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Abstract

Let G be a Lie group with a left Haar measure dg and let L denote
the action of G as left translations on L,(G; dg). If ay,...,aq are
elements of the Lie algebra g of G and A; = dL(a;) the generators of
the corresponding one-parameter subgroups t — L(exp(ta;)) define the
C"-subspace Ly, as the common domain of all n-th order monomials
M, in the A; and introduce the norm || - ||}, on L3, by

el = sup || M|,
0<k<n

where the supremum is over all monomials of order ¥ < n. Then define

dl d’
H=-— 2 C,‘jA,‘Aj + ZC;A,‘

iJ=1 1=1

with domain D(H) = L;,, where c;;, ¢; € C and the real part of the
matrix C = (¢;) is strictly positive-definite. We establish that for
each p € (1,00), n € N and all large positive A the spaces L;,, and
D((M + H)™?) coincide and there is a Cp s, > 0 such that
Comallellm < NI +H)0ll, < Compllelln

Py

for all ¢ € L;,,. Similar inequalities are valid for left translations on
the spaces L,(G; dg) constructed with right Haar measure dg. More
generally, if H is an m-th order subcoercive operator then L., =
D((M + H)™™) with equivalent norms.

It should be emphasized that we do not assume that ay,...,aq is
an algebraic basis of g, i.e., the a;,...,ay are not required to satisfy
the Hérmander condition.



1 Introduction

In an earlier paper, [EIR2] Theorem 5.3.1, it was established that the C*°-structure of each
continuous representation of a Lie group coincides with the C'™®-structure for each strongly
elliptic, or subcoercive, operator, i.e., the C*®-elements of the representation are precisely
the C'-elements with respect to the subcoercive operator. It is known, however, that
the the differential structures, i.e., the C"-elements, do differ for certain representations
such as the left regular representation in L;(R?) or Lo (R?) (see, for example, [Orn] and
[LeM]). Nevertheless, in many particular classes of representations the differential struc-
tures are the same. For strongly elliptic operators this equality was established for unitary
representations in [Rob], Example I1.5.10, for Lipschitz representations in [Rob], Theorem
I1.5.8, and for principal series representations in [Els] Theorem 6. Moreover, for subcoer-
cive operators the coincidence was proven for unitary representations in [EIR2]|, Theorem
6.3.11, and for second-order operators with real symmetric coefficients and Lipschitz spaces
a comparable conclusion was reached in [EIR1], Theorem 5.1.III. (The last result extends
to general subcoercive operators although the proof is not explicitly given in [EIR1].) In
the present paper we prove that the differential structure for the left regular representation
on the L,-spaces with respect to the left-, or right-, Haar measure on the Lie group G
coincides with the differential structure of each subcoercive operator if p € (1, 00).

It is perhaps worthwhile mentioning in this context that the analytic structure of a
continuous representation coincides with the analytic structure for each strongly elliptic
operator, [Rob] Theorem I1.3.1, but there are subcoercive operators for which these struc-
tures differ, even in the case of a unitary representation, [EIR1] Example 8.2.

The comparison of the differential structures is related to the Lie group version of the
boundedness of the Riesz transforms. If H is the sublaplacian associated with the left
derivatives Aj,..., Ay then we establish that the operators X,(v) = M,(vI + H )-"/2,
with M, an n-th order monomial in the A;, are bounded on the L,-spaces, p € (1,00},
whenever v > 0. The operators A;H~'/? are the analogues of the Riesz transforms and
correspond to the X; in the limiting case v = 0. It should be stressed that one cannot
expect the X, (0) to be bounded for all groups, all sublaplacians and all n. Gaudry, Qian
and Sjoégren [GQS] have shown that for the (az + b)-group, which is a non-unimodular
group of exponential growth, there is an algebraic subbasis such that the operators A;H -1/2
are bounded on L,, p € (1,00), but the A;A;H~! are not bounded on any of the L,-
spaces. Nevertheless, boundedness is restored if H is replaced by vI + H with v > 0. The
parameter v introduces an exponential decrease in the kernels of the operators X, (v) and
hence boundedness of these operators becomes a local problem, albeit a problem which
has to be handled uniformly over the group. Seemingly stronger results can be obtained if
one considers special classes of groups. Lohoué [Loh] established boundedness of the Riesz
transforms for non-amenable unimodular groups and an algebraic basis of left derivatives
but since the non-amenability is simply used to deduce an exponential decrease of the
operator kernel his results follow from our arguments, even for non-unimodular groups.
Folland, [Fol] Corollary 4.13, established boundedness of the Riesz transforms for stratified
groups with H the canonical sublaplacian but this is a simple corollary of our results and



a rescaling which removes the factor v. Other results in this direction have been given by
Saloff-Coste [Sal] who proved boundedness of first-order transforms A; H~'/2 on polynomial
groups and by Anker, [Ank], who established a similar result on noncompact symmetric
spaces obtained by the quotient of a semisimple group G by a maximal compact subgroup
K. We emphasize that all our results hold for general Lie groups, which need not be
unimodular.

In the sequel we adopt the general notation used in [Rob] and [EIR2] but now we con-
sider two connected Lie groups G and G; with G C G; and the continuous representation
U of G is identified with left translations L acting on the spaces L,(Gy; dg) and L,(G; d§)
where dg and dg denote left and right Haar measure, respectively. We use the abbreviated
notation L,(G,) and L;(G;) and let A denote the modular function over G;. In fact, the
group G need not be connected since all analysis takes part on the connected component
of the identity of G.

