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Summary 

In this paper some principal problems in the field of process parameter 

estimation are discussed, especially with respect to the uncertainty in 

the estimation, caused by additive noise and approximated model structures. 

Two basic approaches, i.e. the instrumentation of explicit mathematical 

relations and the model matching technique, are compared theoretically with 

respect to the accuracy as a function of the observation interval. 

In some situations both methods, each requiring matrix inversion, can 

sufficiently be approximated by the use of a non-orthogonal estimating 

scheme without matrix inversion. 

A summarizing discussion is given on additional errors due to the 

approximation oE the ideal estimating procedure. 
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1. Introduction 

In many modern applications of control systems, it is a matter of im

portance to obtain the required information of the process to be controlled, 

in order to aim at an optimal action or correct adaptation of the system. 

In optimal, self-optimizing and adaptive systems the quality of the control 

greatly depends on the amount of knowledge supplied to the controller. 

Besides, computers are increasingly used as control elements for com

plicated processes. 

The growing demands concerning speed and quality of the control and 

consequently the insight in to relevant process parameters justify an 

extension of the computer's task to process input and output data in order 

to obtain a better knowledge of the proces. 

In an effort to determine the characteristics of a process on the basis 

of input and output data, we are searching for a dynamic operator which, 

acting on the input signal, results in the "best" estimate of the output 

signal. 

The numerical values of the estimates of the process parameters can be 

obtained from· a model. The difference e(t) between process and model out

put can be used as a measure for the error in the estimate, cf. fig. 1. 

Minimization of some function or functional of the error yields as model -
parameters ~ estimates which are optimal with respect to the criterion 

chosen. Minimization of a quadratic type of criterion yields the least 

squares estimate. 

Actually fig. 1 does not represent the most general situation. Bayes and 

maximum likelihood estimation may take into account more a priori know

ledge that may be available [IJ. Fig. 1, however, represent by far the 

most important estimation situation. Moreover it is easily shown that the 

maximum likelihood estimation method reduces to the (generalized) least 

squares method if the additive noise is Gaussian. As these least squares 

methods represent a great majority of parameter estimation cases, this 

paper is devoted to a closer investigation of their properties. 

With respect to the instrumentation we distinct two classes [2] 
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1) the explicit method 

the parameters are determined by instrumentation of the 

mathematical relations resulting from the minimization of the 

criterion; 

2) the implicit method 

the parameters are determined by adjustment of a model. 

Many publications deal with different approaches to the problem of parameter 

estimation, some of them discussing a specific process. A comparison of 

properties of the different types of instrumentation hardly ever occurs. 

Therefore, it is desirable to compare explicit and implicit methods for 

the case of models, which are linear in the parameters. 

In principle the estimation of process parameters can be done both on analog 

and digital computers. Especially with respect to the simulation the digital 

machine has the following important advantages: 

1) the memory of the digital machine is well suited for the simulation 

of processes with long response times or processes with delay times; 

2) the errorless repeating generation of identical test and disturbing 

signals is apart from being throughout possible also of great im

portance where the influence of relatively short measuring intervals 

is studied in relation to noise effects. 

With respect to the instrumentation of the estimation mechanism, the digital 

computer has the following practical advantages: 

1) an intermittent measuring and model adjusting procedure can easily 

be instrumented; 

2) fundamental mathematical manipulations such as matrix calculations 

and statistical computations over a certain amount of estimates 

can proceed accurately and be easily programmed. 

Our investigations mainly concentrated toward an instrumentation using digital 

techniques, leading to a way of description of the estimation procedure as given 

below. 

If the data are derived from analog processes, one has to count with 

additional errors caused by imperfect analog-digital conversion, e.g. due 

to quantization errors. In order to avoid this type of errors we only 

consider discrete processes. 
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As the example to be discussed we take a linear system. the impulse 
T . 

response of which is represented by the vector ~ = (h(I).h(2) ••••• h(p» 

cf. [3J • This can be simulated by means of a delay line. cf. fig. 2. 

