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SUMMARY. 

Deformations are elastic if the stresses depend on the total deformation and not 

on the way in which this deformation has been reached. From this concept a class 

of rate-type constitutive models is developed for elastic deformations. It is proved 

that earlier proposed models, like those using the Jaumann and the Dienes rate, in 

general do not result in a correct description of elastic material behavior. 
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1. INTRODUCTION. 

In this paper attention is focused mainly on the description of elastic behavior, 

starting from a rate-type constitutive equation of the type 

(1.1 ) 

where u is the Cauchy stress tensor and V denotes an objective rate, like the 

Jaumann [1], the Truesdell [2], the Cotter-Rivlin [3] or the Dienes rate. 

Furthermore, D is the deformation rate tensor and 4C is a fourth order elasticity 

tensor, which does not depend on D nor on the rate of u but can be a function of u. 

In the geometrical linear theory the deformations and rotations are very small and 

the objective rate of u may be approximated by the material rate of u. Then, for a 

given state at time t and a given deformation path in the time interval [t ,t] the 
o 0 

current stress tensor u(t) can be determined by integration of 4C:D over that 

interval. In the geometrical non-linear theory, however, it is not allowed to 

approximate the objective rate by the material rate. 

The reason to choose (1.1) for the description of elastic behavior is that this form 

is often used as the starting point for the derivation of constitutive equations for 

elastic-plastic behavior. In section 4 it turns out that this kind of behavior can also 

be described by (1.1) if 4C is replaced by the elastic-plastic material tensor 4L. 

Nagtegaal and de Jong [5] showed that (1.1) yields unacceptable results in the 

simple shear test if the Jaumann rate is used. Other authors [6,7,8] tried to get 

acceptable results by using other objective rates. Lee, Mallet and Wertheimer [6] 

used a modification of the J aumann rate in their analysis of the shear test of 

kinematic hardening materials. However. a generalization of their procedure to 

arbitrary deformation patterns is not trivial. Atluri [8] used symmetrical and 

non-symmetrical objective rates that can be written as the Jaumann rate plus an 

objective function of the tensor u' D + D· u. His analysis of the influence of this 

function on the resulting stresses in the simple shear test leads, among others, to 

the conclusion that the Truesdell and the Cotter-Rivlin rate yield acceptable 

results. His conclusion that other objective rates are superfluous is not really 

proved. 

In this paper a class of objective rates is studied and it is examined which rates 

can result in a correct description of elastic behavior. The earlier mentioned rates 

EUT, Fundamental Engineering Mechanics 



5 

belong to this class. It will be shown that for each of these rates there exists a 

tensor A, such that 

(1.2) 

Here, the index c denotes conjugation, i.e. 

(1.3) 

The tensor S is invariant under rigid body rotations. Combination of (1.1) and (1.2) 

yields a relation for the material rate of S: 

(1.4) 

Integration of this relation yields S, whereupon (J' can be determined. This 

procedure is used in section 5 to investigate which objective rates can result in a 

correct description of elastic material behavior. For isotropic elasticity tensors 4C it 

will be shown that this is not the case for the Jaumann rate and the Dienes rate. 

The discussion in section 5 leads to the introduction of a special class of objective 

rates, each of which can result in a correct description of some kind of elastic 

behavior. The Truesdell and the Cotter-Rivlin rate belong to this class. In section 6 

the objective rates of this class are used in the analysis of the torsion of elastic 

bars. 
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2. SOME KINEMATIC NOTIONS. 
Let F be the deformation tensor of the current configuration of the body with 

respect to a reference configuration. The determinant J of F equals the current 

volume per unit reference volume: 

J = det{F); J>O (2.1) 

Right polar decomposition of F leads to the right Cauchy strain tensor C, the right 

stretch tensor U and the rotation tensor R: 

(2.2) 

Similarly, left polar decomposition of F leads to the left Cauchy strain tensor Band 

the left stretch tensor V: 

2 
F=V·R; B=F·f'C=V (2.3) 

Since V is symmetric and positive definite the eigenvalues Al, A2 and A3 are real 

and positive. Hence V and B can be written as 

3 ~ ~ 3 2~ ~ 
V = .b

1
(A.n.n.); B = .b (A.n.n.), 

1= I 1 1 1=1 1 1 1 
(2.4) 

