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INTRODUCTION 

This report is the result of a 14-week traineeship conducted at the Tokyo Institute of 
Technology, Japan in the summer of 2001. The main goal of the traineeship is to design 
an obstacle avoidance algorithm for a robot, making use of a hybrid controller with a 
Model Predictive Controller routine incorporated. 
Obstacle avoidance is a quite active region in robotics. Especially in human-robot 
interactive environments and space robotics some very intelligent solutions have been 
developed. It is clear that an algorithm for a guidance robot in a museum or a maii- 
delivering robot in an office environment needs a completely different obstacle 
avoidance algorithm than a planetary exploring robot in the rocky environment of planet 
Mars. Nevertheless an algorithm is designed in as general terms as possible to describe 
a wide area of potential applications. Since practical problems in application, like 
sampling times and delay, are mainly neglected in this report, it deserves 
recommendation to be very critical in application of the presented theory. 
Obstacle avoidance is a more or less arbitrary example of a possible hybrid controllable 
application. Other possibilities are e.g. chemical plants with a potentially dangerous 
situation, which has to be solved (too high temperature, concentrations). The more 
general goal of this traineeship is tc construct a framework of Mcde! Predictive Contro! 
for hybrid systems in emergency mode. It is quite difficult to obtain an obstacle 
avoidance algorithm without specific details of the robot and environment. Therefore 
some assumptions have to be made to concretise the situation and develop a working 
example of a model predictive controller for hybrid systems. These assumptions are 
presented in  this report where necessary. 
In this report a design is presented and analysed. A working example is developed, 
although a lot of improvements and extensions are needed to apply this method to any 
practical configuration in the near future. Although this report wil l  not present a 
complete in depth analysis, some suggestions of improvement wil l  be given at the end of 
this report. 
To design a suitable hybrid controller for the given example a short literature orientation 
in existing obstacle avoidance methods has been conducted, the results wil l  be 
presented in  chapter 2. In chapter 3 and 4 the principles of respectively model predictive 
control and hybrid controllers are introduced. The choice of a cost function for the MPC 
controller is critical for the performance of this example. A brief discussion about this 
choice is presented in chapter 5. Finally in chapter 6 MPC is applied to the hybrid system 
of the example and the results are reported and discussed. 
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CHAPTER 1 - STATEMENT OF THE PROBLEM 

The main problem in application of Model Predictive Control in general is the large 
computational demand. To solve the most common control problems with MPC relatively 
large calculation times are required, because the matrix formulations imply large matrix 
structures. As the calculation time in MPC applications is the main limiting factor to 
small sample times, the performance of the system decreases. This statement holds 
even for very simple systems but rises for hybrid systems in specific. The optimisation 
for this class of systems is in general very complex, although some good algorithms are 
available the calculation times are vast. 

Yet MPC is a very powerful control strategy, among others because i t  can take 
constraints on the states (outputs) and input signals into account. How can MPC be 
applied, without losing too much performance but making use of the advantages of this 
strategy? One possibility is a control strategy with a Model Predictive Controlled 
emergencymode, such as an 'avoidance mode'. 

The goal of this train eesh ip is to design a hybrid controller for hybrid systems, 
making use ofa moa'ei predictive con frotier in emergency mode, 

This wil l  be illustrated with the following example; an autonomous mobile robot is 
controlled to follow a (known) trajectory to some desired point. This task is supposed to 
be relatively simple and wil l  be carried out with a simple digital (tracking) controller. On 
its way some obstacle, which blocks the trajectory, is detected. At that point the control 
strategy is switched to a more intelligent Model Predictive Controller, which wil l  try to 
avoid the obstacle and continue its way to the desired point or trajectory. Because of the 
more computational demanding MPC strategy, the robot probably has to decrease its 
speed in exchange for a save trajectory around the obstacle(s). 
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CHAPTER 2 - OBSTACLE AVOIDANCE 

2 GENERAL INTRODUCTION 

This chapter gives a brief introduction into the field of obstacle avoidance. To avoid an 
obstacle can be translated into the problem to find a suitable path or trajectory 
considering the given environmental constraints. As a starting point for the design 
process to obtain a new obstacle avoidance algorithm a brief literature exploration has 
been conducted. This chapter presents some methods and principles found in literature. 
This literature research can be roughly separated in a general motion planning part and 
some examples of existing methods to illustrate the general principles. For a more 
extensive treatment of the presented methods one is referred to the original articles in 
literature. 

2.1 MOTION PLANNING 

In general a motion plan consists of the kinematic trajectory for the system as well as the 
actuator forces that move the system along the trajectory. The actuator forces can be 
sometimes obtained from the given kinematics in a particularly simple way. In other 
instances we i s e  the I<liieiiiatic clescrlpiior; of the system because the dynamic 
equations are difficult to derive. There are also cases when we employ the kinematic 
model of the system to abstract the details of the actuation scheme. In literature the 
term dynamicmotionplanningis used when the actuator forces are part of the computed 
motion plan and kinematic motion planningis used when only the kinematic trajectory 
for the system is computed. 