For the description of the explicit method we define: 

T 
~I = (x(I).x(2) ••••••• x(~).O ••• ,O) vector of inputs 

T 
~2 = (O,x(I), .....•••••••• , -x(t),O, .... ,O) 

T 
7.. = (y(l) .y(2) ....... y(Hp-I» vector of outputs 

vector of additive noise 

vector of model outputs 

parameter vector of the model 

parameter vector of the process 

=(~1'~2''''';) 

o 0 •••••••••• x(.e..) 

This yields: 

~ = 7.. + ~ = X h+n 

w = X S 
e = Z-w 

The length of the observation sequence is ~. 

For the description of the implicit method we will consider the jth ob

servation interval; each interval having a length ~~. 

During this observation 

prior to the adjustment 

time the model vector is kept 

from S. 1 to S. (intermittent -r -J 

constant (= S. I) -r 
adjustment 

(I) 

(2) 

procedure). For the input and output quantities of this interval we write: 

T 
(z { (j-I)~~+I }, ..... , z { j ~ 

~ 
}) z. 

-J 

T { (j-lhil!+1 } , ..... , e { j ~ 
~ 

}) e. = (e 
(3) -J 

ST 
-j-I = (S. 1 (I) ....... 

r 
S. 1 (p» 
r 
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x. = 
J 

This yields: 

z. = X. 
-J J 
w. = x. 
-J J 

x{(j-l) ,Q,*+l} 

x{(j-l) ,Q,¥+2} 

.. 
••••••• x{(j-l) ,Q, -p+2} . 

x{j £,*} .••.•..••....•.•.•.•.•.....•. x{j 
¥ • 

,Q, -p+J} 

h+n. 
- -J 
S. 1 -r 

e. = z.-w. 
-J -J -J 

(4 ) 

In all cases we will suppose that the output noise has zero mean and is 

independent of the input signal, i.e. 

The criterion R to be minimized is 

T R = e <l> e 

The choice of <l> is guided by the available a priori knowledge. 

The explicit method yields an estimate S of h according to 

i = (XT<l>X)-1 XT<l>~ 

under the following conditions: 

(5) 

(6) 

(7) 

a) the numerical value of the impulse response h(i) must be constant 

after a given i; 

b) at the beginning of the observation the model must have reached 

a state identical to that of the process, if no disturbances affect 

the process; i.e. either xCi) = 0 i<O 

or, in the case the test signal constituting a part of a continuous 

sequence, only those measured outputs z appearing after i=p are 

taken into account; 

c) the matrix XT<l>X must not be singular and must have an inverse. 

Under the same conditions, the implicit method yields an estimate S. 
-J 

after j adjustments according to 
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a. = a. - gi 
-J -J - 1 -"" 2 

Va 
-j-I 

R. 
J (8) 

where g. is a factor governing the adjusting speed and Va denotes the gradien 

with re~pect to a. I' -j-I -r 

The least squares estimate is that estimate where no a priori knowledge is 

available, i.e. ~ = I, I being the identity matrix. The input signal X is 

measurable. Its bandwidth is assumed large compared to the bandwidth of the 

process ("white" input signal). 

Both explicit and implicit techniques request matrix inversion, which of 

course is a very expensive operation, but which has the advantage that 

arbitrary stochastic testsignals can be used. 

A variant of the above technique is frequently used and can be instrumented 

in a simple way, because the matrix inversion can be avoided. A restriction 

inherent to this method is the fact that only a "white" input signal should 

be used as test signal. 

For the explicit method the estimate without matrix inversion follows from 

~ 
a (j) = with = - L x(i)y(j+i) (9) 

i=1 lji (O,~) 
xx 

A general insight into the estimates (7) and (9) can be obtained by 

considering that h(i) can be written explicitly in the two following ways 

if a "white" test signal is used. 

a) h(i) = 

b) h(i) 
IjJ (i. £) xy 
• 
lji (O,~) 

xx 

(10-) 

[{hCi+I)+hCi-I)} ~xx(I.~-I)+"""'J 

compensating terms 

The procedure without matrix inversion neglects the compensating terms. 

For the implicit method the estimate without matrix inversion follows from 

R. = a. 1 + g. { £,.. IjJ (O)} -I X~ e. 
""J -J - J xx J -J 

- 6 -

(II) 



The neglection of the compensating terms causeS an additional error. 

