

# Accuracy of the experimentally obtained values of the dynamic cutting coefficient with the Kals-method

*Citation for published version (APA):* Dautzenberg, H. J., & van der Wolf, A. C. H. (1980). Accuracy of the experimentally obtained values of the dynamic cutting coefficient with the Kals-method. (TH Eindhoven. Afd. Werktuigbouwkunde, Laboratorium voor mechanische technologie en werkplaatstechniek : WT rapporten; Vol. WT0465). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1980

#### Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

#### Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

#### General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
  You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

#### Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.



ACCURACY OF THE EXPERIMENTALLY OBTAINED VALUES OF THE DYNAMIC CUTTING COEFFICIENT WITH THE KALS-METHOD.

By: J.H. Dautzenberg and A.C.H. van der Wolf.

"Eindhoven University Press" PT-rapport nr. PT-0465. Note for STC "Machine Tools" Paris, January 1980.

.

ACCURACY OF THE EXPERIMENTALLY OBTAINED VALUES OF THE DYNAMIC CUTTING COEFFICIENT WITH THE KALS-METHOD.

By: J.H. Dautzenberg and A.C.H. van der Wolf.

DIVISION OF PRODUCTION ENGINEERING, DEPARTMENT OF MECHANICAL ENGINEERING, UNIVERSITY OF TECHNOLOGY, EINDHOVEN, THE NETHERLANDS.

#### 1. Introduction.

During the discussion of the note: "The imaginary part of the direct inner dynamic cutting coefficient (= Imk<sub>di</sub>) of the steel SAE 1045 for different feeds measurement with the Kals-method (1)" in the workmeeting of the STC "Machine Tools" of the CIRP in Davos (August 1979), two important problems arose:

- The reality of the big variance in the values of Imk<sub>di</sub> of steel SAE 1045 for different cutting conditions. This variation was determined (1) by the difference of the maximum and minimum value of Imk<sub>di</sub> of three tests under the same cutting condition.
- The reality of the frequency variation of the rig during cutting after a hit. At that time, this problem was not fully clear, for there was too little experimental evidence available.

It was promised to investigate the causes for the big variance of Imk<sub>di</sub> and to measure the variation of the frequency of the rig during cutting after a hit. In order to solve these two problems 25 tests for one cutting condition were made for three different materials (steel C45, free cutting steel, stainless steel). Every test consisted of an idling test followed by a cutting test under exactly the same conditions. From these tests one can derive the Imk<sub>di</sub> and the frequency variation of the rig during cutting after a hit. These 25 values of both quantities form a statistical distribution on which the statistical rules for the mean value and its variance are applicable. From the measurements it was clear that the frequency variation of the rig after a hit during cutting was small.

a serie has dependent of the series of the series

The measurements of Imk<sub>di</sub> made clear that its variance, already indicated in (1), was large. Now, the question was to find out the reasons. First, it was proven that the rig has only one important mode. Next, the absolute error caused by the measuring instruments was determined. This error indicates to be one of the reasons for the big variance of Imk<sub>di</sub> of the different materials. The main cause is the big sensitivity of Imk<sub>di</sub> for small variations in the amplitude of the hit rig. Table 2-5 give a collection of the important values of the tests.

. .

#### 2. Experimental Set-Up.

The cutting was carried out on a 25 kW lath mark Lange. The cutting conditions for all tests were: cutting speed 1.5 m/s, depth of cut 3 mm and feed 0.208 mm/rev. These testing conditions were chosen in order to prevent the appearance of a builtup edge. The used tip was a P30 carbide. The following materials are used for the cutting tests:

- 1. steel C-45 (in bar and tube form).
- 2. stainless steel 5 Cr Ni Mo 18 12 (in tube form).
- 3. free cutting steel 9 S Mn 28 ( in bar form).

For the dimensions of the tests piece see table 1. The tests on steel C-45 were carried out on a bar and on a tube. This was done for determining the influence of the secondary cutting edge. The maximum admissible flank wear of the tool was less than 0.2 mm. The displacement signal of the hit rig during idling and cutting was stored in a solid state memory with a 8-bit wordlength (resolution  $\frac{1}{127}$ ) and 1024 words (sampling time 50 x 10<sup>-6</sup>s). After storage the memory was read out with a xy - recorder which has a maximum deflection in the x-direction of 354 mm (44 mm is used for one timeperiod of the vibration of the hit rig) and in the y-direction of 250 mm (two times the maximum amplitude of the vibration of the hit rig).

See table 1.

- $\bar{\xi}_{oi}$  = The mean of 25 measurements of the damping coefficient of the rig during idling and the i period after hitting the rig.
- $v_{oi}$  = The mean of 25 measurements of the frequency of the rig during idling and the iperiod after hitting the rig.
- $\bar{\xi}_{ci}$  = The mean of 25 measurements of the damping coefficient of the rig during cutting and the i period after hitting the rig.
- $v_{ci}$  = The mean of 25 measurements of the frequency of the rig during cutting and the i period after hitting the rig.
- Imk = The mean of 25 measurements of the imaginary part of the direct inner cutting coefficient.

