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1. Introduction 

Injuries resulting from motor vehicle crashes are one of the leading causes of death and disability 
in modern society. Due to increased safety measures concerning vehicle occupant protection, 
imposed on motor vehicles by the authorities, it has become essential for the automotive industry 
to already encorporate possible safety aspects in the earliest design stages. 

A prerequisite to establish the effectiveness of these protective safety measures in motor 
vehicles, such as seat belts and airbags, is the introduction and improvement of crash dummies and 

possible, modifications are done with the aid of experimental results. 
The most sophisticated versions of the total-human-body models are articulated and multi- 

segmented to simulate all the major articulating joints and segments of the human body. 
Effectiveness of the multisegmented models to accurately predict live human response depends 
heavily on the proper biomechanical description and simulation of the articulating joints. 

The body segments of human beings are usually modelled as rigid bodies. The joints, which 
connect the body segments and enable relative motion, are often modelled as ball and socket joints 
or revolute joints. These joints enable relative rotations. These joints suffice for the description of 
normal motion of human beings but are not applicable in the case of crash simulations in which 
large rotations and translations take place in a short time interval. 

This report has been written within the scope of a project supervised by the TNO Road Vehicles 
Institute. The aim is to formulate and implement a human joint model which is capable of 
describing anatomically correct joint motion. The technique needs to be implemented in 
MADYMO. MADYMO is a combined finite elementímultibody program which is used to 
determine vehicle-occupant interaction. It is developed by the TNO Crash Safety Research Centre 
in Delft, the Netherlands. 

The primary step in obtaining a formulation of human articulating joints is a review of the 
available literature concerning anatomical joint modelling techniques. Several anatomical joint 
modelling techniques have been described in the literature. However, these techniques have mainly 
been applied to the description of the characteristics of the human knee during passive or quasi- 
static motion. In general, not much has been published in literature concerning the dynamic 
modelling of human articulating joints. In fact, Hefzy and Grood (1988) concluded that there were 
only two available dynamic models of the human knee namely those proposed by Moeinzadeh et 
al. (1983) and Wongchaisuwat (1984). 

In this report, a formulation to describe 3-dimensional dynamic human joint motion is reviewed. 
The formulation was initially developed by Moeinzadeh (1981), and improved and expanded in 
subsequent papers. In Chapter 2, a human articulating joint is defined by contact surfaces of 2 
body segments which execute a relative dynamic motion within the constraints of ligament forces. 
The generalized description proposed by Moeinzadeh is modified for new purposes and a uniform 
nomenclature is introduced. In Chapter 3, several numerical procedures are discussed to solve the 
resulting system of nonlinear differential equations of motion and algebraic contact conditions and 
geometric compatibility condition. In Chapter 4, the focus is on the specific application of the 
technique to a 2-dimensional model of the human knee joint: the joint between the femur and tibia. 
The technique is implemented in MADYMO and the knee model is used for validation. In Chapter 
5,  several possible improvements of the modelling technique are discussed. 

m lllaLi t+- b1LLatic21 m d d s  ~f hUmzr, beings. 51 grder to ~ppreximzte the hcmm behaview as closely as 
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2. Mathematical Formulation of an Articulating Joint 

2.1 Introduction 

Most mathematical joint models that consider both the geometry of the joint surfaces and 
behaviour of the joint ligaments are quasi-static in nature and employ the inverse method 
(Wismans, 1980 & Blankevoort, 1991). The inverse method implies that the ligament forces caused 
by a specified set of translations and rotations along the specified directions are determined by 
comparing the geometries of the initial and displaced configurations of the joint. It is furthermore 
necessary to specify the external force required for the preferred equilibrium configuration. Such an 
approach is only applicable in a quasi-static analysis. In a dynamic analysis, the equilibrium 
configuration of the joint is not known and a mathematical analysis is required to provide the 
equilibrium configuration. 

The mathematical description of an articulating joint, which will be described in this chapter, 
was initially defined by Moeinzadeh (1981). An articulating joint is hereby modelled by two body 
segments connected by nonlinear springs simulating the ligaments. As deformability of the surfaces 
of the segments is not taken into account, the body segments are considered to be rigid. 
Moeinzadeh assumes that one body segment is rigidly fixed, although this assumption has no 
specific physical applications and is not a condition for describing relative motion between body 
segments, while the second body segment is able to undergo a three-dimensional dynamic motion 
(translation and rotation) relative to the fixed body segment. The friction force between the 
articulating surfaces will be neglected because the coefficients of friction between the articulating 
joints are assumed to be negligible. This assumption is valid due to the presence of synovial fluid 
between the articulating surfaces. 

2.2 Characterization of the Relative Positions 

The position of the moving body segment 1 relative to fixed body segment O is described by two 
coordinate systems as shown in Figure 1 .  The inertial coordinate system (xo,yo,zo) with unit vectors 
e',', ë; and ë: is connected to the fixed body segment and the coordinate system (x',y',z') with 
unit vectors ël', E,' and ë3' is attached to the center of mass of the moving body segment. In this 
report, the following convention is adopted for vector quantities: unit vectors are designated as ë 
(superscripts O and 1 denote fixed body and moving body segments coordinate systems 
respectively and integer subscripts denote principal axes) and position vectors by 7 (here a 
subscript denotes a point on a body segment). The nomenclature has been slightly modified from 
the original references to give more insight into the mathematical description. 

