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Optimal Trajectory Control of a Linear Robotarm by a State Space Method

P. C. Mulders (2), J. Jansen, J. M. L. Pijls; Eindhoven University of Technology/Netherlands
Received on January 16, 1989

With a linear robotarm - driven by a DC motor, with a maximum velocity of 1 m/s, an acceleration of 5 m/s2, an accuracy of
0.01 mm and for loads up to 50 kg - a trajectory control is performed.

The desired trajectory is firstly carried out by the robot by movement of the endeffector.. A force sensor delivers here-
with the inputsignals for the necessary motoraction. So the movement of the endeffector of this robotarm represents a
certain trajectory - a sequence of positions in time - and subsequently by identification a sequence of motorinputsignals.
Then the desired trajectory is again performed eventually with varying parameters, in which the known motor control signals

are updated by the new control algorithm.

This control law is based on a description of the robotarm by a state space model (including non linearities) in discrete
form. The optimal control algorithm is based on the matrix-ricatti equation by minimization of a performance criterion-
function and so the control signals are derived. An investigation is made of the static state feedback, which is imple-
mented in a microprocessor. Attention is paid to the influence of the variation of the so-called weighing factors.
Results of trajectory performances are compared with those obtained by conventional P.I.D. controllers.

KEYWORDS: Actuator, state space, optimal algorithm, matrix ricatti, microprocessor.

1. INTRODUCTION

In order to obtain experience in robot design and to test
advanced control systems as well a modular robot system has been
developed, which will consist of linear and rotary actuators. One
of each type has been developed in the mean time. The first
module is a linear actuator and this paper deals with the
development of an advanced control system for trajectory control
of the linear arm.

The trajectory control of robots is rather complicated -inherent
to the construction of robots— caused by specific properties,
which will be mentioned here.

* In generally robots are more dimensional and have a nunber
degrees of freedom. Links and joints are built together. The
final movement of the endeffector is the result of rotations/
translations of the individual joints. In control space the
dimension is even higher than the mentioned D.O.F. because
position and velocity in the same direction may both form
coordinates in the control space.

Depending upon the application one may deal with high
accelerations, velocities and a high position accuracy.
Friction and the fact that the different degrees of freedonm may
influence each other, mean that these systems can often only be
described by non-linear differential equationms.

Different loads but also inherent system parameter-values may
vary much during the performance of a trajectory. Moments of
inertia can easily vary by a factor 4 [5]. This makes the right
adjustment without adaptation of the controller parameters also
difficult.

The phenomena of elasticity of the links makes positioning
without vision difficult. In some cases feedback can be applied
to reduce this problem. [9].

*

*

*

*

For the design of P.I.D.-controllers for simgle input-single
output (SISO) systems the Ziegler-Nichols rules can be used and
this is based on the experience of the controller-expert. However
for coupled multi input - multi output (MIMO) systems this is
difficult and it is even worse whenever parameter variations are
involved and adaptive control should be applied.

From the considerations given above, it may be stated that the
control of a multi-dimensionral robot is difficult. Specially this
becomes clearly when a predetermined trajectory is performed.

One is faced with problems of:

- coupling and multidimensionality (according to control space).
- non linearity.

- parameter variation and adaptation.

In this paper a method is described, which is in primciple able
to tackle - to a certain extent - the stated problems. The
experiments have been carried out with a linear robot-arm and the
applied method is not limited.

The desired trajectory is known or firstly carried out by the
robot by movement of the end effector. The positions of the
endeffector represent that desired trajectory and by
identification a related sequence of motor input signals is
obtained. Then the desired trajectory is again performed
eventually with varying parameters, in which the already known
motor control signals are updated - by state feedback - by the
new control algorithm. This control law is based on a description
of the robotarm by a state-space model, according to:

2(t) = A x(t) + B u(t) gty = ¢ x(t) @

A: absolute damping
| q: relative damping
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Fig. 1 Absolute and relative damping in s- and z- plane.

With attention to the items mentioned above the robot controllers
are developed, and the next categorisation can be made:

- the individual joint P.I.D.-control.

- the computed torque method.

- the robust controller method.

At robust controller design the goal is to conmstruct a controller
with a minimal performance sensitivity to model uncertainty,
including both parametric uncertainty as well as high frequency
unmodeled dynamics.

Methods dealing with frequency domain techniques are in principle
only valid for systems described by linear differential equations
because they are based on the Laplace transform i.e. s-transform
for continuous and z-transform for discrete systenms.

