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Abstract 

Given linear stochastic differential equations (sde's) with random co­
efficients (independent of place), the polynomial chaos decomposition can 
be used to solve these sde's numerically or analytically. In general this is 
possible if the distributions of those coefficients are known and can be in­
verted. In this report we will look at a concrete example and look how and 
under what choices of the coefficients the polynomial chaos decomposition 
can be applied. 

1 Introduction 

The work presented in this report takes place in a research program including 
several PhD research theses. A general title of the program could be: "Fast, ef­
ficient and robust optimaIization of quiet and acoustically insensitive structures 
with uncertain parameters". TNO-TPD and the University of Eindhoven are 
participants in this project. 
The main question to be answered in this report is given a sde, when is it allowed 
to use the polynomial chaos decomposition to solve this sde (either numerically 
or analytically). In this report we will focus on the following example as an 
illustration 

{ 

~U(XIW) + o:w2U(x,w) = 0 x E]O, 1[, wE JR.+ 
U(O,w) =0 wER+ 
d~U(l,w) = f3F wE R+ 

(1) 

with 0: = ~ and f3 :::::: 1E' This differential equation describes the longitudinal 
waves in a bar clamped on one side in a rigid wall excited by a harmonic force 
f. This results (after some time) in a harmonic displacement u (that's only true 
if there's damping present, but for simplicity we removed the damping). We 
define F(w) = f(t)exp(-Iwt) and U(x,w) = u(x,t)exp(-Iwt). Thus U is the 
displacement, A the cross-section, p the density and E the modulus of the bar. 
We will assume that 0: and f3 are random variables. It follows that the solution 
U(x,w) will be a random variable for every x E [0,1] and w E JR.+. In other 
words U will be a random field. 
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It would be nice if we could determine the statistics (like the expectation and 
the variance) of the solution U(x,w) given the probability densities of a and 
fJ. Note that a and fJ are not independent since it's in general not true that 
lE(afJ] = lE[a]·lE[fJ] since a and fJ have a common factor. But it's not possible (at 
least we don't know how) to determine the statistics of the solution U(x,w) using 
the polynomial chaos decomposition given arbitrary probability densities of a 
and (3. However for some choices of a and (3 it's possible to determine the mean 
and variance of the solution U (x, w) using the polynomial chaos decomposition. 
Before determining those solutions we will briefly discuss the polynomial chaos 
decomposition. 

2 The polynomial chaos decomposition 

The polynomial chaos decomposition uses the fact that the Hermite polynomials 
are orthogonal with respect to a weighting function (see for example (Janson, 
1997». This weighting function is just the Gaussian probability density. In 
other words 

(2) 

where the Hermite polynomials are given by 

Lm/2J , 

hm(x) = ~ (-It 2rr!(:::~ 2r)!x
m

-
2r 

(where Lm/2J = m/2 if m is even and lm/2J = (m -1)/2 if m is odd) and the 
Gaussian probability density is given by 

f(x) = ~exp( -x2 /2) 
v27r 

To formulate it slightly different. Let .; be a zero-mean Gaussian with variance 
one and define 

Lm/2J , 
"( l)r m. .;m-2r 
f:::o 2r r!(m - 2r)! 

then it follows that the random variables hn (';) and hm (';) are orthogonal 

The polynomial chaos decomposition states that a random variable X which 
satisfies the following two conditions 

1. Var[X] < 00 

2. X is defined on the same probability space as where,; is defined 

is a linear combination of the Hermite polynomials, that is 

00 

X = L,9jhj (e), 9j E lR 
j=O 

2 

(3) 



(this sum holds in the second order sense meaning that the covariance and 
mean of both sides are equal, thus also in probability and in distribution, but 
not necessarily in sample-path). In other words the Hermite polynomials form 
a basis ofthe space ofrandom variables which satisfy the above two conditions. 
Mathematically these two conditions mean that X E L2(0, 1:, P) where the 
probability space (0,1:, P) is such that e E (0,1:, P). Returning to the sde in 
formula (1). As being said in the introduction, we want to use the polynomial 
chaos decomposition to solve the sde in formula (1). Thus assuming that the 
solution U(x, w) admits a polynomial chaos decomposition we have 

00 

U(x,w) = Lgj(x,w)hj(e) 
j=O 

and we have to determine the coefficients {gj(x,w)}j. This can be assumed if 
the solution U(x,w) met the two conditions given above. We will see in the 
next section what kind of restrictions these conditions imply on the coefficients 
of the sde in formula (1). 