The motion of the moving system (x',y',z') relative to the fixed system (xo,yo,zo) may be 
characterized by 6 quantities: the translational movement of the origin of the moving system 
relative to the fixed system in the x,y and z directions, and possible rotations about the x, y and z 
axes. Let the position vector 3,' of the origin of the moving body segment coordinate system 
relative to the fixed body segment coordinate system be given by: 

-0 o -0  o - 0  o -0  
rM = xM el YM % zM % 

Let the vector fQ1 be the position of an arbitrary point Q on the moving body segment in the base 
(ë,',ë,',ë,') and let ?': be the position vector of the same point in the base (e",,e",,ë"3). This can 
be formulated in the following equations: 
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-1 1 - 1  rQ = xQ e, + y: 2 + z{ 6’ 

-+O o -0  0 - 0  0 - 0  
‘Q = xQ el -i YQ % ‘Q e3 

The vectors ZQ1 and i?: have the following relationship (Figure 1): 

T 1  
-Q r0 = -M r0 + [TILQ 

(3) 

(4) 

where represents the column definition of the vector notation and [ 1 ] is a 3x3 orthogonal 
transformation matrix which transforms the base of the moving body segment in the base of the 
fixed body segment. The angular orientation of the (xl,yl,zl) system with respect to the (x ,y ,z ) 
system is specified by the 9 components of the transformation matrix and is determined as a 
function of the three rotation angles 4, 8 and y~ about respective body coordinate system axes. This 
is written as (Engin & Moeinzadeh, 1983): 

o 0 0  

but the order of the rotation angles should be defined as (Shabana, 1989): 

T = T ( 9 ,  e 3 yJ) 

this discrepancy is probably caused by a mistype in (5).  

L o 
“ 3  

Figure 1. Two-body segmented joint in the 3-dimensional formulation 

Moeinzadeh uses a 3-1-3 Eder angle sequence to specify the components of the transformation 
matrix. It should be noted that this choice is not trivial as for example Wismans (1980) used 
Bryant angles. More recent developments in the description of the transformation matrix include a 
joint coordinate system proposed by Grood et al. (1983), in which the system consists of a fixed 
axis on the fixed body segment, a fixed axis on the moving body segment and a floating axis 
perpendicular to these two fixed axes, and the use of helical axes (Woltring, 1990 and Karlsson et 
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al., 1991). 

(ëi1,ë21,ë31) is obtained from the fixed coordinate system (ëlO,ë;,ë:) by applying successive 
rotation angles $, 8 and v (Figure 2). First the (ë lO,ë~ ,ë~)  coordinate system is rotated through an 
angle $ about the ë: axis of the fixed body coordinate system (Figure 2.a), which results in the 
intermediary system (ëlol ,ë~l,ë~l).  The subsequent rotation through an angle 8 about the ëlol axis 
(Figure 2.b) results in the intermediary system (ëlo2,ëlo2,ëlo2). The final rotation through an angle 
y~ about the ë p  (Figure 2.c) gives the orientation of the moving body coordinate system 
(ë11,ë21,ë31). The orthogonal transformation matrix resulting from the successive rotations is 
defined as (Engin et al., 1983): 

When 3-1-3 Eder angle sequence is used, the orientation of the moving coordinate system 
_. 

r1 = [ 1 (7) 
-M 

with: 

1 cos$cosv-cosûsin$sinv sin$cosv+cosûcos$sinu/ sinûsiny, 

[TI = -cos$sinyr-cosûsin$cosy, -sin$sinv+cosûcos$cos\v sinûcosyr I sinesin$ -sinecos$ CoSe 
- 

(note that this is the transpose of the transformation matrix as defined by Shabana (1989)). 

Figure 2. Successive rotations of Eder angles to build the transformation matrix 

2.3 Contact Conditions 

A rigid body contact between tine two body segments at contact points Ci (i is the nuniber of 
contact points) is assumed (Figure 1). The contact surfaces of the fixed and moving body segments 
respectively can then be represented by the following continuous functions: 
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y = g'(x',z') 

The position vectors of the contact points Ci in the bases of the respective body segments are: 

(1 1) -.O o - 0  o o -0  o - 0  
rci = xci e, + f O(xCi,zci ) e, + zci e, 

(12) -1 1 - 1  1 1  
= xci e, + g '(xCi,zci 6' + zCi ë: 

In analogy to (4), the following contact condition relationship must hold in Ci: 

T 1  
- C i  y 0  = r O  - M  + [ T I L C i  

2.4 Geometric Compatibility 

To exclude the possibiIity of penetration or overlap between the articulating surfaces, it was 
defined that only a single tangent to both articulating surfaces exist at the contact point. The unit 
normals to the surfaces of the moving and fixed body segments at the points of contact are 
therefore colinear to maintain rigid contact. Let Ïic: be the unit outward normal to the surface of 
the fixed body segment at points Ci then: 

where the numerator indicates the direction of the unit outward normal which is determined 
through the vector product of the articular surface tangents and the denominator normalizes the 
outward normal to a unit length. The vector i,: is given in (1 1) and the components of the matrix 
[ G ] are determined from: 

a g  ar;i 
a x k  ax 1 

Gk, = (- . -) with kl as matrixcomponents 

with: 
O O 

x 1  = xci , x 2  = %i 

Tie components of matrix [ G j may therefore be written as: 

r 1 
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azci O azci 
+ (o>(T) axci azci axa azci 

+ ay:i ay:i 

Since (az,,O/ax,~)=O and (axc”/az,~>=O, after substitution the components of matrix [ G ] are 
reduced to: 

(174 
af0 

Gxx = 1 + (+ 
axci 

From equations (17) the det[ G ] can be written as: 

Furthermore it holds that: 

and therefore the unit outward normal expressed in (14) will have the following form: 
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ë; - ep 

where the parameter y (y is either +1 or -1) is chosen such that ñc. represents the outward normal. 
Similarly, following the same procedure as outlined above ñcil, the unit outward normal to the 
moving surface, yl=gl(xl,zl), at contact points Ci, expressed in the moving body coordinate system 
can be wriîten as: 

r 1 

where the parameter P (P is either +1 or -1) is chosen such that ñcil represents the outward normal. 
Colinearity of unit normals at each contact point Ci, requires that: 

no = - [ 1 IT$. (24) 
-Ci 

This colinearity condition is also satisfied by requiring that (ñc~xTTÏici')=O. 
In conclusion the contact conditions and geometric compatibility conditions are specified as: 

2.5 Ligament Forces 

During its motion the moving body segment is subjected to the ligament forces, contact forces and 
the externally applied forces and moments (Figure 3). The external forces and moments are 
specified while the contact forces and the ligament forces are unknown and need to be solved from 
the differential equations which will be discussed in detail in the forthcoming sections. 