This error is called the "truncation error", which means in terms of 

model structure that the model has a shorter impulse response than that 

of the process, which means that condition a) is not fulfilled, If the con

ditions a), b) and c) are fulfilled, the uncertainty in the estimate is only 

caused by the disturbing noise. 

2. Estimation schemes 

a) the explicit method with matrix inversion 

For the explicit method we found 

i ~ (XTX)-I XTz 

Taking the expectation of S yields 

E [i] ~ E [(XTX) -I XT~ ] ~ !!. 

The estimate S is unbiased. 

The noise error is written as follows 

T -I T 
~ (X X) X (~+~)-!!. ~ 

T -I T T -I T 
~ (X X) X (~+~) - ~ ~ (X X) X~ 

(12) 

(13) 

(14) 

From a statistical point of view the standard deviation of ~S is a useful 

measure for the error in the estimate. This can be found by calculating 

the covariance matrix of S 

- r - -TJ T-I cov ! ~ El~'~ ~ (X X) 

For IIwhite" additive noise n 

w (i) being the autocorrelation function of n. This yields for the 
nn 

covariance 

For large ~ and "white" 
_ 1jJ (0) 
a: nn cov " 

~1jJ (0) 
xx 

I 

input noise: 

For the standard deviation 0 in each parameter we find: 
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Listing the properties of the explicit method with matrix inversion, we 

come to the following specifications: 

a) the estimate is 1 in ear : £ = Q ~; 

b) the estimate is unbiased: E[i ]= !:; 
c) lim cov S = 0 I' , 

.e_ 
d) the method is suited for all types of input signals, provided all 

process modes are excited; 

e) the method is suited for all types of additive noise; 

f) the instrumentation requires matrix inversion, matrix-matrix 

multiplication and two matrix-vector multiplications. 

b) the implicit method with matrix inversion 

For the implicit method we found: 

or 

- 5. (X~x.)-I 
2 J J 

Vs R. 
_j_1 J 

T -I T 
S. = S. I + g. (X.X.) X.e. 
-J -J- J J J J-J 

Taking the expectation of S. we find: 
-J 

E[£J= gj h + (I-gj) E[ij_J 

leading to 

ErS.J=h L-J - f 
i= I 

J j 
(I-g. ) 

1 

(20) 

(21 ) 

(22) 

where ~ is the initial model guess (a priori knowledge). Where a priori 

. information is lacking, ~ can be chosen arbitrary e.g. ~ = £. 
Considering first 

S. - E[lJ = (I-g. ) (S. I - E[S. J) + g. (X~X.) -I T (23) X. n. 
-J J -J- -J- J J J J -J 

we derive 

2 2 T -I X~ E~~TJ T -I 
cov S. = (I-g. ) cov S. I T g. (X.X.) X.(X.X.) 

-J J -r J J J J J J J 

(24) 

If n is "white" noise (24) can be rewritten as a vari-linear difference 

equation: 

2 (I-g.) lY::.ov S. - g. (g.-2) cov S. 
J -J J J -J 
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lji (0) 
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X. 
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where 

and 

6cov S. = cov S. - cov S. 1 
-J -J -r 

'l'x. 
J 

T 
X.X. 

J J 

Now we can distinguish the following cases: 

I) gj 

2) g 
j 

= 1 fj 

= constant 

"stochastic approximation", 

"parameter tracking" 

~) g. = 1 fj 
J 

The algorithm is: 

Q Q 1 fJ' (T )-1 T ~. =~. 1 + X.X. X.e. 
-J -r J J J-J 

Considering that in this particular case 

f 
i=1 

j 
7f 

i= 1 

lim 

j-

j 
g. 7f (I-gk) = 1 

1 k=i+ 1 

(I:-gi) = 0 

j 
7f (I-g. ) = 0 

i= a 1 

it follows from equation (22) that 

ErS. J= h t-J -

a ~ 

(26) 

(27) 

(28) 

(29) 

(30) 

This method of model matching yields an unbiased estimate for all j, 

irrespective of the initial model guess! 

Equation (25) becomes 

(j_I)2 6cov S. + (2j-l) cov B. = 
-J -J 

1/!nn(O) 

If the observation interval ~~ is large enough and 
-I 

the following approximation can be used for 'l'X. 