~ ~ ~ 

where nl, n2 and n3 are mutually orthogonal unit eigenvectors. The principal 

logarithmic strains fl, f2 and f3 are defined by 

f. = In(A.) for i = 1,2,3 (2.5) 
1 1 

The deformation rate tensor D and the spin tensor n follow from 

(2.6) 

and from these definitions it is readily seen that 

B = (D + n)· B + B· (D + n)C (2.7) 
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A second relation for 13 can be derived from (2.4) if the eigenvectors of B are 

differentiable functions of t. Then there is a tensor N, such that 

. 
N = - NC; iii N·ii for i = 1,2,3 (2.8) 

and 13 can also be written as 

n 3.-;-; 3.-;-; 
D = LE (f.n.n,) + N]·B + B·LE (f,n.nJ + N]C 

p1 1 1 1 1=1 1 1 1 
(2.9) 

Comparison of this result with (2.7) yields that N has to satisfy 

3.-;-; 
N = D - .E (f.n.n.) + n + B·W 

1=1 1 1 1 
(2.10) 

where W is a skew-symmetrical tensor. Because D is symmetrical while N and n 
are skew-symmetrical it is seen that 

3 .-;-; 1 
D = .E (f.n.n.) + ~(W·B + B·WC) 

1=1 1 1 1 

Furthermore it is seen that the trace of D, tr(D), is equal to 

( ) J... 
tr D = I:D = J = f + t + f 

123 

(2.11) 

(2.12) 

(2.13) 

A motion of the body is called an objective equivalent motion if it is generated 

from the real motion by a rigid body translation and/or a rigid body rotation Q, 

where Q is a rotation tensor: 

QC.Q = Ij det(Q) = 1 (2.14) 

The transformation of the real motion to a objective equivalent motion is called an 

objective transformation. Rigid body translations are irrelevant in the sequel and 

are left out of consideration. Hence, objective transformations are characterized by 
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the tensor Q and can be denoted by ~Q). Quantities, related to an objective 

equivalent motion, are labeled with *. A quantity that remains unchanged for every 

~Q) is called invariant. A scalar quantity f/J, a vectorial quantity f/> and a second 

order tensorial quantity ljJ are objective if for every ~Q) holds 

(2.15) 

A fourth order tensorial quantity 4ljJ is objective if for every ~Q) and every second 

order tensor M holds 

(2.16) 

Every invariant scalar quantity is also objective. The unit tensor 1 is the only 

second order tensor that is both invariant and objective. There are three fourth 

order tensors that are both invariant and objective. These are denoted by 41, 41c 

and II and are defined by the requirement that for every M holds 

41:M = M; 41c:M = Me; II:M = tr(M)I (2.17) 

From their definitions it follows that J and U are invariant, that D and V are 

objective and that F, Rand {l are neither invariant nor objective: 

F* = Q·F; R* = Q·R (2.18) 

J* = J; u* = U (2.19) 

(2.20) 

It is tacitly assumed here that Q = 1 in the reference state. 
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3. OBJECTIVE AND INVARIANT STRESS QUANTITIES. 

The mechanical power, currently supplied to an infinitesimal small material 

element with current volume dV, is equal to q;DdV. The mechanical power per unit 

of reference volume 7r is given by 

7r = Jq;D (3.1) 

The principle of objectivity states that 7r is invariant, i.e. that 7r* = 7r for every 

~Q). Because D and J are objective q must be objective too: 

0* = Q. q. QC for every ~Q) (3.2) 

However, the material rate of q is not objective since 

(3.3) 

if Q f O. With (2.20) Q can be eliminated, yielding 

(3.4) 

and this shows that the Jaumann or Zaremba rate ~J of q, given by 

(3.5) 

is objective. Furthermore, it follows that every rate ~ of the type 

(3.6) 

is objective if M is objective. It is not necessary for M to be symmetric. Atluri [8] 

uses non-symmetrical tensors but it is not clear whether the resulting 

non-symmetrical objective rates offer any advantage in formulating constitutive 

equations. Here, only symmetrical tensors M of the type 
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(3.7) 

are considered with tensors H of the form 

H = H + u·p (3.8) 

Here H must be objective and P must be skew-symmetrical to guarantee objectivity 

ofM: 

H* = Q·H·Qc for every ~Q); P = _ pc (3.9) 

Combination of (3.5), (3.6), (3.7) and (3.8) finally yields 

~ = u- (0 + H)·u- u·(O + H)C (3.10) 

Hence, each objective tensor H results in an objective rate. It will be shown that 

each of these rates is associated with the material rate of an invariant stress tensor. 