3 Generation of random variables 

In the previous section we looked at the polynomial chaos decomposition. In 
this section we will look what that means for the coefficients of the sde in 
formula (1) if we want to use the polynomial chaos decomposition to solve the 
sde in formula (1). Let's have a closer look at the second condition given in the 
previous section, what exactly does this condition mean? It turns out that if the 
random variable X is a continuous function of a random variable e then X is 
defined on the same probability space as where e is defined (see appendices A.3 
and B.1). This result is illustrated/used in the following theorem and corollaries 
(see for example (Blum and Rosenblatt, 1972». In the following theorem it is 
shown that a random variable with a continuous distribution function can be 
transformed into an arbitrary random variable if it has a continuous distribution 
function. 

Theorem 1. Generation of random variables 
Let X : 0 -t R be a random variable with a continuous distribution function 
Fx : R -t [0,1] defined on a probability space (0,1:, P) with P : 1: -t R defined 
by P(X $ x) = Fx(x). Let F : R -t [0,1] be a continuous distribution function 
(see appendix A.1) of a certain random variable. Then the following holds: 
Define a random variable Y : 0 -t R by Y F-l (Fx(X» then Y has as 
distribution function F and Y is defined on the same probability space as X is. 

Proof. It follows that 

Fy(y) = P(Y $ y) = P(F-1 (Fx (X» $ y) = P(Fx(X) $ F(y» 

= P(X $ F;l(F(y))) FxCF;l(F(y))) = F(y) 

Hence Y has as distribution function F. Note that both inverses exist since the 
distributions are monotone increasing and continuous. See appendix A.3 for the 
last part of the theorem. 0 
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As a special case of the theorem above, if this random variable X is Gaus­
sian distributed we can express the uniformly distributed variable as an infinite 
polynomial in X. 

Corollary 2. Generation of a uniformly distributed variable 
Let X be a zero-mean Gaussian random variable with variance one and F the 
distribution junction of an uniformly distributed random variable on [0,1]. It 
follows from theorem 1 if we define U F-1(Fx(X» then U has as distribution 
junction F and U is defined on the same probability space as X is. We will also 
show that U = F-l (Fx(X» = Fx eX) and 

1 1 00 (-l)j x 2j+ 1 

Fx(X) = 2 + '21r ~ (2j + l)2Jj! 
V £'7[" )=0 

Proof. The probability density of U is given by 

{
I XE[O,l] 

fu(x) = 0 x E III \ [0,1] 

The corresponding probability distribution is given by 

FuCx) = [Zoo fu(y)dy 
{ 

0 x<O 
x x E [0,1] 
1 x ~ 1 

(4) 

The inverse is given by Ful(x) = x for x E [0,1]. It follows that U = 
F-l(Fx(X» = Fx(X) since Fx(X) takes values in [0,1]. 
For the second part, we have 

When we make a Taylor expansion of this integral we get 

1 
Fx(x) = 2+ 

1 00 (-1)jx2j+l 

~ (2j + 1)2jj! 
(5) 

and finally 
1 

Fx(X) = 2+ 
1 00 (_1)jX2j+l 

~ (2j + 1)2ij! 

0 

As a special case of the theorem above, if this random variable X is Gaussian 
distributed we will express the exponentially distributed variable as an infinite 
polynomial in X. 

Corollary 3. Generation of an exponentially distributed variable 
Let X be Gaussian random variable and F the distribution function of a ex­
ponentially distributed random variable. It follows from theorem 1 if we define 
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Y F-l (Fx (X» then Y has as distribution function F and Y is defined on 
the same probability space as X is, We will show that 

with according to corollary .4 

1 1 00 (-I)i x 2j+l 

U=Fx(X)= 2+ f2=L (2'+1)2j" v ~1r j=O J J, 

(6) 

Proof, In order to show formula (6) we have to invert the distribution of the 
exponentially distributed random variable Y. The probability density of Y is 
given by (A > 0) 

f ( ) - {AexP(-AX) x;:: 0 
yX- 0 x<O 

The corresponding probability distribution is given by 

The inverse is given by 

It follows that 

{ 0
1 - exp( -Ax) x;:: 0 

x<o 

Y FyI(U) = A-I f ~Uj 
j=1 J 

o 
To illustrate the corollaries above an example is shown below, First we 

generate 1500 samples of a zero-mean Gaussian variable with variance one (using 
Maple), We use formula (4) to generate 1500 samples of a uniformly distributed 
variable and finally we will invert the distribution of a exponentially variable 
and use formula (6) to generate 1500 samples of a exponentially distributed 
variable, 

Continuing with our example we give the corresponding probability densities: 
The probability density of a Gaussian variable (zero mean and variance one) is 
given by 

11 (x) 

The probability density is plotted in figure 1. We generated 1500 samples of 
a zero-mean Gaussian variable with variance one, plotted in the histogram in 
figure 1. 

