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DIRAC BASIS: .A MEASURE THEORETICAL CONCEPT OF BASIS 

BASED ON CARLEMAN OPERATORS 

by 

S.J.L. van Eijndhoven and J. de Graaf 

Abstract 

The notion of Dirac basis is introduced in the setting of a Sobolev-like 

R -1 triple (X) eX c R (X). It is a continuum substitute of the notion of 

orthonormal basis for Hilbert spaces. As a side result a generalization of 

the Sobolev embedding theorem is given in terms of Carleman operators and 

geometric measure theory. Finally, the concept of canonical Dirac basis is 

introduced. It is the basic concept for solving the generalized eigenvalue 

problem and corresponding generalized expansion problems. 

A.M.S. Classifications: 28 A 15, 28 A 51, 46 E 35, 46 G 15. 
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O. A conceptual introduction 

OUr papers [EG 1] contain a mathematical interpretation of several aspects 

of Dirac's formalism. Herein we needed a continuum sUbstitute of the ord-

inary notion of orthonormal basis. Therefore, we introduced the notion of 

Dirac basis in the setting of the Gelfand triple 

Here X denotes a separable Hilbert space, and A a positive self-adjoint 

unbounded operator in X. The space Sx,A is the inductive limit 

The space TX.A is a projective limit; it consists of mappings F 

-TA with the property F(t + T) = e F(t). t,T > O. 

In the present paper we introduce the notion of Dirac basis in the bare 

setting of a triple of Hilbert spaces 

where R denotes a bounded positive operator. It turns out that the concepts 

of Dirac basis and of Carleman operators are indissolubly connected. 

This introduction contains the preliminary concepts. 

The first one is the concept of Sobolev triple. Let R denote a positive 

bounded operator on the separable Hilbert space X with possibly unbounded 

-1 -1 
inverse R . The dense subspace R(X) of X is the maximal domain of R . 

In R(X) we introduce the non-degenerate sequilinear form 
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-1 -1 
(w,v)l = (R w, R v) , w,v E R(X) 

with (-,-) the inner product of X. Then R(X) is a Hilbert space with 

(-'-)1 as its inner product. 

-1 
Let R (X) denote the completion of X with respect to the norm 

f J+ II Rd, f E X. Then R extends to an isometry from R-
1

(X) into X. 

The non-degenerate form (-'-)-1 on R-1
(X) is defined by 

(F,G)_l = (RF, RG) , F,G E R-1
(X) 

-1 
Thus R (X) becomes a Hilbert space. 

It yields the triple of Hilbert spaces 

-1 
R(X) ~ X ~ R (X) 

The spaces R(X) and R-
1

(x) establish a dual pair. Their pairing <-,.> 

is given by 

<w,G> 
-1 

= (R w, RO), w € R(X), 

We note that R(X) 
-1 -1 = X = R (X) if and only if R is bounded. 

The second concept is the notion of Carleman operator. 

(0.1) Definition 

Let X denote a separable Hilbert space, and M a measure space with a-finite 

measure u. An operator T : X + L2 (M,u) is called a Carleman operator, if 

there exists a measurable function k : M + X with the following property: 
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For each f E D(T) , the function 

is a representant of the class Tf E L2(M,~). (Cf. [Wei] .) 

A Carleman operator T : X + L2(M,~) is Hilbert-Schmidt iff the function 

a f+- Ilk(a)112 is ~-integrable. Then th~ Hilbert-Schmidt norm equals 

<f II k (a )11 2 dll ) i . 
M a 

The following result is straightforward. 