Let A be the solution of 

A = - A·(O + H) for t>to; A = I for t=to (3.11) 

Without any essential restriction it may be assumed that A is regular for all t~to' 

From (2.20) and (3.9) it is seen that 

(A*·Q) = - (A*·Q)·(O + H) for every ~Q) (3.12) 

and this means that 

A* = A·Qc for every ~Q) (3.13) 

Because u is objective the tensor S, defined by 
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S=A·q·A, 

is invariant and from (3.10) and (3.11) it follows that 

11 

(3.14) 

(3.15) 

It will be clear that there are two methods to arrive at objective rates of the 

considered type: the direct method, based on the choice of an objective tensor H, 

and the indirect method, based on the choice of a tensor A which satisfies (3.13). 

To illustrate the direct method H is chosen as 

H = - '}'tr(D)I (3.16) 

where I is a constant. Together with (3.10) this results in 

(3.17) 

If I = 0 then ~ = ~J' i.e. the Jaumann rate is obtained if H = O. For I =f 0 it is 
seen from (3.11) that A is given by 

A = J/.pC (3.18) 

where the rotation tensor P is the solution of 

P = {l.p for t>to; P = I for t=to (3.19) . 

Other choices for H have been given by e.g. Lee c.s. [6] and Atluri [8]. 

To illustrate the indirect method A is chosen as 

(3.20) 

where I is a constant and R is the rotation tensor from the decomposition (2.2). 

The associated objective rate is given by 
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(3.21) 

The tensor ~D is the Dienes rate of o'. It is easily seen that the choice 

(3.22) 

leads to the Cotter-Rivlin rate ~C: 

~ = ~C + 2'}1;r(D)u; ~C = ir - (n-D)· 0' - o'· (n-D)C (3.23) 

Finally, if A is chosen as 

(3.24) 

the Truesdell or Green rate ~G is found 

~ = ~G + 2'}1;r(D)u; ~G = ir - (n+D)·O' - O'.(n+D)c (3.25) 

From (3.14) it follows that the invariant stress tensor S, associated with the last 

choice of A, is the second Piola-Kirchhoff stress tensor if 'Y = 0.5. 

The given examples show that the most widely used objective rates belong to the 

class of rates, specified by (3.10). In the last examples, resulting in the Dienes, the 

Cotter-Rivlin and the Truesdell rate, the tensor A at time t only depends on the 

deformation tensor F of the current configuration with respect to the reference 

configuration. This is not true for the first example since the solution P(t) of (3.19) 

will depend on n = n(r) for to~T~t. 
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4. SOME COMMENTS ON RATE-TYPE CONSTITUTIVE EQUATIONS. 

Usually the derivation of the constitutive equation for elastic-plastic material 

behavior is based on the decomposition 

D = De + DP ( 4.1) 

where De and DP represent the elastic and the plastic part of the deformation rate 

tensor D. The elastic part is defined by 

(4.2) 

with an objective stress rate ~. The objective tensor 4M may depend on the current 

stress and deformation but not on the stress rate or on the deformation rate. 

Furthermore, 4M is left- and right-symmetrical, Le. 

4M:Z = 4M:Zc; Z:4M = ZC:4M for every Z (4.3) 

It is assumed that there exists an objective, left- and right-symmetrical fourth 

order tensor 4C, the elasticity tensor, such that 

4C:(4M:Z) = Z for every Z ( 4.4) 

From (4.1) and (4.2) it then follows that 

~ = 4C:D 4C:DP (4.5) 

It remains to relate DP to D or u. For time-independent plasticity this relation is 

derived by the introduction of a yield criterion, a flow rule and a hardening model 

(Lehmann, [9]). This finally results in 

~ = 4L:D (4.6) 

EUT. Fundamental Engineering Mechanics 



where the elastic-plastic tensor 4L is objective, left- and right-symmetrical and 

independent of both the stress rate and the deformation rate. 

Straightforward integration of (4.6) is not possible since the stress rate in (4.6) is 

not the material rate of 0'. However, each of the objective rates in this paper is 

associated with a regular tensor A and an invariant stress tensor S, such that 

(4.7) 

Substitution in (4.6), followed by integration yields 

(4.8) 

Here S( to) = q( to) since A = I for t=to' Hence, 0'( t) is given by 

(4.9) 

where the symmetrical tensor K is defined by 

(4.10) 

Similar expressions for O'(t) were used by Nagtegaal and Veldpaus [10] for the 

numerical integration of the constitutive equations for isotropic hardening 

elastic-plastic behavior. However, they only considered the Jaumann rate, whereas 

(4.9) and (4.10) are applicable to any objective rate that belongs to the class 

defined by (3.10). 

If the outlined procedure to determine 0' is used in a general solution process for 

elastic-plastic problems it must be applicable for purely elastic problems too. It will 

be shown in the next section that this requirement restricts the allowable 

combinations of objective stress rates and fourth order elasticity tensors. 
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5. ELASTIC BEHAVIOR. 

