

Security in signalling and digital signatures

Citation for published version (APA):
Roijakkers, S. A. W. (1993). Security in signalling and digital signatures. (Extended version ed.) (Opleiding
wiskunde voor de industrie Eindhoven : student report; Vol. 9305). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/ca615868-ea39-4f5d-8730-0ab296d7a823

. ECMI
OOlech 2

Postbus 513
5800 MS Eindhoven

Opleiding
Wiskunde voor de Industrie
Eindhoven

STUDENT REPORT 93-05

SECURITY IN SIGNALLING
&

DIGITAL SIGNATURES

Sandra Roijakkers

March 1993

WISKUNDE VOOR DE INDUSTRIE
MATHEMATICS FOR INDUSTRY

SECURITY IN SIGNALLING
&

DIGITAL SIGNATURES

(extended version)

Mrs.Ir S..A.W. Roijakkers

Part I: General information
Part D: Security in signalling

Part m: Digital signatures

University supervisor: Prof.Dr Ir H.C.A. van Tilborg,
Technische Universiteit, Eindhoven

Industrial supervisor: Dr M. De Soete,
N.V. PITS S.A.. Brussels

March]993

Part I

General Information

Contents

1 MBLE/PITS 2
1.1 History 2
1.2 Activities of MBLE . 3

2 Security in Signalling 4
2.1 Introduction. 4
2.2 Projects of the CEC 4
2.3 The RACE program 5
2.4 RI022: Technology for ATD . 6
2.5 Approach ~ . 7

3 Digital Signatures 8
3.1 Introduction. . 8
3.2 Elucidation 8
3.3 Approach ... 9

1

Chapter 1

MBLE/PITS

1.1 History

On March 18, 1911, in the place Vilvoorde, close to Brussels, 40 people founded the partnersllip
"Lampes Brabant". The word "lampes" is French for bulbs, and Brabant is the province of
Belgium where Vilvoorde is situated, and it is not difficult to guess that the company produced
and sold bulbs. Two years later the company moved to Anderlecht, the district in the south of
Brussels where the company is still located, although on a different address. In 1915 the part
nership got the new name "Manufacture Belge de Lampes Electrique" (MBLE), which means,
loosely translated, Belgium production of (electronic) bulbs.

The year 1924 was an important year of the firm, because then its first electronics project
started, namely the production of vacuum tubes. In 1948 another big step followed: the devel
opment and production of professional machines. One year later the head-office moved to the
Tweestationstraat, or "Rue de les deux gares" in French. The company has now 430 employees.
The original product, the bulbes, were becoming less and less important for the company, and
therefore in 1951 the name was changed into "Manufacture BeIge de Lampes and de Matriel
Electronique". The abbreviated firm name, however, did not change accordingly and remained
MBLE.

In 1953 a fac.tory in Evere was opened, and in 1954 the production of semi-conductors started.
This grew to one of MBLE's main specialisation fields. In the next six years two factories and
a stock were opened in Brussels, and also another office and "MBLE International". Tbe small
firm expanded to a big company, and had 5200 employees in 1965.

From then on business went down. Some factories closed, and other ones were taken over by
Philips. In fact, Philips is the one shareholder of MBLE's interests. When I started my project,
MBLE consisted of only 35 employees, working in the building at the Tweestationstraat, and
business was not going too well. But at the end of the year, they "took over" the feeding
producing company N.V. Philips Industrial Activities (PIA) in Wavre form Philips, which wa.s
about six times as big and made profit. They continue together as N .V. Philips Industrial and
Telecommunication Systems (PITS). The reasons for making this strange manoeuvre are all
political. For example, it is interesting for Philips that MBLE remains a Belgium firm, to get
orders from the government and subsidies.

2

Part I 3

1.2 Activities of MBLE
The activities from MBLE cover(ed) various aspects:

• electricity / electronica

- hybrid integrated switches

- professional printed circuits

- non-linear resistances

- feedings

• automatisation

- advisory tasks for product development, with as goal the automatisation of produc
tion

- the specification, design and realisation of specific production machines

• Precision mechanica and plating

• Cryptography

Since the activities which are related to cryptography have my main interest, I will spend a few
mort' words on them.

MBLE offers the Belgium market a series of crypto devices for X.25 and fax communication
traffic. These applica.tions are part of an efficient security management of the data transferred
via teletranslllission.

The basic Philips Crypto PPSX2060 guarantees a full duplex end-to-end cryptographic protec
tion of the X.25 packet switch network. All versions use an advanced Philips key management
system where each user owns a personal smart card with a PIN code protection.
The Philips Crypto PDFX2035 series protect all data used in facsimile messages.

Chapter 2

Security • In Signalling

2.1 Introduction

The first seven weeks of the time I worked at MBLE I spent on research into the placement of
security functions in the signalling of a broadband network. This is part of Project 1022 of the
RACE Program of the CEC, so it is natural to start with the objectives of the RACE Program
in general, followed by the ones of Project 1022. Although it is 110t necessary to understand my
work, I think it is interesting to spent some time on the reasons why the Community sponsors
projects like RACE, and what other kinds of projects it sponsors.

I will start in the next section with a short picture of the attitude and politics of the CEC
towards the sponsoring of research projects. Afterwards the RACE project will be described.
In section 4, I will focus on one of the projects of RACE, namely RI022, and I will narrow the
view even further by considering the work that one of the subgroups of R1022 has to do. In the
last section of this chapter I will describe how I carried out my task in the work MBLE had to
do within this subgroup. The result of this work, that was sent as a chapter in a deliverable to
the CEC, can be found in Part II.

2.2 Projects of the CEC

In modern economy, production and innovation cycles grow shorter and shorter. A consequence
is that the costs of research and development become very high. In fact, these cos is are often
decisive in the international competition. Since one of the aims of the CEC is to maintain and
consolitate the position of Europe on the world market, it is logical that high tech research will
be stimulated.

Of course, the Comlllunity does not just want to be another source to get grants from. It aims
especially at

• coordination and co-operation across borders, as well as mobility between the worlds of
industry and science;

• stimulation of basic research, which is very important nowadays, but for which middle
sized and small companies often lack the necessary means;

• integration of research and technology in accordance with the completion of the European
internal market, which holds in the first place for normalisation and standardisation.

4

Part I 5

To achieve these goals, a framework program has been drawn up for a period of four years:
from 1990 till 1994. This overlaps the previous program (from 1987 till 1991) by two years,
which is done to make the whole continuously.

The program consists of six main areas, which come under three headings:

• Enabling technologies

- Information and communications technologies

- Industrial and materials technologies

• Management of natural resources

Environment

Life sciences and technologies

- Energy

• Management of intellectual resources

- Human capital and mobility

A project that will be sponsored by the Community has to be defined within one of these areas.

In total, the CEC will spent 5700 million ecu in those four years, which is equivalent to approx
imately 13300 million Dutch florins.

To make the European internal market a success, it is important that all aspects of science and
technology are covered by the policy of the Community. This is the reason that besides the
framework program shown above, also support is given to European schooling and updating
courses, and to the circulation and exploitation of research results. The ERASMUS program
stimulating the exchange of students, and the set-up of international study programs betwt'en
universities of the member states is well known to most students. The two other big programs
in this ale a are COMETT, stimulating co-operating between universities and industry by fOI
example international stages, and LINGUA which promotes the education in foreign languages
in the COlllmunity.

The COUIse "Mathematics for Industry" is the Dutch part of a European course organized by the
European Consortium for Mathematics (ECMI), and within ECMI exchange of course members
and teachers takes place. The ECMI project is sponsored by ERASMUS and COMETT.

2.3 The RACE program

The term RACE is the abbreviation for Research and development in Advanced Communica
tions technologies for Europe. After a pilot phase started ill 1985, the first projects got under
way in January 1988. In the next period (from 1990 till 1994) the program was continued.

The aim of RACE is to promote a precompetitive R&D to set up an Integrated Broadband
COlllmunications Network (IBCN) by 1995-2000. The IBeN is to take over from ISDN (In
tegrated Services Digital Network), which does not have a broadband width and is therefore
unsuitable for the transmission of large flows of data. Broadba.nd communications on the con
trary enable large quantities of data to be transmitted at high speed.

Part I 6

The purpose of Integrated Broadband Communications (IBC) is to have a single network of
terminals, cables, node processors, computers and satellites with a very high transmission rate.
Such a network will provide integrated distribution of

• traditiona) services like telephone and telex;

• new services, e.g. colour facsimile, high-quality videotex and email;

• conventional or interactive television programs;

• the ultrafast transmission of computer data;

• videoconferendng;

• value-added services, e.g. financial services and electronic data interchange;

• etc.

This integration has the great advantage of avoiding the proliferation of incompatible networks.
Integrated broadband communications will therefore not only increase considerabily the ability
of private and professional users to exchange data and communicate, but also offer them a wide
range of advanced telecommunications services.
Their main effect will be to improve the competiveness of many economic sectors. For example,
data exchange between design offices and factories wiU speed up production cycles. Integrated
broadband communications will also directly affect society in a number of ways. In particular,
they will permit the decentralisation of econolllic activities, the opening-up of rural and pe
ripheral regions and the development of teleworking. Thus broadband communications are the
essential infrastructure of an information-based economy, and they are at the very heart of the
communication revolution.
Apart from its main goa) of introducing integrated broadband cOlllmunications into the Euro
pean cOlUmunity in 1995, RACE is pursuing severa) objectives:

• promoting the Community's teleconullunications industry;

• developing the competitiveness of European network users;

• creating a single European market in IBC equipment and services;

• developing the poorest regions of the Community, which will thereby be able to benefit
fully from advanced telecollllllunications.

Virtually all the main parties involved in European research and development in the telecom
munications sector are participating in the RACE program: national authorities, equipment
manufacturers, network operators, information technology industries, universities, research cen
tra, etc. This, for an CEC project rather exceptional, situation makes it possible to take full
advantage of the vast intellectual, scientific and technical potentials available in Europe. It
also reduces the fisks of failure, RACE can act as a catalyst in the key sectors of technological
development. Another advantage is that it speeds up the standardisation process, which is a
well-known bottleneck in the exploitation of high technology.

2.4 RI022: Technology for ATD

Project 1022 of RACE, or shortly RI022, is titled "Technology for Asynchronous Time Division
(ATD)". An asynchronous transmission in data communications is a form of data transmis
sion in which there can be variable time intervals between characters, but the bits within a
character are sent with fixed time intervals. Start and stop elements are used to indicate the

Pa.rt I 7

beginning and end of chara.cters. As contrasted with synchronous transmission, where each bit
is transmitted a.ccording to a given time sequence, receiver and sender do not have to maintain
exact synchronisation over an extended time period.

The basic assumption of the project is that Asynchronous Transfer Mode (ATM) is the unique
transfer mode for all IBCN services. RI022's task is to realise a pre-normative functional
integration and deliver a complete demonstrator of the transport principles of the target ATM
based IBCN.

The work that has to be done to achieve this complex goal is divided among several Task Groups
(TGs). The first of them, TGI, has the task to investigate all signalling aspects, and produce
a deliverable "The state of the art". Signalling messages are messages that are sent separately
from ordinary data, and can be used for various call control and connection control functions.

The group consists of seven partners, coming from Belgium, Denmark, Switzerland and the
United Kingdom. One of the partners from Belgium is MBLE, and MBLE was responsible for
Chapter 5 of this deliverable, titled "Security aspects in signalling".

2.5 Approach

When I started at MBLE, a rough list of subjects that should be treated in the chapter was
handed over to DIe. I also got information on where to find the various standards, and draft
standards, on security related issues.

Since the intended readers of the deliverable were not fanliliar with security principles, in the
first sections of the chapter these had to be explained as short and clear as possible. Also an
overview was given of security services, and the security primitives that could achieve them.
Information on all this could be found in text books ou cryptography, articles and course pub
lications. The standards were used to check if certain security services could be achieved usiug
standardised protocols, and if this was the case this standard protocol was explained in some
more detaiL

In the later sections we had to examine which security services could and should be placed in
signalling. For the services that we recommended to offer in signalling, the advantages and
disadvantages of the previously sketched primitives were weighed against one another.

The text of the chapter can be found in Part II of this report. Since it is only one chapter out
of a coherent deliverable, it is not completely self-contained. In particula.r, we assumt' that the
reader is familiar with the seven layer OSI model, and the concept of call control and connection
control.

Chapter 3

Digital Signatures

3.1 Introduction

The major time of the six months I was at MBLE I worked on various aspects of digital signa
tures. Before a practical digital signature scheme can be implemented, a lot of problems have
to be solved, and a lot of choices have to be made. My task was to study open and Philips
confidential literature in order to gather (theoretical) solutions to the problems and compare
their practical use. This resulted in a comprehensive document, which is appended in Part III.

As the document is aimed to be selfcontained, I will here only give a short introduction to the
concept of digital signatures, and the reasons why they are useful (or even needed) in electronic
cOllllllunication.

3.2 Elucidation

Electronic data interchange is more and more replacing the traditional paper driven systems.
It goes without saying that the security and legal aspects related to the electronic versions
of documents should be at least as effective as for the written versions. The task of a paper
document is to store information; writing or printing information on a piece of paper has for
lUany centuries been the most convenient way of storing the information. The integrity of the
contents could be assured by making it very difficult to make undetected changes to the paper
document, and the most common way to do this is by appending a (handwritten) signature.
Nowadays, storing information on paper is becoming obsolete. Vast amounts of data are stored
in computers and transfered over computer networks, whereby the information is presented as a
string of bits. To assure the integrity of these data, a digital analogue of the ordinary signature
can be used: a digital signature.

A digital signature has the same task as an ordinary handwritten signature has, i.e. unambigu
ously identifying the signer. To achieve this, both need to have the following properties:
- everyone is able to verify a signature;
- no one can forge a signature;
- in case a conflict arises, a judge can decide whether or not a specific signature is authentic.

A major difference between an handwritten and a digital signature is that the latter cannot be
a constant: all data in electronic communicatioll is just a string of bits, so everyone would be
able to forge a constant signature. Therefore a digital signature is a function of the document
it signs which only one person can compute, but everyone can verify.

8

Part I 9

3.3 Approach

Before I started to look into detail to aspects of the signing and verification process, I made a
rough sketch of the basis protocol that should be used (Chapter 1). As said before, a digital
signature has to be some function on the bitstring representing a document. Functions that
can be used are described and compared in the second chapter. Since documents can have any
size, they have to be condensed before they can be used as input for the signature algorithm.
A description and comparision of various condensing, or hash, functions is given in Chapter 3.
The next chapter shows how the hash functions and the signature schemes can be combined.
To store the secret information needed to compute a signature, smart cards will be used. More
about smart cards ands their usefulness can be found in Chapter 5. Another important aspect
of a secure signing and verification process is the management of the keys that will be used.
Chapter 6 elaborates on this. Then I will have a look at the legal aspects of digital signatures.
Finally, I will treat the relatively new concept of "zero-knowledge". Protocols based on this
technique seem to be very promessing for future applications.

Bibliography

[CEC90aj

Commission of the European Communities, Directorate-General XIII-F, Research and
Development in Advanced Communications Technologies in Europe, RA CE '90, March
1990.

[CEC90b]

COll1l11issie va.n de Europese Gemeenscha.ppen, Directora.a.t-genera.al XII Wetenschappen,
onderzoek en ontwikkeling, Stimulering van onderzoek en technologie door de EG, Vade
mecum voor genteresseerden, Economica Verlag, Bonn, april 1990.

[CEC91]

Commission of the European Communities, Directorate-General XIII, Telecommunica
tions, Information Industries and Innovation, Information and communications technolo
gies in Europe, catalogue number CD-iO-91-095-EN- C, Office for Official Publications of
the European Communities, 1991.

10

Part II
Security in Signalling

Contents

1 C Context and general principles
1.1 Communication....
1.2 The role of signalling .
1.3 Security

2 Security functions in signalling

3 Applications of security functions in signalling

4 Information security
4.1 General security services
4.2 Security primitives

4.2.1 Mathematical primitives
4.2.2 Physical primitives .. .

4.3 Authentication protocols
4.4 Key management, registration and certification authorities.

5 Security models

6 Security in signalling revisited
6.1 Identification
6.2 Authentication
6.3 Access control.
6.4 Integrity....
6.5 Confidentiality including stuffing
6.6 Non-repudiation ...
6.7 Network management
6.8 Conclusion

7 Notations

1

3
3
4
4

7

9

11
11
12
12
16
19
23

26

27
27
27
28
28
29
29
29
29

38

PaIt II

Abstract

In the signalling protocols defined for N-ISDN, no provision was
made for security functions. Without this feature, the only way,
for customers, to ensure the security of their communications,
was to rely on the application layer. This is in strong contrast for
instance with services like GSM or DECT, where security is part
of the service. The goal of the B-ISDN is to be "the" network
supporting all kind of services, and to be able of interacting with
all non B-ISDN services. Now that a new generation of signalling
protocols for B-ISDN is in preparation within CCITT, there exists
an opportunity to improve the situation by making a provision for
security functionalities at signalling level. In this document we
investigate which security functions could be offered in signalling,
if it is preferable to do this, and how the security services to be
offered should be implemented.

2

Chapter 1

Context and general principles

Security is a very broad domain. We will only consider here those security aspects which are
related to the communication in B-ISDN, where signalling can be involved. The aim of this
first chapter is to specify more dearly the context we will consider.

1.1 Communication

One of the security problems an application has to deal with, is the securing of its information
transfer on a telecommunication network. When a communication channel is used, there always
exists a risk for a failure, an act of piracy, or for data falsification. Other communication im
pairments are possible, like connection interruption or data corruption, and have to be analyzed
as well from the security point of view.

Different security services can be introduced in communication at specific layers, namely at
the OSI-Iayers as specified, for example, in [T89]. All security services can be provided in the
Application layer (layer 7), however, this is out of the scope of the present document.

The application can also make use of the underlying layers to ensure the security of its informa
tion transport. An example is given by the electronic mail with X.400. These communication
protocols already include a range of possible security functions. Under the hypothesis that
security functions are already present in the lower layers, the mechanisms used to fulfil the
security requirements at the application level will appear to be quite different.

The undedying layers used by an application do not necessarily include security mechanisms.
But when they are present there, they can substantially improve the security for the applica
tions as a whole. To illustrate this, let us consider a network where a radio link is employed.
With respect to security, it is obvious that precisely this segment is intrinsically a weak one. If
special features (e.g. encryption) are provided to ensure the confidentiality of the transmission
on this link, the security will be substantially improved on this seg11lent. Hence, the general
security a.t application level is automatically i11lproved.

The security in a network can be inherent to this network, or it can be ensured by means of
supplementary services or by external service providers. Regardless of the chosen possibility,
we might expect that specific signalling will be used to guarantee the integrity of the network,
this means integrity with respect to the network configuration, the availability and the chosen
paths.

3

Part II 4

An analysis of the security fundions which are incorporated in different communication proto
cols, would be an interesting basis for an investigation on the range of security functions which
could be offered by the B-ISDN. Moreover, it could also be used to evaluate to which extent
the signalling would be able to support these protocols.

1.2 The role of signalling

Among the security functions to be considered in the B-ISDN, some depend directly on sig
nalling while others do not.

In B-ISDN the data channel is separated from the signalling channel, in a user plane and in
a control plane respedively. As a consequence, security functions directly performed on data,
such as confidentiality, which have to be implemented in the user plane, cannot be signalling
functions. It is not to say that during the call establishment the signalling will not playa role
in negotiating the kind of confidentiality to be used. The signalling fundions could ensure the
exchange of key codes to be used for confidentiality. However, during the transmission itself,
the role of the signalling is finished. Moreover, the system must ensure that specific signalling
applies to specific data, this means that the link between the signalling and the data needs to
be secured as well. We will assume here that a complete separation exists between call control
and connection (bearer) control, as it will be the case in the CCITT target signalling protocol
for B-ISDN. Therefore, security functions for both of these control protocols have to be foreseen.

'In the call control, we find for example end to end authentica.tion procedures; here the signalling
can be used to transport the authentication messages.

The connection control is used by intelligent network management. Regarding the security, the
decisions are taken at a high level and signalling is used between nodes to control the network
configuration. The signalling has to provide the appropriate control messages (layers 1, 2 and
3), including the security messages.

To summarize, the signalling has to provide the means for exchanging controllllessages related
to the security. These messages can be related to the user plane, to the call control and to the
intelligent network management. It has to be examined in which cases the signalling protocol
can directly provide security functionalities.

1.3 Security

This section will define and describe the basic security elements needed to integrate security in
a communication system. We will start with a description of the basic three security services.
They can be implemented using security primitives. Primitives are designed to satisfy math
ematically precise requirements. They are described in terms of more technical concepts like
cryptosystems, hash functions, etc. (see chapter 4).

These security services, which are explained below, are:

• authentication

• integrity

• confidentiality.

Part II 5

A utbentication

The authentication of an "entity" is the corroboration that the entity is the one claimed. This
means that if an entity has authenticated itself to another entity, the last one is assured that
he will communicate with the "genuine" entity he was intended to. An authentication process
will detect when another entity is claiming to be the authorised one. It therefore goes further
than a simple identification. Notice however, that a secure user identification is necessary to
realise the authentication protocols.

In a telecommunication network, there may be a need to authenticate the resources used in the
communication process, and possibly also the titular of the organization and/or the responsible
for these resources. This means that it is not the authentication of persons which is important
here, but the authentication of equipments.

The authentication process, as will be explained in chapter 4, requires the exchange of messages
between an entity requesting the authentication, and the entity being authenticated. A task
for the signalling can be to act as transport for these messages.

It is obvious that identification and authentication of users or equipment is often not enough. A
natural first requirement to a secure communication is that the transmitted information cannot
be changed in an unauthorised way without being detected. This means that we need integrity:

Integrity

Data integrity means that the contents of the data cannot be altered without detection. This is
of course a crucial issue in data communication, but other kinds of integrity are also important
in specific environments.

Network integrity is an important issue, because it directly establishes the level of confidence a
user will have in the service offered by the network operator.