(0.2) Lemma 

Let T : X + L2(M,~) denote a Carleman operator induced by the measurable 

function k : M + X. Let (vn)nEIN be an orthonormal basis in D(T). Fix 

represent ants (Tv)" for each n E IN. Then there exists a null set N c M 
n 

such that for all a E M ~ N 

00 

L I (Tv ) " (a) 12 = II k ( a )11 2 • 
n=l n 

Put differently k(a) 
00 __ -,--_ 

= L<Tv )"(a)v n n aEI~~N 

n=l 

The third fundamental concept is a generalization by Federer of Vitalirs 

n differentiation theorem for the Lebesque measure on IR . Federer considers 

a topological measure space M metrized by the metric d, and a regular 

Borel measure II on M, such that bounded subsets of M have finite ~-measure. 

In the monograph (Fe], conditions are introduced on the metric space 

(M,d) which lead to the following result. 



- 5 -

(0.3) Theorem 

Let the function f : M + C be integrable on bounded Borel sets. Then 

there exists a null set N
f 

such that for all r > 0 and all a EM' Nf 

the closed ball B(a,r) with radius r and centre a has positive measure. 

Further, the limit 

,..., 
f(a) 

-1 = lim '\l(B(a ,r» 
ri-O f f d'\l 

B(a,r) 

exists for all a EM' N
f

. The function a I+f(a) defines a '\.i-measurable 

'" function with f = f almost everywhere. 

Proof. Cf. [Fe], Theorem 2.8.18. 

Examples of such metric spaces are the following 

o 

Finite dimensional vector spaces M with d(x,y) = vex - y) where v is any 

norm on M. 

- A Riemannian manifold (of class ~ 2) with its usual metric. 

- The disjoint union of metric spaces (M., d.), j fIN, which satisfy 
J J 

Federer's conditions. Here d is defined by 
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1. The concept of Dirac basis 

Let R > 0 be a bounded operator on X. We consider the triple 

-1 i R(X) ~ X ~ R (X). Further, let M denote a measure space with a-fin te 

measure j.l. A function <P : M -+ R-1 
(X) is called (weakly) j.l-measurable 

if for each w E R(X) the function a -+ <w, <p(a» is j.l-measurable. 

-1 
In the space of measurable functions from M to R (X) we introduce the 

natural equivalence relation 

• - ~ : ~ t(a) = ~(a) 

almost everywhere. 

In order to arrive at a proper introduction of the concept of Dirac basis, 

the following auxilliary result is needed. 

1.1. Lemma 

There exists an orthonormal basis (u ) EIN' in X which is a Schauder basis n n_ 
00 

in R(X), i.e. for all w E R(X) the series I (w,u)u converges in R(X). 
n=l n n 

Proof. 

We may as well assume that 0 < R ~ I.If R has pure point spectrum than 

an orthonormal basis of eigenvectors satisfies the requirements. 

Now suppose that R has no pure point spectrum. We construct an operator 

R as follows. Let (EA)AElRdenote the spectral resolution of the identity 
OC) 

associated to ,.., l: 1 R. Put R = P with 
n + 1 n 

P = n 

n=l 
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We have IIR-
1

'R'11 = 1 and IIr
1
R II = 2. 

Hence'R'(X) = R(X) as Hilbert spaces. Finally, observe that ~ has a pure 

point spectrum. D 

1.2. Definition 

Let(G,M,~,R,X) denote an equivalence class of ~-measurable functions 

to, -1 
G : M + R (X). Then (G,M,~,R,x) is called a Dirac basis if for a certain 

orthonormal basis (uk)kEIN in X, which is a Schauder basis in R(X), the 

following relations are valid. 

(1.2') k,£' E IN • 

A 
Now let (G,M,~,R,X) be a Dirac basis. Let G E (G,M,~.R,x) and (uk)kEIN 

be an orthonormal basis, which is a Schauder basis in R(X) such that 
A 

(1.2') is satisfied. Then for each k E IN, the function ~k : a ~ <uk,Ga> 

is square integrable. Let $k E L2(M,~) denote the equivalence class of 

~k' k E IN. We introduce the operator V on the linear span <{uklk E IN}> 

by 

k E IN . 