Let ay,...,aqs be elements of the Lie algebra g of G and let A;, for all 1 € {1,...,d'},
denote the infinitesimal generator of the one-parameter group ¢t — L(exp(ta;)) from R into
L,(Gq) or Ls(Gy). It will be clear from the context on which space the A; act. We also
denote by A;p the pointwise left derivative in the direction a; of a function ¢:G — C.
The constant (A;A)(e) is denoted by b;. We use multi-index notation for products of the
generators A or for products of the b;. For n € Ny let

Ju(d) = J{1,...,d}F .
k=0
fa=(i1,...,%) € {1,...,d'}", we define |a| = k, A = A;, ... A;, and b* = b;, ... b;,.
Let J(d') = U2, Ju(d’). Then for each n € Ny we denote the subspace Nyes,ay D(A%)
in Ly(G1), or Ls(Ghr), by Ly..(Gh), or L}, (G1), respectively. We define a norm and a
seminorm on L, (G1) by setting

”30“;),71, = Sup ”AGSOHP ’ N;,n(so) = Sllp ”AOILP“P 4
a€Jdn(d’) laj=n

for each ¢ € L (G1), and || - ||}, Njy, are defined analogously on Lj,.(Gi). Let

Bin)
L, o (G1) = MLy Ly, (G1) and L} (G1) = N5y L}, (G1). We also adopt the correspond-

ing notation X, and X, for the subspaces N,ey, (2 D(A%) and Naesar) D(A*) associated
with the generators of a continuous representation of G in a Banach space X.

In the absence of a statement to the contrary we assume that aq,...,aqs is an alge-
braic basis for g, i.e., a finite sequence of linearly independent elements of g which gen-
erate g. Thus there is an integer r such that aj,...,as together with all commutators
(adas,) ... (ada;,_,)(ai,), 2; = 1,...,d’, where n < r, span the vector space g. The smallest
integer r with this property is referred to as the rank of the subbasis and a vector space basis
is defined to have rank one. Moreover, the algebraic basis determines in a canonical fashion
(see, [Rob] Section IV.4c) a modulus function g — |g|’ on the group. This function in turn
determines a unique local dimension D’ such that the ball B, = {g € G': |g|' < p} has
measure |B;|, with respect to Haar measure on G, satisfying bounds apP < |B,| < c2p”’
for all p € (0,1].



An m-th order form is a function C: J,,(d') — C such that C(a) # 0 for some a € Jn,(d')
with |a| = m. The principal part P of C is the form with P(a) = C(e) if |a| = m and
P(a) = 0 if |a] < m. The formal adjoint Ct of C is the function C': J,,(d') — C defined
by Ct(a) = (-1)* C(a.) where a, = (in,...,i;) whenever a = (4,...,4,). We consider
the operator

dL(C)= ) c.A®
a€Jm(d")
with domain L (H) or Ly, (H).

Next we want to introduce the concept of subcoercive form of step s, with s € N. Let
g(d’, s) denote the nilpotent Lie algebra with d’ generators which is free of step s, i.e., the
quotient of the free Lie algebra with d’ generators @,,...,@s by the ideal generated by the
commutators of order at least s + 1. Further let G = G(d',s) be the connected simply
connected Lie group with Lie algebra g(d’, s) and Ly left translations on Ly(G; dg), where
dg denotes left Haar measure on G. We say that C is an m-th order subcoercive form (of
step s) if m is even and there exists 4 > 0 such that

Re(dLz(P)e,¢) 2 t(Nyym/a(#))?

for all ¢ € L..o(G; dg). The largest such y is called the ellipticity constant of C.

The main result of this paper is that if C is a subcoercive form of order m and step
r, where 7 is the rank of the algebraic basis of the Lie algebra g of the group G, and if
H =dL(C), with L acting on L,(G;), then

Lyn(G) = D((vWI + H)M™) (1)

with equivalent norms, for all n € N, all large v and all p € (1, 00). A similar identification
is valid on the L;(G)-spaces.

Finally note that if v, € R is such that »oI + H generates a bounded semigroup and
if (1) is valid for some v > v, then it is automatically valid for all v > 5. This follows
because D((vI + H)"™) is independent of the value of » for all v > vy, by [Rob] Lemma
I1.3.2. Moreover, the identity (1) for one v > vy, implies the L,(G;)-boundedness of the
operators M,(vI+ H)~™/™, with M, an n-th order monomial in the subelliptic derivatives
A;, for all v > vp. But the analysis of the (ax + b)-group in [GQS] gives an example of a
second-order operator which generates a contraction semigroup for which (1) is valid for
n=1and v > 0 but My(vI + H)™! is not bounded for the critical value » = 0. Therefore
the boundedness properties are more delicate.

2 Regularity of the left regular representation

In this section we prove that domains of the fractional powers of subcoercive operators
associated with left translations of the group G acting on the L,(G;)-spaces, p € (1,00),
of the larger group G, coincide with the corresponding C"-vectors. We begin by observing
that it suffices to establish this coincidence for the left differential operators on the space

Li(Gy).



First let C be a subcoercive form of order m and for p € (1,00) define the m-th order

forms Cy, by
Crr= Y, X calp) ™Mb
aGJm(d') ’YGJm(d')
(B7)ELb(a)

where Lb(a) is the set of all (8,v) € Ju(d')? such that B is a multi-index obtained from
a by omission of some indices and 4 is the multi-index formed by the omitted indices,
i.e., the (B,4) occurring are the pairs of multi-indices in the Leibniz formula for the multi-
derivative A of a product. Then the principal parts of Cy, equal the principal part of C,
so Cy, are also subcoercive. In addition the map C — C, is invertible and C = (C})-,
Since A™YPA;AY? = A; + p~1b;1 it follows that

dL(C)A VP = A~VPIL(C)p

for all ¢ € C°(G1). Thus if H = dL(C) and H, = dL(C,) on L,(G) one formally has the
relation

H, = A"YPHAYP
and this is the key to the first result.