: I 

1/! (0) 
xx 

Equation (26) then becomes 

(j_I)2 6cov B. + (2j-l) 
-J 

1/!nn (0) 
cov s. = """:: .. =--

-J ~ 1/! (0) 
xx 

- 9 -

J 

I 

(31) 

if x. is "white" noise 
J 

(32) 

(33) 



with the 

cov s. 
-J 

I (34) 

where ,Q, is the equivalent observation length used in the explicit method. 

In fig. 3 the diagonal elements of cov S. are plotted as a function of 
-J 

• 0 :Ie 
J" . 

For relatively small ,Q,* the approximation of eq. (32) is not longer 

valid: experimental results show a shift (dotted lines) towards greater 

variances. 

Recapulating the properties of the adjustment procedure with matrix inversion 

and g. = I/j, we come to the following specification: 
J 

a) the adjustment is unbiased for all j; 

b) lim " cov S. = 0 I for,Q, large enough 
-J 

j--

c) the method is suited for all types of input noise; 

d) the method is suited for all types of additive noise; 

e) the method requires for every interval a matrix inversion, a 

matrix-matrix mUltiplication and two matrix-vector multiplications; 

f) the method yields intermediate results. 
g) the method is not suited for parameter tracking. 

ad 2) g. = constant 
J 

The algorithm now is 
T -I 

S. = S. 1 + C (X. X. ) 
-J -J- J J 

substitution of 

J j 
gi 1T (I-gk) = 

1=1 k=i+1 

in eq. (22) and considering 

lim - (I -c)j = 1 

j--

lim (I-C)j 0 

j--

yields 

T 
X. e. 

J -J 

1 - (I-c)j 

0<c<2 

E[~j ] = { I-(I-c)j } E. + (I-c)j ~O 

- 10 -
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For the covariance we find 
2 2 wnn(O) 

cov S. = (I-c) cov S. I + c 
-J -J- .. 

~ 

or written as a difference equation 

2 ( I-c) ~cov B. - c(c-2) cov B. 
-J -J 

= c 
2 

'¥ 
X. 

J 

-I 

W (0) 
nn 

If ~ .. is large enough and if a "white" 

~cov B. - c(c-2) cov B. 

input signal 
2 Wnn (0) 

-J -J 

The asymptotic solution is: 

c W (0) 
lim nn cov B. = I 

-J 2-c ~*w (0) j-- xx 

= c 
g,*w (0) 

xx 

-I 
'l'X. 

J 

is used: 

I 

(39) 

(40) 

(41 ) 

(42) 

This method of model matching yields even after an infinite observation 

interval an estimate ~ with a variance greater than zero. This version 

of the adjustment algorithm is important for the identification of pro

cesses with slowly varying parameters (parameter tracking). 

c) the explicit method without matrix inversion 

As already pointed out above, the algorithm for the explicit estimation 

without matrix inversion is 

il = '""""'-- (43) 

where X is a "white"input signal. 

In eq. (10) it can be seen that in this situation a truncation occurs: 

S = h + ~B + ~B . 
- -trunc ---n01se 

~B . -nOl.se 
= -,:"--"--

~W (O,£) 
xx 

Considering an arbitrary "white" input matrix X, we obtain: 

+ ~B -trunc 

where ~S depends on the matrix X. 
-trunc 

The algorithm (43) yields a biased estimate. 
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Taking 

LIS • liST 
-n -n 

= 

we get in the case of "white" additive noise 

cov S 
-<l 

1jJnn (0) T 
- .,.."..---,,-- X X 

Z- 2 
£ wxx (0,£) 

For large £ we write 
1jJnn(O) 

cov S z ---
-n £1jJ (0) 

xx 

I 

In terms of standard deviation for each parameter 
1jJ (0) 
nn a = 

Recapitulating the properties of the explicit method without matrix 

inversion we find: 

a) the estimate is linear S = Q Z; 
b) the estimate is biased becaus~ ~ XTX = 0/ I 0/ 

£ X X 
however the following holds 

lim E[iJ = h 

~--

(47) 

(48) 

(49) 