C = Proportional factor =

$$\frac{\xi_{c}v_{c}-\xi_{o}v_{o}}{\xi_{c}v_{c}}$$

|                                                                                            | STEEL C45<br>BAR                                                                                                                                                                                                                                                       | STEEL C45<br>TUBE                                                                                                                                                                                                                                                                        | STAINLESS STEEL<br>TUBE                                                                                                                                                                                                                                                | FREE CUTTING STEEL<br>BAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WORK PIECE<br>LENGTH                                                                       | 300 mm                                                                                                                                                                                                                                                                 | 150 mm                                                                                                                                                                                                                                                                                   | 150 mm                                                                                                                                                                                                                                                                 | 295 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| WORK PIECE<br>DIAMETER                                                                     | Ø 100 mm                                                                                                                                                                                                                                                               | Ø 86 mm<br>WALLTHICKNESS<br>3 mm                                                                                                                                                                                                                                                         | Ø 84 mm<br>WALLTHICKNESS<br>3 mm                                                                                                                                                                                                                                       | Ø 84 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STEEL                                                                                      | C45                                                                                                                                                                                                                                                                    | C45                                                                                                                                                                                                                                                                                      | 5 Cr Ni Mo 18 12                                                                                                                                                                                                                                                       | 9 S Mn 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $ \bar{\xi}_{02} \\ \bar{\xi}_{02} \\ \bar{\xi}_{03} \\ \bar{\xi}_{04} \\ \bar{\xi}_{04} $ | $\begin{array}{r} 0.0667 \pm 0.0028 \\ 0.0564 \pm 0.0050 \\ 0.0547 \pm 0.0057 \\ 0.0483 \pm 0.0056 \\ 0.0560 \pm 0.0056 \end{array}$                                                                                                                                   | $\begin{array}{r} 0.0740 \pm 0.0026 \\ 0.0619 \pm 0.0044 \\ 0.0587 \pm 0.0048 \\ 0.0625 \pm 0.0065 \\ 0.0510 \end{array}$                                                                                                                                                                | $0.0727 \pm 0.0029$<br>$0.0591 \pm 0.0028$<br>$0.0532 \pm 0.0068$<br>$0.0534 \pm 0.0067$                                                                                                                                                                               | $\begin{array}{r} 0.0666 \pm 0.0028 \\ 0.0691 \pm 0.0025 \\ 0.0660 \pm 0.0046 \\ 0.0584 \pm 0.0070 \\ 0.0542 \pm 0.0070 \\ 0.054$ |
|                                                                                            | $\begin{array}{r} 0.0562 \pm 0.0080 \\ 152.6 \pm 1.0 \\ 153.4 \pm 1.1 \\ 154.2 \pm 0.9 \\ 156.9 \pm 1.8 \\ 157.6 \pm 1.4 \\ 0.1183 \pm 0.0093 \\ 0.0928 \pm 0.0345 \\ 0.0782 \pm 0.0454 \\ 162.4 \pm 3.0 \\ 168.8 \pm 4.2 \\ 165.6 \pm 7.6 \\ 6.6 \pm 2.4 \end{array}$ | $\begin{array}{r} 0.0518 \pm 0.0090 \\ 153.9 \pm 1.3 \\ 154.5 \pm 1.6 \\ 157.2 \pm 1.6 \\ 157.2 \pm 1.6 \\ 158.5 \pm 2.0 \\ 159.8 \pm 1.9 \\ 0.1248 \pm 0.0176 \\ 0.1321 \pm 0.0222 \\ 0.1016 \pm 0.0705 \\ 162.4 \pm 2.7 \\ 168.6 \pm 7.4 \\ 178.2 \pm 17.7 \\ 9.9 \pm 5.9 \end{array}$ | $\begin{array}{r} 0.0476 \pm 0.0082 \\ 154.5 \pm 1.3 \\ 154.5 \pm 1.2 \\ 157.4 \pm 1.9 \\ 159.4 \pm 1.6 \\ 159.6 \pm 1.9 \\ 0.1003 \pm 0.0109 \\ 0.0920 \pm 0.0147 \\ 0.0753 \pm 0.0263 \\ 159.7 \pm 2.6 \\ 160.9 \pm 3.5 \\ 163.5 \pm 5.9 \\ 4.8 \pm 1.9 \end{array}$ | $\begin{array}{r} 0.0542 \pm 0.0083 \\ 156.1 \pm 1.4 \\ 155.6 \pm 1.5 \\ 155.0 \pm 1.6 \\ 157.4 \pm 1.6 \\ 158.3 \pm 1.6 \\ 0.0739 \pm 0.0050 \\ 0.0662 \pm 0.0057 \\ 0.0688 \pm 0.0076 \\ 161.0 \pm 1.2 \\ 161.7 \pm 1.5 \\ 161.8 \pm 1.7 \\ 1.2 \pm 0.6 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Correlation<br>coefficient<br>normal distri-<br>bution of<br>Imk<br>di.                    | - 0.95                                                                                                                                                                                                                                                                 | 0.97                                                                                                                                                                                                                                                                                     | 0.98                                                                                                                                                                                                                                                                   | 0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| C proportional factor                                                                      | $10.444 \pm 0.094$                                                                                                                                                                                                                                                     | $0.491 \pm 0.139$                                                                                                                                                                                                                                                                        | 0.368 <u>+</u> 0.095                                                                                                                                                                                                                                                   | 0.124 + 0.059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

Table 1. Survey of measured and computed values of the different used materials.

-4-

The vibration of the rig was measured by the xy - recorder in the x-direction with an accuracy of 0.2 mm/period and in the y-direction with an accuracy of 0.5 mm. In order to prove that the rig has only one mode, an analysis was made with an HP 5420A data analyzer. Figure 1. shows the displacement signal during idling in the time domain. Figure 3. shows the same signal after Fourier transformation in the frequency domain. Figure 2. shows the displacement of the rig during cutting of free cutting steel in the time domain (for the rest the same conditions as figure 1). Figure 4. shows the same signal as in figure 2. but now after Fourier transformation. These four figures prove that the rig has one mode.

-5-



Fig. 1. The displacement signal of the hit rig as a function of time during idling (for the rest same conditions as in figure 2).



Fig. 2. The displacement signal of the hit rig as a function of time during cutting of free cutting steel 9 S Mn 28 (cutting speed 1.5 m/s, depth of cut 3 mm and feed 0.208 mm/rev.).