Lemma 2.1 Let C be a subcoercive form of order m and step r, and H = dL(C) and
H, = dL(C,) the corresponding operators associated with left translations L by the group
G acting on the spaces Lp(Gy) and Ls(G,) with p € (1,00). Further let n € N. The
following conditions are equivalent.

I The spaces L, (Gy) and D((vI+H,)"/™) are equal, with equivalent norms, for some
large v > 0.

IL.  The spaces L}, (G1) and D((vI + H)"™) are equal, with equivalent norms, for some
large v > 0.

Proof We only prove I=1I since the proof of the other implication is almost identical
but the map C — C, is replaced by its inverse. Moreover, we assume that the real part of
the zero-order coefficient of C is large and then we may take v = 0. We begin by proving
that D(-I_fn/m) is continuously embedded in L}, (G4).

Let S and K denote the semigroup and kernel corresponding to H acting on L,(G;) and
S? and K? the pair corresponding to H,. Arguing as in the proof of Corollary 3.5 of [EIR3]
it follows that K,(g) = A~/?(g)K?(g) for allt > 0 and g € G. So Syp = AVPSPA-VPyp
for all t > 0 and ¢ € C*(G,). Since
T = ¢ [ i Sy
for all p € D*°(H) (see, for example, [LaR]), where

-1 _ °<>dtt—l—n/m I — —t\n
= (I-e

4



with a similar expression for Eﬂ/m, it follows that
AVPEm APy = R

for all p € C*(Gy).

Finally, by assumption, one has bounds |¢|;., < c||Fp"/m<p||,, for ¢ € C®(Gy) and
hence

lells, < CNA Pl .
< |[H; " APy,
< | ATVPE ||, = o B " plls

for some ¢’ > 0 and all p € C°(G)). Since C°(Gh) is dense in Ly, (Gy) by [Pou] Theorem
1.3, it is a core for H™™ and it follows that D(_ﬁ"/m) is continuously embedded in L},.(G1).

Similarly it follows that L., (G1) is continuously embedded in D(T:fn/m) since L. .(G1)
and hence C°(Gh) is dense in Ly (G,) by [EIR3] Lemma 2.4. O

Corollary 2.2 Let p € (1,00). The following are equivalent.

I For any subcoercive form C of order m and step r, for alln € N, all large v > 0 and
with H = dL(C) the operator in L, the spaces L', and D((vI + H)"™) are equal

pin
with equivalent norms.

II.  For any subcoercive form C of order m and step r, for alln € N, all large v > 0 and
with H = dL(C) the operator in L; the spaces L}, and D((vI + H)™™) are equal
with equivalent norms.

The problem is now reduced to the examination of the left differential operators on the
L;(Gh)-spaces. These operators automatically commute with right translations and as the
measure is right-invariant this is useful for obtaining uniform estimates.

Theorem 2.3 Let H = dL(C) be an m-th order subcoercive operator associated with left
translations L by the group G acting on the spaces L;(Gy1). If p € (1,00) and n € N then
D((vI + H)*™) = L}, (Gy) for all large v > 0 and the spaces have equivalent norms. In
particular, the operator H is closed.

Similar statements are valid on the L,(G;)-spaces.

Proof The proof is in several steps.

First we aim to establish that D((vI + H)”™) = R((vI + H)™™/™) is continuously
embedded in L}, (G;) and this requires proving that A*(vI + H)™/™, with |a| = n, is
defined as a bounded operator on L;(G1). This is achieved by establishing that the operator
and its adjoint are bounded on L;(G;) and are also bounded from L;(G,) to weak-L;(G1).

3



Then the desired result is obtained by interpolation and duality. But the L;(G)-bounds
follow from [EIR2], Theorem 6.3.11, and the main onus of the proof is the derivation of the
Li(G1)-bounds.

The approach to the Lj(G, )-bounds begins by observing that
W1+ H) ™" = L(Rymjm)i

for an appropriate kernel R, ,./m over G where

L(f) = [ dg f(s)L()

with dg left Haar measure over G. But if a € J,(d'), |a| = n, then A°R, n/m is not locally
integrable and the L,(G)-integral is logarithmically divergent at the identity. Therefore the
idea is to use singular integration theory to prove the bound from L;(G;) to weak-L;(Gh).
Now a straightforward adaptation of the singular integration methods would begin by
approximating A®R,, ../, with a sequence of functions obtained by excision of a decreasing
family of neighbourhoods of the identity. Thus the convolution formally corresponding
to the action of A*(v] + H)™™™ would be replaced by a principal value integral. But
the problem with this approach is that it appears difficult to obtain suitable L;(Gy)-
bounds for the sequence of approximating operators. Therefore we adopt a different type
of approximation.

Fix N € N, N > D' and for large v > 0 and all j € N with j > 2v consider the

operators

X;=NGI+H)Nwl+H)™"

Then A% X; ‘approaches’ A%(vI + H)~™™ as j tends to infinity. Therefore if the A*X; are
bounded, uniformly in j, on L3(G;) one deduces that (v + H)~™/™ maps into the domain
of A% and the A*(v1+ H)™™™ are bounded on Ls(G;). The uniform bounds on the A*X;
are obtained by following the above outline. In particular the bounds from L;j(G;) to
weak-L;(G1) use singular integration theory and as a prerequisite it is necessary to have
uniform L5(G1)-bounds on the approximating sequence.