Response terms as overshoot, indication and settling time (2%,
5%) are due to the pole-zerc configuration of the controlled
system in relation to the absolute and relative damping lires in
the s-plane and the z-plane as shown in Fig. 1.
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The description is kept im the time dowain, so no tramsformation——————

is carried out. This means that certain non-linearities of the
additive type still can be handled here.

The optimal algorithm of the controller is based on the matrix-
ricatti equation by minimization of a performance criterion-
function and so the control signals are derived.

The performance integral may contain e.g. contributions of the
deviations in trajectory positions and velocities but also the
control efforts like the motor control signals. Even the
boundaries for the control signals may be taken into account.
The updating of the parameters in the algorithm for adaptive
control depends on the time to solve the matrix-ricatti equation
and this is strongly dependent on the number of dimensions.
While with the conventional P.I.D.-action the control quality is
mostly described in global response sense, gives the state space
method a numerical measure for performance quality and the
control effort.

2. DESCRIPTION OF THE SYSTEM

Fig. 2

Photograph of the linear robotarm.
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2.1. The construction of the linear robotarm.

The linear actuator is the first part of a modular robot system,
and the major specifications are shown in Table 1.

maximum velocity 1 n/s
maximum acceleration 5 m/s2
maximum load 50 kg

stroke » 1nm

position accuracy 0.01 mm

position measuring system Heidenhain LS 513

power source DC-motor: Axem MC 19 PR 26

control system pC PID - or state controller

Table 1. Design specifications of the linear robotarm.

The mechanical construction is fairly stiff due to the hollow
frame construction, while at the same time the masses are kept
minimal.

The arm has been coastructed with side guide-ways, which enables
the preloading of the spindle and the application of roller bea-
rings for the main bearing system.

The rotation of the motor into a translation of the actuator is
converted by a spindle with a ballscrew nut. An advantage of this
combination is that the back-lash can be eliminated by preloading
the nut.

A disadvantage is that the rotary speed is limited because of the
critical speed of the spindle.

The applied ballscrew nut transmission SKF 25 x 25 R has a pitch
of 25 mm, which is rather large. Although vibration problems nay
arise -~ due to the slenderness of the spindle - it can be conclu-
ded from calculations and measurements that the lowest critical
speed is 54 rad/s, while the maximum speed is 40 rad/s.

The DC motor is of the disc-armature type with the following

characteristics:

~ a very small mechanical time constant. With a load of 50 kg
this becomes 26 ms.

- a continuously adjustable speed

-~ the largest torque at low speed.

The disadvantage however is the poor resistance against

overheating. This is impertant because the criterium for design

was very determined by the 100% duty cycle. Coupled to the

motorshaft is also a tachogenerator and a rotational encoder.

For direct position measurement along the arm an optical linear
digital incremental encoder has been mounted, type Heidenhain
1LS513 with a length of 1020 mm and an accuracy of 0.0l nm. The
necessary frequency range of the encoder is determined by the
speed of the arm and the accuracy of the lineal.

The free end of the linear robotarm is extended with a one dimen-—
sional force sensor, based on the bending principle and measured
by strain gauges. The force sensor is used in the TEACH mode.

loa&ing of the control program from the Intel development system
is done via a serial gate. The control program can also be loaded
as a ROM into the control computer.

2.3. Dynamic analysis of the linear actuator.

An analysis of the dynamic behaviour is necessary to optimize the
control of the linear actuator. The P.I.D.~control system for
this one-dimensional case is given in Fig. 4.

\/
des
Sdes Ay b U
= Rs Ry b mT Humec—-
+ +

Fig. 4 Scheme of the control system

ol

The signal flow is from the desired position Sges through all the
control elements (the position-controller Rs, the velocity~-con-
troller Rv’ the amplifier A, the motor M and the mechanical sys-
tem H

mec!
The elements -~ except the mecharical systenm Hmech ~ have known

h) to the actual position s of the arm.

characteristics or can be established (Rs, Rv) as a control algo-

rithm. In the case of a controller based on the state space
method it is very necessary to start with a valid model, because
this controller is strongly dependent on the procesmodel as shown
in Ch 3.

For the estimation of the lowest eigenfrequency a single- D.0.F.
system is considered. R moment of inertia Ji is transferred to a
mass m, = Ji (ZIIhSp)Z. The masses can be transferred and

sunparized to the end of the chain of masses and the springs,
applied in series, can be reduced to one spring constant by (2).