Fig. 3. The magnitude of the Fourier transformed displacement signal of the hit rig during idling as a function of the frequency (for the rest the same conditions as in figure 4).



Fig. 4. The magnitude of the Fourier transformed displacement signal of the hit rig during cutting of free cutting steel 9 S Mn 28 (cutting speed 1.5 m/s, depth of cut 3 mm and feed 0.208 mm/rev.) as a function of the frequency).

#### 3. Results.

# 3.1 Frequency variation of the rig during cutting after a hit.

The frequency during idling (=  $\bar{\nu}_0$ ) for every of the 25 tests (that is the mean value and ist variance during 5 periods) can be found in Table 2-5. The frequency during cutting (=  $\bar{\nu}_c$ ) for every test (that is the mean value and its variance during 3 periods) can also be found in Table 2-5. Table 1 shows the mean frequency and its variance of 25 tests during idling. The five frequencies of one hit are denoted by  $\bar{\nu}_{01}$  to  $\bar{\nu}_{05}$ . The same applies for the frequencies during cutting:  $\bar{\nu}_{c1}$  to  $\bar{\nu}_{c3}$ . By comparison of the values of  $\bar{\nu}_{oi}$  with  $\bar{\nu}_{ci}$  it is clear that the mean values of  $\bar{\nu}_{ci}$  and  $\bar{\nu}_{oi}$  show the same variation. Only the variance during cutting cutting enhances from the first to the third period. This holds for the three materials (Table 1). Summarizing for these cutting conditions and these three materials the frequencies the rig after one hit is relatively small.

### See table 2-5.

 $\bar{\xi}_{0}$  = The mean quantity and its variance of the damping coefficient of the rig for 5 periodes during idling for one tests.

 $\bar{\nu}_{0}$  = The mean quantity and its variance of the frequency of the rig for 5 periodes during idling for one test.

- $\bar{\xi}_{c}$  = The mean quantity and its variance of the damping coefficient of the rig for 3 periodes during cutting for one test.
- $\bar{\nu}_{c}$  = The mean quantity and its vairance of the frequency of the rig for 3 periodes during cutting for one test.

Imk<sub>di</sub> = Imaginary part of the direct inner cutting coefficient for one test. C = Proportional factor =  $\frac{\xi_{c}v_{c} - \xi_{o}v_{o}}{\frac{\xi_{c}v_{o}}{\xi_{o}v_{o}}}$  TABLE 2. Measuring values of steel C45 (bar).

| TEST NR. | Ę                   | ⊽ <sub>0</sub> [s <sup>-1</sup> ] | Ęc                  | $\bar{\nu}_{c}$ [s <sup>-1</sup> ] | $\operatorname{Imk}_{di}[10^8 \frac{N}{m2}]$ | С     |
|----------|---------------------|-----------------------------------|---------------------|------------------------------------|----------------------------------------------|-------|
| 04127929 | $0.0662 \pm 0.0050$ | 155.4 <u>+</u> 3.0                | 0.1074 ± 0.0222     | 168.6 <u>+</u> 5.2                 | 7.19                                         | 0.434 |
| 04127928 | 0.0638 + 0.0070     | 154.5 <u>+</u> 2.5                | $0.1020 \pm 0.0052$ | 165.2 <u>+</u> 4.6                 | 6.29                                         | 0.417 |
| 04127927 | $0.0507 \pm 0.0086$ | 154.0 ± 1.7                       | $0.0874 \pm 0.0295$ | 163.1 <u>+</u> 3.6                 | 5.71                                         | 0.453 |
| 04127926 | $0.0507 \pm 0.0074$ | 155 <b>.</b> 1 <u>+</u> 1.6       | $0.1188 \pm 0.0281$ | 173.2 <u>+</u> 9.0                 | 12.01                                        | 0.620 |
| 04127925 | $0.0524 \pm 0.0090$ | 154.7 + 2.3                       | $0.0854 \pm 0.0273$ | 163.3 + 1.5                        | 5.18                                         | 0.420 |
| 04127924 | $0.0518 \pm 0.0074$ | $154.7 \pm 2.6$                   | $0.0918 \pm 0.0325$ | 165.5 <u>+</u> 5.6                 | 6.46                                         | 0.474 |
| 04127923 | $0.0551 \pm 0.0055$ | 156.1 + 3.1                       | $0.1107 \pm 0.0179$ | 165.5 <u>+</u> 6.2                 | 8.77                                         | 0.533 |
| 04127922 | 0.0536 + 0.0096     | 154.5 + 2.5                       | 0.0866 + 0.0363     | 163.3 + 3.1                        | • 5.20                                       | 0.416 |
| 04127921 | 0.0531 + 0.0080     | 154.2 + 1.8                       | 0.0899 + 0.0350     | 165.9 + 4.4                        | 6.06                                         | 0.452 |
| 04127920 | 0.0563 + 0.0075     | 155.0 + 3.3                       | $0.0912 \pm 0.0495$ | 168.2 + 3.3                        | 6.05                                         | 0.433 |
| 04127919 | 0.0560 + 0.0057     | $155.4 \pm 3.0$                   | $0.0862 \pm 0.0319$ | 165.4 <u>+</u> 1.7                 | 4.99                                         | 0.391 |
| 04127918 | 0.0569 + 0.0045     | $155.0 \pm 1.4$                   | $0.0990 \pm 0.0145$ | 168.7 ± 3.6                        | 7.24                                         | 0.476 |
| 04127917 | $0.0582 \pm 0.0084$ | 155.3 + 3.3                       | $0.0917 \pm 0.0184$ | 164.8 <u>+</u> 6.7                 | 5.44                                         | 0.403 |
| 04127916 | $0.0552 \pm 0.0084$ | 154.5 + 4.0                       | $0.0801 \pm 0.0387$ | $169.9 \pm 3.0$                    | 4.69                                         | 0.375 |
| 04127915 | $0.0554 \pm 0.0055$ | 155.1 + 2.7                       | $0.0890 \pm 0.0177$ | 165.8 + 3.7                        | 5,55                                         | 0.419 |
| 04127914 | 0.0604 + 0.0082     | 155.1 + 2.2                       | 0.1078 + 0.0778     | 173.0 + 7.8                        | 8.75                                         | 0.500 |
| 04127913 | 0.0608 ± 0.0058     | 155.3 <u>+</u> 2.3                | 0.0796 ± 0.0839     | $168.4 \pm 7.0$                    | 3.62                                         | 0.296 |
| 04127912 | 0.0605 + 0.0077     | 155.3 ± 3.0                       | $0.1025 \pm 0.0323$ | $166.1 \pm 4.7$                    | 6.90                                         | 0.450 |
| 04127911 | $0.0644 \pm 0.0073$ | 155.1 + 2.7                       | $0.0748 \pm 0.0374$ | 166.2 <u>+</u> 5.7                 | 2.20                                         | 0.197 |
| 04127910 | $0.0639 \pm 0.0027$ | 155.2 <u>+</u> 2.3                | $0.0981 \pm 0.0366$ | 165.4 + 5.6                        | 5.68                                         | 0.390 |
| 04127909 | 0.0535 + 0.0088     | 155.1 + 2.1                       | 0.0880 + 0.0336     | 163.3 <u>+</u> 2.6                 | 5.39                                         | 0.424 |
| 04127908 | $0.0523 \pm 0.0091$ | 154.3 ± 2.1                       | 0.1391 + 0.0852     | 155.4 <u>+</u> 13.8                | 11.53                                        | 0.630 |
| 04127907 | $0.0521 \pm 0.0070$ | $155.0 \pm 2.5$                   | 0.1348 ± 0.0386     | 157.9 <u>+</u> 3.4                 | 11.41                                        | 0.623 |
| 04127906 | 0.0502 + 0.0093     | 154.8 + 1.7                       | $0.0797 \pm 0.0312$ | 164.4 + 3.2                        | 4.76                                         | 0.407 |
| 04127905 | 0.0576 + 0.0081     | 155.0 + 2.2                       | $0.1012 \pm 0.0100$ | 164.8 + 2.8                        | 6.95                                         | 0.466 |