@=a$ 
Inverse 
' ,dynamics 

".a/" Dynamics \ 
In verse Y 
kinematics 

G i z a 3  

Figure 2 .l: Spaces in which motion can be observed and mappings between 

Motion planning can furthermore be separated into two categories; explicit motion 
planning i f  the motion plan is computed before the motion is executed, and implicit  
motion planningif the trajectory and the actuator forces are computed while the system 
moves. Please note that i f  we want to optimise the performance of the motion or 
guarantee certain properties of the trajectory in general an explicit motion plan has to be 
used. If it only matters that a desired configuration is reached, implicit schemes are 
considered to be sufficient. 
The division into explicit and implicit schemes for motion planning also applies to 
trajectory generation in robotics. In most cases, explicit schemes are used for kinematic 
motion planning while implicit schemes are usually employed for dynamic motion 
planning. 
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Implicit schemes only use the information about the state of the robot and the 
environment to compute how to move and can be interpreted as feedback mechanisms. 
They are very attractive from a computational point of view since no processing is 
required prior to the motion. The simplest scheme, corresponding to the final position 
control in biological systems, is to make the set-point for the joint controllers equal to 
the desired final position in the joint space and let the error between the current position 
and the set-point drive the robot. A modification of this scheme where the velocity during 
the motion is  appropriateiy shaped is often provided on industriai robots as one of the 
possibie modes of motion, but it is hardly useful for large amplitude motions. One of the 
reasons is that the shape of the trajectory in the taskspace depends on the location of 
the start and the end-configuration within the joint space. If obstacles are present in the 
worltspace of a robot, it is difficult to predict whether the robot wil l  avoid them or not. 
Another possibility is to define a potential function with the equilibrium point at the goal 
configuration. The actuators of the robot are programmed to generate the force dictated 
by the potential field, driving the robot towards the goal configuration. This scheme is 
much more flexible than the final position control since the potential field that guides 
the motion can be chosen. It is also very easy to implement obstacle avoidance by 
assigning a repulsive potential to each obstacle. This method has evolved in a method, 
in which the range nf the rep~!sive pntentia! is !irnited, so that only the obstacles that 
are close to the robot wil l  affect the motion. The robot thus only needs to know local 
information about the environment. If the potential is defined in the joint space, the 
problem of kinematic redundancy can be resolved as well. The main drawback of the 
potential function method is that there may exist local minima that can trap the robot. 
Rimon and I<oditschek [Rimon, 19921 demonstrated that a potential (navigation) function 
can be constructed which has a global minimum and for which all other equilibrium 
points are saddle-points (unstable equilibria) that lie in a set of measurement zero. 
However, constructing such a navigation function requires complete knowledge of the 
space topology and many advantages of the originalpotenfial function method are lost. 
Another deficiency of potential fields is that the generated trajectories are usually far 
from being of minimal length. Finally, it is difficult to take various constraints posed by 
the task into account such as velocity limits or nonholonomic constraints. 

To compute a trajectory, explicit methods (also referred to as open-loop schemes) 
require knowledge of the global properties of the space. The advantage of such schemes 
is that task requirements can be taken into account during the planning process. The 
approach is also attractive from the control point of view: once the trajectory of the 
system is planned, the system can be linearised along this trajectory and methods from 
linear control theory can be used to control its motion. 
One possible subclass are roadmap methods, which construct a set of curves, called 
roadmap, that sufficiently connect the space. A path between two arbitrary points is 
found by choosing a curve on the roadmap and connecting each of the two points to this 
curve with a simple arc. Instead, cell decomposition methods divide the configuration 
space into non-overlapping cells and construct a connectivity graph expressing the 
neighbourhood relations between the cells. The cells are chosen so that a path between 
any two points in the cell is easily found. To find a trajectory between two points in the 
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configuration space, a corridoris first identified by finding a path between two points in 
the connectivity graph. Subsequently, a path in the configuration space is obtained by 
appropriately connecting the cells that form the corridor. The most general versions of 
roadmap and cell decomposition methods work for cases in which obstacles in the 
configuration space can be described as semi-algebraic sets. However, most practical 
implementations assume that the obstacles and the robot can be described as polygons. 
At the price of considerably increased complexity, i t  is also possible to extend some of 
the approaches to cases in which the obstacles in the environment move and sensors 
provide their position. 
A common feature of all the motion planning schemes described in this section is that 
they are based on discrete algorithms. In one way or another the configuration space is 
discretized and represented by a graph. Subsequently, trajectory planning is reduced to 
finding a path in this graph. These methods are purely kinematic: they only generate a 
trajectory in the configuration space, while the dynamics of the robot and the possible 
constraints on the actuator forces are not taken into account. To obtain a trajectory in the 
actuator space a separate mechanism must be employed. From the point of view of 
hierarchical organisation, they therefore assume separate planning at each of the three 
levels: task space, joint space and actuator space. 
[Zefran, 19961 illustrates some more separations as follows in figure 2.2 . 

Motion planning - 
Implicit Explicit 

Continuous Discrete 

Figure 2.2: Division of the approaches to motion p/anning found in /iterature 
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CHAPTER 3 - INTRODUCTION TO MODEL PREDICTIVE CONTROL 

Model Predictive Control (MPC) refers to a class of discrete time controllers, which base 
the input signal on a prediction of future outputs of the system (process). These 
predictions are based on a model of the system (process) that is to be controlled. The 
main technique behind this concept is the principle of receding or moving horizons. Due 
to the model-based approach the online optimisation can take constraints in to account 
with respect to input signals, controlled and uncontrolled states. Because of the large 
calculations due to this principle, MPC is most suitable and most applied for relatively 
'slow' processes. Although due to fast increasing processor capabilities an increasing 
number of processes could be controlled with a Model Predictive Controller nowadays. 
In the following sections a brief overview of the principles and features of MPC will be 
given. More information can be found in the lecture notes [Van Essen, 20001. A more 
extensive overview is given in [Maciejowski, 20021. 

The scheme presented in figure 2.1 describes the principle of receding horizons that is 
applied to Model Predictive Controllers. For convenience only one input and one state is 
considered but for MlMO systems this principle holds just as well. 

predicted output y(k+llk) I * *  

I / 
prediction horizon 

0 

0 
input u(k) 

Figure 3.1 : Concept ofModel Predictive Control 

At present time I<, the response of the output is predicted over a prediction horizon with 
a length of p samples. The prediction is based on past inputs, current model states (or 
estimates of the states), latest process measurements, proposed future inputs, and i f  
possible the predicted setpoint disturbances. The manipulated variables are allowed to 
vary over a control horizon with a length of m samples. The optimal input changes Au are 
calculated by minimising a quadratic objective function in the tracking error (y-/3 and the 
input changes Au . Only the input(change) of the next sample is implemented. The next 
sample the whole procedure is repeated. This way the horizons are moving in time: 
receding horizons. 
To minimise future deviations of the controlled variables from their reference values 
(setpoints or trajectories), while preventing the inputs from changing inadmissibly fast, 
the next (common for MPC) quadratic objective function (in y - r and Au ) is used. 

