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Preface 

Acoustics was originally the study of small pressure waves in air which can be 
detected by the human ear: sound. The scope of acoustics has been extended to 
higher and lower frequencies: ultrasound and infrasound. Structural vibrations are 
now often included in acoustics. Also the perception of sound is an area of acous
tical research. In our present introduction we will limit ourselves to the original 
definition and to the propagation in fluids like air and water. In such a case acous
tics is a part of fluid dynamics. 

A major problem of fluid dynamics is that the equations of motion are non-linear. 
This implies that an exact general solution of these equations is not available. 
Acoustics is a first order approximation in which non-linear effects are neglected. 
In classical acoustics the generation of sound is considered to be a boundary con
dition problem. The sound generated by a loudspeaker or any unsteady movement 
of a solid boundary are examples of the sound generation mechanism in classical 
acoustics. In the present course we will also include some aero-acoustic processes 
of sound generation: heat transfer and turbulence. Turbulence is a chaotic motion 
dominated by non-linear convective forces. An accurate detenninistic description 
of turbulent flows is not available. The key of the famous Lighthill theory of sound 
generation by turbulence is the use of an integral equation which is much more 
suitable to introducing approximations than a differential equation. We therefore 
discuss in some detail the use of Green's functions to derive integral equations. 

Next to Lighthill's approach which leads to order of magnitude estimate of sound 
production by complex flows we also describe briefly the theory of vortex sound 
which can be used when a simple deterministic description is available for a flow 
at low Mach numbers (for velocities small compared to the speed of sound). 

In contrast to most textbooks we have put more emphasis on duct acoustics, both 
in relation to its generation by pipe flows, and with respect to more advanced the
ory on modal expansions and approximation methods. This is particular choice is 
motivated by industrial applications like aircraft engines and gas transport systems. 

This course is inspired by the book of Dowling and Ffowcs Williams: "Sound and 
Sources of Sound" [42]. We also used the lecture notes of the course on aero- and 



2 Contents 

hydroacoustics given by Crighton, Dowling, Ffowcs Williams, Heckl and Lepping
ton [34]. 

Among the literature on acoustics the book of Pierce [158] is an excellent intro
duction available for a low price from the Acoustical Society of America. 

In the preparation of the lecture notes we consulted various books which cover 
different aspects of the problem [11,13,15,29,39,60,77,83,89,102,111,131, 
145,152,154,195,205]. 
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1 Some fluid dynamics 

1.1 Conservation laws and constitutive equations 

In fluid dynamics we consider gas and liquids as a continuum: we assume that 
we can define a "fluid particle" which is large compared to molecular scales but 
small compared to the other length scales in our problem. We can describe the fluid 
motion by using the laws of mass, momentum and energy conservation applied to 
an elementary fluid particle. The integral form of the equations of conservation 
are given in Appendix A. Applying these laws to an infinitesimal volume element 
yields the equations in differential form, which assumes that the fluid properties 
are continuous and that derivatives exist. In some cases we will therefore use the 
more general integral laws. A conservation law in differential form may be written 
as the time derivative of the density of a property plus the divergence of the flux 
of this property being equal to the source per unit volume of this property in the 
particle [11, 152, 158, 195,205]. 

In differential form I we have for the mass conservation: 

op - + V·(pv) =m at (1.1) 

or 
op 0 
at + OXj (pVj) = m 

where p is the fluid density and v = (vJ is the flow velocity at position x = (Xi) 
and time t. In principle as we consider a non-relativistic situation mass is conserved 
hence in general m = O. The mass source term m can, however, be used as a 
representation for a complex process which we do not want to describe in detail. 
We will see, for example, that the action of a pulsating sphere or of heat injection is 
well approximated by such a mass source term. There is, on the other hand, some 
arbitrariness in the definition of m, which we will specify later when we discuss 
the conservation of momentum and energy. 

1 For convenience later we present the basic conservation laws here both in the Gibbs notation and 
the Cartesian tensor notation. In the latter, the summation over the values 1,2,3 is understood with 
respect to all suffixes which appear twice in a given term. See also the appendix of [11]. 



4 1 Some fluid dynamics 

The momentum conservation law is2: 

or 

a 
at (pv) + V·(P + pvv) f 

a a 
at (PVi) + ax. (Pji + PVjVj) = Ii 

J 

(1.2) 

where f = (fJ is an external force density (like the gravitational force) and P :=: 

(Pij ) is minus the fluid stress tensor. In some cases one can represent the effect of 
an object like a propel1er by a force density f acting on the fluid as a source of 
momentum. 

The fluid stress tensor is related to the pressure p and the viscous stress tensor 
T = (1:ij) by the relationship: 

P=pl-T (1.3) 

or 

where 1 = (Dij) is the unit tensor, and DiJ the Kronecker3 delta. In most of the 
applications which we consider in the sequel, we can neglect the viscous stresses. 
When this is not the case one usually assumes a relationship between T and the 
deformation rate of the fluid element, expressed in the rate-of-strain tensor V v + 
(VV)T. It should be noted that a characteristic of a fluid is that it opposes a rate of 
deformation, rather than the deformation itself, as in the case of a solid. When this 
relation is linear the fluid is described as Newtonian and the resulting momentum 
conservation equation is referred to as the Navier-Stokes equation. Even with such 
a drastic simplification, for compressible fluids as we consider in acoustics, the 
equations are quite complicated. A considerable simplification is obtained when we 
ac:;sume Stokes' hypothesis, that the fluid is in local thermodynamic eqUilibrium. 
so that the pressure p and the thermodynamic pressure are equivalent. In such a 
case we have: 

or 

2The dyadic product oftwo vectors v and w is the tensor vw = (VjWj). 

38ij = 1 if i = j, 8ij 0 if i # j. 
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1.1 Conservation laws and constitutive equations 5 

where 11 is the dynamic viscosity. Equation (1.4) is what we call a constitutive 
equation. The viscosity 11 is determined experimentally and depends in general 
on the temperature T and the pressure p. At high frequencies the assumption of 
thermodynamic equilibrium may partially fail resulting in a dissipation related to 
volume changes V· v which is described with a volume viscosity parameter not 
simply related to 11 [215, 158]. These effects are also significant in the propagation 
of sound in dusty gases or in air over large distances [205]. 

In general (m = 0) the energy conservation law is given by ([11, 152,205]): 

:tp(e + ~V2) + V. (pv(e + ~V2») = 
(1.5) 

- V·q - V·(pv) + V·(r·v) + I·v 
or 

where v = I v I, e is the internal energy per unit of mass4 and q is the heat flux due 
to heat conduction. 

A commonly used linear constitutive equation for q is Fourier's law: 

q = -KVT, (1.6) 

where K is the heat conductivity which depends on the pressure p and temperature 
T. Using the fundamental law of thermodynamics for a reversible process: 

Tds = de + pd(p-l) (1.7) 

and the equation for mechanical energy, obtained by taking the inner product of 
the momentum conservation law (equation 1.2) with v, we obtain the equation for 
the entropy5 

or 

PT(~~ +v.vs) = -V·q+r:Vv (1.8) 

(
OS OS) oqj OVj 

pT -+Vj- =--+rjj-
ot OXj OXj OXi 

4We call this the specific internal energy, and simply the energy when there is no ambiguity. 

5T : Vv = V' (T' v) - V· (V, T) since T is symmetric. Note the convention (Vv)jj= a~i Vj. 
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6 1 Some fluid dynamics 

where s is the specific entropy or entropy per unit of mass. When heat conduction 
\1. q and viscous dissipation T: \1 v may be neglected, the flow is isentropic6

• This 
means that the entropy s of a fluid particle remains constant: 

as 
- + v·\1s = o. at (1.9) 

Except for regions near walls this approximation will appear to be quite reasonable 
for most of the applications considered. If initially the entropy is equal to a constant 
value So throughout the fluid, it retains this value, and we have simply a flow of 
uniform and constant entropy s = so. Note that some authors define this type of 
flow isentropic. 

Equations (1.1-1.9) still contain more unknowns than equations. As closure con
dition we introduce an additional constitutive equation, for example e = e(p, s), 
which implies with equation (1.7): 

P p2 (ae) 
ap s 

(1. lOa) 

T = (ae) 
as p 

(1. lOb) 

In many cases we will specify an equation of state p = p(p, s) rather than e = 
e(p, s). In differential form this becomes: 

(1.11) 

where 

c2 = (ap
) ap s 

(1.12) 

is the square of the isentropic speed of sound c. While equation (1.12) is a definition 
of the thermodynamic variable c(p, s), we will see that c indeed is a measure for 
the speed of sound. When the same equation of state c(p, s) is valid for the entire 
flow we say that the fluid is homogeneous. When the density depends only on 
the pressure we call the fluid barotropic. When the fluid is homogeneous and the 
entropy uniform (ds = 0) we call the flow homentropic. 

6When heat transfer is negligible. the flow is adiabatic. It is isentropic when it is adiabatic AND 

reversible. 
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1.2 Approximations and alternative forms of the conservation laws for ideal fluids 7 

In the following chapters we will use the heat capacity at constant volume C v 
which is defined for a reversible process by 

(1.13) 

For an ideal gas the energy e is a function of the temperature only 

e(T) = loT Cv dT. (1.14) 

For an ideal gas with constant thermal properties we will often use the simplified 
relation 

e = CvT. (1.15) 

We call this a perfect gas. Expressions for the pressure p and the speed of sound 
c will be given in section 2.3. A justification for some of the simplifications intro
duced will be given in chapter 2 where we will consider the order of magnitude 
of various effects and derive the wave equation. Before going further we consider 
some useful approximations and some different notations for the basic equations 
given above. 

1.2 Approximations and alternative forms of the 
conservation laws for ideal fluids 

Using the definition of convective (or total) derivative7 DIDt : 

D a 
-= +v·V 
Dt at (1.16) 

we can write the mass conservation law (1.1) in the absence of a source (m = 0) 
in the form: 

1 Dp 
- = -V·v 
pDt 

(1.17) 

which clearly shows that the divergence of the velocity V· v is a measure for the 
relative change in density of a fluid particle. Indeed, the divergence corresponds to 

7The total derivative DflDt of a function! = !(Xj, t) and velocity field Vi denotes just the 
ordinary time derivative dfldt of !(Xj(t), t) for a path Xi Xj(t) defined by Xi= Vj, i.e. moving 
with a particle along Xj Xi (t). 
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8 1 Some fluid dynamics 

the dilatation rate8 of the fluid particle which vanishes when the density is constant. 
Hence, if we can neglect density changes, the mass conservation law reduces to: 

V·v O. (1.18) 

This is the continuity equation for incompressible fluids. The mass conservation 
law (1.17) simply expresses the fact that a fluid particle has a constant mass. 

By using the mass conservation law (1.1) without mass source (m = 0) we can 
write9 the momentum conservation law for a frictionless fluid (V. T negligible) as: 

Dv 
PDt -\lp + f· (1.19) 

This is Euler's equation, which corresponds to the second law of Newton (force 
= mass x acceleration) applied to a specific fluid element with a constant mass. 
The mass remains constant because we consider a specific material element. In the 
absence of friction there are no tangential stresses acting on the surface of the fluid 
particle. The motion is induced by the normal stresses (pressure force) - V P and 
the bulk forces f. The corresponding energy equation for a gas is 

Ds 

Dt 
o (1.9) 

which states that the entropy of a particle remains constant. This is a consequence 
of the fact that heat conduction is negligible in a frictionless gas flow. The heat and 
momentum transfer are governed by the same processes of molecular collisions. 
The equation of state commonly used in an isentropic flow is 

Dp 2Dp 
=c-

Dt Dt 
(1.20) 

where c c(p, s), a function of p and s, is measured or derived theoretically. Note 
that in this equation 

(1.12) 

is not necessarily a constant. 

The presence of a non-vanishing mass production m in the continuity equation 
(1.1) implies an additional term -mv in the right hand side of (1.19) which should 

8Dilatation rate = rate of relative volume change. 
9(pv)t + \7. (pvv) PtV + PVt + \7. (pv)v + p(v ·\7)v = CPt + \7. (pv)]v + p[Vt + (v ·\7)v]. 
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1.2 Approximations and alternative forms of the conservation laws for ideal fluids 9 

not be forgotten if we start a derivation from (1.19) instead of the original mo
mentum conservation law (1.2). With external force and mass production equation 
(1.19) becomes: 

Dv 
p Dt = -V P + f - mv. (1.21) 

This corresponds to the hypothesis that the injected mass has no velocity in the 
laboratory frame of reference. The amount of momentum m v has to be provided 
to this mass by the surrounding fluid in order to accelerate the injected mass up to 
the local velocity v. 

Under reasonably general conditions [130, p.53] the velocity v, like any vector 
field, can be split into an irrotational part and a solenoidal part: 

v = Vtp + Vx\ll with V- \II = 0, (1.22) 
or 

a'll-with __ J = 0, 
aXj 

where cp is a scalar velocity potential, \II = ('IIi) a vectorial velocity potential or 
vector stream function, and Eijk the permutation symbol 10. A flow described by 
the scalar potential only (v = V cp) is called a potential flow. This is an important 
concept because the acoustic aspects of the flow are linked to cpo This is seen from 
the fact that V -(V x \II) = ° so that the compressibility of the flow is described by 
the scalar potential cpo We have from (1.17): 

1 Dp 2 
--=-Vtp. 
pDt 

(1.23) 

From this it is obvious that the flow related to the acoustic field is an irrotational 
flow. A useful definition of the acoustic field is therefore: the unsteady component 
of the irrotational flow field Vcp. The vector stream function describes the vorticity 
w = V x v in the flow, because V x V cp = 0. Hence we have 11 : 

(1.24) 

It can be shown that the vorticity w corresponds to twice the angular velocity n of 
a fluid particle. When p = p (p) is a function of p only, like in a homentropic flow 

1
+1 if ijk = 123,231. or 312, 

10 Eijk -1 if ijk = 321,132. or 213. 

o if any two indices are alike 
11 For any vector field A: Vx(VxA) = V(V-A) - V 2A. 
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10 1 Some fluid dynamics 

(unifonn constant entropy ds = 0), and in the absence of tangential forces due 
to the viscosity (T = 0), we can eliminate the pressure and density from Euler's 
equation by taking the curl of this equation, to obtain 

a~ 1 - + v·V~ = ~·Vv - ~V·v + -Vx/. at p 
(1.25) 

We see that vorticity of the particle is changed either by stretching12 or by a 
non-conservative external force field. In a two-dimensional incompressible flow 
(V· v = 0), with velocity v = (vx , vy, 0), the vorticity ~ = (0, 0, wz) is not af
fected by stretching because there is no flow component in the direction of ~. 
Apart from the source tenn V x /, the momentum conservation law reduces to a 
purely kinematic law. Hence we can say that \II (and~) is linked to the kinematic 
aspects of the flow. 

Using the definition of the specific enthalpy i: 

. P 
1 =e+

p 
(1.26) 

and the fundamental law of thennodynamics (1.7) we find for a homentropic flow 
(homogeneous fluid with ds = 0): 

di = dp 
p 

Hence we can write Euler's equation (1.19) as: 

Dv 1 
-=-Vi+-/. 
Dt p 

We define the total specific enthalpy B (Bernoulli constant) of the flow by: 

B = i + ~V2. 

(1.27) 

(1.28) 

(1.29) 

The total enthalpy B corresponds to the enthalpy which is reached in a hypothet
ical fully reversible process when the fluid particle is decelerated down to a zero 
velocity (reservoir state). Using the vector identity13: 

(v·V)v = ~Vv2 + ~xv 
12The stretching of an incompressible particle of fluid implies by conservation of angular momen

tum an increase of rotation, because the particle's lateral dimension is reduced. In a viscous flow 
tangential forces due to the viscous stress do change the fluid particle angular momentum, because 
they exert a torque on the fluid particle. 

13 [(v' V)v]' = " . v . ~ v' I LJ J iJXj I 
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1.2 Approximations and alternative forms of the conservation laws for ideal fluids 11 

we can write Euler's equation (1.19) in Crocco's form: 

av 
at 

1 
-\1B-wxv+-1 

p 
(1.30) 

which will be used when we consider the sound production by vorticity. The accel
eration wxv corresponds to the acceleration of Coriolis experienced by an observer 
moving with the particle which is rotating at an angular velocity of 2 = ~w. 

When the flow is irrotational in the absence of external force (I = 0), with v = \1 ifJ 
and hence w \1xVifJ = 0, we can rewrite (1.28) into: 

oVifJ 
+VB = 0, at 

which may be integrated to Bernoulli's equation: 

or 

OifJ + B 
ot = get), 

oifJ 1 2 f dp - + -v + - = get) at 2 p 

(1.31a) 

(1.31b) 

where get) is a function determined by boundary conditions. As only the gradient 
of ifJ is important (v = VifJ) we can, without loss of generality, absorb get) into ifJ 
and use get) O. In acoustics the Bernoulli equation will appear to be very usefu1. 
We will see in section 2.7 that for a homentropic flow we can write the energy 
conservation law (1.9) in the form: 

a at (pB - p) + \1. (pvB) = I·v, (1.32a) 

or 

:1 (p(e + 4V2») + V· (pvB) = I· v . (1.32b) 

Exercises 

a) Derive Euler's equation (1.19) from the conservation laws (1.1) and (1.2). 

b) Derive the entropy conservation law (1.9) from the energy conservation law (1.5) 
and the second law of thermodynamics (1.7). 

c) Derive Bernoulli's equation (J.31b) from Crocco's equation (1.30). 
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12 1 Some fluid dynamics 

d) Is the trace ~ Pij of the stress tensor Pij always equal to the thermodynamic pressure 
p = (lJe/op-1)s? 

e) Consider, as a model for a water pistol, a piston pushing with a constant acceleration 
a water from a tube 1 with surface area Al and length i1 through a tube 2 of surface 
A2 and length £2- Calculate the force necessary to move the piston if the water 
compressibility can be neglected and the water forms a free jet at the exit of tube 
2. Neglect the non-uniformity of the flow in the transition region between the two 
tubes. What is the ratio of the pressure drop over the two tubes at t = O? 
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2 Wave equation, speed of sound, and acoustic 
energy 

2.1 Order of magnitude estimates 

Starting from the conservation laws and the constitutive equations given in sec
tion 1.2 we will obtain after linearization a wave equation in the next section. This 
implies that we can justify the approximation introduced in section 1.2, (homen
tropic flow), and that we can show that in general, sound is a small perturbation 
of a steady state, so that second order effects can be neglected. We therefore con
sider here some order of magnitude estimates of the various phenomena involved 
in sound propagation. 

We have defined sound as a pressure perturbation pi which propagates as a wave 
and which is detectable by the human ear. We limit ourselves to air and water. In 
dry air at 20°C the speed of sound cis 344 m/s, while in water a typical value 
of 1500 m/s is found. In section 2.3 we will discuss the dependence of the speed 
of sound on various parameters (such as temperature, etc.). For harmonic pressure 
fluctuations, the typical range of frequency of the human ear is: 

20Hz:::: f:::: 20kHz. (2.1) 

The maximum sensitivity of the ear is around 3 kHz, (which corresponds to a 
policeman's whistle!). Sound involves a large range of power levels: 

- when whispering we produce about 10-10 Watts, 
- when shouting we produce about 10-5 Watts, 
- a jet airplane at take off produces about 105 Watts. 

In view of this large range of power levels and because our ear has roughly a 
logarithmic sensitivity we commonly use the decibel scale to measure sound levels. 
The Sound Power Level (PWL) is given in decibel (dB) by: 

(2.2) 



14 2 Wave equation, speed of sound, and acoustic energy 

The Sound Pressure Level (SPL) is given by: 

(2.3) 

where p~s is the root mean square of the acoustic pressure fluctuations pi, and 
where Pref = 2 . 10-5 Pa in air and Pref = 10-6 Pa in other media. The sound 
intensity I is defined as the energy flux (power per surface area) corresponding to 
sound propagation. The Intensity Level (IL) is given by: 

(2.4) 

The reference pressure level in air Pref = 2 . 10-5 Pa corresponds to the threshold 
of hearing at 1 kHz for a typical human ear. The reference intensity level I ref = 
10-12 W 1m2 is related to this P;ef = 2 . 10-5 Pa in air by the relationship valid for 
progressive plane waves: 

(2.5) 

where POCo = 4 . 102 kg/m2s for air under atmospheric conditions. Equation (2.5) 
will be derived later. 

The threshold of pain] (140 dB) corresponds in air to pressure fluctuations of 
P;ms = 200 Pa. The corresponding relative density fluctuations pi I Po are given 
at atmospheric pressure Po = 105 Pa by: 

p' I Po = pi Iypo :S 10-3 (2.6) 

where y = C piC v is the ratio of specific heats at constant pressure and volume 
respectively. In general, by defining the speed of sound following equation 1. 12, 
the relative density fluctuations are given by: 

pi 

Po 
1 I 1 (ap ) I -P -- - P 

Poc~ - Po ap s • 
(2.7) 

The factor 1 I Poc5 is the adiabatic bulk compressibility modulus of the medium. 
Since for water Po = 103 kg/m3 and Co = 1.5· 103 m/s we see that Poc5 ::::::: 
2.2· 109 Pa, so that a compression wave of 10 bar corresponds to relative density 
fluctuations of order 10-3 in water. Linear theory will therefore apply to such com
pression waves. When large expansion waves are created in water the pressure can 

ITbe SPL which we can only endure for a very short period of time without the risk of permanent 
ear damage. 
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2.1 Order of magnitude estimates 15 

decrease below the saturation pressure of the liquid and cavitation bubbles may ap
pear, which results in strongly non-linear behaviour. On the other hand, however, 
since the formation of bubbles in pure water is a slow process, strong expansion 
waves (negative pressures of the order of 1 <P bar!) can be sustained in water before 
cavitation appears. 

For acoustic waves in a stagnant medium, a progressive plane wave involves dis
placement of fluid particles with a velocity u' which is given by (as we will see in 
equations 2.20a, 2.20b): 

, 'I u = p PoCo. (2.8) 

The factor POCo is called the characteristic impedance of the fluid. By dividing 
(2.8) by Co we see by using (1.12) in the form pi = C5pI that the acoustic Mach 
number u' I Co is a measure for the relative density variation p'l Po. In the absence 
of mean flow (uo = 0) this implies that a convective term such as p (v • V) v in the 
momentum conservation (1.19) is of second order and can be neglected in a linear 
approximation. 

The amplitude ofthe fluid particle displacement 0 corresponding to harmonic wave 
propagation at a circular frequency w 2n f is given by: 

o = lu'l/w. 

Hence, for f = 1 kHz we have in air: 

SPL= 140 dB, 
SPL= o dB, 

P~s = 2 . 102 Pa, 
P;ms = 2· 10-5 Pa, 

u' = 5.10-1 mis, 
u' = 5 . 10-8 mis, 

(2.9) 

0=8.10-5 m, 
o = 1 . 10-11 m. 

In order to justify a linearization of the equations of motion, the acoustic displace
ment 0 should be small compared to the characteristic length scale L in the ge
ometry considered. In other words, the acoustical Strouhal number Sr a = L 18 
should be large. In particular, if 0 is larger than the radius of curvature R of the 
wall at edges the flow will separate from the wall resulting into vortex shedding. 
So a small acoustical Strouhal number Rio implies that non-linear effects due to 
vortex shedding are important. This is a strongly non-linear effect which becomes 
important with decreasing frequency, because 0 increases when w decreases. 

We see from the data given above that the particle displacement 8 can be signif
icantly smaller than the molecular mean free path i which in air at atmospheric 
pressure is about 5 . 10-8 m. It should be noted that a continuum hypothesis as 
assumed in chapter 1 does apply to sound even at such low amplitudes because 8 
is not the relevant length scale. The continuum hypothesis is valid if we can define 
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16 2 Wave equation, speed of sound, and acoustic energy 

an air particle which is small compared to the dimensions of our measuring device 
(eardrum, diameter D 5 mm) or to the wave length A, but large compared to the 
mean free path e = 5 . 10-8 m. It is obvious that we can satisfy this condition since 
for j = 20 kHz the wave length: 

A = coif (2.10) 

is still large (A ::: 1.7 cm) compared to e. In terms of our ear drum we can say 
that although a displacement of 8 = lO-II m of an individual molecule cannot be 
measured, the same displacement averaged over a large amount of molecules at the 
ear drum can be heard as sound. 

It appears that for harmonic signals of frequency j = I kHz the threshold of hear
ing P;"f = 2· 10-5 Pa corresponds to the thermal fluctuations P:h of the atmospheric 
pressure Po detected by our ear. This result is obtained by calculating the num
ber of molecules N colliding within half an oscillation period with our eardrum2

: 

N '" nD2co/2j, where n is the air molecular number density3. As N c:::: 1020 and 
p~ c:::: pol..(Fi we find that P:h c:::: 10-5 Pa. 

In gases the continuum hypothesis is directly coupled to the assumption that the 
wave is isentropic and frictionless. Both the kinematic viscosity v = Yll p... and 
the heat diffusivity a = K I pCp of a gas are typically of the order of d, the 
product of sound speed c and mean free path e. This is related to the fact that c 
is in a gas a measure for the random (thermal) molecular velocities that we know 
macroscopically as heat and momentum diffusion. Therefore, in gases the absence 
of friction goes together with isentropy. Note that this is not the case in fluids. 
Here, isothermal rather than isentropic wave propagation is common for normal 
frequencies. 

As a result from this relation v rv cl, the ratio between the acoustic wave length 
A and the mean free path e, which is an acoustic Knudsen number, can also be 
interpreted as an acoustic Fourier number: 

A 
= 

e 
AC 

(2.11) 
v v 

This relates the diffusion length (v If) 1/2 for viscous effects to the acoustic wave 
length A. Moreover, this ratio can also be considered as an unsteady Reynolds 

2Tbe thermal velocity of molecules may be estimated to be equal to cO. 
3n is calculated for an ideal gas with molar mass M from: n J{A pi M = J{A pi M RT 

pi fRT (see section 2.3) where J{A is the Avogadro number 
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2.t Order of magnitude estimates 17 

number Ret: 

\p au' \ 
Ret = at 

\ 
a2u' I 

1] ax2 

(2.12) 
v 

which is for a plane acoustic wave just the ratio between inertial and viscous forces 
in the momentum conservation law. For air v = 1.5 . 10-5 m2 Is so that for J = 
1 kHz we have Re t = 4 . 107• We therefore expect viscosity to playa significant 
role only if the sound propagates over distances of 107 wave lengths or more (3 . 
103 Ian for J = 1 kHz). In practice the kinematic viscosity appears to be a rather 
unimportant effect in the attenuation of waves in free space. The main dissipation 
mechanism is the departure from thermodynamic equilibrium, due to the relatively 
long relaxation times of molecular motion associated to the internal degrees of 
freedom (rotation, vibration). This effect is related to the so-called bulk or volume 
viscosity which we quoted in chapter 1. 

In general the attenuation of sound waves increases with frequency. This explains 
why we hear the lower frequencies of an airplane more and more accentuated as it 
flies from near the observation point (e.g. the airport) away to large distances (10 
Ian). 

In the presence of walls the viscous dissipation and thermal conduction will result 
into a significant attenuation of the waves over quite short distances. The ampli
tude of a plane wave travelling along a tube of cross-sectional surface area A and 
perimeter L p will decrease with the distance x along the tube following an expo
nential factor e-ax , where the damping coefficient ex is given at reasonably high 
frequencies (AILp» JvlwbutwJA/co < 1) by [158]: 

L r:::::;:-:: ( y - 1 ) 
ex = 2;c y7fJv 1 + Jv/a . (2.13) 

(This equation will be derived in section 4.5.) For air y = Cp/Cv = 1.4 while 
via = 0.72. For a musical instrument at 400 Hz, such as the clarinet, ex = 0.05m-1 

so that a frictionless approximation is not a very accurate but still a fair first approx
imation. As a general rule, at low amplitudes the viscous dissipation is dominant 
in woodwind instruments at the fundamental (lowest) playing frequency. At higher 
frequencies the radiation losses which we will discuss later (chapter 6) become 
dominant. Similar arguments hold for water, except that because the temperature 
fluctuations due to compression are negligible, the heat conduction is not signifi
cant even in the presence of walls (y = 1). 
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18 2 Wave equation, speed of sound, and acoustic energy 

A small ratio pi/PO of acoustic density fluctuations pi to the mean density Po im
plies that over distances of the order of a few wave lengths non-linear effects are 
negligible. When dissipation is very small acoustic waves can propagate over such 
large distances that non-linear effects always become significant (we will discuss 
this in section 4.2). 

2.2 Wave equation for a uniform stagnant fluid and 
compactness 

2.2.1 Linearization and wave equation 

In the previous section we have seen that in what we call acoustic phenomena the 
density fluctuations pi/PO are very small. We also have seen that the fluid veloc
ity fluctuation v' associated with the wave propagation, of the order of (p' / Po)co, 
are also small. This justifies the use of a linear approximation of the equations 
describing the fluid motion which we presented in chapter 1. 

Even with the additional assumption that the flow is frictionless, the equations one 
obtains may still be complex if we assume a non-uniform mean flow or a non
uniform density distribution Po. A derivation of general linearized wave equations 
is discussed by Pierce [158] and Goldstein [60]. 

We first limit ourselves to the case of acoustic perturbations (pi, p', S', v' ... ) of a 
stagnant (uo = 0) uniform fluid (Po, Po. so, ... ). Such conditions are also described 
in the literature as a quiescent fluid. In a quiescent fluid the equations of motion 
given in chapter 1 simplify to: 

ap' 
-+PoV·v'=O at 

av' 
Po- + Vp' =0 at 

as' 
=0 at 

(2. 14a) 

(2. 14b) 

(2. 14c) 

where second order terms in the perturbations have been neglected. The constitu
tive equation (1.12) becomes: 

I 2 I 
P = coP· (2.15) 
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2.2 Wave equation for a unifonn stagnant fluid and compactness 19 

By subtracting the time derivative of the mass conservation law (2.14a) from the 
divergence of the momentum conservation law (2.14b) we eliminate v' to obtain: 

a2p' 
- - V 2p' = O. (2.16) at2 

Using the constitutive equation p' = c6P' (2.15) to eliminate either p' or p' yields 
the wave equations: 

a2p' 
c5V2P' 0 (2. 17a) at2 

or 
a2 , 

p 2 2 I --coV P =0 at2 • 

Using the linearized Bernoulli equation: 

af/JI pi 
+-=0 at Po 

(2. 17b) 

(2.18) 

which should be valid because the acoustic field is irrotational4 , we can derive 
from (2.17 a) a wave equation for Of/J'I at. We find therefore that f/J' satisfies the 
same wave equation as the pressure and the density: 

a2 I cp 2,,2 I 0 - Co v cp = . (2.19) 

Taking the gradient of (2.19) we obtain a wave equation for the velocity Vi V cp'. 
Although a rather abstract quantity, the potential cp' is convenient for many calcula
tions in acoustics. The linearized Bernoulli equation (2.18) is used to translate the 
results obtained for cp' into less abstract quantities such as the pressure fluctuations 
p'. 

2.2.2 Simple solutions 

Two of the most simple and therefore most important solutions to the wave equa
tion are d' Alembert's solution in one and three dimensions. In I-D we have the 
general solution 

pi = I(x - cot) + g(x + cot), 

Vi = 1 (/(x - cot) - g(x + cot»), 
PoCo 

(2.20a) 

(2.20b) 

4In the case considered this property follows from the fact that Vx(pofrv l + Vp) = POfr(Vx 
Vi) = O. In general this property is imposed by the definition of the acoustic field. 
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20 2 Wave equation, speed of sound, and acoustic energy 

where f and g are determined by boundary and initial conditions, but otherwise 
they are arbitrary. The velocity v' is obtained from the pressure pI by using the 
linearized momentum equation (2.14b). As is seen from the respective arguments 
x ± cot, the "f"-part corresponds to a right-running wave (in positive x-direction) 
and the "g" -part to a left-running wave. This solution is especially useful to de
scribe low frequency sound waves in hard-walled ducts, and free field plane waves. 
To allow for a general orientation of the coordinate system, a free field plane wave 
is in general written as 

, n 
v = -f(n·x - cot), 

POCO 

where the direction of propagation is given by the unit vector n. Rather than only 
left- and right-running waves as in the I-D case, in free field any sum (or integral) 
over directions n may be taken. A time harmonic plane wave of frequency (f) is 
usually written in complex formS as 

pi, v' rv eiwt-ik.x, 

where the wave-number vector, or wave vector, k = nk = n!!!.., indicates the co 
direction of propagation of the wave. 

In 3-D we have a general solution for spherically symmetric waves (i.e. depending 
only on radial distance r). They are rather similar to the 1-D solution, because the 
combination rp(r, t) happens to satisfy the I-D wave equation (see section 6.2). 
Since the outward radiated wave energy spreads out over the surface of a sphere, 
the inherent l/r-decay is necessary from energy conservation arguments. 

It should be noted, however, that unlike in the I-D case, the corresponding radial 
velocity v; is rather more complicated. The velocity should be determined from the 
pressure by time-integration of the momentum equation (2.14b), written in radial 
coordinates. 

We have for pressure and radial velocity 

I 1 1 
P = fer - cot) + -g(r + cot), 

r r 

1 (1 1 ) v; poco;: fer - cot) r2 F(r - cot) 

_l_(~g(r + cot) _ 1 G(r + cot»), 
poCo r 

SThe physical quantity considered is described by the real part. 
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where F(z) J f(z)dz and G(z) = J g(z)dz. Usually we have only outgoing 
waves, which means for any physical solution that the field vanishes before some 
time to (causality). Hence, fez) = 0 for z = r - cot 2: r - coto 2: -coto because 
r 2: 0, and g(z) 0 for any z = r + cot ~ r + coto. Since r is not restricted from 
above, this implies that 

g(z) 0 for all z. 

This solution (2.21a,2.21b) is especially useful to describe the field of small sym
metric sources (monopoles), modelled in a point. Furthermore, by differentiation 
to the source position other solutions of the wave equation can be generated (of 
dipole-type and higher). For example, since a: r = =;:, we have 

, x ( , 1 ) P = f (r - cot) - ;: fer - cot) , (2.22a) 

I 1 X(, 2 2 ) vr = f (r - cot) - - fer - cot) + 2 F (r - cot) , 
poCo r r 

(2.22b) 

where f' denotes the derivative of f to its argument. 

Since the role of r and t is symmetric in f and anti-symmetric in g, we may 
formulate the causality condition in t also as a boundary condition in r. A causal 
wave vanishes outside a large sphere, of which the radius grows linearly in time 
with velocity co. This remains true for any field in free space from a source of finite 
size, because far away the field simplifies to that of a point source (although not 
necessarily spherically symmetric). 

In the case of the idealization of a time-harmonic field we cannot apply this causal
ity condition directly, but we can use a slightly modified form of the boundary 
condition in r, caned Sommeifeld's radiation condition: 

(
apr ap') 

lim r - + Co- = O. 
r-,;oo at ar (2.23) 

A more general discussion on causality for a time-harmonic field will be given in 
section C.1.l. The general solution of sound radiation from spheres may be found 
in [131, ch7.2]. 

2.2.3 Compactness 

In regions -for example at boundaries- where the acoustic potential q/ varies sig
nificantly over distances L which are short compared to the wave length A, the 
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22 2 Wave equation, speed of sound, and acoustic energy 

acoustic flow can locally be approximated as an incompressible potential flow. 
Such a region is called compact, and a source of size, much smaller than A, is a 
compact source. For a more precise definition we should assume that we can dis
tinguish a typical time scale r or frequency w and length scale L in the problem. 
In dimensionless form the wave equation is then: 

He 
L wL = 21TL = kL 

Co A 
(2.24) 

where i = tlr = wt and Xi = Xii L . The dimensionless number He is called the 
Helmholtz number. When r and L are well chosen, fJ2if/ loP- and o2cp'lox; are of 
the same order of magnitude, and the character of the wave motion is completely 
described by He. In a compact region we have: 

He « 1. (2.25) 

This may occur, as suggested above, near a singularity where spatial gradients 
become large, or at low frequencies when time derivatives become small. Within 
the compact region the time derivatives, being multiplied by the small He, may be 
ignored and the potential satisfies to leading order the Laplace equation: 

(2.26) 

which describes an incompressible potential flow ('\7 • v' = 0). This allows us to use 
incompressible potential flow theory to derive the local behaviour of an acoustic 
field in a compact region. If the compact region is embedded in a larger acoustic 
region of simpler nature, it acts on the scale of the larger region as a point source, 
usually allowing a relatively simple acoustic field. By matching the local incom
pressible approximation to this "far field" solution (spherical waves, plane waves), 
the solutions may be determined. The matching procedure is usually carried out 
almost intuitively in the first order approximation. Higher order approximations 
are obtained by using the method of Matched Asymptotic Expansions (section 8.8, 
[34]). 

2.3 Speed of sound 

2.3.1 Ideal gas 

In the previous section we have assumed that the speed of sound c5 = (oplop)s 
is constant. However, in many interesting cases Co is non-uniform in space and 
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2.3 Speed of sound 23 

this affects the propagation of waves. We therefore give here a short review of 
the dependence of the speed of sound in gas and water on some parameters like 
temperature. 

Air at atmospheric pressure behaves as an ideal gas. The equation of state for an 
ideal gas is: 

p = pRT, (2.27) 

where p is the pressure, p is the density and T is the absolute temperature. R is the 
specific gas constant6 which is related to the Boltzmann constant kB 1.38066 . 
10-23 JjK and the Avogadro number.NA 6.022.1023 mol-1 by: 

(2.28) 

where M is the molar mass of the gas (in kg/mol). For air R = 286.73 Jjkg K. For 
an ideal gas we have further the relationship: 

R = Cp - Cv, (2.29) 

where Cp and Cv are the specific heats at constant pressure and volume, respec
tively. For an ideal gas the internal energy e depends only on the temperature [152], 
with (1.14) leading to de = Cv dT, so that by using the second law of thermody
namics, we find for an isentropic process (ds = 0): 

1 dT R dp 
-pd(p-) or - = - . 

T Cv p 
CvdT (2.30) 

By using (2.27) and (2.29) we find for an isentropic process: 

dp dT dp dp -+-= =y-, 
p T p p 

(2.31) 

where: 

y = CpjCv (2.32) 

is the specific-heat ratio. Comparison of (2.31) with the definition of the speed of 
sound c2 = (opj8p)s yields: 

C=(ypjp)1/2 or c=(yRT)1/2. (2.33) 

6The universal gas constant is: !R = kB.NA 8.31431 J/K mol. 
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24 2 Wave equation, speed of sound, and acoustic energy 

We see from this equation that the speed of sound of an ideal gas of given chemical 
composition depends only on the temperature. For a mixture of ideal gases with 
mole fraction Xi of component i the molar mass M is given by: 

(2.34) 

where Mi is the molar mass of component i. The specific-heat ratio Y of the mix
ture can be calculated by: 

Y= 
L XiYi/(Yi - 1) 

LXi/(Yi -1) 
(2.35) 

because yi/(Yi - 1) = MiCp,i/:R and Yi = Cp,i/Cv,i. For air Y = 1.402, whilst 
the speed of sound at T = 273.15 K is C = 331.45 m/s. Moisture in air will only 
slightly affect the speed of sound but will drastically affect the damping, due to 
departure from thermodynamic equilibrium [205]. 

The temperature dependence of the speed of sound is responsible for spectacular 
differences in sound propagation in the atmosphere. For example, the vertical tem
perature stratification of the atmosphere (from colder near the ground to warmer 
at higher levels) that occurs on a winter day with fresh fallen snow refracts the 
sound back to the ground level, in a way that we hear traffic over much larger dis
tances than on a hot summer afternoon. These refraction effects will be discussed 
in section 8.6. 

2.3.2 Water 

For pure water, the speed of sound in the temperature range 273 K to 293 K and 
in the pressure range 105 to 107 Pa can be calculated from the empirical formula 
[158]: 

c = Co +a(T - To) +bp (2.36) 

where Co = 1447 mis, a = 4.0 m/sK, To 283.16 K and b = 1.6.10-6 m/sPa. 
The presence of salt in sea water does significantly affect the speed of sound. 

2.3.3 Bubbly liquid at low frequencies 

Also the presence of air bubbles in water can have a dramatic effect on the speed 
of sound ([103, 34]). The speed of sound is by definition determined by the "mass" 
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density P and the isentropic bulk modulus: 

(2.37) 

which is a measure for the "stiffness" of the fluid. The speed of sound c, given by: 

1 
C = (X8/ p)'l (2.38) 

increases with increasing stiffness, and decreases with increasing inertia (density 
p). In a one-dimensional model consisting of a discrete mass M connected by a 
spring of constant X, we can understand this behaviour intuitively. This mass
spring model was used by Newton to derive equation (2.38), except for the fact 
that he used the isothermal bulk modulus X T rather than Xs. This resulted in an 
error of y 1/2 in the predicted speed of sound in air which was corrected by Laplace 
[205]. 

A small fraction of air bubbles present in water considerably reduces the bulk mod
ulus X s, while at the same time the density p is not strongly affected. As the Xs of 
the mixture can approach that for pure air, one observes in such mixtures velocities 
of sound much lower than in air (or water). The behaviour of air bubbles at high 
frequencies involves a possible resonance which we will discuss in chapter 4 and 
chapter 6. We now assume that the bubbles are in mechanical equilibrium with the 
water, which allows a low frequency approximation. Combining this assumption 
with (2.38), following Crighton [34], we derive an expression for the soundspeed 
c of the mixture as a function of the volume fraction f3 of gas in the water. The 
density p ofthe mixture is given by: 

(2.39) 

where Pc and Pg are the liquid and gas densities. If we consider a small change in 
pressure dp we obtain: 

dp = (1 _ f3) dpc + f3 dpg + (p _ 
dp dp dp g 

(2.40) 

where we assume both the gas and the liquid to compress isothermally [34]. If 
no gas dissolves in the liquid, so that the mass fraction (f3Pg / p) of gas remains 
constant, we have: 

(2.41) 
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Using the notation c2 = dp/dp, c; = dp/dpg and c; = dp/dpe, we find by 
elimination of dfJ / dp from (2.40) and (2.41): 

1 _ 1 fJ + L (2.42) 
pc2 PgC~' 

It is interesting to see that for small values of fJ the speed of sound c drops dras
tically from Ce at f3 = 0 towards a value lower than cg• The minimum speed of 
sound occurs at f3 = 0.5, and at 1 bar we find for example in a water/air mixture 
C ~ 24 m/s! In the case of f3 not being close to zero or unity, we can use the fact 
that pgc; « PeCl and Pg « Pt, to approximate (2.42) by: 

(2.43) 

The gas fraction determines the bulk modulus pgc;/ f3 of the mixture, while the 
water determines the density (1- (3) Pe. Hence, we see that the presence of bubbles 
around a ship may dramatically affect the sound propagation near the surface. Air 
bubbles are also introduced in sea water near the surface by surface waves. The 
dynamics of bubbles involving oscillations (see chapter 4 and chapter 6) appear to 
induce spectacular dispersion effects [34], which we have ignored here. 

2.4 Influence of temperature gradient 

In section 2.2 we derived a wave equation (2.17a) for an homogeneous stagnant 
medium. We have seen in section 2.3 that the speed of sound in the atmosphere 
is expected to vary considerably as a result of temperature gradients. In many 
cases, when the acoustic wave length is small compared to the temperature gra
dient length (distance over which a significant temperature variation occurs) we 
can stm use the wave equation (2.17a). It is however interesting to derive a wave 
equation in the more general case: for a stagnant ideal gas with an arbitrary tem
perature distribution. 

We start from the linearized equations for the conservation of mass, momentum 
and energy for a stagnant gas: 

ap' - + v· (Pov') = 0 (2.44a) at 
dV' 

Po- + V p' = 0 (2.44b) at 
as' 
at + v' . V So = 0, (2.44c) 
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where Po and So vary in space. The constitutive equation for isentropic flow 
(DsiDt = 0): 

Dp Dp 

Dt Dt 

can be written as 7 : 

ap', 2(apl ,) - + v .'1 Po = Co - + v • V Po . at at (2.45) 

Combining (2.45) with the continuity equation (2.44a) we find: 

( OP' /") 2", 0 at + v . v Po + Poco v • v . (2.46) 

If we consider temperature gradients over a small height (in a horizontal tube for 
example) so that the variation in Po can be neglected (V Pol Po « VTol To), we 
can approximate (2.46) by: 

,lap' 
V-v = -----. 

Po~ at 
Taking the divergence of the momentum conservation law (2.44b) yields: 

a f ( 1 ,) -(V·v) + V· -Vp = o. at Po 

By elimination of V· v' we obtain: 

(2.47) 

For an ideal gas c~ = Ypol Po, and since we assumed Po to be uniform, we have 
that Poc5, given by: 

2 
PoCo = YPo 

is a constant so that equation (2.47) can be written in the form: 

a2p' 
-2- - V,(c5Vp') = o. at 

7Why do we not use (2.15)? 

(2.48) 
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This is a rather complex wave equation, since Co is non-uniform. We will in section 
8.6 consider approximate solutions for this equation in the case (V col (J) « 1 and 
for large propagation distances. This approximation is called geometrical or ray 
acoustics. 

It is interesting to note that, unlike in quiescent (i.e. uniform and stagnant) fluids, 
the wave equation (2.48) for the pressure fluctuation p' in a stagnant non-uniform 
ideal gas is not valid for the density fluctuations. This is because here the density 
fluctuations p' not only relate to pressure fluctuations but also to convective effects 
(2.45). Which acoustic variable is selected to work with is only indifferent in a 
quiescent fluid. This will be elaborated further in the discussion on the sources of 
sound in section 2.6. 

2.5 Influence of mean flow 

See also Appendix F. In the presence of a mean flow that satisfies 

V'Povo=O, Povo,Vvo=-Vpo, vo,Vso 0, vo·Vpo=cJvo·Vpo, 

the linearized conservation laws, and constitutive equation for isentropic flow, be
come (without sources): 

ap' n' 'nn I 'n 0 at + Vo' v p + v . v Po + Po v • v + p v' va = (2.49a) 

( av' ")' Po at + vo'Vv + v .Vvo + p vo,Vvo (2.49b) 

as' " - + vo·Vs + v ,Vso O. at (2.49c) 

op' I I 2(apl 
") at + VO' V P + v • V Po = Co at + VO' V P + v • V Po 

(
pi pi) 

+ cJ(vQ'VPo) - --
Po Po 

(2.49d) 

A wave equation can only be obtained from these equations if simplifying assump
tions are introduced. For a uniform medium with uniform flow velocity Vo ::J. 0 we 
obtain 

( a )2 I - + vo'V P at 
a 

o 

where - + va' V denotes a time derivative moving with the mean flow. at 
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2.6 Sources of sound 

2.6.1 Inverse problem and uniqueness of sources 

Until now we have focused our attention on the propagation of sound. As starting 
point for the derivation of wave equations we have used the linearized equations of 
motion and we have assumed that the mass source term m and the external force 
density f in (1.1) and (1.2) were absent. Without these restrictions we still can 
(under specific conditions) derive a wave equation. The wave equation will now be 
non-homogeneous, i.e. it will contain a source term q. For example, we may find 
in the absence of mean flow: 

a2 , p 2 2 I at2 -coV p =q. (2.51) 

Often we will consider situations where the source q is concentrated in a limited 
region of space embedded in a stagnant uniform fluid. As we will see later the 
acoustic field pi can formally be determined for a given source distribution q by 
means of a Green's function. This solution pi is unique. It should be noted that the 
so-called inverse problem of determining q from the measurement of pi outside 
the source region does not have a unique solution without at least some additional 
information on the structure of the source. This statement is easily verified by the 
construction of another sound field, for example [54]: p' + F, for any smooth 
function F that vanishes outside the source region (i.e. F = 0 wherever q 0), 
for example F ()( q itself! This field is outside the source region exactly equal to 
the original field pl. On the other hand, it is not the solution of equation (2.51), 
because it satisfies a wave equation with another source: 

(2.52) 

In general this source is not equal to q. This proves that the measurement of the 
acoustic field outside the source region is not sufficient to determine the source 
uniquely [42]. 

2.6.2 Mass and momentum injection 

As a first example of a non-homogeneous wave equation we consider the effect 
of the mass source term m on a uniform stagnant fluid. We further assume that 
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30 2 Wave equation, speed of sound, and acoustic energy 

a linear approximation is valid. Consider the inhomogeneous equation of mass 
conservation 

a 
alP + \7. (pv) m 

and a linearized form of the equation of momentum conservation 

a 
-(pv) + \7p' f. at 

(2.53) 

(2.54) 

The source m consists of mass of density Pm of volume fraction fJ - fJ(x, t) 
injected at a rate 

a 
m = at (fJPm). (2.55) 

The source region is where fJ f=. O. Since the injected mass displaces the original 
mass P t by the same (but negative) amount of volume, the total fluid density is 

P = fJPm + (1 - fJ)Pt (2.56) 

where the injected matter does not mix with the original fluid. Substitute (2.56) in 
(2.53) and eliminate fJPm 

a a 
at Pf +\7·(pv) = a/fJPf)' (2.57) 

Eliminate pv from (2.54) and (2.57) 

a2 
2! a2 

at2Pt \7 p = at2 (fJPt) - \7. f. (2.58) 

If we assume, for simplicity, that pi = c~PI everywhere, where PI is the fluctu
ating part of P t which corresponds to the sound field outside the source region, 
then 

1 a2
! ? I a2 

c~ at2 p - \7-P = at2 (fJPt) \7. f (2.59) 

which shows that mass injection is a source of sound, primarily because of the 
displacement of a volume fraction fJ of the original fluid P f. Hence injecting mass 
with a large density Pm is not necessarily an effective source of sound. 

We see from (2.59) that a continuous injection of mass of constant density does 
not produce sound, because a2 fJp t I at2 vanishes. In addition, it can be shown in an 
analogous way that in linear approximation the presence of a uniform force field 
(a uniform gravitational field, for example) does not affect the sound field in a 
uniform stagnant fluid. 
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2.6.3 Lighthill's analogy 

We now indicate how a wave equation with aerodynamic source terms can be de
rived. The most famous wave equation of this type is the equation of Lighthill. 

The notion of "analogy" refers here to the idea of representing a complex fluid me
chanical process that acts as an acoustic source by an acoustically equivalent source 
term. For example, one may model a clarinet as an idealized resonator formed by 
a closed pipe, with the effect of the flow through the mouth piece represented by 
a mass source at one end. In that particular case we express by this analogy the 
fact that the internal acoustic fie1d of the clarinet is dominated by a standing wave 
corresponding to a resonance of the (ideal) resonator. 

While Lighthill's equation is formally exact (i.e. derived without approximation 
from the Navier-Stokes equations), it is only useful when we consider the case of 
a limited source region embedded in a uniform stagnant fluid. At least we assume 
that the listener which detects the acoustic field at a point x at time t is surrounded 
by a uniform stagnant fluid characterized by a speed of sound co. Hence the acous
tic field at the listener should accurately be described hy the wave equation: 

a2p' 
-- - C2T:v2p' = 0 at2 0 

(2.17b) 

where we have chosen pi as the acoustic variable as this will appear to be the 
most convenient choice for problems like the prediction of sound produced by 
turbulence. The key idea of the so-called "aero-acoustic analogy" of Lighthill is 
that we now derive from the exact equations of motion a non-homogeneous wave 
equation with the propagation part as given by (2. 17b). Hence the uniform stagnant 
fluid with sound speed Co, density Po and pressure Po at the listener's location is 
assumed to extend into the entire space, and any departure from the "ideal" acoustic 
behaviour predicted by (2.17b) is equivalent to a source of sound for the observer 
[107,108,161,71]. 

By taking the time derivative of the mass conservation law (1.1) and eliminating 
am/at as in (2.57) we find: 

a2 am a2p a2p! a2f3p 
ataxi (pVj) = at - at2 = - at2 + al2 f. (2.60) 

By taking the divergence of the momentum conservation law (1.2) we find: 

(2.61) 
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Hence we find from (2.60) and (2.61) the exact relation: 

a2pj a2 a2f3PJ ali -- = --(Pi' + PViV') + -- --. 
at2 aXiaXj ] ] at2 aXi 

(2.62) 

Because P j = Po + pi where only pi varies in time we can construct a wave 
equation for pi by subtracting from both sides of (2.61) a term c6(a2 p'jaxl) where 
in order to be meaningful Co is not the local speed of sound but that at the listener's 
location. 

In this way we have obtained the famous equation of Lighthill: 

(2.63) 

where Lighthill's stress tensor Tij is defined by: 

(2.64) 

We used 

(2.65) 

which is exact because Co is a constant. Making use of definition (1.3) we can also 
write: 

(2.66) 

which is the usual form in the literature8• In equation (2.66) we distinguish three 
basic aero-acoustic processes which result in sources of sound: 

- the non-linear convective forces described by the Reynolds stress tensor 
PViVj, 

- the viscous forces iij, 
- the deviation from a uniform sound velocity Co or the deviation from an isen-

tropic behaviour (pi - C6P')' 

8The perturbations are defined as the deviation from the uniform reference state (po, po): pi = 
P - PO, and pi = P - PO. 
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As no approximations have been made, equation (2.63) is exact and not easier to 
solve than the original equations of motion. In fact, we have used four equations: 
the mass conservation and the three components of the momentum conservation to 
derive a single equation. We are therefore certainly not closer to a solution unless 
we introduce some additional simplifying assumptions. 

The usefulness of (2.63) is that we can introduce some crude simplifications which 
yield an order of magnitude estimate for p'. Such estimation procedure is based on 
the physical interpretation of the source term. However, a key step of Lighthil1's 
analysis is to delay this physical interpretation until an integral equation formula
tion of (2.63) has been obtained. This is an efficient approach because an order of 
magnitude estimate of o2Tij /OXiOX j involves the estimation of spatial derivatives 
which is very difficult, while, as we will see, in an integral formulation we will 
need only an estimate for an average value of Tij in order to obtain some relevant 
information on the acoustic field. 

This crucial step was not recognized before the original papers of Lighthill [107, 
108]. For a given experimental or numerical set of data on the flow field in the 
source region, the integral formulation of Lighthill's analogy often provides a max
imum amount of information about the generated acoustic field. 

Unlike in the propagation in a uniform fluid the choice of the acoustic variable 
appeared already in the presence of a temperature gradient (section 2.4) to affect 
the character of the wave equation. If we derive a wave equation for pi instead of 
pi, the structure of the source terms will be different. In some cases it appears to 
be more convenient to use p' instead of p'. This is the case when unsteady heat 
release occurs such as in combustion problems. Starting from equation (2.62) in 
the form: 

a2p 02p 02 

= ot2 + OX'OX' ("tij - PVjVj) 
I ] 

where we assumed thatm = 0 and f 0, we find by subtraction of co2(lp/ot2)pl 
on both sides: 

p') (2.67) 

where the term;j2 p%x; vanishes because Po is a constant. 

Comparing (2.63) with (2.67) shows that the deviation from an isentropic be
haviour leads to a source term of the type (02 /Ox;)(p' -c~p') when we choose p' as 
the acoustic variable, while we find a term (02 /at 2)(p' /c5- p') when we choose p' 
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as the acoustic variable. Hence p' is more appropriate to describe the sonnd genera
tion due to non-uniformity as for example the so-called acoustic "Bremsstrahlung" 
produced by the acceleration of a fluid particle with an entropy different from the 
main flow. The sound production by unsteady heat transfer or combustion is easier 
to describe in terms of p' (Howe [71]). 

We see that (olot)(p'lc5 p') acts as a mass source term m, which is intuitively 
more easily understood (Crighton et al. [34]) when using the thermodynamic rela
tion (1.11) applied to a moving particle: 

Dp = c2Dp + (op) Ds. 
Dt Dt oS p Dt 

We find from (1.11) that: 

E. (P~ _ pi) = (C: _ 1) Dp' + P: (aT) Ds' 
Dt Co Co Dt Co fJp s Dt 

where we made use of the thermodynamic relation: 

(~~)p = p2 (~:)s 
derived from the fundamental law of thermodynamics (1.7) in the form: 

de = T ds - pd(p-l). 

As a final result, using the mass conservation law, we find 

Pe) Dp' p2 (aT) Dsl ] 1+- +- - --+V'(VPe) 
p Dt c5 op s Dt 

where the "excess density" Pe is defined as: 

, p' 
Pe =P - 2' 

Co 

(1.11) 

(2.68) 

(2.69) 

(1.7) 

(2.70) 

In a free jet the first term in _&2 Pelot2 vanishes for an ideal gas with constant heat 
capacity (because c2/cJ 1 + Pel P = 0). We see that sound is produced both 
by spatial density variations V,(vPe) and as a result of non-isentropic processes 
(p2 IC5)(oT lop )8 (Ds' IDt), like combustion. 
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2.6.4 Vortex sound 

While Lighthill's analogy is very convenient for obtaining order of magnitude es
timates of the sound produced by various processes, this formulation is not very 
convenient when one considers the sound production by a flow which is, on its tum, 
influenced by the acoustic field. In Lighthill's procedure the flow is assumed9 to 
be known, with any feedback from the acoustic field to the flow somehow already 
included. When such a feedback is significant, and in general for homentropic low 
Mach number flow, the aerodynamic formulation of Powell [161], Howe [71] and 
Doak [41] ba."led on the concept of vortex sound is most appropriate. This is due to 
the fact that the vorticity w = V x v is a very convenient quantity to describe a low 
Mach number flow. 

Considering a homentropic non-conductive frictionless fluid, we start our deriva
tion of a wave equation from Euler's equation in Crocco's form: 

av 
- +VB = -wxv at 

where B = i + ! v2, and the continuity equation: 

1 Dp 

p Dt 
-V·v. 

(1.30) 

(1.17) 

Taking the divergence of (1.30) and the time derivative of (1.17) we obtain by 
subtraction: 

- -- -V B a (IDP) 2 

at pDt 
V· (wxv). 

As the entropy is constant (ds = 0) we have, with (1.11) and (1.27): 

a (1 Di) 2 - -- -V B=V·(wxv). at c2 Dt 

This can be rewritten as 

1 D2B' _0_ 

Dt 
2 , 1 D5B' a (1 Di) V B = V·(wxv) + --- - - --

c2 Dt at c2 Dt 

(2.71) 

(2.72) 

(2.73) 

9This is not a necessary condition for the use of Lighthill's analogy. It is the commonly used 
procedure in which we derive information on the acoustic field from data on the flow in the source 
region. 
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where B' B - Bo and ~ = fr + U 0 • V. For the reference flow U 0 we choose a 
potential flow with stagnation enthalpy Bo. 

At low Mach number M = v / Co we have the inhomogeneous wave equation: 

1 D5Bf 

c2 Dt2 
o 

(2.74) 

which explicitly stresses the fact that the vorticity w is responsible for the genera
tion of sound. (Note: if = pf / Po and Bf = if + Vo' Vi.) Some of the implications 
of (2.74) will be considered in more detail in the next section. The use of a vor
tex sound formulation is particularly powerful when a simplified vortex model is 
available for the flow considered. Examples of such flows are discussed by Howe 
[71], Disselhorst & van Wijngaarden [40], Peters & Hirschberg [155], and Howe 
[76]. 

In free space for a compact source region Powell [160] has derived this analogy di
rectly from Lighthill's analogy. The result is that the Coriolis force Ie = Po(wxv) 
appears to act as an external force on the acoustic field. Considering Crocco's equa
tion (1.30) with this interpretation Howe [72, 75] realized that the natural reference 
of the analogy is a potential flow rather than the quiescent fluid of Lighthill's anal
ogy. There is then no need to assume free field conditions nor a compact source 
region. Howe [71] therefore proposes to define the acoustic field as the unsteady 
scalar potential flow component of the flow: 

U a = Vrpf 

where rp' rp rpo and rpo is the steady scalar potential. 

At high Mach numbers, when the source is not compact, both Lighthill's and 
Howe's analogy become less convenient. Alternative formulations have been pro
posed and are still being studied [136]. 

2.7 Acoustic energy 

2.7.1 Introduction 

Acoustic energy is a difficult concept because it involves second order terms in the 
perturbations like the kinetic energy density ~ POVf2. Historically an energy conser
vation law was first derived by Kirchhoff for stagnant uniform fluids. He started 
from the linearized conservation laws (2.49a-2.49d). Such a procedure is ad-hoc, 
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and the result, an energy expression of the approximation, is not an approxima
tion of the total energy, since a small perturbation expansion of the full non-linear 
fluid energy conservation law (1.5) will contain zeroth and first order terms and 
potentially relevant second order terms O«p' / Po)2) which are dropped with the 
linearization of the mass and momentum equations. However, it appears that for a 
quiescent fluid these zeroth, first and neglected second order terms are (in a sense) 
not important and an acoustic energy conservation equation may be derived which 
is indeed the same as found by Kirchhoff [158]. 

This approach may be extended to non-uniform flows as long as they are hom
entropic and irrotational. Things become much less obvious in the presence of a 
non-uniform mean flow including entropy variations and vorticity. If required, the 
zeroth, first and neglected second order terms of the expansion may still be ig
nored, as Myers showed [138], but now at the expense of a resulting energy equa
tion which is not a conservation law any more. The only way to obtain some kind 
of acoustic energy conservation equation (implying definitions for acoustic energy 
density and flux) is to redirect certain parts to the "right hand side" to become 
source or sink terms. In such a case the question of definition, in particular which 
part of the field is to be called acoustic, is essential and until now it remains subject 
of discussion. 

As stated before, we will consider as acoustical only that part of the field which is 
related to density variations and an unsteady (irrotational) potential flow. Pressure 
fluctuations related to vorticity, which do not propagate, are often referred to in 
the literature as "pseudo sound". In contrast to this approach Jenvey [86] calls any 
pressure fluctuations "acoustic", which of course results in a different definition of 
acoustic energy. 

The foregoing approach of generalized expressions for acoustic energy for hom
entropic [138] and more general nonuniform flows [139, 140] by expanding the 
energy equation for small perturbations is due to Myers. We will start our analysis 
with Kirchhoff's equation for an inviscid non-conducting fluid, and extend the re
sults to those obtained by Myers. Finally we will consider a relationship between 
vorticity and sound generation in a homentropic uniform inviscid non-conducting 
fluid at low Mach numbers, derived by Howe [72]. 
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2.7.2 Kirchhoff's equation for quiescent fluids 

We start from the linearized mass and momentum conservation laws for a quiescent 
inviscid and non-conducting fluid: 

Bpi " + Po "\I. v = m, at 
av' , I 

pOfit+"\Ip =f, 

(2.75a) 

(2.75b) 

where we assumed that f' and m' are of acoustic order. Since we assumed the 
mean flow to be quiescent and uniform there is no mean mass source (mo = 0) or 
force (fo = 0). From the assumption ofhomentropy (ds = 0) we havelO 

I 2 I 

P = coP· (2.15) 

After multiplying (2.75a) by pi/Po and (2.75b) by Vi, adding the two equations, 
and utilizing the foregoing relation (2.15) between density and pressure, we obtain 
the equation 

1 ap'2 1 av'2 p'm' --,,- + -Po- + "\I. (p'v') = + v'·!' 
2PoCij at 2 at Po 

(2.76) 

which can be interpreted as a conservation law for the acoustic energy 

BE 
fit + "\1·1 =-9) (2.77) 

if we DEFINE the acoustic energy density E, the energy flux or intensityll 1 and 
the dissipation 9) as: 

(2.78a) 

1 =p'v', (2.78b) 

p'm' I , 

9)=---v ·f. (2.78c) 
Po 

lONote that in order to keep equation (2.15) valid we have implicitly assumed that the injected 
mass corresponding to m' has the same thermodynamic properties as the original fluid. The flow 
would otherwise not be homentropic! In this case m' / PO corresponds to the injected volume fraction 
f3 of equation (2.55). 

llThere is no uniformity in the nomenclature. Some authors define the acoustic intensity as the 
acoustic energy flux, others as the time-averaged acoustic energy flux. 
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In integral form this conservation law (2.77) can be written for a fixed control 
volume V enclosed by a surface S with outer normal n as 

:t III Edx + II I ·nda = III Ddx, (2.79) 

V S V 

where we have used the theorem of Gauss to transform J J J V· I dx into a surface 
integral. For a periodic acoustic field the average (E) of the acoustic energy over a 
period is constant. Hence we find 

/P= 11{/.n)da=- 111{D)dx, (2.80) 

S V 

where /P is the acoustic power flow across the volume surface S. The left-hand side 
of (2.80) simply corresponds with the mechanical work performed by the volume 
injection (m'l Po) and the external force field I' on the acoustic field. This formula 
is useful because we can consider the effect of the movement of solid boundaries 
like a piston or a propeller represented by source terms m' and /'. We will at the 
end of this chapter use formula (2.80) to calculate the acoustic power generated by 
a compact vorticity field. 

We will now derive the acoustic energy equation starting from the original non
linear energy conservation law (1.5). We consider the perturbation of a uniform 
quiescent fluid without mass source term (vo = 0, m = 0, fo = 0, Po and Po 
constant). We start with equation (1.5) in standard conservation form: 

:t (pe + ~pV2) + V· (v(pe + ~pv2 + p)) = 

-V·q+V·('r·v)+I·v, (2.81) 

where we note that the total fluid energy density is 

1 
pe + 2pv2, (2. 82a) 

and the total fluid energy flux is 

I tot = v(pe 
1 2 2PV + p). (2.82b) 

We have dropped here the mass source term m because, in contrast to the force 
density I, it does not correspond to any physical process. 
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For future reference we state here some related forms, a.o. related to the entropy 
variation of the fluid. Using the continuity equation we obtain 

D ( V2) PDt e +"2 = -V· (pv) - V·q + V·(r·v) + f·v, (2.83) 

which by using the fundamental law of thermodynamics (1.7) may yield an equa
tion for the change in entropy s of the fluid: 

Ds pDp pDv2 

pT----+ -=-V'(pv) V·q+V·(T·v)+f·v. (2.84) 
Dt pDt 2 Dt 

By subtraction of the inner product of the momentum conservation equation with 
the velocity, this may be further recast into 

Ds 
pT Dt = -V·q + T :Vv. (2.85) 

In the absence of friction (r = 0) and heat conduction (q = 0) we have the 
following equations for energy and entropy: 

p~(e + !v2
) = -V·(pv) + f·v (2.86) 

Dt 2 
Ds 
-=Q ~~ 
Dt 

We return to the energy equation in standard conservation form, without friction 
and heat conduction: 

:/pe + ~pv2) + v· (v(pe + ~pv2 + p») = V· f. (2.88) 

From the fundamental law of thermodynamics (1.7): 

T ds = de + p d(p -1 ) (1.7) 

h +:' , , ( oe) p d we ave lor IsentropIC perturbations: - = 2' an so 
op s p 

( ope) = e +!.!.. = i, (o2 P2e ) = .!. (op) = c
2

, 

op s P op s P op s P 

where i is the enthalpy (1.26) or heat function. We can now expand the total energy 
density, energy flux and source for acoustic (i.e. isentropic) perturbations up to 
second order, to find (vo = 0): 

1 2 . I 1 2 (pl)2 1 12 
pe + zpv poeo + lOP + 'ZPoco Po + zPov , 

v(pe + ~pV2 + p) = v'(ioPo + ioP' + p'), 

v· f V'· f'. 
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Noting that the steady state is constant, and using the equation of mass conservation 

ap' - + V'(Pov' + p'v') = 0 at 
in (2.88), with (2.89a-2.89c) substituted in it, we find that the zeroth and first order 
terms in p' I Po vanish so that (2.88) becomes within an accuracy of O«p'j PO)3): 

.::. 12 12 
(J ( P POV 1 1 " -;- --+ +V·(pv)=v·j, at 2Poc5 2 

(2.90) 

which demonstrates that Kirchhoff's acoustic energy conservation law (2.77) is not 
only an energy-like relation of the approximate equations, but indeed also the con
sistent acoustic approximation of the energy equation of the full fluid mechanical 
problem. 

2.7.3 Acoustic energy in a non-uniform flow 

The method of Myers [138] to develop a more general acoustic energy conservation 
law follows similar lines as the discussion of the previous section. We consider a 
homentropic flow (ds = 0, so that de = (pI p2)dp) with vo ::j:. O. In this case the 
total enthalpy B e + pIp + ~V2 appears to be a convenient variable. In terms of 
B the energy conservation law (2.88) becomes: 

a 
(pB - p) + V· (pBv) = v· j. at 

The momentum conservation law in Crocco's form (1.30) also involves B: 

av 
at + VB +wxv = jlp· 

(2.91) 

(2.92) 

By subtracting POVo times the momentum conservation law (2.92) plus Bo times the 
continuity equation (1.17) from the energy conservation law (2.91), substituting the 
steady state momentum conservation law: 

V Bo + wox Vo j 0/ Po, (2.93) 

SUbtracting the steady state limit of the reSUlting equation, and using the vector 
identity V· (wxv) = 0, Myers obtained the following energy corollary: 

aE* -- + v·r -!f)* at (2.94) 
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where E*, r and 9)* are defined by: 

E* = pCB - Bo) - (p - Po) - Povo' (v vo) 

1* = (pv - Povo)(B Bo) 

9)* = (pv - Povo)·(wxv - woxvo) (v - vO)'(1 - 10) 

(2.95a) 

(2.95b) 

- (1 - Pol p)vo' 1- (l - pi Po) v . 10' (2. 95c) 

These auxiliary quantities E*, r and 9)* have the important property, as Myers 
showed, that their zeroth and first order terms in the acoustic perturbation expan
sion in (p'l Po) vanish, while the quadratic terms are only a function of the mean 
flow and acoustic (first order) quantities. As a result, the second order approxima
tion of the exact quantities E*, l* and 9)* yield (for homentropic flow) a general 
acoustic energy definition12 ; 

E 
C5P'2 POV,2 , , 

= --+--+pvo'v 
2po 2 

(
C

2p
' ) 1= (Pov' + p'vo) ~o + vo'v' 

9) = -Povo·(w'xv') - p'v' . (wox vo) 

(Vi + p'vol Po)· (/' - pi/ 01 Po). 