Historically, data integrity has a.lways been obtained and certified by means ofredundancy (e .g.
a signature or checksum) transmitted with the data. Now with the separation of the control
functions from the data, other techniques are possible. Clearly, signa.lling can playa role in this
process. The data integrity can be verified during the transmission, or after transmission in
order to certify that the "genuine" message has effectively be delivered to the right destination.
It is not the role of the signalling to provide the data integrity itself, but it can help the entities
involved by transmitting service information related to this integrity.

For a network, integrity means reliability of the connections. This is normally achieved by using
re-routing of signals in case of failure, or by using redundant equipments. These measures are
security functions, although they are rarely presented as such. Among the signalling functions
used by the network management for the control of the routing, only functions added for the
improvement of the security will be considered here. The control of the conformity between the
network model maintained by the network management, and what is really happening is one of
the integrity functions to be examined.

Another important issue is the integrity of the access control, related to the availability of the
network.

Part II 6

Confidentiality

Confidentiality means that the information contained in a message can only be accessed by
authorised entities. In a communication network, this clearly implies an intervention at the
data level. As already indicated, the separation of the data and of the signalling hampers the
use of signalling for direct intervention at data level. The signalling can only be involved in an
indirect way, during the confidentiality process negotiation.

In a network the confidentiality may be provided on certain "sensitive" segments only, or end
to end (fro111 access point to access point). The confidentiality at application level is out ofthe
scope of this study.

In special cases, it is the confidentiality of the signalling messages itself which can be needed.
We find already an example of this within GSM. If the B-ISDN will offer the user the possibility
to connect to different access points, without pre-registration (for portable terminals), it would
be interesting to prevent a possible localisation of this user by non-authorized parties. There
fore the confidentiality of the signalling messages might be required. Another typical exalllple
is videoconferencing where layer 6 is used for the coding. This means that the confidentiality
must be realised in a lower layer than layer 6 since otherwise the system will not be able to
operate.

Other security services

Authentication, integrity and confidentiality are the basic security services. More complex
services such as access control, non-repudiation of sender or receiver can be realised with the
three services mentioned above. Moreover it is very likely that the additional services can be
build with the network functionalities which originally covered the basic three security services.
An example for non-repudiation will be given in the next chapter.

Chapter 2

Security functions in signalling

The basic question is: why is security needed in B-ISDN ? Well, simply because such a network
is subject to failure and because ill-intentioned persons exist.

Many indications have already been given in the preceding section which show that signalling
can be efficiently used to handle security problems both within the call control and within the
bearer control.

Obviously, if no specific security functions are introduced in the call control, the possibility
will remain to place these security functions at application level, or at communication leveL
It will only be less effective. On the contrary, improving the security for intelligent network
management seems only possible with specific signalling functions.

Some cases where the use of security functions in signalling has already been identified will be
reviewed now.

End-to-end authentication

For obvious reasons, it is during the call establishment that the end to end authentication will
be the more often used. With signalling, it is possible to achieve this authentication, without
the intervention of the application. Access to the application for example, may only be given
to authorized entities, after a successful authentication at a lower leveL Clearly, this would
substantially improve the security.

Access control

The access control normally takes place after an authentication process. It gives an entity the
rights to access a particular resource or information. For example in mobile communications,
where the users can make their calls from different portable equipments, access control is a main
security service. As already explained, the decision to give access is normally not included in the
task of the signalling. Access control is under the responsibility of the application, of the ser
vice providers, or of the network (e.g. in virtual private networks). Certainly, special signalling
functions will nevertheless be required if access control fundionalities a.re desired without the
intervention of a third party.

It can be useful, when an access is denied, to pass the information "access denied" to the calling
party, at least as a. cause in a disconnect message.

7

Part II 8

Network management

As indicated in part 3 (of the final document), the separation of the call control from the bearer
control offers many advantages. Its drawback is that new functions are now needed to guarantee
that the connections established by means of bearer control messages correspond well to what
they are supposed to be from the call control point of view. This implies the introduction of
verification procedures with authentication possibilities.

To achieve a high level of network integrity, the network management shall be able to verify
the integrity of a connection at every moment. Instead of a single identification, the authenti
cation of the resources used (user access points, switching nodes, interconnections with other
networks, ...) may be necessary.

Having identified (authenticated!) the resources used to interconnect two subscribers, the net
work management has to declare that a communication path exists between the subscribers.
Acting as such, the network management declares in fact that the equipments are genuine and
that they are in conformity with his own model of the network. Signalling techniques are needed
to verify the concordance between the model and the reality.

To improve the security of a transmission, redundant resources are sometimes used, with some
of them in stand-by. In case of malfunction of an equipment, the redundant equipment is put
into service by means of signalling. Both resources, the norlllal and the redundant one, receive
the same address, but they are different entities, and from the point of view of the authentica
tion, they are different. It is important to avoid the replacement, by a malicious person, of the
redundant unit by an external one with the same address. It follows that the network needs
control means.

Non-repudiation of information exchanged between user and network
provider

Similar to a registered letter which can be used as a legal proof, certification of information
exchanged between the network provider and the user could also be used as a matter of proof.
This domain has not yet been explored but could lead to very attractive supplementary ser
vices. It certainly can prove to be useful for billing purposes or to detect failures in such bills.
Signalling comprising security functions is well suited to support this type of service. Signalling
is also needed to ensure that the information given has been conectly collected though the
network.

Traffic flow confidentiality

For certain applications (e.g. banking), confidentiality is needed not only with respect to the
contents of the information exchanged, but also regarding the simple existence of a transfer
of information. Even without having access to the contents of the information, the number of
transfers and/or their sizes in a given period of time can have a great significance for pirates.
A method to avoid this risk is message stuffing. Dummy messages are transmitted, which
are mixed with the genuine ones. By means of appropriate signalling, the user informs the
network with confidential signalling whether the data are true or dummy. The price asked by
the network operator for transmitting dummy data is very low, and he has the right to modify
these dummy data.

-

Chapter 3

Applications of security
functions in signalling

Virtual private networks

A virtual private network requires, in order to be safe, a lot of security functions from the
network management such as guarantee of integrity of the virtual network, access control (from
access point to access point), and confidentiality. All these functions are invisible to the user.
They have to be handled by the intelligent network management by means of specific signalling
protocols.

Interacting with other networks

As stated by the CCITT, the B-ISDN must be able of supporting interacting with non B-ISDN
services (see 1.311). Examples of these services are UMTS, GSM, and DECT. Due to the fact
that radiocommunications are used for transmissions to some of the mobile subscribers, it is
clear that on these links, mobile telecommunications will intrinsically not provide the same level
of protection to its operators and subscribers as B-ISDN will do. Therefore specific security
features will be used by these networks for these parts of the transmission. As strong interact
ing with these networks is the final goal, it will be mandatory for the B-ISDN to provide the
signalling functions able to support the signalling from the other networks, and among these
functions, there will be specific ones covering the security services.

As a general remark, it is worth noticing that it could also be interesting for the B-ISDN to
anticipate on the future needs in this domain, in order to be ready for new applications, and
perhaps yet to induce these new applications.

Indirect handling

As figure 3.1 shows, it is possible that the communication between two entities is realised in an
indirect way via an inteullediate node, a so-called relay system. Since this rela.y system is part
of the network, it consists only of the lower three layers. In this configura.tion, security between
the two end-entities A and B can be introduced up to layer 3,

9

Part II 10

List of
~ 7 Authorizations H I

6
I 6

5 I
5 I

f---
4 I

4
f- I

f---
i 3

r
3 ! 3 ! 3

f---
2 2 2 2 J
1 I 1 1 1

A R B

Figure 3.1: Indirect access control

Connectionless

Connectionless protocols are established without any need for addressing of the interacting
entities. Only their identification is needed. The entities are acting by themselves, the transfer
of data is implicitly done by an underlying service, who also has to handle the security problem.

Chapter 4

Information security

4.1 General security services

Entity identification/aut hentication

The two principles identification and authentication are often confused, but they do not have
the sallle meaning. In fact, identification is less strong than authentication: identification is tIte
process that enables recognition of an entity described to a system, whereas authentication is
the act of verifying the claimed identity of this entity.

We will only deal with authentication processes, but it is obvious that in order to achieve entity
authentication, secure entity identification is necessary. This can be realised through the use of
a secure registration of the entities with their credentials such as user privileges, etc., and also
with a public key (see 4.4).

ISO/IEC 9798 is a multipart standard dealing with authentication mechanisms based on sym
metric and asymmetric techniques. We will deal with these protocols in detail in section 4.3.

Data integrity

In [17498-2] data integrity is defined as the property that data has not been altered or destroyed
in an unauthorized manner. Outside the OSI context, data integrity is sometimes called data
origin authentication, which according to the OS! definition is the corroboration that the source
of data received is as claimed. When two entities communicate using a previously established
connection, and after an entity authentication protocol, the origin of the data received is au
thenticated.

Usually both services are required together. If it cau be assured that the data received came
from the claimed source, this is not useful iu practice if the data may have been changed in an
unauthorized way. Conversely, if we know that the data have been transmitted without any
unauthorized changes, this is not useful unless we know that the data came from the claimed
source and not from an impostor.

Note, that even though a receiver may be convinced of the integrity of a message when he
receives it, he may be unable to convince a third party, since he may have been able to produce
a convincing message himself. To solve this problenl the next security service is needed:

11

Part II 12

Non-repudiation of origin

This means that the receiver has a proof that the message in fact originated from the genuine
sender. Not only the receiver, but any third party can check this proof. Note that non
repudiation of origin is at least as strong as data integrity: if we receive an acceptable proof of
origin, the message has not been changed on the way.

So far, nothing solves the replay problem where a malicious third party copies a message and
retransmits it. Payment orders are an obvious example that show the need to protect against
this threat. By using time stamps or message sequence numbers it can be ensured that exactly
the same message is never accepted twice.

The same payment order is an example of a case where the receiver of a message should be
unable to later deny having received it. This is a motivation for:

Non-repudiation of receipt

Non-repudiation ofreceipt (or delivery) means that the receiver of message sends back a receipt
to the sender. Anyone, including the sender of course, can verify the validity of this receipt,
but only the genuine receiver of the original message is able to produce such a receipt message.
Therefore he cannot later deny having received this message.

Finally, the most classical security service is mentioned:

Confidentiality

In [17498-2] confidentiality is defined as the property that information is not made available or
disclosed to unauthorized individuals, entities or processes. In common parlance it just means
that the message is transmitted in such a. way that no unauthorised entity can lea.rn anything
about its content.

4.2 Security primitives

4.2.1 Mathematical primitives

In this section we define the mathematical security primitives requited to implement the secu
rity services mentioned above.

Data encryption

This primitive ensures confidentiality, i.e. it is concerned with keeping the message secret.

Each data encryption algorithm uses a secret key, and in fact the security of the enciphering
relies on this key, while the algorithm used is generally public knowledge. Therefore it is dear
that these keys have to be chosen carefully (and have to be managed correctly, which will be
elaborated in section 4.4). Usually, this means that a key must be chosen at random from a
certain set of "good" keys. Often a candidate key is generated at ra.ndom, or pseudo-random,
and afterwards is checked if this candidate is not a so-called weak key.
In the description of the various encryption methods we will give some attention to the require
ments on keys needed.

Part II 13

The data encryption algorithms can be split in two groups: the symmetric, conventional or
secret key methods, and the asymmetric or public key methods.

A conventional cipher is a cipher that uses a secret key which is known to both the sender and
the receiver ofthe information; the same key is used for encrypting and decrypting the message.

A well-known example of a symmetric cipher is the Data Encryption Standard (DES), designed
by IBM in 1976 for the US Government ([NBS77]). The algorithm has also been adopted by
the American National Standards Institute (ANSI), where it is known as the Data Encryption
Algorithm (DEA) ([ANSI81)). The exact algorithm can be found in the standards and many
text books on cryptography, we will only give a sketch of it.

The algorithm uses a 64-bit enciphering key, of which only 56 bits are real key bits, while the
remaining 8 bits are parity check bits.
For encryption, each 64-bit block of input data is subject to an initial permutation, followed
by 16 equally specified rounds which each use a sub-key derived from the given encryption key,
and a final permutation.
Each round is a special function which is composed of transitions, exclusive ors and S-boxes.
These S-boxes are eight different substitution tables, each having an input of 6 bits and an
output of 4 bits.

For decryption exactly the same key is used while the algorithm is run in reverse order.

In case the enciphering key produces a constant set of sub-keys (which happens exactly for four
keys) Ie-enciphering of the ciphertext with the same key restores the original plaintext. These
so-called weak keys should be avoided in critical situations. Beside those weak keys semi-weak
keys exist, whose sub-keys occur in pairs. For each pair of semi-weak keys the sub-keys are
the salUe but in the reverse sequence. It is recolUmended to avoid them as well when selecting
enciphering keys.

Unlike in sYlllmetric cryptosystems, in public key cryptosystellls the sender and receiver use
a different, but related key. In fact, the encryption algorithm with public key P is trapdoor
one-way, which means that it is infeasible to compute the corresponding secret key S for the
deciphering algorithm from knowledge of the description of the enciphering algorithm and P.
Moreover, the algorithms must be such that for each message M holds that

dS(eP(M)) ~ M.

The first public key cryptosystel1l proposed in the open literature is due to Rivest, Shamir and
Adlel1lan, and is generally known as the RSA cryptosystem ([RSA78]). It is based on modular
exponentiation with fixed exponent and modulus, as will be shown in the following description.

Let p and q be two large distinct primes with product n. Denote the least common multiple
(Ion) of p - 1 and q 1 by l(n}. Choose e coprime to I(n) and compute d == e - 1 mod I(n).
Note that d can only be computed if the trapdoor p and q is known. The secret key is now
S ~ (d, n), while the corresponding public key is given by P = (e, n}.

The enciphering of message M reads as:

C == eP(M) == lY[< mod n,

witHe decipherment of the cryptogram C is given by

dS(C) == dS(Mt mod n) == (Me mod n)d mod n _ M e.d mod n = M,

Part II 14

since e . d == 1 mod l(n).

Since the system is broken when the factorisation of n is known, special precautions have to be
taken into account concerning the choice of the two primes p and q.

In particular:

• p and q should differ in length by only a few digits,

• both p - 1 and q - 1 should contain large prime factors,

• the greatest common divisor of p - 1 and q - 1 should be small.

For an extensive discussion on these properties we refer to [D83].

Integrity primitives

Integrity primitives are all those that are concerned with the authentication of messages. Just
as with data encryption, they can be divided into primitives which are based on conventional
cryptography, and primitives which are based on public key cryptography.

Based on conventional cryptography are:

MAC: Message Authentication Code
The sender of a message M uses the secret key K he shares with the receiver to compute
MA C(K, M) on this message. The message may have any length, but the MAC has a fixed
(small) length (e.g. 64 or 128 bits). For any entity that does not know K, it should be
computational infeasible to find a message £1 and a MAC X such that MAC(K, £1) :::: X.
MACs are being standardized in [19797].

MDC: Manipulation (or Modification) Detection Code
The sender of a message M computes a manipulation code MDC(M). Again, the message
can have any length, but the MDC has a fixed (small) length. It should be impossible
to find two different messages M and £1 such that MDqM) = MDq£1). To a manip
ulation detection code is often referred as a hash function. ISO flEC 10118 recolllmends
methods for computing MDCs.

In public key cryptography the authenticity of messages is achieved using digital signatures.
Here each user has a secret key that is only known to him, which allows him to create the
electronic equivalent of a written signature, while anybody in possession of the corresponding
public key can verify this digital signature. If A sends a digitally signed message to a receiver
B, then B will not only be convinced that the message was indeed signed by A, but he will also
be able to prove to a third party that A actually signe.'d that message.'.

A public key cryptosystem offers digital signature.' capacity if:

eP(dS{M)) dS(eP(M)) = M.

If a user's secret key is S, and his corresponding public key is P, then his signature on message.'
M is Sig dS(M). Only this particular user can compute.' Sig, but everyone.' can verify its
validity by checking that eP(Sig) = eP(dS(M)) = M.

Digital signatures can be used to ensure data integrity, but they are also applicable to achieve
non-repudiation of origin and receipt.

Part II 15

Various digital signature schemes exist, the one based on RSA probably being the most famous
one. However, if RSA is used both for data encryption and digital signatures, it is preferably
that each user keeps two distinct pairs of keys. A digital signature scheme giving message
recovery which is based on RSA is standardised in [II9796J.

In 1985 EI Gamal ([EG85]) introduced a new digital signature scheme based on the discrete
logarithm problem. The scheme uses a large prime p, and a number a, 1 < a < p. A user
cbooses a secret key 5 and calculates the public key P == as nlOd p. The signing of a message
M, 0 :s. M :s. p, is as follows:

• choose a random Ie, 0 :s. Ie < p, fot which the greatest common divisor of Ie and p - 1 is 1;

• compute r :: ak mod Pi

• the signature on M is the pair (r, t) with t the solution of

or
M == (5· r + Ie· t) mod p - 1,

or
t == (M - 5 . r) . Ie -1 mod p - 1,

which has a solution since the greatest common divisor of k and p - 1 is 1.

For the verification of the signature, one has to check that for given M, r, and t holds that
aM == pr . rt mod p, since this equals aM == as .r • ak .t mod p.

Notice that the parameter k should not be used more than once, and that the parameter p - 1
should have at least one large prime factor. If p-l has only small prime factors, then computing
the discrete logarithm is easy. Most attacks to the scheme can easily be shown to be equivalent
to computing discrete logarithms over GF(p).

A third digital signature scheme has been published by NIST ([NIST91]) as a proposal for a
standard. It is called the Digital Signature Standard (DSS). The algorithm uses the following
parameters:

• prime p, 2511 < p < 2512
;

• prime divisor q of p - 1, 2159 < q < 2160;

• g = h(p-11/q mod P, where h is any integer with 0 < h < p
such that h(p-l)/q mod p > 1;

• integer 5, 0 < 5 < q;

• p == gS mod p;

• M, the 11leSsage to be signed and transmitted;

• Ie, a random integer with 0 < k < q;

• H, a (one-way) collision-free hash function.

Part II 16

The integers p, q and 9 can be public and can be common to a group of users. A user's public
key is P, and his corresponding secret key is S. The number Ie must be different for each
signature.

To sign M, the user chooses a random Ie and computes:

r == (gk mod p) mod q

and
t == (1c-1(H(M) + S· r») mod q,

where Ie-I is the multiplicative inverse of Ie modulo q.

The signature on M is the pair (r,t).

To verify the signature, p, q, g and P must be known. Let M, rand i be the received values
of M, rand t respectively. Then the following is done:

1. check if 0 < r < 9 and 0 < i < q,
if either condition is violated the signature is rejected;

2. compute

w _ i-1modq,

ul (H(M).w)modq,

u2 _ (r. w) mod q,

v - (gUl. g"2) mod p) mod q.

If v == r then the signature is accepted.

For a mathematical proof of the va.lidity of this verification process we refer to the Appendix
of the sta.ndard ([NIST91]).

Finally, Amos Fiat and Adi Shamir introduced in 1986 a signature scheme that is zero-knowledge
([FS87]), which means that the verifier learns nothing but that the signature is valid. Formally,
a zero-knowledge authentication scheme is an (interactive) protocol which enables a signer to
prove that a certain message is sent by him, in which the verifier obtains no information from
the prover except this fact and information which he could have produced alone.

Zero-knowledge authentication schemes have to be further investigated and their standardisa
tion can be expected in the coming years.

4.2.2 Physical primitives

Tamper resistancy

In each data system, the data will appear somewhere and sometimes unencrypted. In particular,
processing of data usually requires these data to be ill dear forlll,
Therefore no data system can be made secure without some sort of physical protection of the
equipment.

Part II 17

Microcomputers processing sensitive information should be consolated in areas that have phys
ical access controls, and connected to a heavy object, possibly supplemented with a movement
sensitive alarm pad. To decrease the risk that an intruder will get information from intercepting
radiation, tempest equipment is available, like shielded optical fiber.

In general, a tamper resistant device is a technological construction which is a physical reality,
and therefore it is unique. It protects the access to the data it contains, and the integrity of
those data. Optionally a tamper resistant device can offer data processing facilities and/or data
transport facilities.

An example of a. tamper resistant device is a chip card. Since chip cards will become very
important in the near future, we will elaborate below in some more detail their characteristics.

Chip cards and smart cards

In many applications of information security, the security relies ultimately on the secrecy of a
small piece of information: the secret key of the system. A way to store this sensitive piece of
information has to bt' provided.

A chip card is a generic name for any plastic card, usually the size of a credit card, containing
a chip. Depending on the properties and features of this chip and its carrier, various types of
cards can be distinguished. One of them is the smart card, a chip card where the chip is a
microcomputer with programmable memory.

Nowadays, smart cards, or integrated circuit cards, can be considered as a convenient, safe, and
inexpensive means for the storage of secret information ([DS91], [V92aJ). However, smart cards
which are available up to now have only a small capacity with respect to computing power.
Since many cryptographic protocols require more, this is a non-neglectable restriction for their
applications. Fortunately, smart card technology is growing fast, and more powerful cards will
become available soon.

The basic references for such smart cards and the like is the multipart standard ISO 7816.
Cards designed in accordance with this standard are made up of a plastic support that contains
a small device consisting of a tiny printed circuit board with an integrated microcircuit at its
center. On the surface of the board are three reserved areas:

• a location for the printed circuit supporting the lUicrocircuit;

• a location for the magnetic stripe if the support is used as a combined card;

• an embossing area for the user's identity and the card's ISO number.

The microcircuit is attached to the back of the printed circuit. Any data exchange between
the microcircuit's memories and the card reader is subjected to security procedures of the
microcircuit's CPU. It generally consists of the following parts:

• a ROM (Read Only Memory), containing the card's operating system. The ROM should
contain programs and data that are not specific to a card, but that are the same for a
large number of cards.