- 
I I I I 

I< k+1 k+2 k+m k+p 

- 

control horizon 
- 
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Inspecting the  quadratic objective function in the (filtered) process output, t h e  reference 
signal and the input changeAuwe see  two weighting matrices. Q represents the 
weightings of the  setpoints over the prediction horizon. The matrix R represents the 
weighting of the input changesAu over the control horizon. These weightings may 
change over the  horizons. Furthermore, y(k + I  I k)denotes the  estimate of 
y(k + 1)obtained a t  sample I<, taking into account all (available) information up to and 
including the  current sample I<. 

3.2 TUNING PARAMETERS IN MPC 

Summarising the  tuning parameters from the previous sections, the  next parameters are 
obtained: 

- t he  number of samples in (or the length of) the prediction horizon 
- t he  number of samples in (or the length of) the control horizon 
- the  sample interval 
- the  setpoint weighting factors 
- the  input weighting factors 

-. 
I h e  controiier must be abie to observe the consequences of its controi actions. Tnerefore 
the  prediction horizon should exceed the largest time constant of the  controlled system, 
periods of dead-time and periods of inverse response. 
System speed decreases when the prediction horizon is increased with respect to the  
control horizon, although the open-loop robustness of the  system increases in this case. 
A good compromise should be chosen. Basic guidelines for tuning are formulated by 
[Morari, 19931 on basis of open-loop stable, minimum phase processes, that show 
responses corresponding to first-order responses. 
Increasing lengths of prediction and control horizons, and decreasing the  sample 
interval will increase computation times substantial a s  the number of d.0.f. in the  
optimisation rises exponential. 
Please not that in this report only one horizon is implemented. The MPC controller is able 
to influence the  controlled variables over the whole prediction horizon. 

3.3 IMPLEMENTATION OF LINEAR MPC 

In case of a linear optimisation and a non-linear process model an error in introduced. 
This error can be corrected for by implementing a filter. This filter can be model-based 
(e.g. (Extended) Kalman filter) or non model-based like the implemented output 
disturbance filter. 

--------- [ x(k+l) 

[ 
Filter 

A 
Controller 

u(k) I 

Yp (k) i 

- u(k+l) 

I yp (k+l) 

k k+ I 

Figure 3.2: Schematic view ofMPC implementation 
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The MPC controller is fed with the current input, the desired setpoint, previous prediction 
of the states and latest measurements of the process states (outputs). The controller 
calculates a prediction of the process outputs over the prediction horizon based on the 
current (unchanged) input and corrected state prediction by means of the (Internal) 
Prediction Model (IPM). This prediction vector and the current input vector are fed into 
the Internal Optimisation Model (IOM). The calculation in this optimisation algorithm 
results in an optimal input change. This input change is summarised with the current 
input resulting in a new optimal input for the process. 

I 
x,,.& + 1 l k )  

I 
Xau o(k + PI k )  

Prediction Optimisation x(k+lI k )  
I 

Model Model IOM 

I PM and optimisation ~ u ( k  + 1) 

Figure 3.3 : Schematic view ofMPC Controller 

Details and principles of the optimisation algorithms can be found in the lecture notes 
[Van Essen, 20001. There are roughly two classes of optimisation algorithms. The 
relatively simple unconstrained optimisation models (e.g. Least Squares LS), and the 
optimisations that can take constraints into account (e.g. Quadratic Programming QP). 
Constraints can be formulated with respect to the inputs or the states. Even uncontrolled 
states can be constrained. These constraints can be upper or lower limits due to safety of 
physical limitations of the system, or move constraints, like limitations to the actuator. 

3.4 NON-LINEAR PREDICTIVE CONTROL 

The previous principles all hold for the standard linear Model Predictive Control problem. 
The unconstrained (Least Squares) optimisation and the constrained optimisation 
problem (Quadratic Programming) are proven algorithms. Linear approaches will not 
always be adequate, because most processes behave quite non-linear and can not 
always be linearised with satisfying results. 
Non-linear MPC concepts are developed to deal with these cases. These MPC concepts 
calculate non-linear predictions over the horizon. Most of these algorithms are 
computational very demanding because of the increased complexity of the problems. A 
less demanding solution can be found in successive linearising. In that case the 
prediction model is linearised around the current setpoint each sample. This extension 
increases the computational demand, since it requires a sequential (SQP) optimisation 
problem instead of a single QP problem over the horizon. The main problem with non- 
linear predictive control is still the possibility of local minima in the optimisation 
problem. 
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CHAPTER 4 - INTRODUCTION TO HYBRID SYSTEMS 

It is very important to clearly distinguish between hybrid systems and hybrid controllers. 
Several definitions are found in literature, therefore the definitions used in this  report 
will be reformulated now. Starting with hybrid controllers; this class of controllers is 
considered to be a multi-controller architecture, which has the  capability to  switch 
between different control laws or methods during a control task. 

Decision 4 Environment - 
Switching maker - 4- 

signal 

Controller 1 w 
Controller 2 w 
Controller 3 w 

Figure 4.1 : Example of  a multi-controller architecture 

In figure 4.1 an example of a multi-controller architecture is illustrated. In this case a 
hierarchical controlled switch is used to switch from one control law to another, but 
other methods are also found in literature. A more extensive overview and theoretical 
fundamentals of switching or hybrid controllers can be found in [Liberzon e t  al, (1999)l. 

The second important definition is the definition of hybridsystems. Hybrid systems arise 
in a large area of practical and theoretical applications. In this report hybrid systems are 
defined a s  systems which dynamics are described with continuous, logical (binary) and 
optional with synthesised or auxiliary (binary/continuous) variables. An example of this 
class of systems are Time-varying Mixed Logical Dynamical (MLD) systems, the  general 
description can be given by: 

This is a general formulation of a MLD system in linear form, with output y, s ta te  x, input 
u, binary variables 6 and auxiliary variables z. 
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4.2 LOGIC CALCULUS AND LINEAR INTEGER PROGRAMMING 

To formulate system-dynamics in terms of logic or binary variables the standard 
notation, formulated in [Williams (1977); Cavalier et al. (1990); Williams (1993)l is 
adopted so that capital letters X ,  indicate statements, and has a truth value of either 

"T" (true) or "F" (false). Boolean algebra is used to enable statements to be combined in 
compound statements by means of connectives; " A " (and), " v " (or), " - " (not), " -+ " 
(irnp!ies), " e " (if and only if), " O " (exclusive or). These connectives are defined by 
means of the truth table presented in (Table 4.1: Trufh fable connecfbes). 