(2.96a) 

(2.96b) 

(2.96c) 

This equation is identical to the acoustic energy conservation law derived by Gold
stein [60] starting from the linearized equations of motion (with /0 = 0). It is im
portant to note that, on the one hand, we have indeed obtained expressions entirely 
in first order quantities; on the other hand, however, these expressions represent 
only an acoustic energy conservation law if we adopt the definition that vorticity is 
non-acoustic and embodies possible acoustic sources or sinks. The present expres
sions for homentropic flow are further generalized by Myers in recent papers [139] 
and [140]. 

2.7.4 Acoustic energy and vortex sound 

Averaging (2.94) over one period for a periodic acoustic field and integrating over 
space yields, if / = 0: 

!P= jj{l.n)da= 

S 

j f j {povo' (Wi X Vi) + p'v' . (wo x vo)} dx (2.97) 

V 

12Use the vectoridentity a' (bxc) -c' (bxa). 
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where :P is the acoustic power generated by the flow. It is interesting to compare 
this expression with the one derived by Howe [72] for a low Mach number compact 
vorticity distribution w in free space in the presence of compact solid surfaces: 

:P = - J J J Po«wxv) .ua } dx 

V 

(2.98) 

where U a is the acoustic velocity defined as the part of the unsteady velocity field 
v' which is the gradient of a potential (irrotational \1xua = 0). While (2.97) is not 
restricted to low Mach numbers it only allows small time dependent perturbations 
w' of the time average vorticity Wo and in this sense is more restrictive than Howe's 
formula. Furthermore, (2.97) is difficult to interpret physically because v' includes 
the solenoidal velocity perturbations w' \1 x v'. 

Howe's equation (2.98) has a simple physical interpretation which in the same way 
as Lighthill's theory can be called an aero-acoustic analogy (vortex sound). In the 
absence of vorticity the flow of an inviscid and non-conducting fluid is described 
by Bernoulli's equation (1.31b): 

o<p 
+B=O. at (1.31b) 

If in the same way as in Lighthill's analogy13 we extend the potential flow v = \1 <p 

in a region where vorticity is present (w :/= 0) then we can think of the vorticity 
term (wxv) in Crocco's equation: 

av 
- +\1B = -wxv at (1.28) 

equivalent to an external force field f acting on the potential flow (acoustic field). 
Hence we have: 

f = -p(wxv) (2.99) 

which is the density of the Coriolis force acting on the fluid particle as a result 
of the fluid rotation. For a compact region at low Mach numbers we can neglect 
density variation and use the approximation: 

f = -Po(wxv). (2.100) 

l3In Lighthill's analogy the uniform quiescent fluid at the listener is extended into the source 
region. 
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In the absence of mean flow outside the source region we see by application of 
the integral form of Kirchhoff's energy equation (2.80) that we recover Howe's 
formula (2.98): 

/P = f f f (f. ua ) dx . (2.101) 

V 

This could also have been deduced from a comparison of the wave equation (2.74) 
in which we introduced the approximation B' = i' = p' / Po because Vo = 0: 

and the wave equation (2.59) (without mass injection, m = 0): 

1 a2 p' 
-- - V 2 p' = -V·f· c5 at2 

(2.102) 

(2.103) 

This corresponds to Powell's approximation of the vortex sound theory in which 
we neglect terms of order M both in the wave region and in the source region 
(B' = p' / Po). 

In the presence of a uniform flow outside the source region, Goldstein [60] finds 
the wave equation: 

(2.104) 

where 

Do a 
- = -+vo·V. 
Dt at 

The energy equation corresponding to (2.104) is for fo = 0: 

(2.105) 

which suggests a generalization of Howe's equation with f = Po(wxv): 

(2.106) 
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which corresponds with the use of B' = p' / Po + U a • Vo as acoustical variable, and 
I = B'(pv)' as the intensity with (pv)' = POUa + p'vo the fluctuation of mass flux. 

This generalization of Howe's equation is indeed derived by Jenvey [86]. Although 
the above discussion provides an intuitive interpretation of Jenvey's result, it is not 
obvious that Jenvey's definition of acoustic field agrees with Howe's definition. 
The range of validity of this energy corollary is therefore not obvious. 

In practice Howe's energy corollary is convenient because it is formulated by an 
integral. Similar to Lighthill's analogy in integral form, it is not sensitive to "ran
dom errors" in the model. Integration over the volume and averaging over a period 
of oscillation smooths out such errors. 

Exercises 

a) Calculate the minimum speed of sound of air/water mixtures at a depth of 100 m 
below sea surface. Assume a temperature To = 300 K. Is it true that this speed of 
sound is independent ofthe gas as long as y CplCv is the same? 

b) Derive (2.91) from (2.88). 

c) Is the choice of eo in the analogy of Lighthill arbitrary? 

d) Does the acoustic source ~(p' lea p') vanish for isentropic flows? 

e) Is the acoustic variable p' the most convenient choice to describe the sound produc
tion by unsteady combustion at low Mach numbers? 

t) Is the definition of acoustic intensity I = p'v' valid in the presence of a mean flow? 

g) Is it correct that when using B' as acoustic variable instead of p', one obtains a more 
accurate prediction of vortex sound in a compact region with locally a high Mach 
number? 

h) Is the equation p' = cap' always valid in a stagnant fluid? 

i) Is it correct that the acoustic impedance pc of an ideal gas depends only on the 
pressure p? 
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3 Green's functions, impedance, and 
evanescent waves 

3.1 Green's functions 

3.1.1 Integral representations 

Using Green's theorem we can construct an integral equation which combines the 
effect of sources, propagation, boundary conditions and initial conditions in a sim
ple formula. The Green's function G(x, tly, r) is the pulse response of the wave 
equation: 

(3.1) 

Note that the Green's function is a generalized function! (See Appendix C.) The 
pulse o(x y)o(t - r) is released at the source point y at time r and G is mea
sured at the observation point x at time t. The definition of G is further completed 
by specifying suitable boundary conditions at a surface S with outer normal n en
closing the volume V in which x and y are localized: 

n·VG +bG = O. (3.2) 

Furthermore, one usually assumes a causality condition for G that there is no field 
other than due to the a-source: 

G(x, tly, r) = 0 and 
a 
-G(x, tly, r) = 0 at (3.3) 

for t < r. When the boundary conditions defining the Green's function coincide 
with those of the physical problem considered the Green's function is called a 
·'tailored" Green's function. The integral equation is in such a case a convolution 
of the source q(y, r) with the pulse response G(x, fly, r). Of course, if the source 
q is known (and not dependent on the field) this integral equation is at the same 
time just the solution of the problem. A tailored Green's function is, in general, not 
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easy to find. It will, therefore, appear that sometimes, for certain specific problems, 
the choice of a Green's function which is not tailored is more convenient. 

Before we can discuss this, we have to consider some general properties of Green's 
functions, such as the important reciprocity relation: 

G(x, tlY, r) = G(y, -ilx, -t). (3.4) 

For the free field this relation follows immediately from symmetry and causality. 
In general [130], this property can be derived by starting from the definition of the 
two Green's functions G 1 = G(x, tlYt, it) and Gz = G(x, -tIYz, -iZ): 

aZGI z aZGI 
--at2 - Co ax~ = 8(x - Y1)8(t - it) 

I 

(3.5a) 

and 

(3.5b) 

Multiplying (3.5a) by Gz and subtracting (3.5b) multiplied by G1 yields after inte
gration over x and t in V from t = -00 until a time t'larger than i1 and iZ: 

l tf Iff {[G aZG I _ G aZGZ] 
-00 Z atZ I atZ 

V 

Partial integration of the left-hand side yields: 

Iff aG aG I/=t
f 

[Gz-
I 

- G t --
2]dx at at 1=-00 

V 

G1 aZGZ]} dx dt 
ax~ 

1 

where the first integral vanishes because for t -00 both Gl and Gz vanish 
because of the causality condition (3.3). At t = t' the first integral vanishes because 
-t' is earlier than -iz (t' > rz) and therefore both Gz = G(x, -t'IY2, -i2) = 0 
and aG2/at = 0 because of causality. The second integral vanishes because 
G 1 and Gz satisfy the same boundary conditions on boundary S. Replacing Yl and 
il by Y and i and Yz and iz by x and t in the right-hand side of (3.6) yields (3.4). 
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We now will prove that the Green's function G(x, tlY, r) also satisfies the equa
tion: 

(3.8) 

We first note that because of the symmetry of oCt - r) the time-reversed function 
G(x, -fly. -r) satisfies (3.1): 

02 

-G(x -tly -r) at2 • , 

02 

C5-2 G(x. -tly, -r) = o(x - y)8(t - r). (3.9) 
aXj 

Using now the reciprocity relation (3.4) and interchanging the notation x # yand 
f # r we find (3.8). 

We have now all that is necessary to obtain a formal solution to the wave equation: 

(3.10) 

After subtracting equation 3.8, multiplied by p'(y, r), from equation (3.10), mul
tiplied by G(x, flY, r). and then integration to y over V and to r between +to and 
t, we obtain: 

p'(x, t) = it+ fff q(y, r)G(x, flY, r) dydr 

V 

+ it+ fff[pl(y, r) ~2r~ Ga2p~~, r)] dydr 

V 

[t+ fff[ a
2
G a

2
p'(y r)] C5 p'(y, r)-2 - G 2' dydi. (3.11) 

to V aYi aYi 

Partial integration over the time of the second integral and over the space of the 
third integral in the right-hand side of (3.11) yields: 

p'(x, t) = it fff q(y, r)G(x, flY, r)dydr 

V 
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- c~ I: jj[pf(y, ~~ 
S 

[f[f[p'(Y, r) ~~ - Gap'~~' r)]dY L. (3.12) 

where the second integral vanishes for a tailored Green's function and the third in
tegral represents the effect of the initial conditions at r = to. For a tailored Green's 
function, and if to = -00, we have the superposition principle over elementary 
sources which we expect intuitively: 

p'(X,t) = j~oojjj q(y, r)G(x, tly, r)dydr. (3.13) 

V 

In chapter 4 and 6 we will again reconsider the Green's functions in more detail. 
For the present time we should remember that (3.12) or (3.13) is only an explicit 
solution of the wave equation if q is given. When the sound source q depends on 
the acoustic field p' these equations are integral equations rather than an explicit 
solution. 

Even in such a case the integral representation is useful because we have split up 
the problem into a purely linear problem of finding a Green's function and a second 
problem of solving an integral equation. Also as stated earlier the integral equation 
is most convenient for introducing approximations because integration tends to 
smooth out the errors of the approximations. 

The treatment given here is taken from the textbook of Morse and Feshbach [130]. 
An integral formula for the convective wave equation (2.50) and the corresponding 
Green's function and integral formulation are found in Goldstein [60]. 

3.1.2 Remarks on finding Green's functions 

In general, a (tailored) Green's function is only marginally easier to find than the 
full solution of an inhomogeneous linear partial differential equation. Therefore, 
it is not possible to give a general recipe how to find a Green's function for a 
given problem. Sometimes an expansion in eigenfunction or modes (like in duct 
acoustics; see chapter 7) is possible. 
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It is, however, important to note that very often we can simplify a problem already, 
for example by integral representations as above, by using free field Green's func
tions, i.e. the Green's function of the problem without the usually complicating 
boundaries. If the medium is uniform in all directions, the only independent vari
ables are the distance to the source Ix - yl and time lag t - r. Furthermore, the 
delta-function source may be rendered into a more easily treated fonn by spatial 
Fourier transfonnation. Examples are given in Appendix C.2.7 and section 4.6, 
while a table is given in Appendix E. 

3.2 Acoustic impedance 

A useful quantity in acoustics is impedance. It is a measure of the amount by 
which the motion induced by a pressure applied to a surface is impeded. Or in 
other words: a measure of the lumpiness of the surface. Since frictional forces are, 
by and large, proportional to velocity, a natural choice for this measure is the ratio 
between pressure and velocity}. A quantity, however, that would vary with time, 
and depend on the initial values of the signal is not very interesting. Therefore, 
impedance is defined via the Fourier transfonned signal as: 

Z(x; (0) = p(x; (0) 
v(x; (0) ·ns(x) 

(3.14) 

at a point x on a surface S with unit nonnal vector ns pointing int02 the surface. 
The impedance is a complex number and a function of (0 and position. The real part 
is called the resistance, the imaginary part is called the reactance, and its inverse 
1/ Z is called the admittance. 

In the most general situation the ratio Z p / (v· ns) is just a number, with a 
limited relevance. We cannot consider the impedance Z as a property of the surface 
S, because Z depends also on the a~oustic field. However, this is not the case for the 
class of so-called locally reacting linear surfaces. The response of such a surface 
to an acoustic wave is linear and pointwise, with the result that the impedance is 
indeed the same for any solution, and therefore a property of the surface alone. 

1 In mechanics, impedance denotes originally the ratio between a force amplitude and a velocity 
amplitude. In some texts, the ratio acoustic pressure/velocity is therefore called "impedance per area" 
or specific impedance. We reserve the nomenclature "specific impedance" to the (dimensionless) 
ratio of the impedance and the fluid impedance PocO. 

2Note that usually the normal vector of a surface is defined out of the surface. 
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Mathematically it is important to note that an impedance boundary condition is of 
"mixed type". Via the general Green's function representation 

fi = f f (fiVG + ikPocoVG) ·ns da 

S 

(3. 15a) 

the Helmholtz equation reduces to an integral equation in fi if surface S has an 
impedance Z: 

A ff( ikpoco ) A P = VG·ns + -Z-G pda. (3.15b) 

S 

Sometimes it is instructive to describe the coupling between two adjacent regions 
of an acoustic field by means of an equivalent impedance. Suppose we place be
tween these regions (say, region 1 and region 2) a fictitious interface, with an 
impedance such, that the presence of the surface would generate the same sound 
field in region 1 as there exists without surface. In that case we could say that the 
effect of region 2 onto region 1 is described by this impedance. 

For example, a free field plane wave ei(i)t-ikx, with k = {J)/co and satisfying i{J)Pov+ 
V p = 0, would not be reflected by a screen, positioned parallel to the y, z -plane, 
if this screen has the impedance Z = PoCo. So for plane waves and in the far field 
(where the waves become approximately plane) the fluid may be said to have the 
impedance POCo. This inherent impedance of the fluid is used to make Z dimen
sionless leading to the specific impedance Z / poco. 

Many other examples are found in I-dimensional (pipe-) models of acoustic sys
tems where local 3-dimensional behaviour is "packed" in an effective impedance. 
It may be worthwhile to note that for such models many authors find it convenient 
to divide Z by the surface S of the pipe cross section. In such a case the impedance 
is the ratio of the acoustic pressure p and the volume flux (u ·n)S leaving the 
control volume. The one-dimensional approach then allows the use of all mathe
matical tools developed for electrical circuits if we assume fi to be the equivalent 
of the electric voltage, (u· n) S the equivalent of the electric current, and a tube to 
correspond to a transmission line. Further, a compact volume is the equivalent of a 
capacity, and a compact orifice is a self induction. The pressure difference is in lin
ear approximation due to the inertia of the air in the orifice and hence proportional 
to the acceleration (8/8t)(u ·n) (section 4.4.3). 
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3.2.1 Impedance and acoustic energy 

For a quiescent fluid the acoustic power flow across a surface S is for a time
harmonic field (2.80) 

2n/w 

fP = II 2: I Re(p e
iwt

) Re(ev.ns) eiwr)dtdo-

S 0 

(3. 16a) 

(3.l6b) 

If the surface has an impedance Z this becomes 

fP = I I ~ Re(Z)lv .nsl2 dO". (3.17) 

S 

Hence, the real part ofthe impedance (the resistance) is related to the energy flow: 
if Re(Z) > 0 the surface is passive and absorbs energy, if Re(Z) < 0 it is active 
and produces energy. 

3.2.2 Impedance and reflection coefficient 

If we consider the acoustic field for x < 0 in a tube at low frequencies, we can 
write 

(3.18) 

where k w / co, p + is the amplitude of the wave incident at x = 0 from x < 0 
and p- is the amplitude of the wave reflected at x = 0 by an impedance Z. Using 
the linearized momentum conservation law Po(8v/8t) = -8p/8x we find: 

iJ(x)= 1 (p+e-ikx_p-eikX). 
poco 

If we define the reflection coefficient Ro at x = 0 as: 
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we see that because Z = p(O)/v(O) : 

Z - POCo 
Ro=--

Z + PoCo 
(3.21) 

In two dimensions we have a similar result. Consider a plane wave (amplitude 
p+), propagating in the direction (sin e, cos e) where e is the angle with the y-axis 
(c./. Fig. 3.6), and approaching from y < 0 an impedance wall at y = O. Here it 
reflects into a wave (amplitude p-) propagating in the direction (sin e, - cos 0). 
The pressure field is given by 

The y-component of the velocity is 

cos e 'k' D ( 'k e vex, y) = -- e-1 XSInu p+ e-1 ycos 
PoCo 

so we have for the impedance 

Z = p(x, 0) = poCo p+ + p- = _Po_c_o 1 + Ro 
V(x, 0) cos 0 p+ - p-

and for the reflection coefficient 

Z cosO - PoCo 
Ro = . 

Z cos e + PoCo 

3.2.3 Impedance and causality 

cosOl-Ro 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

In order to obtain a causal solution of a problem defined by boundary conditions 
expressed in terms of an impedance Z, the impedance should have a particular 
form. 

Consider an arbitrary plane wave Pi = J (t x/co) incident from x < 0, and 
reflecting into Pr = get + x/co) by an impedance wall at x = 0, with impedance 
Z(w). The total acoustic field is given for x < 0 by: 

p(x, t) = J(t - x/co) + get + x/co), 

vex, t) = _1_(J(t x/co) - get + x/co»). 
PoCo 

(3.26a) 

(3.26b) 
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The reflected wave g is determined via the impedance condition, and therefore via 
the Fourier transforms of the p and v. As we have seen above (equation 3.21), we 
have for the Fourier transforms j and g: 

A() Z(w) POCo 
g w = 

Z(w) + POCo 
(3.27) 

More information can be obtained, however, if we transform the boundary condi
tion back to the time domain 

p(O, t) = i: pea, w) eiwt dw 

= i: Z(w)v(O, w) eiwt dw 

leading to the convolution product: 

1 100 

p(O, t) = - z(t - r)v(O, r) dr 
2rc -00 

where 

z(t) = i: Z(w) eiwt 
dw. 

(3.28a) 

(3.28b) 

(3.29) 

(3.30) 

Since p(O, t) should on1y depend on the values of v(O, t) of the past (r < t), the 
Fourier transform z(t) of the impedance Z (w) has to satisfy the causality condition: 

z(t) = ° for t < 0. (3.31) 

Of course, the same applies to the admittance I/Z(w), when we express v(O, t) in 
p(O, t). This requires, under conditions as given in theorem (C.1) (p.302), 

Z(w) and I/Z(w) are analytic in Im(w) < O. (3.32) 

Furthermore, since both p and v are real, z has to be real, which implies that Z has 
to satisfy the reality condition: 

Z*(w) Z(-w). (3.33) 

Indeed, the mass-spring-damper system, given by 

Z(w) = R + iwm - iK/w, (3.34) 
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satisfies the reality condition if all parameters are real, but is only causal, with zeros 
and poles in the upper complex half plane, if all parameters are positive or zero. 

Equation (3.29) yields an integral equation for g if we use equations (3.26a) and 
(3.26b) to eliminate p and v: 

1 foo f(t) + get) = z(t - r)(j(r) - g(r») dr. 
2npoco -00 

(3.35) 

For any incident wave starting at some finite time (t = 0) we have f(t) = ° for 
t < 0, so that all in all the infinite integral reduces to an integration over the interval 
[0, t]: 

1 it f(t) + get) = z(t - r)(j(r) - g(r») dr. 
2npoco 0 

(3.36) 

For any time t, get) is built up from f(t) and the history of f and g along [0, t]. 

As an example, consider an impedance wall of Helmholtz resonator type which is 
widely used in turbo fan aircraft engine inlets [174]. Such a wall is described (see 
next chapter) by: 

Z(w) = Poco ( R + iwm - i cot(~;)). (3.37) 

where R, m, L > 0. Note that indeed Z*(w) = Z( -w). If we write wL = ~ - irJ co 
and T = ex, then 

( 
Z ) 1 + cot(~)2 

Re - = R +exrJ + coth(rJ) > ° 
POCo cot(~)2 + coth(rJ)2 

for rJ > 0, so Z is free from zeros in Im(w) < 0. From the causality condition it 
follows that the poles of cotg(~;) belong to the upper half of the complex w-plane. 
Hence, we can Fourier transform Z back to the time domain (C.35) to find: 

2 z(t) = Ro(t) + mo'(t) + oCt) + 2 ~ o(t _ 2nL) 
npoco ~ Co 

n=1 

(3.38) 

where O'(t) denotes the derivative of oCt). Substitution of (3.38) in (3.36) shows 
that g can be expressed as a finite sum. 
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56 3 Green's functions, impedance, and evanescent waves 

3.2.4 Impedance and surface waves 

Part of sound that is scattered by an impedance wall may be confined to a thin layer 
near the wall, and behave like a surface wave, similar to the type of evanescent 
waves discussed in section 3.3. Examples of these type of solutions are found as 
irregular modes in lined ducts (section 7.4), or as sound that propagates with less 
than the usuall/r2-decay along an acoustically coated surface. 

4 

3 

2 

1 

o 1--_--L._.L.......l...LL:1:!iI 

-1 

_5L-~-~-~_~~~-L_~_~~~~ 

-5 -4 -3 -2 -1 o 1 234 5 

Figure 3.1 Trajectories of a for varying Z = R + iX (no flow). 
FixedR&X=O:-O.l:-oo . FixedX&R=O:O.l:oo -----. 

Consider in (x, y)-space, y ~ 0, a harmonic pressure field p(x, y) eilt)t, satisfying 

where Z denotes the specific impedance (scaled on Poco) of the wall y = 0, and 
k = w/co. Suitable solutions are 

p(x, y) = A e-(ikax±ikyy) , y(a)=~ 

where a is to be determined. The solutions we are interested in remain restricted 
to the wall, which means that ± !m(y) ::: 0. The sign of y depends of course on 
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3.2 Acoustic impedance 57 

our definition of the square root. In order to have one and the same expression for 
all a, i.e. <X e-(ikax+ikyy\ it is therefore most convenient to select the branch and 
branch cuts of y such that Im(y) :::: 0 everywhere (see equation 3.48 and figure 
3.5). From the boundary condition it follows that the only solutions that can occur 
have to satisfy 

It follows that the only impedances that may bear a surface wave have to satisfy 

Im(Z) :::: O. 

The complex values of scaled wave number a, corresponding to these solutions, 
are given by 

a = ±Jl- Z-2. (3.39) 

Trajectories of these wave numbers, as function of Z, are plotted in figure 3.1. To 
include all complex values of Z, we have drawn two fan-shaped families of curves: 
one for fixed Re(Z) and one for fixed Im(Z). Note that un-attenuated waves occur 
for purely imaginary Z. The thickness of the layer occupied by the wave is of the 
order y = O(AI Im(Z)I), where A = 2:rr I k, the free field wave length. 

3.2.5 Acoustic boundary condition in the presence of mean flow 

The boundary condition to describe a vibrating impermeable wall is that the fluid 
particles follow the wall motion. In linearized form it is applied at the wall's mean 
or unperturbed position. Without mean flow, the linearized condition simply says 
that acoustic and wall's normal velocity match. 

With mean flow the situation is more subtle. Both the actual normal vector and 
the mean flow velocity at the actual position differ from the mean values by an 
amount of acoustic order, which has to be taken into account. This was recognized 
by several authors for various special cases. Myers gave in [137] the most general 
formulation, which we will summarize here. 

Consider the unsteady surface Set), which is a perturbation, scaling on a small 
parameter s, of the steady surface So. Associate to So an orthogonal curvilinear 
co-ordinate system (a, P. y) such that a = 0 corresponds to So. The mean flow Vo 

is tangent to the steady surface (section A.3), so 

vo·Va = 0 at a = O. 
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58 3 Green's functions, impedance, and evanescent waves 

Let Set) be described, to leading order, by 

a = sg({3, y, t) + 0(82). 

The condition of fluid particles following the surface Set) becomes 

a I 2 
at(a-8g)+(VO+8v).V(a-8g) 0(8) at a = eg, 

where 8V' is the acoustic velocity. The linearization we seek is the acoustic order, 
i.e. 0(8) when 8 -+ O. This appears to be [137] 

I (a ) g v ·n = - + vO'V -n·(n·Vvo) 
at IVai 

at a = 0, (3.40) 

where n is the normal of So, directed away from So into the fluid. 

An important application of this result is an impedance wall (section 3.2) with 
inviscid mean flow. This can be found, for example, in the lined inlet duct of a turbo 
fan aircraft jet engine. The steady surface So coincides with the impedance wall; 
the unsteady surface Set) is the position of a (fictitious) vortex sheet, modelling the 
boundary layer. 

Since a vortex sheet cannot support a pressure difference, the pressure at the wall 
is the same as near the wall in the flow. If the wall has an impedance Z :f= 0 for 
harmonic perturbations'" eiwt (see 3.14), the velocity and therefore the position g 
of Set) is known in terms of the pressure: 

g = -. lz(lvaIP) . 
IW a=O 

In the mean flow, the impedance wall is now felt as 

v' ·ns = (iw + vo'V - ns· (ns ,vvo»)~ 
lWZ 

at So. (3.41) 

As is usual, the normal vector n s of So is now selected to be directed into the wall. 
If Z == 0, the boundary condition is just P = O. For uniform mean flow along a 
plane wall (3.41) simplifies to 

vl.ns=(iw+vO·V). , 
lWZ 

a result, obtained earlier by Ingard [82]. An application of this generalised bound
ary condition (3.41) may be found in {175, 177]. 
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Of practical interest are the following observations. As the mean flow field is tan
gential to the wall, so Vo' ns 0, the following simplification may be derived 

i.e. the expression does not really involve derivatives of Vo. (Incidentally, the vector 
ns·Vns is tangential to the surface.) Furthermore, since V'(Povo) = 0, we may 
multiply left and right hand side of (3.41) by Po and obtain the form 

Pov' ·ns = PoP + (V + ns .Vns)' (~ovoP). 
Z lWZ 

(3.42) 

The last part between brackets may be further simplified to the following two forms 
(cj. [125,48]) 

(v + ns .Vns)' (~ovoP) = ns. Vx(nsx ~ovoP 
lWZ lWZ 

(3.43a) 

= ~~(h(f PovoP . 
ha or iwZ' 

(3.43b) 

where Vo = Ivol and a local orthogonal coordinate system (r, 0', v) is introduced 
associated to the walL Coordinate v is related to the wall normal vector n, coordi
nate r is the arclength along a streamline of va, and 0' is orthogonal to r in the wall 
surface. ha is a scale factor of 0', defined by h; = (o:x)2 + (a: y )2 + (iJ:Z)2. Note 
that (3.43b) involves no more than a derivative in streamwise direction. 

3.2.6 Surface waves along an impedance wall with mean flow 

Consider in (x, y)-space, y 2:: 0, a uniform mean flow in x-direction with Mach 
number M, and a harmonic field rv eiwt satisfying (see equation 2.50) 

o 2 02 02 

(ik + M-) P - (- + -)p = 0 ax ox2 oy2 

(ik+M~)V + Vp = 0 
ox 

where k wjco. Pressure p is made dimensionless on Poc5 and velocity von Co. 
At y = 0 we have an impedance boundary condition given by (see equation 3.41) 

ikZv = -(ik + M :x)p 

where Z denotes the constant specific wall impedance and v the vertical velocity. 
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Solutions that decay for y ~ 00 are of the type discussed in section 3.3 

p(x, y) = Ae-ikax-ikry. 

From the equations and boundary condition it follows that 

(1- aM)2 + rz = 0, 

For further analysis it is convenient to introduce the Lorentz or Prandtl-Glauert 
type transformation (see 7.42 and section 9.1.1), 

(3.44) 

with the branch and branch cuts of y(a) selected such that Im(y) :::: 0 (see equation 
3.48 and figure 3.5). 

As a result (see [173, 179]) we have the equation for the reduced axial complex 
wave number a as a function of Z 

2Mi 

---------------_.------------_.----------------, , , , , , 

: 0) : : I : , , , , , , , , 
........... 3 ....... . 

Im(Z) = 2~(1- M2)-~ 
. . . . :®: ......... 1"" II ···r··········· 

3 : 
(I-;M2)-Z ~ 

(3.45) 

Figure 3.2 Complex impedance Z-plane, with regions of different numbers of surface waves. 
No solutions in I, aHI Ell ... V, aSR E III ... V, aSL E IV ... V, aHS E V. 
Thick lines map to the branch cuts in figure 3.3. In the figure M = 0.5 is taken. 
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no sdlutions 

Figure 3.3 Complex reduced wave number a-plane, with regions of existence of surface 
waves. Thick lines map to the imaginary Z-axis in figure 3.2 (except for the part 
in region I where no solutions exist). In the figure, M = 0.5 is taken. 

By squaring we obtain a 4-tb order polynomial equation with 4 complex roots. 
So in our problem we have at most 4 solutions. To investigate the occurrence of 
these solutions, we analyse in detail the behaviour of possible solutions a along 
the branch cuts of y, because it is there where possible solutions may appear from 
or disappear to the second Riemann sheet of y. From a careful analysis (see [173, 
179]) it appears that in the Z-plane there are 5 distinct regions with 0, 1,2,3, and 
4 solutions a, while in the a -plane we can identify an egg-shaped area, of radius 
~ M-1, inside and outside of which we have 4 regions where solutions a may 
occur. See the figures 3.2, 3.3, and figure 3.4. 

Inside the egg we have acoustic surface waves (a right-running aSR and a left
running asd. Outside the egg we have hydrodynamic modes (they disappear to 
infinity with vanishing Mach number) aHS and aHl, probably both right-running, 
such that aHS is decaying (stable) and aHl is increasing (unstable). This unstable 
behaviour depends on the frequency-dependence of Z, and can be proven for an 
impedance of mass-spring-damper type (3.34) in the incompressible limit [173, 
179]. 

In the limit for hard wans, i.e. for IZI -+ 00 while ImZ < 0, the hydrodynamic 
surface waves aHl and aHS disappear to infinity while the acoustic surface waves 
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-4 -3 -2 -1 o 1 2 3 4 5 

Figure 3.4 Trajectories of a for varying Z R + iX and M = 0.5. 
Fixed R & X = -00:0.2:00 . Fixed X & R = 0:0.2:00 - - -

(J'SR and (J'SL approach ±1 in the following way 

(3.46) 

3.3 Evanescent waves and related behaviour 

3.3.1 An important complex square root 

The wave equation in 2-D has the very important property that a disturbance of 
(positive) frequency wand (real) wave number a in (say) x-direction is only radi
ating sound if frequency and wave number satisfy the inequality 

lal < w/co 
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3.3 Evanescent waves and related behaviour 63 

(a similar inequality holds in 3-D). Outside this regime the generated disturbances 
are exponentially decaying (evanescent) in y without an associated sound field. 
This is seen as follows. 

Consider in the 2-D half space y ::: 0 the harmonic sound field p(x, y, w) eiwt 

satisfying the Helmholtz equation 

where k = wleo. If p, generated by (say) the surface y = 0, is given at y = 0 as 
the Fourier integral 

p(x,O) = Po(x) = i: A(a) e-
iax da, 

it is easily verified that the field in y ::: 0 may be written as 

p(x, y) = i: A(a) e-iax-iyy da (3.47) 

with the important square root (with branch cuts along the imaginary axis, and the 
real interval la I :s: k; see figure 3.5) 

Im(y) :s: 0, y(O) = k. (3.48) 

The complex square root is here defined such that for any complex a the wave 
e-iax-iyy radiates or decays in positive y-direction. This is not necessary (we could 
always invoke the other solution'" e+iyy), but very convenient if complex a's are 
essential in the problem. 

If we consider solutions of the Fourier-integral type (3.47), the only a's to be con
sidered are real. We see that only that part of Po(x) is radiated into y > 0 which 
corresponds to real positive y, i. e. with I a I < k. The rest decays exponentially 
with y, and is undetectable for y -+ 00. This near field with la I > k is essen
tially of hydrodynamic nature, and becomes just an incompressible flow field for 
lal » k. If this is true for all a, including the largest a-I, which scales on the size 
of the object, it is equivalent to the condition of compactness (2.25), and shows 
that compact sources are acoustically inefficient. 

This distinction between radiating acoustic and non-radiating near field has far 
reaching implications. We give some examples. 
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Im(y) = 0 

~: , 

-i Re(y) > 0 
Re(y) = 0 Re(y) < 0 

[~ 
Im(y) ~ 0 

everywhere 

: Im(y) =0 , , , , 
. . , 
lmagmary, 

axiS, 

Figure 3.5 Branch cuts and signs of y = "ik2 - a2 in complex a-plane. 
The definition of y(a) adopted here is the branch of the multi-valued complex square 
root that corresponds to lm(y) :::: 0 for all a. Im(y) = 0 along the branch cuts. 
y(a) ::::: -ia sign(Rea) if JaJ » k, 

3.3.2 The Walkman 

The low frequencies of a small Walkman headphone are not radiated as sound. We 
do, however, detect the pressure when our ear is in the hydrodynamic near field. 

3.3.3 III-posed inverse problem 

Infinitely many boundary conditions are equivalent in the far field. The above 
boundary condition p(x,O) = Po(x) and any other with the same a-spectrum 
on [-k, k], for example 

p(x,O) = Po(x) = i: A (a) dx 

produce the same far field. Therefore, the inverse problem of determining Po from 
a measured far field is very difficult (ill-posed). Fine details, with a spatial structure 
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described by la I > k, are essentially not radiating. Indeed, waves are in general 
more scattered by large than by small objects. 

3.3.4 Typical plate pitch 

If a metal plate is hit by a hammer, bending waves are excited with time- and 
space-spectra depending on, say, frequency (w) and wave number (a) respectively. 
However, not all frequencies will be radiated as sound. As seen above, for any a 

only the frequencies larger than aco are radiated. Now, the smallest a occurring is 
by and large detennined by the size of the plate (if we ignore fluid-plate coupling), 
say 1 I L. Therefore, the smallest frequency that is radiated is given by Wmin 

aminCO = coiL. 

3.3.5 Snell's law 

medium 2 

transmitted 
wave 

....EL 
interfa£f. _ _ _ _ _ _ _ _ _ _ _ _ sine; __ iucid.eJJ.t . 

medium 1 

reflected 
wave 

Figure 3.6 Reflection and transmission at a discontinuity. 

wave 

Also the transmission of sound waves across an interface between two media is 
most directly described via this notion of sub- and supersonic wave crests. If a 
plane wave is incident onto the interface, the point of reflection in medium 1 gen
erates a disturbance in medium 2 (Fig. 3.6). With soundspeed Cl in medium 1 and 
angle3 of incidence l?l the disturbance velocity, measured along the interface, (the 

3Traditionally, the angle used is between the propagation direction and the normal vector of the 
interface. 
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phase speed) is cIl sin lJ1. Depending on l?'t and the ratio of sound speeds CdC2 

this disturbance moves with respect to medium 2 either supersonically, resulting 
into transmission of the wave, or subsonic ally, resulting into so-called total re
flection (the transmitted wave is exponentially small). In case of transmission the 
phase speeds of the incident and transmitted wave has to match (the trace-velocity 
matching principle, [158]). This yields immediately Snell's law ([42, 158]), from 
which we can determine the angle fh of the transmitted wave with the interface: 

sin l?'1 sin lJ2 (3.49) 
C1 C2 

3.3.6 Silent vorticity 

The field of a moving point source may be entirely acoustical, with essentially 
no other than convection effects. It is, however, possible, and physically indeed 
usual, that a fluctuating moving line force generates a surface or sheet of trailing 
vorticity. This vorticity is generated in addition of the acoustic field and is itself also 
of acoustic order, but, apart from some coupling effects, silent. Typical examples 
are (the trailing edge of) a fluctuating wing, a propeller blade, or a flag pole in 
the wind. The amount of generated vorticity is not a priori known but depends 
on details of the vortex shedding process (e.g. described by the Kutta condition), 
usually not included in an acoustic model. Indeed, this vorticity solution comes into 
the problem as an eigensolution as soon as continuity of the potential along mean 
flow streamlines is released as condition. A potential discontinuity corresponds to 
a vortex sheet. 

Although convected vorticity is silent (it exists without pressure fluctuations) its 
presence may still be acoustically important. Near a solid surface (typically the 
surface from which the vorticity is shed) the velocity corresponding to the free 
vorticity cannot exist, as the field has to satisfy the vanishing normal velocity con
dition. This induces a fluctuating pressure along the surface which radiates out as 
sound, apparently from the surface but of course really the vorticity is the source. 
Examples are the whistling sound produced by a thin pipe or wire in the wind (aeo
lian sound), and the trailing edge noise as far as it is due to shed-vorticity from 
a blunt-edged airfoil. See for example [170]. 

We will not consider the generation process here in detail, but only indicate the 
presence of the eigensolution for a distinct source far upstream. 
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Consider in a 2D medium a uniform mean flow (V, 0) with velocity perturbations 
V<p and pressure perturbations p small enough for linearization. Bernoulli's equa
tion and the mass conservation equation become then 

a<p a<p 
p0ai + PoV ax + P = 0, (3.50a) 

ap op 2 2 - + V- + POCo V <p = 0, at ax 
(3.50b) 

<p -+ 0 for Iyl -+ 00. (3.50c) 

This may be combined to a wave equation, although the hydrodynamic field is more 
easily recognized in the present form4 . Possible eigensolutions (solutions without 
source) for the free field problem (no solid objects) are given by 

p(x,y,t) =0 

<p(x, y, t) = I(x - Vt, y) 

V 2/(x, y) = o. 

(3.51a) 

(3.5Ib) 

(3.5le) 

for suitable functions I(x, y). A non-trivial solution I decaying both for y -+ 
00 and y -+ -00 is not possible if I is continuous, but if we allow I to be 
discontinuous along, say, y 0 (any surface parallel to the mean flow is possible), 
of course under the additional conditions at y = 0 of a continuous pressure p and 
continuous vertical velocity o<pjoy, then we may find with Fourier transformation 

<p(x, t) = [: F(a) sign(y) e-aIYI-ia(x-Ut) 00. (3.52) 

This discontinuity relates to a concentrated layer of vorticity (vortex sheet), and is 
a typical (hydrodynamic) phenomenon of acoustics with mean flow. The shedding 

4Equations (3.50a,3.50b) may be combined to the convected wave equation 

cijV291- (91tt +2Ucpxt + U291xx) 0 

which reduces under the Prandtl-Glauert transformation (see 7.42) 91(x, y, t) = 'if! (X, y, T) with 
X = xl p, T {3t + Mxleo{3, M = U leo, {3 = v'(l M2) to the ordinary wave equation for 'if! , 
and a pressure given by p = -po('if!r + U'if!x)/f3. 

In this way we may obtain from any no-flow solution 'if! a solution to the problem with flow. 
However, care should be taken. 

An integrable singularity in 'V'if!, as would occur at a sharp edge, corresponds without flow to a fi
nite pressure. With flow it corresponds to a singular pressure (from the 'if!x-term). If this is physically 
unacceptable, for example if the edge is a trailing edge and the sound field induces the shedding of 
vorticity, a Kutta condition of finite pressure is required and the solution is to be modified to include 
the field of the shed vorticity (a discontinuous rp). 
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of vorticity (on the scale of the linear acoustics) would not occur without mean 
flow. 

For a harmonic force (for example, a Von Kanmin vortex street modelled by an 
undulating vortex sheet) with frequency w we have only one wave number ex = 
wi U in the problem: 

({)(x, t) = Fo sign(y) exp(iwt - i ~x - ~ IYI). (3.53) 

This important parameter wi U is called the "hydrodynamic wave number". To
gether with a suitable length scale L it yields the dimensionless number wL I U 
called "Strouhal number". 

It may be noted that this hydrodynamic field has an averaged intensity, directed in 
x-direction, equal to (note that p == 0) 

1 I O({) 12 w
2 

2 
(l.ex)=ZuPO ax = U2 Wo1 

The total power output in flow direction is then 

100 (I, ex) dy = w Wol2, 
-00 U 

(3.54) 

In the case of an acoustic field (for example the field that triggered the vortices 
associated to the hydrodynamic field) the intensity has a non-zero component in y
direction, and in addition to the purely hydrodynamic power (3.54) some acoustic 
energy disappears into, or appears from, the vortex sheet y = 0 ([105, 170,75,62]). 

Exercises 

a) Consider the sound produced by thunder, modelled as an infinite line source, fired 
impulsively. Explain the typical long decay after the initial crack. 

b) Consider in (x, y, z)-space the plane z 0, covered uniformly with point sources 
which are all fired instantaneously at t r: 
8(t r)8(x xo)8(y - yo)8(z) (zo 0). Calculate the sound field at some distance 
away from the plane. 

c) Consider an infinite equidistant row of harmonically oscillating line sources 
8(x nd)8(y) eiwt , placed in the x, z-plane a distance d from each other. Show 

that constructive interference in the far field win only occur in directions with an 
angle e such that 

kd cos e = 2mn; 

where k w/co. 
m = 0,1,2, ... 

RienstraHirschberg 20 August 200816:00 



3.3 Evanescent waves and related behaviour 69 

d) The same question for a row of alternating line sources. 

e) What is the dimension of 8(x) if x denotes a physical coordinate with dimension 
"length"? 

t) Prove the identities (C.37a) and (C.37b). 

g) Consider a finite volume V with surface ,s and outward surface normal n. On V 
is defined a smooth vector field v. Prove, by using surface distributions, Gauss' 
theorem 

Iv 'V·vdx = L v·nda. 

h) Work out the expression (3.36) for the reflected wave g in the case of formula (3.38) 
with m O. 

i) We define an ideal open end as a position at which p = 0 in a tube. Calculate 
reflection coefficient R and impedance Z for such an open end. 

j) The same question for an ideal closed end defined by fj = O. 

k) Given a uniform duct between x = - 00 and x 0, with impedance Zo of the plane 
x 0 seen from the x < o side. Calculate ZL, the impedance of the plane x -L, 
seen from x < O. 

l) Prove causality of the impedance Z(w) R+iwm-iK /w. Find the inverse Fourier 
transform of both Z and Y = 1/ z. 
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4 One dimensional acoustics 

4.1 Plane waves 

Plane waves are waves in which the acoustic field only depends on the spatial co
ordinate (say: x) in the direction of propagation: p(x, t), p(x, t), vex, t), .... Such 
waves may emerge, for example, as approximations for spheric waves at large dis
tance from a point source, or as waves propagating at a frequency lower than a 
critical frequency fe called the cut-off frequency in a hard-walled pipe. As we will 
see from the discussion in section 6.4 and section 7.2 the cut-off frequency fe is of 
the order of col2d where d is the pipe width (or diameter). The exact value of fe 
depends on the shape of the pipe cross section. 

If we can neglect friction, then below the cut-off frequency, the (propagating part 
of the) acoustic field in a pipe consists only of plane waves. The condition for the 
validity of a frictionless approximation yields a lower bound for the frequency we 
can consider. At high frequencies, the effect of viscosity is confined to boundary 
layers of thickness OA = (2vlw)1/2 (where v 'II p is the kinematic viscosity of 
the fluid) near the walls. In order to make a plane wave approximation reasonable 
we should have thin viscous boundary layers: oAld « 1. Hence the frequency 
range in which a plane wave approximation is valid in a pipe is given by: 

2v Co 

rrd2 « f < 2d' 

For air v = 1.5 x 10-5 m2 Is while for water a typical value is v = 10-6 m2/s. 
Hence we see that a plane wave approximation will in air be valid over the three 
decades of the audio range for a pipe with a diameter d = 0(10-2 m). (Check 
what happens for larger pipes.) This implies that such an approximation should 
be interesting when studying pulsations in pipe systems, musical acoustics, speech 
production, etc. 

We therefore focus our attention in this chapter on the one-dimensional approxi
mation of duct acoustics. For simplicity we will also assume that any mean flow 
uo = uo(x) is also one dimensional. We wil1 consider simple models for the bound
ary conditions. We will assume that the side walls are rigid. This implies that there 
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is no transmission of sound through these walls. This is a drastic assumption which 
excludes any application of our theory to the prediction of environmental noise in
duced by pipe flows. In such cases the transmission of the sound from the internal 
flow to the environment is a crucial factor. A large amplitude in the pipe may be 
harmless if the acoustic energy stays inside the pipe! Extensive treatment of this 
transmission problem is given by Norton [145] and Reethof [168]. In general the 
transmission of sound through elastic structures is described in detail by Cremer 
and Heck! [28], and Junger and Feit [90]. We further ignore this crucial problem. 

In principle the approximation we will use is limited to pipes with uniform cross 
sections A or, as we will see in section 8.4, to pipes with slowly varying cross 
sections (dA/dx « -JA « A). The most interesting applications of our ap
proximation will concern sound generated in compact regions as a result of sud
den changes in cross section or localized fluid injection. As we consider low fre
quencies (f < co/2d) a region with a length of the order of the pipe width d will 
be by definition compact. We will treat these regions separately, taking possible 
three dimensional effects into account. The (inner-) solution in the compact region 
is approximated by that of an incompressible flow or a region of uniform pressure1 

• 

The boundary conditions for this compact region are related to the plane wave 
regions by means of integral conservation laws (Appendix A). In this way we will 
consider a large variety of phenomena (temperature discontinuities, jumps in cross 
sections, multiple junctions, air bubbles, turbulence ... ). In the present chapter we 
will assume an infinitely long or semi-infinite pipe. This is a pipe which is so long 
that as a result of friction the waves travelling towards the pipe end do not induce 
significant reflections. This will in fact exclude the accumulation of acoustic energy 
and phenomena like resonance. This effect is discussed in the next chapter. 

A consequence of this assumption is that the acoustic field will not have a large 
amplitude and that we can usually neglect the influence of the acoustic field on a 
source. The flow is calculated locally with our previously discussed compact region 
approximation ignoring any acoustical feedback. This excludes fascinating effects 
such as whistling. These effects will be discussed in chapter 5. 

If the end of the pipe is part of the problem, we will include this end by a lin
ear boundary condition of impedance type. The acoustic impedance is a general 
linear relation in the frequency domain between velocity and pressure, i.e. a con
volution product in the time domain (section 3.2). Since pressure cannot depend on 

1 For example. the air density fluctuations in an oscillating acoustically compact air bubble in 
water cannot be neglected, but we can assume that they are uniform within the bubble. 
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the future of the velocity (or vice versa) the discussion of such a linear boundary 
condition involves the concept of causality (section 3.2). 

We will show how the Green's function formalism can be used to obtain informa
tion on aero-acoustic sound generation by turbulence and to estimate the scattering 
of sound by a temperature non-uniformity. These problems will be reconsidered 
later for free field conditions in chapter 6. It will then be interesting to see how 
strong the effect of the confinement is by a comparison of the results obtained in 
this chapter and chapter 5 with those obtained in chapter 6. 

Convective effects on the wave propagation will be discussed in chapter 9. We 
restrict ourselves now to very low mean flow Mach numbers outside the source 
regions. 

4.2 Basic equations and method of characteristics 

4.2.1 The wave equation 

We consider a one-dimensional flow in a pipe with uniform cross section. If we 
neglect friction the conservation laws of mass and momentum are for a one dimen
sional flow given by: 

ap ap au a (pf3) 
-+u-+p-=--at ax ax at 

(
au au) ap 

p -+u- +-=ix at ax ax 

(4.1a) 

(4.1b) 

where pf3 corresponds to an external mass injection in the flow and ix is an external 
force per unit volume. 

We assume now that the field consists of a uniform state (Po, Po, uo), plus a pertur
bation (p', p', u') small enough to allow linearization: 

P=PO+P,' 

P=Po+P', 

u=uo+u'. 
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aplat and lx, being the cause of the perturbation, must therefore by definition be 
small. We substitute (4.2a-4.2c) in (4.1a) and (4.1b). Neglecting second and higher 
order terms we obtain the linearized equations: 

ap' ap' au' ap 
+uo- + po- = po-at ax ax at 

(4.3a) 

au' au' ap' 
po- + pouo- + - = Ix at ax ax 

(4.3b) 

We can eliminate p' by using the constitutive equation: 

(4.4) 

which implies that we assume a homentropic flow. 

A one-dimensional wave equation is obtained by subtracting the divergence of the 
momentum conservation law (4.3b) from the convected time derivative (at + uoox ) 

of mass conservation law (4.3a) (to eliminate ul
): 

a a 2 a2p' (pp of 
(- + uo-) pi - c2 __ = c5(po- _ -2.). 

at ax 0 ax2 at2 ax 
(4.5) 

4.2.2 Characteristics 

As an alternative we now show the wave equation in characteristic form. This al
lows a simple geometrical interpretation of the solution of initial condition and 
boundary condition problems with the help of a so-called (x, t) diagram. In acous
tics this procedure is just equivalent with other procedures. However, when consid
ering high amplitude wave propagation (non-linear acoustics or gas dynamics) the 
method of characteristic will still allow an analytical solution to many interesting 
problems [205, 102, 152]. Also the characteristics playa crucial role in numerical 
solutions as they determine optimal discretization schemes, and in particular their 
conditions of stability. 

Using the constitutive equation 

ap +u ap =c2(ap +uap) 
at ax at ax 

we can write the mass conservation law (4.1a) as: 

~(ap + u ap) + c au = ~ a(pp) 
pc at ax ax p at 

RienstraHirscbberg 20 August 200816:00 



74 4 One dimensional acoustics 

by addition, respectively subtraction, of the momentum conservation law (4.1 b) 
divided by p, we find the non-linear wave equation in characteristic form: 

(
a a )( f dP ) Ix c a(pf3) -+(u±c)- u± - =-±---. 
at ax pc p p at 

In the absence of source terms this simply states that along the characteristics c± 

the Riemann invariant r± is conserved: 

+ I f dp r = u + - = constant along 
pc 

I fdP r- = u - - = constant along 
pc 

In the presence of source terms we have: 

± ± f ( zaf3 f) r - r 0 = Poco - ± Co x dt 
c± at 

c+ = {(X,t)I: = u+c} 

c- = {(x, t)1 : = u - c} 

(4.6a) 

(4.6b) 

(4.7) 

where the integration is along the respective characteristic. For an ideal gas with 
constant specific heat we find by using the fact that the flow is isentropic: 

In linear approximation in the absence of sources we have 

I. dx 
r± = u' ± ~ along the hnes defined by c±: - = uo ± co. 

poCo dt 

4.2.3 Linear behaviour 

In the absence of source terms (the homogeneous problem) we can write the linear 
perturbation pi as the sum of two waves F and fJ, travelling in opposite directions 
(along the c+ and c- characteristics): 

pi = F(x - (co + uo)t) + fJ,(x + (co - uo)t), 

u' = _1_ (F (x - (co + uo)t) - fJ,(x + (co - uo)t»). 
poCo 
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t 

I II 

---...... x 

Figure 4.1 Solution by means of characteristics. 

This solution can be readily verified by substitution into the homogeneous wave 
equation. The functions :F and 9. are detennined by the initial and boundary con
ditions. As an example we consider two simple problems for the particular case of 
a quiescent fluid Uo = O. 

Let us first consider a semi-infinite pipe closed by a rigid piston moving with a 
velocity up(t) starting at t = 0 and x = O. If up/co « 1 we can use an acoustic 
approximation to solve the problem. Using the method of characteristics we first 
observe in a (x, t) diagram (figure 4.1) that there are two regions for x > 0: 

region I below the line x = cot 

and 

region n above the line x = cot. 

Region I is a region in which perturbations induced by the movement of the piston 
cannot be present. The characteristic c t : x = cot corresponds to the path of the 
first disturbance generated at t = 0 by the starting piston. Hence the fluid in region 
I is undisturbed and we can write by considering a c- characteristic (el ) leaving 
this region: 

pi _ Pocou' = O. (4.9) 

This c1 characteristic will meet the piston path xp(t) = f~ updt' where we have: 

f 
U = up (4.1Oa) 
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because we assume the fluid to stick to the piston (up « co). Hence from (4.9) and 
(4.lOa) we have the pressure at the piston for any time: 

(4. lOb) 

Now starting from a point xp(t) on the piston, we can draw a c+ characteristic (ct) 

along which we have: 

(4.11) 

where te is the retarded or emission time, implicitly given by 

(4.12) 

This is the time at which the disturbance travelling along ct and reaching an ob
server at (x, t) has been generated by the piston. At any point (x, t) along ct we 
can find a c"2 characteristic originating from the undisturbed region for which (4.9) 
is valid. Combining (4.9) and (4.11) we see that along ct we have: 

u' = up(te) 

pi = Pocoup(te ). 

(4. 13 a) 

(4.13b) 

We could have obtained this solution directly simply by using (4.8a,4.8b), the gen
eral solution of the homogeneous equation. Because the tube is semi-infinite and 
the piston is the only source of sound, we have only waves travelling in the positive 
x direction so that (with Uo = 0): 

pi = :F(x - cot) 

u' = :F (x - cot) / PoCo. 

(4. 14a) 

(4. 14b) 

Using the boundary condition u' = up at the piston x = xp we find the retarded 
(or emission) time equation (4.12) and so the solution (4. 13a,4.13b). 

We now consider an initial value problem in a semi-infinite pipe. Suppose that the 
pipe is closed at x = 0 by a fixed rigid wall (u' (x = 0) = 0) and that in the region 
o < x < L the fluid is undisturbed while for x > L there is originally a uniform 
disturbance (pb, ub) of the uniform quiescent fluid state valid for x > 0 (pb, ub = 
0) (figure 4.2). We can easily delimit the uniform regions I and II in which the 
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1 c 
t 

A 

p' =Po 
u' = Uo 

L x-

Figure 4.2 (x, t) diagram for the initial value problem. 

initial state will prevail by drawing the ci and c1 characteristics emanating from 
the point (x, t) = (L, 0). 

The state in region IV at the closed pipe end is the next easiest one to determine. 
We draw the characteristic c2' emanating from region II along which we have: 

• I I I I . P - pocou = Po pocouo· (4.15) 

At the closed pipe end u' = 0 so that for t > Llco: 

(4.16) 

In region III we obtain the solution by considering the intersection of the waves ci 
and c1 emanating from regions I and II respectively: 

ci: p' + Pocou' = 0 
I I I I 

P - PoCoU = Po - Pocouo· 

Hence: 

I 1 ( I 
Pm '2 Po Pocouo) 

I 1 ( I um = -'2 Po Pocouo) I PoCO· 

(4. 17a) 

(4.17b) 

(4. 18a) 

(4.18b) 

Finally for any point in the region IV above the line x = Co (t - L I co) we have: 

C+. p' + P I I C I 3 . OCOU = Po - Po oUo 
- I I I I 

c3 : P - Pocou = Po - Pocouo 

(4. 19a) 

(4. 19b) 
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so that we have: 

u;V = 0 
" ! 

PIV = Po POCOUO 

(4.20a) 

(4.20b) 

as we already found at the closed pipe end (x = 0). Of course we could have solved 
this problem without an (x, t) diagram, but this requires quite an intellectual effort. 

From the previous two examples simple rules are obtained to use an (x, t) diagram 
in combination with the method of characteristics: 

a) Indicate on the x and t axis the initial and boundary conditions. 

b) Draw the characteristics delimiting the undisturbed regions in which the ini
tial conditions prevail. 

c) Consider reflection of these boundary characteristics at boundary conditions. 
(Contact surface delimiting regions of different uniform state Po, Po, Co, .. , 
will be discussed in section 4.4.) This yields a further subdivision of the 
(x, t) plane in uniform regions. 

d) Determine the state at the boundaries at the moment the first message from 
the initial conditions arrives. 

e) Determine the state in regions where two characteristics of opposite families 
c+ and c- emanating from regions where the solution is known meet. 

While for initial value problems the method of characteristics is most efficient, we 
will use Fourier analysis when we consider boundary condition problems. For a 
steady harmonic perturbation equation (4.8a,4.8b) becomes: 

pi p+ eiwt-ikx +p- eiwt+ikx 

u' 1 (p+ eiwt-ikx _p- eiwt+ikx). 

PoCo 

(4.21a) 

(4.21b) 

where p± are amplitudes which are functions of w, and k is the wave number 
(k = w!co). 
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4.2.4 Non-linear simple waves and shock waves 

A general solution of the non-linear one dimensional homentropic flow equations 
can only be obtained by numerical methods. In the particular case of a wave propa
gating into a uniform region the solution is considerably simplified by the fact that 
the characteristics emanating from the uniform region all carry a uniform message. 
We will show that as a consequence of this the other characteristics in this wave 
are straight lines in the (x, t)-plane. Such a wave is called a simple wave. 

Let us for example consider a wave propagating along c+ -characteristics which 
meets c--waves emanating from a uniform region. The message carried by the 
c- -characteristics is: 

r- = u - J dp = ro for all c-. 
pc 

(4.22) 

If we now consider a c+ -characteristic in the simple wave, we have in addition that 
r+ is equal to another constant, specific to that particular c+: 

r+ = u + J dP. (4.23) 
pc 

Addition and subtraction of (4.22) and (4.23) yields, along the c+, the result 

u = ~ (r+ + ro)' (4.24a) 

! dp = 1(r+ _ r-). 
pc 2 0 

(4. 24b) 

Hence, the velocity u is constant along the c+ considered. As in addition to the 
thermodynamic quantity J (dpj pc) also the entropy s is constant along the c+ (be
cause the flow is homentropic), we conclude that all thermodynamic variables2 are 
constant along the c+. In particular the speed of sound c = ~(apjap)s is constant 
along a c+ in the simple wave. Therefore, the slope (u + c) of the c+ characteristic 
is constant, and the characteristic is a straight line in an (x, t)-diagram. 

As an example of an application we consider the simple wave generated for x > 0 
by a given boundary condition p(O, t) at x 0, assuming a uniform quiescent 
fluid (uo = 0) with a speed of sound c = Co for t < O. The sound speed c(O, t) at 
x = 0 is calculated by using the equation of state 

p (p)y 
Po = Po 

---
2Por a homogeneous fluid the thermodynamic state is fully determined by two thermodynamic 

variables. 
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which implies 

C = (~)~. 
Co Po 

The message from the C- -characteristics implies 

2co (c ) 2co (( P ) 
u = y _ 1 Co - 1 = Y1 Po I). 

We can now easily construct the simple wave by drawing at each time t the c+ -
characteristic emanating from x = O. We see from these equations that a compres
sion t,p(O, t) > 0 implies an increase of both c(O, t) and u(O, t), and of course 
the opposite for a decompression or expansion. As a result, characteristics at the 
peak of a compression wave have a higher speed (u + c) than those just in front 
of it. This results into a gradual steepening of the compression wave. This non
linear deformation of the wave will in the end result into a breakdown of the theory 
because neighbouring c+ -characteristics in a compression intersect for travelling 
times larger than ts or distances larger than Xs given by 

(4. 25a) 

(4.25b) 

For weak compressions we find the approximation for an ideal gas with constant 
y: 

'" _ 2ypoco [(i1P) J-1 

XS - cots - -
Y + 1 at x=O 

(4.26) 

For t > ts or x > Xs the solution found by integration of the differential equations 
becomes multiple valued and loses its physical meaning. 

The approximation on which the equations are based will already fail before this 
occurs because the wave steepening involves large gradients so that heat conduc
tion and friction cannot be ignored anymore. This limits the process of wave de
formation. For large pressure differences across the wave the final gradients are so 
large that the wave thickness is only a few times the molecular mean free path, 
so that a continuum theory fails. The wave structure is in the continuum approxi
mation a discontinuity with jump conditions determined by integral conservation 
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laws. We call this a shock wave. Apart from discontinuous, the solution is also 
dissipative, as there is production of entropy in the shock wave. 

If the wave is initiated by a harmonic perturbation p/(O, t) = P cos(wt), the shock 
formation distance corresponding to the largest value of fr pi is given by 

2ypo 
-= 

Co (y + 1)jJ" 

In a pipe segment, closed on both sides by a rigid wall, a wave travels easily hun
dreds of wave lengths before it is attenuated significantly by friction. Therefore, 
even at apparently modest am-
plitudes of p/po = 0(10-2) 

shock waves can appear in a 
closed tube driven by a piston 
at its resonance frequency. Re
cent papers discussing such ef
fects are the review of Crighton 
([34]) and the work of Ock
endon e.a. ([148]). When the 
pipe segment is open at one 
end, the wave is inverted each 
time it reflects at the open end. 
The non-linear wave distortion 
due to the wave propagation 
during half an oscillation pe
riod is compensated, at least 
in first approximation, in the 
following half period. Under 
such conditions non-linear ef
fects due to flow separation at 
the open pipe termination (Dis
selhorst & Van Wijngaarden 

hom exit pressure Ph 

.--. 1 ('Ij 

ff 

~ 0.5 '-' 

0:. 0 ."'- --
.--. 1 ('Ij 

mf 

~ 
,..l.d 0.5 '-' 

0:. 0 ~-

'2 1 
p 

p.. 
,..l.d 0.5 '-' 

~ 0 
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t (s) 

Figure 4.3 The pressure signal measured at the exit of the 
hom for three playing levels: piano (p), mezzo
forte (mf), and fortissimo (ff). 

[40]) or even turbulence in the acoustical boundary layer ([121], [214], [3], [45]) 
can appear before non-linear wave distortion becomes dominant. 

However, when the pipe is driven by a strongly non-harmonic pressure signal 
pi (0, t), the wave steepening may lead to a shock wave formation before the open 
end has been reached. This may, for example, occur in a trombone where the pres
sure at the exit of the hom shows very sharp peaks, as shown in figure (4.3). The 
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increase of the wave distortion with the amplitude explains in such a musical instru
ment the increase of brightness (the higher harmonics) of the sound with increasing 
sound level (Hirschberg [67]). In open-air loudspeaker horns wave propagate in 
non-linear way. In mufflers of combustion engines shock waves are also common. 

When the non-linear deformation is small, the generation of the first harmonic Pt 
at 2wo by a signal p, originally harmonic with frequency Wo, is given by [158]: 

(4.27) 

4.3 Source terms 

While Ix is a source term in (4.1b) which can be realized by non-uniform gravita
tional or electromagnetic forces, the source term 02 (pfJ) / ot2 in (4.1a) does not COf

respond to the creation of mass (because we consider non-relativistic conditions). 
Hence if we introduce a source term &2(pfJ)/&t2 this term will be a representation 
of a complex process which we include in the I-D inviscid flow model as a source 
term. For example the effect of fluid injection through a porous side wall in the 
pipe can be considered by assuming a source term in a uniformly fined pipe with 
rigid impermeable walls. 

In the case of Ix we may also find useful to summarize the effect of a complex 
flow such as the flow around a ventilation fan by assuming a localized momen
tum source in a one dimensional modeL This is called an actuator disk model. 
Of course, this kind of representation of a complex process by a simple source is 
only possible if we can find a model to calculate this source. This is only attractive 
if a simplified model Of an order of magnitude estimate can be used. When the 
source region is compact we will be able to find such simple relationships between 
a simplified local flow model and the corresponding I-D sources by applying inte
gral conservation laws over the source region and neglecting variations in emission 
time over the source region. The general treatment of the aero-acoustic sources has 
already been given in section 2.6. We focus here on some additional features which 
we will use in our applications of the theory. 

In a compact region of length L and fixed volume V enclosed by a surface S, we 
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will use the conservation laws for mass and momentum in integral form (App. A); 

:t III pdx + II pv·nd<T = 0 (4.28a) 

V s 

:r III pvdx+ IICp+PVV).nd<T = III fdx (4. 28b) 

V S V 

where P is the stress tensor (Pij). 

Within the volume V we describe the flow here in full three dimensional detail, 
so (4.28a) has no source term. However, the source term o2(pf3)jot2 in the one 
dimensional representation of the mass conservation law is supposed to include 
the effect of the volume integral (dj dt) J J J p dx. In order to understand this we 
compare the actual source region with a I-dimensional representation of this source 
region (figure 4.4). Integration of (4.1a) over the source region yields for a uniform 

_~ _____ N •• _________________________ • ______ W ____ ._ • 

V 

L 
Pigure 4.4 One dimensional representation of source region. 

pipe cross section: 

lL op lL o(pf3) 
- dx + (puh - (PU)l = -- dx. 

o ot 0 ot 

. 
~s 

:n 
:-. 
2 

(4.29) 

If we assume L to be small compared to the acoustic wave length (compact) and 
the source term o2(pf3)jot2 to be uniform we can write in linearized form: 

Bf3 ! at = flu 8(x y) (4.30) 
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for a small source region around x = y. The value of l1u' = (u; - uD to be used 
in (4.30) is found by application of (4.28a) to the actual situation. If we assume 
the flow to be uniform at the planes 1 and 2 of cross-section A, where it enters and 
leaves the volume V, we obtain: 

A[(puh - (pu)d = - :t f f f p dx + C{Jex 

V 

(4.31) 

where C{Jex is the externally injected mass flux into V through the side walls. For 
identical fluids at both sides and in linearized approximation for a compact source 
region we have: 

APol1u' = - ! fff p' dx + C{Jex· 

V 

(4.32) 

Since typical wavelengths are much larger than the compact source region, density 
and pressure gradients are negligible and we can replace the volume integral by the 
averaged value. We can write for a homentropic flow 

l1u' = _ _ v_ dp' + C{Jex • 

ApoC5 dt Apo 

In a similar way, if we can neglect the volume contribution (d/dt) fff pv dx to the 
integral conservation law, we obtain in linear approximation (neglecting Pou; 2 and 
Pou; 2): 

Ix = I1p'8(x - y). (4.33) 

This source term for the I-dimensional wave equation can be used as a representa
tion of a complex flow such as that around a ventilation fan. 

As an example of a sound source we consider now the effect of the convection of 
a small fluid particle with a density p and speed of sound c (different from Po and 
co) passing through a sudden change in pipe cross section in which we assume a 
steady isentropic and subsonic flow uo(x) (figure 4.5). We will first consider the 
problem by using the linearized form of the integral conservation laws for small 
differences in density and speed of sound «p - Po)1 Po « 1 and (c - co)/co « 1). 
A more formal discussion of this effect is given by Morfey in [127]. 

If the volume Vp of the fluid particle is much smaller than the nozzle volume V 
and if the properties of the fluid particle do not differ much from that of the rest of 
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Figure 4.5 Particle convected with the main flow UO(x) through a nozzle. 

the fluid, we can assume that the particle is convected with the undisturbed steady 
flow velocity uo(x). As the particle is small the pressure over the particle will be 
uniform and in first approximation equal to the main flow pressure Po(x). Po(x) is 
given by Bernoulli's equation: 

Po(x) + 4Pou5(x) = constant. (4.34) 

The variation in pressure Po (x ) will induce a volume variation of the particle, ad
ditional to that of the mean flow, which is related to the variation in the fluid com
pressibility 

1 (QP) 1 
:x = p op s = pc2 

(4.35) 

by: 

(4.36) 

which implies a source term: 

(4.37) 

where: 

(4.38) 

because we assume that the particle is convected with the mean flow velocity Uo. 
Furthermore the particle will exert an additional force on the fluid due to the density 
difference (p - Po) which implies a force source term: 

(4.39) 
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This force is due to the difference in inertia between the particle and its environ
ment. Note that for an ideal gas the compressibility :K is given by: 

:K=1 
yp 

(4.40) 

Hence for a smal1 particle in this linear approximation the volume source term 
(4.37) is due to a difference in y. This term vanishes if we consider the convection 
of a hot gas particle (not chemically different from the environment) which we 
call an entropy spot. In that case sound production will be due to the difference of 
inertia between the entropy spot and the surrounding fluid. Howe [71] refers to this 
as acoustical "Bremsstrahlung". 

In a similar way we can describe the effect of a slow variation of the tube cross 
section area A on sound waves oflow frequency (i.e. ! A « JA « Je). With some 
care we can derive a suitable one-dimensional approximation, called Webster's 
horn equation, to describe the wave propagation (see section 8.5). To leading order 
the momentum conservation law is not affected by the cross section variation. The 
mass conservation law, however, becomes: 

ap' Po aAu' -+ -=0 at A ax (4.41) 

This can be interpreted as the linearized continuity equation (4.3a) with a volume 
source term 

ap u' aA 
at A ax (4.42) 

4.4 Reflection at discontinuities 

4.4.1 Jump in characteristic impedance pc 

The procedure described in the previous section to incorporate sources in a com
pact region into a one dimensional model can also be applied to determine jump 
conditions over discontinuities in a pipe. It should be noted that a mathematically 
more sound derivation, allowing also higher order corrections, is obtained by using 
the method of Matched Asymptotic Expansions. This will be worked out in more 
detail in chapter 8. 

We first consider an abrupt change at x = y in speed of sound c and density p 
between two media. 1 and 2. in a pipe with uniform cross section (figure 4.6). 
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1 2 't' x---+ 

x=y 

Figure 4.6 Jump in acoustic impedance. 