From (1.1 ' ) it follows that ($k,$£,) = Ok£,' So V can be extended to an 
<Xl 

A \' I>. isometry from X into L2(M,~). Let w E R(X), and put (Vw) = L (w.uk)~k' 
A A <Xl k=l 

It is clear that (Vw) E Vw. Moreover, <w,G > = I (W'~)~k(a). 
<Xl a k=1 

Hence (Vw)" = I (w.uk)~k where the convergence is pointwise. For 
k=l 
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(1.3.) Theorem 

Let (G.M.~.R,x) be a Dirac basis. 

A 
(i) For each representant G E (G,M,~,R,X), and all w1 ,w2 E R(X) 

= f A A. 
<w1,G ><w2 ,G >d~ 

(l (l ex 
(Plancherel) 

M 

There exists an isometry V : X ~ L') (M)'ll) with the properties: 
. .. 

(ii) For each representant t E (G,M,ll.R,X)' and each w E R(X) the function 

""" (ex ~ <w,G » € Vw . . ' ex 
A 

(So the definition of V does not depend on the choice of G). 

(iii) The operator VR is a bounded Carleman operator. 

Proof 

Part (i) follows from the observations above this theorem. To prove part 

A 
(ii), let G E (G,M.ll,R,X). As we have seen, there exists an isometry 

A 
V : X + L2 (M,1l) such that for all w E R(X) the function ex ~ <W,G> is 

a representant of Vw. For each G E (G,M,ll,R,X), there exists a null 

""" '" A set N such that G = G for all (l E M \ N. It follows that 
ex ex 

(ex ~ <w,G » E Vw, w E R(X). , ex 
A 

Let G E (G,M,ll,R,X), and let (ek)kEIN be an orthonormal basis in X. 

Then for all a E M 
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co 
\' I\. 2 
L. 1 <Re • G > I = 

k=1 k a. 

00 

L 1 (VRek)I\.(a.) 12 
k=1 

Putk. a. I~ L (VRek)I\.(a.)e
k 

. Then k. induces VR as a Carleman operator. O 

k=1 

The reverse of the previous theorem is also valid. So there exists a 

one-to-one correspondence between Dirac bases (G.M,~,R,X) and isometries 

V : X ~ L2(M,~) such that VR is a Carleman operator. 

(1.4) Theorem 

Let V denote an isometry from X into L2(M,~). Suppose the operator VR is 

Carleman. Then there exists a Di.rac basis (G,M,ll,R,X) such that for each 
I\. 
G E (G,M,ll,R,x) and all w E R(X) 

Proof 

I\. 
(a. ~ <w,G » E Vw • 

a. 

I\. 
Let (ek)kEIN denote an orthonormal basis in X, and let (VR ek) denote 

a representant of the class VR e
k 

E L2 (M,ll), k E IN. By Lemma (0.2) there 
I\. I\. 

exists a null set N such that for all a. E M ~ N 

00 

I I(VR ek)I\.(a.)12 < 00 

k=1 

I\. 
Now define G -1 M -)- R (X) by 
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A 
if (lEN 

G 
(l 

= L (VR ek)A«(l) 
k:=1 

Let w E R(X). Then 

A 
<w,G > (l = 

A A 
Hence (l ~ <w,G > 

(l 
is measurable and «(l ~ <w,G » E Vw. It follows that . (l 

A 
G is weakly measurable. Let w

1
,w2 E R(X). Then we have 

r 
:= j 1\ 1\ 

<w ,G ><w2 ,G >d~ 1 (l (l (l 

A 
If (G,M,~,R,X) denotes the equivalence class of G, then (G,I~,~,R,X) is 

the wanted Dirac basis. 

Remark: 

If the support of the measure ~ consists of atoms only, then any Dirac 

basis (G,M,~,R,X) is an orthogonal basis. 