Before analyzing rate-type constitutive equations for the description of elastic 

behavior some definitions are given. It is assumed that the material is stress-free in 

the reference configuration. 

A deformation from the reference configuration to the current configuration is 

called elastic if g is determined completely by F( t). In this case the stress-strain 

relation must be of the form (Hunter, [11]) 

g = FoG(C)· f'C; C = f'C. F; G(C) = GC(C) (5.1) 

An elastic material is isotropic if G=G( C) is isotropic. Then the stress-strain 

relation becomes (Hunter, [11]) 

(5.2) 

where 0:0' 0:1 and 0:3 are scalar functions of the invariants of B. With the spectral 

representation (2.4) of B it follows that, for an isotropic material, g is given by 

(i=1,2,3) 

3 -t -t 
g= E(O'nn)' 0' = 0: + 0:.;\2+ 0:.;\4 

i= 1 iii' i 1 2 i 3 i 
(5.3) 

A material is Green-elastic if the stresses can be derived from an elastic potential 

7('. For an isotropic Green-elastic material the principal Cauchy stresses 0'1, 0'2 and 

O's in (5.3) follow from 

(5.4) 

where (1, (2 and f3 are the principal logarithmic strains. 

Suppose that the procedure of the preceding section is used for the analysis of an 

elastic deformation from the stress-free reference configuration to the current 

configuration. Then the rate-type equation (4.5) reduces to 
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~ = 4C:D (5.5) 

If both ~ and 4C are specified o(t) follows from (4.9) and (4.10) if 4L is replaced by 

4C. Because (1 = 0 for t=to this yields 

(5.6) 

This relation represents some kind of elastic behavior if K( t) is independent of the 

deformation path and is determined completely F(t). A few examples are considered 

here. First of all it is assumed that 4C is an isotropic tensor with the earlier 

required symmetry properties: 

4C = ~./1 (41 + 4IC) + /1 .II 
1 2 

(5.7) 

The scalar quantities /1 and /1 may be functions of the invariants of B. The 
1 2 

constitutive equation (5.5) then becomes 

~ = /1 D + /1 tr(D)1 
1 2 

(5.8) 

and it is readily seen that 

(5.9) 

If ~ is the Dienes rate A is given by (3.20). With D=~Rc. (U· U-1+ U-1• (0). R it 

follows from (5.9) that 

(5.10) 

K is deformation path independent if the integral is path independent. A necessary 

condition is that there exists a function f=f( J) such that 
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(5.11) 

This condition is not sufficient: by choosing different deformation paths it can be 

shown that the integral is path dependent if p,dO. This implies that the Dienes rate, 

combined with the constitutive equation (5.8), in general cannot result in a correct 

description of elastic behavior. The same conclusion can be drawn if the stress rate 

in (5.8) is replaced by the Jaumann rate. For the Truesdell rate it turns out that K 

is path independent if /-L and p, satisfy 
1 2 

. 
(p, J21) + 2tr(D)p, J21 = 0; j = Jtr(D) 

1 2 
(5.12) 

Since p, and p, only depend on the invariants of B it can be shown that (5.12) can 
1 2 

be satisfied for every deformation path only if there exists a function f=f( J) with 

f(1 )=0, such that 

(5.13) 

where Go is a constant. In that case 0' and K are given by 

0' = K = J:2'Y[fI + Go(B - I)] (5.14) 

These results show that the combination of the Truesdell rate with the elasticity 

tensor 4C as specified by (5.7) results in a correct description of some kind of 

elastic behavior if (5.13) is satisfied. The stress-strain relation associated with this 

combination is given by (5.14). 

If the Cotter-Rivlin rate is used in (5.8) it turns out that K is path independent if 

there exists a constant Go and a function f=f( J) such that 

f(l) = OJ P, J21 = J~; P, J21 = 2(Go + f) 
2 U.J 1 

(5.15) 

The associated elastic stress-strain relation is then given by 

(5.16) 
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The same conclusions about these rates can be derived in a different way. In the 

approach outlined above it is assumed that both the elasticity tensor and the stress 

rate are specified and it is questioned whether or not this combination yields a 

correct description of elastic behavior. In the alternative approach it is assumed 

that 4C and the elastic stress-strain relation (5.1) are specified and it is 

investigated which objective stress rates of the type (3.1O) will result in that 

stress-strain relation. This means that a tensor H must be determined such that 

u- (!l + H)·q- q.(!l + H)C = 4C:D (5.17) 