The ligaments are modelled as nonlinear elastic springs. In the application of the dynamics of 
the human knee joint, the following force-elongation relationship can be assumed for the major 
ligaments (the subscript j denotes the jth ligament): 

Ej" = FjX,o 

in which Fj gives a specific constitutive relation and Xf denotes the ligament unit vector. Let fjll 
be the position vector of the primary insertion point of the ligament j in the moving body segment. 
The position vector of the secundary insertion point of the same ligament j in the fixed body 
segment is denoted by fj:. The subscripts m and f outside the parenthesis imply "moving" and 
fixed", respectively. 



2. Mathematical Formulation of an Articulating Joint 9 

Figure 3. Human articulating joint with force descriptions 

The unit vector Xy along the ligament j directed from the moving body insertion point jl to the 
fixed body segment origin point j0 is: 

L. 
J 

in which the current length of the ligament is given by: 

2.6 Contact Forces 

The friction force between the moving and the fixed body segments is considered negligible. Due 
to the contact between the articulating surfaces, the fixed body segment exerts a force on the 
moving body segment as it moves along its articulating surface. The contact force will be in the 
direction of the outward normal of the surface in the contact point Ci. The contact forces Nc: in 
the contact points acting on the moving body segment are given by: 

where IN,-OI is the unknown magnitude of the contact forces and (ncO)x, (nc:), and (n,;), are the 
components of the unit normal B,: in the x,y and z directions of the fixed body coordinate system 
respectively. 

2.7 External Forces and Moments 

The moving body segment of the joint can be subjected to various external forces ( gravitational 
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force, forcing pulse, muscle forces or accelerations applied directly to the bones outside the 
articular area). The external moment vector can consist of applied external moments (e.g. 
prescribed torques) and the moments caused by the external forces. The resultants of the external 
forces and moments at the center of mass of the moving body segment are given as: 

Feo = (F:),Z; + (Feo)yCo + (F:),<’ (29) 

neo = (Me0),ë; + (M:)yGo + (M:),C0 (30) 

2.8 Equations of motion 

The equations governing the motion of the moving body segment given in the fixed body 
coordinate system as function of the applied forced and moments are: 

MX0lX 1 = Ix I, 1’ I + (I, I, 1 -Iy Iy I)ay 1 ,  1 (32a) 

where xMo denotes the second time derivative of the motion in the ë: direction, m denotes the 
mass of the moving body segment, p and q represent the number of ligaments and contact points 
respectively. I,,,,, Iy.y, and I,.,, are the principal moments of inertia of the moving body segment 
about the (xl,yl,zl) axis system and a,., coy. and a,, are the components of the angular velocity 
vector in terms of the Euler angles (Engin et al., 1983): 

a,, = Bcosy, + bsinûsiny, (33a) 

coy, = Bsiny, + $sinûcosy, (33b) 

The angular acceleration components dx., ay. and O,. are directly obtained from the time 
derivatives of the previous equations: 
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dx, = ëcosv - q(0sinv - 4cosvsinû) + ipsinûsinu, + @cosûsiny, (34a) 

Note that the moment components on the left-hand side of (32) have the following terms: 

q P 

1pI o = Reo + [T]T(?ii)~( IN:i + [x]T($)x(FjX,o) 
i=l j-1 

(35) 

Equations (31) and (32) form a set of 6 nonlinear second-order differential equations which 
together with the contact and geometric compatibility conditions: 

no = -[ 1 (24) 
-Ci 

result in a set of 16 nonlinear equations with 16 unknowns (if 2 contact points are considered): 
(a) +, 8 and yf which determine the time-dependent components of transformation matrix [ T 3 
(b) xM0, yMo and zMo: the components of position vector FM0 
(c) xcl , zcl , xcl zcl , xc2 , zC”, xC;, zC2l: the coordinates of the contact points 
(d) INc: 1, INc: I: the magnitudes of the contact forces in the contact points 
The problem is completed by prescribing initial conditions at t=O: 

O 0 1 1 0  

(364 . o  O O 
XM = yM = i, = o 

along with specified values for xMo, yMo, zMo, +, 8 and v. The numerical procedures which can be 
used to solve the system of equations will be described in the following chapter. 

The following observations can be made: during its motion the moving body segment is 
subjected to unknown ligament forces, contact forces, and specified applied forces and moments 
(Figure 3). The model is intended to simulate events which take place during a very short time 
period such as 0.1 seconds. Engin et al. (1985) state that the muscle forces need therefore not be 
included in the dynamic modelling of an articulating joint because it is sufficient to consider only 
the passive resisitive forces at the model formulation. Recent research (Thunnissen, 1993) has on 
the other hand indicated that there are muscles in for example the human lower limbs that have 
sufficiently short reaction times to be able to contribute to the forces in the equations of motion 
(31) & (32). Direct exclusion of the muscle forces from the current model does not restrict its 
capabilities to have the effects of muscle forces to be included as a part of the applied force and 
moment vector on the moving body segment (Engin et al., 1985). Another option is to directly 
implement the muscle forces into the model, comparable to the manner in which the ligament 
forces are implemented. Tümer & Engin (1993) described a three-body segment dynamic model of 
the human knee which enables one to obtain the dynamic response of the knee joint to muscle 
actions (quadriceps, femoris, hamstrings and gastrocnemicus) as well as externally applied forces. 
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3. Numerical Procedure 

3.1 Introduction 

The mathematical formulation which has been described in the previous chapter has in literature 
mainly been applied to the description of the motion of the human knee (primarily the articulating 
joint connecting the femur and tibia excluding the patella) as a result of external forces. Due to the 
fact that the 3-dimensional formulation is more extensive and an efficient numerical procedure has 
not yet been found, the applications focus on the motion of the knee in the 2-dimensional sagittal 
plane. 

