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coMposrrE COMPUTED TORQUE CONTROL OF
ROBOTS WITH ELASTIC MOTOR TRANSMISSIONS

I.M.M. Lammerts, F.E. Yeldpaus and J.J. Kok

WFW, Control and Identification of Mechanícal Systems, Department of Mechanical Engineering,

Eindhoven Universiry of Techrclogy, P.O. Box 513,5600 MB Eindhoven,The Netherlands

Abstract. The main problem \r-the control of rcbots with elastic transmissions between the actuators and the ri'gi'd
/in,ts is caused by the number of control inputs being less than the number of degrees of freedom. This problem

has been faced by a composite control law consisting of the conventiona.l 'rigid' computed torque controller

for link-based trajectory tracking and a 'flexible' computed torque part multiplicated with the inverse of the

stifness matrix for stabilization of the elastic deflections. The resultant control system resembles the socalled
'two-time scale sliding control' technique of Slotine and Hong (198?), but in our approach the stifnesses of the

elastic motor transmissions do not have to be relatively la.rge neither is there the restriction that there have to

be as many motor inputs as elastic transmissions. The goal of the composite controller is that the individua.l

link trajectories will follow the desired trajectories while the elastic-transmission forces/torques, which are not

directly constrained by the output specifications, remain on a certain 'manifold' due to láe natuml fl'exibility
behauior of the system. The key concept is illustrated with simulation results oÍ a translation-rotation robot with

one tors ional  e last ic  motor t ransmission.

Keywords. Control theory; industrial robots; flexible robots; computed torque control; Lyapunov methods;

nonlinear systems; control system design

INTRODUCTION

Flex.ible Mani lator Control

Today, industrial robots are used for various purposes. Because
of hardware limitations in on-line applications, until now, robot
control has been studied extensively under the assumption that
the actuator transmissions are stiff and that the links can be
modelled as rigid bodies. Therefore, most of today's robots have
a very stif (and thus heavy) construction in order to avoid defor-
mations and vibrations. For higher opemting speeds, industrial
robots should be lightweight constructions to reduce the driv-
ing force/torque requirements and to enable the robot arm to
respond faster. However, a lightweight manipulator may have
flexibility in the link structure and elasticity in the transmissions
between actuators and links. For most manipulators, elasticity
of the motor transmissions has a greater significance for the de-
sign of the controller than the deformation of the flexible links.
Furthermore, Iink flexibility can be approximately modeled by a
chain of rigid sublinks interconnected by elastic joints. Hence,
more accurate models involving elastic transmissions should be
taken into account to pursue better dynamic performance of in-
dustrial robots. The application of more complex control algo-
rithms is possible now due to the availability oí advanced multi-
processor equipment for real-time manipulator control.

Computed Torque Control

A well known approach to improve the behavior of manipulators
is the computed torque control method, sometimes called inverse
dynamics control or static nonlinear state feedback control. Here,
the control law is designed explicitely on the basis of a model, in
order to compensate for robot nonlinearities and to guarantee a

desired closed-loop behavior. In its original version, this control
method appears to be applicable only to rigid manipulators. If
flexibilities play an important role, it often results in an instable
system behavior. Therefore, the control system must deal with
control of the elastic vibrations as well as trajectory tracking.
However, it is not possible to find a control input for a flexi-
ble manipulator which will accompiish perfect tracking of any
desired trajectory in space while totally damping the undesired
elastic deflections. It is more realistic to search for a control
Iaw achieving both a reasonable tmjectory tmching and a certain
stabilization of acceptable uibrations. A composite control tech-
nique shall be developed to extend the familiar computed torque
control scheme for rigid manipulators to a control scheme for
manipulators with elastic motor transmissions.

A MANIPULATOR
WITH ELASTIC MOTOR TRANSMISSIONS

Introduction

In this paper, we consider manipulators that can be modeled as

an open chain of n rigid links interconnected by cilindrical, revo-
lute or prismatic joints with one degree of freedom per joint. One
end of the chain is fixed to the ground and the other end (the
gripper) has to follow a specified trajectory in space. It is as-

sumed that from this specification the desired trajectory of each

link can be determined.

