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Abstract

Monotone interpretations in the natural numbers provide a useful technique for
proving termination of term rewriting systems. Termination proofs of this shape
imply upper bounds on derivation lengths expressed in bounds on the interpreta-
tions. For a hierarchy of classes of interpretations we describe these upper bounds,
among which the doubly exponential upper bound for polynomial interpretations,
found by Hofbauer and Lautemann. By examples of term rewriting systems we show
that all of these upper bounds are sharp in a natural sense. In particular we find
all Ackermann functions as sharp upper bounds on derivation lengths, exhausting
primitive recursive functions.

1 Introduction

A natural way to prove termination (strong normalization) of a term rewriting system
(TRS) is by mapping terms to natural numbers in a compositional way, such that doing
any rewrite step causes a decrease of the corresponding value. Since no infinite descending
chains exist in the naturals, this proves that the TRS is terminating. Moreover, such a
termination proof yields an upper bound on the length of any derivation starting with
a particular term: the length is bounded by the interpretation of the starting term. A
standard technique is the interpretation of the function symbols by polynomials, see [5, 1].
For polynomials it is well-known that the derivation length of a term is bounded by a
function doubly exponential in the size of the term; this bound is sharp ([6, 4]). In this
paper we give a simpler proof of this result.

However, we do not restrict to polynomials. The same doubly exponential upper bound
holds for any interpretation for which there is a number a such that the diagonals of the
interpretations of the function symbols are all bounded by z — z°. In this paper this
result is generalized as follows. Given a set of functions U, which we use as upper bound
functions, we consider all TRS’s that can be proved to terminate using interpretation



functions which are limited by some function in U. For these TRS’s we derive a universal
upper bound on their derivation lengths, the maximum number of rewrite steps that can
be made, expressed in the height of the start term. For a hierarchy of interesting sets of
these upper bound functions, upper bounds on the derivation lengths of the corresponding
TRS’s are obtained by applying this universal upper bound.

In this hierarchy all of these upper bounds on derivation lengths turn out to be sharp,
which is shown by giving example TRS’s and appropriate derivations. More precisely, for
every set of functions U in the hierarchy we give a TRS having the following properties.
On the one hand termination is proved by choosing interpretations not exceeding some u
in U. On the other hand we construct derivations parametrized by a number n for which
the length has the same order as the upper bound described above and the height of the
start term is linear in n.

For example, for elementary interpretations as described in [7] we prove that the length of
a derivation starting with a term of height n is bounded by exp*"(0), for some constant
¢, while by an example we show that this bound is indeed reached for some ¢ > 0. Here
exp is defined by exp®(k) = k,exp™*t(k) = 2e%P" (),

For any 2 > 0 we describe a set of upper bound functions such that the corresponding
upper bound on the derivation length is exp‘(n), where n is the height of the starting
term. Similarly, for any ¢ the function A; occurs as an upper bound on derivation lengths,
where A; is the Ackermann function. Finally, we have a similar result in which the
diagonal of the Ackermann function appears, which is not primitive recursive any more.
For all of these cases we present TRS’s and corresponding derivations proving sharpness
of the corresponding upper bounds.

2 Termination by interpretation

Let F be a set of function symbols, each having some fixed arity > 0, and let X’ be a set
of variable symbols. The set of terms over F and X is denoted by T(F,X). Instead of
T(F,0) we write T(F), the set of ground terms, terms without variables. In this paper
we assume that there is at least one function symbol with arity 0, hence T(F) is not
empty. Investigating derivation lengths of terms, only ground terms will be considered.
Changing a variable in a term into a constant symbol however, does not affect its height,

nor its derivation tree. Therefore all our results for ground terms also hold for terms with
variables.

In this paper, we will use an interpretation 7 of a TRS R in the natural numbers IN to
prove termination of R. The precise definition is the following.

Definition 2.1 Let R be a TRS over F. Let A= {n € N|n > k} for some k € N. For
all 2 € IN let

H; = {f: A' = A| f is strictly increasing in all i coordinates}.



Then an interpretation for R is a function 7 : F — U, yH: such that T(F) € Harity(F)
for all F € F.

Often, we write F, for 7(F').