3
Y 1
1, 3 1 _ s TR
/k = ?:1 /ki mT,j = mj (—1/-]{———) (2)

With the respectively data the lowest eigenfrequency fo becomes:

= = 1 _ 1 k
m = 125 kg k=1,3 10 N/m fo = 57 Vo
Parameter Value

1402—1)2
1402 * -

J, Moment of inertia of the motor J1=12,4.10-4+1/2(

1

2.2, The contrel system hardware

An advanced control system is needed, because of the desired high
performance of the linear robotarm. (Fig. 3)

, force
ADC A
I sensor
LD
RST K1

Fig.3 The control system hardware

This gives the opportunity to test several control algorithms and
also to apply adaptive control i.e. to change the controller
parameters during operation when the characteristics of the
system are changing. As an option, the linear or rotational
encoder can be chosen for direct or indirect position
measurement. For the implementation of the controller is used a
singleboard computer of Intel iSBC 86/05 with a clockfrequency of
8 MHz, with a programmable interuptcontroller and - timer and
some parallel input and output gates. The signals of the force
sensor are read by a 8-bits DAC. The serve-amplifier is fed by a
12-bits or a 8-bits DAC. The last one is sufficient to avoid
noise sensitivities. For comparing the actual and the desired
position c/q velocity a comparator of 16 bits is applied. With an
accuracy of 0,01 mm on a total length of 655 mm the 16-bits
comparator is sufficient. The monitor communication and the
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and half of the loaded spindle .2,51.10 kgn?
3, Moment of inertia of the 3,71/29551 ) 2,51.10 *kgn’
remaining part of the spindle
m, Mass of a part of the spindle m1=1/2(1%g%%l—).4,16 kg
_ 1402-1
n, Mass of the motor, the arm m2-77 +1/2(_TZB§__)'4’16+mL'kg
frame, the remaining part of
the spindle and the load (mL) !
k, Torsional stiffness k,=9,85.10%+0,688.1  Na/rad
(spindle)
k, Stiffness of the housing k,=1,25.10% w/n
ky Axial stiffness of the spindle k;=1,8.107+5,2.1.10% W/n
d; Damping factor of the motor d1=4,3.10_3 Nm.s/rad
d, Damping factor of the put 4.12=1,6.10_2 Nm.s/rad
d3 Damping of the main bearing d3=120 N.s/m
d, Torsional material damping d4=8.10_5 Nm.s/rad
{spindle)
d5 Axial material dampinél d5=0,05 N.s/n
(housing})
d6 Axial material damping d6=0,05 N.s/m

{spindle)

Table 2. Model parameters.
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=5 m/s2 the estimated maxi-

: . . . _ k _ -5

mum amplitude of the vibration is X .. = —p~ L 5.10 7 m.

A dynamic analysis is needed when a maximum frequency above 51 Hz
and an accuracy better than 0.05 mm is required.

For a higher order analysis the lumped mass model of Fig. 5 is
used [3].

For the maximum acceleration 2 ax

ds
/
ka
@ d (2]
—— 4 —— s1 dG
i =
—1->-> Jy Jy h my my j——>8
k.
k1 8

|d1 Li]dz I:l;ld3
Fig. 5 Dynamic lunmped mass model.

It is useful to have insight in the dynamic behaviour of the
actuator, although the developed first version of the state space
controller - because of matrix dimensions and caleculation time -
is not-based on this sophisticated model.

The input signal is the motortorque (T) acting on its
disc-armature (Jl) and the motorshaft connected to the spindle by

a spring (kl)‘ The moment of inertia of the spindle is

distributed over its length. Therefore the moment of inertia of
the spindle is added partly to that one of the motor (Jl) and the

remaining part is represented by (Jz). The ballscrew-nut,
described by (3) is fixzed te,the frame by the spring (kz)

8y = ¢2 hsp/ZN (3)
The mass of the spindle (ml) is linked to the end of the arm by
the axial stiffness of the spindle (ka). At the end of the arm a
mass (mz) is located, representing the mass of the armframe, the

motor and the external load.

1§ the degrees of freedom are represented by the vector g, the

external moments by Q and with M is mass-matrix, D is dafiping-

matrix, ¥ is stiffness-patrix in which:

in which: x (t) = state vector A (t) = system matrix
u (t) = control vector B (t) = control matrix
_y (t) = output vector ¢ (t) = output matrix.