In any vector basis this symmetrical tensor equation yields a set of six equations for 

the nine components of the matrix representation H of H in that basis. Hence, these 

components are not determined completely by (5.17). This is in agreement with 

section 3, where it was shown that an objective stress rate of the type (3.10) does 

not change if H is replaced by H + q.p with skew-symmetrical tensor P. In general 

it is possible to determine a class of tensors H such that (5.17) is satisfied for the 

given stress-strain relation and the given elasticity tensor 4C. In practice this is not 

of importance, but (5.17) can be used as a starting point for a further investigation 

of the commonly used objective rates like the Jaumann, the Dienes, the Truesdell 

and the Cotter-Rivlin rate. For simplicity only isotropic elastic behavior is 

considered and, as usual in literature, it is assumed that 4C is given by (5.7) with 

as yet unspecified scalars It and It . By taking the material rate of (5.3) and use of 
1 2 

(2.8) for the rate of the eigenvectors and of (2.11) for D (5.17) can be transformed 

into 

3 • -+-+ 1 C 
= .~ [q.-It {.-It tr(D)]n.n. - 'lit (W' B + B· W ) 

1=1 1 1 1 2 1 1 1 
(5.18) 

Let Hij = it·H·rij (Lj=I,2,3) be the components of the representation H of H in 

the vector basis, spanned by the eigenvectors of B. From (5.18) it then follows for 

the diagonal components Hu , H22 and H33: 

2H (f = iT - II. f - II tr(D) 
ii i i 1""'1 i 1""'2 

EUT, Fundamental Engineering Mechanics 
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For an isotropic material 0'1, 0'2 and O's are functions of f1, f2 and f3 only. Hence, 

with (2.13) for the tr(D) it follows from (5.19) that 

3 00' 
2H 0' = E (~- It 8 - It )f for i=1,2,3 

ii i j = 1 u f . 1 ij 2 j 
J 

(5.20) 

This must hold for all strain rates, so Hii must be a linear function of these rates. 

This is true for each of the commonly used objective stress rates. For these rates H 

is given by 

H = (JD - {tr(D)I + X; X = - Xc (5.21) 

where {3=0 and x=o for the Jaumann rate, {3=+ 1 and X=O for the Truesdell rate 
and {3 -1 and x=o for the Cotter-Rivlin rate. For the Dienes rate {3=0 while X 

follows from (i,j=1,2,3) 

X .. = ~(A. - A J 2 • W .. ; W = it . w . Ii 
lJ 1 J IJ ij i j 

(5.22) 

In the sequel only tensors H of the type (5.21) are considered. The associated 

objective stress rates, given by 

~ = ;,- (!l+H)·O'- q·(!l+H)C - {3(B·D+D·B) + 2{tr(D)q (5.23) 

are called ({3, ,)-type objective rates. It is not trivial that the combination of a rate 

of this type and the rate-type constitutive equation (5.8) or the equivalent form 

(5.18) can describe any kind of isotropic elastic behavior at all: for every 

deformation path the components of H have to satisfy the six differential equations 

that can be derived from (5.18) and this is impossible unless some special 

requirements are fulfilled. An evaluation of these requirements is given in the 

remainder of this section. For simplicity only constant factors {3 and , are 

considered. 

From (5.21) it is seen that Hii={3fj-,(ll+l2+fS)' These components of H must 
satisfy (5.20) for every strain rate. Therefore 
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(5.24) 

must hold for i,j=1,2,3. With J=det(F)=AIA2A3 and fi=ln(Ai) for i=1,2,3 these 

equations can be written as (i,j=1,2,3) 

(5.25) 

This set has a solution if and only if a function f=f( J) exists such that 

(5.26) 

The differential equations (5.25) then become 

(5.27) 

and the solution for the stress tensor is given by 

(5.28) 

If p..O, as for the Jaumann and the Dienes rate, the solution becomes 

(5.29) 

For ,8=+ 1 and ,8=-1 the stress-strain relations (5.14) and (5.16) for the Truesdell 

and the Cotter-Rivlin rate are found again. The trivial case Go=O is not considered 

anymore. 