The probability density of a uniformly distributed variable on [0,1] is given 
by 

hex) { 0
1 x E [0,1] 

x E lR. \ [0,1] 
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(a) Gaussian density (b) histogram 

Figure 1: Gaussian random variable 

0.6 

I 

0.4 

0.2 

0.2.0.40.60,8 11.21,0$1.6'1.82: 

(a) Uniform density (b) histogram 

Figure 2: Uniformly distributed random variable 

The probability density is plotted in figure 2. We used formula (4) to generate 
1500 samples of a uniformly distributed variable, presented in the histogram in 
figure 2. 

The probability density of a exponentially distributed process with parameter 
A = 2 is given by 

f ( ) = { Aexp(-Ax), with A = 2 x ~ 0 
3

X 0 x<O 

The probability density is plotted in figure 3. Finally we used the expansion 
in formula (6) to generate 1500 samples of a exponentially distributed variable, 
presented in the histogram in figure 3. 

If we want to use the sums in formula (4) and formula (6) we have to ap­
proximate them by their first couple of terms. By looking at these sums we 
see the convergence of the sum in formula (4) is quite good (since the denom­
inator grows fast) while the convergence in formula (6) is quite bad (since the 
denominator grows slowly). In the first case we can approximate the sum in 
formula (4) by a few terms (say four) while in the second case we have to take 
more terms (say twenty). 

Returning to the sde in formula (1). Suppose we have a random variable { 
which is Gaussian distributed with zero-mean and variance one. The solution of 
the sde has a polynomial chaos decomposition if the two conditions in section 2 
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0.8 
0.6 

0.' 
0.2 

O~0~.2~04~O.~60~.8~1-'2~IA~1.~61~.T22~2-2.'~2.6~2.~83 

(a) Exponential density (b) histogram 

Figure 3: Exponentially distributed random variable 

are met. In this section (theorem 1) we have seen that if one of the coefficients of 
the sde in formula (1) (say a) is a random variable with a continuous distribution 
F then it follows that a = F-l(Fe(~» and a is defined on the same probability 
space as :; is since:; has a continuous distribution. In section 5 we will see 
that the solution U(x,w) is a continuous function of:; and thus of a. We will 
also see that the variance of U(x,w) is finite implying that the solution U(x,w) 
has a polynomial chaos decomposition. The main problem is determining the 
inverse of F, that is F-1

, this can only be done in a few cases. If for example 
the modulus E (see formula (1» is Gaussian and the rest of the parameters (p 
and A) are constant then it's not possible to determine F-1 . Instead we will 
determine the necessary integrals (obtained in the solution process) in a direct 
way. We will compute them using asymptotic expansions which are briefly 
discussed in the following section. 

4 Asymptotic expansions 

In the previous section we looked under what conditions the polynomial chaos 
decomposition can be applied. In section this section we will see what happens 
if the modulus E is a Gaussian random variable and the rest of the parameters 
are deterministic. Practically it's not possible to express 1/ E in a series of a 
Gaussian variable because we can't invert the corresponding probability distri­
bution like we did in formula (6). However also in this case it's still possible to 
use the polynomial chaos decomposition to solve the sde in formula (1). This 
can be done using asymptotic expansions (asymptotic series). We say that a 
(finite) sum of functions iJ is an asymptotic expansion of a function 9 if this 
sum converge asymptotically to g, formally: 

Definition 4. asymptotic expansion 
Let Sn(X) = E7=o fj(x) with iJ(x) aj/xi . We say Sn(x) that is an asymp-
totic expansion of g, denoted as g(x) '" Sn{x) if 

(7) 

Before we look at an example we will state two lemmas: 

Lemma 5. If g(x) "" Sn(x) then it follows that 

lim xi(g(x)-Sn{x» =0, forj=O ... n 
3:-+00 
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Proof. Suppose that j E {O, ... ,n - I} Since g(x) f'J Sn(x) it follows that 
Ixn(g(x) - Sn(x»1 -+ 0 and thus 

Ixn(g(x) - Sn(x»1 = Ixn-jllxj(g(x) - Sn(x»1 -+ 0 

Since Ixn-il -+ 00 we have Ixj(g(x) - Sn(x»1 -+ o. 
Lemma 6. If g(x) ""' Sn(x) then also g(x) ""' Sj(x) for all j < n. 

Proof. 
xn(g(x) - Sn(x» = xn(g(x) - Sn-dx» - an 

o 

Since xn(g(x) - Sn(X» -+ 0 it follows that xn(g(x) - Sn-l (x» -+ an and thus 
xn-1(g(x) - Sn-l(X» -+ o. If we repeat this n - 1 times we end up with 
g(x) - So (x) -+ O. 0 

Typical behaviour of an asymptotic expansion is that the series Sn(x) might 
diverge for n -+ 00 and x constant and finite. The first lemma says (with j = O) 
that the value g(x) can be approximated by Sn(x) with n small provided the 
mapping 9 depends on a large parameter x, or we can replace x by 1/ a and the 
mapping must depend on a small parameter a. This approximation will become 
more accurate if we take n larger, however if we take n to large then the ap­
proximation will become less accurate and it will blow up to infinity. 