A 
Let (G,I'1,~,R,X) be a Dirac basis, and let G E (G,M,~,R,X), From the 

Placherel-type result stated in Theorem (1.3) we obtain the weak 

e.x.pano.io 11 
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M 
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w E R(X) 

in the sense that for all v E R(x) 

(w,v) = J <w,G ><v,G >d'J,J 
a. a. a 

M 

A sharper result is valid, if R is a Hilbert-Schmidt operator on X. 

(1.5) Theorem 

A 
Let R > 0 be a Hilbert-Schmidt operator. Let G be a representant of the 

Dirac basis (G,M,ll,R,X). Then for each wE R(X) the function 

is 'J,J-integrable. So we get the strong expansion 

w = f 
r1 

1\ A 
<w,G >G d'J,J 

a a. a 

i.e. in strong X-sense 

r 
Rw = J 

M 

Proof 

1\ 1\ 
<w,G >RG dj.l 

a. a a 

Let V denote the corresponding isometry from X into L~(M,j.l), and let 
.... 
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(ek)kElN denote an orthonormal basis in X. Then 

Thus we obtain 

00 

I 1 (VR e
k
)" (a) 12 

k=1 

00 

f 
r 

liRa 11

2
dlJ = L I 1 (VR ek)"(a)12dlJa a a J 

M k=l M 

Hence 

= 

J 
/\ /\ 

( JI<w,Ga > 12dlJa )i·(f II<w,G >RG ~dlJ ;;! a a a 
M M M 

00 

I IIRe
k 
~2 < 00 • 

k=l 

IIR~ 112 dlJ ) i . 0 
a il 

Another problem concerns the existence of Dirac bases for each (M,ll). 

This problem is solved in the following lemma. 

(1.6) Lemma 

Let R be a positive bounded operator in X, and let M be a measure space 

with a-finite measure lJ. 

-1 Let the densely defined operator R be unbounded. Then there exists an 

isometry V from X into L2 (M,lJ) such that VR is a Carleman operator. 

Let also R-1 be bounded. Then there exists an isometry V from X into 

L2 (M,lJ) such that VR is Carleman iff the support of lJ consists of atoms 

only. 
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Proof 

The proof can be obtained from [Wei], Theorem 7.1 and 7.2. 

Consequently. we obtain 

(1. 7) Corollary 

Let R be a positive bounded operator in X, and M a measure space with 

a-finite measure ~. 

(1) Let R-1 be unbounded. Then there exists a Dirac basis (G,M,~,R,x) 
-1 

with respect to the triple R(X) ~ X ~ R (X). 

(ii) 
-1 

Let R be bounded. Then the only Dirac bases are the orthogonal 

bases (Note that R(X) = X = R-1(X». 

(1ii) Let R be Hilbert-Schmidt. Then any isometry V : X -+ L2 (M,11) gives 

rise to a Dirac basis. 

Cl 

If we put restrictions on the measure space (M,p), a so called canonical 

choice can be made in each equivalence class (G,M.l1.R,X). In the next 

section, we clarify this statement. We prove a measure theoretical 

Sobolev lemma based on Carleman operators. 

2. A measure theoretical Sobolev lemma 

Let R > 0 be a bounded operator, and let M be a metrizable topological 

measure space with regular Borel measure ~. We assume that the pair (M,~) 
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satisfies Federer's conditions, i.e. Theorem (0.3) is valid. Let 

V : X ~ L
2

(M,v) be a densely defined operator with R(X) contained in 

its domain. 

On the pair V,R we impose the following conditions 

(2.1.i) The operator V·R : X ~ L2 (M,v) is a bounded Carleman operator. 

Let the function k : M ~ X induce OR. (Cf. Definition (0.1).) 

(2.1.11) The function 0.1:+ Ilk(a) 112 is integrable on bounded Borel sets. 

