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1 Introduction 

experiment 

Subject 
The development of a numerical/experiment al met hod for the mechanical characterization 
of materials described by a mixture model. 

measured 
data 

Reasons 

mat hematical 1 algorithm 

o Traditional methods are usually based on uniform stress- and strain fields, so the 
design of an experiment (i.e. geometry of the specimen and application of the load) 
must lead to  uniform fields. A method is required which is not restricted to uniform 
fields, so it is applicable to more materials and leads to more freedom in designing 
an experiment, 

computed I 
dat a 

o Due to manufacturing the structure of a specimen is often disrupted so it is no longer 
representative for the behaviour of the material. A method is required, which can 
determine material parameters in an ‘in vivo’ situation. 

Method 
Starting point is the identification method according to Hendriks [3], which is based on 
confronting experimental data with the outcome of a F.E.M. analysis. This method, which 
is visualized in figure 1, no longer demands a uniform stress- or strain field. The actual 

parameter data 1 1 adiustinent correlation 1 parameters 

Figure 1: Diagram of the identification method 

strain distribution is measured and the model strain distribution is calculated as a function 
of the values of the parameters. The error in the model is then used for a further adjustment 
of the parameters. 
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Remark 1 For the identification method a constitutive model is needed which is suffi- 
ciently accurate to describe the material under consideration. If an estimation of 
the variables does not look reliable, it is difficult to detect whether the algorithm 
failed, or the model was not sufficiently accurate, or the experiment did not contain 
enough information to determine all the parameters, as Hendriks’ method does not 
&stinguish betvqeen these separate caUSes of failure (see also Ratingen [GI). 

Remark 2 With respect to remark 1, actually 3 terms should be distinguished, namely: 

mater ia l  p a r a m e t e r  identification : A method to determine material parameters 

model  s t r u c t u r e  ideiitificatioii : Information, obtained from the identification 
process, is used to adapt the structure of the model in order to improve the 
material characterization. 

experiment  opt imizat ion : A method to adapt the experiment if it does not con- 

which characterize the material under consideration. 

tain enough information to determine all the material parameters. 

Object 
Reformulation of the parameter estimation problem (malting use of know-how from system 
control and identification) , in order to obtain additional information about the accuracy of 
the constitutive model and/or the value of the experiment out of the identification process. 
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2 

Figure 2: Model of the system 

In this report the state equations and an identification model will be formulated for mate- 
rials which are described by a mixture model. Here a 'simple' mixture model is considered, 
consisting of a purely elastic solid matrix with pores which are filled with fluid. Due to the 
viscosity of the fluid there will be resistance against flow of the fluid through the matrix. 
This makes the behavior of the bulk material time dependent: see Oomens [ 5 ] .  Figure 2 
shows schematically a mixture material subjected to  dynamic and kinematic boundary con- 
ditions. The motion of both the solid and the fluid is governed by the laws of conservation 
of mass and momentum: 

Q balance of mass: 

o balance of momentum: 

where Cs is the solid velocity, p is the Auid pressure, cre8 is the effective Cauchy stress, 
and K is the permeability tensor. The first term of the balance of mass represents the 
change in volume of the solid matrix, and the second term the amount of interstitial fluid 
which is squeezed out. cre8 in the balance of momentum is the stress required to deform 
the solid matrix (with pores but without the fluid) and p I  is the resulting stress beared by 
the interstitial fluid. In these equations the constitutive models for the fluid as well as for 
the mechanical interaction between solid and fluidl are already substituted. K depends on 
material properties. The constitutive model for the solid reads: 

IThe resistance against fluid flow through the matrix is assumed to depend linearly on the velocity of 
the fluid relative to  the solid. 
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o constitutive model: 
1 

where F is the deformation tensor, E is the strain tensor, Se# is the second Piola-Kirchhof 
stress, and G is a tensorfunction. The following assumptions are made: 

o Both components are intrinsically incompressible. 

Inertia forces and external body forces are negligible. 

CI There is no chemical interaction between the components. 

In the remainder of this report no expressions are substituted for the tensors Sen  and K 
to allow a more general approach. 