Table 4.1 : Truth table connectives 

This i i teralX, notation can be associated with a logical variable 6 ,  E {GJ), which has a 

value of either 1 i f  X ,  = T, or 0 if X ,  = F. A set of (compound) statements involving 

literals X ,  ,..., X ,  can be solved by means of a linear integer program, by translating the 

statements into linear inequalities involving logical variables 6 , .  Some basic 

transformations, adopted from [Williams (1993)], are stated below in (Table 4.2: 
Equivalent statements in literal and  binary variables). 

<-,*=-- 

Literal statement ..., " ." 
Logical statement 

Xl v x, is equivalent to 6,  + 6 ,  2 1 

XI A X ,  is equivalent to 6 ,  = 1,6, = I  

- XI is equivalent to 6 ,  = O  

x, + x, is equivalent to 6,  - 6 ,  I 0  

X ,  ++ x, is equivalent to 6 ,  - 6 ,  = 0  

X ,  0 X ,  is equivalent to 6 ,  + 6 ,  = 1 

Table 4.2: Equivalent statements in literal and binary variables 

With this binary toolbox it is quite well possible to model logical parts of processes, like 
e.g. on/off switches or discrete mechanisms. Especially in case of hybrid systems, which 
contain both logic as well as continuous dynamics, a link between both worlds is 
needed. This link can be found in the calculus of mixed-integer linear inequalities, i.e. 
linear inequalities involving both continuous variables x E Rn and logical variables 
6 E {0,1). 
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The next intermezzo in which such calculus is applied to a literal statement is adapted 
from [Bemporad, Morari (1998)l. 

Intermezzo 1: 

Consider the statement X = [ f (x) < 01, where f : Rn I+ R is linear, assume 

that x E N, where N is a bounded set, and define 

M - max f (x) 
X E K  

m = min f (x) (4.2bj 
X E K  

Theoretically, an over[under]-estimate of M[m] suffices for our purpose. 
However, more realistic estimates provide computational benefits [Williams 
(1993), p. 1711. 
It is easy to verify that 

[f(x) < O ] A [ ~  =I] istrueiff f ( x ) - 6 5 - l + m ( l - 6 ) ,  (4.3a) 

[ f (x) < 0] v [6 = 11 is true iff f (x) I M6 (4.3b) 

- [ f (x) < 0] is true iff f (x) 2 E , (4.3b) 

where E is a small tolerance (typically the machine precision), beyond which 
the constraint is regarded as violated. Therefore 

[f (x) < 01 -+ [6 = 11 is true iff f (x) 2 E +(m-&)6, (4.4a) 

f (x) I M(l- 6) 
[f(x) SO] e [6 =1] is true iff 

f ( ~ ) > & + ( m - E ) 6  

Finally, we report procedures to transform products of logical variables, and of 
continuous and logical variables, in terms of linear inequalities, which however 
require the introduction of auxiliary variables [Williams (1993), p. 1781. The 
product term 6,6, can be replaced by an auxiliary logical variable 6, = 6,6,. 

Then [6, = 11 ++ [6, = 11 A [6, = 11, and therefore 

-6, +6, I 0  

6, = 6,6, is equivalent to 

Moreover, the term 6 f (x), where f : Rn H R and 6 E {0,1), can be replaced 

by an auxiliary real variable y - 6 f (x) , which satisfies [6 = 01 + [y = 01, 

= 11 + [Y = f (x)l . 
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Therefore, by defining M, m a s  in (4.2), y = 6 f ( x )  is equivalent to: 

Alternative methods and formulations for transforming propositional logic 
problems into equivalent integer programs can be found in the literature, e.g. 
[Cavalier e t  al. (1990)l. 

End of Intermezzo 1. 

The calculus presented in Intermezzo I will be used to describe linear separations later 
on in this report. To illustrate the use of this calculus the next example is included. In 
this example a two-dimensional space is divided in two areas, one area in which some 
logic variable 6 is se t  to 'True' (or 6 = 1 )  and vice versa. The boundary of the  area in 
this example is se t  to - a .  

Figure 4.2: Linear separation 

To obtain this linear separation f ( x )  is se t  to f ( x )  = x  + a ,  thus applying the  calculus 
presented in intermezzo 1 : 

x + a I  M ( l - 6 )  
[x + a  5 0]  ++ [6 = 11 is true iff 

X + U  2 ~ + ( m - ~ ) 8  

Setting x  E [-10,10] we obtain M = 10 + a  and m  = -10 + a .  
Checking the  several points in the graph it can be seen that this formulation describes 
the correct linear separation. 
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CHAPTER 5 - COST FUNCTION AND CONSTRAINTS 

The choice of a correct cost function is very important for the performance of the 
controlled system. A standard cost function is used in predictive controllers. For Mixed 
Logical Dynamical (MLD) systems usually use some cost function which terms are 
weighted contributions in terms of the input, binary, auxiliary, continuous state and 
output variables. This cost function is not the only performance criterion. The 
formulations of the constraints are at least a s  important. 

5.1 GENERAL STABILISING COST FUNCTION 

[Bemporad, (1998)l describes a widely accepted formulation a s  stated in (5.1) and (5.2), 
where an equilibrium pair (x,,u,) is considered and (6 , , ze )  are supposed to be 

definitely admissible. 