. -9-

TABLE 3. Measuring values of steel C45 (tube).

| TEST NR. | Ęo                     | $\bar{v}_{o}$ [s <sup>-1</sup> ] | ξc                     | $\bar{v}_{c}$ [s <sup>-1</sup> ] | $Imk_{di}[10^8 \frac{N}{m^2}]$ | С     |
|----------|------------------------|----------------------------------|------------------------|----------------------------------|--------------------------------|-------|
| 10127900 | 0.0673 + 0.0109        | 155.2 <u>+</u> 5.5               | 0.1346 + 0.0100        | 166.5 + 7.6                      | 10.91                          | 0.537 |
| 10127901 | $0.0596 \pm 0.0073$    | 155.0 ± 3.1                      | 0.1080 ± 0.0646        | 176.1 + 16.2                     | 9.38                           | 0.516 |
| 10127902 | 0.0648 <u>+</u> 0.0079 | 158.0 + 4.1                      | $0.0752 \pm 0.1023$    | 164.9 + 1.0                      | 1.94                           | 0.175 |
| 10127903 | 0.0616 + 0.0088        | 155.6 <u>+</u> 2.3               | 0.1304 + 0.0068        | 167.9 <u>+</u> 8.0               | 11.3                           | 0.565 |
| 10127904 | 0.0599 <u>+</u> 0.0100 | 156.5 <u>+</u> 2.9               | 0.1961 <u>+</u> 0.0826 | 193.2 + 43.2                     | 30.5                           | 0.757 |
| 10127905 | 0.0556 <u>+</u> 0.0097 | 156.1 + 3.3                      | 0.1239 ± 0.0370        | 168.7 <u>+</u> 7.5               | 11.3                           | 0.589 |
| 10127906 | 0.0699 <u>+</u> 0.0031 | 156.2 <u>+</u> 2.3               | 0.1092 + 0.0115        | 164.1 + 7.1                      | 6.27                           | 0.393 |
| 11127900 | 0.0676 <u>+</u> 0.0076 | 155.3 + 1.8                      | 0.0776 + 0.0926        | 175.0 + 9.2                      | 2.93                           | 0.228 |
| 11127901 | 0.0629 + 0.0063        | 155.7 + 2.0                      | 0.1158 + 0.0209        | 169.0 <u>+</u> 5.5               | 9.02                           | 0.502 |
| 11127902 | 0.0634 <u>+</u> 0.0084 | 156.9 + 3.1                      | 0.1419 + 0.0266        | 170.3 + 12.1                     | 13.3                           | 0.593 |
| 11127903 | 0.0651 + 0.0086        | 156.6 + 2.5                      | 0.0895 + 0.0462        | 168.5 + 7.4                      | 4.48                           | 0.325 |
| 11127904 | $0.0619 \pm 0.0078$    | $157.9 \pm 2.8$                  | 0.1086 + 00.271        | 168.9 <u>+</u> 10.5              | 7.89                           | 0.469 |
| 11127905 | $0.0547 \pm 0.0191$    | 158.5 + 3.8                      | 0.1087 + 0.0266        | 168.2 <u>+</u> 6.9               | 8.81                           | 0.528 |
| 11127906 | 0.0606 + 0.0091        | 156.0 + 1.9                      | 0.1839 + 0.0812        | 172.1 + 12.7                     | 21.1                           | 0.706 |
| 11127907 | 0.0604 + 0.0080        | 158.2 + 3.2                      | 0.1113 + 0.0431        | 174.3 + 8.9                      | 9.36                           | 0.510 |
| 11127908 | 0.0663 + 0.0104        | 157.0 <u>+</u> 1.9               | 0.1108 ± 0.0090        | 168.7 + 7.5                      | 7.62                           | 0.445 |
| 11127909 | 0.0574 <u>+</u> 0.0098 | 156.9 + 2.4                      | 0.1348 + 0.0379        | 171.6 + 4.6                      | 13.3                           | 0.615 |
| 11127910 | 0.0609 + 0.0065        | 156.0 + 2.5                      | 0.0958 + 0.0123        | 158.5 <u>+</u> 1.9               | 4.91                           | 0.376 |
| 11127911 | 0.0617 + 0.0073        | 157.5 + 2.9                      | 0.0821 ± 0.0169        | 159.8 + 1.8                      | 2.96                           | 0.261 |
| 11127912 | 0.0626 <u>+</u> 0.0072 | 157.5 ± 2.0                      | 0.1141 + 0.0230        | 152.9 + 10.4                     | 6.34                           | 0.438 |
| 11127913 | $0.0620 \pm 0.0140$    | 158.2 <u>+</u> 3.0               | 0.1343 ± 0.0453        | 165.4 + 8.1                      | 11.2                           | 0.560 |
| 11127914 | $0.0626 \pm 0.0071$    | 157.9 <u>+</u> 3.8               | 0.1195 + 0.0169        | 168.9 + 3.2                      | 9.50                           | 0.513 |
| 11127915 | 0.0621 + 0.0077        | 156.9 <u>+</u> 3.2               | 0.1273 + 0.0483        | 172.6 + 4.7                      | 11.5                           | 0.557 |
| 11127916 | $0.0575 \pm 0.0112$    | 157.1 <u>+</u> 2.7               | 0.1124 + 0.0335        | 174.9 ± 7.4                      | 10.1                           | 0.541 |
| 11127917 | $0.0562 \pm 0.0107$    | 156.8 <u>+</u> 1.9               | $0.1220 \pm 0.0371$    | 174.2 + 11.4                     | 11.8                           | 0.586 |
|          |                        |                                  |                        |                                  |                                |       |