This 7 induces a function int, : T7(F) — IN, which maps every ground term to a natural
number. The int, of any ground term is recursively defined as follows:

o int.(F) = F, if F is a function symbol of arity 0
o int.(F(t1,...,tn)) = Fe(int.(t1),...,int.(¢,)) if F has arity n

Definition 2.2 An interpretation T is compatible with a TRS R if for all rulesl - r € R
and for all ground substitutions o : X — T (F):

int.(a(1)) > int,(o(r))

If there is such a compatible 7, then R is terminating, see e.g. [9]. If we generalize the
notion of interpretation to arbitrary well-founded sets, the converse also holds.

A typical example is the system
F(F(z,y),2z) — F(z,F(y,2))

Choose Fr(z,y) =2z +y and A = {n € IN|n > 1}. Clearly F, is strictly monotone in
both coordinates, and

F(Fi(z,y),z) =4+ 2y + 2> 22 4+ 2y + z = Fr(z, Fr(y, 2)
for all z,y,z € A, proving termination.

Although there are examples of terminating TRS’s that can not be proved terminating
in this particular way (see [9]), in practice it is often successful. Moreover, Hofbauer ([3])
showed that for any TRS for which a termination proof can be given by a recursive path

order, a corresponding interpretation in the natural numbers can be given, using primitive
recursive interpretations.

The standard technique of polynomial interpretations, see [5, 1], is nothing else than this
technique in which all interpretation functions are chosen to be polynomials.

It appears that such an interpretation in the naturals not only gives information on
termination in itself, but also on maximum derivation lengths.

3 Derivation lengths from interpretation

In order to investigate derivation lengths of TRS’s, it is convenient to introduce some
appropriate definitions.



Definition 3.1 We define the height |t| of a term t € T(F,X) as follows:

1] = 1 if t is a constant or a variable
1 + max{|t1},...,|tal} ift=F(t1,...,tn)

Reduction steps of a TRS R are written as —p, or simply — if no confusion is possible.
If ¢; reduces to %3 in n steps (a derivation of length n), we write t; —" t,.

We now define the derivation length of a term ¢ as follows:

Definition 3.2 Let R be a terminating TRS. Then the derivation length dlgr(t) of a term
t is defined to be max{n|3t’' : t —" ¢'}

This notion can be generalized to a derivation length of all terms of a height limited by
some number n:

Definition 3.3 Let R be a terminating TRS. Let n be some natural number. Then Dlg(n)
is defined to be

max{dlr(t) |t € T(F) A |t| < n}.
So dlg(t) is the maximum derivation length of a specific term ¢, whereas Dlg(n) is the

maximum derivation length over all terms of height of at most n.

Having a compatible interpretation for a given TRS R asserts the following:
Lemma 3.4 For allt € T(F): dip(t) < int.(t).

Proof

If t — t' then int,(t) — int.(t') > 1, because 7 is a compatible interpretation in IN.
And so inductively, if ¢ —" ¢/, then int,(t) — int.(¢') > n. Since int,(¢') > 0, we get
n < int.(t), which yields the desired result.

End Proof

Therefore, an upper bound on the interpretation value of a term leads to an upper bound
on its derivation length.

If we have an upper bound function on the interpretation functions of a TRS R, an upper
bound on the interpretation value of all terms of a limited height can be computed. This
then is also an upper bound on their derivation length, by lemma 3.4.

Since we will make use of the notion upper bound function more often, we have the
following definition:



Definition 3.5 Let a TRS R with function symbols F and a compatible interpretation T
of R be given. Then a function u : IN — IN is an upper bound function of T if

Jzo:Vz > 20:VF € F: Fr(z,...,z) S u(z).

In the next theorem we will consider iterated functions. We will write this as f*, meaning
the function f applied n times. More precisely: f° =id, f**! = fo f".

Theorem 3.6 Let 7 be an interpretation for a TRS R. Let ¢ € IN for which ¢ > F. for
all F € F of arity 0, and let u be a monotone function satisfying

Vie F:Vz>c: F(z,...,z) < u(x).
Then Dlg(n) < u™1(c).

Proof

By the definition of DI we have to prove that for all terms ¢ : dlg(¢) < ultl=1(c). We
have that dlg(t) < int,(t), so it remains to prove that for all terms: int.(t) < ultl=1(c).
This is done by induction on the structure of ¢.