In this chapter, the numerical solution procedure which was initially discussed by Moeinzadeh 
(1981) and Engin and Moeinzadeh (1983) will firstly be discussed. It can be concluded that this 
numerical procedure is not efficient and several alternative solution methods which have appeared 
in literature (e.g. method of excess differential equations and method of minimal differential 
equations) will be briefly compared to the original numerical procedure. It must be noted that it is 
not within the scope of this report to extensively discuss each numerical solution technique. In 
Chapter 4, the numerical solution will be discussed in more detail when the modelling technique is 
applied to a 2-dimensional human knee. Finally, the applicability of the classical impact theory will 
be discussed and conclusions can be drawn. 

3.2 Numerical Solution Technique as Proposed by Engin and Moeinzadeh 

As mentioned in the previous section, a 2-dimensional model of the human knee with one contact 
point is regarded. The governing equations of the initial value problem are the 3 equations of 
motion (31) and (32), 2 contact conditions (13) and 1 geometric compatibility condition (24). The 
problem is thus reduced to the solution of a set of 6 simultaneous nonlinear differential and 
algebraic equations. The unknowns of the problem are xMo, yMo, @, xClo, xCl1, and (NClo(. 

Engin & Moeinzadeh (1983) and Abdel-Rahman & Hefzy (1993) propose the use of Newmark 
operators to replace the time derivatives of the unknown variables of (31) and (32) with a temporal 
operator in order to obtain a numerical solution. The Newmark method divides the time span of 
motion into small time increments At and assumes that the second time derivative over each time 
increment is constant. For example, the acceleration xMo at time point t can be expressed in the 
following form: 

in which the superscripts refer to the time points. Similar expressions may be used to determine the 
other time dependent acceleration components of (31) and (32). In the applications, the initial 
conditions at t=O and subsequent conditions at the previous time point (t-At) are assumed to be 
h o w n .  Using (37a), the acceleration at time point t can thus be determined in terms of the 
position at time points t and t-At, the velocity and acceleration at time point t-At. 

The velocity at time point t can be determined in terms of the velocity and acceleration at time 
point t-At and the acceleration at time point t: 

O At .. O t-At 

2 (Xi)' = ( X p t  + -[(x,) + (x;)t] 

After the 
(37b), the 

time derivatives in (31) and (32) are replaced with the temporal operators (37a) and 
governing equations take the form of a set of nonlinear algebraic equations. The solution 
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of these equations is complicated by the fact that iteration or perturbation methods must be used. 
The Newton-Raphson iteration process can be used to obtain a solution. In the derivation of the 
linearized equations of motion, the following assumption is made: 

(38) O t  
+ 

in which the A quantities denote incremental values and the subscripts denote iteration steps. 
Knowledge of the variables of the previous iteration (k-1) is hereby essential at each iteration 
number k. Equation (38) can be applied to the other variables which in addition to the independent 
variables also include the components of the insertion points and normals. The variables are 
substituted into the governing nonlinear algebraic equations and the higher order terms in the A 
quantities are neglected. This results in a set of 22 simultaneous algebraic equations which can be 
put into the following matrix form: 

where [ K ] is a 22x22 coefficient matrix, 0 is a vector of incremental quantities and 0 is a vector 
of known values. 

The iteration process at a fixed time point continues until the A quantities of all the variables 
satisfy a prescribed convergence criterion. In (Engin et al., 1983), a solution is accepted and 
iteration process is terminated when the A quantities become less than 0.01% of the previous 
values of the corresponding variables. The converged solution of each variable is then used as the 
initial value for the next time step and the process is repeated for consecutive time steps. 

The numerical solution scheme requires very short time increments to be used to achieve 
convergence especially when time duration of applied forces is small. In this case it becomes 
necessary to use very small time steps otherwise a significantly large number of iterations is 
required for convergence. The upper limit of the value of the time increment is chosen such that 
the accuracy of the solution and convergence of the Newton-Raphson iteration is guaranteed. A 
lower limit is chosen in order to maintain stability because a smaller value of At increases the ill- 
conditioning of the stiffness matrix. An indication of the value of the time increment is given by 
Engin & Moeinzadeh (1983) who used as time increment of At=O.O001 seconds during a 
simulation time span of 0.36 seconds. 

The current solution technique cannot handle impact type external loads and the solution 
technique presents problems when the moving body segment changes its direction of motion under 
the action of the pulling force of the ligaments. The current solution technique only yields results 
for the extension phase of the knee motion and can not continue to cover the rotation of the tibia 
relative to the femur due to the pulling force of the ligaments upon removal of the external forcing 
pulse (Engin and Tümer, 1993). 