• a RAM (Random Access Memory), a volatile memory that is used by the CPU as a buffer
for storing transmission data and as a very fast access memory for storing intermediate
results.

PartH 18

• an (E)EPROM ((Electronically) Erasable Programmable ROM) contains programmable,
non-volatile memory. As the contents of the EPROM can only be erased by tTV light,
every cell can just once be programmed by the CPU, and the use of EPROM cards is
thus limited to applications which do not need a frequent update of the memory. An
EEPROM on the other hand can be electronically erased.

• a CPU (Central Processing Unit) controlling the internal buses via which it can access all
the internal memories. No direct access from outside is possible to them.

• connection points or contacts to the system.

For the exchange of data between a smart card and an interface device, two protocols are
specified so far on an international level, denoted by T=O and T=l respectively. Both are
asynchronous, half duplex protocols; the main difference between them lies in their handling of
the data and the OSI reference model.

T=O is a byte-oriented protocol, where the only error correction is a parity check immediately
after each byte. There is no clear separation of the transport and application layer, so it is
impossible to encrypt headers. Furthermore, application data cannot be sent in both header
and response of one command. This protocol is standardized since 1989 in [117816-3].

The standardisation of the block protocol T== 1 is from a more recent date. Here the error check
is carried out on a block of data, the OSI layers are strictly separated, and application data
can be sent in both a request and the response.

To communicate one byte of information, four additional bits are needed: a start bit preceding
it, and a parity bit and two stop bits following it.

Various Slllart cards based on DES exist ([DS91], [V92a]), allowing encryption/decryption and
MAC calculations. For a long time public key algorithms could not be implemented in these
cards since they require a lot of computational power. This restricted the use of smart cards
severely, because precisely public key techniques are generally considered to be very promising
for the realisation of security services. However, smart card technology is evaluating fast, and
at the moment various manufacturers are working on cards which can perform the large integer
arithmetic needed by public key algorithms such as RSA. Recently a new chip 83C825 was
developed, which computes a digital signature X e mod N with 512 bit operands in less than
half a second. This chip will be used in the first RSA smart card ([DSS92]). Thus, now it
is possible to perform digital signature generation and verification within a smart card, which
increases the security considerably. Therefore those smart cards will become very important in
the near future.

One application of smart cards can be found in GSM, the Global System for Mobile COllllllU

nications ([V92b], [W92]). In GSM a mobile station can be taken to and used in any of the 18
participating countries, some of them allowing several network operators. The billing is done
by the home network operator who normally does on-line authentication. But the user does
not need to carry his own mobile station, he only has to take his subscriber card (or Subscriber
Identity Module (SIM)) along and insert it into any mobile equipment. This SIM (which is
a type of SlUart card) contains all the necessary information about the subscription, as well
as the network specific authentication algorithm and the secret subscriber specific key. The
functionality of the 81M is described in GSM 02.17 ([E-G92]), while its iuterface to the mobile
equipment is specified in GSM 11.11 ([E-R92]).

Part II 19

4.3 Authentication protocols

An authentication protocol is a protocol in which the claimed identity of an entity is verified
by another entity. The International Standard ISO/lEe 9798 consists of three parts, dealing
with authentication mechanisms.

The first part, ~9798-1], is a general model, which explains that usually, for authentication
purposes, the entities generate and exchange standardised messages, called tokens. It takes at
least the exchange of one token for one entity to be authenticated by the other entity (unilateral
authentication), and at least the exchange of two tokens to provide both entities with assurance
of each other's identity (mutual authentication). The entity that is authenticated, and thus
claims to have a certain identity, is called the claimant, the entity that verifies the claimant's
identity is called the verifier. Precise definitions can be found in the Terminology section.

Part 2 deals with symllletric techniques. This implies that the entities that want to carry out an
authentication protocol, either have to share a comlllon secret authentication key in advance,
or that a trusted third party is involved ([19798-2]).

Part 3 of the standard describes entity authentication using asymmetric algorithms. All algo
rithms are based on the assumptions that the claimant has a secret signature key only known by
itself, and that the verifier is in the possession of the valid public key of the claimant ([19798-3J).

In the protocols time variant parameters are used to control uniqueness and/or timeliness, which
is required to prevent replay of previously transmitted messages. Some of them also allow for
the detection of "forced delays", i.e. delays introduced into the communication medium by an
adversary. Three types of time variant parameters are used:

Time stamps make use of a common time reference which logically links a claimant and a
verifier. If the difference between the time stamp in a received token, and the time the
token is received is within an acceptance window, the message is accepted.
Time sta.mps can only be used if the time clocks of both parties are synchronised, and if
they are not subject to tampering.

Sequence numbers allow a verifier to detect the replay of messages since the claima.nt and
the verifier beforehand agreed on a policy to number messages. If the number sent along
with a message does not agree with this policy, the message is rejected.
The use of sequence nUDlbers requires some degree of additional book-keeping. Special
procedures may be necessary to reset/restart sequence number counters when normal
sequencing is disturbed, for example by a system failure.

Random numbers can be used to prevent replay or interleaving attacks as follows: the verifier
sends a random number to the claimant, and the claimant. sends this back in the signed
part of the response.
Random numbers do not directly control timeliness, but this can be controlled by enforcing
a maximal allowable time limit between the challenge and response passes.

Entity authentication using symmetric techniques

The authentication exchanges are based on the assumptions that

• A claimant authenticating itself to a verifier either shares a common secret authentication
key with that verifier, or both entities share a secret authentication key with a Trusted
Third Party (TTP). This key (or these keys) shall be known only to the two parties that
share it.

Part II 20

• If a trusted third party is involved, it shall be trusted by both claimant and verifier.

If any of them is invalid, the authentication process lllay be compromised or cannot be imple
mented.

Below we will describe the first four authentication protocols of [19798-2]. They require at most
two passes for unilateral authentication, and at most three passes for mutual authentication,
and they do not make use of a trusted third party.

(Sl) One pass unilateral authentication.
Claimant A initiates the process by sending

TokenAB = eKAs(TA/NA II B)

to B. B verifies TokenAB by deciphering it and checking the correctness of the distin
guishing identifier B, as well as the time stamp or sequence number in order to guarantee
timeliness. See figure 4.1.

A B

TokenAB

Figure 4.1: One pass unilateral authentication

(S2) Two pass unilateral authentication.
Here verifier B initiates the process by sending a random number Rs to claimant A. A
answers by sending back

TokenAB = eKAs(Rs II B)

as shown in figure 4.2. B verifies the token by deciphering it and checking the correctness
of the distinguishing identifier B, and if Rs equals the number sent to A in the first step.

A B

Rs

TokenAB

Figure 4.2: Two 'pass unilateral authmtication

(S3) Two pass mutual authentication.
This protocol is just two successive executions of protocol (S1), first an authentication
from A to B, then one from B to A.

(S4) Three pass mutual authentication.
A initiates the protocol by sending a random number RA to B. B answers by sending

TokenBA = eKAs(Rs II RA II A),

Part II 21

where RB is a random number chosen by B. On receipt, A checks, by deciphering the
token, that the distinguishing identifier A and the number RA are correct. Then A sends

to B. Finally, B verifies this token by deciphering it and checking the correctness of RA
and RB' This protocol is depicted in figure 4.3.

A B

TokenBA

TokenAB

Figure 4.3: Three pass mutual authentication

In [19798-2] three more protocols are described, which all make use of a trusted third party: a
three pass unilateral / four pass mutual authentication protocol, a four pass unilateral/five
pass lllutual authentication protocol, and a seven pass lllUtual authentication protocoL Since
they require too many passes to be useful for signalling, we will not describe them here.

It is very important to remark that in all the protocols, the tokens can contain extra text fields,
in clear or encrypted form. They can be used for purposes as additional redundancy, informa
tion concerning data origin authentication or distribution of keys.

Entity authentication using asymmetric techniques

All protocols are based on the assumptions that the claimant has a secret signature key only
known by himself, and that the verifier is in the possession of the valid public key of the
claimant. A way of obtaining a valid public key is by means of a certificate; how to generate,
distribute and revocate them is a separate problem which we will treat in section 4.4. In the
protocols below, such a certificate can optionally be send whenever it is appropriate although
it will not be mentioned explicitly.

(Al) One pass unilateral authentication.
Claimant A initiates the process by sending

TokenAB = TA/NA II B II sSA(TA/NA II B)

to B, and B checks subsequently the signature using A's public key, the time' stamp or
sequence number, and B's distinguished identifier. See figule' 4.4.

(A2) Two pass unilateral authentication.
As shown in figure 4.5, verifier B initiates the protocol by sending a random numbe'r RB
to claimant A. A answers by sending

TokenAB = RA II RB II B II sSA(RA II RB II B)

Part II 22

A B

TokenAB

Figure 4.4: One pass unilateral authentication

A B

Rs

TokenAB

Figure 4.5: Two pass unilateral authentication

to B, which B checks for validity of A's signature, and for correctness of Rs·

(A3) Two pass mutual authentication.
This mutual authentication protocol consist of two subsequent conductions of protocol
(AI), first exactly as described there, and thereafter with the roles of A and B inter
changed.

(A4) Three pass mutual authentication.
A sends a random number RA to B. Then B sends

TokenBA = Rs II RA II A II sSs(Rs II RA II A)

to A. A checks B's signature and the number R A . Hereafter A sends

TokenAB RA II Rs II B II sSA(RA II Rs II B)

to B. Analogously to A's actions, B checks A's signature and the number Rs. In addition
B checks the value of RA . Tis protocol is depicted in figure 4.6.

A B

TokenBA

TokenAB

Figure 4.6: Three pass mutual authentication

(A5) Two pass parallel mutual authentication.
This protocol consists the parallel conduction of protocol (A2): A sends RA to B, and

Part II 23

in parallel B sends RB to A. A and B reply to each other by sending TokenAB and
TokenBA respectively. Simultaneously they check the validity of each others signatures,
and that the random number which is previously sent to the other entity agrees with tbe
one contained in the token.

As in the symmetric authentication protocols, each message sent can contain extra text fields
whose contents is irrelevant for the authentication itself.

4.4 Key management, registration and certification au
thorities

Before secure communication based on cryptographic techniques between two or more entities
is possible, cryptographic keys have to be distributed among them. The management of those
keys is a very important aspect of a security policy, because the whole system relies on them.

[17498-2] defines key management as "the generation, storage, distribution, deletion, archiving
and application of keys in accordance with a security policy". Thus the purpose of key man
agement is to provide all procedures for handling cryptographic keying material to be used in
symmetric or asYlllmetric cryptographic algorithms. The tasks of a key management system
can be split in several parts, which will be treated below.

User registration

Any secure system ultimately requires a procedure by which an individual, an organisation or a
device is authenticated to the system. A key management scheme only makes sense if it guaran
tees the link between an entity and its keys. The registration of an entity is to allow automatic
identification in the sequel. After its registration, an entity is uniquely identified by a so-called
distinguishing identifier. Several types of authentication exist. A bsolute identification is pro
vided if a link between an identifier and some physical representation of the identified entity can
be established. Often applications only require relative identification, which is a procedure that
re-establishes an entity known under some identifier without linking it to another representation.

Entity authentication usually is based on the exchange of certificates. An entity is represented
by its credentials that have to be generated upon registration. These credentials serve as a
proof of registration.

Trusted third parties

To achieve secure and efficient key distribution, and to manage the keys, usually some kind of
Trusted Third Party (TTP) is used. In literature, more or less the same object appears under
various names and corresponding abbre'.iations. If the mechanisms used are based on con
ventional cryptosystems, the trusted party is generally denoted by the term Key Distributioll
Center of Key Translation Center. The terms Certification Authority and Key Certification
Center are common when public key algorithms are used.

Since the nonexistence of a trusted third party implies that between each pair of users at least
once a physical distribution is necessary, cryptosystems usually decide to create one. However,
in general, people do not want to trust someone (or some institute) unconditionally. Therefore
a trusted third party which is trusted only to the minimum extent which is necessary to avoid

Part II 24

undetected malicious behaviour of the users is the most preferable. Often such a TTP is re
ferred to as a functionally trusted third party. It does not know the secret keys of the users,
and it cannot impersonate the users, in contrast with an unconditionally trusted third party.

Key generation

Another task of a key management system can be the generation of keys, but it is also possible
that each entity generates its own keys. Keys shall be generated by using a random or pseudo
random process, such that certain parts of the key space are not more probable than others,
and that it is not possible for unauthorized to derive keys. During, or after the generation of
a key it has to be checked if this key is not a weak key. A weak key is a key which, in rela
tion with the algorithm used, has certain properties that compromise the security of the system.

In this context, key derivation should be mentioned, which is a technique that can be used in
symmetric cryptosystems to generate a potentially large number of keys from a single seed key
(the derivation key) and some variable data like the user identity. This technique allows to
separate keys without the need to manage all keys separately. The generation of derived keys
utilises a non-reversible process such that the compromise of a derived key does not disclose
the seed key or any other derived keys. Key derivation can also be used to update keys and
thus obtain new keys without the need for a key distribution process.

Key registration and certification

This aspect of key management is only relevant for public key systems. The main problem to
solve in this context is to ensure authenticity of the public keys. This is usually solved by re
quiring that each user registers with a. public key before using the system, and then the system
has to provide each user with an authentic copy of this user's public key.

The authenticity of public keys can be ensured by using certificates (see Annex B of [19798-3],
Recommendation X.500, and [CCITT88]). Such a certificate contains an entity's distinguishing
identifier, the entity's public key, and possible other information like a validity period and/or
a serial number. This collection of data is signed by a trusted third party. The verification
of a certificate consists of verifying the signature of the trusted third party, and checking, if
required, other conditions related to the validity of the certificate such as the validity period.

However, some practical problems remain. An important one among them is that of blacklisting;
the registration of a user may at some point be invalidated, for example because he violated
some rules, or because his secret information is lost or stolen. In that case the user should be
blacklisted, i.e. his public key certificate should not be regarded valid anymore. Therefore the
system should keep an updated list of users and certificates that are blacklisted, which can be
checked by all users. To prevent the list from growing infinitely, certifications should have an
expiration date, such that entries in the blacklist can be discarded after some time.

Key establishment: symmetric algorithms

When two parties want to communicate securely, a key has to be established between them.
If we exclude the cryptographically non-interesting case where this is done manually (e.g. by
courier), essentially two possibilities remain; point-to-point key establishment, and key estab
lishment where a third party is involved.

For point-to-point key establishment, it is required that the initiator is able to generate or
otherwise acquire a secret key. Furthermore is assumed that the parties already share a key

Pa.rt II 25

enciphering key. This key will be used to encipher the negotiation of the parties over the key.

The purpose of a Key Distribution Center (KDC) is to generate or acquire, and distribute
keys to parties tha.t each share a key enciphering key with the KDC. A Key Translation Center
(KTC) does only distribute a key generated or acquired by one of the parties to the other party,
using the key enciphering key that each party shares with the center. Various protocols for the
key establishment using a KDC or KTC based on the authentication protocols standardised in
[19798-2] are under standardisation in ISO/IEC JTCI SC27.

Key distribution: asymmetric protocols

When public key cryptography is used, a third party is usually denoted by Certification Author
ity (CA) or Key Certification Center (KCC). From these names we see that its most important
task is not to distribute the public keys, which in effect is easy: they can for example be broad
casted, but to guarantee their authenticity.

The danger of a key being compromised is considered to increase with the length of time it has
been in use, and the amount of data it has been used to encipher. Therefore, keys have to be
changed frequently. A widely accepted, efficient way to do this is to use the (insecure) COlllmu
nication channel itself for key distribution. Of course, the keys must then be enciphered. This
is done using key enciphering keys. Since those keys are used much less than the actual COlll

munication keys, they do not need to be replaced as often. In this way a whole hierarchy can be
made, with at the top one or more master keys, which need physical protection and distribution.

Key replacement and key deletion

A key shall be replaced when its compromise is known or suspected. A key shall also be replaced
within the time deemed to determine it by an exhaustive attack. A replaced key shall not be re
used. The replacement key shall not be an easy to determine transformation of the replaced key.

When a key is no longer needed, it has to be destroyed. This llleans that all records of the
key are eliminated, such that no information remaining after the deletion provides any feasibly
usable information about the destroyed key. Depending on how the key is stored, it can be
destroyed by overwriting, zeroising or destroying the storage medium.

Key storage

A key storage facility provides secure storage of keys, thus, confidentiality and integrity for
secret keying material, or integrity for public keys. Secret keying material must be protected
by physical security or be enciphered by keys that have physical security.

Since cryptogra.phic keys may get lost due to human error, software bugs or hardware malfunc
tion, it is recommended to store a copy of the current key independently from the original one.
Of course this copy needs to be protected as good as the original.

Chapter 5

Security models

A security model is an abstract statement of the important principles of security that a system
or product will enforce. For each system and product such a model should exist. However, it
is not necessary to make a complete new model for each new system or product, since various
fOlmalmodels are published to which can be referred.
Examples of published formal models of security policy are:

• The Bell-La Padula model ([BLP76]), which models access control requirements typical
of a national security policy for confidentiality.

• The Clark and Wilson model ([CW87]) modelling the integrity requirements of cOlllmercial
transaction processing systems.

• The Brewer-Nash model ([BN89]) modelling access control requirements for client confi
dentiality, typical of a financial services institution.

• The Eizenberg model ([Ej), which models aCCess control rights that vary with time.

• The Landwehr model ([LHL84]) modelling the data exchange requirements of a message
processing network.

26

Chapter 6

Security in signalling revisited

6.1 Identification

As already said in section 1.3, identification is not a security function, but is necessary to realise
authentication. Therefore it is natural to deal with entity identification before considering the
more complicated entity authentication. It is important to notice that an entity needs not to
be a person, this can just as well be an equipment or an organisation.

In B·ISDN identification protocols according to an international numbering plan will exist (like
in N·ISDN : Q931), but these identify the equipment that is used at the end points of a con·
nection, not the entity that is using this equipment. For example, they identify the number
of the telephone that is used to make a call, not the person that is making the call using that
particular telephone. This contrasts with GSM ([V92b]), where an entity can use every mobile
equipment to identify itself.

Since we want another kind of identification than the existing one, some extra information has
to be added to the signalling messages. There are several possibilities to do this. It can be done
like in GSM, using smart cards. A good architecture would roughly be like in GSM where two
identification numbers are needed in every call: the temporary identity of the entity, and the
identification of the home network.

6.2 Authentication

Once an entity is identified, it can be authenticated. Only the authentication protocol that
is used should be standardised, and the service provider that carries out an authentication
should be free to choose his own authentication algorithm. In section 4.3 several authentication
protocols are explained, based on symmetric as well as asymmetric techniques. In principle,
all of them could be used as standard, and they have all their own advantages and disadvantages.

The use of challenge - response protocols, where the claimant has to answer correctly on a
challenge (typically a random number) sent to him by the verifier, would be a good candidate
for authentication. To prevent replay, either time stamps or sequence numbers, or random
numbers are necessary ([19798-2], Anl1ex B). A Slllart card is able to generate (pseudo) random
numbers, but cannot generate a time stamp itself.

27

Part II 28

Furthermore, it would be interesting to choose a protocol that is compatible with the protocol
used in GSM (or in the future UMTS), or DECT to facilitate interoperability. In fact, this are
challenge - response protocols.

Up till now, all protocols used are based on symmetric techniques. The main reason for this is
that there did not exist smart cards which were able to do the large modular arithmetic needed
in public key algorithms in a reasonable time. Furthermore, there was not enough place to
store the large keys needed. In the very near future this will be possible ([DSS92]), but the half
a second needed to compute a digital signature is still rather long for our purposes. Besides, if
public key techniques are used, each entity should be able to acquire everyone else public key.
This implies that each entity does either need a very large data base, or has to ask a trusted
third party for a key it needs.

Finally, the number of messages exchanged should be as small as possible since each extra
communication takes extra time.

If we take all these considerations into account, and look for a symmetric protocol, using random
numbers, with as few passes as possible, we end up with the two pass unilateral authentication
protocol (S2), and the three pass lUutual authentication protocol (S4).

6.3 Access control

The definition of access control is, according to [17498-2]' "the prevention of unauthorized use
of a resource, including the prevention of use of a resource in an unauthorized manner". In
practice, access control consists of an identification/authentication of an entity, followed by the
grant (or denial) of access. Optionally some further privileges could be given to the entity.

The decision to give access is not a task of this signalling, this is done by the service provider.
Signalling only offers the means to give the service provider all the information it needs in order
to makt> the decision whether access should be given or denied. Signalling can nevertheless
contain information (cause information element) on whether the protocol will continue or not
and a reason for a premature stop, or information to the calling entity about the extent to
which it is given access.

6.4 Integrity

In section 4.2.1 several methods to achieve data integrity are described. Based on conventional
cryptography are the MAC and MDC, and based on public key cryptography various digital
signature algorithms are shown. One can think of using signalling to send the MAC, MDC,
or digital signature, but it is not obvious if this would be a signalling or an application function.

Not only the integrity of data is a security issue, but also the integrity of the network that is used
to transmit those data. The network management has to ensure the integrity of the links. With
the introduction of security in the network management, signalling will be needed for functions
like authentication and access cOlltrol. Other security considerations, like redundancy, are not
related to signalling.

Part II 29

6.5 Confidentiality including stuffing

Confidentiality of a message means that the message is transmitted in such a way that a third
party cannot learn anything about its content. This can be done by enciphering the message
using the public key of the receiver in asymmetric cryptography, or the key shared between the
two communicating parties in symmetric cryptography.

Since the data to be sent consists of the enciphered message, and data and signalling are sep
arated, signalling cannot intervent the transnllssion at data level. Signalling can only be used
to indicate that certain data is encrypted, and which kind of algorithm is used for doing this.

It is too early to elaborate on stuffing in detail now, since it is unknown yet how stuffing can
be done, and which kind of signalling will be needed.

6.6 Non-repudiation

The non-repudiation service is based on public key techniques. This will become important
in the near future. However, it might be a service that fits more at application level than at
signalling level, since in case a sender wants to have a proof of receipt, he will probably ask for
this in the message itself and not use separate signalling.