First observe that if j € N and a € J,(d') one can write A°X; = A*(vI + H)™™™ o
NI+ H)™N. But by Corollary 2.2 and [EIR2] Theorem 6.3.11 the operators A*(vI +
H) /™ are bounded on L3(G,). First they are bounded on L3(G;) by [EIR2] Theorem
6.3.11 because the representation of G by left translations is unitary. Then they are bounded
on L;(G,) by Corollary 2.2. Moreover, since H generates a holomorphic semigroup, the
operators jV(j1 + H)™N are bounded, uniformly for all large j, on L3(G;). Thus the
operators A°X; are bounded on L;(G), uniformly for all large j.

Secondly, remark that if j € N then
NG+ H) Ve = iV L(R;N)e
and (vI + H)™™p = L(R, n/m ), Where

Ryn(g) = T(N)™ [ detN"1e K (g)

6



with an analogous expression for R, ,/m. Using the convolution property of the kernel K;
one then obtains

NGI+HN I+ H) e = Likj)e
where k;: G\{e} — C is defined by
k() = [ dt£;0) Kilo)

and
fi®) = N (N = 1)"'T(n/m)™? /0t dz zN-le 3% (t — g)Mm-le~ () | (2)

We need some estimates for f;(t).
Lemma 2.4 There ezists an a > 0 such that
fi(t) < at™/m 1ty
uniformly for allt >0, v > 0, j € N with j > 2v and p € [0, N].
Proof A substitution z =ty in (2) gives
fi(@) = V(N = DI7'T(n/m) 7 N0/ m-t /01 dy yV e (1 — y)r/mlem 1Y)
< (N = D)IIT(n/m) e mte ()N / Lay gVl -yl (3)

Now define the function g¢:[0,00) — R by

1 -
g(a) = o [ dyyNi(1 - yymter e
0
We shall prove that g is bounded. In order to evaluate g we estimate the integral in two
parts: over (0,27') and over (27!,1). The first can be estimated as follows
! -1 N N-1 -2
dy zNyN (1 - y)"/"“le'2 <L max(2l_"/m,1)/ dyz™y" et ™
0

0
4—1

= 2V max(2!~/™, 1)/ dttN-te?

0
< 2V N'max(2'-™,1) .
Alternatively,
1 _ _ 1
/2—1 dy :l)NyN_l(l _ y)n/m-le-2 lry S xNe-4 1z /2_1 dy (1 _ y)n/m—l
— mn—lz—n/mee—‘i'l:c

So there exists an a > 0, depending only on N, such that

fj(t) < atn/m—le—ut

7



uniformly for all j € N and ¢ > 0 with 5 > 2v. This proves the case u = 0.
The case u = N follows from (3):

fj(t) < (N _ 1)!-1P(n/m)—ltn/m—le—ut(jt)jv /01 dy yN..1(1 _ y)n/m—l

The general case can be obtained by interpolation. O

By the ‘Gaussian’ bounds on K; and its derivatives one deduces that k; is infinitely
differentiable on G\{e}. Moreover, using Lemma 2.4 with 4 = 0 and with Reco, large
enough, then it follows by the argument in Theorem II1.6.7 of [Rob] that for all a € J,.(d’)
and B € J(d') there exist a,b > 0 such that

[(APA°K;)(g)] < a(|gl')~D'~IBleb"/mlal (4)

uniformly for all g € G\{e} and j € N. Alternatively, using Lemma 2.4 with g = N, the
inequality N > D’ and the argument in Theorem II1.6.7 of [Rob], one deduces for large
Recg that for all j € N, j > 2v, one has bounds

(A%k;)(g)] < cje®/mel (5)

uniformly for & € J,(d') and g € G\{e}. So k; € L,(G; e?¥'dg) N Loo(G; dg) for each
j € N with j > 2v, if v is large enough, where p > 0 is such that A(g) < e’ for all
gEeQG.

Next note that A°X;p = L(A%k;)p for all @ € J,(d'). So each operator A°X; is
continuous on each of the L;(Gy)-spaces. In order to prove that the A*X; are uniformly
continuous if p € (1, 00) we have to consider two cases, p < 2 and p > 2.

Case 1: p € (1,2].
Let x € C*(B;) with x(g) = 1for all ¢ € B; and 0 < x < 1. Then

A°X;p = L(xAky)p + L((1 = ) A%k)e - (6)

But
sup [ dg|(1 = x)(0) (47k;)(0)le”!" < o0

if v is large enough. Because of the bounds (4) the operators ¢ — L((1 — x)(A%k;))¢
are bounded on all the L;(G;)-spaces, p € [1,00], uniformly for j € N with j > 2v. In
particular, this is the case for p =1 and p = 2.

Next we prove a local weak-L;(G;) estimate for A*X, which is uniform in j. Because
of the equality (6) it is sufficient to establish a local weak-L;(G1) estimate for the operator
¢ +— L(xA%k;)p which is uniform in j. We obtain this estimate by application of Theorem
I11.2.4 of [CoW] but since L(xA*k;) acts by convolution with respect to the subgroup G
of G some care has to be taken in applying the result.