2 
Where llxll = xtQx and x(k 1 t )  - x(t + k),x(t),v,*-I). All weighting matrices are 0 

symmetric and positively definite. Under the assumption that the initial s ta te  x(0) is 
such that a feasible solution of the problem given under eq. 5.1 exists at  time t = 0 then 
V Q  = Qtl > 0 , Q - Q' > 0 , Q, = Q', 2 0 , Q4 = Qf4 > 0 and Q, = Q', 2 0 the  Mixed 1 2 -  2 -  

Integer Predictive Control (MIPC) law stabilises the system in that 
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while fulfilling the dynamic/relational constraints, as proved in [Bemporad, Morari 
(1998)] using standard Lyapunov arguments: 

Proof 1: 
Let u,* denote the optimal control sequence {v:(o), ..., V:(T - I)}, let 

V(t) - J(U: ,x(t)) 

denote the corresponding value attained by the performance index, and let U ,  

be the sequence {v:(l), ..., V;(T -2),u,}. Then U ,  is feasible at time t + 1 , along 

withthevecto:s 6 (k I t+1)=5(k+! I t ) ,  z ( k I t+ I )=z (k+ l I t ) ,  

k = O  ,..., T - 2 ,  6(7'-1It+1)=6,, z ( T - l ( i + l ) = z e ,  being 

x(T - 1 / t + 1) = x(T I t) = x, and (6,,z,) definitely admissible. Hence, 

V (t + 1) < J(U, , x(t + 1)) 

= 'ct) -IIxct) -'.I1 ' a -Il6(') -6ellQ2 -lIz(t)-z,IIB -1IY(') 

and V@is decreasing. Since V(t) is lower-bounded by 0, there exists 
V, = lim,,, V(t), which implies V(t +I) - V(t) + 0 .  Therefore, each term of 

the sum 

lIr@) - xe I(Q, - (l"(t) - ue  llQ, - lid(') -6e llQ2 - llz(tj - ze llQ3 - - llQj < - v(t) - v(t + 1) 
converges to zero as well, which proves the theorem. 

End of proof 1 

5.2 SPECIAL CASE COST FUNCTION 

In some special cases the general stabilising cost function does not suffice. Especially 
when the final target can not be reached within the prediction horizon. In the case of an 
emergency mode hybrid controller, like the one used in this report, this is almost always 
the case because of the extreme short prediction times, due to the mostly demanded 
short calculation times in emergency modes. In this section these cases will be 
discussed. 
There are several possibilities to adapt the cost function and constraint formulations to 
the situation where the goal can not be reached within the prediction horizon. This 
discussion will concentrate on two methods, decreasing energy method and the 
intermediate target point method 

5.2.1 DECREASING ENERGY METHOD 

The method of decreasing energy is based on the demand that the controlled system has 
to converge to the desired end point. The cost function is constructed in terms of an 
energy function. These energy functions contain (quadratic) terms in which the current 
error between the desired state and the actual state are considered. Besides the desired 
state also energy terms can be constructed to describe the cost of the input signal, cost 
to change a binary variable or cost of an auxiliary variable integrated in time. 
The controller demands that the total sum of energy functions V(t) decreases every time 

interval. 
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Thus the controller demands: 
V(T + 1) I V ( T )  
This method will be able to guide the system to the desired state in most cases, but this 
control strategy does not guarantee that the desired state is reached within reasonable 
time or even reached ever. One of the possible problem cases is illustrated below. 

Figure 5.1 : Leff-right loop by cost function 

If we consider some cost function based on energy terms in state and input 

for a robot encountering an obstacle on its way to some desired point, the robot can not 
go through the obstacle and will chose to avoid the (infinite) cost of the input signal by 
going to the right side under the assumption that a short prediction horizon is 
implemented. At time t = T + 1 the total energy function is increased by the increase of 
the distance error x(t) - x, . To meet the demand of declining sum of energies, the robot 

wil l  now go back to its previous position, and will fall into an infinite loop of going back 
and forth. 

5.2.2 INTERMEDIATE TARGET POINT METHOD 

Another method consists of demanding the robot to go to some defined intermediate 
points and therefore not demanding the robot to be at its final desired state at final time 
x(T / t )  = xe, but demanding the robot to be at some intermediate point at some 

intermediate time t = T + i .  The main problem is obviously the construction of the 
intermediate points at intermediate times, but even if these points can be constructed 
this method does not guarantee the convergence of the system to the desired state. This 
method is quite sensitive for drifting away from the target if the intermediate points are 
not defined correctly. 
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CHAPTER 6 - MODEL PREDICTIVE CONTROL FOR HYBRID SYSTEMS 

6.1 EXAMPLE SYSTEM 

To illustrate and develop a MPC routine for hybrid systems in case of an emergency 
mode, like the  obstacle avoidance problem, the followins s t  case is designed. 

Robot 

(8 

target 

63 

slippery 

\ 
obstacle 

area 

Figure 6.1 : Example configuration 

A (simplified) autonomous mobile robot is to be controlled from its current position to a 
final (target) position. On its way it will meet an obstacle and an area in which the 
dynamics of the robot are different (e.g. slippery area, ramp). In this example the  robot is 
supposed to be able to know the complete area between its current position and the 
target. The dynamics of the robot are supposed to be described by linear equations (or 
linearised equations) and the system is supposed to be fully controllable. These 
assumptions are to simplify the problem and to concentrate on the actual avoidance of 
the obstacle. 

6.2 FORMULATION OFTHE MPC PROBLEM 

The dynamics of the robot are dependent on the position of the robot itself. To describe 
these changing dynamics a Piecewise Linear Time Invariant dynamic formulation is used. 

Where 6, ( t )  E {0,1}, 'di = 1 ,..., s 
s 

(Logic variables satisfying the XOR condition O [6/(t) = 11 ) 
i=l 

This formulation can not be used in the form of the general formulation of hybrid 
systems, because it contains products of state, input and logic variables, and therefore it 
is non-linear. 
To avoid a non-linear notation the robot's changing dynamics are reformulated: 

r 
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With z,  ( t )  = [ ~ ? x ( t )  + ~ , u ( t ) ] 6 , ( t )  

and M = [M, ... M,]T; m = [ml --.mn]T 

Bemporad states that (6.2) is equivalent to: 

1 
z, r M 6, ( t )  

z, 2 m 6, (t)  

z ,  r A,x(t) + B,u(t) - m(1- 6, ( t ) )  

Z, 2 A, x(t)  + B,u(t) - M (1 - 6, ( t ) )  

b'i = 1, ..., s 

To introduce a correct labelling system for the areas of different dynamics a procedure is 
developed. At first sight this procedure might seem to be much more complicated than 
strictly necessary. At the start of the project a much more simple system was used to 
label a area. This system used only one logical variable, if this robotic system is 
positioned inside area S t h e  logical variable of this area (e.g. 6,) should switch to True 

(or 6, = 1). This is illustrated with the next example: 

Figure 6.2 : Parametric labelling of  areas 

6 ,  = 1 if and only if: 

I a, 5 x < b, 

c, 5 y 5 d,7 

this definition is equivalent to: 

I x>a, e 6 , = l  

x i b ,  e 6 , = l  

y 2 c, e 6, =1 

This concept is used to label the areas in this project, but with some adaptations. If this 
procedure is extended to multiple areas, this will introduce a problem. Even if the above 
example is analysed with the extension that outside area S different dynamic laws are 
valid, it will prove very difficult to describe the area outside of area S. In this concept of 
labelling it is not possible to implement a relatively simple 'else ...' rule. Therefore a new 
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concept has been designed to describe all the areas as general as possible but with 
exclusive labelling of areas. Therefore some intermediate variables are introduced as 
follows from the next illustration. 