Remarks 

-'Condition (2.1.ii) is not redundant. To show ,this, consider the following 

example: Define k : lR ~ L2 (lR,dx) by 

t > 0 

k(t) = 

o t = 0 

Then for t ~ o. Ilk(t) 112 = I tl -1 and hence condition (2.1. 11) is not 

satisfied. 

- In our paper [EG 2] a measure theoretical Sobolev lemma has be~n 

proved based on Hilbert-Schmidt operators. So we started with a positive 

Hilbert-Schmidt operator R. and on V we imposed the condition that V-R 

is Hilbert-Schmidt. In that case the condition (2.1.ii) is always ful-

filled because (a ~ Ilk(a) 112) E L2 (M, 1.1) • 

Now let (vk)kElN denote an orthonormal basis in X. Since VRvk E L2 (M,v) 

there exists a null set N1 such that for all k E IN 
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= lim ~(B(d,r»-1 
r+O J 

B(a,r) 

a E M \ N 

exists. Each function at+ ~k(a) extends to a representant of the class 

VRv
k

, k E IN. 

Since IVRvkl2 E Ll(M,~) for all k E IN, Theorem (0,3) yields a null set 

N2 such that for all k E IN and a ~ M \ N2 

(2.2.1i) -1 = lim ~ (B(a. ,r» 
r+O J 

B(a.,r) 

Finally, since the measurable function a 1+ 11k.(a.) 112 is integrable on bounded 

Borel sets, Lemma (0.2) and Theorem (0.3) yield a null set N3 such that 

for all a E M \ N3 

00 

(2.2.11i) I l<p
k

(a.)j2 = 
k=1 

lim ~(B(a,r»-l 
r-l-O 

Throughout this section N denotes the null set Nl U N2 U N3 , 

We put ~k(a) = 0 for all a. E N, k E IN. 

(2.3) Lemma 

(i) Let a. E M. Define e 
a 

00 

= I cf>k(a)Rvk · Then e 
k=l a. 

(ii) Let a. E M \ N. Then for all r > 0 

E R(X). 
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belongs to R(X). Furthermore 

Proof 

(i) Let 

Let 

(ii) Let 

lim II e - e (r) II = 0 • 
r+O a. a. 1 

a. E N. Then e = O. 
a. 

00 

o.EI~\N. Then L I <Pk 
2 

(a.) I < "", whence 
k=1 

a. E M \ N. The Holder inequality yields 

00 

L 1]J(B(0.,r»-1 
k=1 J 

B(o.,r) 

~ ]J(B(0.,r»-1 f (k~1IVRVkI2)d]J 
B(o.,r) 

e E R(X). 
a. 

Because of condition (2.1.ii) the latter expression is finite, whence 

e (r) E R(X). 
a. 

Let E > O. Take a fixed nO E IN sOo large that 

(*) 

2 
E 

< -
4 

Next take rO > 0 so small that for all r, 0 < r < rO 
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(**) I -1 
~k(a) - ~(B(a.r» 

B(a,r) 

for all n = 1.2 •...• nO• and also 

(***) 

(Cf. 2.2.(i)-(iii) and (*).) 

We estimate as follows 

n o 00 

2 
< £ • 

Ilea - ea(r)ll~ = (I + I )I~k(a) 
k=1 k=n +1 o 

-1 r - 2 
- ~(B(a,r» J VRvkd~1 

By (**) 

and by (*) and (***) 

2 
< £ 

00 

I I~k(a) - ~(B(a.r»-1 f VRv
k 

d~12 ~ 
k=no+l B(a.r) 

B(a,r) 
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Thus we have proved that for all r, 0 < r < rO 

lie - e (r) III < 2e: , a. a. 

(2.4) Theorem (Measure theoretical Sobolev lemma) 

For each w E R(X) a representant Vw can be chosen with the following 

properties 

00 

,...., \' -1 
(i) Vw = L (R w,vk)~k with pointwise convergence, 

k=l 
,..., 

(ii) Let a. E M. Then the linear functional w + Vw(a.) is continuous on 

R(x); its Riesz representant in R(X) equals e , 
a. 