Considering a thin control volume (between the dotted lines 1 and 2), enclosing 
the contact surface between the two media and moving with the fluid, we find from 
the laws of mass and momentum conservation, respectively 

A I I I 0 ilU = Uz - U1 = , 
A I I I 0 
ilP = PZ PI = . 

(4.43 a) 

(4.43b) 

By using the general solution (4.8a,4.8b) of the homogeneous wave equation, we 
have at x = Y for the jump conditions in the pressure and velocity, respectively: 

F1(y CIt) + 901 (y + CIt) = F2(Y - C2 t ) + 9oz(y + C2 t ), 

F I(Y- Cl t ) 9ot(y+c\t) F2(y- C2t )-902(Y+CZt) 
= 

P2C2 

(4.44a) 

(4.44b) 

If, for example, we have a source at x < y generating an incident wave Fb in a 
tube of infinite length so that 902 = 0, we obtain 

901 (x + CIt) = RFI (2y - (x + Clt)), 

Fz(x - C2f) = TFI((1- .£l)y + .£l(x C2t)) , 
C2 C2 

h R P2C2 PICI T 2P2C2 
were = ,=----

P2C2 + PIC} P2C2 + PICI 

(4.45a) 

(4.45b) 

The factor R between 90 I and :Fi is called the reflection coefficient and the fac
tor T between F2 and Fl the transmission coefficient. We observe that if PI CI = 
PZcz the acoustic wave is not reflected at the contact discontinuity. Inspection of 
(4.44a,4.44b) for PIC1 = P2C2 also shows that the only solution is :Fi = F2 and 
901 = 902. This corresponds to results obtained already in section 3.2 when consid
ering harmonic waves. 
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Figure 4.7 Abrupt cross sectional area change. 

4.4.2 Monotonic change in pipe cross section 

We now consider a compact transition in pipe cross sectional area from Al to Az. 
If the flow is homentropic and there is no flow separation (vorticity is zero) the 
pressure difference !J.p' = p~ - pi across the discontinuity can be calculated by 
using the incompressible unsteady Bernoulli equation (1.31b): 

A' 1 (' z , z) () A up = '2PO U l - U2 - POFiuCP, 

where !J.cp = cpz - CPl is the potential difference. In linear approximation: 

!J.p' ::::::: - polt !J.cp. 

(4.46) 

(4.47) 

For a compact smooth change in cross section as in figure (4.7) we have continuity 
of flux A1u; = A(x)u' (x), while the potential difference can be estimated as Acp = 
lIZ U' dx ::::::: u~ flz(AI! A(x»dx "-' u;L. The pressure difference !J.p' is of the order 
of Pocou~ L, which is negligible when Lco / Co « 1. We then have a pressure uniform 
over the entire region. Note that while this is a very crude approximation, this is a 
stronger result than just a continuity condition (see section 4.4.4). This condition 
!J.p' 0 can be combined with the linearized mass conservation law in the low 
frequency approximation 

(4.48) 

to calculate the reflection at a pipe discontinuity. 

4.4.3 Orifice and high amplitude behaviour 

Instead of a monotonic variation of the pipe area A we consider an orifice placed 
in the pipe with an opening area Ad and a thickness L (figure 4.8), We start with 
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A 

Figure 4.8 Orifice. 

the problem of acoustic wave propagation through a stagnant fluid (uo = 0). In 
principle, if we use the approximations (4.47) and (4.48) and if we neglect the 
potential jump /lcp, we see that the orifice will be completely "transparent" to the 
acoustic waves. However, if Ad « A we find experimentally a significant effect 
of such an orifice which is due to the inertia of the air in the opening. Assuming a 
uniform velocity and an incompressible flow without friction we have from (4.47): 

A au' 
/lp' ~ -Po-L 

Ad at (4.49) 

where u' is the acoustic velocity in the pipe. We could also simply have obtained 
this result by considering the pressure difference /lp' necessary to accelerate the 
mass of fluid (Po Ad L) in the orifice and noticing that the particle velocity in the 
orifice is given by: 

, A 
ud = . 

Ad 
(4.50) 

In practice (4.49) yields a lower bound for the pressure drop across the orifice 
because we neglected the inertia of the air in the region outside the orifice. This 
effect can be taken into account by introducing an "end correction" 8 on both sides: 

Leff L + 28 (4.51) 

where 8 appears to be of the order of (Ad/n)1/2. Typically (8/3n)(Ad/n)1/2 for 
a circular orifice and a larger value for a slit [81]. This explains why a thin orifice 
(L ~ 0) also affects the propagation of acoustic waves in a pipe. For a circular 
orifice of radius a in a thin plate we have Leff na/2 (see [158]). 

If we consider a narrow orifice the local velocity u~ in the orifice may become quite 
large. When the acoustic particle displacement u~ / w becomes comparable to the 
radius of curvature of the edges at the entrance and the exit of the orifice non-linear 
effects and friction will result into acoustical1y induced vortex shedding [84, 85, 
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40,36]. When the fluid particle displacement becomes comparable to the diameter 
of the orifice (Ad/n)1/2u~/w = 0(1) the vortex shedding can be described in 
terms of the formation of a free jet, by assuming that there is no pressure difference 
across the boundaries of the jet. The shear layers enclosing the jet are not capable 
of sustaining a pressure difference. Furthermore, if Ad / A « 1 we assume that the 
kinetic energy in the flow !pu~ 2 is lost upon deceleration of the jet by turbulent 
mixing with the air in the pipe. This implies that in addition to the linear terms in 
Bernoulli we should add the non-linear effects: 

, A au' 1 (A ,)2 tlp = -Po-L- - -P -u . 
Ad at 2 Ad 

(4.52) 

A typical feature of this effect is that the pressure tlp' has now a component ! pu~ 2 

which is in phase with the acoustic velocity, and therefore will involve (acoustic) 
energy losses that were absent in the situations discussed until now. These losses 
are due to the fact that the kinetic energy in the jet is dissipated by turbulence. 

The model proposed here appears quite reasonable but in many cases the surface 
area of the jet is smaller than Ad which implies additiona1losses[36]. This effect 
can be as much as a factor 2. The jet contraction by a factor 2 corresponds to the 
so called vena contracta at an unflanged pipe entrance. For a thin orifice with sharp 
edges the jet cross section is a factor 1T:2 narrower than the orifice. When the edges 
are rounded off the contraction effect disappears rapidly. 

It is interesting to consider now how a mean flow affects the acoustic properties 
of an orifice. We assume that the mean flow velocity Uo in the pipe is so small 
compared to the speed of sound Co that we can neglect all convective effects on 
the wave propagation (uo/co « 1). As the orifice has a small aperture (Ad/A), the 
mean flow velocity in the orifice is significant. We assume a stationary frictionless 
and incompressible flow. The assumption of a frictionless flow fails, however, to 
describe the flow at the exit of the orifice where as a result of friction the flow 
separates from the wall and a free jet of surface area Ad is formed. 

Assuming further no pressure difference between the jet and its environment we 
can write for the total pressure difference tl Po: 

tlpo = -!P(:d uo)2. (4.53) 

For acoustic velocity fluctuations u' we have, neglecting the higher order terms in 
u': 

(4.54) 
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We see from this equation that even in the linear approximation energy is trans
ferred (Po(Aj Ad)2uouf2) from the acoustic field to the flow (where it is dissipated 
by turbulence). This effect is of course a result of the force poe Cd x v) in Howe's 
analogy (section 2.6). The vorticity responsible for this is located in the shear layer 
that confines the free jet. We will describe the formation of a free jet in section 5.l. 
The consequence of this effect is that an orifice placed in a tube with a mean flow is 
a very efficient damping mechanism. This device is indeed used downstream of a 
compressor in order to avoid the low frequency pulsations that may be induced by 
the compressor into the pipe system. As explained by Bechert [7], for any orifice 
placed at the end of a pipe one can find a Mach number at which the reflection 
coefficient for long acoustic waves vanishes. Such an orifice acts thus an anechoic 
termination for low frequencies! 

A beautiful property of this damping mechanism is that it is not frequency depen
dent as long as the frequency is low enough. This is not the case with the effect of 
friction and heat transfer which are strongly frequency dependent (equation 3.13), 
in a way that at low frequencies friction is quite inefficient. 

It is interesting, however, to note that under special flow conditions an orifice can 
produce sound as a result of vortex shedding. This occurs in particular if the orifice 
has sharp edges at the entrance where the vortices are shed [5] (figure 4.9a) or 
when the edges are rounded at the downstream side [223, 66] (figure 4.9b). 

The frequency of the sound produced by the vortex shedding is such that the period 
of oscillation roughly corresponds to the travel time of a vortex through the orifice 
(a Strouhal number Sr = f L/(Auo/ Ad) = 0(1». When this sound source cou
ples with a resonator (see next chapter) large amplitudes may be generated. This 
is an explanation for human whistling [223, 197]. Flow instabilities of this type 
also occur around pipe arrays such as used in heat exchangers [15]. Whistling cor
responds to self-sustained flow instabilities. In the case of an externally imposed 
acoustic wave, the periodic vortex shedding is a non-linear phenomenon which 
will generate higher harmonics. Hence, suppressing low frequency-pulsations (be
ing mechanically dangerous) with an orifice may be paid by the generation of high 
frequency noise which is an environmental problem. 

A generalization of the procedure which we introduced intuitively for the orifice 
can be obtained for an arbitrary compact discontinuity in a pipe system. The acous
tical effect of this discontinuity can be represented in an acoustical model by a 
pressure discontinuity (.t.p ) source which is calculated by subtracting from the ac
tual pressure difference t::..p the pressure difference (t::..p)pot, corresponding to a 
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Uo ... 

b) 

Uo ... 

a) 

Figure 4.9 Vortex shedding at an orifice. 

potential flow with the same velocity boundary conditions: 

(AP)source = Ap - (Ap)pot. 

The actual pressure difference Ap can be measured or calculated as a function of 
the main flow velocity Uo and the acoustical velocity fluctuation u'. The poten
tial flow difference (Ap)pot is calculated. This procedure is in particular powerful 
when we can use a quasi-stationary flow model. We then use the incompressible 
continuity equation and Bernoulli: Su = constant and p + ~pou2 = constant, to 
calculate (Ap)poh while Ap is measured in the form Ap CD~pu2 as a function 
of various parameters. When convective effects are taken into account in the wave 
propagation, it appears to be important to define the aeroacoustic source in terms 
of a discontinuity (AB)source in the total enthalpy rather than in the pressure. 
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4.4.4 Multiple junction 

In the previous sections we used the equation of Bernoulli to derive pressure jump 
conditions for a discontinuous change in pipe diameter. We could also have ob
tained a similar expression by considering the law of energy conservation. The 
use of Bernoulli is a stronger procedure. To illustrate this statement we consider 
the reflection of waves at a multiple junction. As an example consider a T shaped 
junction between three pipes of cross-sectional surface A l , A2 and A3, respectively 
(figure 4.10). 

1 3 

r-~-------------------
tA

3 

X3-

-Xl 

Figure 4.10 Multiple junction. 

We define along each pipe a x-coordinate with a positive direction outwards from 
the junction. The conservation of mass for a compact junction yields: 

(4.55) 

while from the equation of Bernoulli we find: 

f f I 
PI = pz = P3 (4.56) 

Note that closed side branches are very popular as reflectors to prevent the propa
gation of compressor induced pulsations. It is interesting to note that flow may also 
drastically affect the acoustic properties of a multiple junction and make the use 
of this device quite dangerous. In particular if we consider junctions with closed 
side branches, the shear layer separating the main flow from the stagnant fluid in 
the pipe is unstable. Coupling of this instability with a resonant acoustic field may 
result into pulsation levels of the order of pi ~ O(pcouo) ([18,98,226]). Again, 
the amplitude of these pulsations depends crucially on the shape of the edges of 
the junction, in the same way as the shape of the edges was crucial in the orifice 
problem. More about this will be explained in the next chapter. 
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For a T-shaped junction of a main pipe with a closed side branch or a grazing flow 
along an orifice in the wall the quasi-steady theory for a main flow Uo indicates 
that the shear layer can be represented by an acoustical pressure discontinuity: 
(~P)source -Kpouou', where K is unity for a uniform main flow. For an orifice 
small compared to the boundary layer thickness of the main flow K is of the order 
of 0.7 because of the velocity defect in the boundary layer relative to the main flow 
velocity uo. This effect is discussed by Ronneberger [186], Tijdeman [207] and 
Cummings [37]. 

4.4.5 Reflection at a small air bubble in a pipe 

Air bubbles in the water circuit of the central heating of a house are responsible 
for a very characteristic, high-frequency sound. As a first step to the understanding 
of this effect we now consider the reflection of a harmonic wave on a small air 
bubble of radius a (Volume Vp = (4:rr j3)a3) placed in a pipe filled with water at 
a static pressure Po. If the bubble is small compared to the characteristic acoustic 
wave length we can assume that the pressure p~ in the bubble will be uniform. We 
neglect surface tension effects and assume that the bubble pressure p~ is equal to 
the surrounding water pressure. 

In the low frequency limit, when the inertial forces in the flow around the bubble 
can be neglected, the pressure induced by a passing acoustic plane wave in the 
water around the bubble will be practically uniform: ~p' = o. The bubble will 
react quasi-statically to the imposed acoustic pressure variation p'. Since the air
fil1ed bubble is much more compressible than water, the presence of the bubble 
results into a volume source term, giving rise to a jump in acoustic velocity across 
a control volume including the bubble: 

V d' ~u':::: ___ p_L 
Aypo dt 

(4.57) 

where we neglected the water compressibility compared to the air compressibility 
(J(air l/ypo) and we assume an adiabatic compression (taking y = 1 would 
imply an isothermal compression as we expect for very low frequencies). The re
flection coefficient for a wave :F1 incident to the bubble can now be calculated 
from the jump conditions for ~p' and ~u'. Assuming f},2 = 0 we find from the 
continuity of pressure: 

(4.58) 
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and from (4.57): 

PwCw Vp d 
:Fi - [1,1 - :Fz = A d (:Fi + [1,1). 

YPo t 
(4.59) 

By subtraction of (4.58) from (4.59) we can eliminate :Fz and find: 

(4.60) 

The inertia of the water around the bubble will dramatically influence the interac
tion between the bubble and acoustic waves at higher frequencies. If we assume 
that the acoustic wave lengths in both air and water are very large compared to the 
bubble radius we still can assume a uniform pressure in the bubble. This implies 
also that the bubble will remain spherical. The oscillations of the bubble radius: 

(4.61) 

around the equilibrium value ao will induce a radial flow of the water around the 
bubble if we assume that the bubble is small compared to the pipe diameter. In the 
low frequency approximation considered here, this flow is incompressible. Hence 
we have for the radial velocity Vr: 

(;r(~~) ~ iw(:oraeiwf (4.62) 

where we have assumed a / ao « 1. The pressure variation in the bubble: 

A iwt 
Pb = Po + Pb e (4.63) 

can be related to the incompressible far field (still near the bubble compared to the 
pipe radius) by applying the linearized Bernoulli equation: 

ocp OCPb 
P + PW at = Pb + p0Tt· (4.64) 

Using (4.62) we can calculate (cp - CPb): 

(4.65) 

so that: 

(4.66) 
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Assuming the air in the bubble to be an ideal gas with Pb rv Pb and neglecting the 
dissolution of air in water so that a3 Pb = constant, we find: 

1 apb 1 apb 3 aa 
--=--=---
Pb at YPb at a at (4.67) 

or in linear approximation: 

A A 

Pb a 
- = -3y-. (4.68) 
Po ao 

Combining (4.66) with (4.68) and assuming that P = Po + pi eiwt we have: 

AI A (2 2) P = Pwaoa w - Wo 

where the resonance frequency Wo (Minnaert frequency) is defined by: 

2 3ypo 
Wo = -2-· 

aopw 

(4.69) 

(4.70) 

The reflection coefficient R = g, 1 /:Fi can now be calculated in a similar way as 
from (4.58) and (4.59) with the modified source term l:iu' = 4:rriwa5aA -1 eiwt • 

Since l:ip' = 0, we have: 

(4.71a) 

and 
:F, - l3 -:F - c 4:rr iwao(:Fi + g,1) 

1 l7' 1 2 - Pw w A (2 2) Pw w - Wo 
(4.71b) 

or 

R = ~ = -(1 + A(~2 - ( 5))-1. 
:1'1 2Jr1wcw ao 

(4.72) 

We see that at resonance w = Wo the wave is fully reflected by the bubble, and the 
reflection coefficient is R = -1. We have of course obtained such a dramatic result 
because we have neglected all the dissipation mechanisms which can limit the 
amplitude of the bubble oscillation. The compressibility of the water flow around 
the bubble yields already such a mechanism which limits the amplitude of the 
oscillation at the resonance frequency woo This is, however, only one of the many 
amplitude-limiting mechanisms. 

For small bubbles, when the diffusion length for heat transfer into the bubble is 
comparable to the bubble radius, heat transfer is a significant energy loss [162]. 
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This occurs for: a = O«Kair/wPairCp) 1/2). For larger bubbles heat transfer is neg
ligible. For smaller bubbles the compression occurs isothermally and one should 
put y = 1 in the theory. However, the change of y from 1.4 to 1 does not intro
duce damping. It is only in the intermediate range that the heat flux results in a 
significant rate of volume change in phase with the acoustic pressure. (As it is the 
work W = J p'dV = JOT p'(dV /dt)dt which determines the losses, a volume V 

proportional to p' implies for a periodic oscillation W rv J[ p' (dp' /dt)dt = 0.) 

Another limitation of the amplitude of the oscillation is the highly non-linear be
haviour of the pressure for oscillation amplitudes a comparable to ao. If a ~ 0 the 
pressure in the bubble increases dramatically (Ph rv a-3y ). Linear theory fails and 
the bubble may start showing chaotic behaviour (referred to as acoustical chaos) 
[103]. 

As an isolated air bubble already has a strong effect on the acoustics of a water 
filled tube, a large amount of bubbles will have a dramatic effect. In section 2.3 
we already considered the low frequency limit for the speed of sound in a bubbly 
liquid. We have seen that a small volume fraction of bubbles can considerably 
reduce the speed of sound. This is due to the large compressibility of the air in 
the bubbles. As w reaches Wo this effect will become dramatic resulting in a full 
reflection of the waves (speed of sound zero) [34,90]. In the frequency range Wo < 
W < WQcw/Cair no wave propagation is possible in an ideal bubbly liquid. Above 
the anti-resonance frequency WOcw/Cair the bubble movement is in opposition to 
the applied pressure fluctuations. The radius increases when the pressure increases. 
This is just opposite to the low frequency behaviour (figure 4.11). As a result the 
bubbly mixture will be stiffer than water, and c > cw ! Sound speeds of up to 2500 
mls were indeed observed in bubbly water with f3 = 2 x 10-4 ! 

Another fascinating effect of bubble resonance is its role in the very specific, uni
versal, sound that rain is known to generate when it hits a water surface [163]. 
First it should be noted that bubble osci1lation is such an efficient source of sound 
that any rain impact sound is dominated by it. Now, in spite of the wide range of 
velocities and sizes of rain drops that occurs, the universality of the sound of rain 
is due to the fact that only bubbles are formed of just one3 particular size. This 
is a result of the following coincidence. On the one hand, not any combination of 
drop size and drop velocity occurs: rain drops fall at terminal velocity (balance of 
air drag and drop weight) which is an increasing function of the droplet radius. 
On the other hand, not any combination of drop size and drop velocity generates 
bubbles upon impact on water. At each drop size there is one drop velocity where 

3i.e. a narrow range 
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w_ 

Figure 4.11 Idealized frequency dependence of the speed of sound in a bubbly liquid. 
The low-frequency limit Gjow, slightly lower than cw, is given in equation (2.42) or 
(2.43). 

bubbles are fonned. This bubble fonnation velocity is a decreasing function of the 
droplet radius. Combining these increasing and decreasing functions, we see that 
they intersect just at one combination of radius and velocity, with just one bubble 
size. 

4.5 Attenuation of an acoustic wave by thermal and 
viscous dissipation 

4.5.1 Reflection of a plane wave at a rigid wall 

Consider a pipe -00 < x ::: 0, closed at x = ° by a rigid wall. Inside the pipe a 
plane wave p+ (x, t) = :F (t - x/co) travels in positive direction and reflects into a 
left-running wave p-(x, t). Without visco-thennallosses, the boundary condition 
of vanishing velocity becomes 

u(O, t) = p+(O, t) - p-(O, t) = 0. 
poCo 
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This implies a reflected wave p-(x, t) = !F(t + x/co), equal in amplitude and 
shape to the incident wave, and therefore a reflection coefficient of unity 

R = p-(O, t) = 1. 
p+(O, t) 

In reality unsteady heat transfer at the wall will act as a sink of sound, slightly 
reducing the reflection coefficient. This heat transfer is a result from the difference 
between the wall temperature T w, which remains practically constant, and the bulk 
temperature T of the gas, which varies with the adiabatic pressure fluctuations pi = 
p+ + p-. We will limit our analysis to small temperature differences (T - Tw) and 
small departures from the quiescent reference state. This allows a linearized theory, 
so that we can consider the reflection of a harmonic wave, denoted in complex fonn 
as 

p(x, t) = p(x) e-iwt 

with amplitude p outside the neighbourhood of the wall being given by p(x) 
p+ e-ikx +p- eikx • (Likewise, in the following the hatted quantities with "A" will 
denote their corresponding, x-dependent, complex amplitudes.) 

We define (see also section 8.8) the thennal boundary layer thickness 8r as the 
width of the region near the wall in which the rate of increase of internal energy is 
just balancing the net rate of heat conduction (in this region the wave equation is 
not valid): 

( a) (a2 T') PoCp-T '" wpoC T' :::::: Ko-T ,....., Ko- . at p GX2 82 
T 

Hence, the characteristic length scale for the thennal boundary layer is 

(4.73) 

We will now calculate the temperature profile within the thermal boundary layer. 
This will allow us to calculate the deviation Pe = P - p / c5 between the density 
fluctuations in the boundary layer and the density fluctuations p / c5 corresponding 
to adiabatic compression of an ideal acoustic flow as found outside the boundary 
layer. This excess density Pe has to be supplied by a fluid flow towards the wall 
at the edge of the boundary layer. This velocity Uoo can be interpreted by an ob
server, outside the boundary layer, as due to a displacement dT of the rigid wall in 
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a hypothetical fluid without heat conduction. The work performed by this "virtual" 
wall displacement on the acoustic field corresponds to the sound dissipation by the 
thermal conduction in the boundary layer. 

This approximation is based on the key assumption that the acoustic wave length 
is much larger than the thickness OT of the thermal boundary layer: wor! Co « 1. 
In such a case we can assume at the edge of the boundary layer a uniform adiabatic 
flow, (du/dx)oo = 0, of a uniform fluid (Poo, Poo). The non-uniformity associated 
with the acoustic wave propagation is negligible on the length scale we consider. 
The boundary layer flow is described by the one-dimensional conservation laws 
(1.1,1.2,1.5,1.6) in linearized form: 

(4.74a) 

(4.74b) 

(4.74c) 

Since in a liquid acoustic wave propagation is isothermal we can limit our analysis 
to a gas. We assume an ideal gas with: 

p p T 
-=-+-. 
Po Po To 

The boundary conditions are given by: 

A 

A A A Too Y 1 Poo 
T(O) = Tw , u(O) = 0, -

To Y Po 
p(x) -+ Poe = p+ + p- (X/OT -+ -(0), 

where we have introduced, for generality, the fluctuation of the wall temperature 
Tw. After the study of the reflection of a wave at an isothermal wall (Tw = 0) we 
can use the s~e theory to calculate the sound generated by fluctuations of the wall 
temperature (Tw =1= 0). 

After eliminating Ii from the energy equation by using the mass conservation law, 
and eliminating p by means of an ideal gas law, we obtain 

iw(T _ y -1 P) 
To Y Po 
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where ao = Kol PoC p is the heat diffusivity coefficient. In terms of the excess 
density, with 

Pe 1 (~ P ) P P y - 1 P T 
Po = Po P - c5 = Po - Y Po = -y- po - To' 

this equation becomes 

~ d2 A 1 d2 A 

iW~ =a0dx2 (;:) - a07 dx2(:a). 
Combining the momentum and mass conservation laws we have 

2~ d2p 4 d3u 
W P = - dx2 + "3170 dx3 • 

Assuming that viscosity is not dominant which we can check from the solution 
to be obtained - we see that 

d
2 (P) '" _ (rip = _ w2

y P 
dx2 po Po Po 

The relative pressure variation across the boundary layer (4.73) is of the order of 

p Poo rv w
2o} ( P ) 

Po c~ Po 

while Pel Po is of the same order of magnitude as PI Po, because y - 1 = 0(1). 
This implies that if we neglect terms of the order of w20flc~, we have 

. Pe d
2 (Pe) 

lW Po = ao dx2 Po . 

This equation has the solution 

Pe [Pe] ( . ) - = - exp (1 + l)xloT 
Po Po w 

(4.75) 

where [Pe] 
Po w 

y -1 Poo Tw 
=-----

Y Po To 

Using the equation of mass conservation, the velocity u( -aT) at the edge of the 
boundary layer is given by the integral of the density across the boundary layer as 
follows. (Note that we have chosen the positive x-direction towards the wall.) 

1
0 A 

u(O) - u( -aT) = -iw ~ dx. 
-OT Po 
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The difference between this velocity and the velocity -iw(Pool PO)OT that would 
occur in the absence of heat conduction, can be interpreted as a fictitious wall 
velocity UT given by 

10 ~ ~ 10 
A 

A • A. P - Poo . Pe 
UT = lwdT = lW dx = lW - dx, 

-OT Po -00 Po 

where dT is the fictitious wall displacement amplitude. Substitution of solution 
(4.75) yields 

~ 1 . [Pe] dT = '2(1 - l)OT - , 
Po w 

(4.76a) 

I .) Y - 1 Poe = -(1 -1 OT----
2 Y Po 

if Tw o (an isothermal wall). (4.76b) 

For an isothermal wall Crw = 0) these wall effects, leading to the effective velocity 
tiT, have the same effect to the incident acoustic wave as an impedance of the 
wall. This equivalent impedance ZT, defined as the ratio of the acoustic pressure 
fluctuations Poo at the wall and the flow velocity UT directed towards the wall (c.t 
Eq. 3.14), is then given by 

Z 
_ Poe _ Poo _ (1 - i)co 

T - ~ - -A- - PoCo 
UT iwdT (y - 1)woT 

The corresponding time averaged acoustic intensity is found to be 

(IT; = (p'u'; = ~ Re(l/ZT )IPooI2 

I ( WOT ~ 2 
= 4 Y - 1)-2IPoo1 

Poco 

which indicates an energy flux from the acoustic field towards the wall and there
fore an absorption of energy. 

4.5.2 Viscous laminar boundary layer 

The viscous attenuation of a plane acoustic wave propagating along a pipe can 
often be described in a similar way as the thermal attenuation by means of a dis
placement thickness dv of the wall. We consider first the simple case of a laminar 
boundary layer in the case of wave propagation in a stagnant and uniform fluid. 
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The wave propagates in the x-direction and induces an acoustic velocity parallel to 
the wall which has an amplitude "00 in the bulk of the flow. The no-slip condition 
at the wall, Uw = 0, induces a viscous boundary layer of thickness 

(4.77) 

where Pr = voPoCp / Ko is Prandtl's number. This viscous boundary layer is usu
ally referred to as the Stokes layer. Neglecting terms of the order of (wov / CO)2 we 
can write the x-momentum conservation law in the boundary layer as 

• A d2u 
lWPOU = 110 dy2' 

where y is the direction normal to and towards the wall (so y :s 0). The y
momentum conservation law reduces to the pressure being uniform across the vis
cous boundary layer. The boundary conditions are 

u(O) = Uw = 0, u(y) ~ Uoo if y/ov ~ -00. 

The solution is then 

" = Uoo [1- expel ;vi)Y) ] . (4.78) 

The displacement thickness dv is defined as the fictitious wall position for which 
the acoustical mass flux of a uniform flow with the velocity Uoo is equal to the 
actual mass flow. This implies: 

u ) 1 
-A dy = -2(1 
Uoo 

i)ov. (4.79) 

4.5.3 Damping in ducts with isothermal walls. 

In section 4.5.1 we have considered the attenuation of an acoustic wave that reflects 
normally to a wall. This attenuation was due to the heat conduction in the thermal 
boundary layer. In the previous section 4.5.2 we have described the laminar viscous 
boundary layer associated to a plane wave propagating along a duct (parallel to 
the wall). In a gas such a propagation will also induce a thermal boundary layer, 
determined by the pressure fluctuations p'oc, in the bulk of the flow. The expression 
for the displacement thickness dT derived in section 4.5.1 can be applied. 

Using the concept of displacement thickness we will calculate the attenuation of 
a plane wave travelling in x-direction along a pipe of cross-sectional area A and 

RienstraHirschberg 20 August 200816:00 



104 4 One dimensional acoustics 

cross-sectional perimeter L p' We assume that the boundary layers are thin com
pared to the pipe diameter. 

The bulk of the flow is described by the following plane wave, satisfying Euler's 
equation in linear approximation: 

where k is a complex wave number (the imaginary part will describe the atten
uation). Incorporating the displacement thickness to the mass conservation law 
integrated over the pipe cross section yields (Lighthill [Ill]) 

:t [Poe(A + LpdT )] = :x [PoeUoe(A + Lpdv )] 

In linear approximation for a harmonic wave this becomes 

iw(P~ A+poLpdT ) = ikPouoe(A + Lpdv) 
Co 

where we made use of the isentropic relationship Poe = c6Poe. After substitution 
of the expressions for the displacement thickness dT (4.76b) and dv (4.79) 

AI' Y - 1 Poe A 1 
dT = z(1-1)OT----, and dv = 2:(1- i)ov, 

y Po 

and elimination of Uoe by means of the Euler's equation, we find a homogeneous 
linear equation for Poe, which yields the dispersion relation 

k 2 A + ~(I - i)(y - l)LpOT 

k6 = A - ~(1 - i)Lpov 

where ko = wlco. Expanding this expression for small OT and Ov (using the fact 
that Ov lOT = ffr = 0(1» and retaining the first order term, we obtain the result 
of Kirchhoff 

1 . Lp ( OT) k - ko = 4(1 -l)-OVkO 1 + (y - 1)- , 
A Ov 

(4.80) 

which corresponds to equation (2.13). More accurate expressions at low fre
quencies, when the acoustical boundary layers are not thin, are discussed by Ti
jdeman [206] and Kergomard [94]. At high frequencies the viscosity becomes 
significant also in the bulk of the flow (Pierce [158]). 
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At high amplitudes (uoo <> v / \J 2:. 400) the acoustical boundary layer becomes turbu
lent (Merkli [121], Eckmann [45], Akhavan [3], Verzicco [214]). In such a case the 
damping becomes essentially non-linear. Akhavan [3] presents results indicating 
that a quasi-stationary turbulent flow model provides a fair first guess of the wall 
shear stress. 

For an isothermal (liquid) flow the quasi-steady approximation yields 

where the friction coefficient C j is defined (and determined) by 

4A dpo 
Cj=- 1 2-

Lp'iPoUO dx 

which relates the mean pressure pressure gradient (dpo/dx) to the stagnation pres
sure ~poUJ of a mean flow through the pipe. Note that since (k-ko) depends on the 
amplitude Uoo of the acoustical velocity this model implies a non-linear damping. 
The transition from laminar to turbulent damping can therefore be a mechanism 
for saturation of self-sustained oscillations (see chapter 5). 

For smooth pipes, Prandtl proposed a correlation formula for C j as a function of 
the Reynolds number of the flow. The influence of wall roughness is described 
in the Moody diagram. Such data are discussed by Schlichting [195]. In the case 
of a turbulent gas flow the thermal dissipation is rather complex. This makes a 
low frequency limit difficult to establish. In the presence of a mean flow vari
ous approximations describing the interaction between the acoustic waves and the 
turbulent main flow have been discussed by Ronneberger [187] and Peters [156]. 
The formula of Kirchhoff derived above appears to be valid at low Mach numbers 
(Uo/co « 1) as long as the Stokes viscous boundary layer thickness 8v remains 
less than the laminar sublayer DL ~ 15v/ J!wPo of the turbulent main flow (where 
the wall shear stress !w = CjkPoUJ). 

When DL « 8v , we can use a quasi-stationary approximation. The transition from 
the high frequency limit to the quasi-stationary limit is discussed in detail by Ron
neberger [1871 and Peters [155].These references also provide information about 
the Mach number dependence of the wave number. 

RienstraHirschberg 20 August 200816:00 



106 4 One dimensional acoustics 

4.6 One dimensional Green's function 

4.6.1 Infinite uniform tube 

We consider a one dimensional approximation for the propagation of waves in a 
pipe. This approximation will be valid only if the frequencies generated by the 
sources of sound in the pipe are lower than the cut-off frequency. As the acoustic 
field observed at position x far from a source placed at y is induced by a plane 
wave, the observer position in the cross section of the pipe is indifferent. Applying 
the reciprocity principle (section 3.1) we see that in the low frequency approxi
mation the signal observed at x should also be indifferent for the position of the 
source in the cross section of the tube at y. Hence as the source position within 
a cross section is indifferent we can consider the source to be smeared out over 
this cross section resulting in a I-dimensional source. We therefore look for the 
corresponding one-dimensional Green's function g(x, tly, r) defined by: 

a2g 2 a2g 
at2 - Co ax2 = oCt - -r)8(x y). (4.81) 

Comparison of this wave equation with the wave equation (4.5) in the presence of 
source term poafj/at and forces fx: 

(4.5) 

indicates that we can assume that (4.81) is a particular case of (4.5) for Ix = 0 and: 

afj 1 
- = -2H(t - r)8(x - y). 
at Poco 

(4.82) 

For an infinitely long tube the solution is: 

1
1 H(t r+~) 

2co Co 
g(x, tly, r) = 1 

(
X - Y) -H t-r---

2co Co 

for x < y, 
(4.83) 

for x> y. 

This result is obtained intuitively by using (4.30) which implies that g is the pres
sure wave generated by a piston moving with a velocity u' = (2Poc5)-1 H(t - r) 
for x = y + 8 and a second piston with a velocity u' = -(2pQc5)-1 H(t - r) for 
x = y - 8. Equations (4.83) are then obtained by using the method of characteris
tics (section 4.2). 
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Of course, the above result (4.83) is more efficiently written as: 

g(x, tly, r) = _l_H(t _ r _ Ix - YI). 
2co Co 

(4.84) 

The combination t - Ix - yl/co is the time at which the signal observed at (x, t) 
has been emitted by the source at y. This time is called the retarded or emission 
time te: 

Ix -yl 
te = t - . (4.85) 

Co 

4.6.2 Finite uniform tube 

We can also fairly easily construct a Green's function for a semi-infinite pipe (x < 
L) terminated at x = L by an ideal open end at which by definition geL, fly, r) = 

0, By constructing the wave reflecting at this ideal open end with the method of 
characteristics we find: 

x - Y) ( x - Y) r+-- +H t-r---
Co Co 

( 
x + Y 2L)} 

-H t - r + Co (4.86) 

which we can also write for x < L as: 

g(x, tly, r) = 1 {H(t _ r _ Ix - YI) 
2eo Co 

-H(t _ T _ Ix +~: 2LI)}. (4.87) 

This solution could also have been obtained by assuming the pipe to be part of 
an infinitely long pipe, in which at the point x = 2L - Y a second point source 
is placed with opposite sign of and synchronous with the original point source 
at x = y. This second source, called image source, is constructed such that it 
generates the field due to reflection by the boundary at x = L in the original 
problem, and therefore brings into effect the boundary condition at x = L. This 
method of images can be generalized to the case of a finite pipe segment (0 < x < 
L). In such a case we will have to consider the contribution of an infinite number 
of images corresponding to the reflections of the original waves at the boundaries. 
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For example, the field in a finite pipe with hard walled ends is equivalent with the 
field in an infinite pipe with equal sources in x = -y, ±2L ± y, ±4L ± y, .... 
This comes down to a right-hand-side of equation 4.81 of 

00 

L o(t - T)(O(X - y - 2nL) +o(x + y - 2nL)) 
n=-oo 

and a solution 

1 ~ {( Ix - y - 2nLI) g(x, tly, T) = -.i...J H t - T - . 
2co Co 

n=-oo 

( Ix + y 2nLI)} +H t-T- . 
Co 

(4.88) 

The Green's function is clearly more complex now. Furthermore, the addition of 
mass by the source in the finite volume results into a (roughly) linear growth of g 
in t. (Verify this for x = y = ~ L and T = 0.) This is of particular interest in the 
time-harmonic case. When the end conditions are such that multiple reflections are 
physically relevant they imply that constructive and destructive interferences will 
select waves corresponding to standing wave patterns or resonances of the tube. 
This problem will be discussed further in the next chapter. 

4.7 Aero-acoustical applications 

4.7.1 Sound produced by turbulence 

We consider a turbulent jet in an infinitely extended pipe (figure 4.12). We suppose 

s 

Figure 4.12 Turbulent jet in a pipe. 
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that the jet diameter d and the jet velocity Uo are such that the characteristic fre
quency uo/ d of the sound produced in the pipe is low enough to use a one dimen
sional approximation. We will use the integral formulation of Lighthill to obtain 
an order of magnitude estimate for the sound pressure level produced by this flow, 
assuming that the mean flow in the pipe is negligible. We also assume that the jet 
temperature and density is the same as that of the environment (homogeneous fluid 
and homentropic flow). If Reynolds number Re = uod/v » 1 and Mach number 
M = uo/co « 1 we can use Lighthill's analogy in the form4

: 

02 pi 2 (j2 pi ;:p (POViV j) 
-- -co---ot2 ox; - OXi ()x j • 

(4.89) 

As we use a tailored Green's function (we neglect the effect of the flow injection 
device) the density pi can be estimated by: 

1t Iff o2(pOV'V') p'(x, t) = 0 . l .J G(x, t\y, r) dydr. 
to YtOYJ 

(4.90) 

V 

Using the approximate Green's function derived in the previous section (Eq. 4.84) 
we have: 

(4.91) 

After two partial integrations, assuming the source to be limited in space, we ob
tain: 

(4.92) 

We moved the differentiation from the unknown source term towards the known, 
and explicitly available, Green's function (4.84). We now note that: 

og = __ l_
t5
(t _ r _ _ \x_Y_\ o\x - Y\ 

oY 2c5 Co oy 
(4.93) 

4While the assumption that friction is a negligible source of sound was already formulated by 
Lighthill, a reasonable confirmation of its validity was only provided thirty years later by the work 
of Morfey [128] and Obermeier [147J. The exact range of validity is still subject of research. 
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so that from: 

alx - yl 
ay 

. alx - yl 
Slgn(X - y) = ---

ax 
(4.94) 

we have the following important symmetry in the Green's function of an infinite 
pipe: 

8g og 
-=--
oy ax 

(4.95) 

We substitute this result in (4.92). Since the integration is to the source position g, 
we can now remove one of the differentiations to x from the integral, resulting in 
the expression: 

o jtf!! P u
2 

p'(x, t) = ~8(te - r) sign(x 
ax to 2Sco 

V 

y)dydr. (4.96) 

with te = t - Ix yl/co. The time integration can now be carried out: 

p'(x, t) :" f f f 2L5[poU2]r=te sign(x - y)dy 

V 

(4.97) 

where we used the property (C.27) of the 8-function. At sufficiently large distances 
the only length scale in the solution is the characteristic wave length cod/uo corre
sponding to the characteristic frequency5 uo/d of the turbulence in the jet. Hence 
we can estimate: 

a 1 a Uo Mo 
_~ __ f"'V_=_ 
ax Co at cod d 

(4.98) 

Because the sound production by turbulence decreases very fast with decreasing 
mean flow velocity, the volume of the free jet contributing to the sound produc
tion is limited to a region of the order of d3• In this region the turbulent velocity 
fluctuations are of the order of uo. Hence we find at large distances: 

p' '"V Mo Pou5 d3 
d 2Sc5 

5We assume a jet with circular cross section. 

RienstraHirschberg 20 August 200816:00 

(4.99) 

(4.100) 



4.7 Aero-acoustical applications 111 

This is the result obtained by Ffowcs Williams [53]. This Mach number depen
dence has indeed been observed in a pipe downstream of an orifice for sufficiently 
high Mach numbers. At low Mach numbers the sound production is dominated by 
the dipole contribution of O(M4) due to the interaction ofthe flow with the orifice 
[122]. 

A discussion of the sound production by confined circular jets is provided by 
Reethof [168] for arbitrary jet Mach numbers. Reethof finds for subsonic jets 
(Mo < 1) a ratio of the radiated power to the flow power TJac = 3 X 10-4 M6 . 
For supersonic jets (Mo > 1) typical values are TJac = 1.6 x 10-3(M5 1)1/2. In 
that case the Mach number is taken from M5 Y:'1 [(pt!P2)(y-l)/y - 1], where 
PI / P2 is the ratio of the pressure across the orifice. 

The dependence of the sound production on the jet geometry is discussed by Verge 
[213] and Hirschberg [68]. For planar jets issued from a slit of height h the typical 
frequencies are of the order of O.03uo/ h (Bj¢rn¢ [12], Sato [194]). This implies 
that correlations developed for subsonic circular jets are useless for planar jets. 

4.7.2 An isolated bubble in a turbulent pipe flow 

Consider an isolated bubble of radius ao small compared to the pipe diameter D. 
Assume a turbulent pipe flow. The sound produced by the turbulence will, locally, 
be enhanced by the presence of the bubble. If we assume that the frequencies in 
the turbulence, typically O(uo/ D), are much smaller than the bubble resonance 
frequency Wo, we can calculate the sound produced by the interaction of the bubble 
with the turbulence. 

The Green's function is calculated by using the reciprocity principle. We consider 
the acoustic response of the bubble for a plane wave emitted from the observer 
position x towards the bubble. For the sake of simplicity we consider this incident 
wave to be harmonic Pin = pin eiUlt-ikx. The bubble pressure response Pb is, as is 
shown in 5.4.5 (use (4.72) with Pin = :FI and pi = :F2)' given by: 

(~)2 A 

(wo)2 2niaocw Pin· 
1- - ----

w Sw 

A 

Pb (4.101) 

Using Bernoulli and the continuity equation we can calculate the pressure distri
bution around the bubble: 

(4.102) 
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where: 

i
r. A 2 

lwaaO . A aO 
C{Jb = --2 - dr = l(uaao (1 - - ). 

~ r r 
(4.103) 

Furthermore, we have: 

A 

a 
(4.104) 

ao 

so that p(r) is given by: 

1 _ (WO)2 _ ao 
w r A 

(
Wo)2 _ 2niaocw Pin· 

W Sw 

(4.105) 
1 

Taking for Pin the Fourier transform of (2COS)-1 H(t - r - Ix - ylJco) we obtain 
as p the Fourier transform G(xly) of the Green's function G(x, tly, r): 

A e-iwr-iklx-yl 

G(xly) = -.--
21WCwS 

(4.106) 
1 _ (wo)2 _ 2niaocw . 

w Sw 

Using Lighthill's analogy we now can compare the response of the pipe to turbu
lence, with and without bubble. We obtain by partial integration: 

(4.107) 

If we consider a small turbulent spot in the direct neighbourhood of the bubble the 
ratio of the responses is given by: 

&2Gb &2Gb c~ao 
w2r3 

(4.108) 
a2Go a2Go 

1- c:r- 2niaocw 

oy2 Sw 

Atthe resonance frequency Wo this yields a factor (aoS / 4n r3)(pwc~J3y Po)! while 
for low frequencies we find (ao/r)\pwc~/3ypo). If r = O(ao) we see that the 
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sound produced by turbulence in the neighbourhood of the bubble will be dramat
ically enhanced. 

The major contribution of the bubble turbulence interaction will be at low fre
quencies. An important reason for this is that for typical conditions in water flow, 
the length scale of vortices corresponding to pressure fluctuations at the bubble 
resonance frequency wo/2rr is much smaller than the bubble radius [35]. In such 
a case these pressure fluctuations are averaged out at the bubble surface and do 
not have any significant contribution to the spherical oscillations of the bubble. An 
example of sound production by bubbles in a pipe flow is the typical sound of a 
central heating system when air is present in the pipes. Also the romantic sound of 
water streams and fountains is dominated by bubbles. In those cases, however, we 
have a three-dimensional environment. 

4.7.3 Reflection of a wave at a temperature inhomogeneity 

As a last example of the use of the integral equation based on the Green's function 
fonnalism we consider the interaction of a wave with a limited region in which 
the gas temperature T(x) is non-unifonn (0 < x < L). We assume the pipe to be 
horizontal and that gravity is negligible. Hence, at rest the pressure is unifonn. The 
gas density is given by: 

p/Po = T/To (4.109) 

and the speed of sound C is given by: 

c/co 
1 

(T /ToP (4.110) 

where Po, To and Co are the properties of the unifonn region. We now further as
sume that IT - Tol/To « 1 so that we can use a linear approximation in which we 
assume that the scattered sound wave pI! is weak compared to the amplitude p: of 
the incident wave. In such a case we can write pi = pfn + p", so that the linearized 
I-D wave equation (2.48): 

a2
p' _ ~ (c20P') = 0 

ot2 ax ax 

can be approximated by: 

a2p" 2 02 pI! 0 (2 2 ap~n) 
----;:Ji2 - Co ax2 = ax (c - Co) ax . (4.111) 
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The source term has been linearized by assuming that the pressure fluctuations are 
equal to the (undisturbed) incident wave amplitude. It is the source term considered 
by Powell [161] for the description of sound scattering at entropy spots. 

Using the integral formulation (3.13) and the one dimensional Green's function g 
we find: 

p" = 100 rL 
~(c2 _ C5) ap{n g dydr. 

-00 10 oy oy 

Partial integration yields 

p" = -100 rL 
(c2 _ C5) °P{n og dydr. 

-00 10 oy oy 

From equation (4.84) we have 

og 1 - = -2 sign(x - y)8(te - r) 
ay 2co 

(with te = t - Ix - YI/co) and hence 

II 1 1L P = --2 sign(x 
2co 0 

y)(c2 - C5) 8(te - r)~ drdy 100 ap' 

-00 oy 

1 1L = --2 sign(x - y)(c2 

2co 0 

If we take for example 

pfn = PinH(X - cot) 

and use the relation c2 /c~ = T / To, then we have for (say) x < 0 

=L 
(x + cot» 1 

To 
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Exercises 

a) Show that for an acoustic wave travelling in the negative x direction we have: u' = 
_pi/POCO. 

b) Consider a rigid piston at (x 0) separating the fluid I for x < 0 from the fluid II 

s 

at x > 0 in an infinitely long pipe of 10-2 m2 cross section. Assume that the piston 
oscillates with a frequency w and an amplitude a. Calculate the force necessary to 
move the piston as a function of time (Po,l = 1.2 kg/m3, CO,1 344 m/ s, PO,II = 
1.8kg/m3 and CO,n = 279m/s, w W3 rad/s, a = 10-3 m). Use linear theory and 
verify if it is indeed valid. 

c) Water hammer effect: 
Consider a steady flow of water in a rigid horizontal pipe which we stop suddenly by 
closing a valve. Calculate the pressure on both sides of the valve for flow velocities 
of 0.01 mls and 1 mls. What is the force on the valve for a pipe cross section surface 
of 10-2 m2. 

-I 
1 

+ ' 1 Uo U- 1 
1 

_I 
1 
I 

1 ' 

1 
1 
1 
1 
I 

I tA 
I 

2' 

Figure 4.13 Exercise d) 

d) The same problem as c) but with a slowly closing valve in an infinitely long pipe 
(figure 4.13). Assume the area of the valve opening to be a given function of time: 

A A(t). 

Suppose further that the flow separates at the exit of the valve forming a free jet into 
the pipe downstream of the valve. If A « S we can neglect the recovery of dynamic 
pressure (!pv;) upon declaration of the fluid by turbulent mixing of the jet with the 

fluid in the pipe. Hence the pressure drop I1p across the valve is I1p = !pvJ if we 

neglect inertial effects in the valve (we assume ./AcaVj fat) « vJ)' 

e) Sow that, in the absence of aero-acoustic sources, the conservation of acoustic en
ergy implies a continuity of pressure (l1p' = 0) across a compact discontinuity in a 
pipe, like a sudden change in diameter. 

f) Calculate the reflection coefficient R and the transmission coefficient T for a contact 
surface between water and air. Consider both the cases of a wave incident from the 
air and water sides in the direction normal to the surface. 
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g) Same question as t) for a discontinuity in temperature of 30 K in air at atmospheric 
pressure (corresponding to the temperature difference from inside our mouth to out
side in the winter). 

h) Calculate the reflected and transmitted acoustic intensities 1 for questions t) and g). 

i) Consider a semi-infinite tube closed at x 0 by a harmonically moving piston 
(up = up eiwt ). The tube is filled with air. At a distance L from the piston there is 
a temperature jump of 30 K. Calculate the amplitude of the waves in steady state 
conditions. 

j) Calculate the reflection coefficient R and the transmission coefficient T for a low 
frequency wave :Fi incident from the left to a stepwise area change from Al to A2 
in an infinitely long pipe. Assume linear behaviour and no mean flow. 

k) Same exercise as j) for a combined stepwise change in cross section and specific 
acoustic impedance jump I:!.pc of the fluid. 

1) A closed pipe end can be considered as a change of area such, that Azi Ai --j. 0, 
while an open end can be approximated by a change with Azi Al --j. 00. Calculate 
in both cases the reflection coefficient R, using the result of exercise j). 

m) Calculate the reflection coefficient for a harmonic wave at an orifice, assuming lin
ear behaviour and no mean flow. 

n) What are the conditions for which we can neglect friction in the orifice? 

0) Consider an orifice of d = 1 mm diameter, without sharp edges, in a pipe, of diameter 
D = 1 cm, filled with air at room conditions. At which amplitude (in dB) one would 
expect non-linear losses due to acoustical flow separation for a harmonic wave (with 
a frequency of 10 Hz, 100 Hz and 1000 Hz) if there is no mean flow. Such orifices 
are used in hearing-aid devices for protection. 

p) When flow separation occurs as a result of mean flow, the end correction 0 is af
fected. At low frequencies by about a factor 3 compared to high frequencies or the 
linear behaviour without flow separation. Explain qualitatively this effect. (Why can 
we expect a decrease of o?) 

q) Consider a wave 9.1 (t + XII co) incident on a junction of three semi-infinite tubes 
(with cross sections AI,Az, and A3). Assuming no other incident wave (9.2 = 9.3 

0) calculate the reflection and transmission coefficients. 

r) Consider a pipe of cross sectional area Al (AI = A3) with a closed side branch of 
section Az and of length L (figure 4.14). Calculate the reflection and transmission 
coefficients R = Fl/9.j and T F3/9.I for an incident harmonic wave 

1J,I = eiwt+ikxl 

if we assume that 9.3 = O. The wave number k is defined as k = wi co. What are the 
conditions for which R = 0 ? What are the conditions for which R I? What are 
the conditions for which R = -1? 
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-Xl X3--

L 

TI...----...J 
A2 

Figure 4.14 Thbe with closed side branch. 

s) Calculate the low frequency limit of the reflection coefficient R = :Fi 19.1 for an air 
bubble of 1 mm in a pipe of 1 cm diameter for a harmonic wave of frequency w. 
Assume po = 1 bar. 
(Answer: R = -(1 +iw~AI2Jrwcwao)-1 withw~ 3ypo/pwa~.) 

t) Calculate the pressure Pb in an air bubble of mean radius ao in water for an incident 
wave Pin = pin eiwt-ikx in a pipe of cross section A p » a5. 

u) In the model described above (section 4.4.5) the pressure in the bubble is assumed 
to be uniform. Is this a reasonable approximation for an air bubble of 1 mm radius 
in water up to the resonance frequency wo for PO 1 bar? 

v) In the above model the acoustic pressure imposed on the bubble by the incident 
acoustic field is assumed to be uniform across the pipe diameter. Is this a reasonable 
approximation for a bubble with a radius an = 1 mm placed in a pipe of diameter 
D= 1 em filled with water at ambient pressure? Assume a frequency w = wo. 

w) In the above model we assumed the bubble to be small compared to the pipe diam
eter, and far from the walls. Estimate Wo for a bubble placed at the wall. 

x) Is the model valid for a bubble which is large compared to the pipe diameter? Why? 

y) Determine the physical dimensions of the Green's function by substitution in the 
wave equation (4.81). 

z) Verify (4.84) by Fourier transformation of (4.81) and then using section C.l. 

A) Construct the Fourier transformed Green's function for a semi-infinite (x < L) tube 
terminated at X = L by an impedance Z L. 

B) Construct the Fourier transformed Green's function for a source placed left from a 
small bubble placed in an infinite tube. 

C) Show that for low frequencies G(x, fly,.) g(x, fly, .)/S for Ix yl».JS in 
a tube of uniform cross section S. 
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D) Explain (4.95) in terms of the effect of displacement of the source or observer on 
the Green's function for an infinite tube. 

E) Calculate using (4.99) the sound pressure level in a tube of 10cm diameter due to the 
inflow of a air jet of 1 em diameter with a velocity of 10 mls. Assume atmospheric 
conditions and room temperature. Are the assumptions valid in this case? Are the 
assumptions valid if uo = 102 mls ? 

F) Same question as E) for a jet placed at the end of a semi-infinite pipe closed by a 
rigid wall, as indicated in figure 4.15. 

J 
l~ 

Figure 4.15 Exercise F) 

G) Calculate the amplification factor for turbulence noise at resonance 

(S/a6)(pwc~/3ypo)~, and at low frequencies Pwc~/3ypo for an air bubble of 
diameter 2ao 1 mm in a pipe of D 1 cm diameter filled with water at atmo
spheric pressure. 

H) In principle the turbulent pressure fluctuations in a pipe have a broad spectrum with 
a maximum around a characteristic frequency uo/ D. Consider a flow velocity of 
1 mls. Do you expect the characteristic frequency of turbulence to be large or small 
compared to the resonance frequency WO/21i of an air bubble with 2ao = 1 mm as 
in question G)? 

I) For a small bubble the surface tension a contributes significantly to the internal 
pressure Pb of the bubble. For a spherical bubble we have: 

2a 
Pb Pwater(a) + -. 

a 

In equilibrium Pwater(a) = po. If we consider the oscillation of such a bubble we 
find a resonance frequency: 

(
3YPO 4a)~ 

WO --') +--3 . 
Pwa6 pwao 

Derive this formula. Given the surface tension a of water is 7 x 10-2 N/m, calculate 
the bubble radius for which the surface tension becomes important. 
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J) The sound in bubbly liquid is often due to the oscillations of bubbles caused by 
a rapid local acceleration or to oscillations induced by the coalescence or collapse 
of bubbles. This yields the typical "bubbling" noise of a fountain or brook. As an 
example consider the difference in volume ~ V between the sum of the volumes of 
two bubbles of equal radii au = 10-4 m and a single bubble containing the same 
gas (after coalescence). This difference in volume is due to surface tension effects 
(see previous question). Assume that the new bubble is released with a radius a 
corresponding to the original volume of the two smaller bubbles. The bubble will 
oscillate around its new equilibrium radius. The movement will be damped out by 
radiation. Calculate the amplitude of the acoustic pressure waves generated in a pipe 
of 1 cm diameter filled with water as a function of time. 

RienstraHirscbberg 20 August 2008 16:00 



5 Resonators and self-sustained oscillations 

5.1 Self-sustained oscillations, shear layers and jets 

When using Lighthill's analogy to estimate the intensity of the sound produced by 
a turbulent flow in section 4.7.1 we have assumed that the sound source is indepen
dent of the acoustic field. This assumption was not justified but it seems reasonable 
if the acoustic velocities in the flow are "small enough". In fact this hypothesis 
breaks down in a large number of very interesting cases. In many of these cases 
the acoustic feedback (influence of the sound field on the sound source) results in 
the occurrence of a sharply defined harmonic oscillation, due to the instability of 
the flow. Whistling, jet-screech and reheat-buzz are examples of such oscillations. 
In general the maintenance of such oscillations implies the existence of a feedback 
loop as shown in figure 5.1. 

edge 
--... -1 

hydrodynamic feedback 

acoustic feedback 

Figure 5.1 Flow-acoustic oscillator. 

In most cases the acoustic field interacts with an intrinsically unstable hydrody
namic flow (jet, shear layer) at a sharp edge where the flow separates from the 
wall. This separation point appears to be a localized region where the acoustic 
flow and the hydrodynamic flow are strongly coupled. We will now consider this 
interaction in some detail. 

In principle, if the flow were frictionless and is described accurately by a potential 
flow, the velocity at an edge would be infinitely large. This can be understood by 
considering the flow in a pipe at a bend (figure 5.2). 
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The fluid particles passing the bend feel a centrifu
gal force pu~ / r per unit volume. If the flow is sta
tionary it is obvious that there should be a cen
tripetal force compensating the centrifugal force. 
In a frictionless flow the only force available is the 
pressure gradient -ap/ar. Hence, we see that the 
pressure at the outer wall in the bend should be 
larger than at the inner walL Using the equation 
of Bernoulli for a stationary incompressible flow 
(p + ~pv2 = constant) we conclude that the ve
locity is larger at the inner wall than at the outer 
wall! (See figure 5.3.) 

ap 
ar 

Figure 5.2 Flow in a bend. 

r 

v 

We could also have found this result kinematically by 
noticing that if a particle in an irrotational flow fol
lows a curved path there should be a gradient au jar 
which "compensates" the rotation which the particle 
undergoes by following a curved path. 

Figure 5.3 Frictionless flow 
in a bend. 

The fact that the pressure is larger at the outer wall can 
also be understood as a consequence of the inertia of 
the flow which is trying to follow a straight path and 
"hits" the wall. The pressure built up at the wall yields 
the force necessary to bend the streamlines. 

A particle in the flow close to the inner wall is just 
like a ball rolling into a well (figure 5.4). The Bernoulli equation, which represents 
in this case the law of conservation of mechanical energy, tells that the pressure 
decrease implies a decrease of potential energy p which is compensated by an 
increase of kinetic energy ~ pv2. When leaving the well (bend) the kinetic energy 
is again converted into pressure as the particle climbs again (the adverse pressure 
gradient). 

A frictionless flow is only possi
ble far from the wall. Even at high 
Reynolds numbers there is always a 
thin region at the wall where friction 
forces are of the same order of mag
nitude as the inertial forces. We call 
this thin region of thickness 8 a vis- Figure 5.4 Ball passing along a well. 

cous boundary layer. 
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uo: . 

[Y 

, 

U(y); / jl 
: ./ 

: ---
x 

Figure 5.5 Boundary layer 
velocity profile. 

~ 

It can be shown that because the flow is quasi
parallel the pressure in the boundary layer is 
unifonn and equal to the local pressure of the 
frictionless flow just outside the boundary layer. 
More accurately: this implies that the nonnal 
pressure gradient n· \l p at the wall is negligi
ble in the boundary layer. In the boundary layer 
the friction decelerates the flow to satisfy the 
"no-slip boundary condition" at the wall: v = 0 
(for a fixed wall; figure 5.5). As is clear from 
figure 5.5 the flow in the boundary layer is not 

irrotational. The boundary layer is a region of concentrated vorticity. 

If we consider now a sharp bend the velocities following potential flow theory 
should now become infinitely large at the inner edge (figure 5.6). (This can be 

-'. --
-------------~~~ ~~" , , , , 
--~-----.----~ \ \ • • · , • , 

• · 

Figure 5.6 Sharp bend. a) potential flow; b) actual flow. 

verified by integration of the radial momentum conservation law.) The assumptions 
used to derive the flow pattern break down: the viscous tenn rJ\l2v which we have 
neglected in the equation of motion becomes dominant near the edge. This results 
into a flow separation. The flow separation can be understood qualitatively when 
we think of the ball in figure 5.4 in the case of a very deep well and in presence of 
friction. In such a case the ball never succeeds in climbing up the strong pressure 
gradient just behind the edge. 

The separation of the boundary layer at the edge implies an injection of vorticity 
in the main stream. This vorticity is concentrated in the shear layer separating the 
mean flow from a dead water region (figure 5.6) just behind the bend. Taking the 
circulation along a path enclosing part of such a shear layer clearly shows that the 
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5.1 Self-sustained oscillations, shear layers and jets 123 

circulation per unit length (df Ide) in the shear layer is just equal to the velocity 
jump across the layer: df Ide = ilv (figure 5.7). 

- - ........ df = f v-ds = -Uode 

shear layer 

Figure 5.7 Circulation in the shear layer 

This complex process of separation can be described within the frame of a friction
less theory by stating that the velocity at a sharp edge should remain finite. This 
so-called "Kutta condition" implies that a thin shear layer should be shed at the 
edge. The shear layer contains a distribution of vorticity such that the velocity in
duced at the edge by the vorticity just compensates the singularity of the potential 
flow (which would exist in absence of shear layer). 

It can be shown that this condition also implies that the shear layer is shed tangen
tially to the wall at the side of the edge where the flow velocity is the largest. The 
validity of a Kutta condition for an unsteady flow has been the subject of quite a 
long controversy. At this moment for a sharp edge this is an accepted principle. 
Hence if next to a stationary flow we impose an unsteady potential flow (acoustic 
perturbation) the amount of vorticity shed at the edge will be modulated because 
we modify the singular potential flow at the edge. 

We see therefore that within a potential flow theory the sharp edges playa crucial 
role because they are locations at which a potential flow can generate vorticity. 1 It 
is not surprising therefore that in nature the feedback from the acoustic field on a 
flow will often be concentrated at an edge. 

Self-sustained oscillations imply an amplification of the acoustic perturbations of 
the main flow by flow instability (this is the energy supply in the feedback loop). 

1 In a two dimensional frictionless incompressible flow Ow/Of = 0 so that there is no interaction 
between the vortical and potential flow which can change w within the flow. 
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The instability of a thin shear layer can be understood by considering as a model 
an infinitely long row of line vortices in a 2-D flow (figure 5.8). 

L\r 
v = - ~ (~l + 2~l + ... ) 

V=--

-~::::1}~~~:~~~~~--~~~--~-~:~f?::::~:~~~~-
L, L\r 
v=---

21f L\l 

Figure 5.8 Instability of a vortex row induced by a non-uniformity of di Ide. 

The velocity induced by a line vortex of strength r is calculated using Biot-Savart's 
law: 

r 
UiJ = --, 

21fr 
(5.1) 

where r is the distance between the point at which we consider the velocity and 
the vortex. As we see in figure 5.8a a row of vortices is (meta)stable because the 
velocity induced on a given vortex by the vortices left of the point are just compen
sated by the velocities induced by the vortices at the right (by symmetry). This is, 
however, a metastable situation as any perturbation will induce a growing flow in
stability. For example a lateral displacement of one of the vortices out of the row is 
sufficient. Hence we understand (figure 5.8b) that a modulation of the vorticity by 
acoustic perturbations can induce a roll up of the shear layer into a vortex structure 
as shown in figure 5.9. 

The most unstable type of flows is the flow between two shear layers of opposite 
vorticity: jets and wakes (figure 5.10). A wake appears to be so unstable that when 
friction forces are sufficiently small (above a certain Reynolds number) it is abso
lutely unstable [78]. Hence, any perturbation will result in a break up of the wake 
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Figure 5.9 Shear layer instability. 

structure shown in figure 5.lD. A typical result of this is the occurrence of vor
tices, periodically shed from a cylinder for Re > 50, which is known as the Von 
Karman vortex street [15], This periodic vortex shedding is responsible for the typ
ical whistle of an empty luggage grid on a car. A jet left alone (free jet) will also 
exhibit some specific oscillations at moderate Reynolds numbers (Re 0(103» 
[13]. Turbulence will, however, kill any clear structure at higher Reynolds num
bers. A jet needs a little help to start whistling. However, there are many ways to 
persuade him to whistle! 

Extensive reviews of these jet oscillations are given by Blake and Powell [14], 
Rockwell [183, 185], and Verge [210]. We consider here only two examples: 

- the edge tone; 

the jet screech. 

In the first case the jet oscillations are controlled by placing a sharp edge in the 
jet. The interaction of the jet with the edge induces a complex time dependent 
flow. At low Mach numbers the flow can be described locally as an incompressible 
flow (compact) and a description of the jet oscillation can be obtained without 
considering sound propagation or radiation [32]. As the phase condition in the 
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feedback loop is determined by the travel time of perturbations along the jet, the 
oscillation frequency will be roughly proportional to the main flow velocity Vo in 
the jet. Self-sustained oscillations occur for those frequencies for which the phase 
of the signal changes by a multiple of 2n as the signal travels around the feedback 
loop. We assume an instantaneous feedback from the jet-edge interaction towards 
the separation point from which the shear layers bounding the jet emerge. The 
phase shift is therefore determined by the jet. 

As a rough first order estimate the per
turbations travel in the shear layer with 
a compromise between the velocities at 
both sides of the shear layer (about ~ Vo). 
A more accurate estimate can be ob
tained by considering the propagation of 
infinitesimal perturbations on an infinite 
jet as proposed by Rayleigh [13, 167]. In 
spite of the apparent simplicity of the ge
ometry an exact analytical theory of edge 
tone instabilities is not available yet. 

Like in the case of many other famil
iar phenomena there does not exist any 
simple "exact" theory for jet oscillations. 
Actually, the crudest models such as pro
posed by Holger [69] are not less realistic 
than apparently more accurate models. 

The most reasonable linear theory un
til now is the one proposed by Crighton 
[32]. A major problem of such a linear 
theory is that it only predicts the condi- Figure 5.10 Jet and wake. 

tions under which the system is stable or 

wake 

unstable. It is not able to predict the amplitude of self-sustained oscillations. At 
the end of this chapter we will discuss the model of Nelson [144] for a shear-layer 
which is very similar to the model of Holger [69] for an oscillating free jet. Both 
models do predict an amplitude for sound production by the oscillating flow. 

Placing such an edge tone configuration near an acoustic resonator will dramat
ically influence its behaviour. A resonator is a limited region of space in which 
acoustic energy can accumulate, just like mechanical energy can accumulate in the 
oscillations of a mass-spring system. The sound radiated by the edge-jet interaction 
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results now in a second feedback path through the oscillations of the resonator. In 
such a case the resonator often imposes its resonance frequency to the system. The 
phase change that a signal undergoes as it travels around the feedback loop is now 
not only determined by the jet but also by the delay in the acoustic response of the 
participating resonator. The oscillation condition is still that the total phase change 
should be a multiple of 2n. When the frequency is close to the resonance frequency 
of the resonator, a small variation in frequency results into a large phase shift and 
this easily compensates the change in travel time along the jet. An example of such 
a system is the flute or the recorder. 

In many textbooks the flute oscillation is described as an acoustically driven edge
tone system. It is rather tragi-comic that one describes a system which we would 
like to understand in terms of the behaviour of a system which we hardly under
stand. As stated by Coltman [24] this is "a rather circular procedure in view of the 
fact that there are many gaps in the theoretical basis for both". Simplified models of 
the recorder are proposed by Fabre [49] and Verge [212,210,211, 213]. It indeed 
appears that a recorder is not simply an "edge tone" coupled to a resonator. 

We do not always need an edge for jet oscillations. In the jet screech we have a 
supersonic jet which has a cell structure due to the formation of shocks and expan
sions when the jet pressure at the exit is not equal to that of the environment (figure 
5.11). The interaction of acoustic perturbations with the edges at the pipe exit re
sults into the formation of periodically shed vortices. The vortex interaction with a 
shock wave appears to generate strong acoustic pulses. In particular the interaction 
with the third cell appears to result into a localized periodic source of sound. The 
acoustic wave travels back towards the pipe exit via the quiescent environment of 
the jet. This feedback loop can be blocked by placing a wall of absorbing material 
around the jet [159, 185]. This reduces the jet oscillations, demonstrating that the 
feedback loop described is the one which controls the jet oscillations. A review of 
some related supersonic flow oscillations is given by Jungowski [91]. 

Many of the features observed in a jet oscillation can also be observed in a shear 
layer separating a uniform main flow from a dead water region in a cavity [184] 
(closed side branch in a pipe system or open roof of a car). We will discuss these 
types of oscillations after we have discussed the acoustics of some elementary type 
of acoustic resonators. 
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Figure 5.11 Under-expanded supersonic jet with typical cell structure. We ob-
serve acoustic waves generated by the interaction of a vortex with the shock. The vortex 
is shed periodically at the nozzle lip. Acoustical feedback has been reinforced in this 
experiment of Poldervaart and Wijnands (TUE) by placing reflectors around the jet 
nozzle. 
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5.2 Some resonators 

5.2.1 Introduction 

Before considering other types of acoustically controlled flow instabilities we will 
focus our attention on the acoustic resonator. This is an essential step because in 
many applications the identification of the resonator is sufficient to find a cure 
to self-sustained oscillations. Furthermore resonators are also used to impede the 
propagation of sound or to enhance absorption. An example of this behaviour is 
the reflection of acoustic waves by an air bubble in a pipe filled with water (section 
4.4.5). We start our discussion with explaining the occurrence of resonance in a 
duct segment. We then will discuss the behaviour of the Helmholtz resonator. 

5.2.2 Resonance in duct segment 

We will first discuss the behaviour of a pipe segment excited by an oscillating 
piston. The most efficient way to do this is to consider this behaviour in linear 
approximation for a harmonically oscillating piston. We will see at the end of this 
section that at critical frequencies the theory does not provide a solution if we 
neglect friction. In the time domain we can understand this so-called resonance 
behaviour more easily. For this reason we will start our discussion by considering 
the problem in the time domain. 