Let ay,...,a4,...,a4 be a vector space basis for the Lie algebra g of G obtained by
completing the algebraic basis ay,...,as. Further let a;,...,aq4,...,aq4, be a vector space

8



basis for the Lie algebra g, of G; obtained by completing the basis of G. Now G, and
G x R*%-4 are locally isomorphic. More precisely, define ®: G x R%~? — G, by

O(g,8a41,-- -1 €a) = gexp(€a1a441) - . . exp(€q, aqy )

Next let U C G and V C R%~¢ be open bounded neighbourhoods of the identity and
the origin. One may choose U and V such that ® restricted to U x V is an analytic
diffeomorphism from U X V onto an open neighbourhood € of the identity of G1. If U and
V are small enough there exist §, M > 0 and a C* function o:U x V — [6, M] such that

[ divie)= [ di [ de(®(g,6)0(s,8)

for all ¢ € C.(f)). We may assume that U = B} and V = (—4,4)®~%. One can then
introduce x; € C®(N) such that if x; = x; 0 ® then x; = x3 ® x4 for some x3 € C*(Bj})
and x4 € C®([~2,2]*-%) and, moreover, 0 < x4 < 1 and x2(g,£¢) = 1 for all (g,¢) €
Bj x [—1,1]%74. Then for all ¢ € Ls(G;) one has

(L6Ak)009)) (@19, )) = [ db (xA%k;)(B) (L(B)(x29)) (819, 6))

= /G dh (xA%k;)(gh™") x3(h) xa(€) @(®(R,€))

for (g, €)-almost everywhere in U x V and for all large j.

In order to prove suitable weak L;-bounds we first restrict ourselves to the case G = G,.
Define T;: Ls(B}) — Ls(Bj) by

(Tip)e) = [ b (xAk;)(gh™) xa(h) ()

4

for all 7 € N with j > 2v. Then T; has the form

(Tie)9) = [ du(k) xs(g,b) e(h)

where £;(g, h) = (xA%k;)(gh™1) x3(k) and p denotes the restriction to Bj of the right Haar
measure on (. Alternatively

Tip = (A*X;)(x3p) — L((1 — x)A%k;)(x3%)

for all ¢ € L,(Bj; u). Since we have already established that A*X; is bounded on
Ly(G}; dg), uniformly in j, and since ||xa¢|l; < |[¢|l; it follows from the observation of
the previous paragraph that sup; ||T}|[;_3 < co. This is the first condition of [CoW] for
the T; and it is uniform in the j.

Secondly, «; has support in B; x By, and in fact k; € L2(Bj x By; p ® p). This follows
because A%k; € Loo(G; dg) by (5). Finally, for the third and most difficult condition, it
suffices to prove that

sup sup [ du(g) Ix;(g,h) = s(g, ho)]| < 00
J hho€B] (ko)

9



where Q(k,ho) = {g € B} : d(g,ho) > 4d(h, ho)} and d is the subelliptic distance on G,
defined by d(g,k) = |hg™'|". Then by right invariance

sup su - d k;(g, k) — k;i(g,h
jph,hoepB; (h,ho) ”(g)l i(g, k) (g, ho)

<sup su d K;(gho, h) — ;(gho, h ,
S sup Sup oy #(9) |x;(gho, ) — £(gho, ko)l

where Q4 (h, ko) = {g € By : |g|' > 4|hhg"|'} and u also denotes the restriction to By of the

right Haar measure on G. For a; € g let X; be the corresponding right invariant vector
field on G. So

(Xi)(9) = Sv(exp(tai)g)| _,

for all Y € C3°(G). Now let h, ho € G and choose an absolutely continuous path w: [0,1] —
G from hy to h with tangential coordinates in the directions Xj, i.e.,

w(t)

d' ~
o) =Y wilt) Xi|
i=1
such that
1 d 2\1/2
/0 dt (Y wi(t)?)"" < 2d(h, ho)
i=1
Then

1
55(gho, ) = 5{gho, ho)| < [ dt [ &x;(gho, ()]

Now if p € C*(G), k € G and ¥(g) = p(kg™?), then

;
Lp(w(t)) = D wilt) (L(kw(t)™?) AL((kw(t)™))p) (kw(t)™)

=1

By [EIR2], Lemma 7.3, there exist functions ¢;3: G — R, where ¢ € {1,...,d'} and j €
J-(d'), and constants M;,o > 0 such that

Lig™MAL(g) = Y ciplg)A?
BeJr(d")
|8|#0
with |¢; 5(g)| < My (|g|")P1-1e?9 for all g € G, i € {1,...,d'} and B € J.(d'), |8] # 0. So
d'
) =3 Y wilt)as(ko(t)™)(A%)(ku(t)™) .
ol

Moreover, for all ¢t € [0,1] and g € ;(h, ho) one has
lghow(t) | 2 |g|" — d(ho,w(?)) > |g|' — 2d(ho, h) 2 27 |g|" .

10



Combining these two observations with the bounds (4) one obtains for all g € ;(h, ko)
| %55 (gho, w(t))]

.
< ; lwil®)] - |(xA%k;)(ghow(t) ™) (Xixs)(w(t))]
”
+3 Y lwilt)l - leislghow(®)™)] - |(AP(xA%k;)) (ghow(t) ™) - |xs(w(t))]

i=1 peJ.(d')

|8]#0
dl dl
< (T lai®)]) (a22'(l9) 2" 3 [ Xixslloo
=1 t=1

+ X T Mgl a2 gf') P Ao llxlleo)
sEI(e) (aleLus)

dl
< Mo(lgl)= P Y lwi(t)]

i=1

Hence
|k;5(gho, B)) — Kj(gho, ho))| < (d')/2Mad(ho, k) (Ig]')~" "

But if ¢ = supte(o,slt‘D'|Bt'|, s = d(h,ho) and N, € Np is such that 2V~ < 57! < 2N
then we obtain

N,
ds(lg) P <Y | dg s(lgl)>"
/Ba\B;. (lgl ,.Z:o B} _n4\B) sz (lgh)

N,
S Z 65(2—n+2)—D'—1 (2-n+3)D’

n=0

= 2D 2cs(2MeH 1) < 2P'¢ .

Hence
S 2D'c(d1)l/2M2 ,

~/91 (hyho) dg |Kj(gh0’ h)) - K’j(ghOa hO))

which is the third condition of Theorem I11.2.4 of [CoW], uniform in j.