Let's look at an example as illustration. Suppose we want to determine the 
expectation of 1/ E (with E a nonzero-mean Gaussian), the question is how can 
we use the asymptotic expansion to get an approximation of this expectation. 

Example 7. The expectation of 1/ E is given by 

1 foo 1 (x - m)2 
JE[I/ E] = to= - exp( - 2 2 )dx 

av27T -00 x a 
(8) 

with m = lE(E] and a 2 = Var[E]. Note that we must be a bit careful with 
this integral since this expectation doesn't exist in the usual sense because the 
integrand is singular at x = o. But the integral in formula (8) exists in the 
Cauchy principal value sense (see appendix B.2). 
In order to use the asymptotic expansion we need a small parameter a. As 
small parameter we take a == a /m with m constant. It can be proven that (see 
appendix B.3) 

JE[I/ E] ""' ~ t(2j - I)!! a2j = ~ t ~~j); a2j 

m j=O m j=O J. 2 

= (1 + 1· a2 + 3·1· a4 + 5·3·1· a6 + .. . )/m (9) 

for a -+ 0+ (a goes to zero from the positive side) and for any n < 00. The 
double factorial (.)!! is defined as (2j - I)!! = (2j - 1) . (2j - 3) .... ·3·1. 

Proof. An heuristic proof (with e zero-mean Gaussian with variance one) 

o 
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Suppose a 0.1 and let's take n = 0 as approximation, how accurate is this 
approximation? For n = 0 we have 

E[l/E] = _1_100 

~exp(_ (x - m)2)dx r'-J ~ 
0-.j2i[ -00 X 20-2 m 

It is hardly a surprise that this will already be a good approximation since the 
Gaussian probability density has one sharp peak which is located around its mean 
m. This implies the following: The function given by l/x is nearly constant 
around the mean m and thus we can replace l/x by lim obtaining 

E[l/ E] ~ 1 100 

~ exp( _ (x - m)2 )dx = 
-00 m 20-2 

1 1 100 (x - m)2 1 --- exp(- )dx =-
m 0-.j2i[ -00 20-2 m 

The graphs afE[I/E] and of lim are plotted in figure 4. as function of m: 

Figure 4: E[ and l 
m 

As can be seen it turns out to be a very good approximation. This behaviour can 
be seen for all values of m not just the ones plotted. Figure 5 illustrates that the 
expansion will diverge for n -+ 00 when a = 0.1 (and m = 1). As can be seen 

, 
1.01038 ~ 

1.01037 ~ 

1.01036 

1.01035 

1.01034 

1.01033 

1.01032 

116 

...... __ ............... " ............. It ... ,. ......... _" __ ...... __ ... ___ ............... . 

118 120 
n 

122 124 

Figure 5: the expansion in formula (9) 

the approximation is good for all n :::; 118, but blows up for larger n. We will 
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see in the following section how this can be used to solve the sde in formula (1) 
assuming that only the modulus E is random (and Gaussian). 

5 An example 

The solution of the sde in formula (1) is given by 

U(x,w) = t3Fsin(xwy'a} , a = !!...., t3 = _1_ 
wy'acos(wVa) E AE 

(10) 

Suppose that one or more parameters p, E or A are random (Gaussian or 
uniformly) how can we use the polynomial chaos decomposition to solve the 
sde in formula (1). Some possibilities will be discussed below. The first one is 
well known and is treated in for example (Ghanem, 1999). I haven't seen any 
treatment about the other possibilities, so these results seem new to me. 

L Suppose that only p is a Gaussian random variable and the rest of the 
parameters are deterministic. In order to use the polynomial chaos de­
composition we have to scale p to a Gaussian random variable with mean 
zero and variance one. Let 

~ = p - E[P] =} p ~ v'Var[p] + E[P] 
v'Var[p] 

Then ~ is a zero-mean Gaussian random variable with variance one. As 
can be seen in formula (10) the displacement U is a continuous function 
of a, thus of p and thus of e, assuming that p > O. This implies that 
U is defined on the same probability space as where e is defined (see 
appendix B.l). Since Var[U] < 00 (this is non-trivial, in fact is only finite 
in a certain sense, see appendix B.2) it follows that we can apply the 
polynomial chaos decomposition to U. Thus 