Consider a pipe segment 0 < x < L closed at x = L by a rigid wall (ft· n = 0) 
and at x = 0 by an oscillating piston with a velocity up(t): 

(5.2) 

where, in order to simplify the notation, we introduced in this subsection the aux
iliary function 

E(t) = H(t)eiwt • (5.3) 

We assume that up/eo « 1 so that an acoustic approximation is valid. We con
sider only plane waves (wA 1/2 leo « 1) and we neglect friction and heat transfer 
«vlwA)1/2 « 1). The piston starts oscillating at t = 0 and we assume that initially 
the fluid in the pipe is quiescent and uniform (uo = 0). In such a case at least for 
short times the linear (acoustic) approximation is valid. We can now calculate the 
acoustic field by using the method of characteristics as described in section 4.2. We 
will describe the calculation in detaiL However, a reader only interested in the final 
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result can jump to the final result, equation (5.16). The (x, t) diagram is shown in 
figure 5.12. 

1 
t 

x ... 

Figure 5.12 Wave pattern induced by a moving piston at x 0, starting at t = O. 

In region I we have a quiescent fluid: 

PI = 0 and UI = O. (5.4) 

In region II we have the c+ waves generated at the piston: 

PI! = p~(t - ~). (5.5) 

Using the boundary condition Un = up for x = 0 we find: 

p~(t) = pocoup(t) = pocoupE(t). (5.6) 

In region III we have a superposition of the waves emanating from region II and 
the C- waves generated at the wall x = L: 

Pm = p~(t - ~) + P;;'I(t + X - (5.7) 
Co Co 

P;;'J can be determined by application of the boundary condition Um = 0 at x = L: 

A ( L) 1 _ upE t - - - --PIll(t) = O. 
Co POCo 

(5.8) 
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Hence we have: 

Pm = pocoup{E(t - :J + E(t + x ~02L) I. (5.9) 

In region N we have a superposition of the c- waves from region III and the c+ 
waves generated at the piston x 0: 

__ ( x L) + ( X) 
PIV - PIll t + -- + PlY t - - . 

Co Co 
(5.10) 

p~ is determined by applying the boundary condition U IV = up at x = 0: 

A ( 2L) 1 + A upE t - - - -Prv(t) = upE(t) 
Co POCo 

(5.11) 

and so we find: 

A {( X) ( x - 2L 
Prv = POCOU pEt - Co + E t + Co (

X +2L } + E t - Co • (5.12) 

In region V we have the c+ waves from region N superimposed on the C- waves 
generated at the wall x = L: 

Pv = piv(t - ~) + p;(t + x ~ L). (5.13) 

As before, P-; is determined by applying the boundary condition Uv 0 at x = L. 
We find: 

pv = pocoup{E(t - ~) + E(t + x co
2L 

+E(t_ X +2L +E(t+x 4L}. (5.14) 
Co Co 

If we now limit ourselves to the position x 0 we see that after each period of time 
2L / Co a new wave is added to the original waves reflected at the wall and piston. 
These original waves have now an additional phase of2kL, where k = (f)/co. 

Substituting x = 0 in (5.13) and generalizing the structure of the formula we find 
for2NL/co < t < 2(N + l)L/co: 

(5.15) 
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This structure could also have been obtained by using the method of images de
scribed in section 4.6.2. We consider the piston as a volume source placed at 
x = 0+. Placing image sources in an infinitely extended tube at x = ±2nL / Co 
and summing up all the waves generated yields: 

A ( IXI) P = PocoupE t - Co 

A ~{( -,--Ix _-_2n~LI 
+POCOU p ~ E t - -

n=l Co 

Note that this series contains always only a finite number of non-zero terms, be
cause for large n the argument of the Heaviside function in E becomes negative. 
So we have (for t > 0) 

Nt N2 

P A e- iwt = e-ikx L e-2iknL + eikx L e-2iknL, 

POCOUp n=O n=l 

N = lcot-XJ N = lcot+XJ 
I 2L' 2 2L' 

where Lq J denotes the integer part of q. It may be verified that after substitution of 
x 0 in (5.16) we find (5.15), with N = Lcot/2LJ. The geometric series may be 
summed2, so we obtain: 

P A e-iwt = (5.17) 
Pocou p 

e-ikx + eikx-ZikL if kL i= ]( t, 
1 - e-2ikL 1 -

{

I - e-2ik(Nl+l)L 1 _ e-2ikN2L 

e-ikx (Nl + 1) + e ikx Nz if kL = ]( t, 

where l = 1,2,3 .... For kL i= ](t, and allowing for a small amount of damping 
by giving m a small negative imaginary part, P converges towards a finite value. 
We call this the steady state limit. If kL = ]( e for any e 1, 2, 3 ... , the pressure 
increases without limit, at least as long as linear theory is valid. We call this a res
onance of the tube, with the resonance frequencies given by ~tco/ L. The resulting 

N 

2Note that: Lan 
n=D !

l_aN+l 

1-a 
N+l 
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equations are 

{ 

. cos(kx - kL) 
-1-----

sinkL 

cot 
cos (kx) z: 

if kL =1= rr t, 
(5.18) 

if kL = rrt. 

When resonance occurs the linearized wave equation is only valid during the initial 
phase of the build up and if there are no losses at the walls. As a result of the tem
perature dependence of the speed of sound the compression waves tend to steepen 
up and shock waves are formed. Shock waves are very thin regions with large ve
locity and temperature gradients in which viscous force and heat transfer induce a 
significant dissipation [4, 23]. This extreme behaviour will, however, only occur in 
closed tubes at high pressures or at high amplitude (section 4.2). 

In an open tube at high amplitudes vortex shedding at the pipe end will limit the 
amplitude [38]. If we assume an acoustic particle displacement at the open pipe 
end which is large compared to the tube diameter d we can use a quasi-stationary 
model to describe (locally) the flow. This is a model similar to the one discussed 
for an orifice in section 4.4.3. 

Let's assume that the tube is terminated by a horn as shown in figure 5.13. In 

-------------------'--------' .. 
u' .. .. 

-----------------""-------. 

x=o 
,"-, , 
, " , . , 

x = L '---' 

....------d 
or u' 

----~ 

Figure 5.13 Flow at an open pipe termination at high acoustic amplitudes. 

such a case flow separation will occur only while the acoustic flow is outgoing 
(figure S.13a). Assuming a dominant fundamental harmonic u sin wt, the power We 
corresponding to the energy losses due to the formation of the jet can be calculated 
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from: 

We = : foT U' fj.pdt (5.19) 

where fj.p = ~ POU'2 for 0 < t < ~ T and u' > 0 because a free jet is formed 
which cannot sustain a pressure difference3 . In terms of the Vortex Sound theory 
of Howe we would say that when the jet is formed during the outflow there is a 
deviation from potential flow resulting into p' = p~x' while potential flow theory 
would predict p' = p~x - ~ POU'2 . This is due to the vorticity in the jet which results 
into a source of sound, that we can represent by a pressure source fj.p = - ~ POUl2 

• 

For ~ T < t < T and u' < 0 we have: 

fj.p = 0 (5.20) 

because we have a potential inflow into the pipe. Hence: 

I A3S IT 
"2POU £2 . 3 1 A3 We ~ - sm wtdt = --PoU S. 

T 0 3rr 
(5.21) 

The amplitude of the acoustic field in the tube can now be estimated by assuming 
that the losses We at the open end balance the acoustic power Wp delivered by the 
piston: 

Wp =!.. rT 

upp'(x = O)dt. 
T 10 (5.22) 

Assuming that friction losses at the pipe wall are negligible we have: 

(5.23) 

where u is measured at the open pipe exit. Hence we find from We + W p = 0: 

Ii _ /311' up 

Co - 2 co' 
(5.24) 

The model proposed here is valid when the Strouhal number based on the diameter 
and the acoustical velocity is smaller than 1, i.e. wd < U. 

3We assume that due to turbulence all the kinetic energy in the jet is dissipated further down
stream. We assume also that flow separation occurs at the junction between the pipe and the hom. 
This is quite pessimistic, since the separation is expected to be delayed considerably by the gentle 
divergence of the hom. 
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5.2 Some resonators 135 

The non-linear behaviour of resonators, occurring for example with flow sepa
ration, makes such devices efficient sound absorbers. Sound is "caught" by the 
resonator and dissipated by vortex shedding. 

In many cases the most significant losses are friction losses at the wall. We will 
discuss the influence of radiation from an open pipe end in section 6.7. When a 
plane wave approximation is valid a harmonic acoustic field in a pipe with uniform 
cross section can in the absence of mean flow still be described by: 

(5.25) 

The wave number k, however, is now complex and is in first order approximation 
given by: 

k = ko + (1 - i)a (5.26) 

where ko = w / Co and a is the damping coefficient given by equation (2.13), derived 
in section 4.5. (In a liquid one should assume y ::::::: 1.) 

Damping also affects the impedance Zc of an infinite tube. To leading order ap
proximation one finds [111]: 

pI ko 
Zc = - =±Zo-

u' k 
(5.27) 

where the sign indicates the direction of the wave propagation (+x or -x) and 
Zo = Poco. We further see that wave speed c is affected: 

Re(k) 
C=Co-

ko 
(5.28) 

While friction is relatively easily taken into account for harmonic waves, in the 
time domain friction involves a convolution integral which makes the solution of 
problems more difficult to analyse [23]. We will now further limit our discussion 
to the case of harmonic waves. Hence we seek only for a steady state solution and 
we assume that linear acoustics is valid. 

As an example we consider a piston with a velocity up = up eiwt at x = 0 exciting 
a tube of cross section S closed at x = L by a rigid wall. We neglect the radiation 
losses at x = L (which we will discuss further in section 6.7). The boundary 
conditions at x 0 and x = L can be written in terms of equation (5.25) as: 

(5.29) 
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and 

0= p+ e-ikL _ p- eikL (5.30) 

so that we find: 

(5.31) 

In contrast to our earlier example p+ does not become infinitely large with reso
nance because k is complex. The impedance Z p seen by the piston at x = 0 is 
given by: 

p+ + p- . 
Zp = A = -lZc cotg(kL). (5.32) 

up 

Upon resonance, Re(k) = nrrjL withn 1,2,3, ... , we find for the case aL « 1: 

Z rv Zc (5.33) 
P - aL 

When the damping (aL) predicted by laminar boundary layer theory is small the 
oscillation amplitudes may become so large that the acoustical boundary layers be
come turbulent. This implies a non-linear energy dissipation as discussed in section 
4.5.3. 

5.2.3 The Helmholtz resonator (quiescent fluid) 

The resonance conditions for a duct segment (5.25) imply that the tube leugth 
should be of the order of magnitude of the acoustic wave length (kL = 0(1)). In 
many technical applications this would imply that resonators used to absorb sound 
should be large (and expensive). A solution to this problem is to use a non-uniform 
pipe in the shape of a bottle. When the bottle is small compared to the acoustic 
wave length (for low frequencies), the body of the bottle acts as an acoustic spring 
while the neck of the bottle is an acoustic mass (figure 5.14). 

If the cross-sectional area Sb of the bottle is large compared to the cross sectional 
area Sn of the neck, the acoustic velocities in the bottle will be small compared 
to those in the neck. Hence we may in first order approximation assume that the 
pressure perturbation P{n and the potential <Pin in the bottle are uniform (Bernoulli 
iu compact region). Furthermore as we have assumed the bottle neck (length £) to 
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I P~x U n 
V ! 

-----Sb 
Pin t Sn 

! "'-' 0 
,-Uin -

£ 

Figure 5.14 Helmholtz resonator as mass-spring system. 

be short compared to the wave length, kl « 1, we can neglect compressibility and 
apply Bernoulli in the form: 

(5.34) 

Neglecting non-linear terms (i.e. u~ and u~J we have: 

d !, 
Po dt (<Pin - <Pex) = Per. - Pin' 

The potential difference ({Jex - ({Jin, given by 

l
ex 

<Pex. - ({Jin = . u' . <Ix , 
In 

(5.35) 

(5.36) 

will evidently scale on a typical length times a typical velocity. If we use the neck 
velocity Un, assuming the flow to be uniform, frictionless and incompressible in 
a pipe with uniform cross section, then the corresponding length will be the neck 
length l, added by a small end correction 0 (4.51) to take into account the iner
tia of the acoustic flow at both ends just outside the neck (inside and outside the 
resonator). Hence we have: 

(5.37) 

Intermezzo: End correction 

As in many technical applications an orifice is used instead of bottle 
neck (£ = 0), the use of a reasonable estimate for 0 is important. For 
an orifice with a circular aperture: 

(5.38) 
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For an unflanged thin-walled open-pipe end we can use the approxima
tion: 

(5.39) 

See also section 6.7. Values of 8 for various other geometries are given 
by Ingard [81]. 

Using (5.37) in Bernoulli (5.35) we find: 

du~ I I 

Po(l + 28) dt = Pin - Pex' (5.40) 

We can find a second equation by applying the integral mass conservation law on 
the volume V of the bottle. In linearized form we find for the density perturbation 

(5.41) 

Assuming an adiabatic compression of the fluid in the bottle we can eliminate Pin 

by using the constitutive equation: 

(5.42) 

Elimination of P{n and u~ from (5.40) by using (5.41) and (5.42) yields: 

(l + 28)V d2P{n I I 

Snc5 dt2 + Pin = Pex' (5.43) 

Hence we see that the Helmholtz resonator reacts as a mass-spring system with a 
resonance frequency Wo given by: 

(5.44) 

5.2.4 Non-linear losses in a Helmholtz resonator 

The theory described in the previous section assumes that there is no-flow separa
tion. Flow separation will certainly occur when the acoustic particle displacement 

RienstraHirschberg 20 August 2008 16:00 



5.2 Some resonators 139 

has an amplitude comparable to the diameter of the neck. The Strouhal number 
Sr = W(SnITC)1/2Iu~ yields a measure for this effect. When Sr « 1 flow separa
tion will only occur locally at sharp edges of the neck (or orifice). When Sr = 0(1) 
flow separation will occur even if these edges are rounded off. In principle the ef
fect of flow separation can under these circumstances be described by assuming the 
formation of a quasi-stationary jet as for the pipe end (section 5.2.2). A multiple
scales solution for this problem may be found in section 8.3. 

In the case of an orifice with sharp edges, one should take into account the fact that 
the jet diameter tends to be smaller than the orifice diameter by a factor fJ called 
the vena contracta factor. For a thin orifice fJ ::::::: 0.6 [36]. Using a quasi-stationary 
Bernoulli equation this implies an enhancement of the pressure loss l1p by a factor 
{J-2. Furthermore losses occur for an orifice in both flow directions, while in a pipe 
with horn we assumed losses to occur only upon outgoing acoustic flow. 

5.2.5 The Helmholtz resonator in the presence of a mean flow 

We consider a Helmholtz resonator of volume V, neck length .e and neck surface 
Sn in which we inject a continuous volume flow Qo = uoSn (figure 5.15). Using 

t~' 
----::, 

uo+u~ ---I ...... 

Figure 5.15 Helmholtz resonator with a mean flow. 

the equation of Bernoulli we now find 

du~ 1 I 2 ! 

PoC.e + 28)"dt + ZPO(UO + Un) + Pex 
I 

Po + Pin (5.45) 

where we have applied Bernoulli between a point at the entrance of the neck and 
a point just at the exit and we have neglected the velocities in the resonator (Sb » 
Sn). We have assumed that the pressure in the jet is uniform and equal to P~x' the 
fluctuations due to an external acoustic source. (This is a reasonable assumption 
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for uolc « 1 and w(Snln)I/2Iuo « 1). Separating the zero and first order terms 
in the acoustic perturbations and neglecting second order terms we find 

(5.46) 

and 

du~ '" po(e + 28)- + pououn + Pex = Pin· 
dt 

(5.47) 

Using the linearized mass conservation law we have neglecting terms of order 
(uOlcO)2: 

(5.48) 

Eliminating P{n by using the constitutive equation P{n = c5P{n and eliminating P{n 
from (5.47) and (5.48) we find: 

Wo is defined by equation (5.44) and Mo = uolco. For a harmonic excitation P~x = 
Pex eiwt we find: 

(5.49) 

where WI = co/(e+28). We see that the mean flow induces a damping factor which 
we might a priori not have expected because we did not assume friction losses nor 
heat transfer. 

The key assumption which has introduced damping is that we have assumed that 
the pressure perturbation at the pipe exit is equal to the environment pressure per
turbation Pex. This is true, because the flow leaves the exit as a jet4 , which implies 
separation of the flow at the pipe exit and a Kutta condition to be added to an invis
cid model (section 5.1)! This implies that a varying exit velocity Un modulates the 
vorticity shed at the edges of the pipe exit, which is, on its tum, a loss of kinetic 
energy for the acoustic field. This confirms that the Kutta condition is indeed a 
quite significant assumption [31]. 

4 A very interesting proof of the fact that a quasi-stationary subsonic free jet cannot sustain any 
pressure difference with the environment is provided by Shapiro [198]. 
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5.3 Green's function of a finite duct 

Formally, the Green's function of a finite duct can be obtained if we neglect friction 
and losses at the pipe terminations by using the method of images (section 4.6.2 
and section 5.2.2). For a pipe segment 0 < x < L closed by rigid walls a source at 
x = y in the pipe segment is represented by a row of sources (in an infinitely long 
pipe) at positions given by (figure 5.16) 

xn = ±(2n + I)L ± y; n = 0, 1,2,3, ... 

The Green's function is the sum of all the contributions of these sources: 

Figure 5.16 Images of source at x = y. 

( I ) 1 ~{( x + (2n + I)L - Y 
gX,tY,r =2L- H t-r+ 

Co n=O Co 

(
X + (2n + 1)L + 

+H t-r+-~-~-~ 
Co 

(
X - (2n + I)L - Y) +H t r-----.:..----.;.. 

Co 
+ H (t _ r _ x - (2n: I)L + Y)}. 

(5.50) 

(5.51) 

It is clear that such a formal solution has no simple physical interpretation. 

Another representation for the I-D Green's function on [0, L] that might be useful 
in some applications is found by a series expansion of the Fourier transform g of 
g: 

00 

g = LAnj~(x) (5.52) 
n=O 

in a suitable basis Un}. In this case we will not start from elementary solutions 
of the wave equation. The functions in we will consider will (only) satisfy the 
boundary conditions at x = 0 and x = L, so that their sum will automatically 
satisfy these conditions if this sum converges uniformly. Hence we will construct 
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now a tailored Green's function (section 3.1). Furthermore, it is evidently neces
sary that the basis Un} is complete, and convenient that it is orthogonal to some 
suitable inner product. Let's now for simplicity assume that the pipe segment is 
limited by a rigid wall at x = 0 and an impedance Z L at x = L. Consider: 

in = sin(Knx ) (S.S3) 

with Kn determined by the equation 

tan(Y) . ZL 
--=1-

Y kL 
(S.S4) 

with KnL = Y. Note that for n --+ 00 (ZL i= 0) 

1 ikL 
Kn L c::::::: (n + '2)rr + 1 + ... 

(n + '2)rr ZL 
(S.SS) 

so that for large n, in approaches the Fourier-sine series basis. The number of 
solutions between 0 and (n + ~)rr (for n --+ 00) is not always exactly n. Depending 
on Zd kL it may differ by 1. For example, if ZL/ kL = i C and C is real, there is 
no purely imaginary solution Y = ia with tanh(a)/a = -C if C > 0 or C < -1, 
and exactly one solution if -1 < C < 0, which disappears to infinity if C --+ O. 
Finally, we note that Un} is orthogonal to the L2 inner product: 

(Note: not .. i~(x) .. ), which is easily seen by direct integration: 
Ifn i= m: 

lL sin(Knx) sin(Kmx) dx = 

sin(Kn L - Km L ) _ sin(Kn L + Km L ) = 0 

after application of (S.S4). 
Ifn = m: 

2(Kn - Km) 2(Kn + Km) 

l L . 2(K dx _ 1 sin(2KnL) _ 
sm nX) - '2L - - An. 

o 4Kn 

We now seek an expression for the Green's function, defined by: 

d2g 2A 8(x - y) 

dx2 + k g = - 2 
Co 
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in the form (5.52). Substitution of the series, multiplication left- and right-hand 
side by 1m, and integrating over [0, L] yields (because of orthogonality): 

(5.60) 

Hence we have: 

A(X ) _ ~ ~ In(x)/n(Y) 
g ,Y - 2 ~ (K2 _ k2)A . 

Co n=O n n 
(5.61) 

We see explicitly that: 

i) the Green's function is indeed symmetric in x and Y (source and observation 
points) as stated earlier in section 3.1 (reciprocity), and 

ii) any source with a frequency (J) = Kn Co (so that Kn = k) yields an infinite 
field, in other words: resonance. Note that in general Kn is complex, so that 
such a source strength increases exponentially in time. 

When the frequency (J) of the source is close to a resonance frequency this res
onance will dominate the response of the pipe segment and we can use a single 
mode approximation of the Green's function. This is the approximation which we 
will use when discussing the thermo-acoustic oscillations in a pipe segment (Rijke 
tube, section 5.5). 

5.4 Self-sustained oscillations of a clarinet 

5.4.1 Introduction 

The coupling of acoustic oscillations to mechanical vibrations is a technically im
portant problem [218]. In some case such a coupling can cause the failure of a se
curity valve. Instead of looking at a technical application we are going to consider 
a musical instrument. The model used is very crude and only aims at illustrating 
the principles of two methods of analysis: 

- the stability analysis; 

- the temporal simulation. 
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144 5 Resonators and self-sustained oscillations 

In the first case we consider a linear model and deduce the minimal blowing pres
sure necessary to obtain self-sustained oscillations. In the second case we consider 
a simplified non-linear model developed by McIntyre et at. [117] which can be 
used for time domain simulation. The aim of the simplification is to allow for a 
real time simulation of a clarinet! We will restrict our discussion to the principle 
of the solution of the problem. The results of the calculations can be found in the 
literature. 

5.4.2 Linear stability analysis 

A simplified model of a reed instrument like a clarinet is a cylindrical pipe fed by 
a pressure reservoir Po (the mouth) through a valve (reed). The reed has a mass mr 
and is maintained at a rest position hr by a spring of constant Kr. The aperture h 
of the valve is assumed to be controlled by the pressure difference b..p = Po p' 
between the mouth pressure Po and the acoustic pressure p' in the pipe just behind 
the reed (figure 5.17). The equation of motion of the reed is: 

h t 
mr 

Kr 

Sr ......-.... u' ---
Figure 5.17 Simplified clarinet. 

d2h dh 
mr dt2 + Yr dt + Kr(h - hr) -Sr(PO p') = -Srb..p. 

p' ~O 

(5.62) 

Yr is the damping coefficient of the reed, Sr is the surface of the reed and h is the 
aperture of the reed channel through which the air flows from the mouth to the 
pipe. We assume that the flow in the reed channel is quasi-stationary and that at 
the end of the reed channel a free jet is formed. Neglecting pressure recovery by 
mixing of the jet with the air in the pipe we assume the pressure pi to be uniform 
in the jet and equal to the pressure at the pipe inlet 

The flow volume Qr of air into the pipe is given in this approximation (if we 
neglect friction) by the equation of Bernoulli: 

Qr = uBhw = hw(2lb..pll p)1 sign(b..p) (5.63) 
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where w is the width ofthe reed channel and UB the (Bernoulli) velocity of the air 
in the jet. The acoustic velocity u' at the entrance of the pipe (x = 0) is given by: 

, Qr 
u =-

S 
(5.64) 

where S is the pipe cross sectional area. If we consider a small perturbation of the 
rest position (p' « Po) we can linearize the equations and consider the behaviour 
of a harmonic perturbation pi p eiwt • 

The steady state values of hand Qr are given by: 

Qo = uohow, 
I 

Uo = (2Pol Po) "2 • 

The linear perturbations are governed by the equations: 

UoP 
2Po 

(S.65a) 

(5.65b) 

(5.65c) 

We further assume that the acoustical behaviour of the pipe is described by an 
impedance Zp(w) so that: 

(5.65d) 

Since the system of equations 5.65a-5.65d is homogeneous, it can only be satisfied 
if the determinant vanishes. This condition yields an equation from which we can 
calculate w for a given Po: 

-w
2
mr + iWYr + Kr = (~ + houo 

SrUO ZpW 2Po 
(5.66) 

If !mew) > 0 the perturbations are damped, and if Im(w) < 0 the perturbations 
grow in time. It is clear that the steady state amplitude in a clarinet can only be 
reached by non-linear saturation of the system because linear theory predicts a 
monotonically growing or decaying amplitude. When Im(w) = 0 the perturbations 
are neutral, they do not change in amplitude. If we assume Im(w) = 0 equation 
(5.66) becomes an equation for Re(w) and Po. This allows to determine the thresh
old of pressure above which oscillations occur and the frequency of the most un
stable mode which starts oscillating. A discussion of the solution of this clarinet 
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model, including non-linear effects, is given by Gazengel [58] and Kergomard in 
[66]. 

It is interesting to note that in some cases the inertia of the flow in the reed which 
we neglected is the main driving force for instability. This is for example the case 
in harmonium reeds [201] and for valves in water like river gates [97]. A discussion 
of the flow through double reeds and the vocal folds is given by Hirschberg [66]. 

5.4.3 Rayleigh's Criterion 

An interesting analysis of the problem of clarinet oscillation is already obtained by 
considering the very simple quasi-stationary reed model: 

h = hr - Sr!:1p and 
K 

j2111P1 . Qr = hw -- slgn(!:1p). 
Po 

When !:1p = 0 there is obviously no flow because u = J21!:1pl/ Po sign(!:1p) 
vanishes. When !:1p > hrK / Sr = !:1pmax the reed closes and h = O. Between these 
two zero's of Qr it is obvious that Qr > 0 and should be a maximum at a pressure 
difference which we call critical !:1Pcrit c:::: ~ !:1pmax. The acoustical power 

1 f ,liT ,dV 1 iT , , W = - p dV = - p -dt = - p Qrdt 
T T 0 dt T 0 

produced by the fluctuating volume flow Q~ = ~~ should at least be positive. We 
consider here an oscillation period T in order to sustain oscillations. Fluctuations 
Q~ = (dQr/dp')p' in Qr induced by pressure fluctuations in the pipe are negative 
for !:1p < !:1Pcrit and positive for !:1p > !:1Pcrit. This explains the presence of a 
blowing pressure threshold below which the clarinet does not play. The criterion 
:! p' Qr dt > 0 is called the Rayleigh criterion for acoustical instability. We will 
use it again in the analysis of thermo-acoustical oscillations. 

5.4.4 Time domain simulation 

Early attempts to describe the non-linearity of a clarinet were based on a modal 
expansion of the acoustic field in the pipe. This implies that the Green's function 
was approximated by taking the contribution of a few (one to three) modes5 into 

5 Standing waves in the pipe closed at the reed end. 
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account (equation (5.61». The typical procedure is further to assume a weak non
linearity which implies that a perturbation method like the method of averaging 
can be used to calculate the time dependence of the modes [57]. A full solution is 
obtained by the method of harmonic balance discussed by Gilbert [59]. 

As stated by McIntyre [117] the non-linearity in a clarinet is not weak. In fact the 
most spectacular non-linearity is due to the limited movement of the reed upon 
closing. The collision of the reed against the wall of the mouthpiece can result in a 
chaotic behaviour [58]. The key feature of a clarinet mouthpiece is that this abrupt 
non-linearity is replaced by a softer non-linearity because upon touching the wall 
the reed gradually closes as it is bent on the curved wall of the mouthpiece (called 
the lay) and its stiffness increases because the oscillating part is becoming shorter. 

However, the high resonance frequency of the reed w; = Kr/mr suggests that 
a quasi-stationary model of the reed could be a fair first approximation. Hence 
McIntyre [117] proposes to use the steady approximation of (5.62): 

(5.67) 

combined with (5.63), (5.64) and (5.65d). The numerical procedure is further based 
on the knowledge that the acoustic pressure p' at the reed is composed of an outgo
ing wave p+ and an incoming wave p- (result of the reflection of earlier p+ wave 
at the pipe end): 

(5.68) 

The pipe has a characteristic impedance Zc (= POCo when friction is neglected) so 
that: 

p+ -p-
u' = "'---"-

Zc 
(5.69) 

If we now define the reflection function ret) as the acoustic wave p- induced by a 
pressure pulse p+ = oCt), we find: 

(5.70) 

where * indicates a convolution (equation C.lO). Elimination of p+ and p- from 
(5.68)--(5.70) yields: 

p' = Zcu' +r*(Zcu' + p') (5.71) 

where u' is calculated at each time step by using (5.63), (5.66), and (5.67): 

I W ( SrllP) (2IllP1 )! u = S hr - If; ----;;;- signCllp). (5.72) 
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The solution is obtained by integrating (5.71) step by step, using the previous value 
of pI to calculate ul in the convolution of the right-hand side (5.71). 

The interesting point in McIntyre's approach is that he uses a reflection function 
ret) (which is the Fourier transform of RCa» = (Zp - pc)/(Zp + pc» rather than 
zp, the Fourier transform of Zp. Using zp would have given the integral equation: 

I , 

P = zp*u (5.73) 

which can be combined with (5.72) to find a solution. It appears, however, that 
(5.73) is a numerically slowly converging integral because zp has an oscillatory 
character corresponding to the response p' of a close tube to a pulse u' = 8(t) 

(tube closed at pipe inlet). 

The reflection function r is in fact calculated in a semi-infinite tube and therefore 
has not such an oscillatory character (figure 5.18). So it appears that a Green's 

u' = 8(t) , 
a) p = zp 

y=o y=L 

p+ = 8(t) ~ .... -p 

b) 
\ 

Figure 5.18 Difference between zp and r. 

function which is not tailored may be more appropriate than a tailored one. 

5.5 Some thermo-acoustics 

5.5.1 Introduction 

We have focused our attention until now on wave propagation and interaction of 
acoustic fields with isentropic flows. In section 2.6 we have seen that variations 
s' in entropy should act as a volume sound source (if we use p' as acoustic vari
able). We will now discuss such effects as an interesting example of self-sustained 
oscillations in resonators. At low Mach numbers in gases, entropy variations due 
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to dissipation are negligible (order 0.2 M2). Entropy fluctuations occur mainly as 
a result of combustion (or vapour condensation) in the bulk of the flow or a<; a 
result of heat conduction at the wall. Mixing of hot and cold gases results into fluc
tuations of the entropy caused by the unsteady heat conduction (equation 2.85). 
For ideal gases one can, however, show that this sound source has a vanishing 
monopole strength (Morfey [127], Obermeier [146]). Convection of entropy spots 
during the mixing of a hot jet with the environment dominates the low Mach num
ber behaviour (Crighton [34], Morfey [127]). This sound source has the character 
of a dipole. 

Combustion instability is often triggered by the strong dependence of combustion 
processes on temperature. The reaction rates depend exponentially on T. Hence 
temperature fluctuations associated with pressure fluctuations will induce variation 
in combustion rate. This implies a source of sound which, if it is in phase with 
the acoustic field, can lead to instability. Even in free space this implies a strong 
increa<;e in sound production. We experience this effect when we ignite the flame 
of a gas burner. Placed in a closed tube a flame can couple with standing waves. 
This type of instability is known in aircraft engine as a re-heat buzz (Keller [93], 
Bloxsidge et al. [16]). The "singing flame" has already been discussed extensively 
by Rayleigh [167]. More recent information on the interaction of combustion with 
acoustic is found in Crighton et al. [34], Candel & Poinsot [20], Mcintosh [116], 
and Putnam [164]. 

We will now focus our attention on the effect of unsteady heat transfer at walls. 
This type of interaction has already attracted the attention of Rayleigh [167] in 
the form of the Rijke tube oscillation. This experiment was carried our first by De 
Rijke around 1848 [182]. He found that placing an electrically heated gauze in 
the lower part of a vertical tube open at both ends would induce strong acoustical 
oscillations. De Rijke considered the use of such a device as an organ pipe. The 
subject has been studied as a model for combustion instability by many scientists, 
among which Merk [120], Kwon and Lee [100], Bayly [6], Heckl [64], Gervais 
[157], and Raun [166]. 

Closely related phenomena of acoustical oscillations induced by a temperature gra
dient in a tube is used by scientists to detect the level of liquid Helium in a reser
voir. This phenomenon has been extensively studied by Rott [133, 188, 189, 190, 
191, 227], in a very systematic series of papers. The fascinating aspect of this 
phenomenon is that it can be inverted, acoustic waves interacting with a wall in
duce a transfer of heat which can be used to design an acoustically driven cooling 
machine. Such engines have been studied by Wheatley [221], Radebaugh [165] 
and Swift [203]. The ultimate engine consists of two thermo-acoustic couples (el-
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ements with a a temperature gradient): one at the hot side which induces a strong 
acoustic field and a second at the cold side which is driven by the first (figure 5.19) 
[204]. This is a cooling machine without moving parts! 

driver cooler 

1 ! 1 1 
very hot cold very cold cold 

Figure 5.19 Heat driven acoustical cooling engine. 

We will limit our discussion to a simple analysis of the Rijke tube oscillation. 

5.5.2 Modulated heat transfer by acoustic flow and Rijke tube 

We consider a thin strip of metal of temperature Tw and width w aligned along 
the mean flow direction in a uniform flow uoo • Along the strip viscous and thermal 
boundary layers ov(x) and or(x) will develop. We assume that ov/w and or/w 
are small and that ww/uoo « 1, while ov/or = 0(1). For small fluctuations u' 
of Uoo around an average value Uo the fluctuations in the heat transfer coefficient 
can be calculated as described by Schlichting [195] for any mean flow of the type 
Uo I"V xn (wedge flow). We now limit ourselves to the flat plate (n = 0) and we use a 
low frequency limit from which the memory effect will become more obvious than 
from Schlichting's solution. We further approximate the velocity and temperature 
profiles in the boundary layers by: 

Uoo 
u(y) =-y 

Ov 
T(y)-Tw Y 

Too - Tw OT 

(5.74) 

(5.75) 

Such an approximation is only valid for low frequencies and small perturbation 
amplitudes, corresponding to ww / Uoo « 1 and u' / Uo « 1. Outside the boundary 
layers the flow is uniform. In this approximation the viscous stress iw at the wall 
is given by: 

Uoo 
iw = 1]

ov 
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and the heat transfer q at the wall by: 

(
aT) Too - Tw q=-K - =-K . ay y=o 8T 

(5.77) 

Using an integral formulation of the conservation law in boundary layer approxi
mation we find [195]: 

[~ + Uoo ~]8~ = 4v _ 28~ auoo 
at 3 ax Uoo at 

(5.78a) 

[ a 2 (8T) a ] 2 1 (8T)3 a 2 - + -Uoo - - 8 = 4a + -Uoo - -8v at 3 8v ax T 3 8v ax 
for 8T < 8v 

(5.78b) 

[~ + uoo (l- (8T)2)~]82 = 4a - Uoo(~ - 8T)~8~ for 8T > 8v 
at 8v ax T 3 8v ax 

where a is the thermal diffusivity of the gas: 

K 
a--

- pCp' 

(5.78c) 

(5.79) 

Note that we have used the assumption (Tw - Too)jToo « 1 in order to keep the 
equations simple. This is certainly a very crude approximation in a Rijke tube. The 
boundary conditions are: 

8v (0) = 8T (0) = 0 at x = O. (5.80) 

In air we have Pr < 1 and hence in general 8 v < 8T . We will, however, use further 
the assumption Pr = 1 because we do not expect an essentially different physical 
behaviour. 

The stationary solution of (5.78a) is: 

8v = C~~x)! 
while 8T can be calculated from (5.78b): 

8T = 8v o 

(5.81) 

(5.82) 

Using the notation 80 = 8T = 8v for the stationary solution we find in linear 
approximation: 

[~ + !uo~]8' = _ 80 au' _ !uo(8~ +~) a80 
at 3 ax v Uo at 3 80 Uo ax 

(5.83a) 

[
a 2 a], 1 a8~ 1 (8~ - 8~ U') a80 - + -uo- 8 = +-uo- + -uo - - -, 
at 3 ax T 3 ax 3 80 Uo ax 

(5.83b) 
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where U oo = Uo + u'. These equations can be solved by in
tegration along the characteristics: (x = ~uot) for (5.83a) 
and (x = ~uot) for (5.83b). We see that the perturbations 
in 8~ move along the strip with a phase velocity ~ Uo which 
implies a "memory" of the heat transfer q for perturba-
tions u' of the mean flow. This memory is crucial for the 
understanding of the Rijke tube instability. 

The Rijke tube is an open pipe of length 2L (figure 5.20). 
In the pipe we place a row of hot strips (or a hot gauze). 
When the tube is vertical a flow Uo will be induced by 
free convection (the tube is a chimney). When the tube is 
horizontal we impose Uo by blowing. 

x=L 

1HlllllllllllUU hot grid 

f 
x==-L uo 

It appears that the tube starts oscillating at its fundamental 
frequency fo = c / 4L when the heating element is placed 
at x -! L, at a quarter of the tube length in the upstream 
direction (at the lower part of the tube for a vertical tube). Figure 5.20 Rijke tube. 

We will now explain this. Note that some excitation of 
higher modes can be obtained but these are weak because of increased radiation 
losses at high frequencies. Hence we will assume that only the fundamental mode 
can be excited. This corresponds to a single mode expansion of the Green's func
tion (5.61). As proposed by Rayleigh [167] we start our analysis by placing the 
warming element at the center of the tube (x = 0). 

x=L 

pI = p(xJ cos wt 

x=O 

11111111111111111111111 

,_: dp sinwt 
u -,----

: dx Pow 

t 
, 

x = -L Uo 

Figure 5.21 Pressure pi and acoustic velocity u' distribution for the fundamental mode. 

As shown in figure 5.21 the acoustic velocity u' at x = 0 will vanish for the funda-
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mental mode. The variation of heat transfer q is only due to the temperature fluctu
ations T' (y - l)y-l p' of the gas in the main flow. If we neglect the "memory" 
effect of the heat capacity of the boundary layers the heat flux q decreases when 
pI increases because T w - T is reduced. 

The acoustic effect of the unsteady heat transfer q is given in a quantitative way by 
the linearized equation 2.67 in which (2.68) has been substituted: 

2, Po (OT) () V P :::::. -2- -- -V.q 
Co To op sot 

(5.84) 

which corresponds to a volume source term 02 (fJp! )/ot2 in (2.63) or in linearized 
form o(m/ Po)/ot. As derived in section 2.7 the power W produced by the source 
is (2.80): 

(5.85) 

This equation can also be derived from the equation for the work A performed by 
volume variation d V: 

(5.86) 

which can be written as: 

A = lT P(:~)dt (5.87) 

where d V / dt = I m / Po d V and T = 27r / w is the oscillation period. The rate 
of volume injection d V / dt corresponds to the volume integral I v V· q (]x = 
Is q • n da which is the integral of the heat transfer from the heating element. 
Furthermore, as the transfer of heat from the wall to the gas implies an expansion 
of the gas we can also understand (5.84) in terms of (5.87). 

We now easily understand that as q is opposite in phase with pI the presence of a 
hot element at x = 0 will damp oscillations of the fundamental mode of the pipe. 
Hence we understand that the Rijke tube oscillation is due to modulation of q by 
the acoustic velocity fluctuations u'. An optimal amplitude of q is obtained just at 
the end of the pipe at x = - L where u' has the largest amplitude. However, at this 
place p' is close to zero so that we see from (5.85) that the source is ineffective at 
this position. We therefore see that the position x = -4 L is a compromise between 
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an optimum for p' and an optimum for q. We still have to understand why it should 
be x = - ~ L and not x = ~ L. The key of this is that for x < 0 the pressure p' 
increases when the acoustic velocity u' enters the pipe (u' > 0) upwards while 
for x > 0 the velocity is downwards at that time. If the heat transfer would react 
instantaneously on u' then q would vary as sin(wt) while p' varies as cos(wt). As 
a consequence W integrated over a period of oscillation would vanish. Hence the 
occurrence of oscillations is due to a delay i in the reaction of q on u'. As the delay 
i is due to the "memory" of the boundary layer we expect that i > 0, since the 
boundary layer integrates, and cannot anticipate on perturbations of u'. 

u'(x < 0, t) 

Figure 5.22 Sketch of time dependence of p' and u' in the upper (x > 0) and lower (x < 0) 
part of the tube. A memory effect of 171: will shift the phase of the heat transfer q 
from that of u' (the quasi-steady approximation) toward that of p'. It is the part of 
q which is in phase with p' that produces the sound in a Rijke tube. 

As we see from the diagram of figure 5.22 for Wi = ~rr, the delayed heat flux q is 
in phase with p' if x < O. Pulsations induced by a hot grid placed at x > 0 would 
involve a larger delay: Wi = ~rr. As we will explain such a condition implies a 
very low flow velocity and hence much weaker oscillations. In practice this oscil
lation mode at low velocities is not observed. The time delay i is determined by 
the time that a perturbation in o~ remains along the strip. When we blow very hard 
the residence time i of a perturbation o~ in the boundary layer on the strip will be 
very short because we expect from (5.83b) that: 

i=O(3W) 
2uo 

(5.88) 

where w denotes the length of the heated strip in flow direction. When we do not 
blow hard enough the boundary layers 00 will be very thick. The hot gas remains 
around the warming element blocking the heat transfer. Also when rr ::: Wi ::: 
2rr we expect that the oscillations will be damped out. Hence, an optimum of 
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pulsations may be expected for Wi 1.".· 2 J< • 

ww rr: 
(5.89) -=-

Uo 3 

This behaviour is indeed verified by experiments. Of course in order to obtain a 
stable oscillation the temperature T w should reach a critical limit. For a horizontal 
tube at a fixed uo, imposed by blowing through the pipe, this is less critical6 than 
in a vertical pipe where the temperature element also drives the main flow uo. In 
experiments with a horizontal pipe it is quite easily observed that blowing too hard 
reduces i such, that pulsations disappear. 

While we have seen that certain conditions are favourable for an oscillation we did 
not yet discuss the non-linear effects leading to saturation. The most obvious effect 
is that when the acoustic particle displacement becomes comparable to the width 
of the strip: 

u' 
- = 0(1), (5.90) 
ww 

back flow will occur from the wake towards the strip. The strip is then surrounded 
by pre-heated gas and this blocks the heat transfer. Note that at very large am
plitudes (u'/ww > 1) there is a wake upstream of the strip during part of the 
oscillation period. We now understand, by combination of (5.89) and (5.90), why 
in the experiment one finds typical amplitudes of the order of u' = O(uo). The 
proposed saturation model has first been used by Heck! [64]. It is interesting to 
note that Rayleigh [167] describes this non-linear effect of saturation as a "driv
ing" mechanism. 

A comprehensive theory of the Rijke tube oscillation, including non-linear effects 
and the influence of large temperature differences, has not yet been presented. We 
see that such a theory is not necessary to predict the order of magnitude of the 
oscillation amplitude. On the contrary, it is sufficient to isolate the essential limiting 
non-linearity. 

6Since the design of a vertical Rijke tube driven by natural convection is not easy we provide 
here the dimensions of a simple tube. For a glass pipe of 2L::30 crn length and an inner diameter 
of d =2.5 cm, one should use a metal gaze made of wires of 0.2 rum to 0.5 mm diameter, the wires 
being separated by a distance in the order of 1 mm. This gaze can be cut in a square of 2.5 x2.5 cm2. 

The bended corners can be used to fix the gaze at its position (x = - ~ L). A small candle is a very 
suitable heat source. The pipe will produce its sound after the candle is drawn back. 
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5.6 Flow induced oscillations of a Helmholtz resonator 

In view of the large amount of applications in which they occur, flow induced pul
sations of a Helmholtz resonator or wall cavity have received considerable attention 
in the literature [8, 19,38,184,43,63,73,74,79,119,143,144,186]. In principle 
the flow instability has already been described qualitatively in section 5.1. We will 
now more specifically consider a grazing uniform flow. 

We will now discuss models which can be used to predict the order of magnitude 
of the pulsations. The configuration which we consider is shown in figure 5.23. 
Self-sustained oscillations with a frequency (J) close to the resonance frequency {J)o 

of the resonator occur when the phase condition for a perturbation in the feedback 
loop (shear layer/resonator) is satisfied and the gain is sufficiently large. When 
(J) = {J)o we find a maximum of the pulsation amplitude and the phase condition is 
entirely determined by the shear layer. In principle we should add to the convection 
time of the perturbation along the shear layer a phase shift at the "receptivity" point 
upstream and another at the "excitation" point downstream. These corrections are 
either due to "end corrections" or to the transition from a pressure perturbation p' 
in the resonator to a velocity or displacement perturbation of the shear layer. We 
now ignore these effects for the sake of simplicity and because we do not have 
available any theory that predicts these corrections. 

Uo ---..... 

Uo ... 

Figure 5.23 Helmholtz resonator in a wall with grazing flow. 
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In both configurations of figure 5.23 in first order approximation perturbations of 
the shear layer (at the opening of the resonator) propagate with a velocity U c of the 
order of ~uo. It appears from experiment that when the travel time of a perturbation 
across the opening width W roughly matches the oscillation period 2n I Wo of the 
resonator (or a multiple of 2n I wo) pulsations occur. Typically one finds a velocity 
Uc ::::::: OAuo. Hence the phase condition for instability is [66]: 

WoW 
-- = 2nn; n = 1,2,3, ... . (5.91) 
OAuo 

More complex phase condition depending on the geometry and the Mach num
ber has been reported by [13, 184, 186]. The first hydrodynamic mode (n = 1) is 
usually the strongest because it corresponds with the highest velocity at which pul
sations occur. Furthermore when the hydrodynamic wave length (win) becomes 
comparable to the gradient length 0 in the grazing velocity profile (boundary layer 
thickness at the wall) the flow becomes stable and the perturbations are damped. 
Typically for: 

OWo > 2 
OAuo 

(5.92) 

the flow is linearly stable. A currently used cure for pulsations is to place a device 
called "spoiler" which increases 0 just upstream of the cavity [18, 184]. Equation 
(5.92) can be used to choose a reasonable spoiler height. However, we found in 
some experiments that this is no guarantee for stability [18]. Equation (5.92) im
poses an upper bound to the hydrodynamic mode instability. In most experiments 
mode numbers higher than n = 5 are not observed. A remarkable exception is the 
oscillation found inside solid propellant rockets for which 6 ::::: n ::::: 12 [216]. 

It is often assumed that the perturbations along the shear layer grow according 
to a linear theory. It appears that a linear theory is only valid for low pulsation 
amplitudes, in the range of u' /uo ::::: 10-3 • In the experiments one observes in most 
cases for a grazing uniform flow a spectacular non-linear behaviour of the shear 
layer [18]. The vorticity of the shear layeris concentrated into discrete vortices. At 
moderate acoustic amplitude u'luo = 0(10-1) one can assume that the acoustic 
field only triggers the flow instability but does not modify drastically the amount of 
vorticity r shed at the upstream edge of the slot. This leads to the model of Nelson 
[18,66, 143, 144] in which one assumes a vortex of strength r given by: 

dr dr dx 1 - = - . - = Uo . -Uo (5.93) 
dt dxdt 2 

travelling at a velocity Uc OAuo across the slot (see figure 5.7). A new vortex 
is generated following Nelson's experimental observations at the moment that the 
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acoustic velocity u' is zero and is increasing (directed into the resonator, p' in the 
resonator is at a minimum). 

Using Howe's analogy as described in section 2.6 and 2.7 one can calculate the 
acoustic pulsation amplitude. As the source strength V· (6) X v) is independent of 
u' we find a finite amplitude by balancing the friction, radiation and heat transfer 
losses with the power generated by the vortices. As friction and radiation losses 
scale on U'2, we would expect from this theory to find pressure amplitudes scaling 
with the dynamical pressure of the flow p' O(~PU5). This occurs indeed when 
the edges of the slot are sharp. Typically, the acoustic power W generated by vor
tices due to instability of the grazing flow along an orifice of area (w x B) is given 
by 

where u' is the amplitude of the acoustic velocity fluctuations through the orifice. 

--------....!- - .. - .. 
I-~t. 

, l: ~' vortex 

v 

Figure 5.24 Rounded upstream edge. 

The amplitude of the pulsations depends critically on the shape of the edge at which 
vortex shedding ocurs. This effect can be understood as follows. Upon formation 
of a new vortex the acoustic field u' is directed towards the interior of the resonator. 
Using Howe's formula: 

W = -Po jjj«6>Xv).u')dV, 
V 

(2.98) 

we see that the vortex is initially absorbing energy from the acoustic field (figure 
5.25) because -(6)X v) is opposite to u'. 

At a sharp edge u' is large because the potential (acoustic) flow is singular. When 
an edge is rounded off u' is not singuJar and the initial absorption will be modest. 
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-(wxv) w 

--.... t 

u' 

Figure 5.25 Absorption of acoustic energy by vortex shedding. 

The net sign of W over a period T = 2n / WI) of oscillation depends of course also 
on the amount of energy produced by the vortex in the second half of the acoustic 
period when the acoustic velocity u' is directed outwards from the resonator [18, 
98]. Of course, when Uo is so large that the travel time (w/O.4uo) of the vortex 
across the slot is shorter than half a period (w /O.4uo < ~ T), then only absorption 
occurs. Self~sustained oscillations are impossible in this case. This effect can easily 
be experienced by whistling with our lips. If we increase the blowing velocity the 
sound disappears. 

The main amplitude limitation mechanism at high amplitudes, u' /uo > 0.2, is the 
shedding of vorticity by the acoustic flow. At the upstream edge this implies an 
increase of the shed vorticity r with u' and a dependence of the initial damping 
on u,3. Howe [75] observes that at high amplitudes the vortex sound absorption 
scales on ul3 whereas the sound production scales on u'u6. Hence, when those 
effects balance each other, the amplitude u' scales on uo. This behaviour is in~ 
deed observed [18,98]. A typical amplitude observed in Helmholtz resonators is 
u' /uo = 0(10-1). This amplitude is also typical of a recorder flute or a whistle 
[66,211]. 

In [98] it is observed that at very high amplitudes (u' /uo = 0(1» in a resonator 
formed by side branches along a pipe, non-linear wave propagation resulting into 
the generation of non-resonant cavity modes was a major amplitude limiting mech
anism. Another possible mechanism at high amplitudes is the transition of acous
tical flow from laminar into turbulent (section 4.5.3). 

The discussion given here provides some qualitative indications for various ba~ 
sic phenomena of cavity oscillation. Models as the one of Nelson [143, 144] pro
vide insight but are not able to predict accurately the amplitude of the oscillations. 
In many engineering applications insight is sufficient for taking remedial mea-
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sures. However, when a prediction of the amplitude is required a more detailed 
flow model is needed. Such models are not yet available. 

Exercises 

a) Calculate the impedance seen by a piston placed at the end x = 0 of a tube closed at 
x = L by an impedance Z(L). Neglect friction in the tube. For Z(L) = 00 (closed 
wall) calculate the power generated by the piston. Calculate the amplitude of the 
acoustic field for Z(L) =1= 00. 

b) When the impedance Z(L) at a pipe end is small, IZ(L)I « poco, one can con
sider the pipe being terminated at virtual position x = L + 8 by a purely resistive 
impedance Z(L)' = Re Z(L). 8 is called the end correction of the pipe. Derive a 
relationship between 8 and Z(L). 

- - - - -t·------------------- - - - - - . 
____ sJ. ___ --t:),,~ p t up 

~}------------t~r---- - - - - - -
x=O x=L 

---~~x 

Figure 5.26 Two pistons along a pipe. 

c) Consider two identical pistons of surface S p placed at a distance L from each other 
along an infinitely extended pipe (figure 5.26) of cross sectional surface S. Assume 
that the two pistons move harmonically with the same velocity up eiwt . Show that 
under specific conditions the acoustic field vanishes for x > L and x < O. How 
large is the amplitude of the acoustic field under these circumstances for 0 < x < 
L? 

d) Consider a piston placed at the end of a closed side branch of cross sectional sur
face Sl along a main pipe with a cross sectional surface S2 (figure 5.27). The side 
branch has a length L. The edges of the junction at the main pipe are rounded off. 
Calculate the amplitude p of the acoustic field at the piston following linear theory 
for wS l /2/c < 1 as a function of Sl/S2 and L. Estimate the largest amplitudes that 
may be reached before linear theory fails. 

e) What is the impedance Z p of the piston for the configurations of figure 5.28a, b and 
c. Assume that radiation losses at the open ends are negligible. Neglect friction in 
the pipe. Are these configurations at certain critical frequencies equivalent to closed 
resonators? 

f) Consider a clarinet as a cylindrical pipe segment of 2 cm diameter and 1 m long 
driven by a piston with a velocity up = up eiwt . Assume that up = 1 mls which 
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---------------------------------------. 

- - - - - -------........ 
, 

I 
i , 

L! 

I 
t 

Figure 5.27 T-junction. 
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Figure 5.28 Coupled T-junctions. 

is a typical order of magnitude. Assume that the pipe is driven at the first (lowest) 
resonance frequency. Calculate the pressure at the piston assuming an ideal open 
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Up 

end behaviour without radiation losses or flow separation. Calculate the amplitude 
of the fluid particle displacement at the pipe end. Calculate the same quantities 
if a quasi-stationary model is used at the pipe end to describe flow separation of 
the outgoing acoustic flow while friction is neglected. Is a quasi-stationary model 
reasonable? 

III • It SI Is, SI; I pi C::::O 

.. ~ .. ~ .. ~ 

Ll L2 L3 

I·s It 2 
lSI pi C::::O 

... -----------.~ ... ---------------------. ~ .. ~ 

L3 

Figure 5.29 Resonators in a pipe. 

g) A pipe segment with a different cross sectional area S2 than the cross section SI 
of the rest of the pipe can be used as a filter to prevent the propagation of waves 
generated by a piston. Two solutions can be considered S2 > SI and SI < S2 
(figure 5.29a and b). Assuming an ideal open end at x = Ll + L2 + L3, provide a 
set of equations from which we can calculate the amplitude of the acoustic velocity 
U end at the pipe end for a given velocity up of the piston. 

h) Introduction: 
A possible 3-D model for a kettle drum consists of a cavity in free space, with 
acoustic perturbations P = P ei(f)( in- and outside the cavity: 

iwpoit + '\Ip = 0 

for k = wjco. The cavity is hard-walled on all sides (it· n = 0) except one, which 
is closed by an elastic membrane (tension T, mass density u). The membrane dis
placement 11 = ~ eiwt is driven by (and drives ... ) the pressure difference across the 
membrane: 

Tn2~ 2 ~ 
v 11 + w u 11 = Pupper - Plower 

The normal velocity it· n at both sides of the membrane is equal to a 11 j a t 
iw~ eiwt , as the air follows the membrane. 
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A basic musical question is: what is the spectrum of this system, i.e. for which (dis
crete) set {wn } does there exist a solution without forcing? Note that since the waves 
radiate away into free space any solution will decrease and die out (called "radiation 
damping"), and (in general) the possible wn's will be complex, with Im(wn) > O. 

Problem: 
A I-D variant of the kettle drum problem is a semi-infinite pipe (0 :::s x < (0) of 
typical radius a, closed at x = 0, and a piston-like element at x L (modelling the 
membrane) driven by the pressure difference across x = L, and kept in position by 
a spring. 

Pxx +k2p =0 for x E (0, L) U (L, (0) 

-8Ta-2~ + w2a~ = p(L+) p(L-) at x = L 

Px =0 at x 0 

Px w2Po~ at x = L 

outgoing waves for x ~ 00. 

Determine the equation for w, solve this for some simple cases, and try to indicate 
the general solution graphically in the complex w-plane for dimensionless groups 
of parameters. Are there solutions with Im(w) = O? How are these to be interpreted 
physically? 

i) Consider the Helmholtz resonator as an acoustic mass-spring system. What are the 
acoustic mass m and the spring constant K of this mass-spring system. 

j) Assuming that p~x = 0, how would the Helmholtz resonator react to a periodic 
volume injection Q = Q eiwt into the bottle (e.g. a piston moving in the bottom 
wall). 

v 

Figure 5.30 Helmholtz resonator driven by a piston 

k) Consider a Helmholtz resonator in a semi-infinite pipe driven by a piston at x = 0 
(figure 5.30). Calculate the transmitted acoustic field following linear theory. What 
is the condition for which there is no transmission. 
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Figure 5.31 Two orifices 

1) Consider the volume V between two orifices of equal aperture surface Sd « Sp in a 
pipe of surface Sp (figure 5.31). Calculate the transmission coefficient and reflection 
coefficient following linear theory for an acoustic wave p+ eiwt-ikx incident from 
the left. 

------------
-------------S 

Figure 5.32 Exercise m 

m) Consider a volume V filled with air connected by a short pipe of length e to a pipe 
filled with water (figure 5.32). Calculate the reflection and transmission coefficient 
following linear theory for a wave p+ eiwt-ikx incident from the left. 

n) Assuming poweu » ~Pou2, estimate the maximum acoustic velocity u which can 

be reached for given volume injection Q eiao! in a Helmholtz resonator if friction 
and heat transfer are neglected. Compare this with the maximum pressure which 
can be reached in a il pipe resonator (with one open end). 

0) Calculate the value of Pinl Pex at resonance for a Helmholtz resonator in the pres
ence of mean flow of velocity uo through the neck. 

p) Using the integral formulation (3.12) on [0, L] using the Green's function ga cor
responding to the geometry of figure 5.18a (with (ogaloy)y=o = 0 and (ga)y=L 
corresponding to the impedance of the pipe seen from the position y = 0) we find: 

p' = - Poc6jt [(oga)u!(y, r)] _ dr. 
-00 or y-O 

Derive this equation startjng from (3.12). This equation is equivalent to (5.73). 
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q) Calculate the expected acoustic optimal amplitude in a vertical Rijke tube of 1 m 
length and 5 cm diameter in which a gauze with a strip of width w = 1 mm has 
been placed at x = -0.25 m. Do you expect that at this amplitude vortex shedding 
at the pipe end will be a significant acoustic energy loss mechanism? 

r) Consider a Helmholtz resonator with a volume V and a slot aperture w x B placed 
in a wall with a grazing flow (figure 5.23). Given that the maximum power is given 
by 

W = 0.05tpOu6uwB 

estimate the amplitude of the acoustic pressure p in the resonator for air if: 

V 3 m3, w = 0.3 m, B = 0.5 m. 

(A car with open roofl). Assume that the effective neck length is £ ~ w. 

s) Give an order of magnitude of the acoustical pressure fluctuations in a clarinet. 
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6 Spherical waves 

6.1 Introduction 

In the previous chapter we have considered the low frequency approximation of 
the acoustics of pipes and resonators. Radiation of sound from such systems was 
assumed to be a small effect for the internal acoustic field, and therefore could 
be neglected in our analysis. However, if sound would not escape we would not 
hear it. Hence, for the calculation of environmental noise the radiation is crucial. 
Furthermore, as sound often is transferred through walls, the vibration of elastic 
structures is an essential part of the radiation path. To keep things manageable we 
will assume that the vibrating objects are small compared to the wave length (com
pact bodies) and that we radiate sound into an unbounded homogeneous quiescent 
fluid (free space). 

Starting from an exact solution of the acoustic field induced by the pulsation and 
translation of a sphere (section 6.2) we will derive an expression for the free field 
Green's function Go (6.36,6.37). Taylor's series expansion of Go will be used to 
introduce the concepts of monopole, dipole, quadrupole, etc, and multipole expan
sion (section 6.3). The method of images will appear to be a very powerful tool to 
get insight into the effect of boundaries on radiation (section 6.4). After a summary 
of the classical application of Lighthill's analogy to free jets (section 6.5) we will 
consider the radiation of a compact body by using Curle's formalism (section 6.6). 
This will be used to get insight into the sound generated by a ventilator. Finally the 
radiation from an open pipe termination will be discussed (section 6.7). 

Note. Two-dimensional acoustic waves have a complex structure as may be seen 
from the Green's functions given in Appendix E (see the discussion by Dowling et 
al. [42]). 

6.2 Pulsating and translating sphere 

The wave equation in 3-D allows quite complex solutions. However, for the par
ticular case of a spherically symmetric acoustic field the wave equation reduces 
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to: 

(6.1) 

where r is the distance between the observation point and the origin. The key for 
solving (6.1) is that we can formulate a I-D wave equation for (rp'): 

(6.2) 

This result can easily be understood because acoustic energy scales with p'2 (equa
tion 2.78a). Hence, as the surface of a spherical wave increases with r2 the ampli
tude p' (r) should decrease as r-1 to keep energy constant as the wave propagates. 

Compared to I-D waves the relationship between pressure p' and acoustic velocity 
v' now shows a drastically new behaviour which depends on the ratio of r and 
the acoustic wave length. In three dimensions we have a region with kr « 1 

called "near field" in which we find a behaviour of v' which is close to that of an 
incompressible flow, while for kr » 1 we find a "far field" region in which the 
waves behave locally as plane waves. The radius of curvature of the wave front is 
large compared to the wave length. 

These features may be derived from the radial component of the (linearized) mo
mentum conservation law: 

av' ap' 
Po-=--at ar (6.3a) 

and the linearized mass conservation law: 

(6.3b) 

The mass in a volume she114nr2dr changes as a result of the difference between 
4nr2v' and 4n(r +dr)2v'(r+dr) in flux. We eliminate p' by using the constitutive 
equation p' = C~p', and eliminate v' by subtracting the time derivative of r2 times 
the momentum equation (6.3a) from the spatial derivative of the mass equation 
(6.3b). This yields the wave equation (6.1). 

The general, formal solution of (6.2) is: 

rp' = :F(t - :J + ~(t + :), (6.4) 
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168 6 Spherical waves 

combining an outgoing wave F and an incoming wave g,. Far away there is no 
incoming wave, so we define the "free field" as the region for which g, = O. This 
result of a vanishing incoming wave in free space may also be formulated as a 
boundary condition at r ~ 00 (2.21a,2.21b,2.23). 

As already stated, the acoustic velocity v' has a rather complex behaviour, in con
trast with the I-D situation. This behaviour is found by substitution of (6.4) into 
the momentum conservation law (6.3a): 

Po av' = ~F(t _ ~) + _1_F'(t _ ~). 
at r2 Co cor Co 

(6.5) 

We now observe that the first term of (6.5) corresponds, for rico much smaller 
than the typical inherent time scale, to an incompressible flow behaviour (r 2v' = 
constant) while the second term corresponds to wave-like phenomena. Only the 
second term does contribute to the acoustic energy flux (I) = (p' v'). This may be 
verified by substitution of a harmonic solution into (6.5): 

o A 0 Ok p' = p ewt = __ e1wt-1 r 

4rrr 
(6.6) 

we find 

~ p P P(i ) 
v = iwpor + PoCo = PoCo - kr + 1 . 

(6.7) 

The first term in v is ~rr out of phase with P and therefore does not contribute to 
(I) = (p'v'). Hence: 

~ ~* 

( ") 1 C ~* + ~* ~) p p 
p v = 4' v P v P = 2poco· (6.8) 

A very systematic discussion of this fundamental solution is given by Lighthill 
[111]. 

Using (6.5) we can now determine the acoustic field generated by a pulsating 
sphere of radius a(t). If (aa/at)/co « 1, we can use linear acoustics, while the 
movement of the sphere boundary yields the equation derived from (6.5): 

a
2
a 1 ( a) 1 '( a) Po- = -F t - - + -F t - - . 

at2 a2 Co coa Co 
(6.9) 

For a compact sphere the first term is dominating (a(a 2a/at2)/c6 « 1). We find 
exactly the result which we could anticipate from (2.59), the second derivative to 
time of the volume of the sphere is the source of sound. 
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A steady expansion of the sphere (aa/at = constant) does not (in this approxi
mation) generate sound. The second term of (6.9) is dominating for large sphere 
radii (a(a 2a/at2 )/c5 » 1). In such a case the action of the wall movement is that 
of a piston which generates plane waves. For harmonic oscillations of the sphere 
(a = ao + a ei(.vt), the amplitude A of the radiated field is found from (6.6) by 
substitution of v iwa in (6.7) at r = ao. 

A 2 " A( ) e-ikao w poa pao =-- =- . 
4nao 1 + ikao 

Hence 
2 A 

A ( ) w poaao -ik(r-ao) p r = - e 
(1 + ikao)2 

We can also determine the acoustic impedance Z 

Z(w) = p(ao) = p(ao) 
V (ao) iwa 

Using (6.7) we find: 

Z ikao 

1 + ikao 
-

ikao + (kao)2 

1 + (kaO)2 . 

(6.10) 

(6.11) 

(6.12) 

We see that the real part of the radiation impedance of a compact sphere (kao « 1) 
is very small: 

Re(~) :::: (kao)2 
POCo 

(6.13) 

Hence (see (3.17» a compact vibrating object in free space will be a very ineffec
tive source of sound. This effect becomes even more dramatic when we consider 
the radiation of a compact vibrating object of constant volume. The most simple 
example of this behaviour is a translating sphere of constant radius ao. This is what 
we call a dipole radiation source, in contrast to the monopole source corresponding 
to a compact pulsating sphere. 

The solution of the problem is easily obtained since we can generate from the 
spherically symmetric solution (6.4) non-spherically symmetric solutions by taking 
a spatial derivative (see equation 2.22b). If cp' is a (spherically symmetric) solution 
of the wave equation: 

1 a2cp' 
--- - V 2cp' = 0 c5 at2 

(6.14) 
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170 6 Spherical waves 

then any derivative of q/, such as (oq/ /OXi) or (ocp' lot), is also a solution: 

1 0
2 

(oCP') 2(OCP') -- -- -V - -0 
C50t2 OXi OXi - , 

(6.15) 

in particular, any derivative ofEq. (6.6) is a solution. So if we try to find the field of 
a translating sphere with velocity Vo (in x-direction), where at its surface the radial 
flow velocity is given by: 

vo·r I v'(ao.!?") = -- = vocos!?". 
ao Irl=ao 

(6.16) 

we can use the derivative in the x-direction. For a harmonic oscillation Vo = Vo eiwt 

with (vo/wao) « 1 the pressure field p' is given by: 

o (e-
ikr

) 0 (e-
ikr

) p = Aox -r- = Acos!?" or -r- (6.17) 

because ~: = cos!?". This pressure is related to the acoustic velocity v' by the 
momentum conservation law (6.3a): 

02 e-ikr 

iwpov = -A cos!?" -2 (--). 
or r 

(6.18) 

Using the boundary condition (6.16) for r = ao we can now calculate the amplitude 
A for given vo: 

• A A2 + 2ikao - (kaO)2 -ika 
1WVo = - e 0 

a3 
o 

so that the pressure field (6.17) can be written as: 

p = -iwpovoa6 cos!?" ~ (e-ik(r-ao») 
2 + 2ikao - (kaO)2 or r . 

In the limit of (kao) « 1 we see that: 

A 1 2 A ao cos!?" ( i ) -ikr p ~ -"2(kao) POCOVO 1 - - e . 
r kr 

(6.19) 

(6.20) 

(6.21) 

Again we observe a near field behaviour with a pressure decreasing as r-2 and 
for which p is ~n out of phase with vo. This pressure field simply corresponds to 
the inertia of the incompressible flow induced by the movement of the fluid from 
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6.2 Pulsating and translating sphere 171 

the front towards the back of the moving sphere. From (6.21) for r = ao with 
(kao) « 1 we see that: 

(6.22) 

Hence, as the drag on the sphere, which is in phase with vo, scales as as Re[p(ao)], 
we see that the acoustic power generated by the sphere scales as Pocov5a5(kao)4. 
This is a factor (kao)2 weaker than the already weak radiation power of a compact 
pulsating sphere. So we now understand the need of a body in string instruments 
or of a sound board in a piano. While the string is a compact oscillating cylinder 
(row of oscillating spheres), which does not produce any significant sound directly, 
it induces vibrations of a plate which has dimensions comparable with the acoustic 
wave length and hence is radiating with an acoustic impedance POCo which is a 
factor (kao)4 more efficient than direct radiation by the string. 

Note. In order to provide a stable sound one should avoid in string instruments 
elastic resonances of the body which are close to that of the string. If this is not the 
case the two oscillators start a complex interaction, which is called for a violin a 
"wolf tone", because it has a chaotic behaviour [117]. 