For time-invariant systems the matrices A, B en C are constant.
The dynamic behaviour {stability. transientphenomena) is de-
termined by the eigenvalues of matrix A. They are the roots of
the characteristic equation and the location of these poles in
the left half of the s-plane (Fig 1) determire the response time
and the possible overshoot.

For imﬁroving the dynamic-c/q transient behaviour the location
of these poles may be changed by applying state feedback as a
linear control law:

u(t) =-Lx (t) +r (t) (8)
The new input vector r (t) is the new reference signal, which

should be followed (servo-problem) or kept constant {regulator-
problem) by the system. This makes however essentially no
difference. For the feedback system of Fig.6 the next equation
can be derived:

()= [-BLlx () +Bz (8] 9

The dynamic behaviour of the modified system is now determined by
the eigenvalues of matrix [A - BL].

r{t) -+ U(t) System x(t) y(t)
) i y(t) = cxlt) |—»
a- x = Ax(t) + Buft) state| ~ output

reference

signal

State feedback

matrix L

Fig. 6 System with linear state feedback.

State feedback makes it possible that a fully controllable system
performs any desired dynamics. In this sense an original slow
system can be made faster by locating the new poles deep in the
left half of the s-planme. Big eigenvalues however mean a matrix L
with big components and subsequently big values for the inputsig-
nals u (t).

The choice of the state feedback makes a balance between the
result-output x (t) and the effort-input u (t)}. The weighing is

one object of the optimisation philosopby (Ch 3.2).

3.2. The optimal linear control law.

; qT = (gL, ¢2, 8) and QT = (T, 0, 0) (4) In this section an optimal control strategy will be discussed, in
! - - which the balance between control effort and outputresult is an
! then thé robotarm is described by the differential equation in optimum. Assuming the system of (7) with initial comdition:
matrix notation:
x (t) =B (t) 2 (t) +B t) v (®) ¢ EES LI B N

g + Dq + Kq = Q (5)
The dynamic model of the linear robotarm has been measured with a
Fourier analyzer (HP 5423) and calculated with a special
programme With the values for the parameters of Table 2. The
eigenfrequencies vary with the varying arm position. At each arm
position 3 modes are found, given in Table 3, within the rows
respectively left and right the calculated and measured values.

rn position mode f1 (Hz) mode £2 (Hz) mode £3 (Hz)

1 (mm) calc. meas calc. meas. calc. meas
180 82 - 123 103 708 384
355 90 73 132 124 703 389
510 95 59 141 119 694 375
755 101 92 153 145 685 389
1005 105 113 166 163 679 406

Table 3. Calculated and measured eigenfrequencies.
3. OPTIMAL TRAJECTORY CONTROL .
3.1. The state space description method.

Systems may be represented in the state variable form by a number
of differential equations and described as a vector-matrix diffe-
rential equation:

(ty =£ Lz (), ui() tl (6

where (t) = n-dimensional state vector

= .

(t) = r-dimensional control vector.

These equations are in general non-linear with time varying para-
meters. In the linear case general expressions for the systen
are:

(t) )]
(to) =X

() =& (t) x () +B (©)
(t) = ¢ (t) g ().

[
I 1=

and controlled by the linear state-feedback
uw(t) =-L (L) % {t) (10}

Then the closed sysenm is described by:

$(® =0 -8 ()L ]z ;K =z an

The feedbackmatrix L (t) must be chosen such that a defined per-
formance criterion J (t) over a certain time interval [to, te],

with t € {to, te] becomes a minimum.
t
e T T

J(t)=f [z (NQ(nxlr) +u (r)R(nu(r)ldr + 2 (te)P(te) x(te) (12)
t

The terms in this performance criterion function J represent
respectively the contributions of successively the output, the
control input and the output at final time with their correspond-
ing weighing matrices Q, R and Pe, which have to be symmetrical

and positive definite. Within the class of linear control laws
L(t), an optimal control law 1°(t) has to be found which forces J
to be a minimum. From L°(t) the optimal control strategy go(t)
then can be derived:

Oty = - 12(8) 5lt). (13)

From (12) it is found that J(t) can be considered as additional
"performance cost™ over the interval [t, te], which obeys the

following equation:

3(t) = x (8} P(E) x(D) (14)
with the next begin- and end values:
g B
J(to) =X (td) P(to) §(to) =J (15)

T
(e = 5 (t) Pty Ele).