(iii) Let a. E M \ N. Then 

Vw(a.) -1 = lim jl(B(a.,r» 
r+O J (Vw)djl 

B(a.,r) 

(iv) Suppose a. 1+ 111<.(0.) 112 is essentially bounded on M, Then there exists 

a null set No such that the convergence in (i) is uniform on M \ NO' 

Further, 

'" 
IVw(a.)I ~ Kll w l1 1 , 

Proof 

00 

Let w E R(X), and put Ow = \' -1 
L (R w,vk)~k' Then Vw E Ow, because 

k=1 
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(1) 

converges pointwise on M. 

(ii) Trivial, because Vw(a) = (w,e
a
)1' 

(iii) Let a E M \ N. Then by Lemma (2.3) 

~(a) = lim (w,e (r»l = 
r-l-O a 

00 

-1 \' -1 = lim ~(B(a,r» L (R w,v
k
)( 

r-l-O k=1 

E R(X) the series 

r 

J 
B(a,r) 

We show that summation and integration can be interchanged. 

00 

( L 
k=1 

This yields 

Vw(a) 

J 
B(a,r) 

-1 
= lim ~(B(a,r» 

ri-O 

which proves statement (2.4.iii) . 
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(iv) There exists K > 0 and a null set NO C M such that 

00 

L I <l>k«l)12 ;:l; K2 
k=l 

n 
llustration: "The classical Sobolev embedding theorem on IR If 

Let dx = dx1 ... dx
n 

denote the Lebesque measure on IRn. 

Let 6 denote the positive self-adjoint operator 

tJ. = 1 - --<, 
ax'" 

1 

- ---2 
QX

2 

in L2 (IR n ,dX). For each m > 0, put R = 6-m/ 2 . Then R is positive and 
m m 

m n bounded. It is well-known that the Sobolev space H (IR » of order mi 

o 

equals R, (L..., (IR n». We have the classical Sobolev triple Hm(IR n) C L
2

(lln) C H-m(IRn ) 
m " 

(2.5) Corollary (Cf. [Yo], p.174.) 

Let m > n/2 and let 0 :£ t < m - n/2, t E IN U {O}. Then there is a null 

set N (t) such that for each u E Hm(IR) there exists a representant ~ 
n 

with the following property: For all s E (IN U {O})m. lsi ;:l;.t, there 
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y Ilull . s m 

s 
Here 0 lsi = and II- II denotes the 

m 

Proof 

n OSR . Let Wn denote the Fourier transform on L
2

(m ). The operator m ~s a 

bounded Carleman operator induced by the function k 
s,m 

k (x;y) = (IF g )(x - y) , s,m n s,m 

with 

I l SI sn 
( ~) s 1(1 2 + 2)-m/2 = 4 Y1 •... ·Y

n 
+ Y1 + ... Yn 

So for all x E m n , 

o 

3. Canonical Dirac basis with applications to the generalized eigenvalue 

problem 

In Section 1 we have defined a Dirac basis (G,M,~,R,x) as an equivalence 

class of ~-measurable functions from M to R-1 (x). No restrictions have 

been put on the measure space M and on the a-finite measure ~. However, 
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if we restrict to topological measure spaces M and regular Borel measures 

~. which satisfy Federer's conditions, then for certain R > 0, a canonical 

choice can be made in the equivalence class (G.M,~,R,x). Such a choice 

is called a canonical Dirac basis. 

(3.1) Definition 

Let (G,M,~.R.X) be a Dirac basis. A representant GE (G,M.~,R,x) is 

called a canonical Dirac basis if there exists a null set N such that 

for all w E R(X) and all a E M \ N 

-1 
11m ~(B(a,r» 
dO f 

B(a,r) 

...., 
<w,Gf3>d~f3 '" == <w,G > a 

Throughout this section we assume that M is a metrizable.topological 

meaSure space which satisfies Federer's conditions, and ~ a regular 

Borel measure on M such that bounded sets have finite ll-measure. So 

Theorem (0.3) is valid. 