Having discussed aspects of bubble acoustics in a pipe in section 4.4.5, we will 
now consider some specific free field effects. Consider the oscillation of a compact 
air bubble in water as a response to an incident plane wave Pin = Pin eiwt-ikx in 
free space (deep under water). We can locally assume the pressure Ph in the bubble 
to be uniform and we assume a spherical oscillation of the bubble of equilibrium 
radius ao: 

(6.23) 

The pressure in the bubble is given by: 

P~ P{n + p;(ao) (6.24) 

where p; (ao) is the acoustic pressure due to the spherical waves generated by the 
bubble oscillation. We have neglected surface tension. Furthermore, we assume an 
ideal gas behaviour in the bubble: 

p~ a' 
- =-3y-
Po ao 

(6.25) 

where y = 1 for isothermal compression and y = C p / C v for isentropic compres
sion. Pr(a) is related to a by the impedance condition: 

(6.26) 
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and Z(w) is given by equation (6.12). Hence combining (6.24) with (6.25) and 
(6.26) we find: 

or: 

and 

3ypo A A • ~Z 
- --a = Pin + lwa 

ao 

1 i-
waoZ 

A _ A ( ) ao -ik(r-ao) Pr - Pr ao -e . 
r 

Using (6.12) we can write (6.28) as: 
A 

A ( ) Pin 
Pr aO = - w 2 

1- (~) (1 +ikao) 

where wo is the Minnaert frequency defined by: 

2 3ypo 
wo= --2' 

poao 

(6.27) 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

It is interesting to note that at resonance (w = Wo) under typical conditions a bubble 
is compact because: 

(koao)2 = (Woaor = 3yp~ 
Co Poco 

(6.32) 

is small as long as Po « poc~. 
For water PocJ = 2 x 104 bar, hence up to Po = 100 bar one can still assume 
bubble oscillations at resonance to be compact. Equation (6.30) has many interest
ing further applications [42, 103]. For example, sonar detection of fishes by using 
a sweeping incident sound frequency yields information about the size of fishes 
because the resonance frequency Wo of the swim bladder yields information on the 
size ao of the fish. Furthermore, at resonance sound is scattered quite efficiently: 

A • Pin -ik(r-ao) pr = -l-e 
kor 

(6.33) 

Hence the fish scatters sound with an effective cross section of the order of the 
acoustic wave length at Wo (an effective increase of the cross section by a factor 
(koao) -1). As we know ao from Wo the intensity of the scattered field yields infor
mation on the amount of fish. Another fascinating effect of bubble resonance is the 
very specific sound of rain impact on water [163]. 
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6.3 Multipole expansion and far field approximation 173 

6.3 Multipole expansion and far field approximation 

The free field Green's function Go defined by equation (3.1) 

a2Go 2" a2Go at2 - Co ~ ax2 = o(x - y)o(t - 7:) 
! 

(3.1) 

and the Sommerfeld radiation condition (2.23), may be found in Appendix E, but 
can be derived as follows. We start with considering the Fourier transform Go of 
Go, with 

Go = 100 

Go eiwt dco 
-00 

and satisfying 

2A 
" a Go k2 A 1 iw, ~ + GO=---28(x-y)e- , 

2JTco 
(6.34) 

where k = co/co. From symmetry arguments, Go can only be a function of distance 
r = Ix - yl, so the solution of (6.34) has the form (see equation (6.6» 

(6.35) 

where A is to be determined. Integration of (6.34) over a small sphere Be around 
y, given by, say, r s, yields by application of Gauss' theorem 

Iff" a2Go 2 A Iff 1 iwr ~-2- +k Godx = ---28(X - y)e- dx = 
aXi 2JTCo 

Be Be 

II L ~~ioni d(j + III k2Godx = 
aBe Be 

2 aGO 2 1 iw, 4JTS - + 0(8) = -A + O(S) = ---e-
ar 2JTC5 

where ni denotes the outward normal of Be, and we used the fact that s is small. If 
we let 8 ~ 0 we find that A = (2JTC5)-1 e-iw,. So we have: 

A e-iwr-ikr e-iw(r+rlco) 
Go = = ---:--::---

8JT2c5r 8JT2c5r 
(6.36) 
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(note the factor -1/2n differenc with the Green's function of a regular Helmholtz 
equation) and, using equation (C.34), 

Go 
__ o(t 'l' rIco) 

(6.37) 

In order to derive the general multipole expansion we will first consider the field at 
a single frequency. By using the free-field Green's function (Appendix E) we find 
the acoustic field for a given time-harmonic source distribution q(x) eiwt in a finite 
volume V to be given by 

p' If! If! e-
ikr 

p' = 2 = q(y)Go(xIY) dy = q(y)-z- dy. 
Co 4ncor 

V V 

(6.38) 

Suppose the origin is chosen inside V. We are interested in the far field, i.e. Ixl is 
large, and a compact source, i.e. kL is small where L is the typical diameter of V. 
This double limit can be taken in severa] ways. As we are interested in the radiation 
properties of the source, which corresponds with klxl :::: 0(1), we will keep kx 
fixed. In that case the limit of small k is the same as small y, and we can expand in 
a Taylor series around y = 0 

r = (lxlZ - 2(x· y) + IYIZ)1/2 = IX1( 1 - Txi + i~~2 - (~1~1t + ... ) 

- I 1(1 l.!1 e + ll.l:f . 2 II + ) - x - Ix I cos '2 Ix 12 sm u ... 

(where e is the angle between x and y) and 

e-ikr e-iklxl 1 3 

- = --(1 + (1 +iklxl) LXjYj + ... ) 
r Ixi j=l 

00 yi y~ yj [ al+m+n e-ikrJ 

= L [!m!n! aylaymayn-r- . 
l.m.n=O 1 2 3 Yl =Y2=Y3=O 

As r is a symmetric function in x and y, this is equivalent to 

e-ikr 00 (_l)l+m+n 

= L I'" r l,m,n=O' m. n. 

The acoustic field is then given by 

RienstraHirschberg 20 August 2008 16:00 

a l+m +11 e-iklxl 

axl axm axil -Ixl . 
1 2 3 

(6.39) 

(6.40) 
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As each term in the expansion is by itself a solution of the reduced wave equation, 
this series yields a representation in which the source is replaced by a sum of 
elementary sources (monopole, dipoles, quadrupoles, in other words, multipoles) 
placed at the origin (y = 0). Expression (6.41) is the multipole expansion of a 
field from a finite source in Fourier domain. From this result we can obtain the 
corresponding expansion in time domain as follows. 

With Green's function (6.37) we have the acoustic field from a source q(x, t) 

pi 100 Iff q(y, r) 8(t - r - ;Ico) dydr 
-00 4nrco 

V 

= Iff q(y, t - rico) dy (6.42) 
4nrc5 

V 

If the dominating frequencies in the spectrum of q(x, t) are low, such that wLjco 
is small, we obtain by Fourier synthesis of (6.41) the multipole expansion in time 
domain (see Goldstein [60]) 

I 1 00 (_l)l+m+n 

p =-4 2 L I' , , 
nco l.m,n=O • m. n. 

00 

(6.43) 

where /-LImn (t) is defined by: 

Iff Y~Y2Y3 /-Llmn(t) = l!m!n! q(y, t)dy. (6.44) 

V 

The (lmn)-th term of the expansion (6.43) is called a multipole of order 2/+m+n. 

Since each term is a function of Ix 1 only, the partial derivatives to Xi can be rewrit
ten into expressions containing derivatives to Ixl. In general, these expressions are 
rather complicated, so we will not try to give the general formulas here. It is, how
ever, instructive to consider the lowest orders in more detail as follows. 
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The first term corresponds to the monopole: 

/ fLo(t - Ix 1/ co) 
Po = 4nc51xl 

(6.45) 

where we wrote for brevity fLo = fLooo. We have concentrated the source at the 
origin and 

fLo(t) = f f f q(y, t) dy. (6.46) 

V 

The next term is the dipole term: 

3 
P~ = _ L ~_a_(fLl,i(t -lXI/co)) 

i=l Ixl alxl 4nc51xl 
(6.47) 

where we wrote for brevity: fLu = fLlOO, fLl,2 = fLOlO and fLu = fLool. If q is a 
point source this dipole term is easily visualized as shown in figure 6.1. 

+ 
/ III", 

+ 

I I 
I I 

I + I + ..... 
I I 

I I 

++ 
Figure 6.1 First step in the multipole expansion of a point source. 

The dipole of strength fLu, which we should place at the origin (y = 0): 

fLl,i(t) = f f f Yiq(y, t) dy, 

V 

(6.48) 

is obtained by bringing the (point) source q towards the origin while increasing its 
strength and that of the opposite (point) source -q at the origin in such a way that 
we keep Iylq constant. 

A dipole field is not isotropic because in a direction normal to the vector y the two 
sources forming the dipole just compensate each other, while in the other directions 
due to a difference in emission time there is a net acoustic field. This effect of the 
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\ 
\ 

\ 1* 
Y \ 
I~/y,x 
-/ Ixl 

Figure 6.2 Retarded or emission time difference is (y. xlix DIeD = (lyl cos 1'J)lco. 

difference in retarded time (figure 6.2) between the sources in the dipole simplifies 
in the far field as follows. Writing (6.47) as: 

, 
PI = t ~ Iff ~ { __ l_ ~ q(y, t - lxi/co) 

"-I Ixl 4.1TC5 colxl at 
1- v 

1:12 q(y, t lxI/co) }dY (6.49) 

we see that for large distances (klxl » 1) the acoustic field due to the dipole 
contribution is given by: 

(6.50) 

where ttl,i (t) is the dipole strength. If the source has a particular form, for example 
it represents a force density fi like in (2.63): 

q(y, r) = 
3 

" afi 
L....t a ' 
;=1 Yi 

(6.51) 
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we observe that the surface integral of the monopole term vanishes because we 
assumed a finite source region, outside which f = O. We see that the force field Ii 
is equivalent to an acoustic dipole of strength: 

JLl,i = fff Jidy (6.52) 

V 

which corresponds simply to the total force F on V. In a similar way it is clear that 
the Lighthill stress tensor ~j induces a quadrupole field because from (2.63) we 
have: 

~ o2Tij 
q-~--

- i,j=l OYiOYj' 

By partial integration it follows that the strength of the quadrupole is: 

JL2,ij = fff ~j dx, 

V 

(6.53) 

where we wrote for brevity JL2,11 = JL200, JL2,l2 = JLllO, JL2,13 = JLlOb etc .. In 
the far field approximation, where the retarded (or emission) time effect can be 
estimated by replacing (%lxl) by -cOl (a/at), we find for a quadrupole field 

I ~ XiXj 1[d2 
] 

P ':::::. ~ 2 2 -2JL2 ij(te) . 
i,j=l 4n Co Ix 13 Co dte ' te=t-Ixl/co 

(6.54) 

6.4 Method of images and influence of walls on radiation 

Using Go we can build the Green's function in presence of walls by using the 
method of images as discussed in section 4.6. The method of images is simple for 
a plane rigid wall and for a free surface. In the first case the boundary condition 
v' . n = 0 is obtained by placing an image of equal strength q at the image point of 
the source position (figure 6.3). For a free surface, defined by the condition p' = 0 
(air/water interface seen from the water side), we place an opposite source -q at 
the image point. 

For a rigid wall at Xl = 0 we simply have the Green's function: 

8(t - r - rico) 8(t - r - r*/co) 
G(x, tlY, r) = 2 + 2 

4ncor 4ncor* 
(6.55) 
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u'·n = 0 

+ 

p'=O 
~ 

+ 

+ + 
a) hard wall 

+ 
b) free surface 

Figure 6.3 Images of sources in plane surfaces 

where 

r = J(XI - ydZ + (xz - Y2)2 + (x) - Y3)Z, 

r* = J(XI + Yl)2 + (X2 - YZ)2 + (X3 - Y3)2. 

We easily see from figure 6.3 that a source placed close to a rigid wall will radiate 
as a source of double strength (IYllk « 1) while a source close to a free surface 
will radiate as a dipole. 

When more than a wall is present the method of images can be used by successive 
reflections against the walls. This is illustrated in figure 6.4. When a harmonic 
sonrce is placed half way between two rigid walls separated by a distance h (at 
Y = 4 h) the radiated field is equivalent to that of an infinite array of sources placed 
at a distance h from each other (figure 6.4b). We immediately see from this that 
there are directions t} in which the sources in the array interfere positively. The 
interference condition is simply: 

h sin t} = nA; n = 0, 1,2, ... (6.56) 

where A is the acoustic wave length. For this symmetrically placed source only 
symmetric modes can occur. When the source is placed at one of the walls (y = ° 
or h) we find the interference condition given by 

h sin t} = ~nA; n = 0, 1,2, ... (6.57) 

RienstraHirschberg 20 August 200816:00 



180 6 Spherical waves 

+ . + 
--------------~--------------

+ + 
a) corner 

b) duct 

Figure 6.4 Application of the method of images. 

since the source and its images form an array of sources placed at a distance 2h 
from each other. 

The condition n = 0 corresponds to plane waves in a tube. The conditions n > 0 
correspond to higher order mode propagation in the "duct" formed by the two 
walls. This can also be seen for a duct of square cross section for which the image 
source array becomes two-dimensional. We clearly see from this construction that 
higher order modes will not propagate at low frequencies because when (h < ~A), 
there are no other solutions than f} = 0 to equation (6.57). This justifies the plane 
wave approximation used in chapter 4 (see further chapter 7). We see also that at 
low frequencies (for plane waves) the radial position of a source does not affect the 
radiation efficiency. For a higher mode, on the other hand, the sound field is not 
uniform in the duct cross section and the source radiation impedance is position 
dependent. The first non-planar mode has a pressure node on the duct axis and 
cannot be excited by a volume source placed on the axis (1 pi Q dt = 0). This 
explains the difference between condition (6.56) and (6.57) for the excitation of a 
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higher mode. A more comprehensive treatment of pipe modes is given in chapter 
7. 

+ 

Figure 6.5 Image of a line source in a compact cylinder. 

r* -. 
+ 

The method of images can also be used for a line source close to a compact cylinder 
of radius R or a point source near a compact sphere of radius a [123]. For a line 
source near a cylinder we should place an identical line source at the inverse point 
r* defined by: 

(6.58) 

and an opposite line source (i.e. a sink) at r = 0 on the cylinder axis (figure 6.5). 
For a sphere we should place a source q* at r* defined by: 

q* = qa/lrl (6.59) 

and 

(6.60) 

while in order to keep the mass balance we place a line of uniformly spaced sinks 
of total strength q* stretching from r* to the center of the sphere (r = 0) [123]. 

6.5 Lighthill's theory of jet noise 

Consider a free turbulent jet formed at the exit of a circular pipe of diameter D. The 
mean flow velocity in the pipe is uo. We assume that Uo « Co and that the entropy is 
uniform (air jet in air with uniform temperature). The key idea of Lighthill was that 
the sound produced by the turbulence was originated from a volume of order D3 
and that the influence of the pipe walls on the sound radiation could be neglected. 
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In such a case combining (2.63) with (3.13) and using the free space Green's func
tion Go given by (6.37) we find: 

It If! a
2
T:. p'(X, t) = __ 'J_GO(X, tly, r) dydr. 

aYiaYj 
-00 V 

Partial integration (twice) yields: 

I It If! a2Go p (x, t) = --Tij(y, r)dydr. 
aYiaYj 

-00 V 

Because Go is only a function of r = Ix - yl we have: 

aGo _ aGo ar _ (Xi - Yi) aGo _ aGo 
aYi - ----a;- aYi - - -r- ----a;- - - aXi . 

(6.61) 

(6.62) 

(6.63) 

Approaching the source towards the observation point has the same effect as ap
proaching the observation point towards the source. Hence we can write (6.62) 
as: 

t 

p'(X, t) = ~ I If! Go(x, flY, r)T;j(y, r) dydr. 
aXiaXj 

-00 V 

(6.64) 

The integration variable Yi does not interfere with Xi. Using now (6.37) we can 
carry out the time integration: 

'() a
2 If! Tij(y, t - rico) p x,t =-- dy. 

aXiaXj 4rrc5r 
V 

(6.65) 

In the far field the only length scale is the wave length, hence we have replaced the 
problem of the estimate of a space derivative (a laYi) at the source by the problem 
of the estimate of the characteristic frequency of the produced sound. In the far 
field approximation we have: 

(6.66) 
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For high Reynolds number we can neglect the effect of viscosity (if it were not 
small turbulence would not occur!). If we assume a homentropic compact flow we 
have (2.66): 

(6.67) 

The first estimates of Lighthi1l for a circularl free jet are: 

- the characteristic time scale for large eddy's in the flow is (D luo). 
- the Reynolds stress scales as pu5. 
- the relevant volume V is of order D3. 

Hence we should replace (olot) by uol Din (6.66) and we find: 

'() 1 (UO)2 PoU5D3 P x,t "'-- -
4JrC6 D Ixl 

(6.68) 

or in terms of intensity p'2 and Mach number Mo = uol co: 

p'2 rv ( Po D ) 
2 
M8 . 

4Jrlxl 0 
(6.69) 

This is the celebrated 8-th power law of Lighthill which " .. represents a triumph of 
theory over experiment; before the publication of U8, most reports of measured jet 
noise data gave a U4 variation, which was then quickly recognized, post U8, as as
sociated with noise sources within the engine itself, rather than with the jet exhaust 
turbulent mixing downstream of the engine. In fact, variation of intensity with U8 

is now generally accepted as defining jet mixing noise .. " (Crighton, l.c.); see fig
ure 6.6. Equation (6.69) tells us that turbulence in free space is a very ineffective 
source of sound. When a more detailed description of the flow is used to estimate 
Tij one can also find the directivity pattern of the radiation field [60, 13, 169]. This 
directivity pattern results from Doppler effects and refraction of the sound waves 
by the shear layer surrounding the jet. 

As the Mach number approaches unity the character of the sound production 
changes drastically because the flow is not compact any more (D/A "-' Mo) and 
because at higher Mach numbers shock waves appear if the jet is not properly 
expanded. These shocks generate noise by interaction with turbulence (random 
vorticity) and vortices (coherent structures) [56]. 

Moreover, it is obvious that the generated power cannot grow indefinitely with a 
power M8. There is a natural maximum corresponding to the kinetic energy flux in 

1 See Bj~m~ [12] for planar jets. 
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Figure 6.6 Sound power generated by a jet. 

the jet ~ pU6 . * D2. This natural upper bound prevails above M > 1 and the sound 
intensity scales above M > 1 as MJ. The typical fraction of flow power transferred 
to the acoustic field at high Mach number by a properly expanded supersonic jet 
is 10-4 (M > 1). Following Goldstein [60] the acoustic power W generated by a 
subsonic homentropic jet is given by 

W -5 5 
1 3 = 8 x 10 Mo· 
gPOUol( D2 

(6.70) 

Hence at Mach Mo = 0.1 we can estimate that only a fraction 10-9 of the hydro
dynamic power is transferred to the acoustic field. This is the key of the problem 
of calculating the acoustic field from a numerical calculation of the flow pattern 
at low Mach numbers. In order to achieve this we have to calculate the flow field 
within an accuracy which is far above the typical score (5%) of turbulence mod
elling nowadays. However, the simple scaling law of Lighthill already tells us that 
in order to reduce turbulence noise we should reduce the Mach number. A very 
useful result as we will see from exercise k) below. 

Lighthill's analogy in the form of equation (6.66) is often used to obtain acoustical 
information from numerical calculations of turbulent flow. Such calculations can 
be based on an incompressible model which by itself does not include any acoustic 
component. 

When the jet has a different entropy than the environment (hot jet or different fluid) 
the sound production at low Mach numbers is dominated by either Morfey's dipole 
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source term (ajaYi)(C2 - c5)jc5)(ap' jay;) or by a volume source term due to 
diffusion and heat transfer (entropy fluctuations). When a hot gas with constant 
caloric properties is mixed with the cold environment the monopole sound source 
is negligible compared to the dipole due to convective effects ([127]). One finds 
then a sound power which at low Mach numbers scales at M8. Upon increasing the 
Mach number the turbulent Reynolds stress can become dominant and a transition 
to the cold jet behaviour (Mg) can be observed in some cases. 

In hot jets with combustion, vapour condensation or strongly temperature depen
dent caloric gas properties the monopole source dominates ([34]), and a typical Mri 
scaling law is found for p,2. 

The influence of the viscosity on the sound generation by a free jet has been studied 
by Morfey [128], Obermeier [147] and Iafrati [80]. 

6.6 Sound radiation by compact bodies in free space 

6.6.1 Introduction 

In principle, when a compact body is present in a flow we have two possible meth
ods to calculate the sound radiation when using Lighthill's theory (section 2.6). In 
the first case we use a tailored Green's function which is often easy to calculate in 
the far field approximation by using the reciprocity principle (3.4). In the second 
case we can use the free field Green's function Go which implies that we should 
take surface contributions in equation (3.12) into account. This second method is 
called Curle's method [60, 13]. The advantage of the method of Curle is that we 
still can use the symmetry properties of Go like: 

(6.71) 

Furthermore, we will see that the surface terms have for compact rigid bodies quite 
simple physical meaning. We will see that the pulsation of the volume of the body 
is a volume source while the force on the body is an aero-acoustic dipole. In this 
way we can in fact say that if we know the aerodynamic (lift and drag) force on 
a small propeller we can represent the system by the reaction force acting on the 
fluid as an aero-acoustic source, ignoring further the presence of the body in the 
calculation of the radiation. 
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6.6.2 Tailored Green's function 

The method of tailored Green's function has of course the nice feature of a simple 
integral equation (3.13). We will, however, in general not have a simple symmetry 
relation allowing to move the space derivative outside the integral. The construc
tion of the tailored Green's function in the far field approximation is in fact equiv
alent to considering the acoustic response of the body to a plane incident wave. In 
applications like the effect of a bubble on turbulence noise we already did this for 
a bubble in a duct (section 4.7). 

The method of images discussed in section 6.4 is an efficient procedure to construct 
a Green's function for simple geometries. This is obvious when we consider a plane 
rigid wall. Using the reciprocity principle we send a plane wave P{n and look at the 
resulting acoustic field in the source point y. The acoustic field in y is built out of 
the incident wave P{n and the wave reflected at the surface p~. In the method of 
images we simply assume that p~ comes from an image source, as shown in figure 
6.7. 

x x 

a) b) '. image 

Figure 6.7 a) Acoustic response to a plane wave. 
b) Sound emitted by the source in the same observers direction. 

When calculating the Green's function we should take in free space as amplitude 
of the incident wave P{n the amplitude calculated from (6.37). For compact bodies 
or sources close to a surface we can neglect the variation in travel time of P~n over 
the source region and we find: 

I 8(-t+r-lxl/co) 
Pin = 4rrlxlc5 

(6.72) 

where the signs of t and r have been changed because of reciprocity relation (3.4). 
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When considering harmonic waves we have from (6.36) that: 

~ e-ikr 

Pin = 8 2 2 (6.73) 
7l cor 

where in the far field approximation r :::::: Ixl. The Green's function is found by 
adding the system response P~ (or fir) to the incident wave pIn' Once a tailored 
Green's function has been obtained we find by using (3.13): 

t 

p'(x, t) = 1 111 q(y, r)G(x, tly, r) dydr. (3.13) 

-00 V 

By partial integration and assuming that the sources are the volume sources 
(J2Tij /(JXi(JXj as defined in (2.63) which are limited to a small region of space 
we find: 

t 

p'(X,t) = 1 111 (J~~~j dydr. 
-00 V 

(6.74) 

Comparison of the space derivative of the tailored Green's function with that of 
the free space Green's function Go yields an amplification factor A ofthe radiated 
field: 

A = I a
2

G 1/12. (J2G
o 1 

0YiOYj c5 (6.75) 

where we made use of the approximation ('PGo/aXj(JXj :::::: «(J2Go/at2)/c5 in the 
far field, and assumed that the flow is not influenced by the foreign body (Tij = 
constant). 

Using this procedure one can show [13,42,60] that turbulence near the edge of 
a semi-infinite plane produces a sound field for which p,2 scales as Mg which 
implies for Mo « 1 a dramatic increase (by a factor M( 3) compared to free field 
conditions. This contribution to trailing edge noise is very important in aircraft 
noise and wind turbine noise. 

6.6.3 Curle's method 

When we place a cylinder of diameter d in a turbulent jet with a main flow velocity 
U(h the cylinder will not only enhance the radiation by the already present turbu
lence. A cylinder will affect the flow. Behind the cylinder at high Reynolds num
bers we have an unstable wake. Above a Reynolds number of Re uod/v = 40 
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the wake structure is dominated by periodic vortex shedding if 40 :::: Re :::: 3 x lOS 
and for Re ~ 3.5 x 106 [13, 15,65]. The frequency Iv of the vortex shedding is 
roughly given by: 

Ivd = 0.2. (6.76) 
Uo 

Hence the sound produced by vortex shedding has in contrast with turbulence a 
well-defined frequency. The periodic shedding of vorticity causes an oscillating 
lift force on the cylinder, with an amplitude L per unit length given by 

L = -Poruo, (6.77) 

where r is the circulation of the flow around the cylinder. By definition the lift 
force is perpendicular to the mean flow direction (uo). In dimensionless form the 
lift is expressed as a lift coefficient C L: 

L 
CL = -1-2-' 

'2 puod 
(6.78) 

The lift coefficient of a cylinder is in a laminar flow of order unity. However, C L 

is strongly affected by small disturbances and the lift force is not always coherent 
along the cylinder. This results in a C L for a rigid stationary cylinder ranging 

from (Cdrms ::::::: 0.1 

to (Cdrms ::::::: 0.3 

for Re :::: 2 x 105 

for Re ~ 5 x 105, 

while (C dpeak: r-.J 1.0 for Re :::: 2 x 105 

and (Cdpeak:::::::: (Cdrms for Re ~ 2 x 105
• 

The drag force has a fluctuating component corresponding to (CD)rms ::::::: 0.03. 
Elastic suspension of a cylinder enhance considerably the coherence of vortex 
shedding resulting into a typical value of C L ::::::: 1. The calculation of the sound 
production by vortex shedding when using a tailored Green's function is possi
ble but is not the easiest procedure. We will now see that Curle's method relates 
directly the data on the lift and drag to the sound production. 

Consider a body which, for generality, is allowed to pulsate, and is enclosed by 
a control surface S (figure 6.8). We want to calculate the field p' in the fluid and 
hence we define the control volume V at the fluid side of S. The outer normal 
n on S is directed towards the body enclosed by S. (Note that we use here the 
convention opposite from Dowling et al. [42]1) Using equation (3.12) combined 
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with Lighthill's analogy (2.63), ignoring external mass sources and force fields 
and taking to - 00 yields 

t 2 

pi = f fff O:i:~j Go(x, tlY, r) dydr 

-00 V t 

2 f ff[ ,aGo Opl] Co p - - Go- nj do-dr. 
ay; ay; 

(6.79) 

-00 s 

Applying partial integration twice yields: 

Using the definition (2.64) of T;j and its symmetry (T;j = Tji ): 

(2.64) 

we find: 

ft fff o2GO ft ff (8P" + PV:V') p' = Tij OY;OYj dydr + Go I} BYj I } nj do-dr 

-00 V -00 S 

Using the momentum conservation law (1.2) in the absence of external forces (f; = 
0): 
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and the symmetry of Go (6.70), we obtain: 

t 2 

p' = f iff Iij 0 Go dydr OXiOXj 
-00 V 

t 

+ f f f (pij + PViV j) ~~jO ni do-dr. (6.82) 

-00 S 

The spatial partial derivatives (oj[)Xj) do not refer to y and can be taken out
side the integral. In the far field they can be approximated by the time derivatives 
-(xjjlxj)co1(ojat). Furthermore, in the second integral in (6.82) we can make 
use of the general symmetry in the time coordinate of any Green's function: 

oG oG 

ot ar (6.83) 

(The effect of listening later is the same as shooting earlier!) In order to use (6.83) 
we therefore first move the time derivative (ajar) from PVi towards Go by partial 
integration. We finally obtain: 

t 

- colxl :t f f f (pjj + PViVj)Goni do-dr. (6.84) 
-00 S 

Using the 8-function in Go of equation (6.37), we can carry out the time integrals 
and we have Curle's theorem 

1 0 if[PVini] do-
at r t=" 

S 

_ Xj 3 0 ff[(Pij+PViVj)n i
] do-

4nlxlco ot r t==t, 

S 

(6.85) 

where r = Ix - y I and the retarded time te is 

te = t - rjco::::::: t -Ixljco. (6.86) 

The first term in (6.85) is simply the turbulence noise as it would occur in absence 
of a foreign body (except for the fact that the control volume V excludes the body). 
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The second term is the result of move
ment of the body. For a rigid body at a 
fixed position we have Vjnj v • n = O. 
This term is important when the body is 
pulsating. For a compact body we have S 
then a simple volume source term. This 
term can be used to describe the flow 
out of a pipe. Note that p is the fluid 

Figure 6.8 Control volume V and surface S 
density just outside the control surface and outer normal n. 
so that we consider the displacement of 
fluid around the body, rather than a mass injection. 

The last integral in (6.85) is the momentum flux through the surface and the pres
sure and viscous forces. For a fixed rigid body pVj v j = 0 because v = 0 at a 
surface ("no slip" condition in viscous flow). In the case of a compact, fixed, and 
rigid body, we can neglect the emission time variation along the body, and we have 
r ::: Ix I. The instantaneous force Fj of the fluid on the body (lift and drag) is then 

Fi (te)::: f f [pij ]t=te n j dO". (6.87) 

S 

Hence, for a fixed rigid compact body we have: 

I XiXj (}2 Iff p(x.t)= 34 2 Tij(y,t-Ixl/co)dy 
4Jrlxl Co at 

v x. () 
J (t - lxI/co). (6.88) 

6.7 Sound radiation from an open pipe termination 

Horns and tubes are used as an impedance matching between a volume source and 
free space. We use such a device to speak! Without vocal tract the volume source 
due to the vocal fold oscillation would be a very inefficient source of sound. We 
consider now the radiation of sound from such a tube. 

We know the behaviour of sound waves in a duct at low frequencies (chapter 4). We 
know how sound propagates from a point source in free space. We are now able to 
find the radiation behaviour of a pipe end by matching the two solutions in a suit
able way. If the frequency is low enough compared to the pipe diameter, the flow 
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near the pipe end is incompressible in a region large enough to allow the pipe open
ing to be considered as a monopole sound source. The strength of this monopole is 
determined by the pipe end velocity v'. For convenience, we assume that the pipe 
end is acoustically described for the field inside the pipe by an impedance Z p' The 
pressure p' in the pipe consists of a right-running incident wave and a left-running 
reflected wave: 

(6.89) 

The acoustic velocity in the pipe is related to the acoustic pressure in the pipe by: 

(6.90) 

Assuming a redistribution of the acoustic mass flow ViS through the pipe end with 
cross section S into the surface of a compact sphere of radius r and surface 4n r2 
(conservation of mass), we can calculate the radiated power for a harmonic field 
in- and outside the pipe, by using (6.13): 

IS = (p'v'}S = ~vv* Re(Zp)S 

1 ( S A) ( S A*) 2 2 2 = 2: 4nr2 v 4nr2 v (k r poco)(4nr ). (6.91) 

From this conservation of energy relation we find for the real part of the radiation 
impedance Z p of an unflanged pipe: 

1 2 
Re(Z p) = 4n k Spoco 

which is for a pipe of radius a: 

(6.92) 

(6.93) 

This result is the low frequency limit of the well-known theory of Levine and 
Schwinger [106]. 

The imaginary part Im(Zp) takes into account the inertia of the air flow in the 
compact region just outside the pipe. It appears that Im(Zp) is equal to k8, where 
8 is the so-called "end correction". This seen as follows. Just outside the pipe end, 
in the near field of the monopole, the pressure is a factor pocokr lower than the 
acoustic velocity, which is much smaller than the POCo of inside the pipe (see 
equation 6.7). Therefore, the outside field forces the inside pressure to vanish at 
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about the pipe end. Although the exact position of this fictitious point x = 8 (the 
"end correction"), where the wave in the pipe is assumed to satisfy the condition 
p = 0, depends on geometrical details, it is a property of the pipe end and there
fore 8 = O(a). This implies that the end correction amounts to leading order in 
ka to nothing but a phase shift of the reflected wave and so to a purely imaginary 
impedance Zp. Up to order (ka)2 this impedance can now be expressed as: 

(6.94) 

where it appears that2: 

0.61a :::: 8 :::: 0.85a (6.95) 

for circular pipes [156]. The lower limit corresponds to an unflanged pipe while 
the upper limit corresponds to a pipe end with an infinite baffle (flanged). See also 
section 7.9. 

Exercises 

a) Note that the acoustic field generated by a compact translating sphere is a dipole 
(equation 6.21) we find the typical cos tJ xm/lxllyl directivity. What are the 
source and the sink fanning the dipole? (Explain qualitatively.) 

b) A vortex ring with time dependent vorticity is a dipole. (Explain qualitatively.) 

c) An electrical dipole radiates perpendicularly to the axis of the dipole. What is the 
reason for this difference in directivity of electrical and acoustic dipoles? 

d) Why is the boundary condition p' = 0 reasonable for acoustic waves reflecting at a 
water/air interface (on the water side)? 

e) We have seen (section 6.2) that a translating sphere induces a dipole field. Moving 
parts of a rigid machine also act as dipoles if they are compact. Explain why a body 
translating in an oscillatory manner close to the floor produces more sound when it 
moves horizontally than vertically. 

f) The acoustic pressure p' generated by a monopole close to a wall increases by 
a factor 2 in comparison with free field conditions. Hence the radiated I intensity 
increases by a factor 4. How much does the power generated by the source increase? 

g) The cut-off frequency fe above which the first higher mode propagates in a duct 
with square cross section appears to be given by ~i\. ~cofe h. figure 6.4 
suggests that this would be cofe = h for a source placed in the middle of the duct. 
Explain the difference. 

J~log(211(X)Kl(X))~ 0.612701035 ... , 2J~h(x)~ = =0.848826363 ... 
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h) In a water channel with open surface sound does not propagate below a certain cut
off frequency Ie. Explain this and calculate Ie for a square channel cross section 
h =3m. 

.. h 

i) Consider a sphere oscillating (translating periodically) in an infinite duct with hard 
walls and square cross section. Discuss the radiation as function of the oscillation 
frequency and the direction of oscillation (along the duct axis or normal to the axis). 
Relate the dipole strength 8 Q to the amplitude of the acoustic waves for I < Ie in 
a pipe of cross sectional area S. 

j) Explain by using the method of images why a line quadrupole placed near a cylin
der, parallel to the axis of the cylinder (figure 6.9), will radiate as a line dipole. (This 
explains that turbulence near such a cylinder will radiate quite effectively [118]!) 

-+ +-

Figure 6.9 A line quadrupole near a cylinder. 

k) Consider two jet engines developing the same thrust with diameters Dl and D2 = 
2Dl, respectively. Assuming a low Mach number estimate the ratio of the sound 
power generated by both engines. 

1) Which scaling rule do you expect for the Mach number dependence of the sound 
produced by a hot steam in cold air? 
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m) Which scaling rule do you expect for the Mach number dependence of the sound 
produced by a bubbly liquid jet in water? 

n) Typical entropy fluctuations due to friction at the pipe wall from which the jet is 
leaving correspond to temperature fluctuations T' ITo ~ 0.2M2. At which Mach 
number do you expect such effect to become a significant source of sound? 

0) A subsonic jet with M « 1 is compact if we consider the sound produced by 
turbulence. Why? 

p) Estimate the amplification of turbulence noise due to the presence of a cylinder of 
diameter d near a free jet of diameter D at a main speed Uo if we assume that the 
cylinder does not affect the flow_ 

q) Same question for a small air bubble of diameter 2a near a free jet of diameter D 
and speed uo. Assume a low frequency response of the bubble. 

~R L 

Veff ~ 
------~---------.. 

/ ~ - ---- --- ----fj-- --- --- ---- ----. 

Figure 6.10 The forces on a fan blade (Exercise r) 

r) Consider a small ventilator rotating at a radial frequency w in a uniform flow uo. 
The fan feels at a certain distance r from the axis of the ventilator an effective 
wind velocity Veff which is a combination of the axial velocity uo and the tangential 
velocity wr (where we neglect the air rotation induced by the fan) (figure 6.10). 
Assume that Uo = 0.1 wR. If we concentrate on the tip of the fan (r R) we have 
a lift force L, per unit length, which is normal to Veff- The magnitude of L is given 
by: 

L = ~pv2 DCL 2 eff 

where D is the width of the profile of the blade. Typically CL is 0(1) for a well
designed ventilator. Consider first a ventilator with a single blade. Discuss the con
tribution of the tangential and axial components of the lift for L on the noise. What 
is the effect of having a second blade on the ventilator? (See figure 6.11.) A well
designed ventilator has many blades. How does this affect sound production? 
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Figure 6.11 Single and dual bladed ventilator (Exercise r) 

s) How does the presence of duct walls influence the low-frequency sound production 
of an axial ventilator placed in the duct. 

Figure 6.12 Propeller in pusher position (Exercise t) 

t) Consider an airplane with a rotor placed just behind the wing (figure 6.12). Discuss 
the sound production (frequency, directivity ... ). 

u) Can we consider an aircraft propeller as a compact body? 

v) What is the Mach number dependence of the sound produced by a small (compact) 
body placed in a turbulent flow? 

w) Estimate the low frequency impedance Z p of a flanged pipe termination. 

Figure 6.13 Piston in cylindrical pipe (Exercise x) 

x) Assuming a low frequency, calculate the power radiated in free space by a piston 
placed at the end of a circular pipe of radius a and length L (figure 6.13). What is 
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the ratio between this power at resonance koL = (n + i)Jl'. and the power which 
would be radiated by the piston without a pipe. 

L 

Figure 6.14 Piston in conical pipe (Exercise y) 

y) Consider a conical pipe driven by a piston of surface SI and with an outlet surface S2 
(figure 6.14). Determine the sound field inside the pipe. Hint. Use spherical waves 
centred at the cone top! 

z) A small transistor radio is not able to produce low frequencies (why?). We hear 
low frequencies because our ear is artificially guessing these low frequencies when 
we supply a collection of higher harmonics (figure 6.15). On the other hand. when 
using a Walkman we are actually provided with real, low frequencies. Why is this 
possible even though the loudspeaker is a miniature device? 

10 210 310 410 10 210 310 410 

Figure 6.15 We hear the missing fundamental! (Exercise z) 

A) Calculate the friction and radiation losses in a clarinet. Assume a tube radius of 1 
em and a length of 1 m. Carry out the calculation for the first three modes of the 
instrument. What is the difference between the radiation losses of a clarinet and of 
a flute with the same pipe dimensions. 
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B) How far can we be heard when we scream in quiescent air if we produce 10-5 W 
acoustic power? 

C) Calculate the ratio between the acoustic impedance experienced by an air bubble of 
radius ao = 1 mm in water at atmospheric pressure: 

- in free space; 
- in an infinite duct of cross sectional area S = 10-4 m2• 

D) Consider two twin pipes of length L and radius a, placed along each other in such 
a way that corresponding ends of either pipe just touch each other. Assume that 
the pipes are acoustically excited and oscillate in opposite phase. How does the 
radiation losses of the system scale with Land a. 
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7 Duct acoustics 

In a duct of constant cross section the reduced wave (or Helmholtz) equation may 
be solved by means of a series expansion in a particular family of solutions. called 
modes. They are related to the eigensolutions of the two-dimensional Laplace oper
ator acting on a cross section. Therefore, the terminology of modes contains many 
references to the corresponding eigenvalues. 

Modes are interesting mathematically because they form, in general, a complete 
basis by which any solution can be represented. Physically. modes are interesting 
because they are solutions in their own right, not just mathematical building blocks, 
and by their simple structure the usually complicated behaviour of the total field is 
more easily understood. 

7.1 General formulation 

The time-harmonic sound field in a duct of constant cross section with linear 
boundary conditions that are independent of the axial coordinate may be described 
by an infinite sum of special solutions. called modes, that retain their shape when 
travelling down the duct. They consist of an exponential term multiplied by the 
eigenfunctions of the Laplace operator corresponding to a duct cross section. 

y 

II 

Figure 7.1 A duct 1> of cross section A 

Consider the two-dimensional area A with a smooth boundary aA and an exter-
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nally directed unit normal n. For physical relevance A should be simply connected, 
otherwise we would have several independent ducts. When we consider, for defi
Diteness, this area be part of the y, z-plane, it describes the duct fl) (see Fig. 7.1) 
given by 

fl) = {(x, y, z)l(y, z) E A} (7.1) 

with axial cross sections being copies of A and where the normal vectors n are 
the same for all x. In the usual complex notation (with +iwt-sign convention), the 
acoustic field 

p(x, t) == p(x, w)eiwt
, vex, t) == vex, w)eiwt 

satisfies in the duct (x E fl) the equations 

V2p+W2p 0, 

iwv+ Vp =0. 

(7.2) 

(7.3a) 

(7.3b) 

We note in passing that solutions of a more general time-dependence may be con
structed via Fourier synthesis in w (equation C.2). At the duct wall we assume the 
boundary condition 

fB(p) = 0 for x E afl) 

where fB is typically of the form (c./. for example Eqs. (3.14) or (3.41» 

fB(p) = a(y, z)(n· V p) + bey, z)p + c(y, z) 1xp, 

The solution of this problem may be given by 

00 

p(x, y, z) = L Cnt/rn(Y, z) e-iknx 

n=O 

(7.4) 

(7.5) 

(7.6) 

where t/rn are the eigenfunctions of the Laplace operator reduced to A, i.e. solutions 
of 

( 
iJ2 a2 ) 2 - ayz + iiZ2 t/r a t/r for (y, z) E A, 

with iJ(t/r; a) = 0 for (y, z) E aA, 
(7.7) 

where a 2 is the corresponding eigenvalue and the eigenmode boundary condition 
operator iJ is 

iJ(t/r; a) = a(y, z)(n· Vt/r) + bey, z)t/r ik(a)c(y, z)t/r. (7.8) 
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7.2 Cylindrical ducts 201 

The axial wave number k is given by one of the square roots k = ±.j w2 - a 2 

(+ for right and - for left running). Each term in the series expansion, i.e. 
1/In(Y, z) e-iknx , is called a duct mode. If the duct cross section is circular or rect
angular and the boundary condition is uniform everywhere, the solutions of the 
eigenvalue problem are relatively simple and may be found by separation of vari
ables. These eigensolutions consist of combinations of exponentials and Bessel 
functions in the circular case or combinations of trigonometric functions in the 
rectangular case. Some other geometries, like ellipses, do also allow explicit so
lutions, but only in special cases such as with hard walls. For other geometries 
one has to fall back on numerical methods for the eigenvalue problem. As a final 
remark, we note that the above solution only needs a minor adaptation to cope with 
a uniform mean flow inside the duct. 

By application of Green's theorem it can easily be shown that the set of eigenfunc
tions {1/In} is hi-orthogonal to their complex conjugates {1/1;}. In other words, the 
innerproduct 

if n =1= m, 

if n = m. 
(7.9) 

(Some care is required when, due to a symmetric geometry, each an is linked to 
more than one 1/In.) This implies that for real1/ln and real an, which is for example 
the case for hard-walled ducts where Z = 00, the set of eigenfunctions is bi
orthogonal to itself: in other words is orthogonal. This (bi-)orthogonality can be 
used to obtain the amplitudes of the expansion. See section 7.7. 

In the following sections, we will present the modes with their properties and ap
plications for cylindrical ducts with both hard walls and soft walls of impedance 
type, as well as for rectangular ducts. 

7.2 Cylindrical ducts 

Consider in a duct, with radius a, uniform sound speed Co and mean density Po, 
time-harmonic acoustic waves of angular frequency w. We scale our variables as 
follows 

x := ax, t := at/co, p := Poc~p, P := PoP, v := eov, and w := weo/a, 

while intensity scales on poc~ and power on poc~a2. Note that w, the dimensionless 
frequency or dimensionless free field wave numberl , is just the Helmholtz number. 

lin dimensional fonn better known as ka. 
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In the present polar coordinates 

a a I a v = ex - + er - + eJJ--, 
ax ar r ait 

(7. lOa) 

a2 a2 I a 1 a2 
v2 =_+_+ __ + __ 

ax2 ar2 r ar r2 ait 2' 
(7. lOb) 

and so the reduced wave equation (7.3a) becomes 

a2 p a2 p 1 ap 1 a2 p 2 
ax2 + ar2 + -;: ar + r2 ait 2 + (J) P = O. (7.11) 

We begin with a hard-walled hollow duct, which has the wall boundary condition 

ap =0 
ar 

at r = 1. (7.12) 

Solutions of modal type may be found by separation of variables, i.e. by assuming 
the form p = F(x)1/f(y, z) = F(x)G(r)H(it) 

(7. 13 a) 

(7.13b) 

(7.13c) 

so that 

(a) H(it) = e-imJJ m = 0 ±1 ±2 '" , ",. 
Here, use is made of the condition of continuity from it = 0 to it = 2]'(. 

(b) G(r) = 1m(amllr), JL = 1,2, "', where: 
1m denotes the ordinary Bessel function of the first kind (Appendix D); 
amll = j~1l is the ,u-th nonnegative non-trivial zero of 1~, to satisfy the bound
ary condition G'(l) = o. 

(c) F (x) = e'fikmILx, with: 

kmll = j (J)2 - a~J1- such that Re(kmll ) ~ 0, Im(kmll ) ::: o. 

Although technically speaking {a~.Il} are the eigenvalues of (minus) the cross
sectional Laplace operator, it is common practice to refer to amll as the radial 
eigenvalue or radial modal wave number, to m as the circumferential eigenvalue 
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7.2 Cylindrical ducts 203 

or circumferential wave number, and to kmJL as the axial eigenvalue or axial wave 
number. The associated solutions are called duct modes, and they form a complete 
set of building blocks suitable for constructing any sound field in a duct. At the 
same time, they are particular shape-preserving solutions with easily interpretable 
properties. 

Note that all amJL and m are real, while only a finite number of kmJL are real; see 
figure 7.2). The branch we selected here of the complex square root kmJL is such 

15 

-k05 ... 

10 -

5 -

-kOl -k02 
0 ------A- ------------A------------------------ ----------------------- ----T------------·T----------·--- ---------

k02 ko! 

-5 + k03 -

-10 
tk04 

T k05 

-15 
-8 -6 -4 -2 0 2 4 6 8 

Figure 7.2 Complex axial wave numbers (m = 0, W 5). 

that e-ikm/Lx describes a right-running wave and eikmJ1-
x a left-running wave. This 

will be further clarified later. 

These modes (normalized for convenience) 

(7.14) 

form (for fixed x) a complete set (in L2-norm over (r, f}», so by superposition we 
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can write any solution as the following modaJ expansion: 

00 00 

p(x, r, '0-) = L L(AmM e-ikm/Lx +BmM eikmf,tx)UmM(r)e-imtt. 

m=-oo /i=1 (7.15) 

The normaJization factor Nm/i is chosen such that a modaJ amplitude AmM scales 
with the energy content of the corresponding mode (see below). 

A surface of constant phase, i.e. m'O- + Re(km/i)x = constant, is a helix of pitch 
2rcm/ Re(kmM ); see figure 7.3. 

Figure 7.3 Surface of constant phase mf) + Re(km/i,)x. 

An importaut speciaJ case is the plane wave m 0, JL 1, with 

./ 0 
101 = , 0'01 = 0, kOl = w, NOl = v'2, POI 

In fact, this is the only non-trivial eigenvalue equaJ to zero. All others are greater, 
the smaJlest being given by 

j{l = 1.84118··· . 

Since the zeros of J~ form an ever increasing sequence both in m and in JL (with 
j~M ::::::: (JL + ~m - ~)rc for JL --+ (0) (see Appendix D), there are for any walways 
a (finite) JL = JLo and m = mo beyond which a~JL > w2, so that kmJL is purely 
imaginary, and the mode decays exponentially in x. 

So we see that there are always afinite number of modes with real kmfl, (see figure 
7.2). Since they are the only modes that propagate (see below), they are called cut
on. The remaining infinite number of modes, with imaginary kmfl,' are evanescent 
and therefore caJled cut-off. This cut-on and cut-off modes are essentiaJly similar 
to the radiating and evanescent waves discussed in section 3.3. 
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For low frequency, i.e. for 

(J) < jfl = 1.84118· .. 

all modes are cut~off except for the plane wave. In this case a plane wave approx
imation (i.e. considering only the first mode) is applicable if we are far enough 
away from any sources, changes in boundary condition, or other scattering objects, 
for the generated evanescent modes to become negligible. 

From the orthogonality relation2 of equation 7.9 (note that we have here a hard
walled duct) 

(7.16) 

we find by integration of the time-averaged axial intensity 

(/ . ex) = ~(pu* + p*u) 

over a duct cross section x = constant the transmitted acoustic power 

(7.17) 

The summation over Re(kmjt ) contains only a finite number of non-zero terms: the 
cut-on modes. By taking either Amjt or Bm/l equal to zero, it is clear that a cut
on exp( -ikm/lx )-mode propagates in positive direction, and a cut-on exp(ikmttx)
mode in negative direction (for the present +i{J)t-sign convention). Indeed, with 
Im(km/l) ::: 0, the respective cut-off modes decay in the propagation direction, 
and we can say that a mode propagates or decays exponentially depending on the 
frequency being lower or higher than the cut-off or resonance frequency 

., 
J. - Jm/kco 

c - 2rra' (7.18) 

As is clear from the second part of expression (7.17), cut-off modes may transport 
energy by interaction between right- and left-running (Amp. and Bmp.) modes. It 
should be noted, however, that (depending on the choice of the origin x = 0) 

2 tJij = 1 if i j, Oij = 0 if i f. j 
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206 7 Duct acoustics 

usually either the right- or left-running cut-off modes AmI' or Bmji. are exponentially 
small, and the product A~I' Bmji. is therefore quickly negligible. 

The axial phase velocity (C.19) of a cut-on mode is equal to 

The axial group velocity (C.22) of a cut-on mode is given by 

_ (dkmlJ-)-l _ kmlJ-
Vg - dw - w . 

Note that 

VgVph = 1, with Vg < 1 < Vph' 

(7.19) 

(7.20) 

(7.21) 

The axial group velocity is lower than the soundspeed because the modal wave 
fronts do not propagate parallel to the x-axis, but rather follow a longer path, spi
ralling around the x-axis, with a right-hand rotation for m > 0 and a left-hand 
rotation for m < O. 

7.3 Rectangular ducts 

In a completely analogous way as in the foregoing section 7.2, the general modal 
solution, similar to (7.15), of sound propagation in a rectangular hard walled duct, 
can be found as follows. 

Separation of variables p(x, y, z) = F(x)G(y)H(z) applied to V 2p + w2p = 0 
in the duct 0 < x ~ a, 0 ~ y ~ b, results into Fxx = -a2F, Gyy = _p2G and 
Hzz = _(w2 - a 2 - P2)H, where a and P are eigenvalues to be determined from 
the hard-wall boundary conditions. We obtain 

F(x) = cos(anx), an = !.!2!., a 
n = 0,1,2, .. . 

G(x) = cos(Pmx), Pm = ~1l , m = 0,1,2, .. . 

H(z) = e'Fiknmz, knm = (w2 a2 _ R2)1/2 
n tJm ' 

where Re(knm ) > 0 and Im(knm ) ~ O. So the general solution is 

00 00 

p(x, y, z) = L L cos(anx) cos (Pm y)(Anm e-iknmz +Bnm eiknmz). 

11=0 m=O (7.22) 
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7.4 Impedance wall 

7.4.1 Behaviour of complex modes 

When the duct is lined with sound absorbing material of a type that allows little 
or no sound propagation in the material parallel to the wall, the material is called 
locally reacting and may be described by a wall impedance Z(m) (scaled on Poco). 
This gives in the acoustic problem the following boundary condition in the fre
quency domain: 

imp \ 
r=l 

opi -Z(m) - , 
or r=l 

(7.23) 

the impedance being defined as p / (v . n) with n a nonnal pointing into the surface. 
A typical practical example is: the inlet of an aircraft turbojet engine. The previous 
concept of a modal expansion, with modes again retaining their shape travelling 
down the duct, is also here applicable. The general solution has a fonn similar to 
(7.14) and (7.15), the hard walled case. Only the eigenvalues am/l are now defined 
by 

Jm(am/L) iZ 

amlJ/n (am/L) m 
(7.24) 

related to km/l by the same square root as before: 

but another nonnalization may be more convenient. A nonnalization that preserves 
the relation 

11 Um/L(r)U;,Jr)r dttdr = 1 

(note that now the modes are not orthogonal) is 

1I.T = {lam/LJ~(am/L)12Re(Z) }~1/2 
lYm/l 2 . 

Im(am/l)m 
(7.25) 

Qualitatively, the behaviour of these modes in the complex kmp, -plane is as follows. 

If Im(Z) > 0, all modes may be found not too far from their hard wall values 
on the real interval (-m, m) or the imaginary axis (that is, with amp, = j~1l' and 
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Im(kmll) :::: 0.) More precisely, if we vary Z from IZI = 00 to Z = 0, Cim/t 

varies from its IZI = oo-value j~f1, to its Z = O-value jmw (jmf1, is the ,u-th zero 
of 1m.) These jm/. and j~f1, are real and interlaced according to the inequalities 
j~f1, < jm/.i < jm,f1,+l < etc., so the corresponding kmf1, are also interlaced and shift 
into a direction of increasing mode number ,u. 

However, ifIm(Z) < 0 (for +iwt-sign convention), a couple of two modes wander 
into their quarter of the complex plane in a more irregular way, and in general quite 
far away from the others. In figure 7.5 this behaviour is depicted by the trajectories 
of the modes as the impedance varies along lines of constant real part (figure 7.4). 
Compare this figure with figure 3.1 of the related 2-D problem, which may be 
considered as the high-frequency approximation of the duct problem. (Note the 
notation! Ci in the 2-D problem corresponds to km/1- here.) For small enough Re(Z) 

imaginary 
axis 

I 

:Re(Z) =constant 

Figure 7.4 Complex impedance plane. 

ZeC 

real axis 

(smaller than, say, 2) we see the first (,u=1) mode being launched into the complex 
km/1--plane when Im(Z) is negative, and then returning as a (for example) ,u=4 
or 2 mode when Irn(Z) is positive. We will call these irregular modes surface 
waves: their maximum is at the wall surface, and away from the wall they decay 
exponentially ([173]). This is most purely the case for an imaginary impedance 
Z = iX. See figure 7.6. 

A solution Cim f1, = iemf1,' e ml1 real, may be found3 satisfying 

1m (emrt ) 

Qmf1, I /n (Qm/1-) 

x 
w 

if 
w 

< X < O. 
m 

(7.26) 

The modal shape in r, described by lm(Cim/.ir) i m 1m (Qmf1,r), is exponentially 
restricted to the immediate neighbourhood of r = 1 and indeed shows the sur
face wave character, since the modified Bessel function 1m (x) has exponential be
haviour for x -+ 00. It is interesting to note that the corresponding axial wave num
ber kmf1, = (w2 + Q~/y/2 is now larger than w. Hence, the modal phase velocity is 

3The function h(z) = zl/n (z)/lm (z) increases monotonically in z. with h(O) m, and h(z) rv z 
as z -+ 00. 
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Figure 7.5 Trajectories of kmJt (m = 0, co = 5) for Im(Z) varying from -00 to 00 and fixed 
Re(Z) = (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0. 
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Figure 7.6 Trajectories of kmJL (m 0, W = 5) for Im(Z) varying from -00 to 00 and fixed 
Re(Z) =0.0 

smaller than the sound speed, which is indeed to be expected for a non-radiating 
surface wave. The group velocity (7.20) depends on Z(w). 

7.4.2 Attenuation 

Usually, lining is applied to reduce the sound level by dissipation. It is a simple 
exercise to verify that the time-averaged intensity at the wall directed into the wall 
(i.e. the dissipated power density) of a mode is 

(7.27) 

A natural practical question is then: which impedance Z gives the greatest reduc
tion. This question has, however, many answers. In general, the optimum will de
pend on the source of the sound. If more than one frequency contributes, we have 
to include the way Z = Z(w) depends on w. Also the geometry may playa role. 
Although it is strictly speaking not dissipation, the net reduction may benefit from 
reflections at discontinuities in the duct (hard/soft walls, varying cross section). 

A simple approach would be to look at the reduction per mode, and to maximize 
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Figure 7.7 Trajectories of km/l (m = 0, (J) = 5) passing the Cremer optimum. At Z (1.4165, 
-0.6082) the first two modes coalesce as kO! =kor::(4.3057,-0.8857). Im(Z) varies from 
-00 to 00 and Re(Z) is fixed at 1.4165 . 

the decay rate of the least attenuated mode, i.e. the one with the smallest 1 Im(kmt.t) I· 
A further simplification is based on the observation that the decay rate Im(km/l) of 
a mode increases with increasing order, so that a (relatively) large decay rate is 
obtained if the first and second mode (of the most relevant m) coalesce (Cremer 
optimum). This is obtained if also the derivative to Cim/l of (7.24) vanishes, yielding 
the additional condition 

(7.28) 

An example is given in figure 7.7. Note that no mode is lost, as the two correspond
ing modes degenerate into 

(7. 29a) 

(7.29b) 
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7.5 Annular hard-walled duct modes in uniform mean 
flow 

With uniform mean flow (see equation 2.50), the modal theory still applies. In view 
of applications, we consider an annular duct of (scaled) inner radius h. 

Consider the following linearized equations for small perturbations 

(iw + M OOx)p + v· v = 0, (7.30a) 

(iw+ M a:)v + 'Vp = 0, (7.30b) 

with hard-wall boundary conditions. Eliminate v to obtain the convected wave 
equation 

( a )2 iw+ M AX p V 2p = 0, (7.31) 

Note, however, the possibility of convective incompressible pressureless distur
bances of the form 

v = F(r, e)e~ifx, such that V·v = ° and p = O. 

Fully written out, equation (7.31) becomes 

( 

02 a2 1 a 
-+ +--+ ox2 r or 

(7.32) 

The eigenvalue problem can now be solved, and we may expand the general solu
tion in Fourier-Bessel modes 

00 00 

p(x,r,e) = L L(Am/k + Em/k e -ik;;;!'x ) U m/k (r) e ~ime (7.33) 
m=-oo /.1;=1 

where the radial modes and radial and axial wave numbers satisfy 

(7.34a) 

(7.34b) 

-wM± 
k';/k = ----'-------- (7.34c) 
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and solution 

(7.35) 

The corresponding phase and group velocities for cut-on modes are found to be 

± w w2M ±WJW2 - (1- M2)a~1L 
Vph = k± W 2 _ a 2 

mIL mIL 
(7.36a) 

,----------
dk± -1 Iw2 - (1 - M2)a~j.t 

v± = ( ~) = ±(l - M 2)_-,V_r======= 
g dw w =F MJW2 - (1- M2)a~1L 

(7.36b) 

Due to the mean flow, the axial modal wave numbers are shifted to the left (M > 0), 
or right (M < 0), by a fixed amount of -wM/Jl - M2, while the (dimensionless) 
cut-off frequency is lowered from w = amlL for no flow to w = amj.t J 1 - M2 with 
flow. So with flow more modes are possibly cut-on that without. Note that (for 
M > 0) the rightrunning modes that become cut-on in this way (and only these) 
have a negative real part of their axial wave number. Indeed, rightrunning modes 
with a frequency along the interval 

have phase velocities that are opposite to their group velocities, the speed of in
formation. The same applies for left-running modes if M < O. Since vt > 0 and 
Vg < 0, this shows that it is not the sign of kmlL but of its radical that corresponds 
with the direction of propagation [126]; c.f equation (7.42). 

Eigenvalues a mlL are determined via boundary condition U~IL(1) = U~IL(h) = 0 

J~(a)Y~(ah) - J~(ah)Y~(a) = 0 

The normalisation is such that.hI U 2(r)r dr = 1 (c.f [172]), so 

4J2namlL 
NmlL =--------~--~----------~ 

{ 
1- m2ja2 1 m2/a2 h2 }! ______ m:....IL__ mIL 

J:n (amlL )2 + y:n (amlL )2 J/~ (amj.th)2 + y:n (amj.th)2 

and 

(7.37) 

(7.38) 

(7.39) 
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This implies the following choice of signs 

. (Y' (» Y~ (am/l) 
cos im/l SIgn m am/l IJ' ( )2 Y' ( )2 ' 

V m am/l + m am/l 
(7.40a) 

. . (y' ( » J~ (am/l) 
sm im/l SIgn m amfl. J J/n(amtJ2 + Y/n(amfl.)2' 

(7.40b) 

with the advantage that it reduces to the expected limit Nmfl.Jm(am/Lr) for h -+ O. 
Other choices, for example without the factor sign(Y~), are also possible. 

The modes are physically interesting because their shape remains the same. Math
ematically, they are interesting because they fonn a complete and orthononnal L2-
basis for the solutions of the convected wave equation (except for the pressureless 
convected perturbations): 

1211:11 UmJi..(r)Unv(r) eimO e-inO r drdO 2nomn oJi..\I (7.41) 

It is convenient to introduce the Lorentz or Prandtl-Glauert type transfonnation 
(see 3.44 and section 9.1.1) 

{J= x = {JX, w = {Jo., am/l = QYmfl. 

k± = ±QamJi.. - QM / 2 
mil {J ,Ym/l = V 1 - amfl.' 

(7.42) 

then we have for pressure p and axial acoustic velocity v 

00 00 

p = 2: 2:(Amfl.e-iQam/LX +BmJi..eiQam/LX)eiQMX UmJi..(r)e-imO 

m=-oo Ji..=1 
(7.43a) 

00 00 

v = ~ ~(amJi.. - M A e-iQam/LX_ 
L..; L..; 1 _ Ma mfl. 

m=-oo fl.=1 mfl. 

am/l + M B eiQaml'X) eiQMX U (r)e-imO 
1 + Mamfl. mfl. mfl. 

(7.43b) 

This includes the important case of the plane wave m = 0, IL = 1, with aOl 0, 
k~ = ±w/(l ± M) and U01 = (2/(1 - h2»1/2, such that 

p(x, r,O) = [AOl 

vex, r, 0) = [A01 e-

iwx]( 2 )1/2 +BOl e1=M 1""h2 ' 
iwx J( 2 )1/2 

- B01 e 1=M 1""h2 . 
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7.5 Annular hard-walled duct modes in uniform mean flow 215 

If we have at position x = ° a given pressure and axial velocity profiles P (0, r, 0) 
and V (0, r, 0), we can expand these profiles in the following Fourier-Bessel series 

where 

00 00 

P(O,r,O)= L LPm/lUm/1(r)e-imO, 
m=-oo /1=1 

00 00 

YeO, r, (}) = L L Vm/1UmjL(r) e-imO
, 

m=-oo /1=1 

PmjL = 1 [21T11 P(O,r,O)UmIL(r)eimordrdO, 
21T 10 h 

Vm/1 = ~ (1T11 YeO, r, (J)Um/1(r)eimO rdrd(). 
21l' 10 h 

(7.45a) 

(7.45b) 

(7.46a) 

(7.46b) 

If these pressure and velocity profiles satisfy the above propagation model of sound 
in uniform mean flow, the corresponding amplitudes Am/1 and Bm", are found from 
identifying 

(7.47a) 

(7.47b) 

leading to 

(7.48a) 

(7.48b) 

From the axial intensity in hard-walled flow duct 

(7.49) 
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we obtain the axial power: 

00 00 

+ 2rrfJ
4 L L (1 +1~;;2 )2' 

m=-oo {l={lo+l m/k 

. [lm(Am/LB;,)(1 - M2er~/k) Re(Am/LB;/k)2M 1erm/kl] (7.50) 

where /Lo is the number of cut-on modes. Note the coupling between left- and 
right-running cut-off modes. 

7.6 Behaviour of soft-wall modes and mean flow 

Consider a cylindrical duct with soft wall of specific impedance Z and uniform 
mean flow of Mach number M. For this configuration the acoustic field allows 
again modes, similar to the no-flow situation, although their behaviour with respect 
to possible surface waves is more complicated [179]. 

We start with modes of the same form as for the hard wall case (equations 7.33 
with 7.42, and 7.43a) for pressure p and radial velocity v 

v = ifJy e-iQaX+iQMX J' (Qyr). 
1 Mer m ~ 

where y2 + er 21 and the sign selected of er depends (in general) on the direction 
of propagation. We dropped the exponentials with iwt and ime. From the boundary 
condition (see equation 3.41) 

iwZv = (iw + M (J0Jp 

we find the equation for reduced axial wave number er for any given Z, m, and w 

(7.51) 

A graphical description of their behaviour as a function of 1m Z (from +00 down 
to - (0) and fixed Re Z is given in the series of figures (7.8). For large enough 
frequency, w, the behaviour of the modes can be classified as follows. When er is 
near a hard-wall value, the mode described is really of acoustic nature, extending 
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7.7 Source expansion 217 

radially through the whole duct. However, when (J' is far enough away from a hard
wall value, the imaginary part of Qy becomes significant. The complex Bessel 
function 1m (Qyr) becomes exponentially decaying away from the wall, and the 
mode is radially restricted to the duct wall region. In other words, it has become 
a surface wave, of two-dimensional nature, approximately described by the theory 
of section 3.2.6 (eqn. 3.45). 

The "egg" (figure 3.3), indicating the location of possible surface waves in the 2D 
limit, is drawn in the figures by a dotted line. The 2D surface wave solutions are 
indicated by black lines. The behaviour of the modes is to a certain extent similar 
to the no-flow situation (section 7.4.1, figures 7.5), although the effect ofthe mean 
flow is that we have now 4 rather than 2 possible surface waves. 

For large Re Z, the modes remain near their hard-wall values. For lower values 
of Re Z the behaviour becomes more irregular. The modes change position with a 
neighbour, and some become temporarily a surface wave. The two hydrodynamic 
modes disappear to infinity for 1m Z -? -00 like is described in equation (3.46). 

7.7 Source expansion 

7.7.1 Modal amplitudes 

A source at x = 0, defined by 

p(x, r, tt)1 = po(r, tt) 
x=O 

produces in a hard walled duct a sound field (7.15) with modal amplitudes given 
by (in x > 0) 

(7.52a) 

(7.52b) 

(use (7.16», and the same in x < 0 but with A and B interchanged. Note that, 
similar to the evanescent waves of section 3.3, details of the source (averaged out 
for the lower modes in the process of integration), only contribute to higher order 
modes and do not generate sound if these modes are cut-off. 
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Figure 7.8 Trajectories of reduced wave number amJ1. (m = 1, w = 5) where M = 0.5, for Im(Z) 
varying from -00 to 00 and fixed Re(Z). The 2D surface wave solutions of eqn. (3.45) 
are included as black lines. 
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7.7.2 Rotating fan 

Of practical interest, especially in aircraft noise reduction [208], is the following 
model of a propeller or fan with B identical blades, equally spaced Afj = 21r / B 
radians apart, rotating with angular speed n. If at some time t 0 at a fixed 
position x the field due to one blade is given by the shape function q(fj, r), then 
from periodicity the total field is described by 

per, fj,O) = q(fj, r) + q(fj AtT, r) + ... + q(fj - (B l)Afj, r) 

B-1 

= Lq(fj - 2~k,r). 
k=O 

This function, periodic in fj with period 21r / B, may be expanded in a Fourier 
series: 

00 

p(fj,r,O) = L qn(r)e-inBff . 
n=-oo 

Since the field is associated to the rotor, it is a function of tT - nt. So at a time t 

B-1 00 

p(tT, r, t) = Lq(tT nt 2~k , r) = L qn (r) einBQ.t-inBff (7.53) 
k=O n=-oo 

(with q-n = q; because p is real). Evidently, the field is built up from harmonics 
of the blade passing frequency Bn. Note that each frequency OJ = nBn is now 
linked to a circumferential periodicity m = n B, and we jump with steps B through 
the modal m-spectrum. Since the plane wave (m = 0) is generated with frequency 
OJ = 0 it is acoustically not interesting, and we may ignore this component. An 
interesting consequence for a rotor in a duct is the observation that it is not obvious 
if there is (propagating) sound generated at all: the frequency must be higher than 
the cut-off frequency. For any harmonic (n > 0) we have: 

.f = mn > j~lcO 
Jm 2Jr 2Jra (7.54) 

which is for the tip Mach number M1ip the condition 

an j~l 
Mti =->-

P Co m 
(7.55) 
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Since the first zero of J~ is always (slightly) larger than m (Appendix D), it implies 
that the tip must rotate supersonically (Mtip > 1) for the fan to produce sound. 

Of course, in practice a ducted fan with subsonic ally rotating blades will not be en
tirely silent. For example, ingested turbulence and the turbulent wake of the blades 
are not periodic and will therefore not follow this cut-off reduction mechanism. On 
the other hand, if the perturbations resulting from blade thickness and lift forces 
alone are dominating as in aircraft engines, the present result is significant, and in
deed the inlet fan noise level of many aircraft turbo fan engines is greatly enhanced 
at take off by the inlet fan rotating supersonically (together with other effects lead
ing to the so-called buzzsaw noise ([199])). 

7.7.3 Tyler and Sofrin rule for rotor-stator interaction 

The most important noise source of an aircraft turbo fan engine at inlet side is the 
noise due to interaction between inlet rotor and neighbouring stator. 

by-pass duct 

(core engine) 

nacelle 

Figure 7.9 Sketch of high by-pass turbo fan engine. Fan or inlet rotor oflow pressure compressor is 
drawn. The other compressor stages (intermediate and high pressure) are only indicated. 

Behind the inlet rotor, or fan, a stator is positioned (figure 7.9) to compensate 
for the rotation in the flow due to the rotor. The viscous and inviscid wakes from 
the rotor blades hit the stator vanes which results into the generation of sound 
([196]). A very simple but at the same time very important and widely used device 
to reduce this sound is the "Tyler and Sofrin selection rule" ([199, 208]). It is 
based on elegant manipulation of Fourier series, and amounts to nothing more 
than a clever choice of the rotor blade and stator vane numbers, to link the first 
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(few) hannonics of the sound to duct modes that are cut-off and therefore do not 
propagate. 