"So matrix P{(t) plays an important role in the derivation of the

optimal control law and obeys a matrix differential eguation with
the systemmatrices A(t) en B(t)} and the weighing matrices ott)
and R{t) which is called 2 matrix ricatti equation.
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The optimal P°(t) is found by solving the next matrix-ricatti
equation:

P00t =aT (£) PO (£)+P° (£)A (£) 40 (£) PO () B (IR S ()BT (£)PO(E)  (16)

POt )=P,
which gives the solution for the optimal control law:
1°(e) = R )T (2% (1
; _ LT o
with 3 . = x (t )P (to)g(to)
Equation (16) is solved by defining a Hamilton-matrix F as:
T B
A Q
F= (18)
R 18T -A

The eigenvalues of F are divided in those of the right and those
of the left half plane of the s—plane and the last are identical
to the eigenvalues of the closed system i.e. of:

| 2 -BL |.

For time invariant systems the matrices A, B, Q, R are constant
and for the stationary control situation also P(t) and L(t) be-

come constant respectively P° and 1°. This yields:

1° = r71pTp° (9)
The calculation of P°(t) from the matrix-ricatti equation (16) is
very suitable to be done by a digital computer - by special pro-
grams like PC.Matlab, Matrix.X - because many standard operations
like inversion and multiplication of matrices, determination of
eigenvalues and eigenvectors are involved.

As said above for the time-invariant case 1° is a constant and
the calculation can be done off-line and only once like a fixed
P.I.D. controller. However if the system has time (or trajectory)
dependent parameters then A(t), B{t) have to be known or identi-

fied and Lo(t) has to be calculated many times during the trajec-
tory. This might be time critical.

4, IMPLEMENTATION.
4.1. Description of the model.

The dynamic analysis of the linear robotarm of Ch.2 with a number
of eigenfrequencies is necessary to get insight in the dynamic
behaviour and for estimation of the parametervalues but it is too
extensive for control purposes. With this first attempt of deve-
loping a controller with the state space method the model is
described by:
K U U K K

elb- offlimy = £¥y, (20

Ra Ra i

J . Ke © 7
[—+(H°+ML)h]s +[—=— +bls+[ wet
h R ’
position of the endeffector

a control vector u(t) = Ui and a outputvector y(t) = s(t) and

according to é(t) = A z(t) + B u(t) and y(t) = C x(t)

this gives the next equatioms:

. 010 0
x(t) = 1001 z{t) + 10 | u(t) ; y(t) = [0 1 0] x(t) (23)
00 -2 ¥ -

4.2 The teach and replay mode.

The desired trajectory is firstly carried out by the robot by
movement of the endeffector (Fig. 7). A force sensor delivers
herewith the inputsignals for the necessary motoraction (propor-
tional to the desired velocity). This is called the TEACH-mode
and a nominal trajectory sn(t) is registred. So the movement of

the endeffector of this robotarm represents a certain trajectory
- a sequence of positions in time - related to a series of nomi-
nal motorinputsignals Un(t). For the identification the signals

sn(t), ns(t) and sn(t) are discretized (with sampletime ts=1,2
ms) in the usual way.

From these data and the original assumed model an optimal control
law is derived. This may be done off-line for the stationary

case, but if adaptive control is required, this must be done
repetitive one-line during the trajectory performance.

In the REPLAY-mode the desired trajectory is again carried out,
eventually with varying parameters, in which the nominal motorin-
putsignals are updated via corrections by the new control algo-
rithm.

Deviations of the nominal values of state and input along the
trajectory are called perturbations:

x(t) = x(t) - §n(t) H u(t) = u(t) - gn(t) (24)
Then the system can be described by the linearized model:

x(t) = A x(t) + B u(t) ; y(t) = C x(t) (25)

in which &, B, C are the Jacobians given in (23).

Buffer with
trajectory Sa

s =
J/h = equivalent mass of the translating moment of inertia —
¥_ = translating mass of the actuator 1ts |
HL = translating mass of an external load A [ Determination Determination
F = external force to the endeffector Reconstruction (- sign of u sign of §
h = pitch of the spindle of Su and Sn
Ke = motorconstant - + + |
Ra = motor-resistance F, M|l Correction for
b = viscous friction coéfficient 1
T = torque due to the coulombfriction i non linear term ¢
gc - voltage 1 the motorbrush Calculation of
, = voltage loss over the motorbrushes contr sign. Ua
Uoff = offset of the amplifier +
= aad AN c Sn
Kv gain of the amplifier : + u + U SYSTEN 2y
Ui = imputvoltage to the amplifier Buffer with Ua - Py
+ + Amplifier + Robot| S +
Twc is dependent of the sign of s, and Ub’ Uoff of the sign of Uo=d
U,. Substitution of the relevant data delivers the next diffe- éDE“TIFICATION ” "
o FF-LINE ~ | ¥ | Reconstruction |%2=%
rential equation: SEicn soix ¥ = -l % Tof %
(0.39541.44 107K ) & + 11.85 st(c+1.44 107°F) = U, (21) ]
- . B i
s+es+ f o= (22) REAL-TINE —]
. REPLAY MODE
For the additive nonlinearity ¢ - dependent on the sign of s and
Ui according to the given matrix - a simple correction is made in
Le-
the control software and therefore the factor c and subsequently
the value of f is not essential. Systen-model