6.7 Network management

The task of the network management is to administer secure user registration and key man
agement. Having these duties, the network management becomes an obvious candidate for the
control of the identification of entities.

In case public key techniques are used, the network management will often be the trusted third
party, or certification authority that distributes and certifies the public keys.

6.8 Conclusion

The preceding sections have shown the interest of introducing optional security functions in sig
nalling. It is obviously too early to define the representation of these function in the signalling
messages. At this stage, the only thing we can say is that the elements to be introduced must
be able to transport very long parameters (up to 512 bits).

It is only in the target B-ISDN signalling protocol (see part 1 of the final document) that
security functions can be introduced. If the chosen model is in line with Q931, then security
functions can be introduced as optional information elE'lUE'nts in messag!'s likE' SETUP. NE'W
messages specially dedicated to security have also to be created. On thE' other hand, if an
object oriented approach is chosen (see part 2 of the final document), the security functions
may be introduced as a new class of objects in a later stage of the definition work.

Whichever signalling model will be adopted by the CeITT, the introduction of security func
tions has to be taken into account. It will be an important improvement with regard to the
existing situation, and a good step in the direction of a B-ISDN supporting a broad range of
new services.

Terminology

Access

A user's ability to communicate with (input to or receive output from) a system to a spec
ified area. Access does not include those persons (customers) who simply receive products
created by the system and who do not communicate or interface with the system or its
personnel. (NCSC-WA-OOl-85)

Access control

The prevention of unauthorized use of a resource, including the prevention of use of a
resource in an unauthorized manner. ([17498-2])

Authentication

The act of verifying the claimed identity of an iudividual, station or originator. (DOE
5636.2A)

Authentication exchange

A mechanism intended to ensure the identity of an entity by means of information ex
change. ([17498-2])

Authentication Token
Information conveyed during a shong authentication exchange, which can be used to au
thenticate its sender. ([1] and [CCITT88])

Availability

1. The property of being accessible and usable upon demand by an authorized entity.
([17498-2])

2. The prevention of the unauthorized withholding of information or resources. (ITSEC)

Block chaining

The enciphering of information such that each block of ciphertext is cryptographically
dependent upon the preceding ciphertext block. ([?])

Block cipher algorithm (n-bit)

A block cipher algorithm (i.e. a cipher that encrypts plaintext in blocks of a fixed length
at a time) with the property that plaintext blocks and ciphertext blocks are n bits in
length. ([UOIl6])

30

Part II 31

Certificate of a user
The public keys of a user, together with some other information, rendered unforgeable
by enciphering with the secret key of the certification authority which issued it. ([1] and
[CCITT88])

Certification authority
An authority trusted by one or more uses to create a.nd a.ssign certificates. Optionally the
certifica.tion authority may create the user's keys. ([7] and [CCITT88])

Claimant
An entity which is or represents a principal for the purposes of authentication, together
with the functions involved in an a.uthentication exchange on behalf of tha.t entity. A
claimant includes the functions necessary for engaging in authentication exchanges on
behalf of a principal. ([19798-1])

Collision resistant
The property of a function that it is computationally infea.sible to construct distinct in
puts which give the same output. ([II10118-1])

Confidentiality
1. The property that information is not made available or disclosed to unauthorized in
dividuals, entities or processes. ([17498-2])
2. The prevention of the unauthorized disclosure of information. (ITSEC)

Credentials
Data that is transferred to establish the claimed identity of an entity.

Cryptographic device
The electronic hardware part, or subassembly, which implements the encryption algo
rithm. ([?])

Cryptographic equipment
Equipment in which cryptographic functions (e.g. encryption, authentication, key gener
ation) are performed. ([?])

Cryptography
The discipline which embodies principles, means a.nd methods for the transformation of
data in order to hide its information content, prevent its undetected modification and/or
prevent its unauthorized use. ([17 498-2J)
Note:
Cryptography determines the methods used in enciphering and decipherment. An attack
on a cryptographic principle, means, or method is cryptanalysis.

Cryptology
The field that encompasses both cryptography and cryptanalysis. (FIPS PUB 39; AR
380-380)

Part II 32

Data encryption key
A cryptographic key used for encrypting (and decrypting) data. (FIPS PUB 112)

Data encryption standard
An unclassified crypto algorithm adopted by the National Bureau of Standards for public
use; (NCSC-WA-OOl-85)

Data integrity
The property that data has not been altered or destroyed in an unauthorized manner.
([17498-2])

Data origin authentication
The corroboration that the source of data received is as claimed. ([17498-2])

Data security
The protection of data from unauthorized (accidental or intentional) modification, de
struction or disclosure. (OPNAVINST 5239.1A; AR 380,380; NCSC-WA-OOI-85)

Decipher
To convert, by use of the appropriate key, enciphered text into its equivalent plain text.
(FIPS PUB 39)

Decrypt
To convert, by use of the appropriate key, encrypted (encoded or enciphered) text into
its equivalent plain text. (FIPS PUB 39)

Decipherment or decryption
The reversal of a corresponding reversible enciphering. ([17498-2])

Digital signature
Data appended to, or a cryptographic transformation of, a data unit that allows a recip
ient of the data unit to verify content and protect against forgery, e.g. by the recipient.
([17498-2])

Distinguishing Identifier
Information which unambiguously distinguishes an entity in the authentication process.
([19798-1])

Encipher
To convert plain text into an unintelligible form by means of a cipher system.

Enciphering or Encryption
The cryptographic transformation of data to produce ciphertext. ([17498-2])

Part II 33

Encryption algorithm
A set of mathematically expressed rules for rendering information unintelligible by ef
fecting a series of transformations through the use of variable elements controlled by the
application of a key to the normal representation of the information. (FIPS PUB 39)

Entity
A physical person, an organisation or equipment about which information is stored in a
database. ([LS90])

Entity authentieation
The corroboration that an entity is the one claimed. ([17498-2])

Hash code
The result of applying a hash function to data bits. ([IIlOIl8-I])

Hash function
1. A (mathematically) function which maps values from a (possibly very) large set of
values into a smaller range of values. ([1110118-2])
2. A collision-resistant function which maps a set of arbitrary strings of bits onto a set of
fixed-length strings of bits. ([IIlOIl8-I])

Identification
The process that enables recognition of a user described to a systelll. This is generally by
the use of machine-readable names. (AR 380-380; NCSC-WA-001-85)

Information
Any cOlllmunication or reception of knowledge such as facts, data, or opinions, including
numerical, graphic or narritive forms, whether oral or maintained in any medium, in
cluding computerized data bases, paper, microform, or magnetic tape. ([A-l30], DODD
5200.28)

Integrity
1. The assurance, under all conditions, that a system will reflect the logical correctness and
reliability of the operating system; the logical completeness of the hardware and software
that implement the protection mechanisms; and the consistency of the data structures
a.nd a.ccuracy of the stored data. In a formal security model, integrity is interpreted more
narrowly to mean protection against unauthorized modification or destruction of infor
mation. (MTR-8201)
2. The prevention of the unauthorized modification of information. (ITSEC)

Key management
The generation, storage, distribution, archiving and application of keys in accordance
with a security policy. ([17498-2])

Part II 34

Manipulation detection Code
A mechanism which is used to detect whether a data unit has been modified, either acci
dentally or intentionally. ([17498-2])

Message L An ordered series of characters intended to convey information. ([C87])

2. An arbitrary amount ofinformation whose beginning and end are defined or implied.
([C87])

Message authentication code (MAC)
A data field used to verify the authenticity of a message. ([1])

Network
A communications medium and all components attached to that mediull1 that are re
sponsible for the transfer of information. Such components lllay include ADP (Automatic
Data Processing) systems, packet switches, telecommunications controllers, key distribu
tion centers, technical control devices, and other networks. (DOE 5636.2A)

Reliability
The probability of a given automated system performing its mission adequately for a
period of time intended under the expected operating conditions. (AR 380-380; NCSC
WA-001-85)

Repudiation
Denial by one of the entities involved ill a communication of having participated in all or
part of the cOlllmunication. ([Ii 498-2])

Security

1. The quality or state of being cost-effectively protected from undue losses (e.g., loss of
good will, monetary loss, loss of ability to continue operations, etc.). (WB)
2. The combination of confidentiality, integrity and availability. (ITSEC)

Security service
A service, provided by a layer of comlllunicating open systems, which ensures adequate
security of the systems or of data transfers. ([17498-2])

Signature
The data identifying an entity associated with the data linking them to other data and
ensuring the integrity of the whole.

Symmetric authentication method
Method for demonstrating knowledge of a secret, in which both entities share COllllllon
authentic information. ([II10118-2])

Token (exchange AI)
Exchange authentic information conveyed during an authentication exchange. ([19798-1])

Part II 35

Trusted third party
A security authority, or its agent, trusted by the other entities with respect to security
related activities. ([19798-1])

Verifier
An entity which is or represents the entity requiring an authenticated identity. A verifier
includes the functions necessary for engaging in authentication exchanges. ([19798-1])

Abbreviations

ANSI
American National Standardisations Institute

B-ISDN
Broadband Integrated Services Digital Network

CA
Certification Authority

CAD
Card Acceptor Device

CCITT

DEA

Comit Consultatif International Tlphonique et Tlgraphique
(International Telegraph and Telephone Consultative Committee)

Data Encryption Standard

DECT
Digital European Cordless Telephone

DES
Data Encryption Standard

DSS
Digital Signature Standard

FIPS PUB
Federal Information Processing Standard Publication

GSM
Global System for Mobile Communications

IEC
International Electrotechnical Commission

ISO
International Organization for Standardization

ISDN
Integrated Services Digital Network

ITSEC
Information Technology Security Evaluation Criteria

36

Pa.rt II 37

KCC
Key Certification Center

KDC
Key Distribution Center

KTC
Key Translation Center

MAC
Message Authentication Code

MDC
Modification/Manipulation Detection Code

N-ISDN
Narrowband Integrated Services Digital Network

NIST
National Institute for Standardization and Technology

OSI
Open Systems Interconnection

PIN
Personal Identification Number

RSA
Rivest Shamir Adlelllan (cryptosystem)

(T)TP
Trusted Third Party

UMTS
Universal Mobile Telecommunication Services

Chapter 7

Notations

A is the distinguishing identifier of entity A.

B is the distinguishing identifier of entity B.

dKx (Z) is the result of the decipherment of data Z with a sYlUmetric algorithm using the key
Kx·

d5(Z) is the result of the decipherment of data Z with an asymmetric algorithm using the
secret key 5.

eKx{Z) is the result of thE' enciphE'ring of data Z with a syuullE'tric algorithm using thE' kE'Y
Kx·

eKXY (Z) is the result of the enciphering of data Z with a symmetric authentication key Kxy,
shared between entities X and Y.

eP(Z) is thE' result of the enciphering of data Z with an asymmetric algorithm using the public
key P.

KID is a key idE'ntifier.

K XY is a secret key associated with entities X and Y, used only in symmetric cryptographic
techniques.

N is a sequence number.

N x is a sequencE' number issued by entity X.

Px is a public key associated with entity X, used only in asymmetric cryptographic techniques.

R is a random number.

Rx is a random number issued by entity X.

s5 x (Z) is the signature Stg of data Z using the SE'cret kE'Y 5x.

5x is a secret key associated with entity X, used only in asymmetric cryptogra.phic tE'chniques.

T is a time stroup.

TokenXY is a token sent from entity X to entity Y.

TTP is the distinguishing identifier of the trusted third pa.rty, but in subscripts (e.g. for a time
stroup) T is used.

38

Part II

Tx is a time stamp issued by entity X.

l' II Z is the result of the concatenation of the data items l' and Z in that order.

l' I Z is the notation for data item Y or data item Z.

39

Bibliography

[I7498~21
ISO 7498~2: 1989
OSI Information processing systems - Open Systems Interconnection - Basic Reference
Model - Part 2: Security architecture.

[17816-1]
ISO 7816-1: 1987
Identification cards - Integrated drcuit(s) cards with contacts ~ Part 1: Physical charac
teristics.

[17816-2J
ISO 7816-2: 1988
Identification cards - Integrated circuit(s) cards with contacts ~ Part 2: Dimensions and
location of the contacts.

[II7816-3]
ISO/lEe 7816-3: 1989
Identification cards - Integrated circuit(s) cards with contacts - Part 3: Electronic signals
and transmission protocols.

[II7816~4J
ISO/lEe 7816-4: eD 1992
Identification cards - Integrated drcuit(s} cards with contacts - Part 4: Inter-industry
commands for interchange.

[IIi816-5]
ISO /IEe 7816-5: DIS 1992
Identification cards - Integrated circuit(s) cards with contacts - Part 5: Numbering system
and registration procedure for application identifiers.

[18372]
ISO 8372: 1987 Information processing - Modes of operation for a 64-bit block cipher
algorithm.

[19594-8]
ISO 959+8: 1990
Information processing systems - Open Systems Interconnection - The Directory.

[II9796]
ISO/lEe 9796: 1991
Information technology - Security techniques - Digital signature scheme giving message
recovery.

40

Part II 41

[19797]
ISO 9797: 1989
Data cryptographic techniques - Data integrity mechanism using a cryptographic check
function employing block cipher algorithm.

[19798-1J
ISO 9798-1: 1991
Information Technology - Security techniques - Entity authentication mechanisms - Part
1: General Model.

[19798-2]
ISO 9798-2: CD 1992
Information Technology - Security techniques - Entity authentication mechanisms - Part
2: Entity authentication using symmetric techniques.

[19798-3J
ISO 9798-3: DIS 1992
Information Technology - Security techniques - Entity authentication mechanisms - Part
3: Entity authentication using a public key algorithm.

[110116]
ISO 10116: 1992
Modes of operation for an n-bit block cipher algorithm.

[III0118-1]
ISO/lEC 10118-1: DIS 1992
Information technology - Security techniques - Hash functions - Part 1: General.

[IIl0118-2J
ISO/IEC 10118-2: DIS 1992
Information technology - Security techniques - Hash functions - Part 2: Hash functions
using an n-bit block cipher algorithm.

[A-130]

Office of Management and Budget Circular A-130, "Management of Federal Information
Resources" of 12/12/1985.

[DO DD5200.28]
US Department of Defense Directive 5200.28 (draft).

[ANSI81J
Data Encryption Algorithm, X3.92, American National Standards Institute, 1981.

[BLP76]

D.E. Bell and L.J. La Padula, Secure Computer Systems: Unified Exposition and Multics
Interpretation, Report MTR-2997 Rev. I. Bedford, Mass: The MITRE Corporation, 1976.

[BN89]

[C87]

D.F.C. Brewer and M.J. Nash, The Chinese Wall Security Policy, Proceedings of the
IEEE Symposium on Security and Privacy, May 1989, pp.206-214.

John M. Carroll, Computer Security, Second Edition, Butterworth Publishers, 198i.

[CCITT88]

The Directory - Authentication Framework, CCITT Recommendation X.509 (also DIS
9594-8), 1988.

Part II 42

[CW87J

[D83]

D.D. Clark and D.R. Wilson, A Comparision of Commercial and Military Computer
Security Policies, Proceedings of the IEEE Symposiulll on Security and Privacy, April
1987, pp.184-194.

D.E. Denning, Cryptography and Data Security, Addison-Wesley Publ., 1983.

[DH76]
W. Diffie and M.E. Hellman, New Directions in Cryptography, IEEE Trans. on InfoIlua
tion Theory, Vol.IT-22 (6), 1976, pp.644-654.

[DP89]
D.W. Davies and W.L. Price, Security for Computer Networks, John Wiley & sons, 1989.

[DS91]
Marijke De Soete, Smart Cards and their Applications, proceedings Compsec Interna
tional '91 London, Elsevier, 1991, pp.147-156.

[DSS92]

[E]

M. De Soete and A.-J. Selezneff, Digital Signatures in Smart Cards: a reality witb the
new PHILIPS chip 83C852, to be published by Teletrust.

G. Eizenberg, Mandatory Policy: Secure Systems Model, Toulouse: ON-
ERA/CERT IDERI, undated.

[EG85]
T. EI Gamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms, IEEE Trans. on Information Theory, Vo1.31-4, 1985, pp.469-472.

[E-G92J
ETSI-GSM, Technical Specification GSM 02.17, Subscriber Identity Modules, Functional
Characteristics, Version 3.2.0 (Release 92, Phase 1), 1992.

[E-R92]
ETSI-RES, European Telecommunication Standard, Final Draft, prETS 300 175-7, Digi
tal European Cordless Telecommunications (DECT), Common Interface, Part 7: Security
features, May 1992.

[ESAT91]
PC Security, ESAT course "'State of the Art and Evolution of Computer Security and
Industrial Cryptography", KU Leuven, 1991.

[FS87]
A. Fiat and A. Shamir, How to prove yourself: practical solutions to identification and
signature problems, Advances in Cryptology, Proceedings of Crypto '86, Lecture Notes
in Computer Science 263, Springer Vedag 1987, pp.186-194.

[LHL84]
C.E, Landwehr, C.L. Heitmeyer and J. McLean, A Security Model for Military Message
Systems, ACM Transactions on Computer Systems, VoL2 No.3, August 1984, pp.198-222.

[LS90]
Dennis Longley and Michael Shain, Data & Computer Security, Dictionary of standard
concepts and terms, M stockton press, 1990.

Part II 43

[NBS77]
Data Encryption Standard, Federal Information Processing Standards Publication 46,
National Bureau of Standards, US Department of Commerce, January 1977.

[NIST91]
A proposed Federal Information Processing Standard for Digital Signature Standard
(DSS), National Institute for Standardisation and Technology, August 1991.

[RSAi8]

[S90]

[T89]

R. Rivest, A. Shanur and L. Adleman, A method for obtaining digital signatures and
public key cryptosystems, Comm. of the ACM, Vo1.21, 1978, pp.120-128.

Arto Salolllaa, Public-Key Cryptography, EATCS monographs on theoretical computer
science, Volume 23, Springer Verlag Berlin Heidelberg, 1990.

A.S. Tanenbaum, Computer Networks, second edition, Pretence - Hall International Inc.,
1989.

[V92aJ
Klaus Vedder, Smart Cards, COlllpEuro 1992 Proceedings, Computer Systems and Soft
ware Engineering, 6th Annual European Computer Conference, IEEE, The Netherlands,
pp. 630-635, 1992.

{V92bJ

[W92]

Klaus Vedder, Security Aspects of Mobile Communications, Proceedings of the ESAT 91
course KU Leuven, Springer Verlag, to be published.

Michael Walker, Security in Mobile and Cordless Telecommunications, CompEuro 1992
Proceedings, Computer Systems and Software Engineering, 6th Annual European Com
puter Conference, IEEE, The Netherlands, pp. 493-496, 1992.

Part III
Digital Signatures

Contents

1 Introduction
1,1 Basic concepts .. , .

1.1.1 Digital Signatures
1.1.2 Hash functions , .

1.2 General outline . .
1.2,} The signing process
1.2.2 The verification process
1.2.3 Remarks ...

2 Digital signature schemes
2,1 RSA............. . .

2.1.1 Description of the algorithm.
2.1.2 Key generation ...
2.1.3 Length of the parameters
2.1.4 Security.. . ..

2.2 EIGamal (in GF(p), p prime)
2.2.1 Description of the algorithm.
2.2.2 Key generation
2.2.3 Length of the parameters
2.2.4 Security
2.2.5 Fields of characteristic 2 .

2.3 DSA,
2.3.1 Description of the algorithm.
2.3.2 Key generation
2.3.3 Length of the parameters
2.3.4 Security

2.4 Comparision of the schemes

3 Hash functions
3.1 MD5

3.1.1 Description of the algorithm.
3.1.2 Length of the parameters ..

3.2 DIS 10118-2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
SHA
3.3.1

Description of the single IE.'ngth hash function
Description of the double length hash fUllction
DES
IPES
Length of the paramE.'ters

3.3
Description of the algorithm.

1

4
4
4
5
6
6
i

10

11
11
11
15
Ii
Ii
18
18
19
19
19
20
21
21
22
22
22
23

25
25
25
28
29
29
30
31
32
33
35
35

Part III

3.3.2 Length of the parameters ..
3.4 ARjDFP

3.4.1 Description of the algorithm.
3.4.2 Length of the parameters ..

4 Combining hash fWlctions and signature schemes
4.1 Parameters .
4.2 Combinations

5 Smart cards
5.1 Generals
5.2 TBI00.

5.2.1 Layout.
5.2.2 Hierarchical Key Design
5.2.3 Personal Identification Number PIN
5.2.4 Authentication protocols ...
5.2.5 The RSA Public Key System
5.2.6 Signing and verification

5.3 DX Card
5.3.1 The chip
5.3.2 Personal Identification Number PIN
5.3.3 Authentication protocols.
5.3,4 Signing and verification

6 Key management
6.1 General considerations
6.2 Trusted Third Parties

6.2.1 Terminology
6.2.2 Tasks

6.3 Distribution of public keys.
6.3.1 Public key distribution without a trusted third party.
6.3.2 Public key certification.