Since each joint allows one relative motion of the connected link,

n generalized coordinates ate necessary and sufficient to describe

the kinematics of the /inÈs. These coordinates are the compo-

nents oí a vector g, F R". The desired path of g, in time is

deno ted  by  a . .  =  a , . ( t ) .
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Each joint has its own actuator and its own transmission between
the actuator and the driven link. The motor torques (used in a
generalized sense, i.e. denoting both torques and íorces) acting
on the transmissions are the robot control inputs. In thrs pa-
per, we consider the case in which sone or all transmissions are
elasti.cally d,eJormable. Then, for each elastic deformation it is
necessary to introduce an extra coordinate to describe the rota-
tion of the rotor of the motor. These extra coordinates are the
components of  a vector  g-  € R'  wi lh e (  n.
For the sequel  i t  is  advantageous to regroup the coordinates q of
the ] inks in two vectors q.  € R"-"  and q € Re, where 0 and q
conta,in the coordinates o-f rhe dÍrect aíuen l;nhs 1i.e. dïiven bl
the stif transmissions), respectively the coordinates of the €las-
tically driuen linfrs (i.e. driven by the elastic transmissions). See
F i s . 1 .

elastic transmissitr stif f

e las t i ca l l y
oíven

q---- i  q"--r  Qs-

Fig. 1: Elastically driven links - direct driven links.

This completes the introduciion of the tota.l vector o generalized
coordinates q € R'+":

( 1 )

The components of the vector q def,ned by

í =  g ^ -  g .  ,  ( 2 )

characterize the d,eformations of the elastic motor transmisszons.
Hence, if these transmissions are modeled as massless linear
springs, Íáe elastic-transmission torques being the components
of a vector 4" € R" are related to q by

. .  =  Kc ,  ( 3 )

where 1( € R"x" is the positive definite diagonai stiffness matrix.

The Partitioned Dynamic Manipulator Model

Using a Lagrangian approach, the dynamic model of the manip-
ulator can be written in the standard form

u(S )S+  a (S ,C , t )  =  Ha ,  ( 4 )

where q € R"+" is the vector of generalized coordinates,
r € R" is the vector of actuator input torques,
& € R'+" is the vector containing all other torques, for

instance due to Coriolis and centrifugal accel-
erat ions.  f r ic t ion,  gravi ty,  etc. ,

M € R(n+e)x(n+")  is  the symmetr ical .  posi t ive
definite inertia matrix,

11 € R(t+e)xn is the distribution matrix.

The actuator torques, i.e. the components of g, are also re-
grouped in two subvectors E, € R"-' and 4 € R" where q,
and 4 contain the torques of the actuators with a stifl, respec-
tively an elastic transmission. Ií M and n are partitioned in
accordance to the partitioning of q, the dynamic model can be
given in partitioned form by:

M * , L +  M * ! L + u =  % ,
M * L +  M * g . + a =  4 ,
M ^  g ^ + r y ^ = % - 2 "

The equations of motion of the direct driven links and the mo-
tor rotors connected to the stifl transmissions are formulated in
eq. (5), while eq. (6) represents the motions of the elastically
driven links manipulated by the elastic-transmission torques g"
The dynamics of the motor rotors connected to the same elastic
transmissions are given in eq. (7).

With eq. (3) it is possible to eliminate g.. Rearranging the
equations of motion then yields a set in g and 4., which is more
suitable for control d,esion:

(8 )

(e)

where q, =

'1 .c " 1 . , = l u
C . )  

-  
[ ! "

M"" M""
M." M."+ M^^

0 l
M ^ ^ ) '  

M " =

l .  I
.  n r = 1 3  |

L u + n ^  )

M r y . t  +  M " F 4 + U = u ,
M . 9 ,  +  u . = % ,

M", M.. I , (10)

,= l ï  I
L e - l

I 6 11"x" is the positive definite diagonal
fleribiLity matrir

(  1 1 )

If all actuator transmissions are very stif (i.e., the largest flexibil-
ity element in .F is very small), eq. (a) simplifies to the equations
of motion oI the equiualent rigid-transmission manipulator:

uí i lCt+ u(%,g, t )  = y , l r2)

coMposrTE coMpuTED TORQUE CONTROL

Introduction

The first problem in controlling a rigid-link manipulator with
elastic motor transmissions, is that only the desired link coor-
dinates qr, = grr(t) can be determined directly from the known
desired gripper path, while there is no indication for a certarn
desired trajectory of g.(t).
To obtain a smooth robot períormance in space, we define a ref-
erence trajectory L, = gt,(t) for the link variables, which will
converge to q, after progression in time. Further, the idea is
to formulate a ' refercnce manit'old' a.,(t) on which the controller
tries to keep the elastic-transmission torques 2"(Í), instead of try-
ing to suppress them totally.