c sy0 s<o
Ui)o 0.9 0.58
Ui(o 0.24 -0.08
}
xl(t) 4 s{r) dr
Defining a state vector: x(t)= xz(t) = s(t)
x3(t) s{t)
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in state space -

solution of the optimal
control strategy from the
matrix ricatti eguation

Weighing factors
for output and -
control effort -

OFF-LINE =

Fig. 7 Teach and Replay of the controlled system.



4.3 The applied optimal linear control law.

The controllability of the systenm, with pmatrices A, B is firstly
investigated with the next controllability matrix:

2 0o 0 3
[B AB A"B] = 0o 7 a7 (26)
T omey 2

Rank = 3, vhich implies full controilability. According to the
statements made in Ch 3.2 about the performance ¢riterionfunction
J and the weighing matrices Q en R (with normalisation) and with-
out weighing the endvalue x(te) the expression for J becomes:

3= ffe Loy 20 + @, %20 + g 2l +ofe) 1 ae @D
t

o
If only position - and velocity feedback is applied ( the I s dt
is not fed back) then the state vector x(t) and the matrices 2,

B, O and R are reduced to:
xz(t) [ 0 9, 0
x(t) = x3(t) Ph= 0y 4l B = y i 9=l a ; R=1 (28)

According ch 3.2 and the egs. {16) to (19) the optimal stationary

control matrix L° is calculated by solving P° from the stationary
matrix-ricatti equation. With the data from {28) the Hamilton
matrix F {18) can be constructed. The negative eigenvalues of F
equal the eigenvalues of [A-BL]. For the simple case of (28)
these calculations can be done by hand and the result is:

o Z
P=01 1, Ll=lo 4 (atyaP 41 a2, /7] (29)

Realizing that the factors 11, 12 and 13 are related respectively

to j s dt, s and s, so integral - , proportional - and differen-

tial feedback, these optimal "P.I.D.-values” in L° are determined
by the weighing factors of Q and R (ql, 0% q3) and the

components of matrices A en B (a and 7).

During the experiments trajectory control over different
distances, also the whole range of 655 mm, - and some registered
on a videotape [2) - have been performed with remarkable good
results. Here some comparable responses are given in Fig. 8 about
the dynamic behaviour if the start position deviation

xz(o) = ~1'mn with a sampletime ts = 1.2 ms. The calculations

have been carried out with the software package PC-Matlab.
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Fig. 8 Responses with the (optimal) state space controller.

In Fig 83 optimal responses with a variation of qz(weighing
factor of position deviation) with g, =43 =0 are shown. From
this the optimal value of q, can be studied.

In Fig. 8B the different responses on variations of 13 - around

the optimal value }response b) - are shown.
In Fig. 8C two optimal responses with the variatiom of 4,

(veighing factor of the integral position deviation) with q3 = [}
are shown. This illustrates the effect of the 9 value.

Ip Fig. 8D two optimal responses with a variation of q; {weighing
factor of the velocity deviation) with g, = o are shown. This
jillustrates the effect of the a3 value.

CONCLUSIONS.

The trajectory control of robots is rather difficult inherent to
the specific properties - more dinensionality, non linearity,
coupling of dimensions, variations of parameters, elasticity - of
robots.

A controller is developed to handle some of these items. With a
state space controller no transformation to the fregency-domain
has to be made, so e.g. additive non-linearities can be treated.
An optimal control algorithm with minimizing a performance
criterion function based on the matrix-ricatti equation is
specially suitable for digital computers, because of the ability
to perform matrix operations. Tn fhis sense also the components
of more dimensions can be handled. The optimal control strategy
for the static case - with constant paramters for the traject -
can easily be calculated.

The dynamic case - with updating of the control strategy on line
- peeds still much faster computers because the matrix-ricatti
equation has to be solved frequently during the trajectory
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performance.
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