Consider the same rotor as above, with B identical blades, equally spaced ~ (} 
2n / B radians apart, rotating with angular speed Q, and a stator with V identical 
vanes, equally spaced ~(} = 2n / V radians apart. First, we observe that the field 
generated by rotor-stator interaction must have the time dependence of the rotor, 
and is therefore built up from harmonics of the blade passing frequency BQ. Fur
thennore, it is periodic in (}, so it may be written as 

00 00 00 

( .q t) "Q ( .q) inBfU "" Qnm(r) einBQt-imil • p r,u, = ~ n r, u e = ~ ~ 
n=-oo n=-oom=-oo 

However, we can do better than that, because most of the m-components are just 
zero. The field is periodic in (} with the stator periodicity 2n / V in such a way 
that when we travel with the rotor over an angle ~fl = 2n / V in a time step 
~t = ~ (} /0. the field must be the same: 

00 00 

p(r, fl, t) = L L Qnm(r) einHQ(t-fl.t)-im(U-Ail). 

n=-oom=-oo 

This yields for any m the restriction: -inBQ~t + im~fl = 2nik, or 

m=kV+nB (7.56) 

where k is any integer, and n the harmonic of interest. By selecting B and V such 
that the lowest 1m I possible is high enough for the harmonic of interest to be cut-off, 
this component is effectively absent for a long enough inlet duct. In practice, only 
the first harmonic is reduced in this way. A recent development is that the second 
harmonic, which is usually cut-on, is reduced by selecting the mode number m to 
be of opposite sign of n, which means: counter rotating with respect to the rotor. 
In this case the rotor itself acts as a shield obstructing the spiralling modes to leave 
the duct ([196]). 

In detail: for a cut-off n-th harmonic (we only have to consider positive n) we need 

nBQ j~lcO 
-- < -- or nBMtip < j~l' 
2n 2na 

Since typically Mtip is slightly smaller than 1 and j~l is slightly larger than 1m I we 
get the analogue of evanescent wave condition k < lal (section 3.3) 

nB ::: Iml = IkV + nBI. 
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The only values of k V for which this inequality is not satisfied automatically is 
in the interval -2nB < kV < O. If we make the step size V big enough so that 
we avoid this interval for k = -1, we avoid it for any k. So we have finally the 
condition: V ::: 2nB. 

Consider, as a realistic example, the following configuration of a rotor with B = 22 
blades and a stator with V = 55 vanes. The generated m-modes are for the first 
two harmonics: 

for n = 1: m = ... , -33, 22, 77, 

forn = 2: m - ... ,-11,44,99, 

which indeed corresponds to only cut-off modes of the first harmonic (m = 22 and 
larger) and a counter rotating cut-on second harmonic (m = -11). 

7.7.4 Point source in a lined flow duct 

Consider a cylindrical duct of non-dimensional radius 1, a mean flow of subsonic 
Mach number M, and harmonic pressure and velocity perturbations p of non
dimensional angular frequency w. The pressure is excited by a point source at xo, 
and satisfies the equation 

2 ( 0 )2 V p- iw+Mox p=o(x-xo), (7.57) 

so p(x; xo) represents the Green's function of the system. Note that we use the 
eiwt - convention. The impedance boundary condition at r = 1 (3.41), becomes in 
terms of the pressure 

(iw + M~)2p +iwZ
oP = 0 at r = 1. 

ox or 
(7.58) 

For a hollow duct finiteness of p is assumed at r = O. Finally, we adopt radiation 
conditions that says that we only accept solutions that radiate away from the source 
position Xo. 

We represent the delta-function by a generalised Fourier series in {} and Fourier 
integral in x 

~( ) _ o(r - ro) 1 100 
-iK(X-XO) d 1 ~ 

u x - Xo - e K - L.J 
ro 2rr -00 2rr m=-oo 

-im(ff-ffo) e . (7.59) 
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where 0 < ro < 1, and write accordingly 

00 

p(x, r, tJ) = L e-im(!?-!Jo) Pm(r, x) 
m=-oo 

00 100 

= L e-im(!?-!?o) Pm (r, K) e-iK(x-xo) dK. 
m=-oo -00 

(7.60) 

Substitution of (7.59) and (7.60) in (7.57) yields for Pm 

m2)A _o(r-ro) 
-? Pm - 2 ' r- 4rr ro 

with 

This has solution 

where use is made of the Wronskian 

2 
(7.61) 

rrx 

A prime denotes a derivative to the argument, x. A (K) is to be determined from the 
boundary conditions at r = 1, which is (assuming uniform convergence) per mode 

jQ2Pm +wZp~ = 0 at r = 1. 

A prime denotes a derivative to r. This yields 

A 1 [~ iQ
2
Ym(£1) + waZY~(£1) J ] 

= 8rr m(£1ro) - iQ2Jm(£1) + waZJ/n(£1) m(£1ro) , 

and thus 

iQ2Gm (r>, a) + wZHm(r>, a) 

8rr Em(K) 

where r> = max(r, ro), r< = miner, ro) and 

Em(K) = H;~2 Jm(£1) + ())£1ZJ~(£1) 
Gm(r, a) Jm (a) Ym (£1r) - Ym(£1) Jm(£1r) 

Hm(r, a) = £1J~(£1)Ym(£1r) £1Y~(£1)Jm(£1r) 
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By substituting the defining series we find that Gm and Hm are analytic functions 
of a 2, while both Em and Jm(ar <) can be written as am times an analytic function 
of a2• As a result, Pm(r, K) is a meromorphic4 function of K. It has isolated poles 

± . b K = Km/l , given y 

Em(K;,J = 0, 

which is equivalent to (7.51). The final solution is found by Fourier back-trans
formation: close the integration contour around the lower half plane for x > xo 
to enclose the complex modal wave numbers of the right-running modes, and the 
upper half plane for x < Xo to enclose the complex modal wave numbers of the 
left-running modes. In figure 7.10 a typical location of the integration contour with 
no-flow modes is shown. See also figures 7.5, 7.6 and 7.8. 

I 

X 
I 

I 

x; 
I , 
I 

KEC 

-w X X I 

----~-=~~~-~+~~~-~~~-~-~x~:~~~~==~----
, x 
I , 
I :x 
I 
I , 
X 

Figure 7.10 Contour of integration in the K-plane. 

We define 

Qm. = ± [(Km" + nm.M)(1 

where relates to rightlleft-running modes. With the result 

dEm \ dK K=Kmi-' = ±wZ QmiJ, 1m (am/l ) 

---
4 A meromorphic function is analytic on the complex plane except for isolated poles. 
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the integral is evaluated as a sum over the residues in the poles at K = K;:;J1. for 
x > Xo and at K;;;J1. for x < Xo. From eigenvalue equation Em (K;J1.) = 0 and the 
Wronskian (7.61) we obtain 

where am J1. = a(KmJ1.)' We can skip the distinction between r> and r < and achieve 
the soft wall modal expansion 

(7.62) 

where for x > Xo the sum pertains to the right-running waves, corresponding to the 
modal wave numbers K;:;J1. found in the lower complex half plane, and for x < Xo 
the left-running waves, corresponding to K;;;J1. found in the upper complex half plane 
(see [179]). 

Only if a mode from the upper half plane is to be interpreted as a right-running 
instability (their existence is still an unresolved problem), its contribution is to 
be excluded from the set of modes for x < Xo and included in the modes for 
x > Xo. The form of the solution remains exactly the same, as we do no more than 
deforming the integration contour into the upper half plane. 

It may be noted that expression (7.62) is continuous in (x, r), except at (xo, ro) 
where the series slowly diverges like a harmonic series. As may be expected from 
the symmetry of the configuration, the clockwise and anti-clockwise rotating cir
cumferential modes are equal, i.e. Pm(r, x) = P-m (r, x). 

Solution (7.62) is very general. It includes both the no-flow solution (take M = 0) 
and the hard walled duct (take Z = 00). Without mean flow the problem becomes 
symmetric in x and it may be notationally convenient to write a;J1. = amJ1.' K;:;J1. = 
KmJ1. and K;;;J1. = -Kmw 

Finding all the eigenvalues K;J1. is evidently crucial for the evaluation of the se
ries (7.62), in particular when surface waves (Section 3.2.6) occur. An example of 
Pm (x, r) is plot in figure 7.11. 

7.7.5 Point source in a duct wall 

A problem, closely related to the previous one, is the field from a source v ·er = 

-8(x - xo) in the duct wall r = 1. Consider for simplicity a hard-walled duct 
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without mean flow. We have for the pressure 

1 a I 1 100 
- J!. = - e-iK(x-xo) dx L 
iill ar r=! 21( -00 21( 

m=-oo 

00 
-im(U-Uo) e . (7.63) 

We solve equation (7.3a) again via Fourier transformation in x, and Fourier series 
expansion in fJ. We obtain 

(7.64) 

where a(K)2 = Q} - K2. From the Fourier transformed boundary condition (7.63) 
it follows that aAm J~(a) = -ev/47( 2i, so 

p(x, r, fJ) = t e-im(U-Uo) 100 
Jm(ar) e-iK(x-xo) dx. 

m=-oo -00 aJ/n(a) 

The poles of the meromorphic5 integrand are found at K = ± KmJl. (we use the 
symmetry in x), and since the waves must be outgoing the integration contour in the 
K-plane must be located as in figure 7.10. Closing the contour via Im(K) ~ -00 

for x > 0 and via Im(K) ~ +00 yields the solution, in the form of a series over 
the residue-contributions6 in K = ± Kmw This yields the modal expansion 

50 

+ 

-50 . 

00 00 J, 
p(x, r, fJ) =!:!.... L L ~m~=-:---::-___ _ 

21( m=-oo JJ.=! (1 

5 A meramorphic function is analytic on the complex plane except for isolated poles. 

6Near K = Km/i is J:nCa(K»:::::: -(K - KmJJ.)KmJJ.a;;;1J~(amJJ.)' 

(7.65) 

Re(--), lm(-,), abs(-) Pm in x for «>=10, m=5, M=O,5, Z=(U-31, r=O.7, '0=0.7 

0.2 

Figure 7.11 Eigenvalues K~/i and Re(Pm), Im(Pm) and IPm I is plot of the m 5-th component of 
the point source field in a lined flow duct with w 10. Z 0.1 - 3i, xo = 0, rO 0.7. 
M = 0.5 at r = 0.7 and (J (Jo. Note the presence of 3 surface waves. 
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The contribution of the m = 0, It = 1 plane-wave mode is 

7.7.6 Vibrating duct wall 

When, instead of a point, a finite part of the wall vibrates (e.g. [99]) as 

r = 1 - 1J(x, tJ) eiwt for - L ::: x ::: L (7.66) 

then the solution may be found as follows. We write as a Fourier sum 

Similar to above we find the solution p(x, r, tJ) as a formal Fourier integral, 
which can be rewritten, by using result (7.65) and the Convolution Theorem (C.lO) 
(p.300), as 

with the plane-wave contribution 

iev 1L 1Jo(x') e-iw1x-x'l dx'. 
-L 

(7.67) 

A naive interpretation of this formula might suggest the contradictory result that 
the field, built up from hard-wall modes with vanishing r-derivative at the wall, 
does not satisfy the boundary condition of the moving wall. This is not the case, 
however, because the infinite series is not uniformly converging (at least, its radial 
derivative). Pointwise, the value at the wall is not equal to the limit to the wall, 
while it is only the limit which is physically relevant. 

Although in the source region no simple modes can be recognized, outside this 
region, i.e. for Ix I > L, the remaining integral is just the Fourier transform times 
exponential, ~m (±Km/L) exp( -Km/L Ix I), and the solution is again just a modal sum 
of right- or left-running modes. 
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Figure 7.12 Duct with discontinuous diameter. 

r=b 

7.8 Reflection and transmission at a discontinuity in 
diameter 

One single modal representation is only possible in segments of a duct with con
stant properties (diameter, wall impedance). When two segments of different prop
erties are connected to each other we can use a modal representation in each seg
ment, but since the modes are different we have to reformulate the expansion of 
the incident field into an expansion of the transmitted field in the neighbouring 
segment, using conditions of continuity of pressure and velocity. This is called: 
mode matching. Furthermore, these continuity conditions cannot be satisfied with 
a transmission field only, and a part of the incident field is reflected. Each mode is 
scattered into a modal spectrum of transmitted and reflected modes. 

Consider a duct with a discontinuity in diameter at x = 0 (figure 7.12): a radius a 
along x < 0 and a radius b along x > 0, with (for definiteness) a > b. Because 
of circumferential symmetry there is no scattering into other m-modes, so we will 
consider only a single m-mode. 

The field Pin, incident from x = -00 and given by (see equation 7.14) 

00 

P· - ~ A U (r) e-ikm/Lx-iml? 
III - ~ miL miL ' (7.68a) 

iL=l 
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is scattered at x = 0 into the reflected wave Pref 

00 

Pref L Bm/iUm/i(r) eikmj,lx-imff, 

/i=l 
00 

Bm/1 = L Rm/ivAmv' or B = 9{A, 
v=l 

and into the transmitted wave Ptr 

00 

Ptr = L CmttUm/1(r) e-iCm/Lx-imit, 

/1=1 

Um/1(r) = Nm/i Jm Cf3m/kr) , 
00 

CmlL LTm/kvAmv' or C = r A. 
v=l 

(7.68b) 

(7.68c) 

Um/k(r) and Nm/k are the obvious generalizations of Um/k (r) and NmlL on the interval 
[0, b]. Suitable conditions of convergence of the infinite series are assumed. while 

./ / ftm/k = Jmtt a, 

f3ml1 = j~tt/b, 

kml1 = J w2 
- ft~/1 ' 

eml1 = JW2 - f3~I1' 
Im(km/k) .:::: 0, 

Im(.em/1) .:::: o. 

The matrices 9{ and r are introduced to use the fact that each incident mode re
flects and transmits into a modal spectrum. When acting on the incident field ampli
tude vector A, they produce the reflection and transmission field amplitude vectors 
Band C. Therefore, they are called "reflection matrix" and "transmission matrix". 

At the walls we have the boundary condition of vanishing normal velocity. At the 
interface x = 0, 0 .:::: r .:::: b we have continuity of pressure and axial velocity. 

At the edges we have the so-called edge condition [124]: the energy integral of the 
field in a neighbourhood of an edge must be finite (no source hidden in the edge). 
This condition is necessary in a geometry with edges because the boundary condi
tions lose their meaning at an edge, whereas the differential equation is not valid 
at the boundary. In the context of modal series expansions this condition is related 
to the convergence rate of the series. A o-function type of a spurious edge source 
generates a divergent series expansion (to be interpreted as a generalized function; 
section C.2). Although its role remains in the usual engineering practice somewhat 
in the background, the edge condition is certainly important in the present problem. 
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Since the problem is linear it is sufficient to determine the scattered field of a single 
JL-mode. It then follows that the continuity of pressure at the interface 

00 00 

2~::CRmv/t + ov/t)Umv = LTmv/tUmv (7.69) 
v=l 11=1 

yields, after multiplication with UmA(r)r, integration from 0 to b, and using or
thonormality, the following relation? to express TmA/L in the vector Rm'/L: 

where 

00 

L(UmA' Umv)b(Rmv/t + ov/t) = TmA./L' 
v=1 

(J, g)b = fob f(r)g(r)r dr. 

(7.70) 

This integral may be evaluated by using equations (D.S7) and (D.58). The continu
ity of axial velocity at the interface 

00 00 

L kmv(Rmv/L - oV/L)Umv = - L fmvTmv/tUmv (7.71) 
v=l v=1 

yields, after multiplication with U mA. (r)r, integration from 0 to a of the left hand 
side, and from 0 to b of the right hand side, using Px = 0 on b :::: r :::: a, the 
following relation expressing RmA./L in the vector Tm./t: 

00 

kmA.(RmA/L OA.IL) = - L{UmA., Umv)btmvTmvw (7.72) 
v=1 

Both equations (7.70) and (7.72) are valid for any A and JL, so we can write in 
matrix notation 

M(/R + I) = 7, 
k(/R-I)=MT t7, 

(7.73) 

for identity matrix I. matrix M and its transpose M T, and diagonal matrices k and 
t, given by 

MA.v (UmA , Umv}b' kAV = OAvkmA' tAl) = OA.vtm)...· 

? aij 1 if i j, aij = 0 if i =f. j. 
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So we have fonnally the solution 

(7.74) 

which can be evaluated by standard techniques for any sufficiently large truncated 
matrices. 

A suitable choice of truncation [114, 115, 176,224], allowing for a certain balance 
between the accuracy in x < 0 and in x > 0, is to include proportionally more 
tenns in the wider duct: a truncation of the series of (7.70) after, say, P tenns and 
of (7.72) after Q tenns, with PIa::::::: Qlb. This gives truncated matrices .MQxP, 

.M;xQ' k pxp , lQxQ, so that we obtain /RpxP and'TQxp. 

It should be noted that if we take PI Q very much different from alb, we may 
converge for P, Q -* 00 to another solution (7.74) than the physical one. This is 
not an artefact of the method: the solution is indeed not unique, because we have 
not yet explicitly satisfied the edge condition. The behaviour near the edge depends 
on the way we let P and Q tend to infinity. and the edge condition is satisfied if 
their ratio remains: PI Q ::::::: alb. 

7.S.1 The iris problem 

When an abrupt contraction of the duct diameter is immediately followed by an 
expansion to the previous diameter (an infinitely thin orifice plate), we call this an 
iris. In this case one might be tempted to solve the problem directly by matching 
the modal expansions at either side of the iris plate. This solution will, however, 
either not or very slowly converge to the correct (i.e. physical) solution. 

The above method of section 7.8, however, is well applicable to this problem too, if 
we consider the iris as a duct (albeit of zero length) connecting the two main ducts 
at either side of the iris. Each transition (from duct 1 to the iris, and from the iris to 
duct 2) is to be treated as above. Since the matrices of each transition are similar, 
the final system of matrix equations may be further simplified [176]. 

7.9 Reftection at an unftanged open end 

The reflection at and radiation from an open pipe end of a modal sound wave de
pends on the various problem parameters like Helmholtz number w, mode numbers 
m, JL and pipe wall thickness. A canonical problem amenable to analysis is that of 
a hard-walled, cylindrical, semi-infinite pipe of vanishing wall thickness. The exact 
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solution (by means of the Wiener-Hopf technique) was first found by Levine and 
Schwinger (for m = 0) in their celebrated paper [106]. Generalizations for higher 
modes may be found in [220] and with unifonn [172] or jet mean flow [134, 135]. 

Inside the pipe we have the incident mode with reflected field, given by p(x, r, tJ) 
Pm(x, r) e-imlJ where 

00 

( ) U () e-ikmt-tx + '" R U () ikmvx Pm x, r = mJL r L..t mJLl! mJL r e . 
JL=l 

Outside the pipe we have in the far field 

e-iCUQ 

Pm (x, r) ::::::: DmJL(I;)-
WI) 

(7.75) 

(7.76) 

where x = I) cos~, r = I) sin~, and DmJL(~) is called the directivity function, and 
IDmJL(~)1 is the radiation pattern. 

The reflection matrix {RmJLv } and the directivity function are both described by 
complex integrals, which have to be evaluated numerically. Some important prop
erties are: 

• At resonance W = am{t we have total reflection in itself, Rm/l-{t = -I, and no 
reflection in any other mode, RmJLv = O. 

• Near resonance w ,-..., am/l- the modulus I Rm{tv(w) I behaves linearly from the 
left, and like a square root from the right side; the behaviour of the phase 
arg(RmJLAw» is similar but reversed: linearly from the right and like a square 
root from the left. 

• A reciprocity relation between the f.L, v and the v, f.L-coefficients: 

kmvRm/iv = km{tRmv{t. 

• In the forward are, 0 < ~ < ~Jl'. Dm{t (~) consists of lobes (maxima interlaced 

by zeros), while DOl (0) = ~,J2iw2 and Dm{t(O) = O. 

• In the rearward arc, ~Jl' :s ~ < Jl', Dm/t (~) is free of zeros, and tends to zero for 
~ -+ Jl' if m ?: 1 and to a finite value if m O. 

• If kmv is real and v i= f.L, the zeros of DmJL (I;) are found at 

~ arcsin(amv/w). 

• If the mode is cut on, the main lobe is located at 

~mJL arcsin (amJL I w). 

• If w -+ 0, the radiation pattern of the plane wave mf.L 01 becomes spherically 
shaped and small like O(w2), while the reflection coefficient becomes ROll ::::::: 
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- exp( -i 2&0), where 0 = 0.6127. The dimensional distance oa is called the 
end correction, since x = oa is a fictitious point just outside the pipe, at which 
the wave appears to reflect with p = O. See also (6.95,5.39). 

Based on the method presented in [172], plots of Rml1v and IDml1(~)1 may be gen
erated, as given in figures 7.13 and 7.14. 

Of the reflection coefficient we have plotted modulus I Rml1v (w) I and phase t:Pml1v = 
arg(Rml1v ) as a function of w = 0 ... 7., for m = 0 ... 2 and JL, v = 1,2. Note 
that the resonance (cut-off) frequencies are w = 3.8317 and 7.0156 for m = 0, 
w = 1.8412 and 5.3314 for m = 1, and w = 3.0542 and 6.7061 for m = 2. 

The radiation pattern is plotted, on dB-scale, of the first radial mode (JL = 1) for 
m = 0 and m = 1, and w = 2,4, 6. For m = 0 the main lobe is at ~Ol = 0, while 
the zeros are found for w 4 at ~ = 73.30

, and for w = 6 at ~ 39.7°. For m = 1 
we have the main lobe at ~11 = 67.0°,27.4°,17.9° for w = 2,4,6. The zero is 
found at ~ = 62.7° for w = 6. 

Furthermore, the trend is clear that for higher frequencies the refraction effects be
come smaller, and the sound radiates more and more like rays [22]. It is instructive 
to compare the wave front velocity of a mode (the sound speed, dimensionless 1) 
and the axial phase velocity Vph (7.19). As the mode spirals through the duct, the 
wave front makes an angle ~ml1 with the x-axis such that cos(~mIL) = l/vph 

kml1 /w. Indeed, 

~ml1 arccos(km,jw) = arcsin(aml1 /w) 

is the angle at which the mode radiates out of the open end, i.e. the angle of the 
main lobe. 

Exercises 

a) Consider a hard-walled duct of radius a = 0.1 m with an acoustic medium with 
Co = 340 m/s. A harmonic source with frequency f = 500 Hz is positioned at 
x = 0 half-way the radius. A microphone is to be placed an axial distance x D 
away from the source, such that the plane wave is detected at least 20 dB louder 
than the other modes. 
- What is the cut-off frequency ? 
- Assuming that all excited modes have about the same initial amplitude, ignoring 

details like r-variation of higher-order modes: what is the necessary distance D? 
What is D for frequency f tending to zero ? 

b) Investigate the behaviour of kml1 (equation 7.26) for w -+ 00. Find analytical ap
proximate expressions of the surface waves. 
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Figure 7.13 Modulus and phase of reflection coefficients RmJLv for m = O ... 2, /1, v = l, 2, as a 
function of OJ = o ... 7. 
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o 0 

270 270 

Figure 7.14 Radiation pattern 20 log 10 IDmll1 + 71.7 for m{1- = 01, 11 and w = 2,4,6. 

c) Find in a similar way as for equation (7.65), by Fourier transformation to x, the 
field of a harmonic point source inside a hard-walled infinite duct. Verify this by an 
alternative approach based on representation (D.56). 
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8 Approximation methods 

Almost any mathematical model of a physical phenomenon can be considered as 
one in a hierarchy of increasing complexity. Either explicitly and systematically, or 
implicitly on a more intuitive basis, any modelling process consists of selecting a 
suitable model, and subsequently moving up or down in the hierarchy, investigating 
possible reductions or simplifications, or necessary extensions. 

It is important to realize that these levels of modelling are not discrete steps, but 
gradual and smooth changes from one form into another. 

Models and theories, applicable in a certain situation, are not "isolated islands of 
knowledge" provided with a logical flag, labelling it "valid" or "invalid". There are 
always in the higher-level theory one or more inherent modelling parameters which 
become large or small and hence giving in the limit a simpler description [33]. Ex
amples are numerous: simplified geometries reducing the spatial dimension, small 
amplitudes allowing linearization, low velocities and long time scales allowing in
compressible description, small relative viscosity allowing inviscid models, zero 
or infinite lengths rather than finite lengths, etc. 

The question is: how can we use this gradual transition between models of different 
level. Of course, when a certain aspect or effect, previously absent from our model, 
is included in our model, the change is abrupt and usually the corresponding equa
tions are more complex and more difficult to solve. This is, however, only true if 
we are merely interested in exact or numerically "exact" solutions. But an exact 
solution of an approximate model is not better than an approximate solution of an 
exact model. So there is absolutely no reason to demand the solution to be more 
exact than the corresponding model. If we accept approximate solutions, based 
on the inherent small or large modelling parameters, we do have the possibilities 
to gradually increase the complexity of a model, and study small but significant 
effects in the most efficient way. 

The methods utilizing systematically this approach are called "perturbations meth
ods". Usually, a distinction is made between regular and singular perturbations. A 
(loose definition of a) regular perturbation is where the solution of the approximate 
problem is everywhere close to the solution of the unperturbed problem. 
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In acoustics we have as typical examples of modelling hierarchies: wave propaga
tion in a uniform medium or with simple boundaries being considerably simpler 
than in a non-uniform medium or with complicated boundaries. For a uniform 
medium and simple boundary conditions, many exact analytical results are avail
able. For an arbitrary non-uniform medium or complex boundary conditions, we 
usually have to resort to numerical methods. Analytical approximations and per
turbation methods come into play for cases in between where the problem differs 
only a little from one which allows full analytical treatment. 

We will consider here three methods relevant in acoustical problems. The first is the 
problem of Webster's horn, an example of a regular perturbation, where the typical 
axial length scale is much greater than the transverse length scale. The others are 
examples of singular perturbations. The method of multiple scales (related to the 
WKB method) describes problems in which in the problem several length scales 
act in the same direction, for example a wave propagating through a slowly varying 
environment. The method of matched asymptotic expansions is used to analyse 
problems in which several approximations, valid in spatially distinct regions, are 
necessary. 

8.1 Regular Perturbations 

8.1.1 Webster's horn equation 

Consider the following problem of low frequency sound waves propagating in a 
slowly varying duct or horn [104]. The typical length scale of duct variation is 
assumed to be much larger than a diameter, and of the same order of magnitude 
as the sound wave length. We introduce the ratio between a typical diameter and 
this length scale as the small parameter £, and write for the duct surface and wave 
numberk 

r R(X,B), X = EX, k = £K. (8.1) 

By writing R as a function of slow variable X, rather than x, we have made our 
formal assumption of slow variation explicit in a convenient and simple way, since 
;~ R = £Rx = 0(£). 

The crucial step will now be the assumption that the propagating sound wave is 
only affected by the geometric variation induced by R. Any initial or entrance 
effects are absent or have disappeared. As a result the acoustic field p is a function 
of X, rather than x, and its axial gradient scales on 8, as i)i)x P = 0(8). 
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It is convenient to introduce the following function S and its gradients 

S = r - R(X, e), (8.2) 

(8.3) 

(8.4) 

At the duct surface S = 0 the gradient \/ S is a vector normal to the surface (see 
section A.3), while the transverse gradient \/1.S, directed in the plane of a cross 
section X = const., is normal to the duct circumference SeX = c, r, 8) = O. 

Inside the duct we have the reduced wave equation (Helmholtz equation) 

(8.5) 

at the solid wall the boundary condition of vanishing normal velocity 

at S = O. (8.6) 

This problem is too difficult in general, so we try to utilize in a systematic man
ner the small parameter 8. Since the perturbation terms are 0(82), we assume the 
asymptotic expansion 

p(X, r, 8; 8) = Po(X, r, e) + 8 2 
PI (X, r, e) + 0(84

). 

After substitution in equation (8.5) and boundary condition (8.6), further expansion 
in powers of 8 2 and equating like powers of 8, we obtain to leading order a Laplace 
equation in (r, 8) 

An obvious solution is Po == O. Since the solution of the Laplace equation with 
boundary conditions in the normal derivative are unique up to a constant (here: a 
function of X), we have 

Po = Po(X). 

To obtain an equation for Po in X we continue with the 0(82)-equation and corre
sponding boundary condition 

(8.7) 
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The boundary condition can be rewritten as 

Pox Rx POx RRx 
V1.PI • R1. = -

IV1.81 J R2 + R~ 

where R1. = V1.8/1\11.81 is the transverse unit normal vector. By integrating equa
tion (8.7) over a cross section .A. of area A(X), using Gauss' theorem, and not
ing that A = J~n ~ R2 de, and that a circumferential line element is given by 
de = (R2 + R5)1/2de, we obtain 

f f vIPl + POxx + K2poda = f V1.Pl ·n1. de + A(poxx + K2pO) = 
.A. aA 

2n 

Pox f RRx de + A(poxx + K2 Po) = Ax Pox + A(poxx + K2 Po) = o. 
o 

Finally, we have obtained for the leading order field Po the Webster horn equation 
[9,46, 129, 158, 192, 193,219], which is, for convenience written in the original 
variables x and k, given by 

1 d ( d ) 2 
A dx A dx Po + k Po = O. (8.8) 

By introducing A = D2 and 4> = Dpo, the equation may be transformed into 

(8.9) 

This can be solved analytically for certain families of cross sectional shapes A. For 
example, the term D" / D becomes a constant if 

(parameterized by a, b, and m), and the equation (8.8) simplifies to 

cP" + (k2 
- m2)cP = 0 

which can solved by elementary methods. In the special case m -+ 0 such that 
a = ~(Ao + Adm) and b = ~(Ao - Adm), the shape reduces to the conical horn 
A = (Ao + AIX)2. For b = 0 we have the exponential horn, and if b = a the 
catenoidal horn. 

The parameter m is clearly most important since it determines whether the wave is 
propagating (m < k) or cut-off (m > k). 

RienstraHirschberg 20 August 200816:00 



240 8 Approximation methods 

8.2 Multiple scales 

Introduction 

By means of the method of multiple scales we will consider problems typically of 
waves propagating in a slowly varying but otherwise infinite medium (ray acous
tics), or waves propagating in a slowly varying duct. 

In both cases there is a small parameter in the problem which is the corner stone of 
the approximation. This small parameter is the ratio between a typical wave length 
and the length scale over which the medium or duct varies considerably (say, order 
1). 

Intuitively, it is clear that over a short distance (a few wave lengths) the wave only 
sees a constant medium or geometry, and will propagate approximately as in the 
constant case, but over larger distances it will somehow have to change its shape 
in accordance with its new environment. 

A technique, utilizing this difference between small scale and large scale behaviour 
is the method of multiple scales ([141,10]). As with most approximation methods, 
this method has grown out of practice, and works well for certain types of prob
lems. Typically, the multiple scale method is applicable to problems with on the 
one hand a certain global quantity (energy, power) which is conserved or almost 
conserved and controls the amplitude, and on the other hand two rapidly interacting 
quantities (kinetic and potential energy) controlling the phase. 

An illustrative example 

We will illustrate the method by considering a damped harmonic oscillator 

(0) = 0 dy(O) = 1 
y 'dt (8.10) 

with 0 < 8 « 1. The exact solution is readily found to be 

(8.11) 

A naive approximation for small 8 and fixed t would give 

yet) = sint - 8tsint + 0(82) (8.12) 

which appears to be not a good approximation for large t for the following reasons: 
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1) if t 0(8-1) the second term is of equal importance as the first term and 
nothing is left over of the slow exponential decay; 

2) if t = 0(8-2) the phase has an error of 0(1) giving an approximation of which 
even the sign may be in error. 

In the following we shall demonstrate that this type of error occurs also if we con
struct a straightforward approximate solution directly from equation (8.10). How
ever, knowing the character of the error, we may then try to avoid them. Suppose 
we can expand 

Substitute in (8.10) and collect equal powers of 8: 

then 

d2
yO 

0(8°): - + Yo = 0 
dt 2 

dyo(O) __ 1, 
with Yo(O) = 0, dt 

1 d2Yl dyo dYl (0) = 0, 
O(c ): - + Yl = -2- with Yl(O) = 0, dt 

dt2 dt 

yo(t) = sint, Yl (t) = -t sin t, etc. 

(8.13) 

Indeed, the straightforward, Poincare type, expansion (8.13) that is generated 
breaks down for large t, when 8t ::: 0(1). As is seen from the structure of the 
equations for Yn, the quantity Yn is excited (by the "source"-terms -2dYn_tldt) 
in its eigenfrequency, resulting in resonance. The algebraically growing terms of 
the type tn sin t and t n cos t that are generated are called in this context: secular1 

terms. 

Apart from being of limited validity, the expansion reveals nothing of the real struc
ture of the solution: a slowly decaying amplitude and a frequency slightly different 
from 1. For certain classes of problems it is therefore advantageous to incorporate 
this structure explicitly in the approximation. 

Introduce the slow time scale 

T =ct (8.14) 

and identify the solution Y with a suitably chosen other function Y that depends on 
both variables t and T: 

yet; s) Yet, T; B). (8.15) 

1 From astronomical applications where these terms occurred for the first time in this type of 
perturbation series: secular = occurring once in a century; saeculum = generation. 
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The underlying idea is the following. There are, of course, infinitely many func
tions Yet, T; e) that are equal to yet, e) along the line T = 8t in (t, T)-space. 
So we have now some freedom to prescribe additional conditions. With the un
welcome appearance of secular terms in mind it is natural to think of conditions. 
chosen such that no secular terms occur when we construct an approximation. 

Since the time derivatives of y tum into partial derivatives of Y 

ay ay dy 

dt 
+8-at aT' 

equation (8.10) becomes for Y 

a
2
y (ay a2 y ) (a 2y ay) -+Y+2e -+- +e2 -+2- -0 at2 at ataT fJT2 aT - . 

Assume the expansion 

Yet, T; e) = Yo(t, T) + eYI(t, T) + 8
2Y2(t, T) + ... 

and substitute this into equation (8.17) to obtain to leading orders 

a2yo 
+ Yo =0, 

with initial conditions 

Yo(O,O) 0, 

YI(O,O) 0, 

a 
-Yo(O,O) = 1, at 
a a 

- YI (0,0) = - Yo (0, 0). 
ot aT 

The solution for Yo is easily found to be 

Yo(t, T) Ao(T) sint with Ao(O) = 1, 

which gives a right-hand side for the Y1-equation of 

( 
oAo 

-2 Ao + aT cos t. 

(8.16) 

(8.17) 

(8.18) 

(8.19) 

No secular terms occur (no resonance between Y1 and Yo) if this term vanishes: 

A aAo 
0+ aT (8.20) 
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Note (this is typical), that we determine Yo fully only on the level of Y1, however, 
without having to solve Y1 itself. 

The present approach is by and large the mUltiple scale technique in its simplest 
form. Variations on this theme are sometimes necessary. For example, we have not 
completely got rid of secular terms. On a longer time scale (t = 0(8-2» we have 
in Y2 again resonance because of the "source": e-T sint, yielding terms 0(82t). 

We see that a second time scale T2 = e2t is necessary. 

Sometimes, the occurrence of higher order time scales is really an artefact of the 
fast variable being slowly varying due to external effects, like a slowly varying 
problem parameter. In this case the fast variable is to be strained locally by a suit
able strain function in the following way 

1 jet t = 8 w(r; e) dr. (8.21) 

(The need for the lie-factor is immediately clear if we observe that i = 8-1w8t = 
wt for a constant w = 0(1).) For linear wave-type problems we may anticipate the 
structure of the solution and assume the WKB hypothesis (see [10, 70]) 

yet; e) ACT; 8)eir1f[w(r;E)dT. (8.22) 

We have 

oy ( OA) . -lfT d = iwA+e- e1E JOW r 
ot aT 

a2y ( oA ow a2A) . -1fT - = -w2A +2iew- +ie-A +82 _ es 
JOUld'!" 

ot2 aT aT aT2 

so that substitution in (8.10) and suppressing the exponential factor yields 

(1_w2)A+i8(2w°
A + aw A+2wA) +e2(a

2

A2 +2
aA

) =0. 
aT aT aT aT 

Note that the secular terms are now not explicitly suppressed. Tbe necessary ad
ditional condition is here that the solution of the present type exists (assumption 
8.22), and that each higher order correction is no more secular than its predecessor. 
With some luck and ingenuity this is just sufficient to determine A and w. In gen
eral, this is indeed not completely straightforward. So much freedom may be left 
that ambiguities can result. 

Finally, the solution is found as the following expansion 

A(T; e) = Ao(T) + eAl (T) + e2 A2(T) + ... 
weT; e) = wo(T) + e2w2(T) + ., .. 

(8.23) 
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Note that WI may be set to zero since the factor exp(i f: WI (r) dr) may be incor
porated in A. Substitute and collect equal powers of 8: 

---+ Wo = 1, 

The solution that emerges is indeed consistent with the exact solution. 

8.3 Helmholtz resonator with non-linear dissipation 

An interesting application of the multiple scale technique is the Helmholtz res
onator, as discussed before (5.34), but now without linearization (section 5.2.4). In 
this way we will be able to investigate the small non-linear terms that will be seen 
to represent a small damping. 

First we have to describe the model in a bit more detail. The oscillating internal 
pressure sucks and blows the flow inward and outward through the exit, with a jet 
formed respectively inside and outside the resonator. For a low enough frequency 
the flow may be considered quasi-stationary, except in the transitional phase (which 
we will ignore) when the flow turns its direction and the jet isn't fully developed 
yet. Two points inside and outside may now be connected by Bernoulli's equation 

(5.34) 

If the exit is small enough compared to the volume V, and the volume is small com
pared to a typical wave length (i.e. compact), the internal density Pin is practically 
uniform, and therefore related to the neck flow velocity Un by 

dPin 
V Tt = -POunSn. (5.41) 

When the internal pressure is high and the flow is blown outward, we may neglect 
the internal velocity Uin. Furthermore, the neck velocity Un is effectively equivalent 
to the outside velocity uex . On the other hand, when the internal pressure is low, the 
velocity Uex outside the resonator may now be neglected, while at the same time 
the neck velocity is equivalent to Uin. 
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For simplicity we assume the effect of in- and outflow to be symmetric, and we 
introduce a length e, equal to the neck length plus any necessary end correction, 
that relates the potential difference to the neck velocity: 

l
ex 

({Jex - ({Jin = . u·dx = eun • 
m 

Following the same lines as for equation (5.43), we arrive at 

tV d
2 

Pin V
2 

dPin 1 dpin 1 

Snc5 dt2 + 2pocriS; dt dt + Pin = Pex· 
(8.24) 

As we will only consider the response to a stepwise change of external pressure, 
we will assume Pex = 0, and prescribe a (small) Pin at t=O. 

For a proper analysis it is most clarifying to rewrite the equation into non-dimen
sional variables. For this we need an inherent timescale and pressure. For vanishing 
amplitudes the equation describes a harmonic oscillator, so its period (C5Sn/lV)1/2 
is the obvious timescale of the nonlinear problem. By dividing the damping term by 
the acceleration term we find the pressure leve12poc5CSni V at which the damping 
would be just as large as the other terms. So for a pressure that is a small fraction of 
this level we have a problem with only little damping. So we make dimensionless 

I 

t = (~V )2 r, 
coSn 

where 0 < 13: « 1, (8.25) 

to obtain 

d
2
y dy IdY I 

dr2 + 13: dr dr + Y = 0, 
. dy(O) 

WIth yeO) = 1, ~ = O. (8.26) 

By comparing the acceleration y" with the damping By'ly'l it may be inferred that 
on a timescale er the influence of the damping is 0(1). So we conjecture a slow 
timescale 8i, and split up the time dependence in two by introducing the slow 
timescale T and the dependent variable Y 

T =13:i, y(r; B) = Yet, T; 13:), 
dy ay ay 
-=-+13:-, 
dr ar aT 

and obtain for equation (8.26) 

a2y (a2 y ay I ay I) 
-2 + Y + 13: 2- + - + 0(13:2

) = 0 ar arT ar ar: 
(8.27) 

YeO, 0; 13:) = 0, (~+ B~)Y(O, 0; e) = o. ar aT 
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The error of 0(82
) results from the approximation :r Y + 8 iJ~ Y ::::: :r Y, and is of 

course only valid outside a small neighbourhood of the points where :r Y = O. We 
expand 

y(t, T; 8) = Yo(t, T) + 8Y1 (t, T) + 0(82
) 

and find for the leading order 

a2yo 
ar2 + Yo = 0, with Yo(O, 0) 

a 
1, -Yo(O,O) = 0 

ar 
with solution 

Yo = Ao(T) cos(r eo(T», where Ao(O) = 1, eo(O) = o. 
For the first order we have the equation 

a
2
Y1 + Y

I 
= -2 a2yo _ avo I avo I 

ar2 arT or ar 

dAo . deo 
= 2 dT sm(r eo) Ao dT cos(r - eo) 

+ A5 siner - eo)1 siner - eo)1 

(8.28) 

(8.29) 

with corresponding initial conditions. The secular terms are suppressed if the first 
harmonics of the right-hand side cancel. For this we use the Fourier series expan
sion (section C.3) 

.. 8 ~ sin(2n + l)r 
smr Ismrl = --~ 

11: n=O (2n - 1)(2n + 1)(2n + 3) 

and we obtain the equations 

dAo 8 2 

2 dT + 3nAo = 0 and 

with solution eo = 0 and 

1 
Ao(T) = 4' 

l+-T 311: 

All together we have finally: 

2fSn cos r 
Pin::::: 28POCO- 4 ' 

V 1 + 311:8r 

deo 
-=0 
dT 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

This approximation happens to be quite good. Comparison with a numerically ob
tained "exact" solution shows a relative error in the amplitude of less then 2 . 1 0~4 
for 8 = 0.1. 
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8.4 Slowly varying ducts 

Consider a hard-walled circular cylindrical duct with a slowly varying diameter 
(c.j [177, 175,181,142,26,180,151]), described in polar coordinates (x, r, e) as 

r = a(Bx) (8.34) 

with e a dimensionless small parameter. In this duct we have an acoustic medium 
with constant mean pressure and a slowly varying sound speed Co = co(ex) (for 
simplicity no variation in r and () is assumed). Sound waves of circular frequency 
OJ are described by a variant of the Helmholtz equation 

(8.35) 

where k = k(ex) = OJ/co(ex), with boundary condition a vanishing normal veloc
ity component at the wall, so 

n·Vp = 0 at r = a(ex). (8.36) 

Since (section A,3) 

nO( v(r - a(BX») = er - ea'(ex)ex • 

(where a'(z) = da(z)/dz) this is 

op , op 
- - sa (ex) = 0 atr = a(ex). ar ax (8.37) 

We know that for constant a and constant k the general solution can be built up 
from modes of the following type (chapter 7) 

(8.38) 

and we assume for the present problem, following the previous section, that there 
are solutions close to these modes. We introduce the slow variable 

X =BX 
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so that k = k(X), and we seek a solution of slowly varying modal type: 

(8.39) 

Since 

we have for (8.35) after multiplication with k2: 

[ 

2 . aA . oy 
-y A - 21SY- - ls-A + ax ax 

1 ak ( . aA) -lyA+s-
kax ax 

a2A 1 aA m2 ?] +-+ -- - -A +k-A exp( ... ) = o. 
Br2 r ar r2 

After suppressing the exponential factor, this is up to order O(s) 

k2 B yA2 
L(A) = iSA ax (J22)' 
aA aa 
- +is-yA = 0 atr = a(X), 
ar ax 

where we introduced for short the Bessel-type operator (see Appendix D) 

a
2
A 1 aA (2 L(A)=-+--+ k 

ar2 r ar 

and rewrote the right-hand side in a fonn convenient later. Expand 

A(X, r; 8) = Ao(X, r) + eA1(X, r) + 0(e2
) 

y(X; s) = Yo(X) + 0(s2) 
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substitute in (8.40), and collect like 'powers of 8. 

0(1) : .l(Ao) 0 (8.41) 

aAo 
at r = a(X), -=0 

ar 

e a A2 
0(8) : .l(A ) = i ___ (YO 0) (8.42) 

1 Ao ax k2 

oA1 • aa 
at r = a(X). - =-l-YoAo 

or ax 
Since variable X plays no other rOle in (8.41) than that of a parameter, we have for 
Ao the "almost-mode" 

Ao(X, r) = PO(X)Jm(a(X)r), 

a(X) j~/L/a(X), (8.43) 

yt(X) = k2(X) a 2(X), Re(yo) 2: 0, Im(yo) :::s 0, 

The amplitude Po is still undetermined, and follows from a solvability condition for 
A 1. As before, amplitude Po is determined at the level of A 1. without A 1 necessarily 
being known. 

Multiply left- and right-hand side of (8.42) with r Ao/ k2 and integrate to r from 0 
to a(X). For the left-hand side we utilize the self-adjointness of .l. 

For the right-hand side we apply Leibnitz's rule 

i r 0 (YOA5)rdr =' ~ r rYoA5 dr _ . yoa oa A2 
10 ax k2 1 dX 10 k2 1 ax o· 
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As a result 

or: 

Po(X) 
k(X) k(X)a(X) 

const. r::::7V\ = const. 
a(X)v Yo(X) .jYo(X) 

(8.44) 

It is not accidental that the above integral f; (ryoA5! k2) dr is constant. The trans
mitted power of p is to leading order 

121r la 1i la 
;p = ! Re(pu*)r drdO = - Im(p :x p*)r dr 

00 Wpoo 

(8.45) 

This is for propagating modes (Yo real) constant: 

2 
(j)_ 1i 10121 2(1 m )1(")2 :J - -Yo ro '2 a - -:;z m lmlt 

wpo Jmlt 

Yo k
2 

2 1 
= const. -2-a = const. --2 constant 

Po a Yo PoCo 

since Poc~ is, apart from a factor, equal to the constant mean pressure. 

8.5 Reflection at an isolated turning point 

An important property of expression (8.44) for Po is that it becomes invalid when 
Yo = O. So when the medium and diameter vary in such a way that at some point 
X = Xo wave number Yo vanishes, the present method breaks down [178, 149, 
150]. In a small interval around Xo the mode does not vary slowly and locally a 
different approximation is necessary. 
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Xo 

I 
.. - +-----
~I 

Figure 8.1 Turning point XO, where a mode changes from cut-on to cut-off. 

When yJ' changes sign, and Yo changes from real into imaginary, the mode is split 
up into a cut-on reflected part and a cut-off transmitted part. If Xo is isolated, such 
that there are no interfering neighbouring points of vanishing Yo, it is clear that 
no power is transmitted beyond Xo (Re(yo) = 0 in (8.45», and the wave has to 
reflect at X o. Therefore, a point where wave number Yo vanishes is called a "turning 
point". 

Asymptotically, a turning point region is a boundary layer and the appropriate anal
ysis is that of matched asymptotic analysis (section 8.8), in the context of the WKB 
method (see [10, 70]). However, since the physics of the subject is most relevant in 
this section on slowly varying ducts, we will present the pertaining results here2• 

Assume at X = Xo a transition from cut-on to cut-off, so iJ~ yJ' < 0 or 

or a'(Xo) k'(Xo) > O. 

Consider an incident, reflected and transmitted wave of the type found above (equa
tions 8.39,8.43,8.44). So in X < Xo, where Yo is real positive, we have the incident 
and reflected waves 

( 0) - k(X)a(X) J ( (X) ) -im8 [ -ie-If; yo(X')dX' P x, r, - mar e e 0 

+ R eie-IfLro(X') dX'] (8.46) 

with reflection coefficient R to be determined. In X > Xo, where Yo is imaginary 

2 As is explained in section 8.8, the steps in the process of determining the boundary layer thick
ness and equations, and finally the matching, are very much coupled, and usually too lengthy to 
present in detail. Therefore, to keep the present example concise, we will present the results with a 
limited amount of explanation. 
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negative, we have the transmitted wave 

p(x, r, 0) = T
k(:!:/:/ Jm(a(X)r) e-im8 e-ie-lfffoyo(X')dXI . (8.47) 

Yo (X) 

with transmission coefficient T to be determined, while JYO ~ will 
be taken. 

This set of approximate solutions of equation (8.35), valid outside the turning point 
region, constitute the outer solution. Inside the turning point region this approxi
mation breaks down. The approximation is invalid here, because neglected terms of 
equation (8.35) are now dominant, and another approximate equation is to be used. 
This will give us the inner or boundary layer solution. To determine the unknown 
constants (here: R and T), inner and outer solution are asymptotically matched. 

For the matching it is necessary to determine the asymptotic behaviour of the outer 
solution in the limit X -+ Xo, and the boundary layer thickness (i.e. the appropriate 
local coordinate). 

From the limiting behaviour of the outer solution in the turning point region (see 
below), we can estimate the order of magnitude of the solution. From a balance of 
terms in the differential equation (8.35) it transpires that the turning point boundary 
layer is of thickness X Xo = 0(82/ 3 ), leading to a boundary layer variable S 
given by 

X = Xo + 8 2
/
31;. 

Since for 8 -+ 0 

Y5(X) = Y5(Xo + 8 2
/
3
/;) = -282/3ko(ab - kb)1; + 0(84/3/;2), 

where ko = k(Xo), kb k'(Xo), etc., we have 

1 (x Yo(X') dX' 
e lxo 

where we introduced 

The limiting behaviour for X t Xo is now given by 
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while it is for X + Xo given by 

1 . 
e4J!'1 koao 

p "-' T J (a r) e-ime e-~ 
{2eko(ab - k[) }1/6 1/4 mO' 

(S.49) 

Since the boundary layer is relatively thin, also compared to the radial coordinate, 
the behaviour of the incident mode remains rather unaffected in radial direction, 
and we can assume in the turning point region 

p(x, r, e) Jm(a(X)r)l/!(~)e-ime. 

From the properties of the Bessel equation (D.I), we have 

a2 p I ap 1 a2 p 2 2 2/3 
ar2 +; ar + r2 ae2 +k p = YoP = O(e )p. 

Hence, equation (S.35) yields 

ev. (~vp) + k2p ~ 82/3a2p + y?p = 
k2 a~2 0 

e2/3 Jm(a(X)r) e-im!:i {~~~ - 2ko(ab - kb)~l/!} = 0 

which is, written in variable ~, equivalent to Airy's equation (D.79) 

a2l/! _ 
a~2 -~l/! O. 

This has the general solution (see figure S.2) 

l/!(~) = aAi(~) + bBi(~), 
where a and b, parallel with R and T, are now determined from matching. Using 
the asymptotic expressions (D.SO,D.S1) for Airy functions, we find that for ~ large 
with 1 « ~ « 8-2/ 3, equation (S.49) matches the inner solution if 

Since es -+ 00, we can only have b 0, and thus 

2.J"ii Tko ao eirri 
a=------

{2sko(ab - kbW/6 ' 

Riell8traHirschberg 20 August 2008 16:00 



254 8 Approximation methods 

2.5 .-------.------,--.----.--,---rr------, 
2 .. 

1.5 

1 

0.5 

a 

Figure 8.2 Airy functions 

Ai(x) 

024 

If is large with 1 « -~ « 8-2/ 3 we use the asymptotic expression (D.80), and 
find that equation (8.48) matches the inner solution if 

or 

So, finally, we have 

T = 1, R =i. (8.50) 

8.6 Ray acoustics in temperature gradient 

When a sound wave propagates in free space through a medium that varies on a 
much larger scale than the typical wave length (typically: temperature gradients, or 
wind with shear), the same ideas of multiple scales may be applied. In contrast to 
the duct, where the wave is confined by the duct walls, the waves may now freely 
refract and follow curved paths. These paths are called rays. This means that rays 
are not localized "beams" of sound, but only the tangents of the intensity vectors 
of a sound field. 

Consider an infinite 3D medium with varying temperature (typical length scale L) 
but otherwise with a constant mean pressure, so that we have again equation (8.35), 
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but now k varying more generally3 : 

\I. (;2 \I p ) + p = 0 

w 
k=k(ex) =--

Co (eX) 

(8.51) 

(8.52) 

for a time harmonic sound field p ex eiwt . The small parameter 8 relates the typical 
wave length A""'" 2TCcolw to L, so 8 rv AIL. Assuming the field to be locally plane 
we try an approximate solution having the form of a plane wave but with slowly 
varying (real) amplitude A == A(X; 8) and phase r = reX; 8) 

p(X) = Ae-ilt)'r/e (8.53) 

where X = ex the slow variable. The surfaces 

reX) = 8t (8.54) 

describe the propagating wave front. Note that the vector field \Iris normal to the 
surfaces r = constant (section A.3). Define the operator 

- (0 a a) 
\I = ax' ay' az 

so that \I = 8\1. Substitute (8.53) in (8.51): 

\I p = (8\1 A - iwA \lr) e-iwr;/s, (8.S5a) 

\12 P = (82\1
2 
A - 2iew\l A· \lr - iewA \1

2 
r - w2 AI\lrf) e-i(tJr/s, 

(8.55b) 

to obtain 

Expand 

A(X; 8) = Ao(X) + eA1(X) + 0(82) 

reX; 8) = ro(X) + 0(82) 

3It should be noted that our point of view here is to think of the problem as a wave in a slowly 
varying medium, i.e. to consider L "large". Another, equally valid point of view is to think of a 
medium with a high frequency wave, i.e. to scale the problem on L and to consider the wave length 
"short" or the frequency "high". 

RienstraHirschberg 20 August 200816:00 



256 8 Approximation methods 

and collect like powers in (8.56). We find to leading order iO and Ao: 

(8.57) 

(8.58) 

Equation (8.57) is the eikonal equation, which determines the wave fronts and 
the ray paths. Equation (8.58) is called the transport equation and describes the 
conservation of wave action, which is here equivalent to conservation of energy 
[110, 222]. It relates the amplitude variation to diverging or converging rays. 

The eikonal equation is a nonlinear first order partial differential equation, of hy
perbolic type, which can always be reduced to an ordinary differential equation 
along characteristics [27]. This is summarized by the following theorem ([222, 
p.65]). 

Theorem 8.1 (General solution of 1st order PDE) 
The solution of the first-order partial differential equation 

H(q, i, x) = 0, q = Vi, 

with consistent boundary conditions on a surface S, is given by the system of ordi
nary differential equations4 

dX = V. H 
dA q, 

dq 

dA 

where the curve x = X (A), with parameter A, is called a characteristic. 

A characteristic forms a path along which the infoflnation of the boundary values 
on S is transferred to the point of observation. In general the characteristic de
pends on the solution, and both characteristic and solution are to be determined 
together. If more than one point of a characteristic is part of S, the boundary con
ditions are not independent, and in general inconsistent. If more than one charac
teristic passes through a point, the solution is not unique. 

Note that since A is only an auxiliary variable, other equivalent forms of the solu
tion q(x) exist. 

The characteristics are here identical to the rays. By rewriting equation (8.57) as 
~sc5lVrol2 - ~s = ° and using theorem (8.1) (p.256), the characteristic variable 
is just the time t, and we have the expected 

ro(X(t» = st 

4VqH denotes the gmdient in q: (~~); similar for VxH. 
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along a ray X = X(t} given by 

dX 2- Vio 
= sco Vio = SCO-=--. 

dt IViol 
(8.59) 

d Vco 
=-S-. 

dt Co 
(8.60) 

Equations (8.59) and (8.60) are called: the "ray-tracing equations". 

Once we know the rays, the transport equation (8.58) can be solved as follows. 
Consider a small area S1 of the surface iO = C1, and connect the points of Sl 

via the rays (following the vector field ViO) with the corresponding area S2 on the 
surface iO = C2. Then the volume of rays connecting S1 and S2 is called a ray-tube. 
Since Vio = 0 along its surface, except for S1 and S2 where it is just Vro = coIn, 
we have 

If we associate to a ray X(t) a ray-tube with cross section S = SeX), the amplitude 
varies according to the relation 

A5(X)co(X)S(X) = constant along a ray tube. (8.61) 

From equation (8.60) it can be inferred that a ray (with direction ViO) bends away 
from regions with higher sound speed. This explains why sound is carried far along 
a cold surface like water or snow, and not at all along for example hot sand. When 
the surface is cold there is a positive soundspeed gradient which causes the sound 
waves to bend downwards to the surface. In combination with reflection at the 
surface the sound is trapped and tunnels through the layer adjacent to the surface. 
When the surface is hot there is a negative soundspeed gradient which causes the 
sound to bend upwards and so to disappear into free space 5. 

We can make this more explicit when the sound speed varies in only one direction, 

SIn the north of Mexico, in Chihuahua, there is a desert area called "Zona del Silentio", a name 
that might well refer to this acoustic effect. 
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say Co co(Y). Then rays in the (X, Y)-plane satisfy 

d 2arO 

dt 
=sco-ax 

d 
dtY 

? aro 
=sco-ay 

~(arO) = 0 
dt ax 

d (arO) _ e dco dt a Y - - Co dY . 
Since we have from equation (8.62a-8.62c) and (8.57) 

dY 

dX 

oro/ay 

aro/ax' 

aro ax = constant, (
arO)2 (aro)2 = ~ 
ax + ay C6' 

it follows that the angle f3 with the vertical satisfies the relation 

1 

sinf3 = 1 ((dY)2 + 1)-2 = (ho(O) constant 
~ ~ dX ax 

(8.62a) 

(8.62b) 

(8.62c) 

(8.62d) 

(8.63) 

which is just Snell's law. Furthermore, if Co varies linearly, so that dco/dY is con
stant, then dX / dY can be integrated with respect to Y, with the result 

c6 + (~~ r (X - Xo)2 = C~oiO») -2 constant (8.64) 

which corresponds with a circle in the (x, y )-plane. So rays in a linear sound speed 
medium follow circular paths. 

8.7 Refraction in shear flow 

The propagation of sound waves in the atmosphere is greatly affected by wind. 
For example, the communication between two people, one downstream and one 
upstream, is not symmetric. The one upstream is easier to understand for the one 
downstream than the other way around. This is not because the wind "carries the 
waves faster", but it is due to refraction by the wind gradient (the atmospheric 
boundary layer). This is seen as follows ([110]). 
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~"" 
' ... .......... U(z) 

Figure 8.3 Refraction in shear flow. 

... -........... ---

Consider the acoustic wave equations (2.49a-2.49d) for sound in an arbitrary mean 
flow. We assume the sound field to be time harmonic with a frequency high enough 
to adopt a ray approximation. The small parameter is now again 8 rv co/wL, with 
L a typical length scale for variations in the mean flow velocity Vo. Similar to 
the foregoing chapter we introduce the compressed variable X = eX and the ray 
approximations 

p, p, v, s = P(X; e), R(X; 8), VeX; 8), sex; 8) x eiwt-iQn;(x;s)/e 

which are substituted in (2.49a-2.49d), to obtain to leading order 

Po V(l - VO' Vt) = PVt, R(1 Vo' Vt) = Po V· Vr, 

S(1-VO·Vt) =0, P(l - 2 -
Va' Vt) = coR(1- Vo' Vr). 

This yields S = 0, P = c5R and an eikonal equation for the phase function r: 

- 2 1 ( - )2 IVrl = 1- vo·Vr . (8.65) 

This equation is similar to equation (8.57). By rewriting equation (8.65) as 
!c5IVtI2/(1 VO' Vt) - t(1 - Vo' Vr) ° and using theorem (8.1) (p.256), 
the characteristic variable is just the time t, and we have 

reX) = 8t 

along the ray X = X(t), given by6 

dX Vr 
dt = 8Vo + 8Co IVtl' 

d- - - -
-Vt = -8Vvo·Vr -sIVrIVco. 
dt 

(8.66a) 

(8.66b) 
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For a simple parallel flow in x-direction, varying only in z (we return for simplicity 
to the uncompressed variable x): 

vo(x) = (Uo(z), 0, 0) 

this becomes 

d (or) d (or) 
dt ox = dt oy = 0, (8.67a) 

~(or) = _ dUo(z) (or). 
dt oz dz ox 

(8.67b) 

So, if we start with for example a vertical wave front r <X x, then a positive wind 
shear (dUo/dz > 0) will decrease the z-component or/oz. In other words, the 
rays will bend towards the low wind-speed regions. Propagating with the wind, the 
waves bend down and remain near the ground; against the wind they bend up and 
disappear in the free space. 

8.8 Matched asymptotic expansions 

Introduction 

Very often it happens that a simplifying limit applied to a more comprehensive 
model gives a correct approximation for the main part of the problem, but not 
everywhere: the limit is non-uniform. This non-uniformity may be in space, in 
time, or in any other variable. For the moment we think of non-uniformity in space. 
This non-uniformity may be a small region near a point, say x = 0, or it may be 
far away, i.e. for x ---+ 00, but this is of course still a small region near the origin of 
1/ x, so for the moment we think of a small region. 

If this region of non-uniformity is crucial for the problem, for example because 
it contains a boundary condition, or a source, we may not be able to utilize the 
pursued limit and have to deal with the full problem (at least locally). This, how
ever, is usually not true. The local nature of the non-uniformity itself gives often 
the possibility of another reduction. In such a case we call this a couple of limiting 
forms, "inner and outer problems", and are evidence of the fact that we have ap
parently physically two connected but different problems as far as the dominating 
mechanism is concerned. (Depending on the problem) we now have two simpler 
problems, serving as boundary conditions to each other via continuity or matching 
conditions. 
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Suppose we are interested in the solution of 

dy . 
8dx +Y=SlDX, y(O) = 1, x ~ 0 

for small positive 8, and suppose for the moment that we are not able to find an 
exact solution. It is natural to try to use the fact that 8 is small. For example, from 
the structure of the problem, where both the source and the boundary value are 
0(1), it is very likely to conclude that y = 0(1). If also the derivative y' is not 
very large (which is true for the most, but not, as we will see, everywhere), then a 
first approximation is clearly 

Yo "-' sinx. 

We could substitute this into the original equation, and find a correction 

Yl c:::= sinx - sy~ = sin x scosx. 

We can continue this indefinitely, and hope for a better and better approximation 
of the real solution. However, this can not be true: the approximate solution found 
this way is completely determined without integration constants, and we cannot 
apply anywhere the boundary condition y(O) = 1. In fact, the value at x = 0 that 
appears is something like -8 ... , and quite far away from 1. 

What's happening here? The cause of this all, is the fact that in the neighbourhood 
of x = 0, to be exact: for x = O(s), the solution changes its character over a 
very short distance (boundary layer), such that the derivative y' is now not 0(1), 
but very large: O(S~l). Since equation and solution are evidently closely related, 
also the equation becomes essentially different, and the above approximation of 
the equation is not valid anymore. 

The remedy to this problem is that we have to stretch the variables such that the 
order of magnitude of the solution is reflected in the rescaling. In general this is far 
from obvious, and certainly part of the problem. In the present example it goes as 
follows. We write x s~ and y(x) = Y(~), so that 

dY 
d~ + Y = sin(s~), YeO) = 1, 

Now we may construct another approximation, locally valid for ~ = 0(1) 

dYo 
-+f,0"'0 
~ , Yo(O) = 1, 
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with solution Yo(~) = e-li • We may continue to construct higher order correc
tions. Then we will see that for ~ large, respectively x small, this inner solution Yo 
smoothly changes into the above outer solution Yo (matching), and together they 
form a uniform approximation. 

General methodology 

In the following we will describe some of the mathematical methodology in more 
detail ([141, 10,44, 104, 34, 70, 101, 95]). We are interested in the limiting be
haviour for £ + 0 of a sufficiently smooth function <I> (x; £) with, say, O:::::x:::::l, 
0<£:::::£0. <I> has a regular asymptotic approximation on [0,1] if there exists a 
gauge-function Mo(£) and a shape-function <l>o(x) such that 

or: 

lim I <I> (x; s) - <1>0 (x) I = 0 uniform in x 
8-+0 Mo(£) 

<I>(x; £) = Mo(S)<I>o(x) + O(Mo) (£ -+ 0, uniform in x). 

A regular asymptotic series expansion, with gauge-functions MnCS) and shape
functions <l>n (x) is defined by induction, and we say 

N 

<I> (x; £) = L Mn(S)<I>n(x) + O(MN) (£ -+ 0, uniform in x). (8.68) 
n=O 

Note that neither gauge- nor shape-functions are unique. Furthermore, the series is 
only asymptotic in £ for fixed N. The limit N -+ 00 may be meaningless. 

The functions that concern us here do not have a regular asymptotic expansion on 
the whole interval [0, 1] but say, on any partial interval [A, 1], A> 0, A fixed. We 
call this expansion the outer-expansion, valid in the "x O(l)"-outer region. 

N 

<I> (x; £) = L Mn (s)fPn (x) + O(MN) £ -+ 0, x 0(1). (8.69) 
n=O 

The functions do not have a regular expansion on the whole interval because the 
limit s -+ 0, x -+ 0 is non-uniform and may not be exchanged. There is a gauge
function 8(£), with lim 8(£) = 0, such that in the stretched coordinate 

£-+0 
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the function \jI(~; s) = <p(a(s)~; 8) has a non-trivial regular asymptotic series 
expansion on any partial interval ~ E [0, A], A> 0, A fixed. The adjective non
trivial is essential: the expansion must be "significant", i.e. different from the 
outer-expansion in ({In rewritten in~. For the largest a(e) with this property we 
call the expansion for \jI the inner-expansion or boundary layer expansion, the 
region ~ = 0(1) or x = 0(8) being the boundary layer with thickness a, and ~ the 
boundary layer variable. A boundary layer may be nested and may contain more 
boundary layers. 

Suppose, q,(x; s) has an outer-expansion 

n 

q,(x; 8) = L ILk (8)({lk (X) + O(lLn) (8.70) 
k=O 

and a boundary layer x = 0(8) with inner-expansion 

m 

W(~; 8) = L Ak(S)lftk(~) + O(Am) (S.71) 
k=O 

and suppose that both expansions are complementary, i.e. there is no other bound
ary layer in between x = 0(1) and x = 0(8), then the "overlap-hypothesis" says 
that both expansions represent the same function in an intermediate region of 
overlap. This overlap region may be described by a stretched variable x == 11 (e)(1 , 
asymptotically in between 0(1) and 0(8), so: a«11« 1. In the overlap region both 
expansions match, which means that asymptotically both expansions are equiva
lent and reduce to the same expressions. A widely used and relatively simple pro
cedure is Van Dyke's matchings rule [209]: the outer-expansion, rewritten in the 
inner-variable, has a regular series expansion, which is equal to the regular asymp
totic expansion of the inner-expansion, rewritten in the outer-variable. Suppose 
that 

n m 

L ILk (8)CfJk (81;) = L Ak (e) 11k (I;) + O(Am) (S.72a) 
k=O k=O 
m n 

L Ak(S)lftk(xja) = LlLk(S)Ok(X) + O(lLn) (S.72b) 
k=O k=O 

then the expansion of 11k back to x 

n n 

L Ak(e)1]k(xj8) = LlLk(B)tk(X) +O(lLn) 
k=O k=O 
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is such that ~k = ek for k = 0, ... ,n. 

The idea of matching is very important because it allows one to move smoothly 
from one regime into the other. The method of constructing local, but matching, 
expansions is therefore called "Matched Asymptotic Expansions" (MAE). 

The most important application of this concept of inner- and outer-expansions is 
that approximate solutions of certain differential equations can be constructed for 
which the limit under a small parameter is apparently non-uniform. Typical ex
amples in acoustics are small Helmholtz number problems where long waves are 
scattered by small objects or are otherwise connected to a small geometrical size. 

The main lines of argument for constructing a MAE solution to a differential equa
tion + boundary conditions are as follows. Suppose <1> is given by the equation 

D(<1>', <1>, x; s) = ° + boundary conditions, (8.73) 

where <1>' = d<1>/dx. Then we try to construct an outer solution by looking for 
"non-trivial degenerations" of D under s -+ 0, that is, find fLoeS) and vo(s) such 
that 

(8.74) 

has a non-trivial solution <Po. A series <P = fLo<Po + fLl <PI + ... is constructed by 
repeating the process for D - VOl Do, etc. 

Suppose, the approximation is non-uniform (for example, not all boundary con
ditions can be satisfied), then we start looking for an inner-expansion if we have 
reasons to believe that the non-uniformity is of boundary-layer type. Presence, lo
cation and size of the boundary layer(s) are now found by the "correspondence 
principle", that is the (heuristic) idea that if <I> behaves somehow differently in the 
boundary layer, the defining equation must also be essentially different. Therefore, 
we search for "significant degenerations" or "distinguished limits" of D. These 
are degenerations of D under s -+ 0, with scaled x and <1>, that contain the most 
information, and without being contained in other, richer, degenerations. 

The next step is then to select from these distinguished limits the one(s) allowing a 
solution that matches with the outer solution and satisfies any applicable boundary 
condition. 
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Symbolically: 

find 

xo, 8 (.c:) , A (.c:) , K(.c:) 

with 

x = Xo + 8~, <I>(X; 8) = A(e)\}I(~; e) 

such that 

Ho(1/I~, 1/Io,~) = lim K- 1 D(o-l A\}I', A\}I, Xo + 8~;.c:) 
£...,.0 

has the "richest" structure, and there exists a solution of 

Ho( 1/1~, 1/10, ~) = 0 

satisfying boundary and matching conditions. Again, an asymptotic expansion may 
be constructed inductively, by repeating the argument. It is of practical importance 
to note that the order estimate A of <I> in the boundary layer is often determined a 
posteriori by boundary or matching conditions. 

Simple example 

A simple example to illustrate some of the main arguments is 

, d2cp dcp 
D(cp ,cp, x;.c:) = .c: dx

2 
+ dx - 2x = 0, cp(O) = cp(1) = 2. (8.75) 

The leading order outer-equation is evidently (with /-Lo = Vo = 1) 

Do 

with solution 

dcpo 

dx 

CPo = x 2 + A 

2x =0 

The integration constant A can be determined by the boundary condition CPo(O) = 2 
at x = 0 or CPo(1) = 2 at x = 1, but not both, so we expect a boundary layer at 
either end. By trial and error we find that no solution can be constructed if we 
assume a boundary layer at x = 1, so, inferring a boundary layer at x = 0, we 
have to use the boundary condition at x = 1 and find 

CPo = x 2 + 1 
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The structure of the equation suggests a correction of O(e), so we try the expansion 

2 ({J = ({Jo + e({Jl + e ({J2 + .... 