3.3 Introduction of Alternative Solution Methods 

The governing equations for the articulating joint model described in the previous sections are in 
the form of three second-order nonlinear differential equations coupled with nonlinear algebraic 
equations of geometric constraints. The method of solution constitues replacing the time derivatives 
in the differential equations by a temporal operator and solving the resulting set of algebraic 
equations by iteration at every fixed time point. 
In this section several alternative solution methods to solve the governing equations are discussed 
and compared. The solution methods are: 

method of excess differential equations 
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method of minimal differential equations 

3.4 Method of Excess Differential Equations (EDE) 

In the application of the method of excess differential equations (Engin and Tümer, 1991 & 1993), 
the constraint equations are differentiated twice and the resulting second-order simultaneous 
differential equations can be numerically integrated using for example Euler of Runge-Kutta 
integration schemes. The basic postulate of this approach is that if the constraints are satisfied 
initially, then satisfying the second derivatives of the constraints in future time steps would also 
satisfy the constraints themselves. 

The 2-dimensional situation will be focused on for reasons of simplicity. Upon differentiating 
the contact conditions twice, a set of 6 coupled second order differential equations is obtained 
which can be arranged into the following matrix form: 

[A][xi y: 6 x:, xQ .:!IT = [F, 

where [A] is a 6x6 configuration-dependent coefficient matrix and [F,, ..., FóIT is a configuration and 
time-dependent forcing column vector. The unknown vector of accelerations and contact force can 
then be solved: 

[XM o yM .. o ë x;, x;,lT = [S, , . and Ni, = S, 

where Si are the elements of the vector [A]-'[FIT and are expressed in terms of 5 position variables 

position variables and their derivatives at the previous time point, the first part of (41) can be 
numerically integrated to find position variables and their first derivatives at the current time. The 
corresponding contact force can then be found from the second part of (41). The integration 
process can be repeated as many times as required until the total simulation time is reached. This 
method involves far less mathematical manipulation than the previous method (section 3.2) and the 
numerical solution is restricted to the integration process and does not require iteration. 

(xMo, yMo, 6, xcl O , xcil), their first derivatives and the specified external forces. Knowing the 

3.5 Method of Minimal Differential Equations (MDE) 

The method of minimal differential equations (Engin and Tümer, 1991 & 1993) aims at reducing 
the number of differential equations in closed form by satisfying constraint equations as well as 
their derivations and solving only the resulting nonlinear differential equations via numerical 
integration. The aim would be to have a minimum number of simultaneous differential equations 
describing the dynamics of a system. Since the number of degrees of freedom of the 2-dimensional 
human knee is 2, its dynamics can in principal be expressed by two differential equations in terms 
of 2 appropriately chosen generalized coordinates. For the human knee, xClo and Q (rotation about 
the axis perpendicular to the plane of motion) are chosen as the generalized coordinates. 

Since (13) are linear in terms of velocity variables, it is possible to express xMo and y,' as linear 
combinations of the generalized coordinates: 

O x, = I$+ + ana;, 

The acceleration components of the origin of the moving body segment can then be expressed as: 
in which the definitions for & and pk (k=$,x,d) can be found in (Engin and Tümer, 1991) and 
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x; = ?jip + l x x c ,  O + A, 

y; = p*ip + pxxc, + p, 

(434 

(EIigin md Turner, 1993). We can arrange the original differential equations (32)-(33) into the 
following form by using elements of matrix [A] and vector [FIT given in (41): 

allxM O + al6NC, O = F, 

a33$ + a,,N& = F3 

We then solve for Nocl from the previous equation and substitute into the (44a) and (44b) together 
with (42) and thus obtain: 

[B][4 xi1]' = [Hl Hl]' (45) 

where [BI is a 2x2 configuration-dependent coefficient matrix and [HIT is a configuration- and 
time-dependent forcing vector. (45) can now be integrated to obtain the dynamic response in terms 
of the generalized coordinates 9 and xClo. The contact force NO,, is directly found from (44c). It is 
necessary to solve the geometric constraint equations after every integration time step in order to 
be able to proceed on with the next step. The nature of the constraint equations (13) allows one to 
obtain closed form expressions for xMo, y,', and ycll in terms of the generalized coordinates 9 and 
xc1 - O 

3.6 Comparison of the EDE and MDE Methods 

The EDE and MDE methods are in principal mathematically equivalent. In fact after a series of 
row operations on matrix (40) it can be shown that (45) is a partitioned form of (41). From a 
numerical solution point of view however, these methods are not equivalent. The MDE method is 
considered to be more reliable since the constraints are directly satisfied at every integration step 
whereas in the EDE method, the constraints are directly satisfied only at the inital time point.TThe 
advantages of the EDE formulation include a straightforward approach and simple application of 
any problem of this kind. The MDE method firstly requires a proper choice of generalized 
coordinates and even then it might not always be possible to arrive at the desired formulation. For 
more complicated problems, when for example a 3-dimensional model of the human knee is 
regarded, the straightforward application of the EDE method may prove to be a suitable alternative 
when used together with a reliable integration scheme instead of the less feasible MDE method. 

Both the EDE and MDE methods were programmed in quick basic by utilizing the Euler and 
fourth-order Runge-Kutta integration schemes (Engin and Tümer, 1991 & 1993). Results showed 
that as the bulk of the calculations are essentially the same, formulations of the EDE and MDE 
methods take practically the same time (execution time in the order of 1-3 minutes on an IBM-PC 



3. Numerical Procedure 16 

system 2 for a simulation time of 0.15s) and yield stable results. The Runge-Kutta integration 
scheme requires considerable more time than the Euler integration but is considered to be a more 
sophisticated and accurate. If minimal computational effort is required then the combination of the 
MDE method and Euler integration scheme is the optimal combination. 

If one considers the iterative nature of the numerical procedure described in section 3.2 then, 
superiority of the EDE and MDE methods may comfortable be claimed for both accuracy and 
efficiency. Furthermore all shortcomings of the previous iterative method of solution are eliminated 
by the alternative methods. 