Basic step: if £ is a constant then

int.(t) < ¢
= u’(c)
ultl—l(c)
Inductive step: if ¢ is a function application then t = F(t4,...,t,), so
int(t) = Fe(int.(t1),...,int(tp))
< u(max{int,(t1),...,int(tm)}) by definition 3.5, F; monotone
< u(max{ul-1(c),...,ult"I=1(c)}) by ind. hyp., v monotone
= y(umex{ltihltml}-1(c)) u monotone
= u(ull=2(c)) by definition of term height
= ultl_l(c)
End Proof

The requirement on u of being monotone is not essential, it only simpifies the proof. We
shall only use monotone bound functions u.

4 A hierarchy of sharp derivation lengths

We now give a hierarchy of sets U of monotone upper bound functions and their deriva-
tion lengths, i.e. the maximal derivation lengths that can be reached by TRS’s with a
compatible interpretation having an upper bound function in U.

)



If we consider the polynomials for instance, there is no single polynomial function which
is an upper bound function of all polynomials. For each polynomial p however, there is
an a € IN such that u,(z) = z* is an upper bound function of p. This is the reason why
allowed interpretations are given by a set of upper bound functions rather than by a single
upper bound function.

For each set of upper bound functions, a corresponding upper bound on the derivation
length for all terms of some height up to n will be given, using theorem 3.6. Moreover, by
giving derivations in example TRS’s we shall show that the upper bounds on derivation
lengths are all sharp. First we define what is meant by sharpness.

Definition 4.1 We call a function f : N — IN a sharp derivation length for a set U of
monotone upper bound functions if:

o for each TRS R with a compatible interpretation having an upper bound function in
U:
Jde,ng € IN : YV > ng : Dig(n) < f(c-n)

o and there is a TRS R with a compatible interpretation having an upper bound func-
tion in U such that

Je,ng € N : V> ng @ f(n) < Dlg(c: n)

The results for the considered sets of upper bound functions are summarized in the table
below.

U a sharp derivation length for U
1| {z+ azla € N} n s 2"
2 | {z — z%a € IN} n— 277
3| {z — [exp'(alog’z)]|a € N} | n — exp*l(n)
4 | {z — exp®(z)|a € N} n — exp"(0)
5({z— A%=z)|a € N} n+— Aipi(n)
6 | {z — DiagA®(z)|a € IN} n +— DiagA"(1)
where
o exp(z) =2°
o Ao(z) = 22 for >0
Ai(0) =1 for i>1

Ai(z) = Ai(Ai(z—1)) for 121,221

(The Ackermann function)

e DiagA(z) = Ax(z)



In the third and fifth row of the table, an extra index 7 occurs. In these cases we do not
consider one single set U, but a sequence of sets, one set for each ¢ € IN. A corresponding
sequence of sharp derivation lengths is given at the right hand, one for each : € IN.

In row 5 of the table a sharp derivation length is given for each unary Ackermann function
A;. From recursion theory it is known that these functions A; can be used to define a
hierarchy of classes of functions, analogous to the Grzegorczyk hierarchy covering the
primitive recursive functions ([8]). So we have given a sharp derivation length for the
whole sequence of Ackermann functions which essentially spans the primitive recursive
functions. A similar result without using Ackermann functions, independently found, was
given in [3].

In row 6 the diagonal of the Ackermann function is used, which is not a primitive recursive
function. This shows that the general upper bound on derivation lengths can also be sharp
for non-primitive recursive functions.

As can easily be verified, row 1 of the table is a specific instance of row 3, namely for
¢ = 0. In the same way, row 2 is an instance of row 3 for ¢ = 1, and row 4 an instance of
row 5 for ¢+ = 1.

So in order to prove the results of this table, it suffices to prove the sharp derivation
lengths for the sets of row 3, 5, and 6. These proofs will be given successively in the next
three subsections. Since the proofs follow the definition of a sharp upper bound, they all
have the same structure.

4.1 Exponential derivation lengths

Proposition 4.2 For all i € IN, let U; = {z ~— [exp‘(alog' z)]|a € IN}, and let fi(n) =
exp'tl(n). Then, for all i € N, f; is a sharp derivation length for U;.