The identification method requires an experiment on the system and a numerical anal- 
ysis of this experiment. A possible experiment will be described in section 3. In section 4 
the governing equations for the system will be discretized using the finite element method 
in preparation of the numerical analysis. 



load 

I 
I I 1 
I, I I 

I porous material 

i 
i 
i 

markers 

d d d b b d  
pressure senso r s  

Figure 3: The proposed experiment 

In order to estimate more parameters out of one experiment, an experiment has to be 
designed which on the one hand contains as much information as possible and on the other 
hand is relatively simple, Here a bulge experiment is proposed. A circular disk of porous, 
permeable material, which is immersed in a fluid, is squeezed between two impermeable 
plates. In the first instance the material is assumed to be described sufficiently accu- 
rate by the 'simple' mixture theory. In contrast with a normal unconfined compression 
experiment where friction between the plates and the porous material is minimized (Arm- 
strong e.a. [l]), in the proposed experiment the porous material is fastened to the plates 
(figure 3). Therefore the compressive strain in the axial direction will be inhomogeneous, 
which is believed to afford more information than a homogeneous strain field. The upper 
plate is subjected to a prescribed load or displacement which may vary in time. To increase 
the inhomogeneity of the strain field the upper plate may be tilted. 

An optical method2 will be used to measure the displacement of a (large) number of 
discrete points at the outer surface of the porous disk. At  this time optical methods have 
the disadvantage that it is only possible to measure at the outer surface. Therefore it should 
be verified if the surface field cont ains enough information for a sufficient characterization, 
But in addition to information of the strain field also the fluid pressure in a number of 
positions inside the porous disk will be measured. All measurements at  time t will be 
stored in a column m(t) .  

Remark An orienting numerical analysis of the experiment described in this section is 
one of the issues of near future research. 

2A number of small markers is attached to the surface of the specimen. The positions of these markers 
are determined by a video tracking system, see Kendriks 131. 
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4 Numerical analysis 
In this section the governing conservation laws for the mixture are discretized using the 
finite element method. This discretization makes it possible to reformulate the equations 
in terms of state, input, and output, which is very common in system control and identi- 
fication (SCkI). The d.ifferent,ial eqi.mtionr are rewritten in an intevral form hy means of 
the weighted residual method, introducing weighting functions g and h:  

O-, -----* 

In general the momentary volume V is unltnown, since V changes in time. Calculations 
are simplified by transforming the equations to the reference volume Vo with outer surface 
Ao. After applying Gauss' theorem the equations 5 and 6 are transformed to: 

g F-" - o. t?J dVo i- Lo eo, F-l . K * F - " . ? o g J d b  = 

where Go is the outward unit normal on Ao. These equations, which are valid for each 
point of the continuum, are non-linear in the deformation. To solve them numerically, 
the equations are discretized. The mixture volume is divided in sub-volumes of a simple 
shape: the elements. In every element a limited number of discrete points are chosen: the 
nodal points. The displacement' U of a material point within an element is expressed as a 
linear combination of the displacementvectors of the nodal points: 

G ( t )  N $I(y)u'(t) = ?$I(-/)utyt)<t I = i' . . . ,  Nk (9) 
i = 1 , 2 , 3  

where $ I  is a displacement approximation function for node I :  y is the column of material 
coordinates, U I  is the displacement vector of node I ,  (&, 22, 2s) are the base vectors of the 
coordinate system, and Alk is the total number of displacement nodes. In a similar way 
the pressure field is approximated: 

244 = d J ( r ) p J ( t )  J = 1, . . . ,  Np (10) 
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where 4J is a pressure approximation function for node J ,  p J  is the pressure in node J ,  
and N p  is the total number of pressure nodes. The approximation functions $ I  and 4’ 
depend on the material coordinates and are chosen in such a way that: 

where ói” is the -4 Kronecker-function. Following the strategy given by Galerkin the weight- 
ing functions h and g are chosen to be equal to  the displacement- and pressure approxi- 
mation functions respectively: 

h = &($í?i > g = $1 (12) 

Substitution of the discrete forms and the weighting functions into the equations 7 and 8 
gives, after some rearranging: 

R(u)  u + K ( u ,  O) p = Q ( U ?  p: e )  
S ( U , ~ ) U  - R T ( ~ ) ~ = F ( u ? p , 8 )  

where u is the column of node-displacements, p is the column of node-pressures, and 0 
is the column of material parameters. For further explanation of the matrices see the 
appendix. Equation 13 is a system of as many equations as the number of pressure nodes, 
representing the balance of mass. Equation 14 is a system of as many equations as the 
number of displacement degrees of freedom (DOF), representing the balance of momentum. 