(50) 

c) the 
EX E[iJ 

method is 

= ~, where EX denotes the expectation with respect to X. 

only suited for "white" input noise; 

d) the method 1S suited for all types of output noise; 

e) the instrumentation only requires a mUltiplication of a 

(£+P-l)x pmatrix by a £+p-l vector. 

c) the implicit method without matrix inversion 

In equation (20) we can approximate the matrix inversion in the case of 

a "white" input signal: 

(51 ) 

This yields for the algorithm: 

* -1 T S. = S. + g. (£ 1jJ (0» X. e. 
-J -r 1 J xx J -J 

(52) 
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Equation (52) is an interesting result as the total of four operations 

per iteration (matrix inversion, matrix-matrix multiplication and two 

matrix-vector multiplications) is reduced to one single operation 

(matrix-vector product) only. 

Taking the expectation of S. yields 
-J 

ErS.] = g. (R,"'ljJ (0))-1 X:X.h + {I-g. (R,"ljJ (0)-1 X~X.} 
t:'''J J xx J J- J xx J J 

(53) 

The input signal in the jth iteration influences E[!j]: the 

adjustment is biased. For sufficiently large R,'" equation (53) leads to 

ErS.] = g. h + (I-g.) ErS. IJ (54) 
L-J J - J L':"'J-

We can take the expectation of eq. (53) with respect to the input signals 

in all preceding intervals 

ErS.J=h I g. t-J - i=1 1 

j j 
IT (I-g k) +!o IT 

k=i+1 i=1 
(I-g .) 

1 
(55) 

The expression for the covariance is given by 

cov S. = E[s.-Er·]) (s.-E~.]/J = 
-J -J -J -J -J 

= {I-g. (R,i<ljJ (0))-1 X~X.} cov S. I{I-g. 
J xx J J -J- J 

(56) 

In order to get some insight, this expression is instrumented. The results 

are briefly summarized as follows: 

l)g.=I/j 
J 

In fig. 4 cov S. is plotted against jR,~ 
-J 

For large jR,'" this diagram shows that cov S. has reached approxi-
-J 

mately the same value as in the adjustment with matrix inversion. 

Only for small jR,~ a deviation from the line 

cov S. 
-J 

= --
j R," 

can be 0 bserved. 

ljJnn (0) 
....:::.::...-- I 

2) g. = constant 
J 

For relatively large R, '" (56) can be approximated by 

ljJ (0) 
cov S.~ (l-c)2 cov S + C nn 

-J -j-I. 
R, ljJ (0) 

xx 

- 13 -
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yielding as asymptotic solution the same expression as in the case 

of adjustment with matrix 

c 
cov L =-

2-c 

t/! (0) nn 

~ of< t/! (0) 
xx 

inversion: 

3. Some remarks on other types of errors in a practical situation. 

(58) 

Considering the noise error we assumed that certain conditions were ful

filled. This, however, will mostly not be the case. It is therefore useful 

to indicate some additional errors that occur when these conditions are 

not satisfied. 

Truncation error. 

The delay line in our mathematical model will often be too small, which 

then causes the phenomenon known as truncation error. The existence of 

this kind of error may be considered in an analogous way as was done with 

the noise error, namely as if it was caused by additive correlated noise 

added to the output of the process, cf. fig. 5. 

The explicit expression of the truncation error vector ~S is 

• T -) T T -1 T 
~8 = 8 - h =, (U U) U (rr) = (U U) U r (59) 

U is a partial matrix of X satisfying 

• ~ =.r. 
(60) 

The truncation error does not affect the unbiasedness of the estimation 

when the input signal is "white" noise, as appears from: 

(UT)~ UTl: UT T U.::= = .r.+U.:: 

E ~TU} E[i} E ~T.r.} E ~T::]= 

= E~TU}t E~T::] 

UTr appears to be: 

- 14 -

(61) 

(62) 



k-p 
I { 

v=l 

k--p 
I { 

v=1 
T U r = 

k--p 
L { 

V'" I 

h 
p+v 

h p+v 

h p+v 

~--p-v+1 

L X.x. } 
i=1 1 1+p+v-1 

~--p-v+2 

L x.x. 2 } 
i= I 1 1+p+V-

~-v 

L 
i=1 

x.x. 
l. 1+V 

} 

If the input is "white" noise it is easy to see that 

Hence, also ~ + 0 for ~+ 00. 