6.4 Smart card management
6,4.1 PIN modification
6.4.2 Recycling of blocked Smart Cards
6.4.3 Invalidation of Smart Cards
6.4.4 Smart Card Validity Dates
6.4.5 Loss of Smart Cards
6.4.6 Smart floppy

7 Legal aspects
7.1 Tasks of signatures
7.2 Privacy aspects
7.3 EDI

8 Zero-Knowledge protocols
8.1 Introduction

8.1.1 What is zero-knowledge?
8.1.2 Zero-knowledge authentication protocols .

8.2 Fiat-Shamir.............
8.2.1 Fiat-Shamir authentication protocol
8.2.2 Fiat-Shamir signature scheme

8.3 Guillou-Quisquater

2

36
37
37
38

40
40
41

42
42
44
44
47
48
49
51
52
55
55
55
56
57

61
61
61
62
62
63
63
63
64
65
65
65
65
66
66

67
67
68
68

69
69
69
69
71
i1
74
76

Part III

A

8.3.1 Guillou-Quisquater authentication protocol
8.3.2 Guillou-Quisquater signature scheme

8,4 Ong-Schnorr improvement of Fiat-Shamir
8.4.1 Ong-Schnorr authentication protocol
8.4.2 Ong-Schnorr signature scheme
8.4.3 Small integer variant

8.5 Schnoll
8.5.1 Schnorr authentication protocol.
8.5.2 Schnorr signature scheme .. .

8.6 Girault-Pa.illes
8.6.1 Girault-Pailles authentication protocol
8.6.2 Girault-Pailles signature scheme

8.7 Comparision............
8.7.1 Overview " '"
8.7.2 Choices for the parameters
8.7.3 Concluding remarks .,

A.I Rabin primality test . . .
A.2 Probprime and probprimeinc
A.3 Provprime.
AA Strongprime..
A.5 Computations of discrete logarithms and factoring of a "hard integer"

3

76
78
79
79
81
82
84
84
86
88
88
92
93
93
94
95

96
96
97
99

. 101

. 102

Chapter 1

Introduction

1.1 Basic concepts

1.1.1 Digital Signatures

A digital signature in electronic mail is a counterpart to a handwritten signature in classic mail.
A common feature is that they must provide the following properties ([083], [N92]):

• The recipient is able to validate the signer's signature on M.

• It is impossible for anyone, including the recipient, to forge a signature.

• In case the signer should disavow signing a message M, it lUust be possible for a judge
or third party to resolve a dispute arising between the (claiming) recipient and the (dis
avowing) signer.

A major difference between handwritten and digital signatures is that a digital signature cannot
be a constant; it must be a function of the document that it signs. If this were not the case,
then a signature, due to its electronic nature, could be attached to any document. Furthermore,
a signature must be a function of the entire document: changing even one bit of the document
should produce a different signature.

According to the definition in [Ii498-2], a digital signature is "data appended to, or a crypto
graphic transformation of, a data unit that allows a recipient of the data unit to verify content
and protect against forgery, e.g. by the recipient".

Digital signatures can be used to ensure the following security services:

User authentication is the service which enables a user of the system to convince the party
he is communicating with that he really is who he claims to be.

Message integrity means that the contents of a message cantlot be changed without detec
tion. A digital signature on a message, transmitted together with this message can be
used to ensure the recipient of the message's integrity.

Non-repudiation of origin means that the recipient of a message receives together with the
message a proof that the message in fact originated fOlm the claimed sender. Not only
the intended recipient, but any third party can check this proof. Note that this security
service is at least as strong as message integrity, for if an acceptable proof of origin is
received, the message has not been changed on its way.

4

Part III 5

Non-repudiation of delivery provides the sender of the message with a proof that the in
tended receiver indeed received the message. To achieve this security service, the recipient
has to send upon receipt of the original message a signed receipt back to the sender.

Most digital signature schemes are based upon a particular public key system. Such a public
key system includes a procedure producing pairs of keys: a secret key and a public key, and
procedures using the two keys. In any public key digital signature system, the secret key
is involved in a. signature process for signing messages, a.nd the public key is involved in a
verification process for verifying signa.tures ([II9796]).

1.1.2 Hash functions

Once the parameters of a signature scheme are chosen, the length of the input is fixed. This
length varies from about 160 to 800 bits nowadays. Messages of any greater length will have to
be processed in some way prior to the signing operation.

One possibility to sign a message of arbitrary length would be to divide the message in a
sequence of "blocks" of appropriate size for the signature function and then sign each piece
individually. That is, if the message M is made up of the sequence

where each M, has the required length, then this message could be signed by computing

Sign(Md, Sign(M2), ••• , Sign(Mr).

Unfortunately, this method has a number of disadvantages ([MPW92]):

1. There is no linkage between different parts of the message, and so the recipient of a
signed message will not know if the message components (the M,) have been reordered,
replicated or partially deleted during transmission. A remedy is to include redundancy
in the message blocks, but this has the disadvantage that the number of signatures to be
computed increases.

2. Everyone can compute signatures of random messages by the public nature of the sig
nature verification process. A forger can choose a value S at random, and compute the
corresponding message M Ver(S). Then S is a valid signature on M. This problem can
be removed by adding redundancy to the message to be signed, but then the efficiency of
the scheme is reduced even further.

3. The signature algorithm has to be applied t times, which could be very inefficient since
many proposed signature schemes are relatively difficult to compute.

These deficiences lead to the introduction of "one-way hash functions'· in cryptography. A
one-way hash function is a public function h, which should be simple and fast to compute, that
satisfies three main properties ([MPW92]):

hI: It must be able to convert an arbitrary-length message M into a fixed-length string h(M).

h2: It must be one-way, which means that given an arbitrary value 1:1 in the domain of h, it
lUust be computationally infeasible to find a message M such that h(M) = y.

h3: It must b", collision-free, which means that it must be computationally iufeasible to
construct two messages M and M with the property that h(M) = h(M).

Part III 6

The need for h1 should be clear. h2 is present to prevent a fraudulent interceptor of a mes
sage and its signature (say M and Sign(h(M» from replacing M by M with the property that
h(M) = h(M). The need for h3, which in fact implies h2, is less obvious. To demonstrate
why this property is present, assume that we have a hash function h which does not satisfy h3.
Then a malicious party Z may be able to construct two message Ml and M z with the same
hash result (h(Md = h(M2)) such that another user, say X, would happily sign Mb but would
not sign M'l, while Z would like to have X's signature on M2 • Now Z can offer Ml to X to
sign, and claim later on that X signed Mz.

A signature on a message M is now computed by first computing h(M), and using this hash
result, possibly after extension, as input to the signature scheme.

[1110118-1] defines a hash function as a "coUision-resistant function which maps a set of arbitrary
strings of bits onto a set of fixed-length strings of bits". Some alternative terms for a hash
function are compressed encoding function, and condensing function. The string of bits which
is the output of a hash function appears under various names in literature: hash result, hash
value, hash code, Modification - or Manipulation - Detection Code (MDC), residue, check sum,
check value, (message) digest, and imprint.

1.2 General outline

In the remainder of this document we will consider various aspects of the signing and the veri
lying process into detail, but first we briefly describe the idea behind the two processes.

To store the keys needed in the signing and verification process, we willlllake use of smart cards
as tamper resistant devices. We assume that two kinds of smart cards can be used, the TB100
card with a DES chip and the DX card with an RSA chip. Since the DX card provides digital
signature generation and verification using the RSA algorithm, the actual signing process can
take place in the card itself. This clearly enhances the security.

1.2.1 The signing process

The signing process is depicted in figure 1.1, and consists of the following steps:

1. The user authenticates himself to the smart card by presentation of his PIN.

2. Either a unilateral authentication protocol of the smart card of the signer versus the
application is executed, or a mutual authentication protocol of as well the smart card
versus the application as the application versus the smart card is executed.

3. The document to be signed is brought into the application.

4. The application transforms the document to ASCII format.

5. The signer chooses a hash function from a predescribed set.

6. The application hashes the document in ASCII format to a string with a fixed (short)
length, depending on the hash function chosen.

7. The signer chooses an asymmetric algorithm (the signature algorithm) from a predescribed
set.

Part III 7

8. If necessary, the application uses a publicly known procedure to expand the hash result to
get a string with the required input length for the signature algorithm: the intermediate
string.

9. Now there are two possibilities:

• In case the smart card used is a DX card and the algorithm chosen is RSA:

(a) The application transfers the intermediate string to the smart card with the
request to sign it.

(b) The smart card signs the intermediate string using the secret RSA key stored
on it.

(c) The smart card transfers the resulting signature to the application .

• Otherwise:

(a) The application transfers a request to the smart card for the secret signature
key required for the chosen function.

(b) The smart card transfers this signature key to the application enciphered under
a card dependent key. ThE' signaturE' kE'Y is stofE'd enciphE'fed on the card, thus
it can be read out in "in dear", which is much more efficient than an enciphered
read from the card.

(c) From the identity of the smart card, the application computes from a root key
the key needed to decipher the signature key, and obtains by deciphering the
signat ure key.

(d) The application signs the intermediate string using the obtained signature key.

10. The application creates a signed document containing the original document and the
signature, together with a note on who signed the document. Also information on the
hash function and on the signature algorithm used are included.

SUlllmarized, the message M (transformed to ASCII format) is hashed to h(M), possibly ex
panded to J(h(M)), and finally signed to obtain the signature S = Sign(I(h(M))):

M h(M) J(h(M)) S = Sign(I(h(M))).

1.2.2 The verification process

To verify a signed document, the protocol depicted in figure 1.2 and described below has to be
executed:

1. The user authenticates himself to the smart card by presentation Co his PIN.

2. Either a unilateral authentication protocol of the smart card of the verifier versus the ap
plication is executed, or a mutual authentication protor:ol of as well the Slllart card versus
the application as the application versus the smart (ard is executed. Note that it. is not
necessary that a smart card is involved in the verification process, because all parameters
needed to verify a signature are public. We assume. however, that only an authenticated
smart card has access to the verification program of the application. Optionally further
restrictions can be added, for example 011 the signat ures that a particular card is allowed
to verify.

3. The signed document is brought into the application.

4. The application reads out the identity of the signer, and the identification of the hash
function and signature algorithm used.

Part III 8

5. The application obtains from the signed document the original document and transfers it
to ASCII format.

6. The application uses the specified hash function to hash the document in ASCII format
to a string with fixed (short) length depending on the hash function.

7. The application obtains the public key of the signer for this signature algorithm and checks
its validity. Usually the validity of the public key is ensured by checking its certificate:
a digital signature of a certification authority on the public key. Using the authority's
public key, the application can verify this signature, and hence the validity of the signer's
public key.

8. Now there are two possibilities:

• The first option is always possible: The application uses this public key to verify
("decipher") the obtained signature .

• In case the smart card used is a DX card and the algorithm chosen is RSA, it is also
possible that the verification is done in the card. Thus, the application transfers the
public key of the signer and the signature to the smart card, and the smart card
"deciphers" the obtained signature with the obtained key. The card transfers the
result to the application. Note that there need to be facilities that enable the card
to encipher not only with the key stored, but also with a key delivered.

9. If necessary, the application uses a publicly known procedure to shorten the "deciphered
signature". In this procedure, the redundancy added in step 8 of the signing process is
taken away, and the result is a string with the same length as an output string of the hash
function used.

10. The application compares the result with the string obtained in step 6. If they are equal
it outputs "OK", and otherwise the output is "not OK".

Summarized, the obtained message M (transformed to ASCII fOImat) is hashed to h(M):

M -+ h(M);

and on the other hand, the obtained signature S = Sign(I(h(M))) is "deciphered" to obtain

Ver (Sign(I(h(M)))) = I(h(M)), which is possibly shortened to h(M):

J(h(M))

If the two results h(M) and heM) are equal, the signature is accepted:

7--

h(M) == h(M),

Part III 9

document

smart card ---- application
- algorithms ::::

- hash functions ::::

signed document

Figure 1.1: The signing process

signed document

1
/ B ",tificat"

- algorithms -----
. smart card application

- hash functions ::::

OK or not OK

Figure 1.2: The verification prOfess

Part III 10

1.2.3 Remarks

From the sketches of the signing and verification process, we can see tha.t the following fUllc
tiona.lities of the equipment used a.re required:

1. The application (PC) must be able to hash an arbitrary length message to a. fixed length
imprint.

2. When the DX card is used in combination with the RSA algorithm, the smart card must
be able to sign a bitstring of the required length. Otherwise the a.pplication has to be
able to do this.

3. When the DX card is used in combination with the RSA algorithm, the smart card or the
application must be able to "decipher" a signature, given the public key and the digital
signature. Otherwise the application has to be able to do this. Note that even when then
smart card "deciphers" the signature, the application has to do the remaining part of the
signature verification: calculating the hash value and the intermediate string.

Chapter 2

Digital signature schemes

2.1 RSA

The RSA algorithm was published in 1978 by R. Rivest, A. Shamir and L. Adleman ([RSA78]).

2.1.1 Description of the algorithm

First we will give the original algorithm, and afterwards we will describe the signature algorithm
of the ISO/IEC standard 9796 ([II9796]) which is basica.lly designed for multiplicative publid
key algorithms such as RSA. This standard can withstand certain attacks that the plain RSA
algorithm cannot. As mentioned before, it can be used for other algorithms than RSA, but in
an annex RSA is used as an example, and this is up till now the only implementation of the
standard. We will give the "ISO/IEC 9i96-RSA algorithm" after the description of the general
standard.

Description of the plain algorithm

preliminaries ([RSA78])
Each signing entity secretly and randomly selects two distinct odd primes p and q. The
product of the two primes is a number n, the public modulus, of, say, 512 bits.
Then each signing entity computes lcm(p - 1, q 1) and chooses a positive integer t'

coprime to this number. This number v will be the signer's public verification exponent.
In specific applications the public verification exponent may be standardized and then it
has to be checked that p and q satisfy the condition above. Small numbers have some
practical advantages.
Finally, each signing entity computes its secret signing exponent s as
s = v-1mod lcm(p 1, q - 1).
The secret key is given by (n, s), and the pu bUr key by (n. !'j.

signing
The signature of a message 111 is computed as S - :U' mod n.

verification
Given 111 and a number S that should be its signature. a verifier C'hecks if S" mod n equals
M. If this is the case, the signature is accepted, otherwise S is rejected.

Various attacks on RSA exist, mainly based on the lUultiplicative properties of this scheme:

11

Part III 12

Problem 1 ([S92]):
A forger can compute signatures ohandom messages by choosing at random a signature 5 and
computing the corresponding message M as M 5" mod n.

Problem 2 ([892]):
A forger can create new signatures from old ones: if (Ml • 5d and (Mz• 5:d are valid message-
signature pairs, then (MIMz, 5152) satisfies (5152),' MIM2 mod n.

Solution 1&:2:
Introduce redundancy in the messages to be signed. This is done in the algorithm described
in the ISO flEC standard 9796 ([II9796]). Here the message is transformed to an intermediate
integer I which has a special form, and the probability that S· has that form is very small
when 5 is chosen without further knowledge (of e.g. s). Also the use of a cryptographic hash
function before signing prevents such attacks.

Description of the ISO flEe 9796 algorithm

This algorithm can be used to transform a hash result of bitlength LH to a signature with
length Ls if it holds that LH ::; 8· l Lit3 J.
According to ISO flEC 9796, the hash result H has to undergo the following processes before
the actual signing process:

SI padding (H P);

S2 extension (P --> E);

53 redundancy (E R);

S4 truncation and forcing (R -+ 1).

Then the actual signing process can take place:

55 signature production (I 5).

We will describe those processes below.
In all the processes, the values are represented as strings of bits where the most significant bit
is the leftmost one.

SI. padding

Hash result H is padded to the left with 0 to 7 zeros as to obtain a string of z bytes.
The number r is defined as the 1 + the number of padded zeros, thus 1 ::; r ::; 8.
The padded message is called P == Hz IIH.- 1 il ... IIH21IH1> where the rightmost z -1 bytes equal
the corresponding bytes of H, and Hz consists of r - 1 padding zeros followed by the 9 - r most
significant bits of H.

S2. extension

Define t as the least integer such that 161 Ls - 1.
Repeat the z bytes of P as many times as necessary, in the original order and concate
nated to the left, until a string of t bytes is formed. This string is the extended message
E = ... H IIIH.II ... liHI • Since t not necessarily divides.::, the rightmost bytes of P lllay occur
once more ill E than the leftmost ones.

Part III 13

S3. redundancy

The extended message with redundancy R is obtained by interleaving the t bytes of E in odd
positions and t bytes of redundancy in even positions. The 2z-th byte of R codes the message
length by its value and position.

For 1 SiS t holds:
- the (2i - 1)-th byte of R equals the i-th byte of Ej
- the 2i-th byte of R equals the image of the i-th byte of E according to the shadow S specified
below, except for the 2z-th byte where r is exclusive OR-ed to this value.
Thus,

R::: ... S(H:) ~ rlIH: II.· ·IIS(H2)1IH21IS(HdIlH1 •

If byte m consists of the nibbles ~zll~b then S(m) consists of the nibbles n(SL2)IIIl(~x).

o 1 2
E 3 5

3 4
8 9

5 6 7
4 2 F

S4. truncation and forcing

8
o

9
D

A
B

B
6

C D
7 A

E
C

F
1

The intermediate integer I is coded by a string of Ls bits, where the most significant bit is
forced to "1". The Ls - 1 least significant bits are those of R, except for the least significant
byte ~211fll which is replaced by fll116.

S5. signature production

The signature S is obtained as a string of Ls bits by applying to I the signature function under
control of the secret signature key: S = Sign(I).

Of course, the reverse actions have to be undertaken when verifying a received signature:

VI signature opening (S - i), if OK then

V2 message recovery (i -; il), if OK then

V3 redundancy checking.

The three processes will be described below:

VI. signature opening

The signature S is transformed to the recovered intermediate integer i by applying to 5 the
verification function under control of the publk verifkation k'-T i = 1"u'(5).

If i is not a striug of Ls bits where the most significant bit is "1" and the least significant
nibble is valued to 6, S shall be rejected.

V2. message recovery

First R is recovered as the 2t-bytes string where the 1 - Ls mod 16 most signifi!.'ant bits are
zeros and the L s - 1 least significant bits are those of i, except for the least significant byte
which is replaced. If fl411J.t311flZ116 are the four least significant nibbles of i, then the two least
significant nibbles of R are Il-l(fl4)II~z.

Part III

Write

R = Mull·· .IIM2 1IM1.
Compute for 1::; i ::; t the sum Xi = M 2• 9 S{M2.-d, and reject S if these all are zero.
Recover z as the first i for which the sum is non-zero.

14

Recover r as the value of the value of the least significant nibble of this first non-zero sum, and
reject S if r is not valued £rom 1 to 8.

The recovered padded message P is the string of the z least significant bytes in odd positions
in R:

P = M:h-111.· .IIM2i - 111·· .IIMJIIM1'
Reject S if the r - 1 most significant bits of P are not all zero.

Finally, recover iI as the string of the 8z + 1 r least significant bits of P.

V3. redundancy checking

Calculate from P according to 52 and S3 an extended message with redundancy fl, and reject
S if the L5 - 1 least significant bits of Rand fl are not equal.

Description of the ISO jlEe 9796-RSA algorithm

If 512-bit RSA is used, the requirement LH ::; 8· l L'it3 J becomes LH ::; 8·32 = 256. This
holds for all combinations of RSA with one of the hash functions described in the next chapter.

In the signing process, the first four steps, padding, extension, redundancy and truncation
and forcing are exactly executed as in the standard. The signature function in last step is
RSA-specific, and requires the following preliminaries:

• Each signing entity selects a positive integer v as its public verification exponent. In spe
cific applications the public verification exponent may be standardized. Small numbers,
like 2 or 3, have some practical advantages.

• Each signing entity secretly and randomly selects two distinct odd primes p and q subject
to the following conditions:

- If v is odd, then p 1 and q 1 shall be coprime to v;

- If 11 is even, then ~ and ~ shall be coprime to v. Moreover, p and q shall not be
congruent to each ~ther modulo 8.

- The product of the two primes is an 512-bit number n.

The product of those two prime factors is the public modulus 11.

• Each signing entity computes its secret signing exponent as the least positive integer s
such that s . v-I is a multiple of

- lcm(p - 1, q 1) ift. is odd;

- ~ ·lcm(p I, q - 1) if l' is even.

According to the above algorithm, the intermediate integer I is a string of 511 bits. In ('ase v
is even a.nd the Jacobi symbol of I with respect to n is -1, then 1 should be replaced by 1/2.

Part III 15

The signature is now computed as

S = min(J' mod n,n - (1" mod n)).

When a received signature is verified, it is first checked that S is a positive integer less than
n/2. Then the integer T is computed as S1' mod n, and thereafter the recovered intermediate
integer j is defined as follows
• ifT = 6 mod 16, then j = Tj
· if n - T = 6 mod 16, then j = n - T.
Moreover, when v is even
• if T = 3 mod 8, then j = 2Tj
- if n - T = 3 mod 8, then i = 2(n - T).

In all other cases, S is rejected.

As in the general standard, S is also rejected if i is not a string of Ls bits where the most
significa.nt bit is "1" a.nd the least significant nibble is valued to 6.

The message recovery and redunda.ncy checking is performd exactly as described in the standard,

2.1.2 Key generation

The public key consists of the pair (n, v), and the secret key of (n, s).

In the key generation the choice of the primes p and q is a very important part, They should be
chosen such that they do not introduce weaknesses in the RSA system. We mentioned already
two a.ttacks on RSA that the algorithm modified accordingly to ISO/IEC 9796 can withstand.
Below some more attacks to RSA are described, together with requirements on the primes such
that the attack cannot be carried out.

Problem 3 ([083], [092]):
For certain keys, Ie-enciphering the message a small number of times restores the original plain
text ([SNii]). Thus, given Co := M" mod n and the public key (n,v), a cryptanalist may be
able to determine M by computing C, Q'-l for iI, 2, ... until Ci equals Co, say for i = m.
Then Cm -1 equals M.

Solution 3:
Clearly, this attack is only worthwhile if m is reasonably small, Rivest ([R78]) showed that if p
and q are chosen such that p - 1 and q - 1 have a large prime factor Tp, rq respectively, where
r" - 1 and rq - 1 have large prime factors tp, tq respectively, the probability of succes of this
type of attack is extremely small. To be more exact, if t' is such that

:x..:..:
t' 't -:j: 1 mod Tl' and t'

tben m is divisible by both tp and t q, benee it is at least i/, . iq ([092]).

Problem 4 ([083]):
Blakley et all ([BB78j) [BBi9]) show that for any choice ofkeys, at least nine plaintext messages
will not be concealed by enciphermentj that is, for any sand 11. M' mod 11 = M for at least
nine M. A poor choice of keys, however, will conceal less than half of all possible plaintext
messages. Although the possibility of picking one out of nine such messages is small if messages
are 200 digits long, a poor choice of keys will conceal less than 50% of all possible messages.