00 

U(x,w) = Lgj(x,w)hj(~), gj(x,w) E lR (11) 
j=O 

Substituting this into the sde in formula (1) gives 

(12) 
with d~gj(l,w) == d~gj(x,w)I:I:=l' From these equations we can determine 
{gj(x,w)}j numerically or even analytically, but we won't expand on that 
here. (see for example in (DeBiesme, 2001) or (Ghanem, 1999» 

2. Suppose that the density of the bar p is uniformly distributed instead 
of Gaussian distributed. Suppose we know for example that the density 
must be between two fixed values. In this case we can assume that it is 
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Gaussian distributed with an appropriate variance, but maybe it's better 
to assume that it's uniformly distributed with parameters Ymin,Yma;r;' It 
follows that the density is given by 

x E [Ymim Ymax] 
X E lR \ [Ymin, Yma;r;] 

Let 

z= P -Ymin 
Yma(/; - Ymin 

One can check that Z is uniformly distributed on the interval [0,1]. We 
can use formula (4) to express Z and thus p in an infinite polynomial in a 
zero-mean Gaussian variable e with variance one. We obtain 

1 1 00 ei+l 
p == (Ymax - Ymin)("2 + L (2' + 1)21 'J) + Ymin (13) 

j=O J J 

The density p is a continuous function of e (remember this sum is a Taylor 
series of p, this implies that p must certainly be differentiable and thus 
continuous), this implies that the sol ution is a continuous function of e. 
It follows that also in this case we can use the polynomial chaos decom­
position to solve the sde in formula (1) when p is uniformly distributed. 
In practice we can take the first couple of terms (say three) of the sum 
in formula (13) as approximation (remember that the convergence of this 
sum is quite good as we noted at the end of section 3) and substitute this 
into the sde in formula (1). 

3. Suppose that only the modulus E is a Gaussian random variable and the 
rest of the parameters are deterministic. In order to use the polynomial 
chaos decomposition we have to scale E to a Gaussian random variable 
with mean zero and variance one. Just like above we define 

E -lE[E] => E e JVar[E) + E[E] == eO" + m 
y'var[E] 

Then e is a zero-mean Gaussian random variable with variance one. Also 
in this case the displacement U is a continuous function of e and we 
can apply the polynomial chaos decomposition. The sde in formula (1) 
becomes 

(14) 

E~o d~gj(l,w)hj(e) == * ~CT~mF 
When want to apply the polynomial chaos decomposition we can do two 
things. The first thing is multiplying both sides with (,0" + m and then 
use the same procedure (as in (DeBiesme, 2001) or (Ghanem, 1999» to 
determine the solution U, and the second thing is leaving this term on the 
right hand side. But in the latter case we need the following expectations 

11 



(remember when solving this we have to multiply both sides with hkCe) 
and take the expectation): 

In section 4 we determined 

We can use the same techniques to find the other expectations. Suppose 
we want to approximate 

It follows that (with E = eO' + m and thus e = E~m) 

ICE m)2]=lE[E _2m+ m2]= 
a 0'2 0'2 EO'2 

(15) 
In figure 6 three graphs are plotted, two ofthem are approximations (using 
formula (15) and formula (9)) of lE[hl W-::j€)]. The lowest one correspond 

to n 1, the middle one to n = 2 and the third one to lE[ hl £~~:j€)]. 
The third one is hided behind the middle one. So the approximation with 
n = 2, that is 

is good enough. 

If we use higher order Hermite polynomials we will need more terms in 
the asymptotic approximation. For example if we want to determine 

(16) 
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we used seven terms to get the following approximation 

E(h4 ({)h4 ({)] 24.!.. + 2160-
2 +2952~ 

o-{+m m m3 m5 

0-6 0-8 0-10 0-12 

- 88695-7 + 403515-9 - 365715----u- + 93555~ 
m m m m 

In figure 7 are again three graphs plotted, two of them are approximations 
(using formula (16) and formula (9)) ofE[hl~~~:';{)l. The lowest one corre-

spond to n = 6, the middle one to n = 7 and the third one to JE( hI W::';{)]. 
The third one is hided behind the middle one. So the approximation with 
n = 7, that is 

is good enough. 