The second problem is that there ale more degrees of freedom
l L ^ -  - ^ - | - ^ l : - - . - . + -
! , r 4 [  L w r r u r u r  r r L P u u s .

The goal of the composite controller d,eveloped in this paper is to
track the reference trajectory of the 1inks, while stabilizing the
elastic vibrations around the specified reference manifold.

The Computed Torque Controller

As argued at the beginning of this paper, it is appealing to try
to find the analogue for flexible manipulators of the socalled
computed torque control method for rigid robots. However, an
elastic-transmission robot does not allow a nonlinear feedback
control as for rigid manipulators, since there are less control in-
puts than degrees of íreedom. For the n-th order model (8) it is
possible to choose the next computed, torque control law:

v = M@)(4,+ KÉr, )  + u\ |Ct , t )+
M.F(2",+tt,e",1 , (13)

9., = grr+ Lq , VÍ ) Ís; gr"(Í0) = Crd(Ío)(l4)
2. ,= M.( i l (c t ,+ Kà,)  + w@t,L, t ) ,  (15)

(5)

(6)

( i )
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wher€ q," is the chosen reference trajectory oÍ the link positions;
in this case is 9" = q, a sliding surface for q according
to Asada and Slot ine (1986),

4", is the chosen reference manifold', in this case the vec-
tor of elastic-transmission torques necessary to ma-
nipulate the links a.long the reference trajectory,

9a = 
La- L \s ihe tracking error,

9J, = 
L, 

- 
L is the reJerence error,

g., = 2., - Z" is t'lte reference manifold' error,
1(l € R"x" and /(, € R"x" are both diagonal,

positive definite gain matrices.

According to definition (tS), 4., can be written as a function
of q,, rj', and t. From the definition of the control input signals
( feJ, *1 kno* that the synthesis of g involves the frst and second
time-derivatives of 2.". In the simulations of this paper this is
achieved by simplv differentiating twice the computed torques

;.". But since M and 2 are smooth functions of their arguments,
in future it seems to be better just to mc,be use of the d,ynamic
robot mod.el. In this way, L and, l, are explicit functions of g'

C,2",2., and t, which implies that the composite controller can
be implemented il the generah.zed, coordinates and' uelocities are
measumble at all time Í. The second condition is that the desired
trajectory g,,(Í) and all its time-derivatives up to the fourth order
are knownl ïd uni formi lv bounded.

The Composite Controller

In the adopted control strategy (13), we recognize the next com-
posi,te control form:

u = u - + u r , (  16 )

where

q. is the computed torque controller designed as it would be
done for the equivalent rigid-transmission manipulator (12)

and ment directly for tracking the desired link-based trajec-
tory in space,  qrr( Í ) ,

41 is the corrective control term to compensate the effects of

tmnsmissi,on-fl.eribiliti,es by stabilizing the elastic torque vec-

tor 2.(1) around its reference manifold g.,(t) (which obvi-

ously indirectly depends on the link-based trajectory of in-

terest ,  grr( Í ) ,  too).

Notice, that if there are no elastic deformations in the actuator

t ransmissions (1.e. ,  l l  f  J l r+ 0) ,  f rom eq.  (13) just  remains the
'rigid' computed torque controller we all know. The addition of

the 'flexible' computed torque part with the flexibility matrix F

expresses the extra efort needed to stabilize the occuring elastic
vibrations.

Stability of the Closed-Loop System

Stability is an extremely important factor for control design, es-
pecially íor the kind offlexible robot systems as considered in this
paper. Lyapunov's stabiiity theorems make possible a method of

syntliesizing control laws which guarantee stability of the closed-
Ioop system.

In the second stability approach of Lyapunou, the first step is the

derivation oí the equivalent error equations of the closed-loop

system.
The three individual parts of the model describing the closed-

loop error dynamics of
(5) all motor rotors with links

interconnected by the stiff transrnissions,
- (6) the links manipulated by the elastic transmissions and
- (7) the motor rotors connected to the

elastic transmissions are resP.:

M^^F(ë, ,+I í ,4 , )+e- , =  q .  ( 1 e )

Then, in order to obtain a short notation of the error equations

of the overall control system, the next ÍoÍol reference ermr vector

91, e R"+' shall be defined:

(20)

Now, the n equi,ualent error equations of the closed-loop system

are (see also the combination oí control law (f3) with the system

dynamics (8)):

(21)

In the second step, a positive-defliiIe Lyapunou function candi-
dakY(f) of the total etror vector g,is chosen:

v  =  - è i _ P è , - .
2 - "  - ' ' (22)

where P g g(n+e)x(n+e) is a constant positive definite matrix.

