy to determine the steady state diet 
tribution for this Markov process. The cor- 
responding distribution function may be con- 
sidered as the next approximation of F and 
is denoted by Fl. 
It is possible to follow the same procedure 
with F, instead of FO. In this way one can 
construct a sequence of approximations of 
F: FO, F,, F2 ,... . The iteration may be 
stopped as soon as P,+I is close to F,. 
If d > 0 one has to distinguish between the 
inventory (= inventory on hand minus back- 
orders) and the inventory position (= inven- 
tory on hand plus on order minus backorders). 
In this case we have to consider also the de- 
viation of the inventory position of an in- 
dividual product from the average inventory 
position. Now WC assume that the events of 
productionrunstarts follow a Poisson process 
and that in the steady state the individual 
product inventory position deviations are In- 
dependent of each other. Let G be the distri- 
bution function of these deviations and let 
GO be a first approximation of G. The beha- 
viour of the inrentory’position deviation is 
described by th2 same Markov Frocess as the 
behaviour of the inventory deviation in the 
case d = 0, with FO replaced by GO. As in 
that case it is possible to construl:t a se- 
quence ofapproximations of G: GO,Glr... . 
From the tehaviour of the inventory position 
deviation follows easily the behaviour of 
the inventory deviation: 
events due to a replenishment are delayed 
over a time d. That means that at each itera- 
Con step one can also construct an approxi- 
mation of F. 

4.3 Construction of a complete production_ 
storage 

The construction of a complete production 
strategy consists of two steps. ln the firet 
step one constructs an aggregate production 
strategy. That means in this case that one 
has to develop a criterion on which the deck- 
sion,when to start a new production run, can 
be based. In the second step one has to de- 
termine a criterion for:which product to 
choose. This second step is trivial in this 
case, at least in case of a convex inventory’ 



cost function, the product with the lowest in- 
ventory has to have the highest priority. In 
the first step one has to consider an aggrega- 
ted nodel. The above constructed aggregate in- 
ventory cost function has to be used here. 
The resulting aggregate production strategy 
will be a critical number strategy in this 
case: Start a new production run if and only 
if the aggregate inventory position is less 
then some number S. 

4.4 Generalization and remarks 
It is possible to generalize the example 

to a lase with more stages of production. As- 
sume that one has to decide whether or not to 
start a new production order at the first sta- 
ge as soon es this stage becomes empty. A pro- 
duction order, once started, is finished in d 
periods. The above described approach works 
well for this case too. It is not essential 
in that approach that there is only one pro- 
duction order in process. Of course for lar- 
ger d one will get a wider spread of the in- 
ventories and a higher aggregate inventory 
cost function. 

The assumption of identical products is a 
very severe one. But it is possible to use 
the same approach in cases where the products 
are not identical. For instance in cases with 
production quantities and demand rates which 
vary from product to product. In such cases 
one has to concentrate on the run-out times 
instead of on the inventories. The construc- 
tion of an aggregate inventory cost function 
is essentially the same. 

Tile above described approach relies heavily 
on the insensitivity of the steady state 
spread of the inventories (or run-out times) 
for changes in the production strategy. The 
influence is via the replenishment process. 
The relationship between the production stra- 
tegy armd the characteristics of the replenish- 
ment process is very complex. It is difficult 
therefore to check the insensitivity of the 
spread for specific changes in the production 
strategy. But it is relatively easy to check 
the influence of the intensity of the reple- 
nishment process, the difference between a 
Poisson replenishment process and a more pe- 
neral replenishment process, the effect of 
autocorrelation in the replenishment process, 
&he effect of correlation with the demand pro- 
,zess, and so on. If the spread is insensitive 
tor all these changes one “Tay expect that it 
Lp also insensitive for changes in the pro- 
Hlction strategy. It may be useful therefore 
10 execute some check8 on the insensitivity 
rf the spread for changes in the replenishment 
1 roceas. 
Cn the other hand it may be useful to check 
bow close the replenishment process under a 
iir,,le critical number strategy (see subsec- 
tion 4.3) is to a Poisson process. 

In case of an infinite capacity (many parallel 
production units available) the best produc- 
tion strategy is to star: a production run of 
a certain product as soon as the inventory 
position of that product is below some level 
s. In that case the steady state inventory po- 
sition deviation is homogentously distributed 
on the set s+q-1, s+q-2,. . . ,s . That sh3k.s 
that the insensitiviLv of the spread for the 
applied production strategy can only hold if 
the capacity is tight. In cases with a not 
very tight capacity constraint it may be pos- 
sible to use a decomposition approach instead 
of an aggregation approach. In a decompositinn 
approach the individual products are control- 
led independently; as soon as the inventory 
of a cer toi; product comes below some critical 
level an order for q units is placed at the 
productlon unit. If the capacity is not infi- 
nite the order is not always delivered after 
d units of time since the capacity can be oc- 
cupied by other orders. One needs an estimate 
of this delay. This delay corresponds to the 
waiting time for a queue with arrival rate X/&i 
and service time d. Of course the arrival pro- 
cess is very complex, but if there are many 
products cne may get a good approximation of 
the waiting time by assuming that the arrival 
process is Poisson. 
l’he waiting time distribution calculated in 
:his way can be used in an individual product 
model to determine the reorder level. It 
would be interesting to compare the perfor- 
mance of the strategy based on aggregation 
and the strategy based on decomposition. 
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