Figure 6.3 : Exclusive labelling of  areas 

In figure 6.3 the labelling procedure is carried out as follows. First the area x 2 a, is 

labelled with the variable 6,. This variable is true i f  and only i f  the robot is right of the 

line x = a,. Then the area x I b, is labelled with G,,, which is true i f  the robot is left of 

the line x = b, . The same procedure is applied to the areas above y = c,and under 

y = ds , with respectively 6, and 6,. 

After the labelling of previous areas, two more intermediate binary variables are 
introduced. If the robot is between the lines x = a, and x = 6, , the variable 6, is set 

true, and corresponding: i f  the robot is between the lines y = c, and y = d, the variable 

6, is set true. In the final step of this labelling procedure the binary variable 6, is 

introduced. This variable is true i f  and only if both 6, and 6, are true. This procedure, 

although very extended (7 binary variables), has proved to be able to label the area S 
with exclusion of the other areas. 
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According to the logic calculus proposed by Bemporad equation (6.3) is equivalent to: 

[ x - a ,  5 -6 - (m-&)6 ,  (6.6a) 

6.3 PIECEWISE LINEAR TIME INVARIANT DYNAMICS FORTHE EXAMPLE 

4 

In the case of the presented example where a robot with a 2-dimensional state space 
( n  = 2) moves to a target in an environment with 2 different areas (one obstacle and a 
slippery area) the total number of areas becomes i = 3 .  

- x + a ,  5 M(1-6; )  (6.6b) 

X-bi  S  M(1-8, )  (6.6~) 

- x  + b, I -E - (1% - &)8, (6.6d) 

y -c ,  I - E - ( m - & ) 8 ,  (6.6e) 

-Y+c;  5 M ( 1 4 )  (6.60 

y - d ,  I M(1-6, )  (6.6g) 

- y + d ,  I - E - ( Y Y ~ - E ) ~ ;  (6.6h) 

Therefor the systems dynamics now written as: 
x(t + 1 )  = z, + z, + z, = B,z(t) 

with: z( t )  = [i, z ,  z,T and B, = [1 1 11. 

z, = [A,x(t) + ~ , u ( t ) ] 8 ,  =, normalsifuation 

z2 = [A2 x(t)  + B~ u(t)]6, obstacle ( A2 = I;  B2 = 0)  

z3 = [A, x(t) + ~ ,u ( t ) ]6 ,  a slippew wet, ramp, etc. 

and e.g. A, = A, ; B, = 0.1 B, (slipperli) 

These rules are valid for i = 2...s, else 6, = 1 (the robot is not in a special area). 

The output is  defined as 
(6.9) 

y(t)  = C x(t) = I,x(t) 
And the states and inputs are bounded as described in (6.10) and (6.11) (6.10) 

~ ( t )  ['inin . 'inax I X  IYmin , Yinax I 
I (6.1 1) 

' (4  Einin , ' m i x  

The maxima and minima are 

There are three kinds of inequality constraints, the first category comes from the 
labelling of the areas, the second from the definition of the auxiliary variables and the 
last kind from the restrictions on the input signal. 
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This results in the following inequality program: 

Labelling 

i 

Auxiliary variables 

Input bounds 

' (m  - s)6, I -x + (a ,  - E )  

Ma, I x + ( M - a , )  

(in - ~ ) 6 ,  I x + (-b, - E )  

M6, I -X + ( M  + b,)  

(in - ~ ) 6 ,  I -y + (c ,  - E )  

M6, I y + ( M  - c,) 

(m - ~ ) 6 ,  I y + (d ,  - E )  

M6, I -y + (M + d j )  

- M6! I -2, 

- m6, 5 z, 

-ma ,  I A,x(t) + B,u(t) - z, - m 

M6! I -A,x(t) - B,u(t) + Z ,  + M 

This brings the system description into the convenient form: 
x(t + 1) = Ax(t) + B,u(t) + B26(t)  + B3z(t), (6.14a) 

E26(t)  + E3z(t)  I Elu(t) + E4x(t) + E5 (6.14b) 

In which A = B, = B2 = 0 and B3 = [l 1 11. Please note that these values are only 

valid in these equations, the auxiliary variables all contain a state and input matrix 
called A, and B, . The matrices El ,  E,, E,, E, and E, are presented in appendix A. 

To obtain the MPC controller of this MLD system the following cost function J is 
considered: 

0 4  (6.1 5) 

I x(T) = x f  

subject to: x(t + 1)  = Ax(t) + B,u(t) + B26(t) + B3z(t) (6.16) 

- E,x(t) - Elu(t) + E26(t) + E,z(t) 5 E, 
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The elements of this cost function are developed piece-wise to get to the form of (in-) 
equalities that the Mixed Integer Quadratic Programming (MIQP) solver can handle. 