Part III 16

Solution 4:
The same authors argue that the system will be more resistant to this type of attack if primes
p and q are selected such that p 1 = 2p, and q - 1 = 2q, with p and q primes.

Problem 5 ([D92]):
The product n can be easy to factor.

Solution 5:

• Choose p and q such that p - q is larger than 275
•

Otherwise there is an elementary way to factor n.

• Choose p and q of about the same length.
Of the algorithms that can be used to factor numbers that have no special properties,
the quadratic sieve algorithm (or maybe eventually its variant the number field sieve
([LLMP90j)) is currently the best. It can factor 350-400 bit numbers in about 60 days
using a large number of computers in parallel. The hardest input for such algorithms
are randomly chosen numbers consisting of two prime factors of approximately the same
length.

• Choose p and q such that neither p - 1 nor q - 1 is smooth (i.e. has only small prime
factors), concretely they shall have a prime factor of at least 75 bits.
If p - 1 or q - 1 is not smooth, the factoring method suggested by Pollard can be used.
The generalisation of Lenstra works if an elliptic curve over p can be found whose order
is a smooth number, but this generalisation is very inefficient. However, if the numbers
used are about 350-400 bits, a randomly chosen prime will satisfy the condition with very
large probability.

• Choose p and q such that neither p + 1 nor q + 1 is smooth, or to be exact: p + 1 and
q + 1 shall have a prime factor of at least 275 bits.
If n has a prime factor p such that a particular function of p produces a smooth number,
the Cyclotomic Polynomial Method suggested by Bach and Shallit can be used ([BS89]).
Of the possible choices for this function the ones involving pZ or larger powers of p are not
practical. The function p - 1 has already been considered, but p + 1 should additionally
be checked for smoothness.

Summarizing the above security problems for certain choices of p and q, and the ways to
overcome them, we find the following precautions that should be taken in selecting p and q:

1. p and q should be of approximately the same length, but p - 1 and q - 1 should be more
than 75 bits;

2. p-l, q - 1, p+ 1 and q + 1 should contain large prime factors 1',,, 1"J' 51' and 5" respectively,
all of at least i5 bits;

3. The multiplicative order of e modulo (p - 1)(q 1) must be large, which is satisfied if
r
"

1 and r q - 1 have prime factors t I' aud t'l respectively such that

.:.r:...:..:
e 'r ::j:; 1 mod r,,, and € , ::j:; 1 mod 1"1'

and such that t,) . tq is at least i5 bits long. 1
The first part of the condition 1. can easily be achie ed by the specification of the interval in
wlU<h p .. bprim' or p .. bprim"" (,'" Ann" A.2) h1 to find a p,;m" and th' p,.bability that

Part III 17

the second part is not satisfied is negligible (but can of course easily be checked).

The algorithm strongprime ([D92]) described in Annex A.4 generates a prime p chosen at
random from the interval I based on a seed s, such that it can be used in RSA with public
exponent t' satisfying the last two constraints.

2.1.3 Length of the parameters

The public key of a user is the pair (n, t') of which n has 512 bits, and v has w bits.
w = 0 if v is the same fixed exponent for each user and w = 512 if v can be chosen freely. A
typical value for v, suggested by the banking standard [111166-1], is v = 216 + 1(= 224 + 1): the
fourth Fermat number. This exponent v is a large prime, but computing the v-th power takes
only 16 squarings and one multiplication.

The "secret key" (n, 5) consists of a 512-bit n and a 512-bit s. The modulus n is in fact a public
value, but since it is needed to sign messages it has to be a part of the signing key.

The length of the plaintext M as well as the length of the signature M' is 512 bits.

2.1.4 Security

Breaking R8A is not harder than factoring, because a factoring algorithm automatically gives
a cryptanalytic procedure. The fastest general purpose algorithm known to factor n in p and
q is one of the mUltiple variations of the quadratic sieve algorithm ([P85], [887]), and it takes
about

steps.

In [LLMP90] the number field sieve factoring algorithm is presented. This algorithm can only
be used to factor n of the form n r e - s, where r is a small positive integer, and s is a non-zero
integer of small absolute value. Numbers n of this forlll can be factored in expected running
time of

where c ::::: 1.526. The algorithm can be generalized to factor integers of arbitrary form, but the
practical consequences remain to be seen ([LM91b]).

Part III 18

2.2 EIGamal (in GF(p), p prime)

2.2.1 Description of the algorithm

As for the RSA algorithm, we will first describe the original EIGamal algorithm ([EG85]). Af
terwards we will give a variant algorithm which slightly differs from the first algorithm. This
variant reduces the time needed to compute a signature, while it is as least as secure as the
original scheme ([AMV89]).

Description of the original algorithm

preliminaries

A prime p and a generator a of GF(p) are selected ([K87]). Generally p is 512 bits, and
in the sequel of the description we will assume that p has this length.

Each signing entity secretly and randomly selects a 512-bit number :z: which will be its
secret key. From the secret key :z: the entity computes its public key y as y aX mod p.

signing

The signing process consists of a preprocessing step, which can be done off-line even be
fore the message to be signed is known, and the actual signature generation.
In the first step, the signing entity chooses a random number k, 0 < k < p subject to the
condition that gcd(k,p - 1) == 1, and it computes r as a k mod p.

To sign a 512-bit message M, the signing entity computes the number s;

s = k- 1(M :z:. r) mod (p - 1).

Thus,

The signature S for M is the pair (r, 8).

verification
Given At, rand s, a verifier checks if

If this does not hold, the signature is rejected.

Description of the variant algorithm

To create signatures, the signing entity must solve for s

8 = k- 1 (M - x . r) mod (p - 1).

which requires finding k- 1 in GF(p). The work to be done is that of the Euclidean algorithm.
This is comparable to a full exponentiation, thus, in general. time consuming.
In the variant scheme ([AMV89]), s is computed as

s=x-l(M k·r)mod(p-l),

Pa.rt III 19

The advantage is that the signing entity can compute ;r-l once, and then repeatedly use it to
sign messages.

A verifier checks, given if, f and 5, if

aM = y' . rf mod p.

A forger can choose r fixed and try to find the matching s by solving

which is the discrete logarithlu problem. Another attack is to choose s fixed and try to find the
matching r from

r'" = aM . y-' mod p.

This is the problem of finding a solution to rr = (3 mod p for some (3 in the field. This is in all
likelihood lUore difficult than the discrete logarithm problem itself.

Thus, the variant scheme is not only more efficient for the signer, but also lUore secure.

2.2.2 Key generation

The algorithm makes use of a 512-bit prime p and a generator Q in the field GF(p). Thus, we
need a way to generate a prime p, and a generator of the field.
In Annex A.2 and A.2 algorithms are described whicb generate probable and provable primes
respectively. Before using a (probable) prime generated by one of these algorithms it should be
checked that p is not chosen as p = f(a) for a polynomial f which has small coefficients and a
low degree, because then the number field sieve can compute discrete logarithms ([S92)).

Since p and a can be common to a large group of users, not every signer has to be able to
generate them. However, every signer has to be able to generate a random number which it
will use as its secret key.

2.2.3 Length of the parameters

Each user has to know p and a, both consisting of 512 bits. These parameters can be tbe
same for a large group of users, but if there are several user groups with different primes and
generators of the field, a user must know or be able to obtain the p's and a's of all groups
containing a user whose signature he wants to verify.

The public key y has a length of 512 bits, and also the length of the secret key ;z; is 512 bits.

The signature on a 512-bit message consists of (r,s). Both rand s have a length of 512 bits,
so the total signature length is 1024 bits.

2.2.4 Security

To break the original system, a forger can choose r fixed and try to find the matching 5 by
solving

r<' = aM . y-" mod p.

which is the discrete logarithm problem.
Another attack is to choose 5 fixed and try to find the matching r from

r' . y" = aM mod p.

Part III 20

It is not proved that this is as hard as the discrete logarithm problem, but up to now it is not
possible to solve it in polynomial time ([DS91a]).

In the variant scheme, a forger can choose r fixed and try to find the matching s by solving

which is the discrete logarithm problem. Another attack is to choose s fixed and try to find the
matching r from

rr = aM . y-' mod p.

This is the problem of finding a solution to rr = {3 mod p for some (3 in the field, which is
believed to be more difficult than the discrete logarithm problem itself.

We can conclude that the security of the EIGanlal signature scheme is strongly dependent on
the difficulty of computing discrete logarithms. The computation of the discrete logarithm in
GF(p) for p prime takes about

e Jln(p lln(ln(p))

steps as p -+ 00 ([LM091]). This estimate is the same as that for factoring large integers of the
same size as p which have no special features (see the previous section).

2.2.5 Fields of characteristic 2

The EIGamal signature algorithm is based on the difficulty of computing discrete logarithms
in a finite field. In the foregoing we considered only the field GF(p) for p prime. However,
the scheme can easily be adapted to work in all finite fields GF(q"), q prime and n an integer
larger than 1. Especially the field GF(2") deserves some attention, sinct' arithmetic in GF(2")
for large n can be performed faster than arithmetic over largt' primt's ([MPW92]).

[v092] contains an extensive description of the practical methods known to compute discrete
logarithms in GF(2"). His analysis gives a (heuristic expected) asymptotic running time pro
portional to

eC'" 1/'(1n")2/' where c:::::: 1.35.

The sallle paper also compares the EIGamal system in GF(2") and the RSA system using
an n-bit modulus N. As a comparision of the running times of the best currently known
algorithms of computing discrett' logarithms in GF(2") and factoring of n-bit integers shows,
tht' EIGamai algorithm is less secure than RSA when the same modulus length is used. This can
be compensated for by using a larger bitlength in the EIGamal scheme. As a rough guideline,
to match the It'vel of security offered by 512-bit RSA, n should be chosen about 750 in the
EIGamal scheme. However, the fields G F(2") can be chosen such that they still admit efficien t
arithmetic. The price to pay for the Jargt'r modulus size i!:' somewhat larger key sizes, and
greater bandwidth and storage requirements.

Part III 21

2.3 DSA

DSA is an abbreviation for Digital Signature Algorithm. The same algorithm is also known
under the name DSS: Digital Signature Standard. The algorithm is under standardization by
NIST ([NIST91]) in the US.

2.3.1 Description of the algorithm

preliminaries
The following numbers are selected:

• a prime p, generally 512 bits;

• a prime divisor q of p - 1, generally 160 bits;

• an integer 9 defined as h(p-ll/q mod p, where h is any integer with 1 < h < p such
that the number 9 is larger than 1 (a non trivial q-th root of unity).

The prime p can be common for all, or a large group of, users, or it can be individual for
each user. Both possibilities have their own advantages and disadvantages. A common
p makes computing discrete logarithms modulo this prime p more lucrative. But if each
user has its individual p, then this prime has to be a part of this user's public key, which
increases the storage or communication of the public key.

Each signing entity secretly and randomly selects an integer x, 1 < x < q, which will be
its secret key. Frolll the secret key x the entity computes its public key y as y = gX mod p.

signing

The signing process consists of a preprocessing step, which can be done off-line even be
fore the message to be signed is known, and the actual signature generation.

In the first step, the signing entity chooses a random number k, 0 < k < q, and it COlll
putes r as r = (g" mod p) mod q.

To sign a 160-bit message M, the signing entity computes the number s:

s = k- 1(M + x . r) mod q.

If s = 0 it can not be used (the verifier has to compute the inverse of s), thus if s happens
to be zero, the signer has to start over again by choosing another k at random ([A92]).
The signat ure S for M is the pair (r, s).

verification
Given if, rand 5, a verifier first checks if 0 r q and 0 s· q: if either condition is
violated, the signature is rt'jected.

Otherwise the following numbers are computed:

• w = 8- 1 mod q;

• 'Ul = (if. w) mod q;

• 'Ul = (;: . w) mod qj

• v = «g14, . y"') mod p) mod q.

Part III

If l' = r the signature is accepted.
Indeed, if if = M, r rand s = 8, then

v ((gMtI'llIod q • (gxrl1'lllod\!) mod p) mod q

(g(M+xr)1J'lllod q mod p) mod q

= (gl.: mod p) mod q

= r~

2.3.2 Key generation

22

The algorithm makes use of a prime p and a prime q which is a divisor of p - 1. Thus, we need
a way to generate those two primes.
In Annex A.2 and A.3 are algorithms described that generate probable and provable primes
respectively. Note that also is described how it can be guaranteed that q divides p - 1.
Before using the (probable) prime p generated by one of these algorithms it should be checked
that p is not chosen as p I(a) where for a polynomial I which has small coefficients and a
low degree, because then the number field save can compute discrete logarithms ([S92]).

The standard suggests to find the integer 9 needed by trial and error.
Given p and q the algorithm is:
1. set h, 1 < h < p - 1, equal to a randomly chosen llumber;
2. set t equal to h(p-l)!q mod p;
3. if t = 1 go to step I, otherwise set 9 equal to t.

Since p, q and 9 can be COIllmon to a large group of users, not every signer has to be able to
generate them. However, every signer has to be able to generate a random number that will be
its secret key.

2.3.3 Length of the parameters

If the length of p, q and 9 are chosen acoording to the recommendation in the standard, the
triple (p,q,g) consists of (512,160,512) bits. This triple can be common for a group of users. If
there are several user groups with differellt triples, a user must know the p's, q's and g's of all
groups containing a user whose signature he wants to verify.

The public key y of a user consist of 512 bits, and the secret key 3: of a signer is (only) 160 bits
long.

The signature pair (r, 8) for a I60-bit message is 320 bits long: both rand 8 are 160-bit numbers.

2.3.4 Security

The security of the DSA signature scheme is based 011 the difficulty of computing discrete
logarithms. The computation of the discrete logarithm ill GF(p) for p prime takes

e ,,!lnli' lln(1111/'))

steps as p -+ 00 ([LM091]).

Part III 23

2.4 Comparision of the schemes

In the table below the schemes described in the three previous sections will be compared with
respect to security and complexity ([v09l], [v092], [S92]). We have chosen n to be an 512-bit
modulus in the RSA scheme, p to be 512 bits in both the EIGamal and DSA algorithm, and q
is fixed to 160 bits in DSA.

When the signer can compute part of the signature before the message to be signed is known
to him, the number of modular multiplications that can be precomputed is denoted by the
addition "(pre}".

security; # modular space signature
fastest multiplications (in bits) length

algorithm(1) (in bits)

signer! 2) secret
factoring; 30 (pre) 1024

RSA 608 public 512

exp (Jln(n)ln (In(n))) verifier 1024

i 638

signer(:!) secret
RSA factoring; 30 (pre) 1024
(v = 3) 608 public 512

exp (JIn{ n)In (lu(n))) verifier 512

2

siguer(2) secret
RSA factoring; 30 (pre) 1024
(v=2 1G +l) 608 public 512

exp (JIn(n)In (In(n))) verifier 512

17

signer(3) general
discI. log; 608 (pre) 1024

EIGamal 1 secret 1024

(in GF(p)) exp (Jln(p)In (In(p))) verifier!' \ 512

893
I

public
512

signerf-l l I general
disCI. log; 198 (pre) 1184

DSA 1 I secret .320

exp(yln(p)lu (In(p))) I verifier!.j I

I
160

I

277 public
512

Part III 24

Notes:

(1) In practice the computation of discrete logarithms in GF(p) using the best currently
known techniques is slightly harder than the factorization on n via the multiple polynomial
quadratic sieve ([LM091]).

(2) This number of multiplications is needed when the signer makes no use of the Chinese
Remainder Theorem ([K87]). Using this Theorem, the number of multiplications can be
reduced, but the price to pay is that the primes p and q have to be stored instead of n.
Thus, 512 bits of secret storage are needed instead of 512 bits that may be public.

(3) If the signer has an auxiliarly storage of 12416 bytes, only 112 off-line llluitiplications
are needed, and if the verifier has an auxiliarly storage of 12416 bytes, the number of
multiplications he needs to perform reduces to 693 ([592]).

(4) An auxiliarly storage of 4864 bytes reduces the number of off-line multiplications for the
signer to 43, and the number of multiplications for the verifier to 221 ([592]).

Chapter 3

Hash functions

3.1 MD5

The MD5 Message-Digest Algorithm ([RD91]) was designed by R. Rivest and S. Dusse in 1991
to be quite fast on 32-bit machines. It is an extension of the MD4 algorithm ([R9l]), which
was designed to be very fast and is "at the edge" of withstanding a cryptanalytic attack. The
MD5 algorithm gives up a little bit in speed for achieving a much greater likely hood of ultimate
security.

3.1.1 Description of the algorithm

MD5 uses four 32-bit registers and four functions which join these registers by means of the
boolean functions AND, OR, exclusive OR, and NOT, resulting in a 32-bit word. Starting with
a b-bit message rno ... rnb-l the algorithms is as follows:

step 1
Append padding: add "1" and add 0 ::; j < 512 zeros such that b + j = 448 mod 512.
Padding is always performed, even if the length of the message is already congruent to
448 modulo 512 (in which case 512 padding bits are added).

step 2
Append length: append the binary presentation of b (modulo 2(4

), resulting in the n-word
message M[O ... n - 1] (a word is 32 bits, and 16in).

step 3
Initialize the registers to the following values, which are given in hexadecimal, low-order
bytes first:

word a : 01 23 45 67
word b : 89 AB CD EF
word c : FE DC BA 98
word d : 76 54 32 10

step 4
Process the message in 16-word blocks.

First some notation will be defined (X) Y words}:

X + Y means modulo 232 addition of the words X and Y i

25

Part III 26

x < < < s denotes the 32·bit value obtained by circulary shifting (rotating) X left bij 8

positions;

X denotes the bitwise complement of X;

X V Y stands for the bitwise OR of X and Y;

X XOR Y denotes the bitwise XOR of X and Yj

XY is the notation for the bitwise AND of X and Y.

Using this notation four functions that take as input three words, and output one word
are defined:

F: F(X, Y, Z) = Xl" V X Z

G: G{X,Y,Z):: XZvYZ

H: H(X,Y,Z):: X XOR Y XOR Z

I: I(X, Y,Z) = Y XOR (X V Z)

Define the additative constant t by the integer part of 4294967296 times abs(sin(i)) for i
in radians.
Define:
S11 = 7, 512 12,513 17,514 22,
S21 :: 5, S22 :: 9, S23 14, S24 = 20,
S31 :: 4, S32 = 11, S33 :: 16, S34 = 23,
541 6, S42 = 10, 543 :: 15, S44 :: 21.

Using the functions F, G, H and I, t and the 5ij four other functions are defined (a, b,
c and d are words):

F F: F F(W, X, Y, Z, X[kj, 8, t) denotes
W = X + «W + F(X, Y, Z) + X[k] + t) «< 8);

GG: GG(W,X,Y,Z,X[kj,5,t) denotes
W = X + «W + G(X, Y, Z) + X[k] + t) «< a);

H H: H H(W, X, Y, Z, X[k], a, t) denotes
W :: X + «W + H(X, Y, Z) + X[k] + t)« a);

II: II(W, X, Y, Z, X[kJ, 5, t) denotes
W = X + «W + I{X, Y,Z) + X[k] + t) «< s).

Then the following algorithm is executed:

For i:: 0 to n/16 - 1 do:

For j :;;;: 0 to 15 do
Set XU] to M[16i + j]

end;

aa = a;

bb = b;
cc = c;
dd:: d;

Part III

F F(a, b, c, d, X[O], 511, 3614090360);
F F(d, a, h, c, X[I], 812, 3905402710);
F F(c, d, a, b, X[2], 513, 606105819);
F F(h, c, d, a, X[3], 514, 3250441966);
F F(a, b, c, d, X [4],811,4118548399);
F F(d, a, b, c, X[5], 512,1200080426);
F F(c, d, a, h, X [6), 513, 2821735955);
F F(h, c, d, a, X [7], 814, 4249261313);
F F(a, h, c, d, X[8], 811,1770035416);
F F(d, a, h, c, X[9], 512, 2336552879);
F F(c, d, a, h, X [10]' 513, 4294925233);
F F(b, c, d, a, X(ll], 514,2304563134);
F F(a, b, c, d, X[12], 511,1804603682);
F F(d, a, b, c, X [13],512,4254626195);
F F{c, d, a, h, X[14], 513, 2792965006);
F F(h, c, d, a, X[15], 514,1236535329);

GG(a, b, c, d, X[I], 521, 4129170786);
GG(d, a, b, c, X [6], 522, 3225465664);
GG(e, d, a, b, X[llJ, 523, 643717i13);
GG(h, c, d, a, X[O], 524, 3921069994);
GG(a, h, c, d, X[5], 521, 3593408605};
GG{d, a, b, c, X[10], 822,38016083);
GG(c, d, a, b, X [15],523,3634488961);
GG(b, c, d, a, X[4], 824, 3889429448);
GG(a, b, e, d, X [9], 521, 568446438);
GG(d, a, b, c, X[14], 822, 3275163606);
GG(c, d, a, b, X[3], 523,4107603335);
GG(b, e, d, a, X [8], 524,1163531501);
GG(a, b, e, d, X[13}, 521, 2850285829);
GG(d, a, b, c, X[2], 522, 4243563512);
GG(c, d, a, b, X[7], 523,1735328473);
GG(b, e, d, a, X[12J, 524, 2368359562);

H H (a, b, c, d, X (5), 531, 4294588738};
H H(d, a, b, c, X(8], 532, 2272392833);
H H(c, d, a, b, X[llJ, 533,1839030562);
H H(b, c, d, a, X[14J, 534, 4259657740);
H H(a, b,e, d, X[I], 531, 2763975236);
H H(d,a, b,e,X(4],532, 1272893353);
H H(e, d, a, b, X Ii], 533,4139469664);
H H(b, c, d, a, X[10J, 534,3200236656):
H H(a, b, c, d, X [13]' 531, 681279174);
H H(d, a, b, c, X[O], 532, 3936430074);
H H(c, d, a, b, X[3], 533, 3572445317);
H H{b, c, d, a, X [6], 534, 76029189):
H H(a, b, c, d, X [9],531,3654602809):
H H(d, a, b, c, X[12J, S32, 38i3151461);
H H(c, d, a, b, X[15]' S33, 530i42520);
H H(b,c, d, a, X[2J, 534, 3299628645);

27

Part III

end

step 5

11(a, b, c, d, X[O], 541, 4096336452);
II(d, a, b, c, X[7], 542, 1126891415);
II(c, d, a, b, X [14], 543, 2878612391);
II(b, e, d, a, X[5], 544, 4237533241};
II(a, b, e, d, X[12J, 541,1700485571);
11(d, a, b, c, X[3], 842, 2399980690);
II{c, d, a, b, X[lO], 543,4293915773);
II(b, e, d, a, X[I], 844, 22400444497);
II(a, b, c, d, X[8], 541,1873313359);
11(d, a, b, c, X[15], 842, 4264255552);
11(c, d, 0, h, X[6], 543, 2734768916);
II(b, e, d, a, X[13], 544,1309151649);
II(a, b, c, d, X[4J, 541, 4149444226);
II(d, a, b, c, X[ll], 542, 3174756917);
II(c, d, a, b, X[2], 543, 718787259);
II(b, c, d, a, X [9], 544, 3951481745);

a = a+ aa;
b = b + bb,
e = e + cc;
d = d+ dd:

28

The message digest produced as output is abed. That is, begin with the low order byte
of a, and end with the high oIde byte of d.