7 

lE( ~] ~ 1 2)2j - 1)J! a2j with a = 0.1 
m j=O 

18 

16 

14 
12 

10 

8 
6~~~~~~~~~~~~ 

11.21.41.61.82 2.22.-m.62.8 3 3.23.43.63.8 4 

Figure 7· JE[h.4 (z)h.4(z)] 
• (mz+O') 

4. Suppose that two parameters are (independent) Gaussian random vari­
ables, for example E and A. To use the polynomial chaos decomposition 
both random variables E and A have to be scaled to zero-mean Gaus­
sians with variance one, say 6 and {2. In this case the displacement U 
is a continuous function of two random variables 6 and {2 and therefore 
we have to expand the displacement U using two-dimensional Hermite 
polynomials. Thus 

00 

U(x,w} = L9j(x,w)hj (6,6}, 9j E lR (17) 
j=O 

See appendix B.4 for determining these two-dimensional Hermite poly­
nomials. Also in this case there are two ways of solving the sde in for­
mula (1). The first thing is multiplying both sides with E (and the second 
boundary condition with E and A) and then use the same procedure (as 
in (DeBiesme, 2001) or (Ghanem, 1999}) to determine the solution U (this 
can also be done in case one (or both) of the parameters is uniformly dis­
tributed and the other one Gaussian), and the second thing leaving the 
term on the righthand side and determining the asymptotic expansions as 
in the previous case. 
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6 Conclusions 

We obtained the following conclusions: 

1. Returning to the sde in formula (1). It's not possible (at least we don't 
know how) to determine the solution U(x,w) using the polynomial chaos 
decomposition given arbitrary probability densities of a and /3. However 
for some choices of a and /3 it's possible to determine the mean and vari­
ance of the solution U(x,w) using the polynomial chaos decomposition. 
We obtained solutions for the choices given in section 5. Basically if the 
parameters like E, A and p are Gaussian or Uniformly distributed we 
obtained the solution U(x, w) using the polynomial chaos decomposition. 

2. The polynomial chaos decomposition is very general. If the sde is linear 
and the coefficients have a continuous distribution which can explicitly 
be inverted, then the polynomial chaos decomposition can be applied (as­
suming that the variance of the solution will be finite, which is always the 
case when dealing with physical problems). 

3. If there are n independent random parameters present in the sde then we 
need n dimensional Hermite polynomials to obtain the solution if we want 
to use the polynomial chaos decomposition. If one introduces more inde­
pendent random parameters then it will take of course more computational 
time. 
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A Appendix 

A.I Properties of distribution function 

Let 0 be a sample-space, :E the a-algebra of events on 0, the function P : :E -t 
[0,1] is called a probability measure if the axioms of Kolmogorov are satisfied: 

1. peA) ?: 0 for every A E :E 

2. 1'(0) = 1 

3. for every collection of disjunct events AI. A2 , ••• we have P(UnAn) = 
2:n P(An) 

Let F : lR -t [0,1] be a distribution function of a random variable X defined by 
F(x) = p(X $ x). From the definition of probability measure given above the 
following properties follow: 

1. F is right-continuous: limh-TO+ F(x + h) F(x) 
(h tends to zero from the right ... ) 

2. F is monotone increasing: x $ y :::} F(x) $ F(y) 

3. limx -+-_oo F(x) = 0 and limx -+-oo F(x) = 1 

Note that the distribution function of a random variable is always right-continuous, 
but not necessarily continuous (see formulation of theorem 3). 

A.2 Borel-sets on R 

For the proof of theorem 3 we will need the notion of a-algebra, Borel-set and 
a :E-B-measurable function: 
A collection :E of subsets of a set 0 is called a a-algebra (in 0) if: 

1.0E:E 

2. A E :E :::} AC E :E with AC = 0 \ A 

3. with a series (Aj) E :E :::} U~l Aj E :E 

From these properties it follows that 

1. 0 E :E 

2. with a series (Aj) E :E :::} n~l Aj E :E 

Four examples of a-algebras: 

Example 8. The powerset 
Let P(O) be the powerset on 0, that is P(O) consists of all the subsets of O. 
It's rather trivial that P(O) is a a-algebra on O. 

Example 9. smallest a-algebra 
There exists a smallest a-algebra (denoted as U(S») on a collection S oj subsets 
oj 0 with S ~ U(S). That is Jor every a-algebra U' on 0 with S ~ U' we have 
U(S) ~ Uf

• 
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Proof. Let U(S) be the intersection of all IT-algebras which contain S, thus 
U(S) = {nUl I S ~ UI,UI a IT-algebra on OJ. Using the definition of IT-algebra 
it can be shown that U(S) is indeed a IT-algebra on O. This IT-algebra is by 
definition the smallest IT-algebra which contains S. U{S) is called the IT-algebra 
generated by S and S the generator of U (S). 0 

Example 10. The Borel-lT-algebra B and Borel-set 
In the example above, let S be the set of all open subsets of 0 = JR. Then 
as shown in the previous example there exists a smallest IT-algebra, denoted 
as U(S), on 0 with S ~ U(S). This IT-algebra U(S) is called the Borel-lT­
algebra on JR and is denoted as 8. As a consequence of the properties of a 
IT -algebra it follows that 8 consists of all intervals on R (open, closed, half open, 
finite and infinite intervals) and countable unions, countable intersections and 
complements of those intervals. The members of 8 are called Borel-sets. 