(3.2) Lemma 

Let V : X + L2(M,~) be an isometry with the property that VR is a 

Carleman operator. Assume that the function k: M + ~ which induces VR. 
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satisfies (2.1.i1). Then in the Dirac basis (G,M,~,R,X) associated to 

V (cf. Theorem (1.4» there exists a canonical representant (Ga)aEM' 

Proof 

Following Lemma (2.3) and Theorem (2.4) there are g E R(X), a E M J 

a 

and there is a null set N such that for all w E R(X) 

and 

-1 
= lim ].1(B(a,r» 

r+O 
f <.W,gs>d].1e 

B(a,r) 

For each a EM, we define 0 E R-1
(x) by 

a 

<w,O >, a w E R(X) . 

Then (Oa)aEM E (G,M,].1,R,X) (cf. Theorem (1.4», and (Oa'aEM is canonical 

D1rac basis. 

(3.3) Remarks 

Let (uk)kElN be an orthonormal basis 1n X. For each a EM, we put 

-1 co r 
g (r) = ].l(B,a,r» I (J VRu 

a K=l k 
B(a,r) 

o 
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Then by Lemma (2.3) there exists a null set N such that 

aEM\~. 

We observe that g (r) 
a 

-1 * = ~(B(a,r» RV XB(a,r) where XB(a,r) denotes the 

characteristic function of B(a,r). 

In the next theorem we present a sufficient condition which guarantees 

that a Dirac basis (G.M,~,R.X) contains a canonical representant. 

(3.4) Theorem 

Let (G,M,~,R,X) be a Dirac basis, and e denote a representant. Assume 

that the measurable function a t+ IIR&a 112 is integrable on bounded Borel 

1\ 
sets. Then (G,M,~.R.X) contains a canonical Dirac basis (G ) ~M' a a_ 

Proof 

Theorem (1.3) yields an isometry V from X into L2(M.~) such that VR is 

Carleman, and 

1\ 
(a ~ < VRf,G » E VRf, 

a 
• 

f E X. 

It is clear that the Carleman operator VR is induced by the function 

~ : 1\ 1\ ~ a ~ RG . By assumption fi satisfies (2.1.ii). Hence from Lemma (3.2) 
a 

the assertion follows. 

In a natural way the notion of canonical Dirac basis is associated to 

o 



- 25 -

the generalized eigenvalue problem. We describe this connection here. 

Let ~ be a complex valued measurable function on M, which is bounded 

on Borel sets. In L2(M,~) we define the multiplication operator M~ by 

and 

D(M~) = {h € L2(M,~) I fl~hI2d~ < oo} 

M 

Because of the conditions on ~, XB(ex,r) € D(M~) for all r > 0 and all 

ex € M. We note that M~ is a normal operator. 

(3.5) Lemma 

1\ 
Let (G,M,~,R,X) denote a Dirac basis. Let G be a representant such that 

the function ex [+ IIR~ 112 is integrable on bounded Borel sets. Further let . ex 

V : X + L2(M,~) denote the isometry associated to (G,M,~,R,X). Then 

there exists a canonical representant (Gex)ex€M and a null set N such that 

for all ex € M \ N 

lim 11'0 - ~(B(ex,r»-1{V*xB( )}II = 0 . 
r+O ex ex,r -, 

Let ~ : I~ + a: be a measurable function which is bounded on bounded Borel 

sets. Then there exists a null set N~ such that for all ex € M \ N~ 

lim 
r+O 

II "'" -1 * II ~(ex)Gex - ~(B(ex,r» {V M~XB(ex,r)} -1 = 0 . 
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Proof 

The first statement follows immediately from the previous theorem and 

remark (3.3.i). 