-10-

TABLE 4. Measuring values of stainless steel 5 Cr Ni Mo 18 12 (tube).

| TEST NR. | Ęo                     | vo                 | Ęc                  | vc                 | $Imk_{di}[10^8 \frac{N}{m2}]$ | С     |
|----------|------------------------|--------------------|---------------------|--------------------|-------------------------------|-------|
| 11127825 | $0.0634 \pm 0.0074$    | 156.8 <u>+</u> 3.7 | 0.0721 + 0.0304     | 162.4 <u>+</u> 4.3 | 1.56                          | 0.152 |
| 11127926 | 0.0653 <u>+</u> 0.0086 | 156.2 <u>+</u> 3.1 | $0.1159 \pm 0.0035$ | 164.9 + 2.7        | 8.02                          | 0.468 |
| 11127927 | $0.0587 \pm 0.0107$    | 156.6 + 2.9        | $0.0990 \pm 0.0137$ | $163.2 \pm 5.2$    | 6.19                          | 0.433 |
| 11127928 | $0.0599 \pm 0.0081$    | 154.9 ± 2.3        | $0.1221 \pm 0.0099$ | $162.9 \pm 2.0$    | 9.44                          | 0.536 |
| 11127929 | $0.0557 \pm 0.0100$    | 157.5 ± 2.8        | 0.0810 ± 0.0507     | 167.4 +11.5        | 4.35                          | 0.354 |
| 11127930 | 0.0637 + 0.0088        | 156.9 <u>+</u> 3.8 | 0.0830 ± 0.0326     | 157.6 + 4.4        | 2.65                          | 0.237 |
| 11127931 | 0.0590 + 0.0106        | 157.8 + 3.0        | $0.0837 \pm 0.0155$ | 159.4 + 1.1        | 3.49                          | 0.303 |
| 11127932 | 0.0561 + 0.0115        | 157.3 + 2.5        | 0.0876 + 0.0178     | 164.6 + 3.5        | 5.01                          | 0.390 |
| 11127933 | 0.0593 + 0.0105        | 157.3 + 3.2        | $0.1043 \pm 0.0131$ | 159.8 + 0.8        | 6.39                          | 0.442 |
| 11127934 | 0.0594 + 0.0131        | 157.0 + 3.8        | 0.0904 + 0.0136     | 164.3 + 1.3        | 4.94                          | 0.374 |
| 11127935 | 0.0584 + 0.0090        | 157.6 + 3.5        | 0.0898 + 0.0097     | 162.0 ± 3.0        | 4.71                          | 0.369 |
| 11127936 | 0.0563 + 0.0115        | 155.9 + 3.0        | 0.0808 + 0.0082     | 159.5 + 4.7        | 3.56                          | 0.320 |
| 11127937 | 0.0553 + 0.0112        | 157.7 + 2.9        | 0.0848 + 0.0413     | 164.8 + 6.9        | 4.70                          | 0.377 |
| 11127938 | 0.0535 + 0.0105        | 156.6 + 1.8        | 0.0895 + 0.0147     | 160.8 + 3.6        | 5.26                          | 0.420 |
| 11127939 | $0.0567 \pm 0.0107$    | 157.5 + 2.3        | 0.0981 + 0.0246     | 164.6 + 8.1        | 6.47                          | 0.449 |
| 12127900 | 0.0636 ± 0.0098        | 158.4 + 3.5        | $0.0904 \pm 0.0065$ | 158.2 + 2.2        | 3.64                          | 0.297 |
| 12127901 | $0.0607 \pm 0.0097$    | 156.7 + 3.7        | 0.0818 + 0.0112     | 158.1 + 1.5        | 2.94                          | 0.266 |
| 12127902 | $0.0566 \pm 0.0126$    | 156.2 + 2.7        | 0.0918 + 0.0203     | 160.0 + 4.3        | 5.09                          | 0.400 |
| 12127903 | 0.0544 + 0.0148        | 158.0 + 2.2        | 0.1099 + 0.0168     | 159.1 + 1.2        | 7.71                          | 0.511 |
| 12127904 | $0.0526 \pm 0.0152$    | 158.2 + 2.3        | 0.0941 + 0.0067     | 158.1 + 2.0        | 5.64                          | 0.442 |
| 12127905 | 0.0507 + 0.0115        | $157.9 \pm 2.8$    | 0.0738 + 0.0157     | 162.4 + 3.9        | 3.51                          | 0.333 |
| 12127906 | 0.0562 + 0.0097        | 157.3 + 2.6        | $0.0692 \pm 0.0271$ | 156.3 + 3.1        | 1.68                          | 0.184 |
| 12127907 | 0.0564 + 0.0098        | 156.8 + 2.1        | $0.1009 \pm 0.0092$ | 159.8 + 2.4        | 6.34                          | 0.454 |
| 12127908 | $0.0517 \pm 0.0117$    | 157.8 + 2.9        | 0.0766 + 0.0047     | 160.4 + 3.2        | 3.59                          | 0.337 |
| 12127909 | $0.0527 \pm 0.0101$    | $156.4 \pm 2.5$    | $0.0772 \pm 0.0139$ | 162.0 + 2.1        | 3.75                          | 0.342 |