Based on these results, it is concluded that the constitutive equation (5.8) with a 

(,8, I)-type objective stress rate may result in a correct description of isotropic 

elastic behavior only if It and It satisfy (5.26). This condition, however, might not 
1 2 

be sufficient because up to now only three of the six independent equations, that 

can be derived from (5.18), are taken into account: only the main diagonal 

components of H have been considered. With (2.11) for D and (5.28) or (5.29) for (1 
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the other equations result in three independent requirements for the non-trivial 

components of the matrix representation of the skew-symmetrical tensor X in the 

chosen vector basis: 

(5.30) 

for i,j=1,2,3 (j>i) and for every Wij. However, Xij=O for the Jaumann rate while 

Xij is given by (5.22) for the Dienes rate. Hence, these rates cannot result in a 

correct description of isotropic elastic behavior. Furthermore, if /3-+ 1 or /3=-1 it is 

seen from (5.30) that Xij=O and, according to (5.21), H is equal to D-')ir(D)1. This 

confirms the earlier derived conclusion that the combination of the Truesdell rate 

(.8=+1) and the Cotter-Rivlin rate (.8=-1) with the constitutive equation (5.8) and 

/11 and /12 according to (5.26) yields a correct description of isotropic elastic 

behavior. The corresponding stress-strain relation is given by (5.28). If /3.(#.1 and a 

stress-strain relation of the type (5.28) must be represented correctly by (5.8) then 

a (/3, "f)-type objective rate (5.23) must be used with a tensor X as specified by 

(5.30). 

Up to now no statements on the value of "f have been made. For Cauchy elasticity 

"f may be arbitrary. For Green elasticity, however, the principal Cauchy stresses (it, 

(i2 and (i3 must be derivable from an elastic potential 11" as specified by (5.4). For a 

stress-strain relation of the type (5.28) this is true only if {-0.5. This conclusion 

can be derived by differentiation of (5.4) with respect to fj and substitution of the 

result in (5.24). 
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6. TENSION-TORSION OF CYLINDRICAL BARS. 

To evaluate a given rate-type constitutive equation physical and numerical 

experiments have to be done. Quite popular nowadays is the so-called simple shear 

test ([4], [5], [6], [8] etc.). This is a theoretical test and no experimental data are 

available for really large deformations. An alternative is the torsion test of 

cylindrical bars or the combined tension-torsion test, which is much easier to 

realize than the simple shear test. As will be shown, phenomena like oscillations of 

the stresses for the J aumann rate also occur in the tension-torsion test. 

Let (ro,rpo,zo) and (r,rp,z) be the cylindrical co-ordinates of a material point of the 

bar in the reference configuration and the current configuration, respectively. The 

position vectors of this point in these configurations are given by 

(6.1) 

where ez is the unit axial vector and ere rp) is the unit radial vector for a point with 

circumferential co-ordinate rp. It is assumed that the strain field in the bar is 

axi-symmetric and independent of the axial co-ordinate zoo For the current 

co-ordinates (r, rp,z) this results in 

(6.2) 

The deformation tensor F( t) with respect to the reference configuration and the 

determinant of F are given by: 

(6.3) 

J = det(F) = (1+()~ .} 
o 0 

(6.4) 

Here, eli>=eli>( rp) is the unit vector in circumferential direction and erC rpo) and eli>( rpo) 

are denoted, for brevity, by er and e,t'I' From (6.3) the eigenvectors and the 
o "'0 

. c 
corresponding eigenvalues of the left Cauchy stram tensor B = F· F can be 

determined. This yields 
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-+ -+ 
n l = er 

rt2 = cos( 'if;)et.p + sin( 'if;)ez 

:ti3 = -sin( 'if;)et.p + cos( 'if;)ez 

where 'if;, the angle between elf' and ll2' follows from 

29 

(6.5b) 

(6.5C) 

(6.6a) 

(6.6b) 

(6.6C) 

(6.7) 

For an isotropic elastic material 0'1, (12 and 0'3 are completely determined by A.1, 

A2 and A.3 while the eigenvectors of u coincide with the eigenvectors of B. With 
(6.6) and the spectral representation (5.3) of u the components (1ij (i,j=r,<p,z) of the 

matrix representation of u can be determined: 

0' = (1 
rr 1 

U,rx" = M(u +(1 ) + (1 -(1 )cos(2'if;)] 
TT 2 3 2 3 

(1 = M( 0' +(1 ) - (1 -(1 )cos(2'if;)] 
zz 23 23 

(1,,,z M 0' -(1 )sin(2'if;) 
T 2 3 

(1rz = (1rt.p = 0 

(6.8a) 

(6.8b) 

(6.8C
) 

(6.8d) 

(6.Se) 

These stresses do not depend on Zo or <Po, so the relevant equilibrium equation and 
boundary condition are given by 

for r = R 
o 0 

(6.9) 
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where Ro is the radius of the bar in the reference configuration. The axial force N 

and the torque T in the end planes Zo = -fu and Zo = +fu of the bar follow from 

(6.10) 

where R is the current radius of the bar. 