Then, a sufficient condition íor uni'form asymptotic stability oÍ

the system is that the time derivative of this Lyapunov function
V is negative definite (by using error equation (21)):

' i={"pa,=-{,PIr"à, (23)

M"" M". I (à" + Àre,,)
M." M"" I (4, + trt4,7
o M* l@, + Ifiq,)

- n

+

(  17 )

(18 )

Finally, since V < 0 tf 4,Q)
the sense that the total error
bounded in time.

* Q, Ihe system will be stable in
goes to zero or at least remalns

AN EXAMPLE

A TR-Robot with one Elastic Transmission

In this simulation example, we consider a three-degrees-of-

freedom translation-rotation (TR-) robot with one elastic motor

transmission. A schematic drawing of it is given in Fig. 2. The

actuator at the prismatic joint translates a carriage in horizontal

direction via a stif transmission. At the revolute joint on the

carriage is fixed an inverted pendulum, which is driven by the

elastic transmission. This elastic motor transmission is modeled

as a linear-elastic, massless and torional spring.

The desired trajectories for link-motion control Iq,a(Í)' g"4(1)] are

derived from a certain trajectory of the payload at the end of the

f f i e t

u e
n
v m

u s
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Fig. 3: The desired trajectory of the payioad

robot arm, [c4(t),97(t)]. This gripper trajectory is specified to
be a constant circulation in two-dimensional space under the as-
sumption that there are no elasticities in the system (see Fig.3).

The next system variables and parameters will be used:

q, is the horizontal translation oí the carriage,
q" is the rotation of the arm,
q- is the rotation of the motor rotor acting on

the rotating arm via the elastic transmissior-,
r, is the force acting directly on the translating

carr iage v ia a st i f  t ransmission,
z" is the elastic-transmission torque

acting on the rotating arm,
z" is the moment of the motor rotor acting

on the torsional-elastic transmission,

m, = Ljkg is the mass oí the carriage,
ma = 2kg is the mass of the payload at the end of the arm,
m.z = 3kg is the mass of the arm,
m^ = 5kgm2 is the inertia of the motor rotor

connected to the elastic transmission,
I = 0.75m is the length of the arm,
k=2Nmlrad, is the stiffness of the elastic motor transmission,
b = O.\Nm is the friction constant of the motor rotor.

The dynamic model of this robot is described in the general form
of equation (24):

With this notation, we immediately obtain the particular system
dynamics structure as depicted in equations (5) (6) (7).

Here, some simulation results obtained with the composite con-
troller are presented. The tracking output errors of the payioad
(e" = , a - ,, ec = Ua - U) and their time-derivatives are relatively
sma.ll, while the control input signals are quite norma.l for motors
(see Fig. 4: k = 2lN m I radl, I{ r = d.iasll}l, Ií, = 10). If the ini-
tial link coordinates q"(ls) and í"(lo) and their time-derivatives
are not according to the desired trajectory, the tests sti1l show
a very acceptable system performance, except that the absolute
magnitudes of the force z, and the torque u" become very large
j u s t a í t e r Í = Í s .

In the simulation tests, indeed it appears that the elastic-
transmission torque z" plays an important role in the fleÍble
control system, in that it depends from the system dynamics and
from the actual trajectory ofthe links (eq. (6)),but not from the
magnitude of the stifness k of the torsiona,l-elastic motor trans-
mission (which is compensated by e in definition (2); see the same
Fig. a). This explains the remarkable effect that the magnitude
of k does not influence the ranges in between which the output
errors €c, e, and their time-derivatives fluctuate: wether we try
k = 0.2, k = 2 ot k = 2\fNmlradl, the output (velocity) errors
always rema.in in between *0.01[m(/sec)]. Thus, there seems
to be no restriction to the magnitude of the stiffness k, this in
contradiction to the control strategy of Slotine and Hong (1987),
where k has to be 'very large'. As can be expected, these output
(velocity) error ranges change by alternating the control gain Iís:
for example, they become 10.001[m(/sec)] as Ií1 is chosen to be
K1 = d,iag[100] instead of I{1 = diaglt\].