(63) 

In contrast with the noise error, the truncation error is independent 

of the power of the test signal. 

Even in processes with "infinite memory" the truncation error need not 

cause predominantly bad estimates, because always in an actual estimation 

procedure only a finite number (~+p-I) of values of the impulse response 

is calculated with. It is even possible to estimate without errors by 

joining an integrator to the end of the model's delay line, which is 

assumed to be sufficiently large. 

In some publications, cf. [3J, the integrator is placed in front of the 

delay line but this implies that the estimates will have to be provided 

with a correction factor afterwards. 

In the case of estimating a process of "infinite memory" without the 

use of an integrator the estimates, through unbiased, will even for 

~+ 00 remain uncertain with a finite variance. This is caused by the fact 

that the assumptions required for ergodicity do not match. The variance 

is equal in both cases of instrumentation with or without matrix inversion. 

It is reasuring that in a practical situation the truncation errors in the 

several estimated parameters for large ~ are as good as equal in value and 

polarity, since the components in the error vector ~ are strongly 

correlated. Hence we may conclude that in a single estimation we indeed 

get a rather good idea of the shape of the impulse response, although it 

is uncertain to what extent every estimated value deviates from the 
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corresponding value of the impulse response. So every estimated value 

can be corrected, if a priori knowledge about at least one value of the 

impulse response is available, e.g. when the amplification factor is 

known. 

Observation error. 

Observation errors appear if the assumption b) turns out to be unjusti

fied. We can avoid this kind of errors in our estimates by neglecting 

the first and last p measured output values. However, when it is only 

possible to observe for a very short time, all output values have to be 

used in the calculations and the errors have to be weighted in a proper 

way, cf. [ 5 ] 

4. Conclusions. 

The described explicit and implicit methods appear to yield equal results 

with respect to the uncertainty in the estimate caused by additive noise. 

Likewise, this uncertainty (noise.error) appears to be independent of 

instrumentation with or without matrix inversion. This offers the experimenter 

considerable freedom to select a method satisfying his needs and being as 

simple as possible. 

Fundamentally, the instrumentation without matrix inversion causes some 

uncertainty due to truncation errors. In a practical situation, however, 

for sufficiently large ~ the truncation error does not predominantly 

influence the total uncertainty in the estimate. Besides, such an in

fluence can often be recognized easily. 
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List of symbols. 

E 

I 

Q 

R 

R. 
J 

U 

X 

X. 
J 

a 

c 

e 

i 

n 

n. 
-J 
P 

r 

v 

w 

x. 
-1 

x 
Xj 

expectation 

identity matrix 

matrix 

criterion matrix 

criterion matrix in the .th 
iteration J 

partial matrix of X 

input matrix 

input matrix 

integer 

constant 

error vector 

in 

error vector in 
. . h .th ga1n 1n t e J 

the .th 
iteration J 

h 
. th . . t e J 1terat1on 

iteration 

parameter vector of the process 

parameter vector of the truncated process 

index 

index 

total length of the observation sequence 

interval length 

additive noise 

dd " .. h . th . . a 1t~ve no~se 1n t e J 1terat10n 

dimension of process and model parameter vector 

output of the remnant process 

index 

model output signal 

input signal at 
.th 
1 tap of the delay line 

output signal 

output signal in the j th iteration 

z by noise corrupted output signal 

z. corrupted output signal in the jth iteration 
-J 
~ weighting matrix containing a priori knowledge 

~X. autocorrelation matrix of the input signal in the jth iteration 
• J 
~X. approximated autocorrelation matrix of the inputsignal in the 

J j th iteration 
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S parameter vector of the model 

S. parameter vector of the model after the jth iteration 
-J 
~ noise error 

X output of the truncated process 

o standard deviation 

W (i) autocorrelation function 
xx 

W (i) cross-correlation function 
~ 

) (i.~) approximated autocorrelation function 
xx 

~~(i.t) approximated cross-correlation function 

a difference operator 

~ gradient operator 

~ continued product 

E s= 
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