-11-

TABLE 5. Measuring values of free cutting steel 9 S Mn 28 (bar).

| TEST NR. | Ē                   | ⊽ [s <sup>-1</sup> ] | ξc                     | √ <sub>c</sub> [s <sup>-1</sup> ] | $Imk_{di}[10^8 \frac{N}{m^2}]$ | С     |
|----------|---------------------|----------------------|------------------------|-----------------------------------|--------------------------------|-------|
| 04018000 | 0.0594 + 0.0118     | 155.3 <u>+</u> 1.8   | $0.0641 \pm 0.0056$    | $161.9 \pm 2.4$                   | 1.01                           | 0.111 |
| 04018001 | 0.0649 + 0.0080     | $156.9 \pm 1.1$      | $0.0635 \pm 0.0045$    | 161.5 + 1.2                       | 0.06                           | 0.007 |
| 04018002 | $0.0610 \pm 0.0099$ | 155.1 <u>+</u> 1.6   | $0.0682 \pm 0.0013$    | 160.8 ± 3.0                       | 1.31                           | 0.137 |
| 04018003 | $0.0640 \pm 0.0074$ | $156.3 \pm 2.4$      | 0.0698 + 0.0036        | 162.4 ± 2.1                       | 1.17                           | 0.118 |
| 04018004 | $0.0570 \pm 0.0104$ | 155.3 <u>+</u> 2.0   | 0.0734 + 0.0003        | $161.0 \pm 0.4$                   | 2.59                           | 0.252 |
| 04018005 | $0.0600 \pm 0.0065$ | 156.5 ± 2.5          | $0.0719 \pm 0.0036$    | $160.9 \pm 1.4$                   | 1.90                           | 0.189 |
| 04018006 | 0.0620 + 0.0098     | 156.3 <u>+</u> 2.4   | 0.0738 + 0.0090        | $160.9 \pm 1.4$                   | 1.91                           | 0.185 |
| 04018007 | 0.0638 ± 0.0060     | 158.1 + 2.0          | $0.0677 \pm 0.0068$    | 160.9 <u>+</u> 1.8                | 0.70                           | 0.074 |
| 04108008 | 0.0608 + 0.0099     | 155.8 + 1.8          | $0.0729 \pm 0.0125$    | $161.4 \pm 1.7$                   | 2.01                           | 0.196 |
| 04018009 | 0.0621 + 0.0080     | 155.1 ± 1.3          | $0.0685 \pm 0.0061$    | $160.3 \pm 1.1$                   | 1.17                           | 0.123 |
| 04018010 | 0.0600 + 0.0106     | $156.0 \pm 1.8$      | 0.0670 <u>+</u> 0.0130 | 162.5 <u>+</u> 1.0                | 1.35                           | 0.141 |
| 04018011 | 0.0598 ± 0.0093     | $156.9 \pm 1.6$      | 0.0666 ± 0.0062        | 160.3 + 1.3                       | 1.12                           | 0.121 |
| 04018012 | $0.0633 \pm 0.0104$ | $157.7 \pm 2.4$      | 0.0708 + 0.0042        | 161.3 ± 0.8                       | 1.26                           | 0.126 |
| 04018013 | 0.0656 + 0.0040     | $157.4 \pm 2.3$      | 0.0669 + 0.0076        | $161.4 \pm 0.7$                   | 0.41                           | 0.042 |
| 04018014 | $0.0649 \pm 0.0054$ | 155.6 + 1.1          | 0.0793 ± 0.0034        | 163.4 + 2.1                       | 2.54                           | 0.222 |
| 04018015 | $0.0625 \pm 0.0078$ | 155.8 ± 1.5          | 0.0678 ± 0.0050        | 161.0 <u>+</u> 0.8                | 1.03                           | 0.108 |
| 04018016 | $0.0624 \pm 0.0150$ | 157.9 ± 1.6          | 0.0721 ± 0.0087        | $161.7 \pm 0.9$                   | 1.59                           | 0.156 |
| 04018017 | $0.0648 \pm 0.0088$ | 157.2 <u>+</u> 0.2   | $0.0675 \pm 0.0077$    | 161.2 + 1.3                       | 0.61                           | 0.064 |
| 04018018 | $0.0659 \pm 0.0050$ | 157.3 ± 2.8          | 0.0648 ± 0.0090        | $161.3 \pm 0.6$                   | 0.07                           | 0.008 |
| 04018019 | 0.0653 + 0.0047     | 157.1 <u>+</u> 0.7   | 0.0722 <u>+</u> 0.0069 | 160.8 + 2.0                       | 1.18                           | 0.117 |
| 04018020 | $0.0627 \pm 0.0070$ | 155.6 + 1.7          | $0.0697 \pm 0.0109$    | $162.2 \pm 2.0$                   | 1.36                           | 0.137 |
| 04018021 | $0.0651 \pm 0.0046$ | 156.0 <u>+</u> 2.2   | $0.0718 \pm 0.0095$    | $160.5 \pm 1.1$                   | 1.19                           | 0.119 |
| 04018022 | $0.0623 \pm 0.0071$ | 157.1 + 2.2          | $0.0710 \pm 0.0098$    | 162.8 <u>+</u> 1.0                | 1.56                           | 0.153 |
| 04018023 | $0.0660 \pm 0.0031$ | 156.5 + 2.5          | 0.0706 + 0.0068        | 162.6 + 2.0                       | 1.01                           | 0.100 |
| 04018024 | 0.0659 + 0.0060     | $156.9 \pm 1.8$      | $0.0695 \pm 0.0024$    | $162.2 \pm 1.7$                   | 0.82                           | 0.083 |