CONCLUSIONS

Using the idea of computed torque control, in this paper a con-
trol law is presented which incorporates the effects of motor-
transmission fleÍbilities on the system. The goal of this compos-
íte controller is to follow a specified link-coordinate based tra-
jectory in space while stabilizing the elastic deflections around a
certain reference manifold due to the natura,l flexibility behavior
of the system. Simulations of a translation-rotation robot with
one elastic transmission between the motor and the rotating arm
have shown the effectiveness of this proposed composite control
approach.

One attractive feature of this composite strategy is that the
control termE"(Í) can be designed on the basis ofwell-established
control schemes for rigid manipulators, such as the well-known
computed torque method utilized in this controLler design or such
as the adaptive sliding control approach of Slotine and Li (1986).

Another advantage of this approach is that the mechanical
stiffnesses of the linear-elastic transmissions do not have to be
assumed large in formulating the dynamic model of the robot
system. This, in contradiction to the'singular perturbation' ap-
proach of Slotine and Hong (1987) for manipulators only with
relatively stiff actuator transmissions. A crucial issue of their
method is the assumption that the smallest stiffness is sufficiently
large so as to preserve a certain time scale separation. In case the
elastic transmissions are 'not stif enough', they propose the use
of socalled integral manifolds to obtain a more accurate control
system which accounts for the effect of flexibiLity up to a certain
order of the largest flexibility parameter.

A third advantage of this control strategy is that noÍ all motor
transmissions have to be elasticl so the number of degrees of
freedom is less than or equal to two times the number of motors:
( n + e ) < 2 n .

where

M ( S ) S + g ( g . t . t ) =  H u ,

q ,  I  Í ^ .  r  f  l  0 ' l
q " l , o = l ; :  I , r i = l o o l ,
q ^ )  L * c r  

[ 0  1 l

n ' l

n ^ + ; ,  )
-(^" '+ ?)-.(q.)sl I-zc 

|  ,

bq^+ r. I
M , " M * o  l
M , M r r  o  l = '
o  o  M * * )

m, lm. t tm.z  - (m" t  +  f ) l s in (q . )  o  I
* (ma l_ a*)1, ,_^ 

) 
,

_ i_L

_ t- t

_ l- t

t, = h(q^ - q") .
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Fig. 3: The desired trajectory of the payload

robot arm, lxa(t),ya(t)1. This gripper trajectory is specified to
be a constant circulation in two-dimensional space under the as_
sumption that there are no elasticities in the system (see Fig. 3).

The next system var.iables and parameters will be used:

g, is the horizontal translation of the carriage,
q. is the rotation of the arm,
q- is the rotation of the motor rotor acting on

the rotating arm via the elastic transmission,
z, is the force acting directly on the translating

carriag€ via a stiff transmission,
z" is the elastic-transmission torque

acting on the rotating arm,
z" is the moment of the motor rotor acting

on the torsional-elastic transmission,

m, = 10kg is the mass of the carriage,
rnet = 2k9 is the mass of the payload at the end of the arm,
m.z = 3kg is the mass of the arm,
m^ = Slcgrn2 is the inertia of the motor rotor

connected to the elastic transmission,
I = 0.75m is the length of the arm,
k = 2N m I rad, is the stiffness of the elastic motor transmission,
b = O.\Nm is the friction constant of the motor rotor.

The dynamic model of this robot is described in the general form
of equation (24):

u(ilC+ a(g,i,t) = Eu ,

where

i,{ -

With this notation, we immediately obtain the particular system
dynamics structure as depicted in equations (5) (6)- (Z).

Control Simulation Results

Here, some simulation results obtained with the composil,e con_
troller are presented. The tracking output errors of the payload
(", = ,a-t, ec = !a-U) and their time-derivatives are relatively
small, while the control input signals are quite normal for motors
(see Fig.  4:  k =2lNmlradl ,&= 4iag11gl , I í ,  = 1sy.  I f  thein i_
tial link coordinates g,(10) and g.(t6) and their time-derivatives
are not according to the desired trajectory, the tests still show
a very acceptable system performance, except that the absolute
magnitudes of the force z, and the torque ze become very large
j u s t a f t e r Í = Í s .