3.7 Solution Procedure Proposed by Abdel-Rahman 

Abdel-Rahman (Abdel-Rahman & Hefzy, 1993) adopt an analysis in which the reverse of the EDE 
method is used by transforming the differential equations of motion into three algebraic equations 
using a Newmark method. A differential form of the Newton-Raphson method is then used to 
solve these algebraic nonlinear equations. This method basically consists of differentiating the 
system of equations with respect to the independent variables, solving thus an equal amount of 
equations in an equal amount of unknowns. 

The main difference between the solution procedure which was described in section 3.2 which 
also used a Newton-Raphson solution method is that now the equations are only differentiated to 
the 6 independent variables instead of additonal dependent variables. It is difficult to conclude if 
this method is more efficient than the EDE or MDE methods and an in depth implementation of 
the mentioned methods in the application of the 2-dimensional knee is required. 

3.8 Application of the Classic Impact Theory 

The numerical solution procedure (section 3.2) adopted very small time increments to be used to 
achieve convergence: the solution technique could therefore not handle impact type external loads 
in which the time duration of applied forces is very short. The results presented for the 2- 
dimensional model of the knee joint have been restricted to short time intervals during which 
response is smooth and free from abrupt changes. 

The applicability of the classic impact theory was examined by Engin and Tümer (1992 & 1993) 
by taking the 2-dimensional human knee joint as an example. The EDE and MDE methods are 
used to obtain the response of the human knee joint to impact loading on the lower leg via an 
anatomically-based model. The classic impact theory is applied to the same model and results in an 
approximate solution. By comparing both solutions, applicability of the classical impact theory to 
an anatomically based joint model will be investigated and its shortcomings will be delineated. 

The classical impact theory is based on the assumption that impact duration is sufficiently short 
to allow the following simplifications to be made: 

- geometry does not change during impact 
- time iategrals of finite quantities over the dtxation ef thz impact are negligible 

To apply the impact theory to the present model, the equations of motion are first integrated from 
t=O to t=z, where z is the impact period. With the above-mentioned assumptions of the impact 
theory, the equations are simplified and put in following form: 

O mAx, + a,& = Sx 

where A indicates a change in velocity terms, SN,Sx, S, and H are impulses of the contact force, 



3. Numerical Procedure 17 

O b y M  + a,$, = S, 

external force and external moment respectively. The coefficients are defined as in (40). After 
substituting (42a) and (42b) in (46), the values for S, and 6 can then be found using matrix 
algebra. 

ine effects of the loweï leg ilieltia (mass ili zad hertia I> and ex:err,a!!y 2ppIied puke (Sx, S,, 
H) and knee configuration at the time of impact can be identified. It should be noted that the 
geometric terms include the effects of the form of the contact surfaces on the impact phenomenon. 
This results in the effect that according to the assumptions of the classic impact theory, the 
ligaments can not sustain any impact since the ligament forces are position dependent. 

The results of test simulations establish the fact that the classical impact theory gives the 
limiting solution to the model equations as the impact time z approaches zero. Moreover the results 
indicate inapplicability of the classical impact theory to practical situations where the impact time 
can range from 15 to 30 ms. Another problem associated with the application of the classical 
impact theory to the solution of the anatomically based models is the difficulty of interpreting the 
results obtained in the form of impulses. It has been shown that impulse magnitude alone is not 
sufficient to assess the loading condition at the joint. The fact that ligament response is not 
instantaneous entails its exclusion from the classical impact theory; whereas real time simulations 
have shown that the ligaments are affected by the impact in comparable magnitudes with contact 
forces. 

rnl 
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4. Implementation of a 2-Dimensional Knee Joint Model in MADYMO 

4.1 Introduction 

In this chapter the numerical procedures which were described in the previous chapter will be 
regarded more closely. This serves a dual purpose as primarily knowledge of the efficiency of the 
solution procedures can be gained and in addition, the possibilities of MADYMO (MADYMO 
Users Manual, 1994) and it's algorithms in providing a solution can also be verified. MADYMO 
was chosen SecaUse first ham! p g r a m a i ~ g  kmw!edge mnd experience were at hand and efficient 
coupling to algorithm libraries was available. 

This Chapter describes the implementation of a dynamic joint model in MADYMO using the 
modelling technique. The implementation considers the 2-dimensional articulating motion between 
the femur and the tibia and does not consider the patella. For this purpose, a knee joint model 
based on available data in the literature is implemented in MADYMO. The 2-dimensional dynamic 
anatomical model of the human knee joint is modelled as a fixed femur and moving tibia 
connected by 4 nonlinear springs representing the different ligaments. Forces consisted of a single 
point contact force and a gravitational force which acts on the tibia. Knee response was determined 
under sudden rectangular pulsing posterior forces applied to the tibia. To solve the set of nonlinear 
constraints, a user-subroutine is written. The model is validated with the results of Moeinzadeh et 
al. (1983). 

4.2 Mathematical Formulation 

In the review of the dynamic modelling of human articulating joints, it was shown that the contact 
between two articulating body segments (Figure 4.1) is controlled by contact position condition 
(contact condition) and contact normal condition (geometric compatibility condition) constraints. 