~ : ~ l i ~ ( t ) - f 2  O2 = c T - 1 k ( f ) - u f ) ' ~ 2 k ( t ) - u f )  t=o (6.17) 

= ~ ~ ~ ~ ~ [ @ ) ~ ~ ~ 4 4  - + 4Q2q ] 

- - [ u(") fr ... ][ u(") ] - ~ U T Q ~ [ I ~ , ~  ... Iti7u[ '?) ]+TuTQ2uf 

u(T - 1) Q2 4 T  - 1)  u(T - 1)  

= Q ~ Q ~ R  - 2 u @ 2 , B 2 ~  + ( T U T Q , ~  ) 
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The following se t  of inequalities can be derived with respect to the constraints: 

In other notation: 

The demand x(T) = x , ~  can be rewritten as: 
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=ATx(0)+ A[B, B, B , ] R = x , ~  

Rewritten in  convenient form: 

A [B, B, B,]R = xf - A'X(O) 

A ,, R = b e ,  

The initial stated MLD system and cost function is now rewritten into: 

inin R*S,R + 2(S, + x$',)R 
R (6.31) 

with R =  A = [':I 
The currently used MlQP solver (Matlab routine, miqp.m [Bemporad]) solves problems of 
the following general form: 

inin xT (i H)x + f T~ (6.32) 
i 
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This results in the  following input arguments for the  solver: 
H = 2 S ,  

b = F2 + F,x, 

A,, = A B 
T beq = x j  - A  xo 

varwpe =[;~~,T+! ,m,T+2 ,..., m,T+m,T] 
Z ~ = [ - P  ... - p  0 ... 0 - p  m e .  - p ]  

ub =[p . - -  p 1 - - .  1 p  -.. p] 

with p = le10 (or any arbitrary finite large number) 

Problems that still have to be addressed are mostly on the field of constructing a correct 
cost function for the  problem with very small prediction times, and designing a 
convenient criterion for the desired state a t  each point in time. The MPC controller with 
very small prediction times cannot reach the target within the chosen very short 
prediction time. The strategy on what to do in case the target is not reached within the  
prediction time is not, aiwa'ys arbitrary. It is very easy to coiistiiict a less restrictive end- 
point criterion, but the  global goal must of course always be the main concern and 
therefore the  convergence of the  system must be guaranteed. Weakening the  end-state 
criterion can bring some relieve but implies that the system is not always guaranteed to  
be convergent. Another possibility is the method of intermediate 'target points'. This 
means that some algorithm should calculate useful intermediate points, which are 
reachable within the prediction horizon. This means not only that these points have to  
be positioned in an obstacle free subspace but also within driving range of the  robot. 
There are a lot of possible combinations of cost functions and end-state criterions. Each 
possibility reviewed in this traineeship has some positive implications for one 
arealenvironment and some negative implications for other environments. 
The choice of describing an obstacle a s  an area with 'infinite difficult' dynamics implies 
that the  cost function must a t  least contain a term based on input cost. If the cost 
function is only based on the position error, the obstacle will not be avoided. If it proves 
to be necessary to construct a cost function solely based on position error, the  method 
must be adapted. In such cases the area can be modelled a s  a position constrained 
within the  MPC algorithm in stead of an area with difficult dynamics. 
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6.4 MATLAB IMPLEMENTATION 

To test the described method of obstacle avoidance, simulations have been conducted. 
The simulated situation is illustrated in figure 6.4. 

. . . . . . . . . . . . . . . . . . . . . Field 
x E [O,10] 

Y E [O, lOl  

.................... . Desired final position 

(x,y)=(5,5> 

...................... Obstacle 
a=3 
b=4 
c=3 
d=4 

. . . . . . . . . . . . . . . . . . . . . . Initial position 

(x,y>=(l, 1) 

Figure 6.4: Simulation configuration 

The robot is initially positioned a t  (x7y) = (1,l) and end state constraints are s e t  to  

and z f  according to equation (6.2). 
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A ,  B, , B, and B, as mentioned in equation (6.14) are set to 

To describe the dynamics in area 1 (normal dynamics) and area 2 (obstacle) the following 
state and input matrices are chosen: 

% Discrete system matrix area 1 
% Discrete input matrix 

Adak2=eye (2) ; % Discrete system matrix area 2 
Bdak2=zeros (2,2) ; % Discrete input matrix 

The inputs are restricted to u E [-3,3] and the prediction time is chosen to be 
p = 4 samples. 

The weighting matrices a s  mentioned in equations (6.24) are defined in equation (6.47) 
Q1=0.01; 
QQl=Ql*eye (nu*p) ; % weight for u 
Q2=0.00001; 
QQ2=Q2*eye(ndeltakp); % weight for delta(t) 
Q3=1; 
QQ3=Q3*eye(nz*p); % weight for z (t ) 
Q4=1; 
QQ4=Q4*eye(nx*p); % weight for x(t) 
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6.5 SIMULATION RESULTS 

With the  described test configuration and a control time of T = 5 samples simulations 
has  been conducted. The results of this experiment are presented in figure 6.5. 

Figure 6.5: Results of the example configuration, optimalpath from (I,$ to (5,5) taking 
input andsfate constraints info account and avoiding one square obstacle, 

It is clear to  s e e  that the robot avoids the obstacle correctly and reaches the  desired 
point. The designed MPC controller uses a hybrid (binary/continuous) optimisation. This 
routine is carried out by the  MlQP software (version 1.02) designed by Bemporad e t  al. 
and uses the  'quadprog' algorithm from the  optimisation toolbox of Matlab. The 
optimisation has proved to  be very languid and quite critical in its configuration. Even a 
simulation of 5 s teps  with a relatively short prediction horizon of 4 samples, the  
optimisation takes approximately 4 hours on an Intel Pentium I l l  processor (800 MHz). 

In the  considered Matlab script fourteen binary variables were used to describe the  
labelling of two areas and all binary variables were allowed to vary between 0 and 1. 
Some variables could be se t  to a fixed value. Because the robot will always be inside 
area 1 and therefore under d l ,  above c, , right of a, and left of b, . The values of the 
corresponding S can therefore be fixed to 1 (true). This could save significant amounts 
of computation time, but increases the 'risk' of introduced infeasibilities. Besides a 
different formulation of the problem another solver could be used to decrease the  
computation time, but this has not been tested during this project. 
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CONCLUSIONS AND RECOMMENDATIONS 