Proof

Let ¢ € IN be given. We check the two requirements of a sharp derivation length
given in definition 4.1.

First it has to be proved that for each TRS R with a compatible interpretation
having an upper bound function in U; : d¢,ng € IN : Vn > ng :

Dig(n) < exp'*!(c- n)

For all ¢ € IN, there is an a € IN such that u(z) = [exp(alog’ )] is an upper bound
function of the interpretation of R. By theorem 3.6, DIgr(n) < u™~!(cp) for some
co € N, so it remains to prove that 3¢, ng : Vn > ng : u"1(c) < exp**'(c- n).

We proceed by induction on n.

basic step: n = 1, then we have: ¢y < exp**!(c), which is true if ¢ > co.



inductive step: n > 1:

u™(co) = w(u"(co))
< u(exp*(cn)) (induction hyp., u monotone)
< expi(alog'(exp* (o)) +1 ([z] <o +1)
= exp'(a-2") +1 (log' exp® = id)
— expi(zcn+loga) + 1
< expt'(cn +loga+1)
< exptl(c(n +1)) (for ¢ > (loga) + 1)

Secondly, it has to be proved that there is a TRS R; with a compatible interpretation
having an upper bound function in U; : 3¢, ng € IN : Vn > ng : DIg,(c-n) > exp'*(n).
Take Ry to be

.DID()(II — .D()D()D].’L‘
For : > 0, R; is the union of R;_; and

D;ywD;x  — D;D;D;, 1z
Diy1Di1x — Dix

Take 7 as follows:

(Do) =z z+1 .
7(Dit1) =z — [exp'(3-log'z)]

Using standard calculus it follows that 7 is compatible with R; and has an upper

bound function in U;.

For any ¢, n, we have the following derivation in R;:
D} D;D;_y--Do0 —* D¥" D?, \ Di_y - -+ Dg0 —*
D?n D"__l L. DQO o Dglzxpl' (n)DOO * Dgxp"-ﬂ(n)D(lexpi(n)O.

The increase in the number of S-symbols shows that the derivation length exceeds
exp‘t!(n), while the height of the starting term is linear in n. So Dlg,(c-n) >
exp**!(n), which we had to prove.

End Proof

Note that for : = 1 the corresponding TRS has a polynomial interpretation and a doubly
expontial derivation length. The proof we gave here is essentially simpler than the original
one in [6, 4]. In particular in our system the observation that the derivation length is
indeed doubly exponential is straightforward since there are no duplicating rules.

For ¢ > 1 the proposition gives a hierarchy of interpretations that are greater than poly-
nomials and smaller than exponential functions, each having sharp derivation lengths.



The system R; is a pure string rewriting system. Of such a system we can take the reverse,
i.e., all left hand sides and right hand sides are reversed as strings. The reversed system
of R; trivially has the same Dl as R; itself, but the reversed system cannot be proved to
be terminating in the style of section 2 by an interpretation in IN. It can be done by an
interpretation in the well-founded set IN**? with lexicographic order, but not in IN’ for
any j < i+ 2. This is proved in [2].

4.2 The Ackermann function

Proposition 4.3 Let A; denote the Ackermann function as defined before. For alli € N,
let U; = {zx — Af(z)|a € IN} and let fi(n) = Ait1(n). Then, for all i € IN, f; is a sharp
derivation length for U;.

Proof

Let = € IN be given. Again we check the two reqﬁirements of a sharp derivation
length given in definition 4.1.

First it has to be proved that for each TRS R with a compatible interpretation
having an upper bound function in U; : 3¢,ng € IN : Vn > ng :

Dir(n) < Aiya(c-n)

For all ¢ € IN, there is an @ € IN such that u(z) = A%(z) is an upper bound function
of the interpretation of R. By theorem 3.6, DIg(n) < u™"!(cp) for some ¢y € N, so
it remains to prove that Jc,ng : Vn > ng : u"1(cp) £ Aipa(c - n).