Y o  T Fixedbodysasmgit 

Figure 4.1 : Articulating contact between the fixed body segment 
and the moving body segment 

If motion is regarded in the 2-dimensional plane, the system of constraints (13) & (24) narrows 
down to 3 equations. The 2-dimensional plane is spanned by the x- and y-axes (the z-axis is 
perpendicular to the plane (Figure 4.1). The system of constarints results in: 
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o 1  

(48) dYC, dYA dYc1 dYC1 cos(+)(b --) -sin(+)(l+--) = o 
dxc1 dxC1 dx& dxi, 

in which 1 transforms the orientation of the moving body segment coordinate system into the fixed 
body segment coordinate system and is defined as: 

(49) 

The displacement of the moving body segment relative to the fixed body segment in the 2- 
dimensional plane can be described by two independent parameters. In essence, the method of 
minimal differential equations is applied. Rewriting the contact position condition results in an 
equation for the position of the mass center of the moving body segment as function of the 
independent and dependent coordinates: 

r i  r 1 

The independent &) and dependent joint coordinates @d) are specified as follows: 

The following abbreviations are now introduced, in which n denotes the nth derivative: 

1 
" 1 d "YCl 

3 d yci = - o d "YCl d "ycl s - 
dx& " dxi, " 

The position formuiation of the mass ceriteï of flie moving body segment can Se differentiated with 
respect to time and this results in the velocity formulation: 

The aim is to write this formulation as a function of the time derivatives of the independent 
coordinates. The constraint concerning the contact normal condition (47) can be used for this 
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purpose. The constraint equation is therefor differentiated to time and written as a function of the 
independent and dependent coordinates: 

(54) xi, = - 1 [d2 Acl O + d, $1 
dl 

with the following abbreviations: 

d, = cos(@)d 2yii + sin(@)dy;,d 2yci (55) 

d2 = -sin(@)d 2 y ~ l d y ~ ,  +cos(@)d 2y:, (56) 

If the previous equations are substituted in the velocity formulation, this results in: 

(58)  1 +d2d4 sin(@)x,', +cos(@)y,', +d3d4 

-cos(@)x,', +sin(@)y,', +d3d, 

with the following abbreviations: 

-cos(@) +sin(@)dy,', 
d4 = 

d, 

-sin(@) -cos(@)dy,', 
d, = 

dl 

The second time derivative of the state formulation can now be derived: 

. l  

in which E is: 

r 

with the following abbreviations (in which xcll is known as a function of the independent 
coordinates and their derivatives (54)): 
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d, = -$sin(@)d 'yC,+cos(@)d 3y&XC1 +$cos(@)dyC,d 'y,', + 

(63) 
sin(@)[d ' Y 3  2yClXCl+dYCd 0 3 1  YCIXC,] 

(66) 
. $sin(@)+q>cos(@)dy,'l +sin(@)d 2yClX,'l d, . 
d, = --dl 

dl dl 

In accordance with the MADYMO 5.1 programmers manual (1994), the kinematical equations of 
the user joint must be introduced in a subroutine USRJ13. The arguments of this subroutine are: 

r 1 

, CDQ = 1 ~~ 

The dimensions are: Q(2x1), QT(2xl), SD(3x1), SDT(3x1), SDTT(3x1), SDQ(3,2), CD(3x3), 
CDT(3xl), CDTT(3xl), CDQ(3x2). The values for the independent coordinates Q(l), Q(2) and 
their time derivatives QT(1) and QT(2) at the starting time point of the simulation are defined in 
the JOINT DOF section of the INITIAL CONDITIONS in the input data file DATA. These values 
are known to the subroutine USRJ13 as the independent coordinates. A NAG-FORTRAN 
subroutine CO5NBF is used to determine the values of the dependent coordinates by solving the 
constraint equations (Broekmeulen, 1994). The values of the independent and dependent 
coordinates can then be used to define the remaining matrices SD, SDT, SDTT, SDQ, CD, CDT, 
and CDQ. The matrix CDTT is however not specifically defined in the USRJ13 file. The 
subroutines USRJ13 and USRSY3 can then be compiled and linked with the source code of 
MADYMO 5.1 and the NAG-FORTRAN libraries to create a new executable. 
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4.3 The Moeinzadeh 2-Dimensional Knee Model 

4.3.1 Introduction 

A more comprehensive problem of a 2-dimensional model of the human knee as described by 
Moeinzadeh et al. (1983) will be simulated in MADYMO to verify the implementation of the joint 
model. The 2-dimensional model of the articulating joint consists of a moving body segment (the 
tibia) which is allowed to roll and glide along the surface of a fixed body segment (femur) within 
the constraints of maintaining point contact and surface normal alignment. The initial configuration 
is chosen such that the flexion of the tibia with respect to the femur results in a zero strain 
condition for the ligaments. Figure 4.2 shows the initial configuration of the articulating joint. 

Figure 4.2: The 2-dimensional model of the human knee 

The shape of the surface of the body segments is described by polynomials relative to their body 
fixed coordinate systems (xo,yo) and (x',y') in their respective centers of mass (Figure 4.2). In 
comparison to the initial problem (Moeinzadeh et al., 1983), the surface polynomial of the femur 
has changed due to the different orientation of the femur coordinate system: 

The surface of the tibia is described by: 

Table 4.1 gives the surface polynomial constants as used by Moeinzadeh and Figure 4.3 shows the 
shape of the surface profile of the femur. 

Table 4.1: Surface polynomial constants of the fixed and moving body segments 

b0=0.213373 

bi=-0.0456051 

b,=l .O73446 
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? 0.03 0.04 I 

Figure 4.3: Shape of the femoral profile 

The mass of the tibia is 3.15 kg and the inertia is 0.05 kgm’. The initial conditions of the femur- 
tibia configuration can be derived by solving the constraint equations in the initial configuration. 
Table 4.2 gives the inital conditions of the configuration. 

Table 4.2: Initial values of the independent and dependent variables 

11 0.216 I -0.1749 I 0.042 I -0.031695 I 0.025 I 0.2129 I 0.95627 11 

The femur and the tibia are connected by 2 cruciate and 2 collateral ligaments. Table 4.3 provides 
all the relevant data concerning the ligaments. It should be noted that the initial configuration is 
such that no initial strains are present in the ligaments. The insertion points of the ligaments are 
defined relative to the body local coordinate systems in the center of mass of the respective body 
segments. The constitutive equation of the force as a function of the ligament length only allows a 
tensile force and is defined as: 

Fj = K.*(L,-LOj)’ J if L, 2 L, , J = O if L, < Loj 

in which K, is the stiffness coefficient, Lj is the current length and Loj is the initial length. 