This results for ({Jl into the equation 

d({Jl d2({Jo 
dx + =0, 

which has the solution 

({Jl = 2 - lx. 

with ({Jl(1) 0 (the O(e)-term of the 
boundary condition), 

Higher orders are straightforward: 

d({Jn = 0, with ({In (1) = 0 
dx 

leading to solutions ({In == 0, and we find for the outer expansion 

({J = x2 + 1 + 2e(1 - x) + O(eN). (8.76) 

We continue with the inner expansion, and find with Xo 0, ({J = A 1/1 ,x = 8~ 

eA d21/1 A d1/l 
82 d~2 +"8 ~ - 28~ = O. 

Both from the matching «({Jouter -1> 1 for x ~ 0) and from the boundary condition 
«((J(O) = 2) we have to conclude that ({Jinner = 0(1) and so A = L Furthermore, 
the boundary layer has only a reason for existence if it comprises new effects, not 
described by the outer solution. From the correspondence principle we expect that 
new effects are only included if (d21/1/~2) is included. So 88-2 must be at least 
as large as 8-1, the largest of 8-1 and 8. From the principle that we look for the 
equation with the richest structure, it must be exactly as large, implying a boundary 
layer thickness 8 = 8. Thus we have K. = 8-1, and the inner equation 

d2,/, d'/' 
_'f' + _'f' _ 2s2~ = O. 
~2 ~ 

From this equation it would seem that we have a series expansion without the 0(8)
term, since the equation for this order would be the same as for the leading order. 
However, from matching with the outer solution: 

({Jouter -1> 1 + 28 + 82(~2 -~) +... (x = 8~, ~ = 0(1» 
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we see that an additional O(s)-tenn is to be included. So we substitute the series 
expansion: 

It is a simple matter to find 

d
2

1/1'0 d1/l'0 _ 0 
d~2 + d~ - , 

d
2

1/1'1 + d1/l'1 = 0 , 
~ 

d
2

1/1'2 d1/l'2 = "H: 
~ .<J<j, 

(8.77) 

1/1'0(0) = 2 -+ 1/1'0 = 2 + Ao(e~~ -1) 

where constants Ao, AI, A2, ... are to be detennined from the matching condition 
that outer expansion (8.76) for x ~ 0 : 

1 + x 2 + 28 - 2ex + ... 

must be functionally equal to inner expansion (8.77) for ~ ~ 00: 

2 Ao - SAl + x2 - 2sx - 8
2 A2 + .... 

A full matching is obtained if we choose: Ao = 1, Al = -2, A2 = O. 

It is important to note that a matching is possible at all! Only a part of the tenns 
can be matched by selection of the undetennined constants. For example, the co
efficients of the x and x 2 tenns are already equal, without free constants. This is 
an important consistency check on the found solution, at least as long as no real 
proof is available. If no matching appears to be possible, almost certainly one of the 
assumptions made with the construction of the solution have to be reconsidered. 
Particularly notorious are logarithmic singularities of the outer field, not uncom
mon in 2D acoustical radiation problems ([104]). Even for such a simple (looking) 
problem as that of a plane wave scattered by a static compact sphere a careful ap
proach is necessary to get the right results ([30]). On the other hand, only in rather 
rare cases, probably related to exceptional physical phenomena, no matching cou
ple of inner and outer solutions is possible at all. 

Summarizing: matching of inner- and outer expansion plays an important role in 
the following ways: 

i) it provides infonnation about the sequence of order (gauge) functions {Ilk} 
and {Ad of the expansions; 
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ii) it allows us to determine unknown constants of integration; 

iii) it provides a check on the consistency of the solution, giving us confidence 
in the correctness. 

8.9 Duct junction 

A very simple problem that can be solved with matched asymptotic expansions is 
the reflection and transmission of low-frequency sound waves through a junction 
of two ducts with different diameter. The problem will appear to be so simple 
that the apparatus of MAE could justifiably be considered as a bit of an overkill. 
However, the method is completely analogous in many other duct problems, allows 
any extension to higher orders, and is therefore a good illustration. 

Consider two straight hard walled ducts with cross section Al for x < 0, cross 
section A2 for x > 0, in some (here rather irrelevant) way joined together at x = 0 
(figure 8.4). Apart from a region near this junction, the ducts have a constant cross 

x=O 

Figure 8.4 Duct junction. 

section with a wall normal vector nwall independent of the axial position. 

A sound wave with potential i{Jin = eiwt-ikx is incident from x = -00. The wave
length is large compared to the duct diameter: 

kM =8« 1. (8.78) 

To avoid uninteresting complications, we assume that in terms of 8 the ratio All A2 
is not close to 1 or 0: Ad A2 0(1), Al A2 • Introduce dimensionless variables 
X := kx, y ;= y/.Jifi, z z/.Jifi. Then for a uniform acoustic medium we 
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have for a time harmonic scattered field cP 

2 a2cp 02cp a2cp 2 
e -+-+-+e cp=O ax2 oy2 az2 (S.79a) 

Vcp' nwall = 0 at the wall. (S.79b) 

In the outer region x = (X, y, z) = 0(1) we expand in powers of 8 (not 82 as will 
be clear in the end) 

(S.SO) 

and substitute in (S.79a) to find that all terms are function of the axial coordinate 
X only: 

0(1) 
a

2
cpo + a

2
cpo = 0 } 

ay2 az2 ~ 

VcpO·nwail = 0 

CPo = CPo(X), (S.Sla) 

O(e) 
a

2
cp} + a

2
cpl = 0 } 

oy2 az2 ~ CPt = CP1 (X), 

V CPl • nwall = 0 

(S.Slb) 

(S.Slc) 

def 
This last result is obtained from integration over a cross section A - {X 
constant} with surface IAI, and applying Gauss' theorem 

r (a 2cp2 a2
cp2 a2

cpo ) 
JA ay2 + az2 + ax2 + CPo ds 

= faA (Vcp2 'nwau) df + (~;~ +cpo)IAI o. 
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Evidently, this process can be continued and we obtain 

_ {e-
iX 

+Ro e
iX 

<Po - 'X Toe-I 

_ {Rn eiX 

<Pn - 'X 
T. -I 

n e 

(X < 0) 

(X> 0) 

(X < 0) 

(X> 0) 

(S.S2a) 

(S.S2b) 

(where n :::: 1). The region X 
introduce 

O(e) appears to be a boundary layer, and we 

x = Xis, 

<P = qJ(ex, y, Z; 8). 

The equation for <P becomes 

(S.83) 

V<P ·nwall = 0 at the wall. (S.84) 

but now with matching conditions for x -+ -00 and x -+ +00, i.e. X t 0 and 
X {. 0 of the outer solution (8.82a-S.82b): 

x -+ -00: <P rv 1 + Ro + e(Rt ix + ixRo} 
2(R . R I 2 t 2R) +s 2 + IX I i X - i X 0 + ... , 

X -+ +00: <P:::::: To + s(T} ixTo) + e2(T2 - ixTt ~x2To) + ... . 

Guided by the behaviour under matching we assume the expansion 

<P = <Po + 8<Pl + 82<P2 ... 1 

then 

0(1): V2<po = 0 --?> <Po = constant --?> 1 + Ro = To 

O(e): V2<PI = 0 --?> <PI = not necessarily constant. 

(S.85) 

In general, the solution <PI is difficult to obtain. However, if we are for the moment 
only interested in the global effects on reflection and transmission, we can again 
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make use of Gauss' theorem. Consider a large volume V, reaching from x = Xl 

large negative, to X = X2 large positive (large in variable x but small in variable X, 
so that we can use the matching conditions). At x = Xl the surface of V consists 
of a cross section AI. and at X = X2 a cross section A2. The size of V is denoted 
by WI, the sizes of Al and A2 by lAd and IA21. We integrate over this volume to 
obtain: 

so that: 

1 (S.S6) 

which, together with equation (S.85), determines Ro and To fully. We continue with 
the 0(82) term: 

0(82
): \12<P2 = -<Po. 

Again, to obtain <pz is difficult in a general situation, but if we follow the same 
arguments as for <1>1 we find 

-<poWI = 

-IAII(iRI - Xl - XIRO) 

+IAzl(-iTI - X2 TO) = -To(x2IA21 xiiAd + fit) 

where el denotes the difference, due to obvious details of the junction geometry, 
between I VI and the sum of the two duct parts x21A21 - xIIAII. The above identity 
results into 

(8.87) 

This process can be continued, at least formally. For each n-th step more and more 
information of solution <Pn-2 is needed. For example, the next step for <P3 gives a 
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relation for Rl and T}, and R2 and T2, in terms of the integral (check yourself!) 

(h = { <PI dx -1° (Rl - ix + iRox)dx - t2 (Tl - iTox) dx 
1v Xl 10 

Note that the corrections R} and Tl are imaginary and therefore appear as a phase 
shift in the reflected and transmitted (outer-) waves. So the reflection and transmis
sion amplitudes (i.e. absolute value) are given by Ro and To up to 0(82). 

8.10 Co-rotating line-vortices 

In an inviscid infinite 2D medium a stationary line vortex produces a time-indepen~ 
dent velocity and pressure field. Two of such vortices, however, move in each oth
ers velocity field. Two equally strong and equally orientated vortices rotate around 
a common centre, and produce a fluctuating velocity and pressure field (for a fixed 
observer). 

If the velocities are relatively low, this 
field will be practically incompressible. A 
small fraction of the energy, however, will 
radiate away as sound [132, 29]. 

For a physically consistent problem (it 
is not possible in an inviscid medium to 
change the total amount of circulation) 
we position at the common centre a third 
vortex with a double but opposite vortex 
strength. By symmetry this vortex will not 
move but of course will contribute to the 
rotating motion of the other two. 

Inviscid compressible irrotational flow 
depending on x r cos (), y = r sin e 
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and t is described by 

ap - + Vcp·V p + pV2cp = o. 
at ' 

Pv(~~ + ~lvcpI2) + V P = 0, 

p (P)Y 
po= Po' 

2 dp yp 
c =-=-, 

dp p 

(8.88a) 

(8.88b) 

(8.88c) 

with density p, pressure p, velocity potential cp, sound speed c and gas constant y. 
Introduce the auxiliary quantity (c.f. (1.31b» 

Q = acp + 11v 12 
at 2 cp (8.89) 

then 

(y - l)Q + c2 = c5 (constant) (8.90) 

where under the assumption that cp ~ 0 for r ~ 00 the constant Co is the far field 
sound speed. Hence 

and so 

aQ c2 ap 
-+--=0 at p at ' 

c2 

VQ + -Vp =0 
p 

(c5 (y ) 
2 aQ 

l)Q v cp = - + Vcp·VQ. at (8.91) 

We will consider two vortices with vortex strength - r, positioned opposite to 
each other on the circle r = a, and a vortex of strength 21 at the origin r = O. 
Their motion around each other will be incompressible as follows. Typical induced 
velocities are of the order of 1/ a, and we assume this to be small enough compared 
to the sound speed for locally incompressible flow: 

r 
6= «1. (8.92) 

aco 

Introduce dimensionless variables (where we keep for convenience the same nota
tion): 
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Equation (8.91) is then in dimensionless form 

(8.93) 

In the inner region r = 0(1), we have to leading order the Laplace equation for 
incompressible potential flow 

(8.94) 

with solution the sum7 of the contributions of the three co-rotating vortices 

<p = ~ arctan Y 
1l X 

1 Y - Y2(t) 
-arctan . 
21l x X2(t) 

(8.95) 

The position vector Xl (t) = (Xl (t), Yl (t» (and similarly X2(t» is determined by 
the observation that a vortex is just a property of the flow and therefore the velocity 
x I (t) must be equal to the induced velocity of the other vortices at x = x I : 

dx] 

dt 

dYI 
dt 

1 1 

21l (Xl - 1l 

1 Xl - X2 1 Xl - - + - --;;;---:: 
21l (Xl - X2)2 + (YI - Y2)2 1l 

(8.96a) 

(8.96b) 

From symmetry X2 = -Xl' Apart from an irrelevant phase shift the solution along 
the circle Ix I = 1 is given by 

Xl = cos(~wt), YI = sin(~wt), where w 

Solution (8.95) can now be written as 

1 1 (r2 sin 20 
<p = -0 - - arctan 

1l 21l r2 cos 20 
sinwt ). 
coswt 

3 
21l 

(8.97) 

(8.98) 

For matching with the outer field we need the behaviour of inner solution <p for 
r-+ 00: 

sin(wt - 20) 
<p ::::: 21lr2 + ... (r -+ (0). (8.99) 

7Equation (8.94) is linear. 
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For the outer region we first observe that the time scale is dictated by the source, 
so this is the same everywhere. Then, if we scale r = 8 (e)r, it follows from match
ing with equation (8.99) that cp = 0(82). A significant degeneration of (8.93) is 
obtained if 0 = e, when V2cp and (Pcp/at2 balance each other. Together we have: 

r = r/e 

cp = e2iP 

Q = 82(~~ + ~e4IviPI2) = 8
2 il 

which gives 

( 4-)-2 ail r --1-(y-I)8 Q v iP= at +8 ViP·VQ 

To leading order, iP satisfies the wave equation 

(8.IOOa) 

(8.IOOb) 

(8.IOOc) 

(8.101) 

(8.102) 

with outward radiation conditions for r ~ 00 (no source at infinity), and a condi
tion of matching with (8.99) for r -J" O. This matching condition says that, on the 
scale of the outer solution, the inner solution behaves like a harmonic point source 
ex e2iwt at r = 0, with properties to be determined. 

Relevant point source solutions are 

iP = Re{ AH~2)(wr) eiwt-in(J} (8.103) 

with H~2) a Hankel function (Appendix D), and order n and amplitude A to be 
determined. For matching it is necessary that the behaviour for r -J" 0 coincides 
with (8.99): 

2 {A (n I)! ( 2)n iwt-in9} sin(wt - 20) 
8 Re - - e rv -----

br wr 2:rrr2 
(8.104) 

(if n ::: I). Clearly, there is no other possibility than n = 2, and hence A = -4w2. 
Note that this order 2 indicates an acoustic field equivalent to that of a rotating 
lateral quadrupole. In dimensional variables the acoustic far field is given by 

r M3
/
2 

( a )1/2 ( ) cp :=. -2- :rrr cos Q(t - rIco) 20 +~:rr . (8.105) 
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where frequency Q and vortex Mach number M are given by 

wr 3r 
Q=-=--

a2 2rra2' 
M= Qa. 

2co 

We see that for fixed e the waves radiate outwards (r - cot constant), for fixed r 
the waves rotate with positive orientation (e - ~Qt constant), and at a fixed time 
t the wave crests are localized along spirals (r + 2eco/Q constant). This may be 
compared with a rotating lawn sprinkler. 

The outward radiating time-averaged energy flux or intensity is found from equa
tion (8.105) to be 

(8.106) 

This functional dependence on U7 in 2D is to be compared with the U8-law of 
Lighthill for turbulence noise (equation 6.69), and forms a confirmation of the 
estimates for turbulence in the Lighthill analogy. 

We have now obtained the solution to leading order. Higher orders may be con
structed in a similar fashion, but we will limit ourselves to the present one. For 
higher orders more and more equivalent far fields of higher order multipoles will 
appear. 

We finally note that from a simple calculation the outward radiated 2D power is 
equal to I96rr2poc6aM7. Strictly speaking, this amount of energy per time leaks 
away from the total energy of the system of vortices (which scales on por2), and 
we could try to include a small decay in time of the vortex strength r. This is, 
however, impossible in the present model. 

Exercises 

a) Determine (using Webster's horn equation) the right-running wave p(x), with 
p (0) = Po, in an exponential horn with radius a emx . 

b) In a hot desert, a man is giving a speech to an audience. The mouth of the man and 
the ears of the audience are at a height of y = h = 1.5 m above the flat ground, given 
by y = O. The ground is so hot compared to the air that a vertically stratified uniform 
temperature profile is established in the air. We assume for the region relevant here 
that this profile corresponds to a sound speed which is linear in y. The sound speed 
profile is given by: c(y) = co(l-ey), where co = 360 mls and e = 2~0 m- I . Since 
the sound speed gradient is negative the sound waves are refracted upwards and will 
disappear into the air. Under the assumptions that the man speaks loud enough, that 
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8.10 Co-rotating line-vortices 277 

a typical wave length is small enough for ray acoustics to be applicable, and that 
we only consider rays that skim along the ground, what is the largest distance over 
which the man can be heard? 

c) Determine the suitable modelling assumptions and derive from the wave equations 
(F.22) and (F.27) the following generalised Webster equations 

A-I ! (1 L c2 do- ~) + ai p = 0, (8.107) 

O. (8.108) 

RienstraHirscbberg 20 August 200816:00 



9 Effects of flow and motion 

Being a fluid mechanical phenomenon itself, an acoustic wave may be greatly af
fected by mean flow effects like convection, refraction in shear, coupling with vor
ticity, scattering by turbulence, and many others. We will briefly consider here 
some of these effects. 

9.1 Uniform mean flow, plane waves and edge diffraction 

Consider a uniform mean flow in x direction with small irrotational perturbations. 
We have then for potential cp, pressure p, density P and velocity v the problem 
given by 

a2cp a2cp a2cp 1 a a 2 
ax2 + ay2 + az2 - C5 (at + Uo ax) cp = 0, 

p = -po(~ + Uo~)cp, P = c5P, v = Vcp at ax 

(9.1) 

where Uo, Po and Co denote the mean flow velocity, density and sound speed, re
spectively. We assume in the following that I Uo I < Co. The equation for cp is known 
as the convected wave equation. 

9.1.1 Lorentz or Prandtl-Glauert transformation 

By the following transformation (in aerodynamic context named after Prandtl and 
Glauert, but qua form originally due to Lorentz) 

x x=-f3' 
M 

T = f3t + -X, 
Co 

Uo 
M=-, 

Co 
(9.2) 

the convected wave equation may be associated to a stationary problem with solu
tion cp(x, y, Z, t) = 1{f(X, y, z, T) satisfying 

PO( a a ) p = -- - + Uo- 1{f. (9.3) 
f3 aT ax 
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For a time harmonic field eiwt if>(x, y, z) = eiQT 1/I(X, y, z) or if>(x, y, z) -
eiKMX 1/1 (X, y, z), where Q = w/ fJ, k = OJ/co and K = k/ fJ, we have 

(}2,lr (}2,lr (}2,lr 
_'I' + _'I' + 'I' + K21/1 = O. 
aX2 oy2 

(9.4) 

The pressure may be obtained from 1/1, but since p satisfies the convected wave 
equation too, we may also associate the pressure field directly by the same trans
formation with a corresponding stationary pressure field. The results are not equiv
alent, however, and especially when the field contains singularities some care is in 
order. The pressure obtained directly is no more singular than the pressure of the 
stationary problem, but the pressure obtained via the potential is one order more 
singular due to the convected derivative. See the example below. 

9.1.2 Plane waves 

A plane wave (in x, y-plane) may be given by 

A.. ( • kX cos en + y sin On ) (. cos(e en») 
'l'i = exp -1 = exp -Ikr-----

1 + M cos en 1 + M cos en (9.5) 

where en is the direction of the normal to the phase plane and x = r cos e. y = 
r sin e. This is physically not the most natural form, however, because en is due to 
the mean flow not the direction of propagation. By comparison with a point source 
field far away, or from the intensity vector 

I = (Pov + pvo)(c5P/ Po + Vo' v) "" uP iJ: if> - ikMif»ex + ;yif>ey 

"" (M + cosen)ex + sineney 

we can learn that es , the direction of propagation (the direction of any shadows), is 
given by (see figure 9.1) 

M + cos en. sin en 
, sm es = (9.6) 

J 1 + 2M cos en + M2 J 1 + 2M cos en + M2 
coses 

By introducing the transformed angle E>s 

cos E>s = cos Os = M + cos en , 
J 1 - M2 sin2 es 1 + M cos en 

(9.7) 

. = fJ sin Os fJ sin en 
SIn Os = = -----J 1 - M2 sin2 es 1 + M cos en 

(9.8) 
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280 9 Effects of flow and motion 

and the transfonned polar coordinates X = R cos e, y = R sin e, we obtain the 
plane wave 

<Pi = exp(iKMX - iKRcos(e e s»). (9.9) 

9.1.3 Half-plane diffraction problem 

By using the foregoing transfonnatiou, we obtain from the classical Sommerfeld 
solution for the half-plane diffraction problem (see Jones [87]) of a plane wave 
(9.9), incident on a solid half plane along y = 0, x < 0, the following solution 
(see Rienstra [170]) 

<p(x, y) = exp(iKMX - iK R)(F(rs) + F(rs») (9.10) 

where 

ein/4 . 2 [00 . 2 
F(z) = -- e1Z e-1t dt. 

.;rr z 
(9.11) 

and 

(9.12) 

Figure 9.1 Sketch of scattered plane wave with mean flow 

An interesting feature of this solution is the following. When we derive the corre
sponding pressure 

p(x, y) = exp(iKMX - iKR)(F(rs) + F(r s») 
e-in

/ 4 M cos 1e ( 2 )1/2 +__ 2 S exp(iKMX-iKR)sin1e _ ,(9.13) .;rr 1 - M cos es 2 K R 
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we see immediately that the first part is just a multiple of the solution of the poten
tial, so the second part has to be a solution too. Furthermore, the first part is regular 
like <p, while this second part is singular at the scattering edge. As the second part 
decays for any R -+ 00, it does not describe the incident plane wave, so it may be 
dropped if we do not accept the singularity in p at the edge. By considering this 
solution 

sin Ie 
Pv(x,y) =exp(iKMX -iKR) ~, 

vKR 
(9.14) 

a bit deeper, it transpires that this solution has no continuous potential that decays 
to zero for large Iy I. This solution corresponds to the field of vorticity (in the form 
of a vortex sheet) that is being shed from the edge. This may be more clear if 
we contruct the potential for potential <Pv for large x, to be compared with (3.53), 
which is 

. ) ((1) .(1») <Pv '" slgn(y exp --Iyl-l-x , 
. Uo Uo 

Pv '" O. (9.15) 

In conclusion: we obtain the continuous-potential, singular solution by transform
ing the no-flow solution in potential form, and the discontinuous-potential, regular 
solution from the no-flow solution in pressure form. The difference between both 
is the field of the shed vortex sheet. 

The assumption that just as much vorticity is shed that the pressure field is not 
singular anymore, is known as the unsteady Kutta condition. Physically, the amount 
of vortex shedding is controlled by the viscous boundary layer thickness compared 
to the acoustic wave length and the amplitude (and the Mach number for high 
speed flow). These effects are not included in the present acoustic model, therefore 
they have to be included by an additional edge condition, for example the Kulta 
condition. As vorticity can only be shed from a trailing edge, a regular solution is 
only possible if M > O. If M < 0 the edge is a leading edge and we have to leave 
the singular behaviour as it is. 

9.2 Moving point source and Doppler shift 

Consider a point (volume) source of strength Q(t) (the volume flux), moving sub
sonically along the path x = x s (t) in a uniform acoustic medium. The generated 
sound field is described by 

1 a2 
P 2 a { } -- - v P = Po- Q(t)8(R(t» 

c2 at2 at ' o 
R(t) = x (9.16) 
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282 9 Effects of flow and motion 

Using the free field Green's function (equation (6.37) or Appendix E) 

G(x, tly, r) = 2 1 8(t _ r _ Ix - YI), 
4ncolx - yl Co 

the solution for potential cp, with p = -pot,cp, is given by 

4ncp(x, t) = -100 

Q(r) 8(t _ r _ R(r)) dr, 
-00 R(r) Co 

R= IRI. (9.17) 

Using the 8-function integral (C.29) 

100 " g(ri) 
8(h(r))g(r) dr = ~ , ' 

-00 . Ih (ri)1 
I 

h(rJ = 0 (C.29) 

this representation is very elegantly I [42] reduced to the Lienard-Wiechert poten
tial ([89, p.127]) 

4ncp(x, t) = _ Qe , 
Re(l - Me cos lJe) 

(9.18) 

where the subscript e denotes evaluation at time te, given by the equation 

(9.19) 

Absolute values are suppressed because we assumed IMel < 1. Restriction (9.19) 
is entirely natural and to be expected. If we trace the observed acoustic perturbation 
back to its origin, we will find2 it to be created at time te by the source at position 
xs(te) and strength Q(te). Therefore, te is usually called emission time, or retarded 
time. It is important to note that by its implicit definition (9.19), te is a function of 
both t and x. 

Other convenient notations used here and below are 

M = x~/co, M = IMI, RM cos lJ = R·M, 

where M and M are, respectively, the scalar and vectorial Mach number of the 
source, while lJ is the angle between the source velocity vector and the observer's 

ITo appreciate the elegance the reader might compare it with the more traditional derivation as 
found in [131, p.721] for the less general problem of a point source moving with constant speed 
along a straight line. 

2 A generalization to supersonic motion of the source involves in general a summation, according 
to (C.29), over more than one solution of equation (9.19). 
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position, seen from the source. The combination M cos iJ is often also denoted by 

Mr· 

By applying the chain rule to equation (9.19) we obtain the identities 

ate 1 aRe coMecosiJe 
= -=-

at Me cos iJe ' at 1 - Me cos iJe ' 

a ) Re·M~ coM; 
(ReMe cos iJe = ----'----"------'-:::... at 1 - Me cos iJe 

After differentiation of equation (9.18) with respect to time, we finally have 

PoQ~ Re' M: + coMe (cos iJe - Me) 
4rrp(x,t) = Re(I-MecosiJe)2+PoQe R;(1-Mecos iJe)3 . 

(9.20) 

The O(R;l)_part dominates the far field, while the O(R;2)_part dominates the 
near field [112]. A typical effect of motion is that both the pressure and the poten
tial fields are increased by the "Doppler factor" (1 Me cos iJe)-l, but not with the 

same power. Furthermore, more Doppler factors appear for higher order multipole 
sources. (See Crighton [30].) 

The name "Doppler factor" is due to its appearance in the well-known frequency 
shift of moving harmonic sources. Assume 

Q(t) = Qo eiwot 

with frequency (iJo so high that we can define an instantaneous frequency (iJ for an 
observer of (9.20) at position x: 

d (iJO 
(iJ(t) = -(Wote) = (9.21) 

dt 1 - Me cos iJe 

This describes the Doppler shift of frequency wo due to motion. Expression (9.20) 
is quite general. The more common forms are for a straight source path with con
stant velocity xs(t) = (Vt, 0, 0) in which case Me is constant and x; = O. 

Analogous to the above point volume source, or monopole, we can deduce the 
field of a moving point force, or dipole. For this we returu to the original linearized 
gas dynamics equations in p, v, and p with external force F(t)8(x - xs(t», and 
eliminate p and v to obtain: 

(9.22) 
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Following the same lines as in the monopole problem we have the solution 

(9.23) 

Here we see that a rotating force is not the same as a rotating V· F -field, since 
te = te(x, t). By application of the chain rule to equation (9.19) we derive: 

so that we have the general expression for a moving point force: 

The O(R;l)_part dominates the far field, while the O(R;2)_part dominates the 
near field [112]. 

It should be noted that the above distinction between a point source Q and a point 
force F is rather idealized. In any real situation Q and F are coupled, since in 
general a real mass source also produces a momentum change (see [42]). 

9.3 Rotating monopole and dipole with moving observer 

An application of the previous section is a model for (subsonic) propeller noise, 
due to Succi and Farassat [51,202]. 

Two main sources of sound may be associated to a moving propeller blade: the dis
placement of fluid by the moving body leading to thickness noise, and the moving 
lift force distribution leading to loading noise. See the next section 9.4, equation 
(9.28). A description of the loading noise is obtained by representing the propeller 
blade force by an equivalent distribution of point forces F j, followed by a summa
tion over j of the respective sound fields given by equation (9.24). 

The thickness noise is a bit more involved. It can be shown (equation 9.32) that 
a compact moving body of fixed volume V generates a sound field, due to its 
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displacement of fluid, given by the time derivative of equation (9.16) while Q = V, 
with solution the time derivative of equation (9.20). 

82 1 
4npth(x, t) Po V 8t2 Re(1 Me cos fJe) 

(Equivalent forms in terms of spatial derivatives are also possible; see for example 
[17,51].) By discretizing the propeller blade volume by an equivalent collection of 
volumes Vj , the thickness noise is found by a summation over j of the respective 
sound fields. 

The method is attractive in its relative simplicity, and easy programming. The for
mulas are laborious, however. Therefore, to illustrate the method, we will work out 
here the related problems of the far field of a subsonically rotating and translating 
monopole Q = qo and dipole 10. The position of the point source, rotating in the 

Figure 9.2 Trajectory of point, moving along helical path Xs (t). 

X, y-plane along a circle of radius a with frequency w, and translating along the 
z-axis with constant velocity U (figure 9.2), is given by 

xs(t) = (acoswt,asinwt, Ut). 

It is practically of most interest to consider an observer moving with the source, 
with forward speed U t. Therefore, we start with the field of the source, given in 
the stationary medium by equation (9.20), and substitute for position vector x the 
position of a co-moving observer X o = (xo, Yo, zo), given in spherical coordinates 
by 

xo(t) = (r cos ¢ sin fJ, r sin ¢ sin fJ, r cos fJ + U t). 
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With R~o) = xo(t) - xs(te) we obtain the relations 

R~o) . Me = MR r sin ff sin(</J - wte) + MF r sin ff + M~R~o), 

R~o). M: = coM~ (1 - ~ sin ff cos(</J - wte)) , 

M; = M~ + M~, where MR = walco, MF = Ulco. 

The "far field" denotes the asymptotic behaviour for (air) -+ O. Since 

c5(t - te)2 = (R~o))2 
= r2 - 2ar sin ff cos(</J - wte) + a2 + 2Ur(t - te) cos ff + U 2(t - te)2 

and noting that asymptotically t - te = 0 (rico), we have for a I r -+ 0 

r a. ( k-) te = t - - + - sm ff cos </J - wt + r + ... 
Co Co 

where k = wlco and 

_ M F cos ff + ) 1 - M~ sin2 ff 
r = r 2' 

I-MF 

_ 1 
a =a . 

)1 - M~ sin2 ff 

With this we find: 

R~O) ~ r - a sin ff cos(</J - wt + kr) 

Me cos ffe ~ [(1 - M~ )MR sin ff sin(</J - wt + kr) + MF cos ff 

+M~)1 - M~ sin2 
ff J/[ MF cos ff +) 1 - M~ sin

2 
ff J 

Altogether in equation (9.20): 

Pocoqo (R~O) .M: 2) 
4np(x, t) = 2 3 + Me cos ffe - Me 

Re (1 - Me cos ffe) Co 

Pocoqo (1 - M~)2M~ sin ff cos(</J - wt + kr) 
----~--~~~====~~----~ 

ar (MF cosff + )1 - M~ sin2 ff r (1 - Me cos ffey 

(9.25) 

We do have a O(1lr) decay, and in spite of the dQ(t)/dt = 0, a nearly harmonic 
signal. Note the 2-lobe radiation pattern, i.e. 2 maxima perpendicular to the axis of 
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Figure 9.3 Time history of sound pressure generated by spiralling point source (left) and 
point force (right). 

rotation where sin (j 1, and minima in the direction of the axis where sin (j = O. 

The rotating point force will portray a very simple propeller model. We assume 
the propeller to be concentrated in one point (this is a plausible approximation for 
the lowest hannonics) by a point force equal to the blade thrust force (the pressure 
jump across the blade integrated over the blade), in a direction perpendicular to 
the blade. Furthermore, the blade surface will practically coincide with the screw 
plane described by the effective velocity field V = Uex - mae(j. 

So we have a force 

F(t) = 10 (U sin mt, -U cos mt, ma) 
JU2 + (ma)2 

(9.26) 

In figure 9.3 plots are made of the time history of the sound pressure generated by 
the above point source and point force, for the following parameters: U = 145 mis, 
Co = 316 mis, a 1.28 m, m = 17· 2rr Is, 10 = 700 N, Po = 1.2 kglm3, qo = 
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1.8 m3/s, for an observer moving with and in the plane of the source at a distance 
Xo = 2.5 m. No far-field approximation is made. 

9.4 Ffowcs Williams & Hawkings equation for moving 
bodies 

Curle (6.85) showed that the effect of a rigid body can be incorporated in the aero
acoustical analogy of Lighthill as additional source and force terms Qm and F. 
This approach has been generalized by Ffowcs Williams and Hawkings who de
rived [55] a very general formulation valid for any moving body, enclosed by a 
surface -8(t). Their derivation by means of generalized functions (surface distribu
tions, section C.2.8) is an example of elegance and efficiency. Although originally 
meant to include the effect of moving closed surfaces into Lighthill's theory for 
aerodynamic sound, it is now a widely used starting point for theories of noise 
generation by moving bodies like propellers, even when turbulence noise is of lit
tle or no importance. 

There is no unique relation between a source and its sound field, because a given 
field can be created by infinitely many equivalent but different sources (section 
2.6.1). Therefore, there is no unique way to describe the effect of a surface -8(t) 
in terms of an acoustic source distribution, and a simple and transparent choice is 
preferable. The choice put forward by Ffowcs Williams and Hawkings was both 
simple and transparent: just force any flow variable to vanish inside the enclosed 
volume. The resulting equations are automatically valid everywhere, and use can 
be made of the free field Green's function. 

Consider a finite volume V = Vet) with sufficiently smooth surface -8 = -8(t), 
moving continuously in space. Introduce a (smooth) function f(x, t) such that 

{ 

< 0 if x E Vet), 

f(x, t) = 0 if x E -8(t), 

> 0 if x ¢' Vet), 

but otherwise arbitrary. If we multiply any physical quantity by the Heaviside func
tion H (f) - such as pi H (f) - we obtain a new variable which vanishes identically 
within V because H (f) = 1 in the fluid, and H (f) = 0 inside V. Since V f I f =0 is 
directed normal outwards from V, the outward normal n of -8 is given by (section 
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A.3). 

Vf I 
n(x, t) = IV fl f:=O' 

Let the surface -Set) be parametrized in time and space, by coordinates3 (t; A, fJ,). 

A surface point xs(t) E -S (consider A and fJ, fixed), moving with velocity U = xs, 
remains at the surface for all time, so f(xs(t), t) = 0 for all t, and therefore 

of • 
at = - Xs -v f = -(U -n)IV fl· 

It is important to note that the normal velocity (U -n) is a property of the sur
face, and is independent of the choice of f or parametrization. We now start the 
derivation by mUltiplying the exact equations (1.1,1.2) of motion for the fluid by 
H(f): 

[a
p! ] 

H(f) a,+V,(pv) =0, 

H(f)[:t (pv) + V· (P + pvv) ] = 0, 

where p' = p - Po and Po is the mean level far away from the body. Although 
the original equations were only valid outside the body, the new equations are triv
ially satisfied inside 'V, and so they are valid everywhere. By reordering the terms, 
and using the identity fr H (j) = -U . V H (f), the equations can be rewritten as 
equations for the new variables p' H (f) and pv H (f) as follows. 

a I 
-[p H(j)] + V· [pvH(j)] = [PoU + p(v - U)]·V H(j), at 

a 
-[pvH(f)] + V·[(pvv + P)H(j)] = [pv(v - U) + P]-V H(f). at 

Using the same procedure (subtracting the time-derivative of the mass equation 
from the divergence of the momentum equation) as for Lighthill's analogy (2.63), 

3When ,&(t) is the surface of a solid and undeformable body, it is natural to assume a spatial 
parametrization which is materially attached to the surface. This is, however, not necessary. Like the 
auxiliary function f, this parametrization is not unique, but that will appear to be of no importance. 
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we find the Ffowcs Williams-Hawkings equations [55]: 

aZ 

atZ p' H (f) - c6Vz p' H (f) = 

V· [V. [ (p v v - T + (p' - c5 p') I) H (f) ] ] 

+ :J (p(V - U) + poU).V H(f)] 

- V·[(PV(V - U) + p'I - T) .VH(f)]. (9.27) 

The sources at the right hand side consist of the double divergence of the common 
quadrupole-type Lighthill stress tensor, and a time derivative and divergence of 
sources only present at the surface 1 = O. Of course, the right hand side contains 
all the unknowns, and in principle this equation (9.27) is not simpler to solve than 
the original Navier-Stokes equations. However, as with Lighthill's analogy, the 
source terms are of aerodynamic nature, and can be solved separately, without 
including the very small acoustic back-reaction. 

Very often, Lighthill's stress tensor PVV - T + (p' - C5P') I and the shear stresses 
at the surface are negligible. Moreover, if the surface -8 is solid such that V· n = 
U . n, and we change from density to pressure as our field variable, and define 
p' = p' H (f), we have a reduced form of the Ffowcs Williams-Hawkings equa
tion, which is widely used for subsonic propeller and fan noise (no shocks) [51] 

~ azzp' - VZp' = ~[poU ·nlV 118(f)J - V· [plnlV 118(f)J. (9.28) 
Co at at 

The first source term is of purely geometrical nature, and describes the noise gen
erated by the fluid displaced by the moving body. The associated field is called 
thickness noise. The second part depends on the normal surface stresses due to 
the pressure distribution, and describes the noise generated by the moving force 
distribution. The associated field is called loading or lift noise. 

If we know the pressure distribution along the surface, we can in principle solve 
this equation, in a way similar to the problem of the moving point source of section 
9.2. Let us consider first the following prototype problem 

1 aZ 

2zq; - VZq; = Q(x, t)IV 118(f). (9.29) 
Co at 

By using the free field Green's function we can write 

4rrq;(x,t) = I III Q(~r)8(t-T-R/co)IVfI8(f)dYdT' 
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where R = Ix - y(,r)l, the distance between observer's and source's position. 
Noting that I V f 16 (f) is just equivalent to the surface distribution of .& (t ) (equation 
C.39), we can integrate o(f) (equation C.38 or CAO) and write 

Iff Q(y,r) 
4ncp(x, t) = R o(t - r - Rico) dO" dr . 

.& (t) 

The integral over r can be evaluated by noting that any contributions come from 
the solution r = te of the emission-time equation (the zero of the argument of the 
remaining a-function), given by 

co(t - r) - R = 0, 

which describes (for given x, t) a surface in (y, r)-space, symbolically denoted by 
.&(te). Analogous to the point source field (9.18) we have then 

4ncp(x, t) = ff Qe 00. 
Re(l - Me cos Ue) 

(9.30) 

.&(te) 

As before, subscript e denotes evaluation at emission time te , and M cos U is the 
component of the vectorial Mach number of the source in the direction of the ob
server (in some literature also denoted by Mr). From this auxiliary solution we can 
now formulate a solution for p I as follows 

(9.31) 

Extreme care should be taken in interpreting this equation, because for any x and 
t the emission time te varies over the source region, while at the same time the 
source varies its position! Other forms of the solution are available which might be 
easier to handle in certain applications; see e.g. Farassat [50, 51]. 

It is therefore interesting to consider the compact limit, in which case the typical 
wave length is much longer than the body size. The emission time does not vary 
significantly over the source region, and Re and Me cos U e refer only to a single 
typical source coordinate x s, for example the centre of gravity. The source becomes 
equivalent to a point source (section 9.2,9.3). 
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A particularly interesting form (Farassat [51]) for the thickness noise component 
is found by writing the surface integral as a volume integral. Using 

a 
PoU ·nlY' fI8(f) = -Po(l - H(f», at 

and noting that the function 1 - H (f) equals unity inside the body V and zero 
elsewhere, we have for the thickness noise component of equation (9.31) 

Since the volume integral of the constant 1 is just V, the volume of V, and denoting 
the total force of the fluid on the body by 

F(t) = II p·nda, 

Set) 

we have the compact limit of equation (9.31) (see also section 9.3) 

Exercises 

a) Evaluate the expressions for the acoustic field of the propeller of equation 9.26 
without forward speed (U = 0) and find the approximation for the far field. What 
can you tell about the typical lobes in the radiation pattern? 

b) Evaluate the expressions for the acoustic field of a moving point volume source 
(9.20) and point force (9.24) for the windtunnel situation: a moving source Xs = 
Vt ex and a moving observe x = a + Vt ex. 
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A Integral laws and related results 

A.1 Reynolds' transport theorem 

Conservation laws such as mass conservation are understood most easily when 
they are applied to a volume V = Vet) (enclosed by the surface S = S(t» which 
is contained in the fluid. We call this a material volume. The concept arises when 
considering a fluid particle which is large in number of molecules, but small com
pared to the macroscopic scales in the problem. For a certain -diffusion controlled
period of time the particle keeps its identity, and can be labelled. 

For an arbitrary single-valued scalar function F = F(x;, t) (denoting any property 
of the fluid) with continuous derivatives the following integral relation holds: 

(A.I) 

This theorem, known as Reynolds' Transport Theorem (see equation C.4l), is used 
to translate integral conservation laws into differential conservation laws. 

A.2 Conservation laws 

The conservation laws (mass, momentum, energy) in integral form are more gen
eral than in differential form because they can be applied to flows with discontin
uous properties. We will give here a summary of the basic formulae. A detailed 
derivation may be found in [152] or [205]. 

Mass conservation (F = p): 

:t III pdx = O. (A. 2) 

V 
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Momentum conservation (F = PVi): 

(A3) 

Energy conservation (F = pee + ~v2), v2 = Vi Vi ): 

:t I I I pee + !v2
) dx 

V 

= III fiVi dx II Pijvjnidcr - II qini dcr. (A.4) 

V S S 
For an arbitrary control volume V*(t) with sulface S*(t), and where b is the local 
velocity of S*, Reynolds' theorem becomes: 

(A5) 

V* V* S* 

Applying (A2) and (A5) with F = p we find: 

:t III pdx = III ~ dx + II pbini dcr (A.6) 

V* V* S* 

III ~ dx = - II pVini dcr. (A7) 

S 

At a given instant V* coincides with a given material volume V, hence (A7) can 
be used to eliminate the first integral on the right-hand side of (A6) to obtain: 

(A 8) 

V* S* 

This can be applied to any volume V* and in particular to a fixed volume (bi = 0). 
In a similar way we have for the momentum: 

! I I I pVt dx + II PVj(Vj - bj)nj dcr 

V* S* 

(A 9) 
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and for the energy: 

(A.W) 

V* S* S* 

For the entropy s we further find: 

! III psdx + II pS(Vj b·)n·da + If 2- q.n .da > 0 I I T I I -
(A.ll) 

V* S* S* 

where the equality is valid when the processes in the flow are reversible. 

A.3 Normal vectors of level surfaces 

A convenient way to describe a smooth surface -8 is by means of a suitable smooth 
function Sex), where x = (x, y, z), chosen such that the level surface Sex) = 0 is 
just equivalent to -8. So Sex) = 0 if and only if x E -8. 

Consider a point x 0 and a neighbouring point Xo + h, both on the surface -8. Expand 
S(xo + h) into a Taylor series in h. We then obtain 

Since in the limit for Ihl ---+ 0 the vector VS(xo) is normal to the tangent vector 
h, it is normal to the surface -8. Furthermore, the unit normal vector ns = (at 
S = 0) is directed from the S < O-side to the S > O-side. 

If we expand Sex) near Xo E -8 we have Sex) = (x - xo)' V S(xo) + ... , so, 
near the surface, Sex) varies, to leading order, only in the coordinate normal to the 
surface. 
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B Order of magnitudes: 0 and o. 

In many cases it is necessary to indicate in a compact way the behaviour of some 
function J(x), of variable or parameter x, as x tends to some limit (finite or infi
nite). The usual way to do this is by comparing with a simpler function g(x). For 
this we have the order symbols 0 and o. When J is comparable with or dominated 
by g, we have 

Definition B.1 J(x) = O(g(x» as x -+ a 

means, that there is a constant C and an interval (a - h, a + h) 
suchthatJorallx E (a-h,a+h): IJ(x)l:::: Cig(x)l· 

When x + a the interval is one-sided: (a, a + h); similarly for x t a. For the 
behaviour at infinity we have 

Definition B.2 J(x) = O(g(x» as x -+ 00 

means, that there is a constant C and an interval (xo, 00) 

such thatJor all x E (xo, 00): IJ(x)l:::: Cig(x)l. 

Similarly for x -+ -00. When J is essentially smaller than g we have 

Definition B.3 J(x) = o(g(x» as x -+ a 

means, thatJor every positive 8 there is an interval (a - 1], a + 1]) 

such thatJor all x E (a - 1], a + 1]): IJ(x)l:::: 8Ig(x)l. 

with obvious generalizations to x + a, x -+ 00, etc. 

Theorem B.1 If lim J(x) exists, and is finite, then J(x) = O(g(x». 
g(x) 

. J(x) 
Theorem B.2 IJ hm -- = 0, then J(x) = o(g(x». 

g(x) 

Note that J = o(g) implies J = O(g), in which case the estimate O(g) is only an 
upper limit, and not as informative as the "sharp 0", defined by 

Definition B.4 J(x) = Os(g(x» means: J(x) = O(g(x» but J(x) =1= o(g(x). 



C Fourier transfornls and generalized 
functions 

C.l Fourier transforms 

The linearity of sound waves allows us to build up the acoustic field as a sum 
of simpler solutions of the wave equation. The most important example is the re
duction into time harmonic components, or Fourier analysis. This is attractive in 
several respects. Mathematically, because the equation simplifies greatly if the co
efficients in the wave equation are time-independent, and physically, because the 
Fourier spectrum represents the harmonic perception of sound. 

Consider a function pet) with the following (sufficient, not necessary) conditions 
[21, 88, 109, 153, 225]. 

- p is continuous, except for at most a finite number 
of discontinuities where pet) = 4[p(t + 0) + pet - 0)]. 

- Ip(t)1 and Ip(t) 12 are integrable. 

Then the Fourier transform pew) of pet) is defined as the complex function 

- pet) e-1wt dt, 1 100 

, 

27r -00 

(C.l) 

while according to Fourier's inversion theorem, pet) is equal to the inverse Fourier 
transform 

(C.2) 

The Fourier transform and its inverse are closely related. Apart from a sign change 
and a factor 27r, it is the same operation: Fp-l (t) = 27r :Ffi ( - t). It is important to 
note that slight differences with respect to the factor Ij27r, frequency w = 2rr f, 
and the sign of the phase iwt are common in the literature. Especially the prevailing 
e±iwt -convention should always be checked when referring or comparing to other 
work. 
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Some examples of Fourier transforms are: 

- H(t) e-at e-1wt dt = , 1 100 

. 1 
2n -00 2n (a + iw) 

(C.3a) 

_1_1 00 
H (t) e-at e-iwt dt = 1 , 

2n -00 Jt 2y'rr,J a + iw 
(C.3b) 

_1_1 00 _1_ e-iwt dt = ~ e-1wl 
2n -00 1 + t 2 2' 

(C.3c) 

1 100 
1 2' 1 1 2 

2n -00 e-
2t 

e-
1wt 

dt = ,J2ir e-
2w 

, (C.3d) 

where a > 0, the ordinary square root is taken, and H (t) denotes Heaviside's unit 
step function (C.30), which is H(t) = 1 for t > 0 and H(t) = 0 for t < O. 

Although it may seem to be no serious restriction to assume that a physically 
relevant signal pet) vanishes at t = ±oo, we deal in practice with simplified 
models, yielding expressions for pet) which do not decay at infinity (e.g. a con
stant, sin(wot». So we have on the one hand the "real" pet) which is Fourier
transformable, and on the other hand the approximate "model" pet), which is not 
always Fourier-transformable. Is there a way to approximate, or at least get an idea 
of, the real Fourier transform, using the approximate pet)? One way is to assume 
p to vanish outside a certain large interval [-N, N], as for example: 

1 IN -iwt sin wN - e dt=---
2n -N nw 

1 IN . ( ) -iwt d i (Sin(Wo + w)N sin(wo - W)N) - smwot e t=- ------
2n -N 2n Wo + w Wo - w 

We see a large maximum (rv N In) depending on N near the dominating fre
quencies, and for the other frequencies an oscillatory behaviour, also depending on 
N, that is difficult to interpret. This is too vague and too arbitrary for general use. 
Therefore, a mathematically more consistent and satisfying approach, not depend
ing on the arbitrary choice of the interval size, will be introduced later in terms of 
generalized functions. 
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Derivative 

Since a derivative to t corresponds to a multiplication by iw as follows 

-pet) = iwp(w) elM dw, d 100 

, 

dt -00 

(C.4) 

the wave equation reduces to the Helmholtz equation 

(C.S) 

Further reduction is possible by Fourier transformation in space variables. 

More dimensions and Hankel transform 

Fourier transforms in n space dimensions is usually denoted as 

(C.6) 

The Hankel transform Rm (.f; p) of a function 4>(r), given by 

(C.7) 

arises naturally when the 2D Fourier transform of a function f (x) is re-written in 
polar coordinates. 

(C.8) 

where x (r cos f), r sin f}), k = (p sin a, p cos a), 

1 00 

lex) = 2Jr L fm(r) e-imil 

m=-oo 

and use is made of equation (D.62). 
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Multiplication and convolution 

Fourier transfonnation is basically a linear operation and little can be said about 
other than linear combinations of transfonned functions. Only for multiplication 
with powers of w we have 

(C.9) 

For multiplication with a general (j(w) we find the convolution product of pet) and 
q(t), also known as the Convolution Theorem 

(p*q)(t) = - p(t')q(t 1 100 

2rr -00 

t')dt' = f: p(w)(j(w) eiwt dw. (C.IO) 

Note that in tenns of generalized functions, to be introduced below, result (C.9) for 
the product with wn is a special case of the convolution theorem. A particular case 
is Parseval's theorem, obtained by taking1 q(t') = p*(-t') and t = 0: 

(C.11) 

which is in a suitable context a measure of the total energy of a signal pet). 

Poisson's summation formula 

Intuitively, it is clear that the high frequencies relate to the short time behaviour, 
and the low frequencies to the long time behaviour. An elegant result due to Poisson 
is making this explicit. 

~ 2rr ~ A(2rrn) 
Lt p(An) = T Lt PT' (C.12) 

n=-oo n=-oo 

Sampling with large steps (A large) of p yields infonnation about the low part of 
the spectrum and vice versa. 

Reality condition 

Although pew) is complex, the corresponding pet) is in any physical context real. 
Therefore, not any p(w) can occur. A given p(w) corresponds to a real signal pet) 

1 z* = x - iy denotes the complex conjugate of z = x + iy. 
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if it satisfies the reality condition 

p(-w) = p(w)*. (C. 13) 

This is just the consequence of pet), given by equation (C.2), being identically 
equal to its complex conjugate. 

C.I.I Causality condition 

The wave equation and the equation of motion do not impose a direction for the 
time, if dissipation effects are neglected. The fact that the sound should be pro
duced before we observe it (causality) is not a property automatically implied by 
our equations, and it should be imposed to the solution. The problem is simple for 
an initial value problem, where it suffices to require a zero field before the switch
on time. However, when we consider a time-harmonic solution, or in general based 
on Fourier analysis, it is not obvious any more because we assume the solution to 
be built up from stationary oscillations. Stationary means that it exists forever and 
has always existed. In such a case causality, i.e. the difference between cause and 
effect, is not readily clear. It is therefore of interest to investigate conditions for the 
Fourier transfonn that guarantees a causal signal. 

No physical process can exist for all time. A process pet) that starts by some cause 
at some finite time t = to, while it vanishes before to, is called causal. The corre
sponding Fourier transfonn 

pew) 1 100 

. pet) e-1wt dt 
2n to 

(C.14) 

has the property that pew) is analytic2 in the lower complex half-space 

!mew) < O. (C.lS) 

So this is a necessary condition on p for p to be causal. Examples are the expo
nentially decaying functions, switched on at t 0, of equations (C.3a) and (C.3b). 
The Fourier transfonns are non-analytic in the upper half-plane (singularities at 
w = ia and a branch cut from ia up to ioo), but are indeed analytic in the half
plane Im(w) < a. 

2Infinitely often differentiable in the complex variable w. 
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A sufficient condition3 is the following causality condition [153]. 

Theorem C.l (Causality Condition) 
If: (i) pew) is analytic in !m(w) ::: 0, (ii) I fi(w) 12 is integrable along the real axis, 
and (iii) there is a real to such that eiwto pew) -+ 0 un~formly with regard to arg(w) 
for Iwl -+ 00 in the lower complex half plane, then: pet) is causal, and vanishes 
for t < to. 

(Note that the lower complex half-space becomes the upper half-space if the op
posite Fourier sign convention is taken.) Consider as a typical example the in
verse transform of equation (C.3a). When t > 0 the exponential factor eiw/ 
e i Re(w)/ e - Im(w)t decays in the upper half plane, so the contour can be closed via 
the upper half plane, resulting in 2ni times the residue4 of the pole in ia. When 
t < 0 the contour can be closed via the lower half plane, with zero result because 
the integrand is analytic there: causal as it should be. 

f oo __ e_iw_t __ dw = {e-ort 

-00 2n(a + iw) 0 

if t > 0, 

if t < O. 

It should be noted that in the limit of no damping (a ,} 0) the singularity of (C.3a) 
and (C.3b) at w = ia moves to w = 0, which is on the real axis. This is a bit of 
a problem if we are interested in the inverse transforms, because the real w-axis 
is just the contour of integration, and a pole there would make the result of the 
integral ambiguous. The integral is to be interpreted via a suitable deformation6 of 
the contour, but this is either over or under the singularity, and the results are not 
the same. So, without further information this would leave us with two possible but 
different answersl 

3Cauchy's theorem [96] for analytic functions says that if f is analytic in the inner-region of a 
closed contour C in the complex plane, the integral of f along C is equal to zero: Ie f(z)dz = O. 
Under the conditions stated in theorem (C.I) (p.302) the function pew) exp(iwt) is analytic in the 
lower-half complex w-plane. So its integral along the closed contour consisting of the real interval 
[ - R, R] and the semi -circle w = R eilJ , - j( < e < 0, is equal to zero. 

Let R ~ 00 while t < 0 (= to; the case of a general to is similar). 
The factor eiwt = ei Re(w)t e- Im(w)t decays exponentially fast to zero in the lower complex w-plane 
because Im(w)t < O. Hence, the contribution from the large semi-circle becomes exponentially 
small and vanishes. So the part along the real axis is also zero. However, this is just pet), the inverse 
Fourier transform of p. 

is a simple pole of fez), then the residue of fat zo is: Res j(zo) = limz-+zo(z-zo)f(z). 
5We ignore for the moment the problem that for ex = 0 the original time signal is only Fourier 

transformable in the context of generalized functions. 
6The integral of an analytic function does not change with deformation of the integration contour 

within the region of analyticity. 
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We do know, however, that this singularity comes from the complex upper half, so 
we have to indent the contour under the pole. This is exactly in agreement with 
the argument of causality: a causal signal has a Fourier transform that is analytic 
in the lower complex half-plane, so it is safe to indent the contour into the lower 
half-plane. The singularity is to be considered to belong to the upper half-plane. 

This example is typical of the more general case of a signal pet), described via 
the inverse transform of its Fourier transform. If it occurs that, due to inherent 
idealizations of the model, this Fourier transform has singularities along the real w 
axis, the causality condition tells us how to deal with this problem. Consider the 
following example. The transformed harmonic-like signal 

A() Wo pw=- --__ 
211: 

I 

has to be analytic in the lower half plane, so that the integration contour can 
be closed with zero result if t < O. Therefore, the contour must be indented in 
Im(w) < 0 around w = Wo and w -Wo (figure C.I). The result is then 

, 
imaginary' 

ruilS: 

Figure C.l Integration contour in complex w-plane, 

pet) = H(t) sin(wot). 

A more subtle example, dealing with complicated manipulations in two complex 
planes. is the following. Consider the field p(x, t), described via a Fourier integral 
for both the x-and the t -dependence. 

p(x, t) = r: r: p(k, w) eimt-ikx dkdw. 
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If p(k, w), the time- and space-Fourier transformed p(x, t), is given by: 

-(k) 1 1 
p , w = -4 2 2 k2 2/ 2' rr Co - w Co 

(C.16) 

then the time-Fourier transformed p(x, w), given by 

1 100 
e-

ikx 

p(x,w) = -4 2 2 k 2 - 2/2 dk, 
JT Co -00 W Co 

must be analytic in !m(w)::: 0. This means that the contour in the complex k-plane 
(the real axis) must be indented up-around k w / Co and down-around k = -w / Co 
(figure C.2). This is seen as follows. For any value of ±w/co not on the k-contour, 