-1.2-

3.2 Variance of Imk<sub>di</sub>.

The quantity Imk di is defined by:

$$Imk_{di} = \frac{8\pi^{2} m v_{c}}{b} \left\{ \frac{\xi_{c} v_{c}}{\sqrt{1-\xi_{c}^{2}}} - \frac{\xi_{o} v_{o}}{\sqrt{1-\xi_{o}^{2}}} \right\}$$
(1)

with b = width of cut

m = mass of the rig (=20.5 kg). $\xi_c = damping coefficient of the rig during cutting.$  $\xi_c = damping coefficient of the rig during idling.$ 

For every of the 25 tests of each material  $\operatorname{Imk}_{di}$  was computed for  $\overline{\xi}_{o}$  and  $\overline{\nu}_{o}$  as the mean of five periodes and  $\overline{\xi}_{c}$  and  $\overline{\nu}_{c}$  as the mean of three periodes of each test. (Table 2-5). The value of  $\operatorname{Imk}_{di}$  for every test is in Table 2-5. The mean value of  $\operatorname{Imk}_{di}$  and the variance of 25 tests are in Table 1. Also the correlation coefficient of the normal distribution of  $\operatorname{Imk}_{di}$  values was determined (Table 1). These correlation coefficients prove that the rules of the statistical theory for normal distributions are applicable. From Table 1 can be derived that the relative variance of the value of  $\operatorname{Imk}_{di}$  is very high. It means that determination of  $\operatorname{Imk}_{di}$  under these conditions has a chance of 68% to be in an range which is determined by the mean value and its variance. For a chance of 90% the variance has to multiplied by a factor 2. It is clear that this variation is too high and not very useful for determination of the critical width of cut. In the next chapter this big variance will be explained.

-13-

The variation of Imk caused by a measuring error can be written with equation (1) as:

$$dImk_{di} = \frac{8\pi^2 m}{b} \left\{ \frac{2\nu_c \xi_c d\nu_c}{\sqrt{1-\xi_c^{2'}}} + \frac{\nu_c^{2'} d\xi_c}{\sqrt{1-\xi_c^{2'}}} + \frac{\nu_c \xi_c d\nu_o}{\sqrt{1-\xi_o^{2'}}} + \frac{\nu_c \nu_o d\xi_c}{\sqrt{1-\xi_o^{2'}}} \right\}$$
(2)

In equation (2) the variation of the terms  $\sqrt{1-\xi_{c}^{2}}$  and  $\sqrt{1-\xi_{c}^{2}}$  is neglected because the variation of these terms is small in comparison with the other variable terms in equation (2). The relation variation of Imk<sub>di</sub> can be written with equation (1) and (2) as:

$$\frac{dImk_{di}}{Imk_{di}} = \frac{\frac{2v_{c}\xi_{c} dv_{c}}{\sqrt{1-\xi_{c}^{2}}} + \frac{v_{c}^{2}d\xi_{c}}{\sqrt{1-\xi_{c}^{2}}} + \frac{v_{c}\xi_{o}dv_{o}}{\sqrt{1-\xi_{o}^{2}}} + \frac{v_{o}v_{c}d\xi_{o}}{\sqrt{1-\xi_{o}^{2}}} \qquad (3)$$

$$\frac{v_{c}^{2}\xi_{c}}{\sqrt{1-\xi_{c}^{2}}} - \frac{v_{o}v_{c}\xi_{o}}{\sqrt{1-\xi_{o}^{2}}}$$
For  $\frac{\sqrt{1-\xi_{o}^{2}}}{\sqrt{1-\xi_{c}^{2}}} = 1 \qquad (4)$ 
and  $C = \frac{\xi_{c}v_{c} - \xi_{o}v_{o}}{\sqrt{1-\xi_{c}^{2}}} \qquad (5)$ 

and

$$C = \frac{c c}{\xi_c v_c}$$

Equation (3) holds:

$$\frac{dImk_{di}}{Imk_{di}} = \frac{1}{C} \left\{ \frac{2d\nu_{c}}{\nu_{c}} + \frac{d\xi_{c}}{\xi_{c}} + \frac{\xi_{o}d\nu_{o}}{\xi_{c}\nu_{c}} + \frac{\nu_{o}d\xi_{o}}{\xi_{c}\nu_{c}} \right\}$$
(6)

The definition of  $\xi$  is:

$$\xi = \frac{\ln \frac{A_1}{A_2}}{(n-1) 2\pi}$$
(7)

With  $A_1$  = the amplitude during the first period.  $A_n$  = the amplitude during the n-th period.