With respect to the second assertion, we are ready if we can prove that 

there exists a null set N2 such that for all a E M \ N2 

Consider the estimation for all a E M with ~(B(a,r» ~ 0, r > O. 

OQ 

J = L 1~(B(a,r»-1( 
k=l B(a,r) 

:;;; ().I(B(a,r» -1 I 
B(a,r) 

Since ~ is bounded on bounded Borel sets, both ~ and 1~12 are ).I-integrable 

on bounded Borel sets. Hence there exists a null set N21 such that for all 

a E M \ N21 

-1 
11m ).I(B(a,r» 
dO J o • 

B(a,r) 
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Further, for all r > 0 and all a 

So there exists a null set N22 such that for all a E M \ N22 

-1 lim lJ(B(a,r» 
r+O 

Now put N2 = N21 U N22 , then (*) follows. 

(3.6) Corollary 

o 

Suppose V is unitary and V*M~V extends to a closable operator in R-1
(x), 

* -1 i.e. RV M~ V is closable in X. Then we have 

Proof 

We have 

and 

~(a)G a. 

-1 * 
lim lJ(B(a,r» RV XB(a,r) = 
r+O 

-1 * 
lim lJ(B(a,r» RV M~XB(a,r) = 
r+O 
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Hence 

a 

An application of the previous results is the following. 

Let T be a self-adjoint operator in X with a simple spectrum. Then there 

exists a finite Borel measure lJ on IR and a unitary operator U : X -+ L2 (IR .lJ) 

* such that uTu equals the self-adjoint operator of multiplication by the 

identity function. It is clear that (IR,lJ) satisfies Federer's conditions. 

Now let R be a bounded positive operator with the property that 

uR : X -+ L2 (IR,lJ) is a Carleman operator satisfying Condition (2.1.1i). 

Then following Lemma (3.2) and (3.5), there exists a canonical. Dirac 
,..., 

basis (fa) aEIR and a null set NT such that for all a E IR \ NT 

and 

lim 
ri-O 

II.... -1 * II Ea - lJ(B(a,r» {U XB(a,r)} -1 = 0 

II '" -1 * II 11m aEa - lJ(B (a,r» {Tu XB(a,r)} -1 = 
ri-O 

o . 

(Here B(a,r) = [a - r, a + rJ.) So for each a E IR\ NT' Ea is a candidate 

(generalized) eigenvector. 

If RTR-1 
is closable in X, then the closure f of T in R-1 (X) exists, and 

for all a E IR \ NT 

,..., ,..., 
f E = aE a a 

So the rather mild condition that RTR-1 is closable in X yields 'genuine' 

eigenvectors .. 
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(3.7) Remarks 

(i) If R is a positive Hilbert-Schmidt operator, then for any unitary 

operator V, the operator VR is Hilbert-Schmidt. It follows that 

for each self-adjoint operator in X with simple spectrum. there 

exists a canonical Dirac basis of candidate (generalized) eigen-

vectors. In our paper [EG 5] we have proved the same result for 

any self.adjoint operator. 

(ii) Along similar lines as in [EG 5] the following can be proved: 

Let T be any self-adjoint operator in X. Let U be its diagonalizing 

unitary operator in the sense of the multiplicity theorem (Cf. 

Theorem 1.2 in [EG 5]), and let R > 0 such that UR is a Carleman 

operator which satisfies (1.2.ii). Then the unitary operator U 

'" gives rise to a canonical Dirac basis (Ga)aEM' Here M denotes the 

disjoint union 

co co co 

M = U U IR j U ( U IR .) 
m=l j=l m, j=l co,J 

where each IR ., m = co, 1,2, ... , 1 ;;:; j < m + 1, is a copy of IR. 
m,J 

To almost each point A in the spectrum a(T) of T with multiplicity 

mA there belong mA candidate (generalized) eigenvectors which are 

elements of {G I a EM}. 
a 
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