k E C 

""_""_ -w/eo I : n 
~~~~~~~~(~:;-------r---------i-~~~~c~o~-~-=-~--~-~-~-~-~-~-

imaginary' 
runs: 

Figure C.2 Integration contour in complex k-plane. The arrows indicate the path of the poles ±w/co 
in the k-plane, when w moves in its complex w-plane from the negative imaginary half 
onto the real axis, as Im(w) t O. 

the integral exists and can be differentiated to w any times, so j)(x, w) is ana
lytic in w. However, when a pole k = w/co or k = -w/co crosses the contour, 
p (x, w) jumps discontinuously by an amount of the residue at that pole, and there
fore p(x, w) is not analytic for any ±w/co on the contour. So, here, the value of 
the integral may be either the limit from above or from below. Since causality re
quires that p(x, w) is the analytic continuation from Im(w) < 0, we have to take the 
limit Im(w) to, i.e. from below for the pole k = w/co and from above for the pole 
k = -w / Co. Since a deformation of the integration contour for an analytic function 
does not change the integral, these limits are most conveniently incorporated by a 
small deformation of the contour, in a direction opposite to the limit (Fig. C.2). 
The result is 

e-lWlxl/co 
p(x, w) = --. -4rrlcow 
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As before, the pole w = 0 belongs to the upper w-half plane, and we have (c.f. 
(4.84» 

1 ICC eiw(t-Ixl/co) 
p(x, t) = -. - dw 

4JrlCO -co w 
1 

= -H(t - lxi/co). 
2co 

(C.lS) 

If we read x - y for x and t r for t, this is just the one-dimensional Green's 
function. (See also below). 

C.l.2 Phase and group velocity 

The phase velocity of a wave, given by eiwt-iKX (wand K real), is that velocity for 

which the phase wt - K x = constant. This is 

W 
Vphase = -

K 
(C.l9) 

Since a hannonic wave is an idealisation, any wave is really a packet with a begin
ning and an end, and this packet does not necessarily travel with the phase speed, 
but with the group velocity. This should also be the speed of the energy if an energy 
is defined. 

To determine the group velocity for an almost hannonic problem, i.e. with a Fourier 
representation concentrated near a single frequency w = Wo, we have to consider 
the time dependent problem: 

l
co 

lwo+e 4>(x, t) = few) eiwt-iK(w)x dw = few) eiwt-iK(W)X dw 
-co wo-s 

(C.20) 

with KO = K(Wo), Kb = !K(WO), so that 

A.. ( ) rv 2f( ) sin e(t Kbx ) iwot-iKox 
'f/ x, t - Wo , e 

t - KOX 
(C.2l) 

which describes a wave packet centred around t = Kbx, and therefore travelling 
with the velocity 

( ')-1 Vgroup = KO . (C.22) 
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C.2 Generalized functions 

C.2.1 Introduction 

In reality dissipative effects will cause any discontinuity to be smooth and any 
signal to decay for t -+ 00, while any signal can be regarded to be absent for 
t -+ -00. So the classical concept of (smooth) functions is more than adequate 
to describe any property of a real sound field. This is, however, not the case in 
most of our idealized models. For example, a point source of vanishing size but 
finite source strength cannot be described by any ordinary function: it would be 
something that is zero everywhere except in one point, where it is infinitely large. 
Another example is a non-decaying signal, even as common as sin(wt), which 
(classically) cannot be Fourier transformed: for some frequencies the Fourier inte
gral is not defined and for others just infinitely large. Still, the spectrum of sin(wt), 
consisting of two isolated peaks at wand -w, is almost a prototype! 

Does that mean that our idealized models are wrong, or too restricted to be useful? 
No, not at all. Only our mathematical apparatus of functions is too restricted. It 
is therefore convenient, even vital for a lucid theory, to extend our meaning of 
function to the so-called generalized functions [109,88,225,92,52]. 

Technically speaking, generalized jUnctions or tempered distributions are not func
tions with a pointwise definition. Their meaning is always defined in an integrated 
sense. There are many definitions and terminology 7 of generalized function spaces, 
mathematically not equivalent, but all containing the elements most important in 
applications (delta function, Heaviside function, etc.). See for example [52]. 

C.2.2 Formal definition 

In the present context we will follow the definition that is intuitively most appeal
ing: the limit8 in a suitable function space g" such that derivatives and Fourier 
transforms are always defined. This definition is analogous to the definition of real 
numbers by convergent sequences of rational numbers. We start with the space of 

7For example: generalized functions and tempered distributions when Fourier transfonnation is 
guaranteed, weak functions and distributions when derivatives are guaranteed. 

8Technically termed: closure of ... 
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the real, smooth, and very fast decaying good functions 

fj, def {! : lR -+ lR I !(k) E C OO ( -00, (0) and (C.23) 

!(k) O(lxl-n ) (Ixl -+ (0) for any n, k ~ oJ. 

where !(k)(x) = b!(x). A sequence Un) C 9, defines a generalized function if 
for every testfunction g E fj, the sequence of real numbers 

n1i~ f: !n(x)g(x) dx (C.24) 

exists as a real number (depending on g, of course). 

Care is to be taken: although it is the limit of a sequence of ordinary functions, a 
generalized function is not an ordinary function. In particular, it is not a function 
with a pointwise and explicit meaning. It is only defined by the way its correspond
ing sequence Un) acts under integration. Furthermore, a generalized function may 
be defined by many equivalent regular sequences because it is only the limit that 
counts. 

On the other hand, generalized functions really extend our definition of ordinary 
functions. It can be shown, that any reasonably behaving ordinary function is 
equivalent to a generalized function, and may be identified to it. Therefore, we re
tain the symbolism for integration, and write for a generalized function f defined 
by the sequence Un) and any g E fj, 

f: !(x)g(x) dx (C.25) 

C.2.3 The delta function and other examples 

A very important generalized function is the delta function o(x), defined (for ex
ample) by 

( 
n )1/2 2 

On(x) = -; e-nx , (C.26) 

In the limit for n -+ 00 all contributions in the integral except from near x = 0 are 
suppressed, such that 

f: o(x)g(x) dx = g(O). (C.27) 
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The second expression of (C.26) illustrates that it is not necessary for a represen
tation of 8(x) to vanish pointwise outside x = O. Highly oscillatory behaviour 
outside the origin may be sufficient for the integral to vanish. 

A useful identity is 

1 
8(ax) = -8(x), 

lal 
(C.28) 

which at the same time shows that a delta function is not necessarily dimensionless, 
as it has the inverse dimension of its argument (or put in another way: 8(x)dx is 
dimensionless). A generalization of this identity yields, for a sufficiently smooth 
function h with h' = ~ i= 0 at any zero of h, the following result: 

(C.29) 

where the summation runs over all the zeros of h. This result may be derived from 
the fact that 8(h(x)) is locally, near a zero Xi, equivalent to 
8(h'(Xi)(X - Xi)), so that 8(h(x» = L 8(x - xi)/lh'(Xi)l. 

The sequence 

Hn(x) = (~tanh(nx) + n e-x2jn2 

defines the Heaviside stepfunction H (x). If the Heaviside generalized function is 
used as an ordinary function it has the pointwise definition 

H(x) = H 
(x < 0) 

(x = 0) 

(x > 0) 

(C.30) 

Any C'O-function f, with algebraic behaviour for Ixl ---+ 00 (for example, poly
nomials), defines a generalized function (also called 1) via the sequence fn(x) = 
f(x) exp( _x2 /n2), since for any good g 

}i~ i: fn(x)g(x) dx = i: f(x)g(x) dx. 

Any Coo -function h with algebraic behaviour for Ix I ---+ 00 multiplied by a good 
function is a good function, so that the product of such a h with a generalized 
function f is well-defined. For example, the equation 

xf(x) = 0 

RienstraHirschberg 20 August 200816:00 



C.2 Generalized functions 309 

has a meaning in generalized sense, with the solution 

f(x) = C8(x) (C.31) 

which is unique, up to the multiplicative constant C. 

C.2.4 Derivatives 

Every generalized function f defined by Un) has a derivative l' defined by U~), 
and also satisfying 

i: j'(x)g(x)dx = - i: f(x)g'(x)dx. (C.32) 

Although generalized functions do not have a pointwise meaning, they are not 
arbitrarily wild. We have the general form given by the following theorem. 

Theorem C.2 (General representation) 
A necessary and sufficient condition for f (x) to be a generalized junction, is that 
there exist a continuous junction h (x) and positive numbers r and k such that f (x) 
is a generalized r-th order derivative of h (x) 

dr 

f(x) = -hex) 
dxr 

while hex) has the property that 

hex) 

is bounded on lR. 

For example: 

sign (x) = 1 +2H(x) = ~Ixl, 
dx 

By differentiation of the equation x8(x) 
8(n)(x) the identity 

x n8(n)(x) (-ltn!8(x). 

8(x) 
1 d2 

--Ixl· 
2dx2 

o we obtain for the n-th derivative 
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C.2.S Fourier transforms 

Every generalized function f defined by Un) has a Fourier transform i defined by 
(in) which is itself a generalized function. Indeed, since the Fourier transform g 
of a good function g is a good function, we have using the convolution theorem a 
well-defined 

1 100 

= - lim fn(x)g( -x) dx 
2n n---+oo -00 

1 100 

= - f(x)g( -x) dx. 
2n -00 

Examples of Fourier transforms are 

~ 100 

8(x) e-iwx dx = ~ 
2n -00 2n 

- e-iwx dx = 8(w) 1 100 

2n -00 

_1_1 00 

cos(wox) e-iwx dx = ~8(w - wo) + ~8(w + Wo), 
2n -00 

1 100 

-iwx ( 1) 1 1 -2 H(x) e dx = P.v. -.- + 28(W) = 2 . ( '0) 
n -00 nlW nl W - 1 

(C.33) 

(C.34) 

where P.v. denotes "principal value", which means that under the integration sign 
the singularity is to be excluded in the following symmetric way: P. V. f~oo = 
lime,j,o f-=-C: + feoo . The notation W - i 0 means that the pole W = 0 is assumed to 
belong to the complex upper half plane, similar to (C.1?). 

If -i cotg(w) is a causal Fourier transform, the poles w = nn belong to the 
complex upper half plane. In order to make sure that we approach the poles from 
the right side, we write 

00 00 

-i cotg(w) = 1 + 2 lim L e-2inw-2w = 1 + 2 L e-2inw , 
e,j,O 

n=1 n=1 
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and obtain for the back transform to time domain 

f
oo 00 

-i cotg(w) eiwt dw = 2lfO(t) + 4rr L oCt - 2n). 
-00 n=l 

(C.35) 

C.2.6 Products 

Products of generalized functions are in general not defined. For example, depend
ing on the defining sequences of o(x) and H(x), we may get o(x)H(x) = Co(x) 

for any finite C. Therefore, integration along a semi -infinite or finite interval, which 
is to be interpreted as a multiplication of the integrand with suitable Heaviside 
functions, is not always defined. 

Two generalized functions may be multiplied only when either of the two is locally 
equivalent to an ordinary function, or as a direct product when they depend on 
different variables. Some results are 

8(x)H(x + 1) = o(x), 

f~: o(x)f(x) dx = i: o(x)f(x) dx if Xo > 0, 

i:i: o(x)o(t)f(x, t)dtdx = i: o(x) [I: o(t)f(x, t)dt ) dx, 

i: o(t - r)8(r) dr = oCt). 

C.2.7 Higher dimensions and Green's functions 

A generalization to several dimensions is possible [185], and many results are fairly 
straightforward after an obvious introduction of multi-dimensional good functions. 
For example, we may define a new generalized function f(x)g(y) in ]R2 by the 
direct product of f(x) and g(y). For the delta function in]R3 this leads to 

o(x) = o(x)o(y)o(z) 

Care is required near the singular points of a coordinate transformation. For exam
ple, provided 0' (r) is considered to be an odd function in r, the 2-D delta function 
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o(x - xo) may be written in polar coordinates ([88, p.306]) as 

{ 

o(r - ro) ~ 
L o(tJ - tJo - 2;rn) if ro f:= 0, 

xo) = ro n=-oo 
o'er) 

--- (r 2: 0) if ro O. 
Jr 

o(x (C.36) 

Relevant in the theory of 2-D incompressible potential flow are the following iden
tities. The line source is a delta function source term in the mass equation: 

v=!(cosO,sinO,O) satisfies V'·v=2;ro(x,y). 
r 

The line vortex is a delta function type vorticity field: 

1 
v= (-sinO,cosO,O) satisfies V'xv=2;ro(x,y)ez' 

r 

(C.37a) 

(C.37b) 

A most important application of (more-dimensional) delta functions in the present 
context is that they allow a very direct definition of Green's functions. Classically, 
the Green's function G is defined in a rather complicated way, but in the context of 
generalized functions it appears to be just the field resulting from a delta function 
source. Consider for example the one dimensional wave equation (c.f. (4.81» 

a2G 
= o(x - y)o(t - r). 

After Fourier transformation to t and x we obtain 

-ola + c2k2a = _1_ e-iWT eiky 
o 4;r2 

which yields equation (C.16) (apart from the amplitude) and then, after the de
scribed transformation back into space and time domain, the Green's function 
given by expression (C.18). 

See Appendix E for a table offree field Green's functions in 1-,2-. and 3-D, for the 
Laplace, Helmholtz, wave, and heat equations. 

C.2.S Surface distributions 

Of particular interest are the so-called surface distributions o:r; (x) defined by the 
surface integral 

f o:r; (x)¢ (x) dx = f ¢(x) dO" 
JlR3 J'£ 

(C.38) 
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where tP is an arbitrary test function, and L denotes a smooth surface in lR? with 
surface element dO". In practice, a surface is often defined by an equation Sex) = 0 
(section A3). Near a point Xo on the surface, Sex) varies to leading order only in 
the direction of the surface normal ev = V So/IVSol, 

Sex) = (x - xo) ·VSo + ... ::::::: IVSolv, 

where v = (x - xo)' ev and So indicates evaluation at Xo. Since ch; is locally, 
after a suitable rotation and transformation of coordinates, equivalent to a one
dimensional delta function in v. the coordinate normal to the surface, we have 

(C.39) 

Note that this result is in fact a generalization of formula (C.29). For sufficiently 
smooth h we have 

( ,,[ g(x) 
fIR3 o(h(x»g(x) dx = ~ lSi IVh(x)1 dO" (CAO) 

where the summation runs over all the surfaces .8 j defined by the equation hex) = 

O. 
This concept of surface distributions has numerous important applications. For ex
ample, integral theorems like that of Gauss or Green [92]. and Reynolds' Transport 
Theorem (section AI) may be derived very elegantly and efficiently. We show it 
for Reynolds' Theorem and leave Gauss' theorem as an exercise. 

Consider a finite volume V = Vet) with sufficiently smooth surface .8 = .8 (t). 
moving continuously in space. Introduce a (smooth) function I(x, t) such that 

{ 

> 0 if x E Vet), 

I(x, t) = 0 if x E .8(t), 

< 0 if x ¢ Vet), 

but otherwise arbitrary. Since V 11/=0 is directed normal inwards into V, the out
ward normal ns of.8 is given by (section A3) 

ns(x, t) VI I 
IV/I/=o' 

Let the surface .8(t) be parametrized in time and space, by coordinates (t; A, f.L). 
Like the auxiliary function I, this parametrization is not unique, but that will ap
pear to be of no importance. A surface point xs(t) E .8 (consider A and f.L fixed), 
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moving with velocity b =xs, remains atthe surface for all time, so f(xs(t), t) = 0 
for all t, and therefore also its time-derivative, and so 

8f • at = - Xs ·Vf = IVflb·ns. 

The variation of a quality F(x, t), integrated over V, is now given by 

d
d r F(x, t) dx = dd r H(f)F(x, t) dx 

t Jv t J~3 

= r [H(f)~F(X,t)+8(f)af F(x,t)]dx 
J~3 at at 

= r ~F(x,t)dx+ r (b·ns) F(x, t)da. (CAl) Jv at JJ 
where H denotes the Heaviside function, and use is made of equation (C.39). Note 
that, although in general b is not unique, its normal component b· ns is unique, in 
particular it is independent of the selected function f and parametrization. 

C.3 Fourier series 

A Fourier series (in complex form) is the following function f(x), defined by the 
infinite sequence {cn}~_oo' 

00 

f(x) = L en e2ninx/L . (CA2) 
n=-oo 

If the series converges, f is periodic with period L. For sufficiently well-behaved 
functions f the coefficients are given by 

Cn = ~ lL f(x) e-2ninx/L dx. (CA3) 

Classically, the Fourier series precedes both the Fourier transform and generalized 
functions. The classic theory is, however, rather complicated. On the other hand, 
Fourier series appear to have a much simpler structure when they are embedded in 
the generalized functions, in the following sense. 

Fourier series are equivalent to the Fourier transform of periodic general
ized functions. A generalized function f is said to be periodic, with period L, if 
a coordinate shift x + L yields the same generalized function 

f(x) = f(x + L). 
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We have the following couple of theorems ([109, 225]), telling us when a Fourier 
series is a generalized function, and vice versa. 

Theorem C.3 (From Fourier series to generalized function) 
A Fourier series (CA2) converges9 to a generalized function if and only if the 
coefficients Cn are of slow growth. This means, that there is a constant N such that 
Cn = OClnIN) for Inl -+ 00. The generalized function it defines is periodic and 
unique. 

Theorem C.4 (From generalized function to Fourier series) 
The most general periodic generalized function is just the Fourier series: any pe
riodic generalized function can be written as a Fourier series with Fourier coeffi
cients Cm while the Fourier transform is a periodic array of delta functions: 

00 

f(x) = L Cn e27rinx/L, (C.44a) 
n=-oo 

(C.44b) 
n=-oo 

Cn = - f(x)U - e-27rlnx/L dx. 1 foo (X). 
L -00 L 

(C.44c) 

Any Fourier series can be differentiated and integrated term by term. 
U E Coo is an auxiliary smoothing function with the following properties: 

U(x) = 0 for Ixl::: 1, U(x) + U(x - 1) = 1 for 0::: X ::: 1, 

but otherwise arbitrary. U is necessary because a generalized function may not be 
integrable along a finite interval (for example, when singularities coincide with the 
end points). 

If we are dealing with a generalized function defined by a periodic absolutely
integrable ordinary function, then U is not necessary, and the expression for Cn 

simplifies to the classical form (C.43). Although in such a case the Fourier series 
may converge in ordinary sense, this is not guaranteed, and the Fourier series is 
still to be interpreted in a generalized sense. 

Examples are the "row of delta's" 
00 00 00 

L 8(x - n) = L e27rinx = 1 + 2 L cos(2nnx), (C.45a) 
n=-oo n=l 

9 As the generalized limit of, for example. fm(x) exp(-x2Im2) L::=m en e27rinx/L. 
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with its Fourier transform 

2~ f e-iwn = f 8(w 2nn), 
n=-oo n=-oo 

and its N -th derivative 

00 00 

L o(N)(X - n) = L (2nin)N e21l'inx . 

n=-oo n=-oo 

Furthermore, the sawtooth with simple discontinuities at x = m (m E Z) 

[! x] = 00 e2
1l'inx = 00 sin(2nnx) 

I L 2nin L nn 
n=-oo n=1 

and a sequence of parabola's, continuous at x = m (m E Z) 

00 e2ninx 

x
2 

- ~ 1 = L (2nin)2 = 
n=-oo 

f cos (2nnx) . 

n=1 

(C.45b) 

(C.45c) 

(C.45d) 

(C.45e) 

denotes a sum excluding n ::::: 0, [ . lL denotes the L-periodic continuation of a 
function f(x) defined on the interval [0, Ll: 

00 

[fex ) t = L BUt - n)f(x - nL), 
n=-oo 

and B denotes the unit block function 

{

I if 0:::; x :::; 1, 
B{x) = H(x) - H(x -1) == 0 

otherwise. 

Apart from an additional x and !x2, (C.45d) is the first integral and (C.45e) is 
the second integral of the row of delta's of (C.45a). In general it is true that any 
generalized Fourier series, with coefficients en = O(/nIN)(lnl ~ (0), is the (N + 
2)-th derivative of a continuous function. This shows that there is a limit to the 
seriousness of the singularities that these functions can have [109]. 
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Related examples of some interest are: 

~ cos(2n-nx) 
-log 12sinn-xl = L- ' 

n 
n=1 

(C.46a) 

00 

! cotg(n-x) = L sin (2n-nx), (C.46b) 
11=1 

00 

tan(n-x) = L(-I)1I sin(2n-nx), (C.46c) 
n=1 

00 
. "" cos 2nx 

n- I sm x I = 2 - L- 2 l' 
n --11=1 4 

(C.46d) 

Until now we have considered only generalized Fourier series because of their 
more transparent properties. We have to be very cautious, however, when dealing 
in practice with divergent series. No attempt must be made to sum such a series 
numerically term by term! Numerical evaluation is only possible for classically 
convergent Fourier series. Some of the most important results are the following. 

For a given function f we have the following theorem. 

Theorem C.S (Existence of ordinary Fourier series) 
If a function f is piecewise smooth10 on the interval [0, L], such that f(x) 
Hf(x+) + f(x- )], then the Fourier series of f converges for every x to the L
periodic continuation of j. 

For a given Fourier series we have the following theorem. 

Theorem C.6 (Continuity of ordinary Fourier series) 
If a Fourier series is absolutely convergent, i.e. L ICn I < 00, then it converges 
absolutely and uniformly to a continuous periodic function j, such that CIl are just 
f's Fourier coefficients. 

An example of the first theorem is (C.45d). Note that the similar looking (C.46a) 
just falls outside this category. Examples of the second are (CA5e) and (C.46d). 

10 I is piecewise continuous on [0, L] if there are a finite number of open subintervals 
0< x < x}, ... , XN-J < x < L on which I is continuous, while the limits 1(0+), I(Xl±) . 
... , I(L-) exist. I is piecewise smooth if both I and I' are piecewise continuous. 
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C.3.1 The Fast Fourier Transform 

The standard numerical implementation of the calculation of a Fourier transform 
or Fourier coefficient is the Fast Fourier Transform algorithm [25]. This algorithm 
calculates for a given complex array {x j}, j = 0, ... , N - 1 very efficiently (espe
cially if N is a power of 2) the Discrete Fourier Transform 

N-l 

Xk = LXjexp(-2n:ijk/N), 
j=1} 

k = 0, ... , N -1. (C.47) 

A Fourier coefficient (C.43) is calculated by discretizing the integral 

1 i L . ] N-I 
en = f(x)e-ZJTlnX/Ldx ~ . L fUL/N)exp(-2n:ijn/N) 

L 0 Nj=1} 

and identifying Xj = f(j L/ N) and en = Xn/ N. 

A Fourier transform (C.l) is determined as follows. Restrict the infinite integral to a 
large enough finite interval [- ~ T, ~ Tl, and consider only the values w = 2n: k / T, 
for k ~N, ... , ~N - 1. Then we have 

pew) = - p(t) e-1wt dt ~ pet) e-1wt dt I 100 

. 1 1 . 
2n: -00 2n: -!T 
1 l!T . 1 iT . = pet) e-1wt dt + - pet - T) e-1wt dt. 

2n: 0 2n: iT 

If we finally discretize the integrals 

IN-l 

p(2n:k) ~ ~ 2L p(jT/N)exp(-2n:ijk/N) 
T 2n:N j=O 

T N-l 

+2n:N L p(jT/N - T)exp(-2n:ijk/N). 

j=~N 
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we obtain the required result by identifying 

{
P(jT/N) if O:::j:::~N-1, 

Xj= p(jT/N-T) if~N:::j~N-1, 

p(27Tk) = ~ {Xk+N if 
T 27TN Xk if 

~N~k~ 1, 

0< k < IN-I. - -2 
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D Bessel functions 

The Bessel equation for integer m 

" 1 f ( m2) y + -y + 1- - Y = 0 
X X2 

(D.1) 

has two independent solutions [217, 1,47,61,113]. Standardized forms are 

1m(x), m-th order ordinary Bessel function of the 1st kind, 

Ym(x), m-th order ordinary Bessel function of the 2nd kind. 

(D.2a) 

(D.2b) 

1m is regular in x = 0; Ym is singular in x = 0 with branch cut along x < 0; for 
m ~ 0 is: 

00 (_1)k(lx)m+2k 
1 (x) - '" 2 

m - ~ k!(m + k)! 

m-l 
1 '" (m - k - 1)! 2 

Ym(x) = --~ k' (~x)-m+2k + -log(~x)lm(x) 
lr k=O. lr 

1 00 (_1)k(lx)m+2k 

- -;; L {17(k + 1) + 17(m + k + I)} k!(m ~ k)! 
k=O 

. n-l 1 
with 17(1) = -y, 17(n) = -y + L k' 

y = 0.577215664901532 

1m(-x) = (-1)m1m(x), 

{ (_1)m~Ym(x) - 2iJm(X)j' 
Ym(-x) = 

(_1)m Ym(x) + 2iJm(x) , 

Lm(x) = (_1)m 1m(x), 

Lm(x) = (-1)mym(x). 

k=l 

O<arg(x)~lr, 

-lr < arg (x ) ~O. 

(D.3) 

(D.4) 

(D.5) 

(D.6) 

(D.7) 



Other common independent sets of solutions are the Hankel functions 

H~l)(x) = Jm(x) + i Ym(x), 

H~2)(X) = Jm(x) - iYm(x). 

Related are the modified Bessel functions of the 1 st and 2nd kind 

satisfying 

f! I! ( m2) y + -y - 1 + - y = 0 
X x2 

-Jr <arg(x):S&Jr, 

&Jr <arg(x):s Jr, 

321 

(D.8a) 

(0.8b) 

(0.9a) 

(0.9b) 

(0.10) 

1m is regular in x = 0, Km is singular in x = 0 with branch cut along x < O. 

Lm(x) = Im(x), 

K_m(x) = Km(x). 

Wronskians (with prime I denoting derivative): 

0< arg (x )::: j(, 

Jm(x)Y~(x) - Ym(x)J~(x) = 2jJrx 

H~1)(x)H~2)I(X) - H~2)(x)H~1)/(X) -4ijJrx 

Im(x)K~(x) - Km(x)/~(x) = -ljx 

Jm(X)Ym+l (x) Ym(X)Jm+l (x) = -2jJrx 

1m (x) Km+l (x) + Km(x)/m+l(x) = 1jx 

(0.11) 

(0.12) 

(0.13) 

(0.14) 

(0.15) 

(0.16) 

(0.17) 

(0.18) 

(0.19) 

Jm (x) and J~ (x) have an infinite number of real zeros, all of which are simple with 
the possible exception of x = O. The p,-th positive (f:. 0) zeros are denoted by imJL 
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322 D Bessel functions 

and j~1t respectively, except that x 0 is counted as the first zero of J~: jbl = O. 
It follows that j~.1t = hit-I. 
Asymptotically the zeros behave like 

jmlt c:::: (M + !m - ~).rr + O(M- I
) 

j~1t c:::: (IL + ~m ~).rr + O(IL-1
) 

j~1 c:::: m + 0.8086 m1
/ 3 + O(m- 1

/
3

) 

(IL --+ (0) 

(M --+ (0) 

(m --+ (0). 

Not only asymptotically but in general it is true that j~l =:: m. 

Asymptotic behaviour for x --+ 0: 

Jm(x) c:::: (!x)m 1m!, 

Yo(x) c:::: 2Iog(x)/.rr, 

Ym(x) c:::: -em - 1)! (!x)-m l.rr, 

Hci1.2)(x) c:::: ±2i log(x)/.rr, 

H~1,2)(x) c:::: =fi(m l)!(~x)-m l.rr, 

Im(x) c:::: (!x)m 1m!, 

Ko(x) c:::: -log(x), 

Km(x) c:::: ~(m - I)! (~x)-m, 

Asymptotic behaviour for Ix I --+ 00 and m fixed: 

1 
Jm(x) c:::: (!.rrx)-2 cos(x - !m.rr - !.rr), 

1 
Ym(X) c:::: (~.rrx)-2 sin(x - ~m.rr - !.rr), 

1 
H~1,2)(X) c:::: (~.rrx)-2 exp[±i(x ~m.rr - !.rr)], 

1 
Im(x) c:::: (2.rrx)-2 eX, 

RienstraHirschberg 20 August 2008 16:00 

(I arg(x) I < !.rr), 

(I arg(x) I < 1.rr)· 

(D.20a) 

(D.20b) 

(D.20c) 

(D.21) 

(D.22) 

(D.23) 

(D.24) 

(D.25) 

(D.26) 

(D.27) 

(D.28) 

(D.29) 

(D.30) 

(D.31) 

(D.32) 

(D.33) 
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Asymptotic behaviour for Ix I -+ 00 and m 2 / x fixed: 

1 
1m(x) :::: (!nx)-2 cos(x !nm - ~n + !(m2 - ~)X-l), (D.34) 

1 
Ym(x) :::: (!nx)-2 sin(x - ~nm - ~n + !(m2 ~)X-l), (D.35) 

1 
H~1.2)(x) :::: (4nx)-Z exp[±i(x - 4mn - in + 4(m2 - i)x-1

)], (D.36) 

with absolute accuracy of <1 % along x > 2 + 2m + Am 1.5 for any 0 ~ m ~ 100. 
The corresponding approximating zero's of 1m and 1~ (and similarly for Ym) are 
easily found to be 

jmIJ. :::: !(IL + 4m *)n + 4/(IL + 4m - *)2n2 - 2m2 + 4, 
j~IJ.:::: 4(IL +!m - ~)n + 4/(IL +!m - ~)2n2 - 2m2 +~. 

Asymptotic behaviour for m -+ 00: 

1 
1m(x):::: (2nm)-Z(ex/2m)m, 

1 2 1 
1m(m):::: 23 /(33r(~)m3), 

1 1 1 

{ (2nm~+)-2 cos(m~+ - marctan~+ - :in), 
1m(mx) :::: 1 

(2nm~_)-2 exp(m~_ - m artanh ~_), 
1 

Ym(X):::: -(4nm)-2(ex/2m)-m, 
1 1 1 

Ym(m) "'"' -23 /(36r(~)m3), 
1 1 . 1 

{ (2nm~+)-2 sm(m~+ marctan~+ - 4n), 
Ym(mx) "-' 1 

-(4nm~_)-2 exp( -m~_ + m artanh ~_), 

(D.37) 

(D.38) 

(D.39) 

(D.40) 

(0.41) 

(0.42) 

(0.43) 

(0.44) 

valid for x > 1, and = Jl - x2, valid for 0 < x < 1. 
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Important recurrence relations are 

Jm-I(X) + Jm+I(X) = 2~Jm(x), 

Jm-l(x) - !,n+I(X) = 2J~(x), 

Ym-l(x) + Ym+1(x) = 2~Ym(x), 

Ym-l(x) - Ym+1(x) = 2Y~(x), 

Im-l (x) + Im+l(x) = 2I~(x), 

1m- l ex) -Im+l(x) = 2~/m(x), 

Km-l(X) + Km+1(x) = -2K~(x), 

Km- 1(x) - Km+I(X) = -2~Km(x), 

In particular: 

J~(X) = -JI(X), Y~(x) = -YI(X), 

lo(x) = hex), KMx) = -Kdx). 

Some useful relations involving series are 

co 

eixcosff = L i m Jm(x)eimff , 

m=-co 
co 

Jo(kR) = L eim(O-rp) Jm(kr)Jm(ke), 

1 
-oCr - ro) = 
ro 

m=-co 
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(0 < r, ro < 1), 

(0 < r, ro < 1). 

(D.45) 

(D.46) 

(D.47) 

(D.48) 

(D.49) 

(D.50) 

(D.51) 

(D.52) 

(D.53) 

(D. 54) 

(D.55) 

CD.56) 
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Relations involving integrals: 

jxem(ax)em(f~X)dX = (D.57) 

2 x 2 {f3 em(ax)e~(f3x) - ae~(ax)em(f3X)}, 
a - 13 

jx em (ax) em (ax) dx = (D.58) 

1 2 2 - 1 2 I -/ 
z(x ~)em(ax)em(ax) + ZX em (ax) em(ax) , 

where em, em is any linear combination of Jm , Ym , H~l) and H~2), 

jX9)m(ax)i>m(f3x) dx = (D.59) 

2 -x 2 {f39)m(ax)i>~(f3X) a9)~(ax)i>m(f3X)}, 
a - 13 

jX9)m (ax)i>m (ax) dx = (D.60) 

1 2 2 - 1 2 1 -I 
z(x + ~ )9)m(ax)9)m(ax) ZX 9)m (ax)9)m (ax), 

where 9)m, !15m is any linear combination of 1m and Km, 

2~ ln e-im1J+ixsinl' dO = Jm(x), 
-n 

100 a . e-ikr 
_e-lylzl Jo(ea)da = -.-, 

o Y -Ir {
Y=Jk2 - a 2, Im(y)::;O, 

r=.J e2 + Z2, k>O, i: e±ixcoshy dy = ±JTiHJ1,2)(x), 

100 1 e-iax-iylyl da = JT HJ2) (kr), 
-00 y { 

y=Jk2 - a 2, Im(y)::;O, 

r=.J x2 + y2, k>O, 

11
00 1 e-ikr 

_e-iax-itly-iylzl dadf3 = 2JT-.-, 
-00 Y -Ir 

n(2)( ) iwt d _ 4' t - r l
OO-io H( ) 

o (J)r e (J) - 1 , 
-oo-iO J t 2 - r2 

roo xJo(xr) dx = { ~JTiHJl)(kr) 
10 x 2 - k2 -~JTiHci2)(kr) 

{ 

y=.JP - a 2 - 132, 
Im(y)::;O, k>O, 
r=.Jx2 + y2 + Z2, 

(Im(k) > 0), 

(Im(k) < 0), 

(D.61) 

(D.62) 

(D.63) 

(D.64) 

(D.65) 

(D.66) 

(D.67) 

(D.68) 

RienstraHirschberg 20 August 2008 16:00 



326 D Bessel functions 

100 D(a - (3) 
xJm(ax)Jm(f3x)dx = r;:;a 

o v af3 
(a, f3 > 0), (D.69) 

100 2 1 (f3)m xYm(ax)Jm(f3x)dx = - 2 2 - (Prine. Val.), 
o rra-f3 a 

(D.70) 

100 • H(f3 - a) 
Jo(ax) sm(f3x) dx = , 

o Jf32 - a 2 
(a, f3 > 0) (D.71) 

100 H(a - (3) 
Jo(ax) cos(f3x) dx = , 

o Ja2 - f32 
(a, f3 > 0) (D.72) 

00 {~ 1 arcsin(~) (O<f3<a), 

( Yo(ax)sin(f3x)dx= ~Ja~1f32 a 

10 - arcosh(~) (O<a<f3), 
rr J f32 - a2 a 

(D.73) 

100 H(f3 - a) 
Yo(ax) cos(f3x) dx = - , 

o Jf32 - a 2 
(a, f3 > 0) (D.74) 

Ko(ax) sin (f3x) dx = arsinh(~), (a, f3 > 0) 100 1 

o Ja2+f32 a 
(D.75) 

roo Ko(ax) cos (f3x) dx = ~rr 
10 Ja2 + f32 

(a, f3 > 0) (D.76) 

Related to Bessel functions of order t are the Airy functions Ai and Bi [1], given 
by 

1100 

Ai(x) = - cos(tt3 + xt) dt 
rr 0 

(D.77) 

1 roo 
Bi(x) = rr 10 [exP(-tt

3 + xt) + sin(tt
3 + xt)] dt (D.78) 

They are solutions of 

y" - xy = 0, (D.79) 
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with the following asymptotic behaviour (introduce l; = ~ Ix 13/2) 

1 

0.5 

{ 

cos(l; - ~;r) 

Ai(x) ~ ~Jxll/4 

2y'ii xl/4 

{ 

cos(i; + ~;r) 
Bi(x) ~ ~lxP/4 

, · · · · · 

, , . , . , . , 

, , , , , , , 

, , . , 
: ,,/l' 

y'ii Xl/4 

(x ~ -(0), 

(x ~ (0), 

(x ~ -(0), 

(x ~ (0). 

Figure D.l Bessel function In(x) as function of order and argument. 
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(D. SO) 

(D.S1) 
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E Free field Green's functions 

Some relevant Green's functions for the Laplace equation, the reduced wave equa
tion (Helmholtz equation), the wave equation, and the diffusion equation (heat 
equation) are summarized in the table below for 1-, 2-, and 3-dimensional infinite 
space. The boundary conditions applied are (depending on the equation): symme
try, the function or its derivative vanishing at infinity, outward radiating (assuming 
a ei(r)/ convention) and causality (vanishing before t = 0). 

Equation 1-0 2-D 3-D 

V 2G = o(x) 
1 1 1 
-Ixl 2rr log R --
2 4rrr 

V2G + k2G = o(x) i e-iklxl ~HJ2)(kR) e-ikr 

---
2k 4rrr 

a2G 1 1 H(t R/c) oCt - ric) 
- - c2V2G = 8(x)o(t) -H(t -lxi/c) 

~ It2 4rrc2r at2 2c R2/C2 

aG H (t) e-x2/4at H(t) e-R2/4at H(t) e-r2/4at 
- - aV2G = 8(x)o(t) at (4irat) 1/2 4rrat (4rrat)3/2 

• 

Notation: R = JX2 + y2, r = 



F Summary of equations for fluid motion 

For general reference we will describe here a large number of possible acoustic 
models, systematically derived from he compressible Navier-Stokes equations, un
der the assumptions of absence of friction and thermal condition, and the fluid 
being a perfect gas. The flow is described by a stationary mean flow and small per
turbations, upon which linearization and Fourier time-analysis is possible. Further 
simplifications are considered based on axi-symmetric geometry and mean flow. 

F.l Conservation laws and constitutive equations 

The original laws of mass, momentum and energy conservation, written in terms 
of pressure p, density p, velocity vector v, scalar velocity v = lvi, viscous stress 
tensor T, internal energy e, and heat flux vector q, are given by 

mass: frP +V·(pv) =0 (F.l) 

momentum: fr (pv) + V· (pvv) = - V P + V • T (F. 2) 

energy: fr(pE) + V·(pEv) = -V.q - V·(pv) + V'(TV) (F.3) 

while 

(F.4) 

It is often convenient to introduce enthalpy or heat function 

. P 
I = e +-, (F.5) 

p 

or entropy s and temperature T via the fundamental law of thermodynamics for a 
reversible process 

Tds = de + pdp-l di - p-1dp. (F.6) 



330 F Summary of equations for fluid motion 

With ft = it + v . \1 for the convective derivative, the above conservation laws may 
be reduced to 

mass: 1rP = -p\1. v 

momentum: P1r v = - \1 p + \1 . r 

energy : p ft e = - \1. q - p \1. v + r : \1 v 
d· d n n Pdi l = diP- v·q+r:vv 

pTfts = -\1.q + r:\1v. 

For acoustic applications the entropy form (F.7e) is the most convenient. 

For an ideal gas we have the following relations 

P = pRT, de = CvdT, di = CpdT 

(F.7a) 

(F.7b) 

(F.7c) 

(F.7d) 

(F.7e) 

(F.8a,b,c) 

where C v is the heat capacity or specific heat at constant volume, C p is the heat 
capacity or specific heat at constant pressure [102]. C v = C v (T) and C p = C p (T) 
are in general functions of temperature. R is the specific gas constant and y the 
specific-heat ratio, which are practically constant and given by (the figures refer to 
air) 

R = Cp - Cv = 286.73 JjkgK, 
Cp 

Y = - = 1.402 
Cv 

From equation (F.6) it then follows for an ideal gas that 

dp dp 
ds = Cv - -Cp -

p P 

(F.9a,b) 

(F.1O) 

while isentropic perturbations (ds = 0), like sound, propagate with the sound speed 
c given by 

2 (OP) yp 
c = op s = p = yRT. (F.ll) 

For a perfect gas, the specific heats are constant (independent of T), and we can 
integrate 

e = C v T + einit, i = CpT + iinit, S = C v log p - C p log p + Sinit· 

(F.12a,b,c) 

The integration "constants" einit. iinit and Sinit refer to the initial situation of each 
particle. So this result is only useful if we start with a fluid of uniform thermody
namical properties, or if we are able to trace back the pathlines (or streamlines for 
a steady flow). 
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F.2 Acoustic approximation 331 

F.2 Acoustic approximation 

F.2.1 Inviscid and isentropic 

In the acoustic realm we will consider, the viscous or turbulent stress terms will be 
assumed to playa role only in an aerodynamic source region, while any perturba
tion is too fast to be affected by thermal conduction. Therefore, for the applications 
of acoustic propagation we will ignore viscous sbear stress (T) and thermal con
duction (q). In particular, this is obtained as follows. We make dimensionless by 
scaling 

to get 

x := Lx, v:= VoV, 
L 

t '-.- p:= PoP, 
vo 

2 fLVo K t:.T 
dp := Povodp, T:= TT, q:= L 

T := ToT, dT:= t:.TdT, ds:= Cpt:.T ds 
To 

frp = -pV·v (F.13a) 

d 1 
Pdi v = -Vp+ Re V'T (F.13b) 

d 1 Ec 
pT diS = - Pe V.q + Re T: Vv, (F.13c) 

where Re = Po voL / fL denotes the Reynolds number, Pe = PoC p voL / K the Peclet 
number, and Ec = vS/ Cpt:. T the Eckert number. If the Reynolds number tends to 
infinity, usually also the Peclet number does, because Pe = Pr Re and the PrandtJ 
number Pr is for most fluids and gases of order 1. Then, provided the Eckert num
ber is not large, we obtain 

frp = -pV·v (F.14a) 

pfrv = -Vp (F.14b) 

frs = 0 (F.14c) 

which means that entropy remains constant, and thus dh = p-Jdp, along stream
lines. 

Furthermore, we will assume the gas to be perfect, with the following thermody
namical closure relations 

dp dp 2 yp 
ds = Cv- Cp -, c = -. (F.14d) 

P p p 
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332 F Summary of equations for fluid motion 

By substituting equation (F.14d) into equation (F.14c) we obtain 

= c2.!!.p dt • 

If the flow is initially homentropic (Sinit is uniformly constant) then 

If the flow is homentropic (s is uniformly constant) then 

p ex pY 

F.2.2 Perturbations of a mean flow 

(F.14e) 

(F.I4f) 

(F.l4g) 

When we have a stationary mean flow with instationary perturbations, given by 

v Vo + Vi, P = Po + pi, P Po + pi, S = So + s' (F.l5) 

and linearize for small amplitude, we obtain for the mean flow 

while 

V· (Povo) = 0 

Po(vo·V)vo = -Vpo 

(vo·V)so = 0 

dpo dpo 
dso = Cv - - Cp -, 

Po Po 

and the perturbations 

2 YPo co=-
Po 

Itpl + V· (VoP' + v' po) = 0 

po(1t + vo'V)v' + Po(v'.V)Vo + p'(vo,V)vo = _Vp' 

(It + VO·V)S' + v'.Vso = 0 

while, assuming s:nit = 0, 

I Cv I 
S =-p 

Po 

Cp 

Po 
Cv (' 2 ') = - P -Cop, 
Po 

The expression for c' usually serves no purpose. 
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c' 

(F.l6a) 

(F.16b) 

(F.16c) 

(F.16d) 

(F.17a) 

(F.17b) 

(F.17c) 

(F.17d) 
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From equation (F.14e) we get for the mean flow Vo' V Po = c5vo, 'V Po, and for the 
perturbations an equation, equivalent to (F.17c) and (F.17d), 

0' ", '" at p + VO' v P + v • v Po 

cZ(ltp' + vo·'Vp' + v' .vpo) +c5(vo''Vpo)(fo - ~). (F.18) 

If the mean flow is homentropic (so = constant), we have 'V Po = c5'V Po while the 
perturbations are isentropic along streamlines. 

If the perturbations are entirely isentropic (s' == 0), for example when Vo 0 and 
So = constant or when the flow is homentropic (satisfying equation F.14g), the 
pressure and density perturbations are related by the usual 

I 2, 
P = coP· (F.19) 

F.2.3 Myers' Energy Corollary 

Myers' definition of energy [138,139, 140] for unsteady disturbances propagating 
in moving fluid media is both consistent with the general conservation law of fluid 
energy and with the order of approximation in the linear model adopted to describe 
the disturbances, When the mass and momentum equations (F.l,F.Z) and the gen
eral energy conservation law (F.3) for fluid motion is expanded to quadratic order, 
this Znd order energy term may be reduced to the following conservation law for 
perturbation energy density E, energy flux I, and dissipation fl.) 

It E + 'V·l = -fl.) (F.20) 

where (for simplicity we neglect viscous stress and heat conduction) 
,2 'T' 12 

E P 1 '2 I , PO.l OS 
= -Z 2 + '2 PoV + P vO' v + ZC ' 

POCo p 
(F.Zla) 

I 

1= (pov' + p1vo) (:0 + vo.v') + PovoT's', (F.Zlb) 

fl.) -Povo·(w'xv') -p'v"(Woxvo) 

+ s'(pov' + p'vo)' 'V To - s' povo ·VT', (F.21c) 

while the vorticity vector is denoted by 'V x v = W = Wo + w', Without mean 
flow this definition reduces to the traditional one. Note that, according to this def
inition, acoustic energy is entirely conserved in homentropic, irrotational flow. In 
vortical flow, the interaction with the mean flow may constitute a source or a sink 
of acoustic energy. 
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F.2.4 Zero mean flow 

Without mean flow, such that Vo === V Po 0, the equations may be reduced to 

:t22P' V· (c5VP') = 0. (E22) 

F.2.S Time harmonic 

When the perturbations are time-harmonic, given by 

Vi = Re(veiwt), p' = Re(p elwt ) , pi = Re(p eiwt ) , Sf = Re(s eiwt
), (F.23) 

we have in the usual complex notation 

iwp + V· (vop + vpo) = ° 
po(iw + vo·v)v + po(v.V)vo + p(vo,v)vo = -Vp 

(iw+ vo·V)s + I).Vso = ° 
A Cv (A 2 A) 
S = P - CoP· 

Po 

F.2.6 Irrotational isentropic flow 

(E24a) 

(E24b) 

(E24c) 

(F.24d) 

When the flow is irrotational and isentropic everywhere (homentropic), we can in
troduce a potential for the velocity, where v V~, and express P as a function of p 
only, such that we can integrate the momentum equation, and obtain the important 
simplification 

a c2 

+ ~V2 + --1 = constant, 
at - y-

P = constant. 
pY 

For mean flow with harmonic perturbation, where ~ 
then for the mean flow 

c2 
Iv2 + __ 0_ = constant 
20 1 ' y-

V· (Povo) = 0, 
Po 
y = constant 
Po 
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and for the acoustic perturbations 

(iw + vo·Y')p + PY'· Vo + Y'. (poY'~) = 0, 
(E26b) 

po(iw + Vo' Y')~ + P = 0, 
A 2A 
P = coP-

These last equations are further simplified (eliminate p and p and use the fact that 
Y'. (Povo) = 0) to the rather general convected wave equation 

(E27) 

F.2.7 Uniform mean flow 

The simplest, but therefore probably most important configuration with mean flow, 
is the one with a uniform mean flow. 

Axial mean velocity uo, mean pressure Po, density Po and sound speed Co are con
stants, so we have 

(iw + uo;x)p + PoY'· v = 0, 

Po(iw+ uo;x)v + Vp = 0, 

(iw+uOil~)(P-c5P) =0. 

(E2Sa) 

(E28b) 

(E28e) 

Equation (E28c) shows that entropy perturbations are just convected by the mean 
flow. Without sources of entropy, the field is isentropic if we start with zero entropy. 

We may split the perturbation velocity into a vortical part and an irrotational part 
(see equation 1.22) by introducing the vector potential (stream function) t and 
scalar potential ~ as follows 

(F. 29) 

If desired, the arbitrariness in t (we may add any Y' j, since Y'xY' j 0) may be 
removed by adding the gauge condition Y'. t = 0, such that the vorticity is given 
by 

(E30) 

By taking the curl of equation (E28b) we can eliminate p and 4> to produce an 
equation for the vorticity: 

(F.31) 
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This shows that vorticity perturbations are just convected by the mean flow. With
out sources of vorticity, the field is irrotational if we start without vorticity. 

Indeed, vorticity and pressur/density perturbations are decoupled. Since the diver
gence of a curl is zero, V-v = V- (Vxlj, + V~) = V2~, equation (F.28a) becomes 

(F.32) 

By taking the divergence of equation (F.28b), and using equations (F.28a,F.28c), 
we can eliminate <p and p to obtain the convected reduced wave equation for the 
pressure 

2'\72 A (' a )2 A 0 
Co V P - IW + UO ilx P = . (F.33) 

Again, we note that we did not assume isentropy or irrotationality. 

With some care, especially taking due notice of any singular edge behaviour, this 
equation may be transformed to the ordinary reduced wave equation 

by introducing 

p(x, r, (); W) = p(X, r, (); Q) exp(i fJM X), 
Co 
Uo 

where x = fiX, W = fiQ, M = -, fi = 
Co 
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G Answers to exercises. 

Chapter 1 

d) Only if thermodynamic equilibrium prevails. 

e) The pressure on the piston PI can be related to the atmospheric pressure P2 in the free jet by 
using the unsteady Bernoulli equation (l.31b) applied to an incompressible fluid (p = PO): 

8tlrjJ 1 2 2 
at + 2(V2 VI) + Po o. 

By neglecting the non-uniformity of the flow we have 

ilrjJ = 12 v-de:::::: Viel + V2e2. 
Using the mass conservation law (1.18) for an incompressible fluid we find by continuity of the 
volume flux 

AIVI = A2V2. 

Hence, the equation of Bernoulli becomes, with VI = at, 

Po =a(el+~~l2)+~((~~/-1)(at)2. 
At t 0 we have a ratio of the pressure drop, determined by the ratio of the potential difference, 
of 

Chapter 2 

a) A depth of 100 m corresponds to a pressure of lObar, hence an air density Pg which is ten times 

higher than at 1 bar. Following (2.43) we have a speed of sound of 75 m/s. Note that pgC~ = Y P 
so that C depends only on y and not on other gas properties. 

c) Mathematically, any sound speed can be used, but the simple physical meaning only appears 
when we choose the value that prevails at the listener's position. 

d) Not necessarily. In an isentropic flow is B1 0, but \l- (v PO» vanishes only for an homentropic 
flow. 

e) No, p' is more appropriate. 

1) Certainly not. 

g) Yes. 
h) No. The fluid should be stagnant and uniform (quiescent). 

i) No. pc2 yp so that pc depends also on the temperature because c .jy RT. 
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Chapter C 

a) Every point of the line source has a different distance, and therefore different travel time, to the 
observer. Note the tail of the 2-D wave-equation Green's function (Appendix E) (21l'c2) -I H (t

R/c)/Jt2 - R2/c2. 

b) The field P of one point source is given by (see Appendix E) 
Pit - c2V'2 P = 8(t - r)8(x - xo)8(y - yo)8(z) with solution 
P = 8(t - r - ro/c)/41l'c2rO where ro = {(x - xO)2 + (y - YO)2 + z2}1/2. 
Integrate over all xO, Yo, introduce xo = x + {r5 - z2}1/2 cos eo and 

YO = Y + {r5 - z2}1/2 sin eO, and obtain the total field 

p = II P dxOdyO = 4;~2 H:l 8(t - r - role) dro = (2e)-1 H(t - r -Izl/e). 
This could have been anticipated from the fact that the problem is really one dimensional. 

c) From Appendix E we find the total field 
00 00 

p(x, y, z) = ii L Hci
2
)(kRn) ~ ii L (11l'kRn)-i exp(i1l'i - ikRn) 

n=-oo n=-oo 
1 1 

where Rn = «x - nd)2 + y2) Z = (r2 - 2rnd cos e + n 2d 2) z. 

Consider the sources satisfying -r « nd « r, such that 

Rn~r-ndcose (r--+oo). 

This part of the series looks like 
1 

... ~ ii L(11l'kr)-z exp(i1l'i - ikr + iknd cos e) 

and grows linearly with the number of terms if 
exp(iknd cose) = 1, or kd cose = 21l'm. 

d) The condition is now exp(-i1l'n + iknd cos e) = 1, or kd cose = (2m + 1). 

e) If we make x dimensionless by a length scale L, we have o(x) = o(LL) = fo(I;). So the 

dimension of 8(x) is (length)-I. 

f) Multiply by a test function ¢ (x, y) and integrate 

... = - ff ~¢rdxdY = - fo27rfooo cf>rdrdB = 21l'¢(0, 0). 

g) Let S be given by an equation f(x) = 0, such that f(x) > 0 if and only if x E V. The outward 
normal n is then given by n = -(V' fllV' fl) /=0. Since H(f)v vanishes outside V, we have 

o = I V" l H (f)v J dx = I [ H (f) V" v + 8 (f) v • V' f) dx 

= Iv V"vdx - Is v·nda. 

h) Only the terms contribute which satisfy 0 < 2nL ::: cot, so we obtain 

Leof /2LJ 
(2 + R)g(t) = Rf(t) + 2 L (f(t - ~oL) - g(t - 2~oL)). 

n=1 

i) p(x) = e-ikx + R eikx . If p(xo) = 0, we have R = _ e-2ikxo . 

Since p(xo) = 0 and v(xo) =1= 0 we have simply Z = o. 
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j) Vex) (PocO)-1 (e- ikx -R eikx). If V (xo) = 0, we have R = e-2ikxo. 
Since v(XO) 0 and p(XO) 1:: 0 we have simply Z = 00. 

k) With p(x) e-ikx +Reikx and vex) (Poco)-I(e-ikx _Reikx ) we have R (Zo -
Poco)/(Zo + poco), so 

eikL+Re-ikL Zo+ipocotan(kL) 
ZL Poco "kL "kL PocO . e1 -Re-1 Poco+iZotan(kL) 

I) If R > 0, m 2: 0, K 2: 0, the zeros of Zeal) R + iwm - iKla> belong to the upper half plane. 
If R = 0 the zeros are real, and have to be counted to the upper half plane. The same for the 
real pole a> O. 

2n H (t)(a e-at -f3 e-{3t) 
z(t) = 2n(Ro(t) +mo'(t) + KH(t», yet) = , 

JR2_4mK 

where a, f3 = (R ± J R2 - 4mK)/2m. 

Chapter 4 
a) For a wave p' 9-(x + cot) corresponding to a C- characteristic propagating in a uniform 

region with (PO, CO) and uo = 0 the C+ characteristics carry the message: p' + pocou' = 
o in the entire wave region. This implies that p' = -Pocou' along any C- characteristic. 
Alternatively, we have from the momentum conservation law: Po fk u' - tx p' = - fo fk p' 

because p' is a function of (x + cot) along a C- characteristic. Integration with respect to time 
yields: Pou' = - p' I co. 

b) The piston induces the pressures pi = Po,rCo,IU' and pjr = -Po,lIco,nu'. The force amplitude 

is: F = S(PrCr + PlIcn)a>a = 9.15 N. As pi Pir = 915 Pa« poc~ :::::: 105 Pa we can use a 
linear theory. 

c) The flow perturbation u' is such that the total flow velocity Uo + u' 0 at the closed valve. 
Hence we have PI = -Pwcwu' = PwcwuO and PI -P2. For uo 0.01 m/s we find 
PI = - P2 = 1.5 x 104 Pa. For Uo = 1 m/s we find PI 1.5 x 106 Pa. The pressure P2 
can reach -15 bar if there is no cavitation. Otherwise it is limited to the vapour pressure of the 
water. 

d) Vj 2cw(AIS)(1- Jl- (uolcw»:::::' uoAIS. 6.p :::::,1Pw(uoAIS)2. 

e) Energy conservation implies: AIP]U] A2P;U;, while mass conservation implies: Alu} = 
A2U;. Substitution of the mass conservation law in the energy conservation law yields: PI = 

pz· 
t) Rl,2 = Tl,2 1 = (P2C2 - PICl)/(P2C2 + PIC})· 

Rair,water = 0.99945, Tair,water 1.99945. 

Rwater,air = -0.9989, Twater,air = 0.0011. 

g) TI T2 = 30 K, PI C} I P2C2 = .JT21 TI = 1.05. 
Rl,2 -0.03, Tl,2 0.97. 

h) (11 lIt) = Rr 2 = (PIC! P2C2)2/(PICl + P2C2)2, 

(pt + pj)(pf - Pj)1 PI cl = It - Ij ri, (Ii I It) 1 - (11 I It)· 

i) Rl,2 = 0.0256, pt = (PIC} up)/(l - Rl,2 e-2ikL ), pj = R1,2 pt e-2ikL , 

pi = pt e-ikL +Pj eikL . 

j) Tl,2 2AI/(Al + A2), Rl,2 == 1 Tl,2 = (AI A2)/(AI + A2)' 
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k) Tl,2 = 2P2C2Al/(PlQA2 + P2C2A2), R1,2 = 1 T1,2. 

1) lim R12=1, lim Rl,2=-1. 
Az/ AI-+O' Az/ AI-+oo 

m) For an orifice with wall thickness L and cross-sectional area Ad in a pipe of cross-sectional area 
Ap we have: R = Pt /pi = 
ik(L + 2o)Ap/[2Ad + ik(L + 28)Ap], where k w/CO,o ':::. 3~.J Ad/n. 

p) Without mean fiow (uo = 0): 

• At low amplitudes, when linear theory is valid, friction is negligible when o~ = 2v/w « Ad. 

• At large amplitudes, u2 / w2 Ad ~ 1, fiow separation will occur. Flow separation is induced 
by viscosity. If o~ « Ad then the exact value of the viscosity is not important to predict flow 
separation. We have reached a high Reynolds number limit. 

With mean flow (uo t= 0), we have the same answer as for large amplitudes. 

0) Flow separation always occurs when the particle displacement is of the order of the diameter 
of the orifice: ud '" wd. In the pipe we have: u'v = ud(d/ D)2. The critical level is given by 

pi", POcOwd(d/ D)2. 
At 10 Hz this corresponds to SPL 110 dB. 
At 100 Hz this corresponds to SPL = 130 dB. 
At 1000 Hz this corresponds to SPL 150 dB. 
Within a hearing-aid device, sound is transferred from the amplifier (at the back of the ear) to 
the ear-drum by means of a pipe of D = 1 mm. An orifice of d = 0.1 mm placed in this pipe, 
will protect the ear by limiting sound level around 1 kHz to SPL = 130 dB. Such devices are 
indeed in everyday use. 

p) In a stationary subsonic free jet induced by a mean fiow we expect a uniform pressure. The 
first intuitive guess for a quasi-stationary theory is to assume that the inertial effects upstream 
of the orifice remain unchanged, while the inertial effects in the jet are negligible. This leads 
to the common assumption that the end correction of a thin orifice with a mean flow is at low 
frequencies half of the end correction in the absence of mean flow. Experiments by Ajello [2J 
indicate a much stronger reduction of the end-correction. In some circumstances negative end 
corrections are found (Ajello [2], Peters [156]). Indeed the theory for open pipe termination of 
Rienstra [171] indicates that we cannot predict end corrections intuitively. 

q) R = Pt /pi = [A] - (A2 + A3)1/[Al + (A2 + A3)]· 

r) R = Pt /pi = 
[(A 1 - A3) cos(kL) iA2 sin(kL)]j[(A 1 A3) cos(kL) + iA2 sin(kL)]. 
R = -1 forkL = n(n +0.5), R o for A2 = o when Al = A3 and R = 1 for A3 = o when 
kL = nn (n = 0, 1,2,3, ... ). 

s) pi + Pt = Pb + pww2aoa, Pb/ Po = -3ya/ao· 

A(Pi - Pt) = Api - (pwcw)iw4na5a. Pi + Pt = Pt. 
t) fro/Pin = [1 + (~)2(2A¥t) 1)]-1. 

u) w5a5/ct = 3Pl/ Pw «l. At PO 1 bar, PI/ Pw = 0(10-3). 

V) 3YlPO/ Pwc~ = 0(10-4) hence aow/cw < 10-2. 

w) W5 ':::. 3YlPo/2Pwa5' R = -[1 + A(w2 w5)/2niwao]-1. 

x) When ao = OeD) we do not have a radial flow around the bubble. The approximation used for 
small bubbles fails. 
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y) [g] = s/m. 

z) w2g - c5bg e-iwr d(X - y)/2n. 

Integration around x y yields: -[;&g]~~ e-iwr 12nc5' 

[t gl± = =fikg±. At x y we have g± = e-iwr 14niwcO· 

Hence g;=v e'fik(x-y) with "+" for x > y and "-" for x < y. 

Therefore: g = e-=-iwr e-iklx-yl 14niwco. 

A) Using the result of exercise z) we find: 

g+(LIY) = go(Lly) with go(xly) e-iwr e-iklx-yl 14niwcO' 

Furthermore: 

g+(L) + g-(1,) R = ZL - POCO g-(L) 

POco g+(L) - g-(L)' ZL + PocO g+(L)' 

Hence: g(xly) = g+ + g- = go(xly) + R gO (x 12L y). 

341 

This corresponds to the waves generated by the original source at y and an image source at 
2L y. 

B) The same answer as the previous exercise with (section 4.4.5): 
R = -1/[1 +A(w2 -(5)/(2niwcwao)] where A is the pipe cross-sectional area, ao the bubble 
radius and wo the Minnaert frequency of the bubble. 

C) For Ix} - Yll » v'sl and k5S « 1 the Green's function is independent of the position 
(n, Y3) of the source in the cross section of the pipe. Hence we have: g(x}. tly}. r) = 
1::00 1::00 G(x, tly, r) dY2dY3 = SG(x, tly. r). 

D) Moving the source towards the observer by a distance fiy should induce the same change fig 
in g(x, tly, r) as a displacement fix = -fiy of the observer in the direction of the source. The 
distance Ix Y I is in both cases reduced by the same amount. 

This implies that: tJ.g = *tJ.y -MtJ.x. 
E) pl::::::pIC5"'Mo~PoV6(d2/S)=2x 1O-2 Pa. SPL=60dB. 

F) SPL = 63 dB. 

G) (Sla5)(pwc~/3ypo)~ = 2.3 x 104 or 87 dB. Pwc~/3yPO = 5.4 x 103 or 75 dB. 

H) f rv Vol D 0.1 kHz, wo/2n 6.5 kHz. 

ChapterS 

a) Z(O) = Poco (ZL + poco) + (ZL - poco)e-
2ikoL 

(ZL + poco) (ZL - Poco)e-2IkoL 

For ZL 00 we have Z(O) iPococotg(koL). As ReZ(O) = 0 for ZL 00 the piston does 
in general not generate any acoustical power unless there is resonance, i.e. koL = (n + 1)n. 
The acoustical field in the pipe is given by: p = p+ e-ikox + p- eikox . 
The amplitudes p+ and p- are calculated from the piston velocity up by using: pocoup = 
p+ - p-, Z(O)up = p+ + p-. 
Hence: p+ = ~(Z(O) + Poco)up. p- = ~(Z(O) - poco)up. 

b) ZL:::::: Zl_ + iPoWd. 

c) For x < 0 we have p+ = 0 while: p- = ~poco(Spl S)up(l + e-ikOL ). 
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The condition that there is no radiation, 0, is obtained for: kOL = (2n + 1)n', where 
n = 0,1,2, .... 

d) P = p+ e ikoL +p- e-ikoL , 

. . ,+ _ pocoup(S + 2Sp ) and 
wlth. p - HoL ' 

(S + 2Sp ) - (S 2Sp )e- 1 

Flow separation becomes dominant at the junction when: 
(p+ - p-)/pc5 = O(ko·.jSlJ. The amplitude of the second harmonic Ph generated by non
linearities, can be estimated from: 
(PI/ p+) ~ koL(p+ / PoC5)' 

e) Configuration a): Zp 
(ZI + POCO) - (ZI PoCO) 

where: Zl = SI Z2Z3/(S2Z3 + S3Z2), Z2 = POCO, Z3 = iPOcO tan(koL). 
The system is not a closed resonator because the condition of zero pressure at the junction is 
never satisfied. 

Configuration b): Zp = 
(ZI + POCO) (ZI 

where: Zl = SlZ2Z3(0)/(S2Z3(0) + S3Z2), 

+ + 
(Z3(2L) + POCO) - (Z3(2L) POCO) 

Z3(2L) = S3Z4Z5/(S4Z5 + S5Z4), iPoco cotg(koL), Z5 = Poco-
The system is in resonance for kOL (n + !)n'_ 

Configuration c): Zp = ~Pocoi tan(koL}. 

The system is resonant for koL (n + i)n'. 

1) At the mouthpiece we have: Pocoup = p+ 
If we assume friction losses to be dominant we have: 

where: a = ~ J n'v (1 + Y ~) ::::::: 0.027 
D COL vv/a 

Hence we find: p+ ::::::: 7.6 x 103 Pa, and p p+ + p- ::::::: 2p+. 
The corresponding fluid particle oscillation amplitude /). at the open pipe termination is: /). ::::::: 
P!(Pocow) ::::::: 7 x 10-2 m. 
If we assume non-linear losses at the open pipe termination to be dominant we have (equation 
5.24) U = .J(~n'upco) and p ::::::: Pocou 1.6 x 104 Pa. Friction losses and flow separation 
losses are comparable and the acoustical fluid particle displacement is of the order of the pipe 
diameter. 

g) pt - PI = POCOup, pt e-ikoL\ eikoL1 pt + pi, 
(pt e-ikOLJ -PI eikOLJ )SI (pt Pi)S2, 

p'+ e-ikoL2 +p'- eikoL2 pA+ + pA_ 
2 2 3 3 ' 

wt e-ikoL2 -pi eikOL2)S2 (pt 

pt e-ikoL3 +P3 eikoL3 0, POCOUex e-ikoL3 -P3 eikoL3. 

h) p = Acos(kx) for x < L, while p Be-ikx for x> L. Suitable dimensionless groups are 
z = kL, a = CM L/coa, A = poL/a, where the propagation speed of transversal waves in the 
membrane CM = .JT /a is introduced. The resonance equation is then 

(z-8a2z-1)sinz Aeiz . 
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J... --+ 0 when the air density becomes negligible or when the membrane becomes very heavy. 
In that case we have the membrane-in-vacuum vibration z ::::: a,J8 + ... and the closed pipe 
modes z ::::: mr + + ... (n 1,2,3, .. ). 

So when J... = 0 (no energy is radiated) there are indeed undamped solutions with Im(z) = 
Im(w) = O. 

i) m = POSnCl + 28), K = Poc~S~/V . 
• ) A i WPo(l + 28)Q 

J Pin = ( w2)' 
Sn 1- ~ 

Wo 

Ptransmitted _ 2(1 - w2/w~) - (iwV /coS) 
k) 

Pocoup - [2(I-w2/w~) (iwV/coS)]eikoL-(iwV/coS)e-ikoL' 

There is no transmission when both w Wo and koL = (n + 1)n. 

1) Transmission and reflection coefficient: 

pi 
T -::::t 

PI (1 +ikolSp/Sd)[1 - + (ikoV/2Sp)] 

PI (ikolS pi Sn) - 1 
R = - T + -:-:-'~'-'-:-:c:c-:--pt (ikolSp/Sn) + l' 

where: w~ = ~2Sd/(lV), and: l ::::: 1.6.JSi!ii ::::: ./Sd. 
. I S 

m) T 2 (2 - lWPwCw )- R T - 1 w~ _ (YPO)(_· ) 
Sp(YPo/V)(1 w2/(5) ' ,- V Pwl ' 

n) An energy balance yields: 1 Pin Q 3~ Pou3 Sn, where we assumed that Pin and Q are in 
phase and that vortex shedding at the neck can be described by means of a quasi-stationary 
model. The internal pressure Pin is related to the acoustical velocity u through the neck by the 
momentum conservation law: Pin = Poiwlu. 
This yields: u = ..j(3nwlQ/4Sn) which is a factor ..j(2SnkOl/Sp) smaller than for a !J... open 
pipe resonator. 

2 
0) Pin l+wouo-co+i(l+w~),withW~ c5Sn/(lV) and WI co/l. 

Pex WI Uo WI 

p) As there are no sources q = 0, we have: 
t 

, 2 f [ I aga pf(y,r)] 
p (x, t) = -co P (y, r)- - ga(x, tly, r)-8-- nj dr, 

aYi Yi y=O 
-00 

where ga(x, fly, r) = II G(x, tlY, r)dS(y). 
S 

Other contributions from the surface integral vanish if we assume that G has the same boundary 
conditions as the acoustic field on thesc surfaces. At Y = 0 we have C8ga /aYi)ni = O. Fur
thermore we have: pofru1 

:= -c5/yP', and nl = -I at y = 0, which yields: p' ~pl = 

Poc5 too ga(x, fly. 1;)frUI dr. The final result is obtained by partial integration. 

q) f::::: cO/(2L), u/(ww) ::::: 1 mls. p::::: Pocou ::::: 4 x 102 Pa. 
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The ratio of acoustical particle displacement to pipe diameter is w/ D = 2 x 10-2. We expect 
vortex shedding at the pipe ends to be a minor effect in a Rijke tube. 

r) Using an energy balance between sound production and dissipation by vortex shedding we have: 
0.051pou5uBxw::::: poil3 Bxw. or: 
1ft I :::::: 0.22uo. 
The hydrodynamic resonance condition fw/uo :::::: 0.4 combined with the acoustic resonance 
condition2nf = cO./(wB/lV) and the order of magnitude estirnatef "- 2./(Bw/n) = O.44m 
yields: f :::::: 18.5 Hz and uo :::::: 14 mls = 50 kmlh. Ipl pwllill :::::: 43 Pa. 
For a slit·like orifice we have l ~ w. 

s) The blowing pressure Po is a fair estimate. When preaches PO the flow velocity through the 
reed vanishes at high pressures, which provides a non-linear amplitude saturation mechanism. 

Chapter 6 

a) The fluid pushed ahead of the sphere in the direction of the translation can be considered as 
generated by a source. The fluid sucked by the rear of the sphere corresponds to the sink. 

b) Qualitatively we find that the streamlines as observed in the reference frame moving with the 
vortex ring are very similar to those generated by a dipole or a translating sphere. 
Quantitatively the circulation r = :f v . de of the vortex corresponds to a discontinuity !J.t/> 
of the flow potential across a surface sustained by the vortex ring. Such a discontinuity can be 
generated by a dipole layer on tbis surface which replaces the vortex ring [reference Prandtl]. 
Assuming the dipole layer to consist out of a layer of sources at the front separated by a distance 
o from a layer of sources at the rear, the potential difference is given by !J.¢ = uo. The velocity 
u is the flow velocity between the two surfaces forming the dipole layer. Taking the projection 
S of the surface on a plane normal to the direction of propagation of the vortex ring. we can 
represent in first approximation the dipole layer by a single dipole of strength uSlJ placed at the 
center of the ring and directed in the direction of propagation of the vortex ring. 

c) Electromagnetic waves are transversal to the direction of propagation like shear-waves. Acous
tical waves are compression waves and hence longitudinal. 

d) R = (PairCair - PwaterCwater)/(PairCair + PwaterCwater), Paircair = 4 x 102 kglm2 
8, 

PwaterCwater = 1.5 x 106 kglm2 s, 1 + R 10-4. 

e) A dipole placed normal to a hard wall will radiate as a quadrupole because the image dipole is 
opposite to the original dipole. A dipole placed parallel to a hard wall will radiate as a dipole of 
double strength because the image has the same sign as the original. 

f) The radiated power increases by a factor two because the intensity is four times the original 
intensity but the radiation is limited to a half space. 

g) The first transverse mode of the duct has a pressure node in the middle of the duct. Hence a 
volume source placed on the axis of the duct experiences a zero impedance for this first mode. 
H cannot transfer energy to this mode. 

h) The vanishing acoustic pressure at the water surface pi = 0 precludes any plane wave propaga
tion. The first propagating mode has a cut-on frequency fe = !co/ h corresponding to a quarter . 
wave length resonance. 

i) A dipole placed normal to the duct axis will not radiate at frequencies below the cut-off fre
quency of the first transverse mode in a duct with hard walls. This is explained by the destruc
tive interference of the images of the dipole in the direction of the axis. On the other hand, 
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however, when placed along the axis the dipole will very efficiently radiate plane waves at low 
frequencies. The amplitude of these waves are: Ipl = wpoQf,IS. 

j) Assume that the quadrupole is approximated by two dipoles (1 and 2), one very close to the 
surface of the cylinder (rl ::: R) and one far away (r2 » R). If the dipoles are directed radially, 
the dipole at the surface forms a quadrupole with its image (ri R21 q ::::: R), while the image 

of the other dipole is very close (r2 = R21 r2 « R) to the axis of the cylinder and very weak. 
The distance between the source and sink forming the second dipole is reduced by a factor 
(R21 ri) while the strength of each image is equal to that of the original source. As a result the 
dipole far away from the cylinder radiates independently of the dipole close to the cylinder. 
A very similar behaviour is found when the dipoles forming the quadrupole are normal to the 
radius of the cylinder (in tangential direction). Then the radiation of the dipole close to the 
surface is enhanced by a factor two, while that of the other dipole is not affected. 

k) Equal thrust implies: PluiDr = P2U~D~. If PI = P2 we have uIDl U2D2. Assuming 

subsonic free cold jets we have: I rv uS D2 = (uD)81 D6. Hence: Itl h DglDf = 26 or a 
difference of 36 dB. 
In practice a low sound production does also correspond to a lower power ~pu3 D2 rv 

(uD)31 D. The introduction of high bypass jet engines was aimed to reduce the propulsion 
costs, but it appeared to be also a very efficient noise reduction method. 

1) As the compressibility of an ideal gas is determined by the mean pressure there appears to 
be no monopole sound production upon mixing of a hot jet with a cold gas environment with 
equal specific-heat ratio y. The sound is produced [127, 146] by the difference in acceleration 
between neighbouring particles experiencing the same pressure gradient but having different 
densities. This corresponds to a force in terms of the analogy of Lighthill and a dipole source of 
sound. Therefore the radiation scales in a subsonic case at I rv M6. 

m) The large contrast in compressibility J( between the bubbly liquid and the surrounding water 
results into a monopole type source (fluctuating volume). This corresponds to a scaling rule 
I", M4. 

n) This effect is not significant in subsonic free jets. 

0) The characteristic frequency for turbulence in a free jet with circular cross section is uol D 
which implies that: D II.. = D fie'" uol co. Hence a subsonic free jet is a compact flow region 
with respect to sound production by turbulence. 
Note: for a free jet with a rectangular cross section w x hand w » h the characteristic frequency 
of the turbulence is O.03uol h. 

p) Using Curle's formula: 

I XiX} a2 Iff IXI) X} a P = Ti' (Y t - - dy + --"-::-:;-
4:rrlx13C6 at2 J' Co 4:rrlxI2~ at 

v 
and It ~ uol D, Tij rv Pou5, Fj "" PoU5dD, and V rv D3, we obtain: 

I pou~D (Uo d) 
P '" --- -+-

4:rrlxlc~ Co D' 

The cylinder induces an enhancement ofturbulence sound production by a factor (1 +dcol Duo). 
Blowing on a finger we indeed observe a significantly larger sound production than blowing 
without finger. 

q) Sound production due to volume fluctuations V' of the bubble is given by: 
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p' (41< Ix IC;"ater) -1 (a 2/ (2) Vi, where, assuming isentropic oscillations of the bubble of initial 

volume Vo 41<a~f3 at Po, we have: V'/Vo -p'/YairPO' The typical pressure fluctuations 

in a free jet are of the order pi rv Pwu6' Assuming a/at'" uo/ D we find 

4 3 2 
D Uo aO PwaterCwater 

Pwater rv 41< Ix I r D3 Po water 
The enhancement in sound production, when compared to no bubbles, is by a factor (1 + 
(ao/ D)3(PwaterC;"ater/ po»· 
Since PwaterC;"ateriPo = 0(104 ), even a small bubble will already enhance the sound produc
tion considerably. 

r) With a single blade the sound production as a result of the tangential component of the lift force 
(in the plane of the rotor) scales as: pi/po rv C L D(koR)3/81< Ix I. The sound produced by the 
axial component is a factor uo/co weaker. 
With two opposite blades, the lift forces in tangential direction form a quadrupole which result 
into a factor koR weaker sound radiation than in the case of the single blade. The sound pro
duction in a ventilator is actually dominated by non-ideal behaviour such as the non-uniformity 
of the incoming flow. 

s) In a hard walled duct an ideal low speed axial ventilator will not produce any sound. The effect 
of the tangential forces is compensated by images in the walls while the pressure difference 
b.p induced by the axial force is constant. Non-uniformity of the incoming flow will induce 
fluctuations in the pressure difference b.p which are very efficiently radiated away. Especially 
the supports of the ventilators are to be placed downstream of the fan. Further sources of flow 
non-uniformity are the air intake or bends. 

t) The sound production will be dominated by the interaction of the rotor blades with the thin wake 
of the wing. The resulting abrupt changes in lift force on the blades of the rotor induce both 
radial and axial sound radiation. The thinner the waker the higher the generated frequencies. 
As the ear is quite sensitive to relatively high frequencies an increase of the wake thickness can 
result into a significant reduction of noise (dBA). 

u) The tip Mach number wR/eo = koR is of order unity. The rotor is therefore not compact at the 
rotation frequency, and certainly not at the higher harmonics. 

v) The dominant contribution is from the unsteady force, given by CD~pou5' on the body. This 

results into a sound production scaling as (uO/cO)3 (see Curle's formula). 

1 (k )2 Z (ZL + Poco) + (ZL Poco) e-2ikoL 
w) ZL poeo 4 oa , p = POcO H l . 

(ZL + PoCO) (ZL - poco)e- 10" 

x) {l} ~[p*u + pu*] = i Re(Zp)luI2, and (W) = rca2(I). 

At resonance koL = (n + ~)1< we find: Zp Poco(Poco/Zd 
(see previous exercise). This corresponds to an enhancement 
Zp/ZL = [4/(koa)2]2 ofthe radiated power. 

y) pr = A + e-ikor +A - eikoL , iwpour p + iko[A + e-ikor -A - eikOL ]. 
(rt/ r2)2 Sl/S2 and rt = r2 - L, so r2 = L/(l - .JSl/S2). 

A + = POCOUp'I/ {[1 - i/(korl)] - R[1 + i/(koq)] eikoT! } 

A-I - ~ (koa2)2[l - i/(kOr2») -2ikor2 
R 1 e 

1 - 4 (koa2)2[l + i/(korz)] 
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z) Except for the highest frequencies, there is no radiation into free-space. Hence the size of the 
loudspeaker compared to the acoustical wave-length is not relevant for the sound transfer from 
loudspeaker to eardrum. The Walkman loudspeaker acts almost directly onto the eardrum. 

A) Friction losses are given by: (1 - Ip-/ p+1) f 1 e-2aL :::::: 2aL, where a can be calculated 
by using the formula of Kirchhoff. The friction is proportional to .;w. 
Radiation losses are given by: (1 - Ip-/ P+!)r = iCkoa)2, and are proportional to w2. Using 
the results of exercise (5.f) we find 
for /0 : (1 -Ip-/ p+ I) f 5.10-2, (1 -Ip-/ P+1)r = 1.2.10-4 ; 

forlt 3/0:(1 Ip-/p+l)f= 9.1O-2,(1-IP-/P+!)r= 1.10-3; 
forh S/o:(l-lp-/p+Df 1.2.10-1,(1 Ip-/p+l)r= 3.10-3. 
In a flute of the same size as a clarinet the radiation losses are increased by a factor eight (two 
radiation holes and twice the fundamental frequency). The friction losses increase by a factor 
.fi due to the higher frequency. 

B) Assuming a perfectly reflecting ground surface, the energy is distributed over a semi-sphere: 
I Wr/C2nr2). As lmin = 10-12 W/m2, we find for Wr 5 x 10-5 W that r:::::: 4km. 

C) In free space the bubble experiences the impedance of a compact sphere: 
Re(Z) PwaterCwaterCkoao)2. In a pipe we have: Re(Z) = PwaterCwater 8na6/ S. 

D) As the twin pipes oscillate in opposite phase the radiation has a dipole character and is a factor 
(k02a)2 weaker than for an individual pipe. Such systems are therefore acoustically almost 
closed. In a duct a wall placed along the duct axis can form such a system of twin pipes if it is 
longer than the duct width. In such a case the oscillation of the system is called a Parker mode 
and does not radiate because the oscillation frequency is below the cut-off frequency for the 
first transverse mode. In fact the twin pipes forms with its images an infinite row of pipes. In a 
similar way such modes can occur in rotors or stators of turbines. This kind of oscillations have 
been reported by Spruyt [200] for grids placed in front of ventilators. 

Chapter 7 

a) (i) kea = 2n/ea/cO = iiI = 1.84118, so /e 996.3 Hz. 

(ii) kll -15.93 i, so 20 log 10 I e-ikll D I = -201kll1D log 10 e = 
-138.3D = -20,andD = 14.Scm. 

(iii) kll = -18.4i, so D 12.5 cm. 

b) Since umlAa -+ 00, lm/l:n -+ 1 and ami. iumJL :::::: -ikpoco/ X. 
Forr::::::a 

c) A simple point mass source Q8(x xo) eiwt , where we take xO 
equation 

1 00 

V2 P + k2 P = -iwQ8(x)-8(r - ro) L 8(iJ - 2nm) 
ro m=-oo 

0, iJO = 0, gives rise to the 
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348 G Answers to exercises. 

Chapter 8 

a) Since A(x) = :n:a2 e2mx , we have p(x) = poe-i"/kLm2x-mx. 

b) Use the relation (8.64) 

c5(l - sy)2 + c5(sX - sxO)2 = constant 

with y = h at x = 0 and L, such that Xo = ~ L, and y = 0 at x = ~ L, to obtain 

L = J8he- 1(1- ish) = 54.7m. 

Chapter 9 

a) With the propeller in vane position (no angle of attack) the lift force as defined in (9.26) is 
directed in z-direction only, and Me = MR. Using the results of section 9.3 we find 

foMk sine cose cos(<P - wt + kr) 
p(X,t):::::: 3' 

4:n:ar(l - MR sine cos(<P - wt + kr)) 

The radiation pattern has zeros in the directions e = 0°, 90°, and 180°, while it has its main 
directions of radiation in (near) the conical surfaces e = 45° and 135°. 

b) R = a, R = a, so te = t - a/co, and R·M = Macosa, and 

poQ~ cos a - M 
4:n:p(x, t) = + PoQe V 3' 

a(l - M cosa)2 a2(1 - M cos a) 

1 (a. F~ ) (1 - M2)(a· Fe) 
4:n:p(x,t) = -- -M·Fe + . 

a2(1-Mcosa 2) cO a3(1-Mcosa)3 
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