It is very hard to construct a general valid framework for hybrid controllers using a Model 
Predictive Controller (MPC) with a hybrid optimisation for applications in  emergency 
mode. This class of applications can be found in e.g. chemical plants and obstacle 
avoiding mobile robots. This last application has been chosen as an example system. 
A lot of different approaches to obstacle avoidance are found in literature, some very 
fast, others very robust. A selection of methods is presented in chapter 2. It is difficult to 
compare two different methods, there most algorithms are especially designed for some 
specific situation or even one specific robot. Not only is it difficuit to compare, it is very 
hard to design an obstacle avoidance algorithm in general terms, because the 
performance and algorithm is very dependent on the configuration, sensor inputs, 
constraints and environment. 
An obstacle avoidance algorithm is designed in this report, which is based on hybrid 
system theory, using switching dynamics to describe obstacles, slippery areas and other 
objects. The model predictive controller optimises the trajectory of the robot by 
minimising a cost function taking several (end state) constraints into account. 
Some remarks have to be made, the first one is about the calculation time. The designed 
algorithm is computationally very demanding. Even for the, in the emergency mode 
demanded, very short prediction times the computation times are vast. This problem can 
probably be (partially) solved by a more efficient labe!!ing cf the areas fir a reduction of 
binary variables. Not al l  variables do necessarily have to vary during the simulations, 
some might be impossible (e.g. outside the working area) or some might be prohibited. 
These binary variables could be fixed within the simulation in a way that the 
optimisation does not have to try to vary these binary variables in a 'trail-and-error'-like 
optimisation. This method can contribute to a faster algorithm but increases the risk of 
introduced infeasibilities. 
Another possible way to decrease the calculation times is to implement a faster 
optimisation algorithm. In this project only the mixed integer quadratic programming 
(MIQP) Matlab routine by [Bemporad,miqp.m] was used, but several other possibilities, 
like NAG p r  Fortran routines exist. Some caution on this point - - is - necessary - - -  though, 
because these routines might have a s ~ i ~ h t l ~ d i f f e r e n t d e f i n i ~ o n  of the problem, which is 
to be solved. Some of the existing optimisation routines solve a single-sided inequality 
equation; the used Matlab routine uses a double-sided inequality. 
Another important possibility to increase the computational speed is to implement a so- 
called control horizon. This is a method, which is already successfully implemented in 
'ordinary' MPC controllers but which is not used in this project, partially because the 
prediction horizon is already extreme short. 
The second remark is about the restrictions that have to be imposed on the model. 
Because of the stringent format of the problems, which can be solved by the 
optimisation routine, the system has to be modelled in linear terms. This is quite 
stringent but on the other hand quite normal in MPC controlled systems. Filtering can 
probably offer some improvement in performance. In this report a very simple discrete 
linear system description is used to model a 'mobile robot'. Introduction of 
nonholonomic constraints and other extensions wil l  impose new difficulties, which 
deserve special attention. 
Because of the computational demands the algorithm is tested only with one square 
obstacle and a relatively short prediction horizon. It is clear to see in the results that the 
robot avoids the obstacle correctly and reaches its goal in an optimal sense. No special 
attention was given to the tuning of the designed MPC controller in this report, but it is 
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clear that most of the advantages are (partially) lost due to the very short prediction 
times. Model Predictive Control is a very powerful control strategy, mainly because of the  
possibility to  base the current inputs on the predicted future responses of the  system. By 
reducing the  number of samples in the prediction horizon, this property will strongly be 
decreased in power. 
There are several methods to model an obstacle. In most algorithms, the  areas of 
obstacles are modelled a s  'forbidden' areas. In this report the dynamics of the  robot can 
be described a s  a function of the current area. By describing the dynamics of the  robot in 
an area of an obstacle a s  an infinite difficult area, the optimal path of the robot will never 
go through this area and thus the robot will avoid this obstacle. In the current form there 
are some disadvantages of the algorithm; the algorithm only looks at  the end points of 
each sample, in other words, if the robot can get 'over' an obstacle during one  sample, 
the robot will go through the obstacle (partially) if this gains an optimal path. Only if an 
end point (after a sample) lie inside an obstacle area, the robot will not chose that 
specific path. Linearisation over the calculated trajectory can most likely solve this 
problem. 
Model Predictive Control can most certainly be a very powerful solution for hybrid 
controllers in emergency mode, under the condition that the optimisation gets less 
computational demanding or can be executed on faster processors. Some attention has  
to be given to the construction of a correct cost function and end state constraints. If the 
designed MPC controller for hybrid systems is to be integrated in a hybrid controller, 
speciai attention has to be given to the switching pioblel?;. 
The field of obstacle avoidance is a very interesting and active field within control theory. 
Looking at  the  current state of this field, other methods are a lot faster and even some 
very good real time implementations already exist. Considering the ever increasing 
processor speeds,  Model Predictive Control (MPC) seems to be a promise for the  (near) 
future, even for hybrid systems, but a lot of development work has to be carried out 
before this class of controllers can be applied in practise. 
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E3=[zeros (34,4) ; 
eye ( 4 ) ; 
-eye (4) ; 
eye(4) ; 
-eye(4); 
zeros (4,4)]; 

E4=[-1,O; 
11 0; 
-If 0; 
11 0; 
11 0; 
-I1 0; 
11 0; 
-I1 0; 
or -1; 
01 1; 
O f  -1; 
01 1; 
01 1; 
O f  -1; 
Of 1; 
o1 -1; 
zeros (26,2) ; 
Adakl; 
Adak2; 
-Adakl; 
-Adak2; 
zeros (4,2) ] ; 

E5= [ (al-eps) ; 
(Mal-al) ; 
(a2-eps) ; 
(Ma2-a2) ; 
(-bl-eps) ; 
(Mbl+bl) ; 
(-b2-eps) ; 
(Mb2+b2) ; 
(cl-eps) ; 
(Mcl-cl) ; 
(c2-eps) ; 
(Mc2-c2) ; 
(-dl-eps); 
(Mdl+dl) ; 
(-d2-eps) ; 
(Md2+d2) ; 
1;o;o; 
1; 0; 0; 
1; 0; 0; 
1; 0; 0; 
1; 0; 0; 
1; 0; 0; 

eps; 
eps ; 
eps ; 
eps; 
zeros (4,l) ; 
-mxl ; 
-myl; 
-mx2 ; 
-my2 ; 
Mxl ; 
Myl; 
Mx2 ; 
My2; 
-uxmin; 
-uymin; 
uxmax ; 
uymax] ; 
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