3.1.2 Length of the parameters

The input blocks have a length of 512 bits, and the output is 128 bits long. Four 32-bit registers
have to be initialized with given values, which gives an initializing value of 128 bits.

Part III 29

3.2 DIS 10118-2

In the standard ISO/lEe 10118-2, two ways to obtain a hash function using an n-bit block
cipher algorithm are described. With an n-bit block cipher is meant a block cipher in which
both plaintext block and ciphertext block have a length of n bits.
The first method results in an hash function with an output length equal to the blocklength n
of the algorithm, and the function is therefore called a single length hash function. The output
length of the hash function obtained by the second method is 2n, and, as could be expected,
the hash function is called a double length hash function.

3.2.1 Description of the single length hash function

Figure 3.1 gives a sketch of the algorithm, and the text describes it in more detail:

step 1

Ki

M[i]

e

T r
H,

Figure 3.1: Single length hash function

Append padding to the original message M; two examples of padding methods are:

• method 1

append 0 ::; j < n zeros such that the message length is (ongruent to 0 modulo n .

• method 2

add a "1" and add 0 ::; j < n zeros sue 11 that the message length is congruent to 0
modulo n.

The result is the nq-bit message M[l ... q], where the i-th n-bit message block is denoted
by M[i].

Pa.rt III 30

step 2
Compute for i from 1 to q the output blocks H, in an iterative way. For this we need
an n-bit block cipher algorithm e, and a function u which transforms an n-bit message
block into the keyset of e.
Set Ho equal to the initializing value IV, and compute for i = 1, ... ,n:
K. := u(H._d;
Hi := e(K •• M[i]) $ M[iJ.

step 3
The hash result is obtained by taking the final output block Hq•

3.2.2 Description of the double length hash function

Figure 3.2 below gives a sketch of the algorithm, and the text describes it more detailed:

M[iJ M[ij

e

$ ---'

I

Ti [left]

H,

Figure 3.2: Double length hash function

step 1
Append padding to the original message M; two examples of padding methods are given
in the description of the single length hash function.
The result is the nq-bit message M[l ... q], where the i-th n-bit message block is denoted
by M[iJ.

Part III 31

step 2
Compute for i from 1 to q the output blocks H. in an iterative way. For this we need
an n-bit block cipher algorithm e, and two functions u and ii. which transform an n-bit
message block into the keyset of e.
Define for an n-bit vector X, X[left] and X[right] as the leftmost rn/21 and rightmost
l n/2 J bits of X respectively.
Set Ho and Ho equal to the initializing values IV and iv l'espectively, and compute for
i = 1, .. . ,n:

K. := 1.£(Hi-d and ft. := u(H._ 1 }.

T; := e(K., M[iD Efl M[i] an~ t :=: e(Ki' M[i]) Efl M[i].
Hi := Ti[left] II T;[right] and Hi := T;[left] II T;[right].

step 3
The hash result is obtained by concatenating Hq and Hq .

3.2.3 DES

In an Annex of [?] the algorithm is described fOI the case where DES is chosen as block cipher
algorithm. Here also the initializing vector(s) IV (and iV), and the transformation(s) u and
(iL) are fixed. The single and the double lenght hash function employing DES are described
below.

Single length hash function

The algorithm is as follows:

step 1

Append padding, resulting in the 64q-bit message M[l ... qJ.
step 2

Compute for i from 1 to q the output blocks H, in an iterative way.

In the description of the computation, we use the following notation:
Bq := {O, 1}q, i.e. a vector of q bits;
Furthermore, for hi a hexadecimal digit,

B(hlh2 h3h4 h5hG h7hS h9hlO hllh12 h13h14 h1:,h lG } denotes its 64-bit binary representa
tion.

Define the initializing value IV as B(52 52 52 52 52 52 52 52).
Define 1.£: BM B56 by 1.£(2:1;['2 ••• 2:()4} := ;['110;['43:':,3:'G;['7;['O •.. XG:d, i.e. 3:'2;['3 is forged to
10 and bits 2:a, 2:1G, .•• X64 are removed.
Define DES(K, X) as the DES encryption of thE' 64-bit vector X under the 64-bit key 1\.

Compute K, := u(H,_d. Compute HI := DES(K I • M[iJ) 6') M[i].

step 3

The hash result is obtained by taking the final output block H.J'

Double length hash function

The algorithm is as follows:

Part III

step 1
Append padding resulting in the 64q·bit message M[l ... qJ.

step 2
Compute for i from 1 to q the output blocks Hi in an iterative way.
In the description of the computation, we use the following notation:
Bq := {O, 1}'l, i.e. a vector of q bits;
Furthermore, for hi a hexadecimal digit,

32

B(hlhz h3h4 h5h6 h7hS h9hlO hllh12 h13h14 h15 h16) denotes its 64-bit binary representa
tion.

Define the initializing value IV as B(52 52 52 52 52 525252).
Define the initializing value iv as B(25 25 25 25 25 25 2525).

Define U : B64 -+ BS6 by U(:Cl:CZ ••• :C64) := :C110x4:Cs:C6:C7:C9 ••• :C63), i.e. :CZ:C3 is forged to
10 and bits :Cs, :C1G, •.. :CG4 are removed.
Define it: BG4 -> BoG by U(:CI:CZ'" :C64) := :CIOl:C4:CS:CG:C7:C9 ••• :C63), i.e. :C2:C3 is forged to
01 and bits 3:8, :CIG, ..• :C64 are removed.

Define DES(K,X) as the DES encryption of the 64-bit vector X under the 64-bit key K.

Compute K, := u(Hi-d and ie := u(H,-t}.
Compute T; := DES(K., M[iJ) ttl l\f[i] and t, := DES(K" M[i]) ttl M[iJ.
Compute H, := T;[Ieft] II T;[right] and Hi := t[left]II1i[right].

step 3
The hash result is obtained by concatenating H q and H q'

3.2.4 IPES

IPES is an abbreviation for Improved Proposed Encryption Standard. This is a 64-bit block
cipher proposed by X. Lai and J.M. Massey in 1991. It is also possible to choose for e this
block cipher. Since IPES is less well known than DES, the algorithm is shown in figure 3.3. See
for more details [LM91aJ and [L91J.

A 64-bit plaintext block is processed as shown in the figure.
The computational graph of the decryption process is exactly the same, the only change occurs
in the decryption key subblocks. They are computed from the encryption key subblocks and
used in reverse order, as shown in the table below:

encryption key decryptioll key I

subblocks subblocks I
!

i-th round Z(,) Z(i) Z(;J Z(i l
1 234

Z(lO-il-'
1

1"-1} _z~l"-1) Z!lll-I)-l

(1 ::; i::; 8) Z(i) Z(I)
~ (3

Z'C)-I) ZW-I)
J C

output

transform. Zr») Z~9) zf» Z!9) (1)-1 (1) (1) (1)-'
Zt -Z2 -Z3 Z4

Part III 33

Thf 52 key subblocks used in the encryption algorithm are generated from an 128-bit user
selected key. To describe how this is done, first an ordering of the key subblocks is defined.
From the first to the last, the key subblocks are:
Z(l) Z(1) Z(l) Z(2) Z(:l) (8) (9) (9) (9) Z(9)

1 ' 2 , ..• , 6 , 1 , ... , 6 , •.• , Za ,Zl ,Zz ,Z3 , 4 .

The 128-bit user selected key is partitioned into 8 subblocks that are directly used as the first
eight key subblocks. Then the user selected key is cyclic shifted to the right by 25 positions,
after which the resulting 128-bit block is again partitioned into eight subblocks that are taken
as the next eight key subblocks. The obtained 128-bit block is again cyclic shifted to the left
by 25 positions to produce the next eight key subblocks, and this procedure is repeated until
all 52 key subblocks have been generated.

3.2.5 Length of the parameters

The length of the input blocks is for as well the single length as the double length hash function
equal to n.

The output length is nand 2n for the single length and double length hash function respectively.
The single length hash function requires an initializing value of n bits, and the double lengtb
hash function two initializing values of n bits, thus in total 2n bits.
Furthermore, the block cipher algorithm needs a key which length is dependent on the algorithm
used. For the single length hash function one key is needed, for the double length algorithms
two. Thus, for the single length and the double length hash function the algorithm using DES
heeds 64 and 128 key bits respectively, and when IPES is used 128 and 256 key bits are needed.

Part III

Xl X 2 X3

i i 1

zit) -- 8r-_Z_2_!l_) -__ 1 ____ ffi _.~ _____ Z_j_l)----11

I r----------ffi----t-----i

+ ·---8-Z~I)

----~---------------~-------ffi

I
ffi~'------~--------------------~-------· ffi

~

Z(D)-G)

1 1

The meaning of the variables is:

Xi : I6-bit plaintext subblock

y. I6-bit plaintext subblock
ZIT): I6-bit key subblock

•
ffi bit by bit exclusive OR of I6-bit subblocks

+ : addition modulo 21G of I6-bit integers

8 : multiplication modulo 21G + I of 16- bit integers,

where the sero subblock: corresponds to ZW

z(9)-8

4 1

Figure 3.3: Encryption process of IPES

34

one
round

seven
mote
rounds

output
trans
formation

Part III 35

3.3 SHA

SHA is an abbreviation for Secure Hash Algorithm. The algorithm is also known under the
abbrevation SHS: Secure Hash Standard. SHA is under standardization by NIST ((NIST92a]).
The algorithm is based on principles similar to those used when designing MD4 ([R91]).

3.3.1 Description of the algorithm

SHA is designed for 32-bit machines, and uses five 32-bit registers, four different functions and
four constants. The functions join the contents of SOllle of tht' rt'gisters and a round counter
using the boolean functions AND, OR, exclusivt' OR and NOT. Starting with a b-bit message
mo ... mb-l the algorithm is as follows:

step 1
Append padding: add a "1" and add 0::; j < 512 zeros such that b + j = 448 mod 512.
Note that padding is always performed, even if the message length is already equal to 448
modulo 512. In that case one "1" and 511 zeros are added.

step 2
Append length: append the binary prest'ntation of b (modulo 264), resulting in the n-word
message M[l. .. n] (a word is 32 bits, and I6:n).

step 3
Initializt' the registers to the following values, which are given in hexadecimal, high-order
bytes first:

hO : 6i 45 23 01
hI : EF CD AB 89
h2 : 98 BA DC FE
h3 : 10 32 54 76
h4 : C3 D2 El FO

step 4
Process the message in I6-word blocks.

First some notation will be defined (X, Y words):

X + Y means modulo 232 addition of the words X and Y;

X denotes the bitwise complement of X;

X v Y stands for the bitwise OR of X and Yi

X XOR Y denotes the bitwise XOR of X and Y;

XY is the notation for the bitwise AND of X and r.
Furthermore a function S(n, X) is defined on a word X and an integer n, 0 S n < 32.
S(n, X) denotes a circular shift of X by n positions to the left.

Using this notation a sequence oflogical functions f(O .. r. p. ;:) f(i9, :r, y, ;:) is defined.
Each f operates on three 32-bit words and produces a ,32-bit word as output as follows:

f(t,:r,y,z) = xyViz (0 < t < 19).
f(t,x,y,z) :rXORyXORz (20::;t::;39),
f(t,z,y,z)=zyVa:zVyz (40::;t::;59),
f(t,:r,y,z) =:r XOR y XOR z (60::; t::; 79).

Part III 36

Also a sequence of constant words K(O), K(I)" .. K(79) is used in the SHA. In hexadec
imal notation these are given by:

K(t) 5A827999 (0 :s t :s 19),
K{t) :::: 6ED9EBAl (20 :s t :s 39),
K(t) = 8FlBBCDC (40:S t :s 59),
K(t) :::: CA62CID6 (60:S t :s 79),

The computation uses two buffers, each consisting of five 32-bit words, and a sequence of
eighty 32-bit words. The words of the first buffer are labeled a, b, c, d, e, and the words
of the second buffer are labeled hO, hI, h2, h3, h4. The words of the sequence are labeled
W(O), W(l),. ,., W(79). A single word buffer TEMP is also employed,

To generate the message digest, the l6-word blocks M(1), M(2), ... M(n) defined in step
2 are processed in order, The processing of each M (i) involves 80 steps, and goes as
follows:

step 5

1. Divide M(i) into 16 words W(O), W(1)" .. W(15), where W(O) is the leftmost word.

2. Define 64 more words by W t W t - 3 Efl W t - 8 Efl W t - 14 Efl W t - 16 for 16 :s t :s 79.

3. Let a hO, b:::: hI, c = h2, d = h3 and e = h4.

4, For t = 0 to 79 do
TEMP = 5(5, a) + f(t, b, c, d) + e + W(t) + K(t);
e = d;
d c
c = 5(30, b);
0= a;
a = TEMP,

5. Let hO = hO + a, hI = hI + b, h2 = h2 + c, h3 h3 + d, h4 = h4 + e.

When all blocks are processed, the hash result is the 160-bit string represented by the 5
words

hO hI h2 h3 h4.

3.3.2 Length of the parameters

The input blocks for this hash function have a length of 512 bits, while the output block is 160
bits long.
Five 32-bits registers have to be initialized with predescribed values, which gives an initializing
value of 160 bits, Besides that in each of the rounds a 32-bit round dependent constant is used,
Four different ones are defined, which gives 128 bits in totaL

Part III 37

3.4 ARjDFP
In 1992, Algorithmic Research has developed the Digital FingerPrint hash function.

3.4.1 Description of the algorithm

The algorithm perforlUs the following computations:

start
b-bit message mo ... mb-l'

step 1
padding: add 0 :::; j < 63 zeros such that b + j = 0 mod 64, denote the resulting message
by M[I, ... n] (n = fbj641).

step 2
compute the hash result DFP(M).

In the description of the algorithm, we use the following notation:
B" := {O, I}", i.e. a vector of n bits;
B. := a bit vector of arbitrary length.
Furthermore, for h" 1 :::; i :::; 16, a hexadecilllal digit,
B(hlh2 h3h4 h"hG h7hS h9hlO hllh12 h13h14 hl~hlG) denotes its 64-bit binary representa
tion.

Define
x :::: B(Ol 23456789 AB CD EF);
kl := B(OO 00 000000000000);
k2 := B(2A 4152 2F 444650 2A);
h : BG4 x B • BG4 such that h{k, M) = b(k, M, n - 1);
h : B64 x B. -+ B64 such that h(k, M) = b(k, M, n),
where
b(k, M, i) is recursively defined by
b(k, M, -1) = b(k, M, 0) = B(OO 00 00 00 00 00 00 00);
b(k, M, i) ::: M[i] ffi DES(k, M[i] ffi b(k, M, i - 1) ffi b(k, M, i 2) ffi x) for 1:::; i :::; n.
where DES: B64 x BG4 -+ B64 is such that DES(k, b) is the enciphering of b using the key
k according to DES.

Define
Cl;= h(k1,M) = b(kl,M,n-l) =

M[n 1] ffi DES(k}, M[n - 1] ffi b(k ll M. n - 2) ffi b(k). M. 11 - 3) ffi x);
C2 :::: h(kl' M) ::: b(k}, M, n) =

M[n] ffi DES(k 1 , M[n} ffi b(k J1 AI, 11 - 1)?J:l &(".) . .11.11 - 2) ex);
C3:= h(k'J,M) b(kz,M,n - 1) =

M[n - IJ ffi DES(k'll M[n - 1] ffi b(/..'2' l~f. 11 - 2) 8 b(/':2' M. 11 - 3) 8 x):
C4 ;= h(k21 M) = b(k21 M, n)

M[n]ffiDES{kzlM[nJ8b(k-2.M,n-1)8b(/..· 2.M.n 2)ffix).

Define also G : BGo! x BM X BG4 BG4. by
G(k,x,y) = DES(k,x ffi y) ffi DES(k,x) ffi DES(k,y) ffi y.

Part III

Finally, define
Fl(M) = G(k1 ,G(k1 ,cl,C2).G(k1 ,C3,C4»i
F2(M) = G(kz,G(k1,cl,cz),G(k2 ,C3,C4))'

The computation of G, the F. and DFP is depicted in figure 3.4.

3.4.2 Length of the parameters

38

The length of the input blocks is 64 bits, and the length of the output blocks is the concatena
tion of two 64-bit blocks, thus has a length of 128 bits.
The algorithm uses two 64-bit DES keys, and one 64-bit constant (and a 64-bit all-zero con
sta.nt).

Part III 39

EEl

·,G (k,) I DIS I

------. EEl '-------+ EEl

t t
EEl------' ffi------'

~ t
EEl ---------.....) EEl _. ____ -l

kl -1 DES I
(k z)· .

/
~EEl/ kl

I (kz)

k.l ~~. DES
(k z) I 1J~~ I

1

G(klt C3,C4)

(G(k2 ,C3,C4))

'---------- EEl

t
EEl--------------~

t
~----------------~

hash ft'sult:

DFP F111F2

Figure 3.4: Calculation of DFP

Chapter 4

Combining hash functions and
signature schemes

In the previous two chapters we have described 3 digital signature schemes and 4 hash functions.
To sign a document, generally a hash function has to be chosen to preceed a digital signature
algorithm.

4.1 Parameters

About the input length for the signature schemes the following can be stated:

1. The input length of the RSA digital signature scheme is equal to the bitlength of the
public modulus that is used. In most applications the modulus length n is chosen to be
512 bits.

2. The input length of messages that are signed applying the EIGamal scheme is equal to
the bitlength of the prime p that is used. Generally pis 512 bits long, although lengths
of 700 to 800 bits are maybe preferable, since the prime p in the EIGamal scheme has to
be larger than then the modulus n in RSA to obtain the same security.

3. In the Proposed Digital Signature Standard, the input length of the messages to be
signed equals the length of q, which is a prime divisor of p - 1 (p prime). The proposal
recommends to choose a 160-bit prime q.

Concerning the output length of the various hash functions described, the following remarks
can be made:

1. The output length of the Message Digest Algorithm MD5 is 128 bits.

2. The hash result obtained when the algorithm desnibc-d in DIS 10118-2 is used, is either
one or two times the bitlength n of the block cipher employed. \\'hen DES or IPES are
used, n is 64 bits. Thus, in these cases the output lenghts art' 64 and 128 bits for the
single length and double length hash function respectively. The standard describes how
to shorten both outputs to an arbitrary length.

3. The output of the Secure Hash Algorithm SHA is 160 bits long.

4. The Digital FingerPrint hash function of Algorithmic Research has an output of 128 bits.

40

---- _-------

Part III 41

One of the properties the hash function needs to have is collision-freeness, as motivated in the
first chapter. However, [MRW89] shows that hash functions giving a 64-bit result cannot be
one-way, and [MPW92] suggest 100 bits as the minimum length that should be used. To see
how collisions can be found, suppose h is a hash function producing n-bit hash results. If a user
constructs two messages, and computes 211

/
2 variants for each message, elementary probability

theory says that there is a very strong change (~ 1 - e- 1 ([MPW92])) that there will be a pair
of variants, one for each message, having the same hash result. An obvious defence against this
so-called "birthday attack" is to choose n large enough to make it infeasible to compute 2"/2
variant pairs. An alternative approach, allowing the use of 64-bit hash functions is suggested
by [DP89j. They suggest that the originator of a message should always modify it ill some way
prior to performing the hash function, typically by appending a random a random value to the
message. But as [MRW89] points out, this does not prevent potential frauds by the originator
of the message.

This suggest that the algorithm of DIS 10118-2 should not be used as single length hash function
with DES or IPES.

4.2 Combinations

When we compare the output lengths of the hash functions, and the recommended (or generally
used) input lengths for the signature algorithms, one aspect is manifest:
All hash results are (considerably) shorter than the input length that is required for the signa
ture algorithms, except when SHA is used with DSA. Then the length of the hash result and
the input to the signature algorithm are equal.

The fact that the SHA output and the DSA input have an equal length, makes the combina
tion SHA-DSA a very attractive one. This did not happen by accident: NIST designed both
algorithms to work together.

The ISO/lEe 9796 digital signature algorithm describes how a hash result of bitlength LH can
be used for an RSA based digital signature scheme which needs an input of length Ls if holds
that LH S 8·l Lici3 J. If 512-bit RSA is used, the requirement for LH becomes LH S 8·32 = 256,
which holds for all hash functions described in this document. Thus, RSA can be used with
any of these hash functions.