Table 4.3: Values of the stiffnesses, insertions and origins of the ligaments 

medial collateral 

30* 1 O6 

35*106 
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4.3.2 Simulation Results 

A numerical model was implemented according to the data provided by Moeinzadeh et al. (1983) 
and simulations were performed for various applied external forces. Several forces act on the 
system of the 2 bodies: 

a gravitational force acts on both bodies in the negative yo-direction. 

an external force Fe which acts in the direction perpendicular to the Y'-axis of the tibia and 
passes through the center of mass. Fe is defined as a rectangular pulse of duration to and an 
amplitude A: 

Fe(t) = A[H(t)-H(t-to)] 

The Moeinzadeh model (Moeinzadeh et al., 1983) shows good with agreement quasi-static 
experimental investigations reported in the literature. However, it is important to note that the 
dynamic model is an idealized representation of a very complex anatomical structure. 
Disagreements with static experimental studies are caused by this approximation and also due to 
approximate locations of the attachment sites of the ligaments and the 2-dimensional nature of the 
model in general. For illustrative purposes up to 6" of hyperextension was allowed. Generally a 
hyperextension of 1-3" is anatomically tolerable beyond which joint failure becomes unavoidable. 
This can be determined from Figure 4.5.a in which a hyperextension of 6" results in a strain larger 
than 25% of the posterior cruciate ligament. This would result in a rupture of the ligaments 
equivalent to an AIS code 3 (Yang et al., 1993). 

Figures 4.4-4.5 show the various simulation results of externally applied forces. The shape of 
Figure 4.4 corresponds to the results obtained by Moeinzadeh et al. (1983) but the peak values are 
about 10% higher. The initial peaks for the posterior cruciate ligament may be caused by an initial 
(numerical) pretension of the Kelvin element. In Figure 4.5 it can be seen that due to a faster 
extension, the peak values occur much earlier in time. The instabilities of the lateral collateral 
curves can also be seen in Figure 4.4. The curves as shown by Moeinzadeh do not have these 
instabilities due to the spline through only a few measurement points. It can be seen from Figure 
4.6 that the shorter the pulse duration, the sooner the tibia reaches its turning point and the 
direction of motion changes from flexion to extension. 

Results indicate that when the knee is extended (decreasing positive flexion of the tibia), lateral 
collateral, medial collateral and posterior cruciate ligaments are elongated while the anterior 
cruciate ligament is shortened. The major role of the collateral ligaments is to ensure varus-valgus 
and partial intemal-external rotation stability. However, the ligaments show very little resistance in 
the fiexion-extension motion of the knee joint. 
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Figure 4.4: Ligament forces as a function of the flexion angle [rad] for an 
amplitude of 60 N and a pulse duration of 0.05 s. 
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Figure 4.5: (a) Posterior cruciate and (b) lateral collateral ligament forces as a function of time 
for an amplitude of 60 N and pulse durations of 0.05 s, 0.1 s and 0.15 s. 
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1 1  

Figure D.6: Flexion angle [rad] as function of time for an amplitude of 60 N and 
pulse durations of 0.05 s, 0.1 s and 0.15 s. 

4.4 Conclusions 

The aim of this Chapter was to verify the modelling technique as proposed by Wismans and 
extended by Moeinzadeh. For this purpose, a 2-dimensional user-joint was implemented in the 
finite element/multibody code MADYMO 5.1. A verification example (not discussed here) of a 
rolling disc on a surface, subject to an out of plane external force yielded results which were 
conform analytic calculations. A more comprehensive problem of a femur-tibia configuration 
subject to an external force and ligament forces was also simulated. From the simulation results it 
can be concluded that the implemented dynamic joint model in MADYMO performs according to 
the required specifications and the results correspond well with results in the literature. 
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5. Improvements of the Modelling Technique 

The modelling technique of Moeinzadeh has in the literature mainly been applied to the description 
of the articulating motion of the human knee. In this chapter, some possible improvements and 
extensions of the modelling technique in application to the human knee will be discussed: 

deformability of the bodies has thus far not taken into account but could be implemented in the 
current model to enable accurate description of the human knee in which a cartilage layer on 
the femdr md tibia allows sUrfxe defxmatior, (B!zkeveort, I??!). The zssumpticn of point 
contact should then be replaced with surface contact. 

muscular activity: the muscles stabilize the joint and can generate motion. The possibility to 
encorporate muscular activity to enable the simulation of gait or active motion has been briefly 
discussed in section 2.7 but has in literature not been applied to the proposed modelling 
technique. 

e introduction of damping: in the configuration of the humm knee for example the surfaces of 
the femur and tibia are covered by articular cartilage which has viscoelastic properties. These 
visco-elastic properties have a significant influence on the motion characteristics during 
dynamic tests. 

the modelling technique can be enhanced to encorporate friction if for example the synovial 
fluid in the human knee does not have the required tribological properties and friction does 
play a role in the articulating motion. 

the description has to be extended if more than two bodies participate in the arcticulating joint, 
in the human knee for example the pattela-femur contact (Tümer et al., 1993) is usually 
modelled as an external force (Wismans, 1980) but can then be directly implemented in the 
model. 

the numerical solution procedure needs to be optimized as there is as yet no agreement 
concerning the most efficient solution procedure. The present methods proposed by Engin and 
Abdel-Rahman offer no reliable reason for comparison as specific information such as 
difficulty and computational effort is not given. Explicit integration is a possible method to be 
adopted to solve the differential equations. A more efficient method to obtain a solution to the 
equations is achieved by using algorithms in the NAG FORTRAN library. 
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