Now we can use this latter theorem to deduce that there exists M3 > 0, independent
of 7, such that

#({g € By : |(Tiv)(9)l > v}) < Msv~ il
for all ¢ € L,(Bj; dg) N Ly(By; d§) and v > 0.
Next we drop the restriction that G = G; and extend the last bounds to G;. Let
p2 denote the product measure of y and the Lebesgue measure on R%~¢. Then with

¢*(9) = p(9(g,€)) one has

#2({(9:8) € U x V 1 |((L(xA%K;))(x39)) (8(9,))] > 7})
= uw2({(9,6) € U x V: xa(&) [(T5¢*)(9)| > 7})

11



< ' (Tt

- /[—4,4141—4 d¢ p({9 € By : [(Tie*)(9)| > 7})
<M dé |of -1

- 3/[-4,4]«11-4 d¢ B g 1o (9)y

< Mys™ /

[-4,4]%1-¢

d [ dilp(®(9,6)la(g,6)7

= M367"||eflv

for all ¢ € Ly(; d§). In particular, if ¢ € Li(Gy; p1) N La(Gh; p1), where we now use
to denote right Haar measure on Gj, with suppp C ' = ®(B} x [-1,1]%~%), then there
exists ¢ > 0 such that

m({g € G+ |(L(xA"k;)e) (9)] > 7)) < cllellyr™
with ¢ independent of j.
Next for j € N, j > 2v define P;: L;(Gy) — L;(G,) by

Pip = L(xA%k;j)p
Obviously each P; is continuous by the estimates (5). It follows that

u1({g € Gy : |(Pie)(9)l > 7}) < ev Hlells

for all o € Li(Q; 1) N Lo(; py) and v > 0.
Moreover, for all k € Gy and ¢ € Li(Gy; p1), one has

R(k) L(xA°k;)¢ = L(xA%k;) R(E)p
where R denotes right translations. Therefore

m({g € G : |(Pip)(9)] > 7)) < cellellir™ (7)

forall j € N,y > 0 and all ¢ € Li(G1; p1) such that supp ¢ C 2k for some k € Gy. It then
follows by a finite covering argument that a similar estimate is valid for all ¢ € L;(Q; p1)
and for each bounded open neighbourhood § of e. So if G; is compact it follows that the
P; satisfy a global weak-L; estimate. However, we need a global bound also if G, is not
compact.

Next we establish that the operators P; satisfy a global weak-L; estimate if G is not

compact by use of the following covering lemma, [Bur] Lemma 3.2.7 (see also [Pie] page
66).

Lemma 2.5 Suppose G; is not compact and let B, denote the ball {g, € G1; || < €}
relative to a fired modulus on Gy. Given € > 0, there is a sequence g1, g2, ... of points in
G, such that

Gl = U Begi

=1

and the additional two properties are valid.

12



| There is an Ny € N such that each g € G, lies in at most Ny balls B, g;.

II.  Given 6§ > 0 there is an Ny € N such that each g € G, lies in at most N, of the balls
Beys gi-

Proof The existence of a covering sequence with the first property has been established
by Pier (see [Pie] page 66). The second property is established as follows.

Fix g € G and let T denote the set of indices ¢ such that B,g; C Bs.4+s9. Further let

—

m; denote the y;-measure of the set of h € B;..s such that A lies in exactly j of the balls

B.g; with : € T. Then
N

Y m(Begi) =) jm;

i€l 1=1
since any point of B,.,s is contained in at most N; of the balls B.g;. But

N
Y mj < p1(Baess)

Jj=1
Therefore if k denotes the number of indices in Z then
kpi(Be) = Z/‘l(Begi) < Nip1(Baets)
i€l
and k has the g-independent bound

k < Nypa(Baess)/ 11 (Be)

Finally suppose that A € G lies in [ balls B,;sg; then B.g; C Bj.4sh for each such ball.
Hence one may choose

Nz = Nip1(Baeys)/ p1(Be)
independent of the choice of g. O

Now apply the lemma with an £ > 0 such that B, C €’ and and 6§ > 0 such that
®(B} x [-1,1]%%) C B.4s. Choose a partition of the unity (¢;); relative to the cover
G1 = U2, B.gi, i.e., supp¥; C B.g;. Then for all j € N with j > 2v and ¢ € L1(Gy; )
one has ¢ = 3272, ¥ in L1(Gy; p1). Then by the continuity of P;

Pip =3 Pi(viw) = - R(6™) PiR(g:) (o)

Moreover, supp R(g;)(¢i¢) C B. and supp R(g;') P;R(g:)(¥ip) € Beysgi, so each g € Gy
lies in the support of at most N, functions R(g;') P;R(g;)(vip). Therefore we obtain by
(7) that

m({g € G1: |[(Pip)(g)l >7}) < im({g € Gi : |(R(g7") PiR(g:)(%i0)) (9)] > 7N5'})

=1

<3 ey I Ng ||l

i=1

= ¢y N[l
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Thus the operators P; satisfy a global weak-L; estimate for any Lie group G, uniformly
in 3. Hence the operators A% X also satisfy a global weak-L; estimate, uniformly in 5. By
interpolation one deduces that the operators A°X; are uniformly bounded on the L;(Gh)-
spaces, with p € (1,2] and a € J,(d').
Next we prove by induction that
D((vI + H)M'™) C Lju(Gh)

for all k € {0,...,n} and that the inclusion is continuous. The case k = 0 is trivial. Let
a € Jua(d'), 1 € {1,...,d'} and suppose that D((vI + H)™™) is continuously embedded
in L, (G1). Then there exists a ¢ > 0 such that |||l < cll(v1 + H)"™p||5 for all
¢ € D((vI+H)™™). Let p € (1,2] and o € Ls(G,). Then for all j € N with j > 2v one

obtains the estimate
|A*(wI +H) ™™ — AN G+ HY Nl + H)™"|5
< l|(v] + Y™ (I + By ™™o — NGI+ H) NI +  H)™me) |5
= d|(I = iNGI+H)Nyels