The number of discretized equations is equal to  the total number of DOF. Since the 
system is subjected to boundary conditions, a number of DOF will be prescribed, which 
reduces the number of equations. The resulting system will be rewritten by storing known 
DOF in a column with index k and unknown variables in a column with index 1: 

The following system of equations results (where the subscript and the superscript * denote 
a partition of the equally named original matrix): 
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5 Reformulation in terms of system control 
To make use of available parameter estimation techniques an appropriate mathematical 
model is required. The discretized balance equations 16 and 17 are therefore rewritten in 
a form which is common in system control: 

o balance of mass: 

o balance of moment,um: 

where Al E Rqit f1 contains the remaining terms of the balance of mass and f2  repre- 
sents the complete balance of momentum. In these equations the prescribed boundary 
conditions, which are explicit functions of time, are substituted: 

q k  = q k ( t )  > P k  = P&> (20) 

In order to  estimate parameters two more equations are needed, namely an output equation 
and a parameter equation. The output equation determines by means of interpolation of 
the calculated node- positions and pressures the expected measurement data: 

o output equation 

Parameters in the model are adapted on the basis of the difference between the expected 
measurements and the actual measurement values. The parameter equation indicates that 
material parameters are constant in  principle: 

o parameter equation 

The value of this equation will become evident if estimates of the parameters are considered. 
Suppose it is possible to  calculate estimates 4l, f i l  and 8. In general the model equations 

will not be satisfied exactly in that case. ~411 identification model is introduced in order to 
find estimates which satisfy the equations as far as possible, see van de Molengraft [4]: 
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where &(t)  and ( ( t )  are residuals. The residual c(t)  is the difference between the actual 
measurement data and the model predicted measurement data. The aim is to  find estimates 
for which a functional of the residuals, like 

is minimized, where V,  and W are weighting matrices. 
Although it is unusual in continuum mechanics, a residual has been allowed on the 

parameter equation 25. In other words, it is made possible that the estimation procedure 
finds an estimate en+l at time tn+l which slightly deviates from the estimate 8, at time 
t n .  When the residual on the parameter equation is not heavily weighted, the parameter 
estimate as a function of time may strongly vary as a result of model errors (e.g. the 
assumption that parameters are constant will in general not be correct). In this way 
information is gained about the accuracy of the model or about the region in which the 
model and thus the estimated parameters are valid. 

Minimizing J is equivalent to minimizing an alternative functional Jz defined by: 

J2 = Lote{g; wz s2 + [m(tj - 91' v [m(t)  - 91 + (28) 

SS,T wi Si t 5J3 f 3 t 3  + AT [ - i1 + ji - ti] t pT - &] } d r  

where X and ,u are columns with Lagrange multipliers. For simple notation, the function 
arguments have been omitted. In this formulation 51 and ( 3  can be treated as independent 
variables 141. A necessary. but not sufficient condition for J2 to be minimal is SJ2 = O for 
all variations Sql ,  &ply  68: ót1, & [ 3 $  SA and Gp. The following result is obtained: 

w;'x = Â& tj1 (29) 
w;I,u = e 

where dim(ql)= nq, dirn(pl)=dim(Xj= n p ,  dim(û)=dim(,u)= d. nq and n p  are the number 
of variable displacement- and pressure- DOF respectively. By solving this system of equa- 
tions, determination of the deformation and pressure field is integrated with the estimation 
of material parameters. 
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Discussion 
In this report a parameter estimation procedure is proposed for a material which is de- 
scribed by a mixture model. The method is based on finite element discretization and 
system identification techniques. An identification model is introduced which includes the 
discretized system equations? the parameter equation, and the output equation. The pa- 
rameter equation states that material parameters are in principle constant and the output 
equation determines the expected measurement data on the basis of the material parame- 
ters and the node- displacements and pressures. From this model a system of equations is 
deduced whose solution minimizes a quadratic norm of the residuals on the model equa- 
tions and the difference between actual and predicted measurement data. This approach 
has the following advantages: 

o Residuals can be weighted separately. 

o Determination of the strain and pressure field is integrated with the identification 
proces. 

o Common techniques are used from both continuum mechanics and system control. 

Important disadvantages are: 

o The elaboration depends on the chosen model. 

o The method may be time consuming and laborious. 
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A Appendix 
In the equations 13 and 14 matrices are used which will be given in this appendix. The 
same notation is used as by Bovendeerd [2]. 

R =  

I< = 

I = 1, . . . ,  N, 
J = 1, . . . ,  Nh 

i = 1 ,2 ,3  

(34) 

(35 )  
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K I J  = Lo eo$J . F-1 K . F-' . eo4'J  dVo I = 1, . . . ,  N p  
J = 17...,Np 

Q =  [ Q' . . .  1' 

I = l,,..,Np 

(37) 
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