Definition 11. '2:.-B-measurable mapping 
A mapping X : (} -+ JR is called a '2:.-8-measurable mapping if the following 
holds: 

X-I (B) E '2:. for all BE 8 

Theorem 12. Suppose we have a mapping X: 0 -+ JR then we can always find 
a IT-algebra '2:. such that X becomes a '2:.-B-measurable mapping. The IT-algebra 
IT = X-I (8) does the trick. 

Proof. First we will show that (B) is actually a IT-algebra: 

1. 0 E X-l(8) since X(O) ~ JR and JR E 8 

2. Suppose A E X-I (8) then it follows that AC E X-I (8) since (X-I (B))C = 
X-I (Be) for all B E 8 with Be R \ B 

3. with a series (Aj) E X-l(8) =} U~lAj E X-I(8) since Uj X-l(Bj } = 
X-I (UjBj ) for all {Bj}j E 8 

It follows that X becomes a X-l(8)-8-measurable mapping since X-I (B) E 
X-l(8) for all B E 8. 0 

A.3 Generation of random variables 

Recall that a random variable is defined as follows: 

Definition 13. Let (0, '2:., P) be a probability space. A function X : 0 -+ lR 
on this probability space is called a real-valued random variable if X is a E-8-
measurable function, which means that {X E B} E '2:. for every B ~ 8. Note 
that {X E B} == {s E OIX(s) E B} X-I(B). Where 8 is the Borel-lT-algebra 
on lR consisting of the Borel-sets on lR (see A.2). 

After stating this formal definition we can prove theorem 3: By assumption 
X E (0, E, P) with '2:. a IT-algebra on O. This implies that X is a '2:.-8-measurable 
function, which means that {X E B} E E for every B E B (see the definition 
above). First note that we defined a probability measure P : '2:. -+ [0,1] (given 
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a distribution function F x) by 

P(X EX) Fx(x) with {X E x} == {s E nlx(s) E]OO,X]} = x-1Goo,x]) 

This is a well defined mapping since the sets {]-oo, x]h, with x E R. generate the 
Borel-u-algebra B, (see (Rudin, 1987». (The Borel-u-algebra B are also gener­
ated by the open intervals, see example 10) Note that in general the u-algebra 
X-ICB) isn't equal to E, but it's a sub-u-algebra of E. Hence in theorem 1 
we didn't prescribe the probability measure P fully, only it's restriction to the 
u-algebra X-I (B). 
We have to prove that F-l oFx oX E (n, E, P). Note that F-l oFx is the com­
position of two continuous functions hence continuous. It follows the composi­
tion F-l 0 Fx 0 X: n -+ [0,1] is a E-B-measurable function (see (Rudin, 1987), 
page 10), hence it is a random variable, which implies that F- I 

0 Fx 0 X E 
cn,E, P). 

A.4 Generation of a uniformly distributed variable 

We derived that (see formula (5» 

1 1 00 (-1)j x2j+l 

2 + ?= (2j + 1)2ij! 
3=0 

Fx(x) 

Note this Taylor-series converges for all x E lR: set ai = ~;;rl)::~: then 

= lim x
2 

• (2j + 1) = 0 
j-+oo 2(2j + 3)(j + 1) 

Substituting Xes) for x in the series in formula (18) gives 

Fx(X(s» 

since this holds for all 8 E n it follows that 

Fx(X) 
1 1 00 (-1)jX2j+l 

2 + V21r ~ (2j + 1)2ij! 

B Appendix; Probability theory 

B.l 

(18) 

See the first probability listed in section 5. The proof is similar as at the end 
of the proof of theorem A.3. U is a continuous function of e, say U = f(e) 
with f : lR. -+ R. continuous. Suppose e E (0, E, P) then e is a E-B-measurable 
function, it follows that f(e) and thus U is also a E-B-measurable function 
which implies that U E CO, E, P). Thus U is defined on the same probability 
space as e is. 
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B.2 

Look at the integral in formula (8), that is the mean of 1/ E: 

IE[I/E) = 
1 f co 1 «(X m)2)d -exp - x 

-00 X 20"2 

Note that x = 0 is a singularity of the integral, since the integrand is infinite 
for x = O. It can be proven that this integral is ill-defined in the ordinary sense, 
meaning that 

E[l/E] = 
. 1 f-'1 1 (x - m)2 1 100 1 (x - mY· 

hm ( . fie exp( - 2 2 )dx+ fie - exp( - 2 2 )dx) 
<11<2-70+ cry 27r -00 X 0" cry 271" <2 X cr 

where €1 and €2 tend to zero from the right independently, doesn't exist. How­
ever it can be proven that the following integral is meaningful: 