Therefore
lim AN+ H) NI + H) ™™o = A*(vI + H) ™™

in the L;(Gy)-sense. Now let M > 0 be such that ||A*Xj||;o; < M forall j € N, 7 > 2v,
1 <p<2and a€ J,(d). Then for all € D(A}) C Li(G1), where g is the conjugate to
P, one obtains:

(i, A°(v] + H)™" )| = Jim [(A7, A%V (T + H) ™ (w1 + H) /")
= jli{g [(1, AiA® X )|
< Miislls llells
Hence AQ(V]'*-F)_n/mQO € D((A,)") — D(A.) and ”AiAa(VI + F)—n/m‘P”ﬁ < 1‘4”(‘0”’3

Case 2: p € [2, 00).

For all @ € J,-1(d"),1 € {1,...,d'}, € N with j > 2v, ¢ € L;(G;) and ¢ € D(A}) C
L;(G), where g is the conjugate to p, one has

(A7, A% X)) = (b, AiA° X, ) = (v, L(AiA%k;)p) = (L((AiA°k;) Vb, )
where 77(g) = 7(¢97'). Now ¢ € (1,2] since p € [2, 00). Because
IL((AiAk;))ll5 = [I(AiA°X;)"ll; < |AiA°Xjllz-z 1]l

it follows that the operators ¢ — L((A;A%k;)" )y are bounded on L;(G,) uniformly in j.
Moreover, if Rec is large, then for all § € J(d') one has bounds

- N ¢ —_D'_ —u/"' '
|(AP(A;A%E;T)(g)] < af|gl)~D'~1Ple=t ol
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because of the inequalities (4). Therefore, arguing as above, it follows that the operators
(A;A°X;)* are uniformly bounded on L;(G;). Finally by repetition of the foregoing induc-
tion argument one deduces that D((vI + H)*™) is continuously embedded in L..(Gy) for
all p € [2, 00).

The next step in the proof consists of establishing the converse inclusion, Ly (G1) C
D((vI + H)™™).

First suppose that n € {1,...,m — 1}. We may assume that the real part of the zero-
order coefficient of C is sufficiently large that H has a bounded inverse. Let C;: J(d') — C
be the form defined by

Cl = Z Z Cab"

a€lm(d’) vEJm(d')
(Brr)€Lb(a)

and let H! = dL(C}). So (¢, Hp) = (H}4, ) for all smooth enough ¢ and 4. Next, for
all a € Ju(d') let o € Jp—n(d') and o” € J,(d') be such that a = (¢/,a”). By the first
part of the proof of this theorem there exists ¢ > 0 such that

[l5m—n < el (HDImp) g

gim—-n =

for all ¢ € C*(G1). Then for all p,v € C=(G,) one obtains

()| = [, " )|

=| ¥ cal(a)(H) I my, 4 H )
oa€Jm(d’)

= Z Ca(—l)la’l E b‘Y((Aﬁo (F}T)-(m—n)/md}, Aau-ﬁ-n/msp)
a€Jm(d’) (BA)ELb(a’)

Se ¥ el X 8ISIIE T el

o€Jm(d') (B)eLb(a’)

Hence ||¢||; < c’||F_"/mgo||},;n for all ¢ € C®(G,) for some ¢ > 0 and, by density, for
all ¢ € Ly(Gy). So [H™¢ls < ¢l for all ¢ € DE™™). Since L (G1) and
hence D(Fn/ ™) is dense in L}, (G1), see [EIR3] Lemma 2.4, it follows that L}, (Gy) is
continuously embedded in D(F/ ™.

Finally we consider the case n > m. Write n = Nm + k with N € N and k €
{(;;...,m —1}. There exists ¢ > 0 such that |[H*"¢|l; < cllp|ls4 for all ¢ € C2(Gy).
Then

-+n/m 7k /m
IH " ells = [H'™H¢||5 < el HN ol 54

for all p € C2(G,). But H is an operator of order Nm. So
=n/m
”H ‘P“ﬁ S c’“‘P”I‘;k+Nm = ’"‘P”’ﬁ,n
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for all ¢ € C°(G,). Again, since C®°(G,) is dense in Lj,,(G1) it follows that L} (Gy) is
continuously embedded in D(ﬁﬂ/ ™). This completes the proof of the theorem. O

One can immediately deduce from the theorem a characterization of the C"-elements
associated with a finite sequence ay,...,aqs of elements of g. Let g’ be the Lie subalgebra
of g generated by ay,...,aqs. If G’ is the connected subgroup of G with Lie algebra g’ one
can apply the theorem with G and G, replaced by G’ and G, respectively.