The given set of equations must be completed by the constitutive equations. Only 

rate-type equations of the type (5.8) with a (11, i)-type objective stress rate and 

scalars /11 and 112 according to (5.26) are considered and it is assumed that the 

skew-symmetrical tensor X in (5.23) satisfies the conditions (5.31). This excludes 

the Jaumann and the Dienes rate. The stress-strain relation is then given by (5.28) 

and O"i (i=1,2,3) is determined by 

(6.11) 

Here f=f(J} must be a known function of J with f(l)=O. With (6.5), (6.7), (6.8) and 

(6.11) it is possible to derive from (6.9) and (6.10) a set of three equations for 

r=r(ro,t), f=t(t), a=a(t), N=N{t) and T=T(t). If either t or N and a or T are 

prescribed as functions of time the remaining unknowns can be solved. Since the 

equations are highly non-linear they are simplified by assuming incompressibility. 

With J=l it is seen from (6.4) that the current radius r(t) is related to the radius 

ro in the reference configuration by 

r 
r = _--.:o~ 

.; 1 + t 
(6.12) 

The relations (6.5), ... (6.10) remain valid but the stress-strain relations {6.11} have 

to be adjusted. It can be shown (Hunter [11]) that they must be replaced by 

,2,3 (6.13) 

where the unknown p=p(ro,t) has to be determined from the equilibrium equation. 

If fj 0 it can be shown that p equals the hydrostatic pressure. 

Two special cases are considered in more detaiL The first case concerns pure 
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tension of the bar. Then a(t)=O, all stresses except u are equal to zero and u is 
zz zz 

given by 

(6.14) 

In Figure 1 this stress is plotted as a function of /3 and t for -2~/3~+2 and -!~tS+l. 

It is noted again that /3 1 and /3--1 correspond to the Truesdell and the 

Cotter-llivlin rate, respectively. 

The second case concerns torsion without axial loading, i.e. N(t)=O. Some of the 

results are given in Figure 2. In Figure 2.a the relative axial elongation is 

represented as a function of /3 and a for -2$/39 and 1$~10. Figure 2.b gives a plot 

of the dimensionless torque T/(21rR3G ) as a function of the same arguments. If 
o 0 

experimental results for these two cases are available a choice for /3 can be made 

from these figures. 

In section 5 it is concluded that neither the Jaumann nor the Dienes rate can 

result in a correct description of elastic behavior. To illustrate this, also these 

objective rates are used to analyze the tension-torsion test. The derivations for the 

case of incompressibility are given in Appendix A. To show that the results depend 

on the deformation path two calculations are made. In the first calculation axial 

displacements of the end planes of the bar are suppressed (t=O) while the bar is 

twisted up to ll'=a. In the second calculation the bar is twisted up to ll'=a while 
1 1 

the axial force N is kept zero. For both the Jaumann and the Dienes rate this 

results in an elongation of the bar. After ll'=a is reached the bar is pushed back to 
1 

its original length. The final deformation is characterized by t=O and ll'=a, as is 
1 

the case in the first calculation. However, the deformation paths are different. In 

Figure 3.a and Figure 3.b the dimensionless torque is plotted as a function of a for 
1 

the Jaumann and the Dienes rate, respectively. The solid lines gives the results of 

the first calculation, while the results of the second calculation are represented by 

the dotted lines. The solid and dotted lines coincide only for small values of a and 
1 

this again shows that these rates cannot correctly describe elastic behavior for large 

deformations. 

It is noted that pure torsion of the bar (£=0, the first calculation) is very similar 

to the simple shear test. The results in Appendix A for pure torsion show that the 

shear stress is given by u4'z=Gosin( ll'fo) if the Jaumann rate is used. Hence, u4'Z and 
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T oscillate (Figure 3.a). For the Dienes rate also an analytical expression for O'o.pz 

can be derived. This expression is rather complicated but very similar to the 

expression for the simple shear test (Dienes, [4]). 
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7. CONCLUSIONS. 

In this paper attention was focused on rate-type constitutive equations k4C:D 

with emphasis on isotropic elastic behavior. It was shown that the commonly used 

stress rates can be written as k;'-(O+H).q-q.(O+H)C, where (H·q+q·HC) is an 

objective tensor. For a given objective rate H is not determined uniquely: if H 

results in the given rate then H+q· P will result in the same rate if P is skew­

symmetrical. For every objective tensor H a tensor A can be found which is related 

to an invariant stress tensor S, such that S=A·q·Ac and S=A.~.Ac. As outlined in 

section 4, these relations can be used as a starting point for the numerical 

integration of rate-type constitutive equations. 

For special purposes, for example in elastic-plastic problems, it can be ad-

vantageous to characterize elastic behavior by the rate-type equation k4C:D with 

elasticity tensor 4C. As soon as 4C and the objective rate are specified q can be 

determined if D is given as a function of time. The resulting stress-strain relation 

must be independent of the deformation path. As shown in section 5 this is not the 

case for the J aumann and the Dienes rate. 