1 j-< 1 (x m)2 
lim ( . fie - exp( - 2 2 )dx + 

<-70+ cry 27r -00 X 0" 

This is called the Cauchy principal value of the integral in formula (8). So we 
can define E[l/ E) as this integral (assuming that all the usual properties of 
expectation hold for this generalization, see for example (Kolmogorov, 1956) for 
discussions about generalizations). 
A bigger problem exists when looking at Var[U(x,w)], and also at E[U(x,w»). 
Look at the mean of U (the variance has exactly the same problem): 

JOO f3Fsin(xw.jfi) 
E[U(x,w)] = .jfi (.jfi/a(y)dy 

-co w ycos w y 

with a = lh f3 = A~ and fa the probability density of a. Note that this 
integral is ill-defined in the ordinary sense since the integrand becomes infinite 
for w.jfi = (k + 1/2)rr with kEN (and for yO). We think it's possible to 
make sense out of that integral (the main problem is that this integral has an 
infinite number of singularities (values where the integrand becomes infinite), 
but it decays to zero at infinity). This problem will disappear if one introduces 
damping. In this case the integrand has only imaginary (non-real) singular 
values. 
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B.3 Asymptotic expansion 

We will prove formula (9). The expectation of 1/ E is given by 

1 100 
1 (x m)2 

E[I/E] = ~ exp( - 2 2 )dx 
O'v21r -00 x 0' 

m2 1 
= exp( - 20'2 ) 

m2 1 
= exp(- 20'2) 

100 1 x2 m 
- exp( - -) exp(x- )dx 

-00 x 20'2 0'2 

00 100 2 1 '" exp( _ ~ )xn- l ( m )n_dx 
L..t _ 20'2 0'2 n! 
n=O 00 

Perform a change of variables t . vr=z to obtain 

E[l/E] = V2 m 
2 

Watson's lemma (a generalization of it) (see (Wong, 1989), page 22 or theorem 
1 page 58) basically says change the top endpoint to infinity and integrate term 
by term to obtain the asymptotic expansion. It follows that 

E[1/E],... ~ I)2j -1)11 a2j = ~ t ~;j~a2j 
m j=O m j=O J. 

asa= ~ ~ O. 

B.4 Multi-dimensional Hermite polynomials 

See the last probability in section 5. We will show how to derive the multi­
dimensional Hermite polynomials. See for example (Ghanem, 1999). 
Let {~j}j=l...n be zero-mean uncorrelated Gaussians with variance one and let 
N = {1,2, ... , n} (corresponding to the indices ofthe Gaussians). Let G be the 
set of all N-valued functions on N (thUS G = {p I p: N ~ N}) and let 

n 

Ipi = LP(k) LP(k) 
kEN k=l 

with pEG. Let pEG with [PI = m then the corresponding n-dimensional 
Hermite polynomials of order m are given by 

n 

hp({l,'" ,{n)i!pl=m II hp(j) ({j) 
j=l 
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Let's determine the first three orders (m 0,1,2) to understand this definition 
(say two dimensional, thus n = 2): 
Let m = 0, we have to determine all mappings p with pEG and Ipi = 0 thus 
all p : {1,2} -+ N with E!=l p(k) = O. The latter means that p(k) = 0 for all 
k E {1,2}. There's one such mapping, it's the mapping PI : {1,2} -+ N given 
by PI (1) = 0 and PI (2) = O. It follows that 

2 

hpl (el,6) = II hp1(j)Cej) = hOCel)ho(6) = 1 
j=l 

Let m = 1, we have to determine all mappings p with pEG and Ipi = 1 thus 
all p : {1,2} -+ N with E!=lP(k) = 1. There are two such mappings, the first 
one is given by P2(1) = 1, P2(2) = 0 and the second one is given by Pa(l) = 0, 
P3(2) = 1. It follows that 

2 

hp2 Ceb6) = II hP2(j) (ej) h1(6)ho(6) = 6 
j=I 

and 
2 

hpa (6,6) = II hpa(j) (ej) ho(6)h1 (6) = 6 
j=l 

Let m = 2, then there are three mappings given by 

hP4 (6, e2) = a 1 

hps (6,6) = e16 
hP6 (6,6)=ei 1 

In general there are (m~~;:-l) mappings with pEG and Ipi = m. Let {ej }j=l...n 
be a basis of a Gaussian Hilbert space H. It turns out that the set {hp}lPEG 
forms an orthogonal basis of L2(0, E(H), P) with 

(hp(6,.·. ,en), hq (el , ... ,en» = E[hp(6,· .. ,en)hq(6,··· ,en)] = p! t>p,g 

where p! == I1~=I (P(k»! and E(H) the smallest a-algebra on 0 such that the 
mappings {ej h=l...n are all measurable. 
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