Corollary 2.6 Let a,,...,aq be elements of the Lie algebra g of a connected Lie group G
and L, . (G), L;,.(G) the corresponding C™-subspaces. Then

&
L;a(G) = [ D(A)

i=1
for all p € (1,00) and n € N. Similar identities are valid for the L}, (G)-spaces.
Proof We may assume that ay,...,aq are linearly independent. Let Cs, be the form such

that dL(Can) = (=1)" Tk, AP, Let ¢ € L, D(A?) C Ly(G). Let e = L, [|Afoll, +
ll¢ll,- Then for all ¢ € L. (G)

dl
[((dU(C2n) + DY, 0)| = |(—1)"(Z: AT, @) + (¥, 9)]

d’
= | Y _(AfY, AT) + (¥, )]
i=1

S cl||¢”:1;n

By Theorem 2.3, with G and G, replaced by G’ and G, respectively, there exists c; > 0
such that

1 llgm < e2ll(dL(Can) + 1),
for all ¥ € L), (G). Since (dL(C2n) + I)*/? maps L, .(G) onto L. (G) it follows that

[((dL(C2n) + 1), )| < crcall,
for all € L (G) and, by continuity, for all ¥ € D((dL(C) + I)'/?). So ¢ €
D((dL(C2n) + I)/%)*) = D((dL(Car) + I)"/?) = L.,.(G) by Theorem 2.3 again.

The proof for L}, (G) is nearly the same but a minor complication occurs because of
the modular function. This can be handled as before. O

The theorem and the corollary can be combined to give a variety of other statements.
For example, if

dl
H=-% A2

=1
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is the sublaplacian formed from the left derivatives associated with the general subbasis
a,...,ay then

dl

D((vI+ H)"*) = (] D(A})

i=1
on each L,-space with p € (1,00), for all » > 0. In particular, if d' = 1, and one sets
A;= A and v =0, then

D(|A") = D(4")

for all n € N where the modulus of A is defined by |4| = (—A?)"/2.

The situation on the L;-spaces is slightly more complicated. But one finds that

D((vI+ H)"*) = ﬁ D(AY)

i=1

on each Ls-space with p € (1, 00), for all v > b?/p? where b = (T2, (A:;A)(e)*)/2.

The foregoing argument with G and G’ can be used to extend earlier results on unitary
representations. One has the direct analogue of the foregoing corollary and theorem.

Corollary 2.7 Let (H,G,U) be a unitary representation, ay,...,ay elements of the Lie
algebra g of the Lie group G and A; = dU(a;) the corresponding generators. Further let
H,, denote the C™-subspaces associated with A;,..., Ay and set
dl dl
H=- Z C,'jA,'Aj + ZC,‘A,’

1,7=1 i=1
where ¢;j, ¢; € C and the real part 271(C + C*) of the matriz C = (c;;) is strictly positive-
definite.

Then ”
H,, = () D(A}) = D((vI + H)"/?)
=1

foralln € N and v > 0.

The corollary is a direct consequence of [EIR2], Theorem 6.3, applied to the unitary
representation (H,G’,U’) where G’ is defined as above and U’ = Ul|g:. More general
statements are possible in terms of higher-order subelliptic operators.

For general representations one has the following extension of [EIR2] Corollary 6.2. If
ai,...,aq is a basis for the Lie algebra this result reproduces Theorem 1.1 of [Goo).

Corollary 2.8 Let (X,G,U) be a strongly continuous, or weakly”-continuous, representa-
tion of G on a Banach space X, ay,...,ay elements of the Lie algebra g of the Lie group
G and A; = dU(a;) the corresponding generators. Then

dl
X, =[] D™(A)

i=1
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Next we consider homogeneous spaces for which the subgroup is compact.

Theorem 2.9 Let K be a compact subgroup of a unimodular connected group G, and let
¢ be a left invariant measure on the homogeneous space G/K. Let G be a subgroup of G1.
Let p € (1,00) and let U be the left regular representation of G in X = L,(G1/K; p). If
ay,...,aqx s an algebraic basis of the Lie algebra g of G and C: J,,(d') — C a subcoercive
form of order m and step r then for H = dU(C) one has

D(wI+H)"™) = X,
for each n € N and all large v, with equivalent norms.

Proof Consider the corresponding problem in L,(Gy; dg). If X; is the operator on
L,(Gh;dg) as in the proof of Theorem 2.3 and X ; is the corresponding convolution operator
on X = L,(G1/K; ), then the A°X; satisfy a weak L;-estimate uniformly in j, so since
K is compact it immediately follows that also the A"XJ'? satisfy a weak L;-estimate on
the homogeneous space, uniformly in j. Since U is a unitary representation if p = 2, the
theorem is valid for p = 2 by [EIR2] Theorem 6.3.11. Hence by interpolation and a similar
approximation to that used in the proof of Theorem 2.3 the result follows for p € (1,2].
But the same argument also works for (A*X?)* and hence the result for p € (2, 0o) follows
by duality. 0

3 Conclusion

The characterization of the differential structure given by Theorem 2.3 is related to the
Lie group version of the boundedness of the Riesz transforms. If H is the sublaplacian
formed from the left derivatives Ay, ..., Ag then we have established that D(H™?) = L.,
and one has bounds

14°¢llp < cpmull(v] + H) 2oy (8)
for all o with |a| = n, all ¢ € L7 with p € (I,00) and all v > 0. The limit case v = 0

corresponds to the Riesz transform problem. Our results do extend to v = 0 for certain
classes of groups, e.g., compact groups.

If G is compact and ¢ is a constant function then ¢ € L, and since A% = 0 = Hyp
the required estimates are obvious. Next let Py = [ dg L(g)p be the projection of ¢ on
the space of constant functions. Then on the subspace (I — P)L, of L, the operator H
has a bounded inverse as a direct consequence of spectral properties (see [Rob] Proposition
1.7.1). Therefore it follows straightforwardly from (8) that one has bounds

1A%l < cpnll H™ 2l (9)

for all @ with |a| = n and all ¢ € L; . with p € (1,00). Therefore these estimates are valid
on L,.

If G is non-compact the boundedness of the Riesz transforms is much more delicate
and the example of Gaudry, Qian and Sjogren [GQS] shows that (9) may be valid with
n = 1 but false for n = 2.
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