To describe isotropic elastic behavior the rate-type constitutive equation 

ktt D+tt tr(D)I is used, where tt and tt may be scalar functions of the invariants 
1 2 1 2 

of the left Cauchy strain tensor B=F·PC. It was seen in section 5 that the diagonal 

components of the matrix representation H of H in the eigenvector space of B must 

be linear functions of the principal logarithmic strain rates. This resulted in the 

introduction of (/3, I)-type objective stress rates with tensors H of the type 

H=/3D-{tr(D)I+X with skew-symmetrical X. It was shown that each of these rates 

results in a correct description of some isotropic elastic behavior if X satisfies some 

special requirements, which turned out to be fulfilled for the Truesdell and the 

Cotter-Rivlin rate. Furthermore, it was concluded that 1=0.5 must hold for an 

isotropic Green-elastic material. 

If a (/3, I)-type objective rate is used for the description of the behavior of a given 

isotropic elastic material the value of /3 must be determined from data of large 

deformation experiments. Tension-torsion tests on cylindrical bars seem to be 

suitable for this purpose. 
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8. FINAL REMARKS. 

The applicability of a rate-type constitutive equation for the description of elastic 

behavior is investigated by requiring that the resulting relation between stresses 

and strains does not depend on the deformation path. As stated in section 4, the 

constitutive equation for elastic-plastic behavior is also of the rate-type. If 

kinematic hardening has to be taken into account a second rate-type equation 

appears, namely 

~= II. DP 
""3 ' 

(8.1) 

where a is the shift or back stress tensor and DP is the plastic part of D. In order 

to decide which objective rate has to be used in (8.1) a similar physical statement 

as in the case of elasticity would be very helpful. As long as this statement is 

lacking one has to consider different rates to find out which rate results in the best 

fit to experimental data. However, the objective rate to be used in (8.1) will 

probably differ from the one in (1.1). 
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APPENDIX A. 

The Jaumann rate-type constitutive equation for an incompressible, isotropic 

elastic material is given by 

iii - n· cfI - cfI· nc = 2G D 
o 

where cfI is the deviatoric part of the Cauchy stress tensor (1 

(1 = -pI + cfI; p = -itr( (1) 

(A.I) 

(A.2) 

The hydrostatic pressure p has to be determined from the equilibrium equations 

and the condition of incompressibility. 

In the tension-torsion test the radius r in the current configuration and the radius 

ro in the reference configuration are related by (6.12) if the material is 

incompressible. Hence, the matrix representations D of D and n of n in the vector 

basis rer'~4"~z} are given by 

where fa and f/Jj are defined by 

t 

'. = In(1+'); ¢j = -¥o J -La dr 
t (1+f)'2" 
o 

(A.3) 

(A.4) 

Substitution in (A.I) yields that the matrix representation (jd of cfI in this vector 

basis has to satisfy 
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[

0 d 1 [ 
(1'rr 0 0 0 

, dOd 0 o (1' lW (1' r.pz + tP j 0 
'd 'd o (1'r.pz (1'zz 0 

so for the initial condition is £:d = Q for t=to the solution is 

u1r = - Gofa 

(1'~ = GOfa - u~ 
°d _ 'd 0 

uzz - + 2tPjur.pz + 2GOfa 
'd _ 'd • 
(1'r.pz - - 2tPjuzz + GO¢j( fa-2) 
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(A.5) 

(A.6a) 

(A.6b) 

(A.6C
) 

(A.6d) 

The Dienes rate-type constitutive equation for an incompressible, isotropic elastic 

material is given by 

(A.7) 

where the rotation tensor R follows from F=Y·R and y2=B. With (2.4) and the 

results of section 6 both Y and R can be determined. For the matrix representation 

R of R this results in 

(A.8) 

where ¢d and ¢a are given by 

(A.9) 

Further elaboration of (A. 7) and (A. 8) yields equations for the non-trivial 

deviatoric stresses. These are given by (A.6) if ¢j is replaced by ¢d' However, there 

is a significant difference. From (A.9) it is seen that ¢d is bounded (I ¢d I ~ 11/2) 
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while tPj is not. As a consequence, oscillations can appear in the stresses if the 

Jaumann rate is used but not if the Dienes rate is used. 
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The dimensionless torque T / (21rRgGo) as a function of {J and a in pure torsion. 
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Figure 3.a 

The dimensionless torque T/(21rRgGo) as a function of £1'1 for the Jaumann 

rate-type constitutive equation. 