We have:
(e A3(@))New) = 47" (e)
< As=De()
= As"(1) (choose ¢ > a + <o)
= Ai1(c-n)

Secondly, for any i we have to give a suitable TRS R;. These R; are obtained by
transforming the definition of the Ackermann function to rewrite format. Take R,
to be

EoO — 0
EySt — SSEyz

and for ¢ > 0, R; is defined to be the union of R;_, and

E;0 — 50
E,'S:l: — E;_1E;x.

Take T as follows:



r(0) =2
7(S) =z az+1
T(E,') =T A,‘(A,'((E))

One easily checks that 7 is compatible with R; and has an upper bound function
in U;. Now R; is terminating since 7 is a compatible interpretation, it is confluent
since there are no critical pairs, and the ground normal forms are exactly the terms
built from 0 and S. Further all rewrite rules are equalities if 0 and S are interpreted
as zero and successor, and E; is interpreted as A;. So E; computes the Ackermann
function A;. Hence for any n we have the derivation

ErS0 —* 547((0),

The increase in the number of S-symbols shows that the derivation length exceeds
A?(1). One easily shows by induction that A?(1) = A;41(n). Comparing the deriva-
tion length and the height of the starting term we conclude

Jde,ng € IN: Vi > ng : Aip1(n) < Dlg,(c- n),

which we had to prove.

End Proof

4.3 The diagonal of the Ackermann function

Proposition 4.4 Let U = { — DiagA®(z)|a € N}, and let f(n) = DiagA™(1). Then
f is a sharp derivation length for U.

Proof

We will now check the two requirements of a sharp derivation length given in defi-
nition 4.1.

First it has to be proved that for each TRS R with a compatible interpretation
having an upper bound function in U : de,ng € IN: Vn > ng :

DIr(n) < DiagA°™(1)

There is an a € IN such that u(z) = DiagA®(z) is an upper bound function of the
interpretation of R. By theorem 3.6, DIg(n) < u""!(¢o) for some ¢y € IN, so it
remains to prove that ¢, ng : Vn > ng : u"1(cp) < DiagA®"(1).
We have:
(Az.DiagA%(z))**(co) = DiagA®"™!(co)
< DiagA®n—N+eo(1)
< DiagA®"(1) (choose ¢ > a + ¢)
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Secondly, it has to be proved that there is a TRS R with a compatible interpretation
having an upper bound function in U : 3¢,np € IN: Vn > ng :

DiagA™(1) < Dlg(c-n)
Take R to be

F(0,0) —0

F(0,5(z))  — S(S(F(0,z)))
F(5(:),0)  — 5(0)
F(5(2),5(e)) — F(2, F(5(i),2))

(F computes the binary Ackermann function A.)
Take 7 as follows:

0) =2
7(S) =z~ 241
T(F) =i,z Aj(Aiz))

This 7 is compatible with R and has an upper bound function in U.
For a given n > 4, take the start term ¢,,, where
tl = 0

t; F(t,'_l,t,‘_l) ifi > 2

Since t, —* SPia9A"*(1)(0), the desired derivation length is achieved.

End Proof

5 Conclusions

In this paper we considered termination proofs of term rewriting systems by monotone
interpretation in the natural numbers. A general upper bound on derivation lengths was
derived in the following sense. Let a term rewriting system be given for which termination
can be proved by a monotone interpretation in the natural numbers. Take one bound
function such that for all operation symbols the corresponding interpretation function is
smaller than the bound function. Then an upper bound on the length of a derivation can

be expressed in the height of the start term and this bound function. A similar result can
be found in [3].

Building on these result, we quantified upper bounds on derivation lengths for several
cases. In any of these cases on the one hand we have a bunch of functions such that
only interpretation functions are allowed that are bounded by one of the functions. For

11



example, all polynomials are bounded by functions  — z%. On the other hand we have
a function f such that a derivation starting with a term of height < n can not be longer
than f(n).

In any of these cases we proved that the derived bound on the derivation length is sharp in
a natural sense: we gave examples of term rewriting systems and corresponding derivations
in which the bound is indeed reached up to a constant. In the considered cases the bounds
on the interpretation function are

e linear functions,

polynomials,

e functions in between polynomials and exponentials,

iterated exponential functions,
e the 7th unary Ackermann function,

e the binary Ackermann function.

Except for the last case, all example systems are string rewriting systems.
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