In the simulation tests, indeed it appears that the elastic-
transmission torque z" plays an important role in the flexible
control system, in that it depends.írom the system dynamics and
from the actual trajectory of the links (eq. (A)), but not from the
magnitude of the stiffness k of the torsional-elastic motor rrans_
mission (which is compensated by e in definition (2); see the same
Fig.  ). This explains the remarkable effect that the masnitude
of k does not influence the ranges in between which the-ouipur
errors €r, e, and their time-derivatives fluctuate: wether we try
k = 0.2, k = 2 or k - 20[Nmlrad], th€ output (velocity) errori
always remain in between 10.01[m(/sec)]. Thus, there seems
to be no restriction to the magnitude of the stiffness k, this in
contradiction to the control strategy of Slotine and Hong (19g7),
where k has to be'very large'. As can be expected, these ourput
(velocity) error ranges change by alternating the control gain Ií6
for example, they become *0.0011rn(/sec)l as Ií; is chosen to be
I{1 = aion11sr1 instead of Ifi = 4iony1s1.

CONCLUSIONS

Using the idea of computed torque control, in this paper a con-
trol law is presented which incorporates the efects of motor_
transmission flexibilities on the system. The goal of ïhis compos-
ite controller is to follow a specified link-coordinate based tra_
jectory in space while stabilizing the elastic deflections around a
certain reference manifold due to the natura.l flexibilitv behavior
of the system. Simulations of a translation-rotation robot with
one elastic transmission between the motor and the rotatins arm
have shown the effectiveness of this proposed composite cÀntrol
approach.

One attractive feature of this composite strategy is that the
control termg.(Í) can be designed on the basis ofwell-established
control schemes Jor rigid manipulators, such as the well-known
computed torque method utilized in this controller desisn or such
as the adaptive sliding control approach of Slotine anaÍ,i lfSaOy.

Ànother advantage of this approach is that the mechanical
stifnesses of the linear-elastic transmissions do not have to be
assumed large in formulating the dynamic model of the robot
system. This, in contradiction to ihe,singular perturbation, ap-
proach of Slotine and Hong (1987) for manipulators only with
relatively stif actuator transmissions. A crucia,l issue of their
method is the assumption that the smallest stiffness is sufficiently
la.rge so as to preserve a certain time scale separation. In case the
elastic transmissions are 'not stif enough', they propose the use
of socalied integral manifolds to obtain a more accurate control
system which accounts for the effect of flexibility up to a certain
order of the largest flexibility parameter.

A third advantage of this control strategy is that nol all motor
transmissions have to be elastic; so the number of deerees of
freedom is less than or equal to two times the number of motors:
\ n l e ) < 2 n .

í " 1 , " = t : , 1  ' = l ;  3 l
q ^ J  L * e r  

L o  r . l
n ' l
n . - z e  

|  
=

n ^ + 2 .  l
-9,, r 4;z)cos(q")q1" 

f
- t t

bq^l z. I
M"" M3e 0 f
M . " M " "  0  l = ,
o  o  M ^ )

_ l-L

_ l- t

_ f- t

m " + m . t + m , 2  - ( m . t + f ) t s i n ( q " )  0  I
+  (m.1  l \ l | z  0  |

m * )
z .  =  k ( q ^ - q " )
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Horvever, last but not least must be mentioned thal all system

state uariables and, theír f,rst t ime-d,eriuatiues haue to be auai.lable

by measurement or on-line estimation.

FUTURE RESEARCH

There are several interesting research issues that arise at this
point :

r In this article are considered fleíble manipulators with elas-
ticity concentrated at the actuator transmissions. ln future,
this approach will be extended to the case of elasticity dis'
tributed along the rnanipulator's structure (i.e., considera
lion oí ffexibLe arms modeled as elastic joints).

r Further has to be adressed the problem if there is lack of full
state auailability (as for example the flexible variables cannot
be measured) and if there have to be designed an output-
trajectory controller to realize tracking of a prespecified path
in space of the gripper at the end ol an redund.ant robot arm
(i.e., we have to deal wiïh end,-eJJector control instead of
link-based control).

o Unfortunately, the computed torque control method also re-
lies heavily on an accurate prior knowledge of the robot sys-
tem dynamics and, therefore, the approach presented in this
paper has to be expanded further to an ad,aptiue controlïech-
nique in which the unknown or time-varying system parame-
ters will be adjusted on-line (for exampie basically according
to the method of Slotine and Li (1987)). The global asymp-
totic stability of the overa,ll system shall then be guaranteed
through the hyperstability theorem of Popov (1969).

c FinilIy,sliding control accordirg to Asada and Slotine (1986)
can be practized in order to robustify the system against
parametric uncertainties and (environmental) disturbances.
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