The variation of  $\xi$  is:

$$d\xi = \frac{1}{2\pi (n-1)} \left\{ \frac{dA_1}{A_1} + \frac{dA_n}{A_n} \right\}$$
(8)

The relative variation of  $\xi$  is:

$$\frac{d\xi}{\xi} = \frac{\frac{dA_1}{A_1} + \frac{dA_n}{A_n}}{\ln \frac{A_1}{A_n}}$$
(9)

Equation (9) holds for the variation of  $\xi_0$  and  $\xi_c$ . Let us assume that the value  $d\xi_0$  and  $d\xi_c$  are determined by the following two errors:

- the resolution of the solid state memory:

 $\frac{1}{127}$  **±** 55 µm = 0.43 µm.

- because 55  $\mu$ m is the maximum amplitude for the applied range, which can be stored by the memory.
- $\frac{1}{127}$  is the resolution of a 8 bit memory (see section 2: Experimental Set-up).
- the inaccuracy in measuring the amplitude is 0.22  $\mu m$  (0.5 mm on a

maximum of 250 mm; see section 2: Experimental Set-up).

Combination of both errors gives:

 $dA_1 = dA_2 = 0.65 \ \mu m$  (10)

These values together with the measured amplitudes for idling and cutting (Table 6) give with equation (9),  $\frac{d\xi_o}{\xi_o}$  and  $\frac{d\xi_c}{\xi_c}$ .

Let us assume the value of dv and dv are determined by the same errors as d\xi and d\xi .

It means:

- the resolution of the solid state memory for the frequency is  $10^{-4}$ s (time resolution of the memory is 50 x  $10^{-6}$ s).
- the accuracy for the determination of one period of the vibration after printing the displacement versus time signal is  $3 \times 10^{-5}$ s.

The total time error is 13 x  $10^{-5}$  s. That means for a mean frequency of 150Hz for idling and cutting: (Table 2-5)

$$\frac{dv_c}{v_c} = \frac{dv_o}{v_o} = 2\% \quad (11)$$

Equation (6), (9), (10) and (11) together with the values in Table 6 give  $\frac{dImk}{di}$ . This value is reported in Table 6 for the different materials.

|                                         | STEEL C45 (BAR) | STEEL C45 (TUBE) | STAINLESS      | FREE CUTTING   |
|-----------------------------------------|-----------------|------------------|----------------|----------------|
| Α <sub>01</sub> [μm]                    | 48.5 + 4.7      | 28.5 ± 5.1       | $47.9 \pm 4.5$ | $47.0 \pm 3.9$ |
| Α <sub>06</sub> [μm]                    | 8.5 + 1.4       | 7.0 ± 0.9        | 8.0 ± 1.1      | 6.6 ± 0.9      |
| A <sub>c1</sub> [µm]                    | 42.1 ± 3.2      | 42.0 + 4.6       | 42.2 + 4.0     | 47.8 ± 5.3     |
| A <sub>c4</sub> [µm]                    | 7.1 ± 2.0       | 5.1 + 2.5        | 8.1 + 2.1      | 12.9 ± 1.7     |
| dImk <sub>di</sub><br>Imk <sub>di</sub> | 38.4 %          | 36.3 %           | 47.7 %         | 157 %          |

Table 6. Survey of measured and computed values of the different used materials.

dImk di = Relative error in the determination of the imaginary part of the Imkdi direct inner cutting coefficient for some given measuring errors. A 01 = The amplitude of the first period after hitting the rig during idling. <sup>А</sup>06 = The amplitude of the sixth period after hitting the rig during idling. = The amplitude of the first period after hitting the rig during  $^{A}$ c1 cutting. = The amplitude of the fourth period after hitting the rig during  $A_{c4}$ cutting.

-16-

The relative error for these really relative small errors are very high especially in the case of free cutting steel. This is in agreement with the variance of  $\text{Imk}_{di}$  in Table 1 but not fully comparable. At this point, we have to bear in mind that the variance of  $\text{Imk}_{di}$  in Table 1 is the result of a statistical approach, while the relative error of  $\text{Imk}_{di}$  in Table 6 comes from a deterministic way of calculating errors. Moreover, in Table 6 we still have to account for the neglected errors. These are much higher than the assumed. For instance, the noise on the displacement signal of the rig during cutting without hitting, which is superimposed on the displacement time signal is bigger than the assumed 0.65 µm.

It means that in reality the relative error is much higher and thus comparable with the variance of  $\mathrm{Imk}_{\mathrm{di}}$ . These errors or disturbances, which are inevitable, together with the very high sensitivity of the value of  $\mathrm{Imk}_{\mathrm{di}}$  for these variations, may be the main cause for the large variance of  $\mathrm{Imk}_{\mathrm{di}}$  for the different materials. It also means that this method of determining the damping coefficient is only suitable for a global determination of  $\mathrm{Imk}_{\mathrm{di}}$ .

## 5. Conclusions:

- The frequency of the rig during cutting is nearly constant after a hit.
- The big sensitivity of the value of Imk for a small deviation of the di amplitude of the displacement of the rig may be the main cause for the big variance of Imk for the different materials.

### Acknowledgements:

The authors wish to thank mr. A. van Sorgen who carried out the experimental work.

(1) J.H. Dautzenberg and A.C.H. van der Wolf.
The imaginary part of the direct inner dynamic cutting coefficient of steel SAE 1045 for different feeds measured with the Kals-method.
"Eindhoven University Press" PT report nr. PT-458.
Note fore STC "Machine Tools" Davos, August 1979.