If the EIGamal signa.ture scheme is chosen, an algorithm has to be defined to expand an ha.sh
result of 64, 128 and/or 160 bits to the required input length, which is 512 or more bits.
Analogously, if DSA is used in combination with another hash function then SHA, the hash
result of 64 or 128 bits has to be expanded to 160 bits.
This should be done in a way that the input to the signature scheme appears to be a random
bitstring in order to prohibit forgery.

Chapter 5

Smart cards

The SlUart card is chosen to be used in the signature protocol for two reasons, First, a smart
card can be used for access control, it allows the identification and the authentication of the
user who is going to sign or verify a document. Secondly, a smart card can be used as a tamper
resistant device to store the secret keys tllat will be used in the signature protocoL

The main features of a smart card are its intelligence and its security, It can store large amounts
of information, even if it is not connected to a power source. This information can be updated,
recalculated, and even coded and decoded by the card itself. Besides its large storage capacity
and high intelligence, a key attraction of the smart card is its potential for high security. Smart
cards can nowadays be seen as a convenient, safe, and inexpensive means for tile storage of
secret information.

5.1 Generals

Before we discuss the features of a smart card, it is important to know some more details on
the design of a smart card.
The basic reference for smart cards and the like is the lllultipart standard ISO iSI6. Cards
designed in accordance with this standard are made up of a plastic support that contains a
small device consisting of a chip: a tiny printed circuit board with an integrated micro circuit
at its center.

There are three reserved locations on tile surface of the support as figure 5.1 shows:

• a location for the printed circuit supporting tile micro circuit;

• optionally a location for the magnetic stripe (if the support is used as a combined card);

• a location for embossing the user's identity and the card's ISO number.

Tile printed circuit confoIllls to ISO/IEC International Standard 7816-3. It is hermetically fixed
in the recess provided on the plastic support. It protects the micro circuit from mechanical
stress, radiation, static electricity and acts as an electrical interface between the micro circuit
and the smart card reader.
The micro circuit is attached to tile back of the printed circuit. Any data exchange between
the micro circuit memories and the application is subjected to highly sophisticated security
procedures by the micro circuit's CPU.

42

Part III 43

85.6

19.4 29 magnetic stripe area

chip
10 54

20

i
embossing area

I

Figure 5.1: Smart card layout

The micro circuit generally contains the following parts:

Data Memory
The Data Memory can be an EPROM or an EEPROM (=E2 PROM). EPROM is an
abbreviation for Erasable Programmable Read Only Memory, Data can only be written
once; the possibility of erasing the memory has been disabled. In an EEPROM (Elec
tronically Erasable Programmable Read Only Memory) the erasure of certain data is at
the discretion of the card.

ROM
The Program Memory is a ROM (Read Only Memory). It contains the card's operating
systelU. For example, all the operations to be executed by the CPU, the management
of the Data Memory, the security rules, the cOlUlUunication protocol and the algorithm
functions such as DES or modular exponentiations.

RAM
Tbe Working Registers are contained in the RAM (Random Access Memory). They are
used by the CPU for the management of internal or temporary data and for storing
intermediate results. \Vhen the card is disconnected from the power supply, this data is
lost.

Central Processing Unit
The CPU controls the internal buses via which it can access all three memories (Data
Memory, Program Memory, RAM), No direct access to these memories is possible from
outside. The CPU manages the communication line enabling the micro circuit to com
municate with the smart card reader.

Connecting points
Communications with the system pass via the card's printed circuit. Eight COllllectioll
points are specified; two of them are reserved for later use and are often not provided.
The other ones are used for the supply voltage (5V), the reset of the card, the dock, the
ground, the programming voltage for non-volatile memory, and an I/O port.

Part III 44

5.2 TBIOO

The TBIOO Smart Card is a joint development of Philips and BULL. It has the DES algorithm
implemented.

5.2.1 Layout

In the TBIOO card the micro circuit is an 8-bit microprocessor. It contains a Data Memory
consisting of 3 Kbytes of EEPROM; in certain areas of the TBIOO card erasure is implemented.
These memories can be divided into several zones of confidentiality which can he accessed by
specified keys. The Program Memory is a 6 Kbyte ROM which contains, among others, the
DES algorithm functions. The working registers are contained in a 128-byte RAM.

Two Data Structures are available in the TBIOO Smart Card:

• Data Files (DFs) which define storage areas.
A Data File can be of one of the three levels below:

- A Common Data File (CDF), of which exactly one exists per Smart Card;

- An Application Data File (ADF);

- A Sub-Application Data File (SDF).

Each Data File is composed of a Header, which defines the Data File, and of a Body that
may contain Data Files of a lower level and Zones.
A Data File can be set in Utilisation Phase, but is really ill Utilisation Phase only if
the Data File of the upper level is in Utilisation Phase too. Similarly, if a Data File is
invalidated, all the structure helow is also invalidated .

• Zones which serve to store information.
A Zone can he one of the following:

A Secret Zone for Cryptographic Keys and Access Codes;

- An Access Tracking Zone (ATZ) for Key suhmission recording;

- A Public Zone for non-confidential information;

A Working Zone that can be read, written or erased under parameter dependent
access controls.

A Zone is in Utilisation Phase only when the Data File which holds it is in Utilisation
Phase, but it can he invalidated separately from that Data File.

The TBIOO Smart Card Words are 32 hits long (full data), and can he used following two
modes: In validated mode where the word cannot be overwritten and in fol!en mode where a
not validated word may be overwritten and allows. this wa:L the bit per bit word consumption.
The TBIOO Smart Card Keys are 64 bits long (2 Smart Card words). and are identified with a
Key Identifier Field (KIF) and a Key Version FIeld (ATF). allowing the key to be indexed.

The management of the Smart Cards must be user-friendly. achieving a high level of security,
and the data entry must be kept to a minimum. Chapter Ij deals with various management
aspects. In order to avoid that the tool's operator has to enter too much data interactively
necessitating a very good knowledge of the smart card, the basic layout for the smart card
as shown in figure 5.2 is introduced in the KMT/KMS developed by P.I.T.S. This is a Key
Management Service using as hasis a Key Management Tool.

Part III 45

CDF :Common Data File

AT Z CD": Acceu Trackin/l: Zone

PIN: PIN ZOlle

IK: Issuer Key

SK: Service Key (only ill User SC)

I D: ldent ificatioll ZOlle

AKpIN: Aulhellticat,ioll ZOlle for encrypted PIN

AKgg:T : Autheutication Zone for SC·certificates

RS A: RSA Zonp

ADF: Applicatio1l Data File

ATZADF: Access Tracking ZOllf'

AKcAD : Card Acceptor D"vice Authentication ZOlle

GKSCA: Smart Card Authentication ZOlle (MAC lI:eneratioll key)

AK~~'T: Authentication ZOlle for SC·certificate.

RGK: Root Key (MAC ",,,",,ration only l

Workiut! ZIIH'

Figure 5.2: General layout of the TBIOO

Part III 46

Note that several Application Data Files may occur according to the number of applications
that are covered by the smart card.

A key which is stored in a Secret Zone can only be accessed by the microprocessor of the smart
card, and only for the selected function(s). This means that it is impossible to retrieve the key
itself from the smart card. But a key which is stored as data in a Working Zone of the smart
card can be retrieved from the card.

The Common Data File C DF can be considered as the upper level of the card. At a minimum
it contains the Access Tracking Zone AT ZCDF to record errors which occur during secure op
erations, a Secret Zone to store the PIN, and a Secret Zone to store the Issuer Key I K which
a.llows the recycling of the Smart Cards, PIN modifications, and can also be used in read, write
and erase rules.
Optiona.lly the G DF can contain a Service Key, stored in a Secret Zone, which a.llows the cre
ation of new Data Files or new Working Zones. The GDF can furthermore contain a (Public)
Identification Zone I D which may be used to record the distinguished name of the owner of
the card, the creation date, the person who was responsible for the creation of the card, and
the validity period of the card. Two more optional Secret Zones can include authentication
keys: the AKPIN which is required to make an encrypted PIN presentation, and the AKggkT
which is needed for the certified reading of certain smart card data which are stored in the
GDF. The GDF can also contain RSA Working Zones where the secret key (n,s) or (p,q,s)
and the public key (n, v) are written, possibly together with the validity period of the key
pair, a certificate certifying (n, v) and the public key of the certification authority. The RSA
Keys are loaded from a previously generated file, and they can be extracted from the smart card.

The Common Data File can contain one or more Application Data Files ADF, which are the
second level in the Data Files hierarchy. An ADF has an Access Tracking Zone AT ZADF to
record errors which occur during secure operations, and three secret zones containing a CAD
Authentication Key AKcAD to make an authentication of the application versus the Slllart
card, a Smart Card Authentication Key GKSCA which is required to make an authentication
of the smart c.ard versus the application, and an authentication key AK~~kT' required for the
certified reading of certain smart card data which are stored in the ADF. Finally, a Root Key
RGK is stored in a Secret Zone as a MAC Generation Key for generating keys for smart cards
of a lower level by diversification by means of diversification with external values.

Remark:
The application will generate the AKcAD and GKSCA of a specific smart card by means of
diversification with an external value of the appropriate Root Smart Card Authentication Key.
This diversification is a MAC generation using the external value and the Root Key, as ex
plained below:

Diversification of keys

Diversified keys or temporary keys in the smart card will be calculated by means of a MAC
calculation. This is done in order to avoid problems related to governmental regulations on the
encipher/decipher facilities within the smart cards.

The key diversification is depicted in figure 5.3.
First a MAC calculation with the Root Key as key is performed on an internal value of the
smart card. Then the MAC result, say X, is XOR-ed with the diversification value, e.g. the
card's Serial Number or a random number (in case of a temporary key). Finally, another MAC
calculation with the Root Key as key is performed on this XOR. The result of the last MAC

Part III 47

ca.1culation is the diversified key or temporary key SC Key.

In case one rea.11y wants to obtain a key which is obtained from the Root Key by diversification
with the diversification va.1ue, the initial internal va.1ue has to be chosen in such a way X equals
the zero word. This initia.1 value, once calculated, can be stored as interna.1 parameter together
with the MAC Key in a Secret Zone.

The application has to perform a MAC ca.1culation applying the sallle Root Key with the saUle
diversification va.1ue as input to obtain the sa.me SC Key.

Internal Value

Ro ot Key
E

X

Gl .. Diversification Va.1ue

E

i

t
SC Key

Figure 5.3: Smart Card Key diversification

5.2.2 Hierarchical Key Design

In this section we will describe the hierarchical key design of the KMT IKMS. Therefore we use as
basis the three-level hierarchy shown in figure 5.4. The creation of the different hierarchy levels
and authorities is closely related to the management of the smart cards. e.g. personalisation,
recycling, integration in an application, etc.

Part III

Company
Authority

(1)

I

Personal Management
Authority Authority

(3)

(2) (4)

I User

l

Figure 5.4: The security hierarchy

In figure 5.4 the numbers refer to the following actions:
(1) the creation of the authority cards
(2) the creation of the user cards
(3) the recycling or revalidation of user cards

Application
Authority

(4) the loading of a new application and the integration in a new users group.

48

The structure introduces three different levels in the hierarchy, with at the top the company
authority or Security Officer (S.O.). The smart card associated to this level is the basis for all
the secret keys which are going to be introduced at the other levels, covering several applications
and groups. Each of the intermediate authorities receives from the S.O. a card which is specially
designed for the related authority function. The authorities and their cards only have power
restricted to their domain. The task of the Personal Authority (P.A.) is the creation of user
cards and the storage of the keys which are required for the general card management. The
Management Authority (M.A.) takes care of the recycling or revalidation of user cards, and
the Application Authority (A.A.) loads (new) applications and integrates users in a new users
group. The last level in tIte security hierarchy corresponds to the users. A user card serves the
purpose of user identification (for access control) and the storage of keys and data for specific
applications. During its life cycle, it needs the iulerYentioll of the specific authorities of the
intermediate level at specific moments.

5.2.3 Personal Identification Number PIN

A PIN is a number that serves as an identification of the user versus the smart card. Only if
the owner of the Slllart card enters the correct PIX. he can get access to the informatioll stored
on the card.

Part III 49

PIN length

In ISO 9564-1 ([19564-1]) a PIN length of 4 up to 12 characters, not exceeding 6 digits, is
recommended. In practice very often PINs of 4 digits (16 bits) are used. Since on the Smart
Card the PIN must be stored in two Smart Card words (64 bits), a padding of 48 bits is required.

PIN presentation

The Transaction PIN, i.e. the PIN presented by the smart card owner which will be compared
the the reference PIN stored on the Smart Card, can be transmitted from the CAD to the
Smart Card in dear or in encrypted form.

For the TB100 Smart Card, the presentation of the PIN in ciphered foun uses a random number
which is generated in the Smart Card, but diversifies from the format 1 PIN block as described
in the ISO standard. However, by means of the random number, the transmitted value is dif
ferent for every encrypted PIN presentation as recolUmended in the ISO standard.

The key AKPIN is dedicated for the submission of an encrypted PIN. The process is depicted
in figure 5.5 and described below:

1. The Smart Card generates a random number R and transfers R to the CAD.

2. The CAD obtains AK'i'IN from the Root Key RGKAKpIN by diversification with the
Serial Number of the Smart Card, and it XORs R with the PIN code which is entered 011

it: PIN$R. The obtained value is deciphered with the key AKPIN: dAKpIN(PIN$R)
and the result is transferred to the Smart Card.

3. The Smart Card enciphers the obtained value with AKPIN and calculates the XOR of
the obtained value with PIN: eAKpIN (dAKp1N (PI N $ R)) $ PIN. The obtained value is
compared with the R sent, and only if the two coincide the PIN presentation was correct.

Smart Card CAD

generate R
R

eAKPIN (dAKpIN (PI N dAKpIN(PIN $ R)

$R))$ PIN dAKpIN(PIN $ R)
7

=R

Figure 5.5: Enciphered PIP·: verification

5.2.4 Authentication protocols

We will now describe an authentication protocol that achiews authentication of the application
(via the CAD) versus the smart card, and one that achieves authentication of the smart card
versus the CAD. Thus, when both protocols are executed after one another, lllutual authenti
cication of smart card and CAD is achieved. This lllutual authentication is required before a
signing or verification protocol will be executed.

Part III 50

CAD authentication versus Smart Card

With the CAD Authentication Key it is possible to perform an authentication process whereby
the tenuinal (application) which is connected to or contains the smart card reader authenticates
itself versus the smart card.

The authentication process is, as shown in figure 5.6:

Smart Card
R

CAD

generate R

dAKcAP(R)
eAKcAP (dAKcAP (R))

? dAKcAP(R)
=R

Figure 5.6: CAD authentication

1. The Smart Card generates a random number R and transfers R to the terminal.

2. The terminal obtains AKc'AD from the Root Key RGKAKcAD by diversification and
decrypts R with this key AKcAD: dAKcAD(R). The result is transferred to the Smart
Card.

3. The Smart Card encrypts the received value with the key AKcAD: eAKcAD(dAKcAD(R))
and compares the obtained value with the random R sent.

This process is very similar to the two pass unilateral authentication protocol described in sec
tion 5.1.2 of the ISO flEe standard 9798-2 ([II9798-2]). The only difference is that there tbe
CAD decrypts not only R, but R together with the identification of the Smart Card to prevent
a so-called reflection attack. This attack, however, is not possible in our situation, because
the entities to be authenticated can be divided in two disjoint groups, the smart cards and the
terminals. Since the authentication protocol always starts with the transmission of a random
number from a CAD to a Smart Card, it will immediately be detected when a CAD tries to
impersonate a Smart Card or the other way around.

Smart Card authentication versus CAD

With the Smart Card Authentication Key it is possible to perform an authentication process
whereby the Smart Card is authenticating itself versus the CAD.
Since this authentication is that of the CAD versus tile Smart Card with the roles of CAD and
Smart Card interchanged, it also resembles the Olle described ill ISO/IEC 9798-2 very much; a
similar remark as at the end of the section about CAD authent.ication ('an be made.

The authentication process is depicted in figure 5.7:

Pa.rt III 51

Smart Card
R

CAD

generate R

eGKSCA (R) eGKSCA (R)
dGKsCA (eGKscA (R))

?

=R

Figure 5,7: Smart Card authentication

1. The CAD generates a random number R and transfers R to the Smart Card,

2, The Smart Card encrypts R with the key GKSCA: eGKsCA(R) and transfers the result
to the CAD,

3, The terminal obtains GKSCA from the Root Key RGKGKscA by diversification and de
crypts the received value with the key GKs c A: dGKsCA (eGKSCA (R)), The obtaim:·d value
is compared with the random R sent.

5.2.5 The RSA Public Key System

In the key management system each of the persons involved has a RSA key pair stored on its
smart card at CDF level. This section aillls to describe how this pair is generated and trans
mitted to every person, and in which way it is stored on a token.

The digital signatures and encryption/decryption which is currently in use, are based on the
RSA algorithm which applies a modulus n having a length of 512 bits. The modulus is COlll

posed of two primes p and q which each have a length of 256 bits. The secret exponent s is a
512 bit number, while the public or verification exponent t' consists of 17 bits.

The RSA key pairs are generated applying a software package. Before writing the keys on the
token, they will be encrypted in the kernel of the software packet with a key derived from the
token. The generation of a pair RSA keys (n, p, q. sand 1') costs. depending on the PC that
is used, between 13.3 and 39 seconds at the m01U<:>nt.

On the TBIOO Smart Card, three special Vv'orking Zones dedicated to the RSA Key pair are
created. The reason for dealing with several zones is that this is time efficient, since usually
the application only requires the information from one of the zones.
These three Working Zones are:

Working Zone RSA 1 stores the secret key consisting of (p. q. s). or (11. s). and furthermore
the validity period (val) of the RSA key.

Working Zone RSA 2 stores the public key consisting of nand " with the validity period
(val) of the RSA key, or the certificate containing that public key, or both.

Part III 52

Working Zone RSA 3 stores the public key (n, to) of the Certification Authority with the
validity period (Ml) of that key.

Remarks

1. In the current key management system, every smart card contains only one RSA key pair.
However, it is advisable to use different pairs for signature and for message encryption.
Therefore, in the future, the use of different key pairs for those goals will be introduced.
For the time being we will use the public key for (short) message encryption if needed by
the application. For this reason the public key itself is contained in the Working Zone
and not only the certificate.

2. It is recommended that the RSA key pair of the certification authority uses a modulus
which is about 200 bits longer than the user keys.

When storing data in Working Zone RSA 1, a check value CV will be computed.
Some of the parameters, namely 8, CV, and p and q (if available), are encrypted, applying a
key derived from AKcERT by diversification with the card's serial number. The parameters
val, and n (if available) are stored in clear. The reason that the secret key information is stored
enciphered, and not in clear is to allow the enciphered key to be read out "in clear", which is
much less time consuming than enciphered read.

All data in the second RSA Working Zone will be stored in clear. If t' and n are available, a
check value CV will be calculated.

The data in Working Zone RSA 3 will be stored in clear, but a check value CV will be calculated
on v and n.

The application (CAD) will read the keys in clear from the smart card after a PIN presentation
which is mandatory. The CAD can read from the Working Zone in clear in blocks of 256 bytes,
where the reading of each such a block requires about 2 seconds for a TBIOO smart card.

5.2.6 Signing and verification

Now we have considered some aspects of the TBIOO card, the signing and verification processes
as given in the first chapter can be described more detaiJed.

The signing process

The signing process using the TBIOO card is depicted in figure 5,8 and consists of the following
steps:

1. The user authenticates himself to the smart card by presentation of his PIN. The trans
action from this PIN to the CAD can either be dOllE' in dear or in enrrypted form.
Details can be found in section 5.2.3.

2. The terminal which is connected to or contains the CAD. and the smart card perform
a lllutual authentication. This is done by performing an unilateral authentication of the
CAD versus the smart card, and an unilateral authentication of the smart card versus the
CAD. As described in section 5.2.4, both unilateral authentication require two transmis
sIOns.

3. The document to be signed is brought into the application.

4. • The application transforms the document to ASCII format.

Part III 53

• The signer chooses a hash function frolll a predescribed set.

• The application hashes the document in ASCII forlllat to a string with a fixed (short)
length, depending on the hash function chosen.

• The application uses a publicly known procedure to expand the hash result to a
512-bit string: the intermediate string.

5. The application obtains the signature key and cOlllPutes the signature:

• The application transfers a request to the smart card for the secret RSA signature
key.

• The smart card transfers this signature key, which is stored in Working Zone RSA
1, to the application. The signature key is stored enciphered on the card, thus it can
be read out "in clear".

• From the serial number of the smart card, the application computes from a root
key the key needed to decipher the signature key, and obtains by deciphering the
signature key in clear.

• The application signs the intermediate string using the obtained signature key.

6. The application creates a signed document containing the original document and the
signature, together with a note on who signed the document. Also information on the
hash function used is included.

1 D 2

5
user TB100 CAD

Figure 5.8: The signing pron'ss

The verification process

document

application

signed
document

The verification process using the TBIOO card IS depicted III figure 5.9 and consists of the
following steps:

1. The user authenticates himself to the smart card by presentation of his PIN. The trans
action {rom this PIN to the CAD can either be done in clear or in encrypted form.
Details can be found in section 5.2.3.

Part III 54

2. The terminal which is connected to or contains the CAD, and the SlUart card perform
a mutual authentication. This is done by performing an unilateral authentication of the
CAD versus the smart card, and an unilateral authentication of the smart card versus the
CAD. As described in section 5.2.4, both unilateral authentication require two transmis
sions.
Note:
It is not necessary that a smart card is involved in the verification process, since all
parameters needed to verify a signature are public. We assume, however, that only an
authenticated smart card has access to the verification protocol of the application, and
therefore the above two actions are obliged.

3. The signed document is brought into the application.

4. • The application reads out the identity of the signer, and the identification of the
hash function used .

• The application obtains from the signed document the original document and trans
fers this original document to ASCII format.

• The application uses the specified hash function to hash the document in ASCII
format to a string with a fixed (short) length depending on the hash function.

5. The application obtains the public key of the signer by means of a certificate and uses it to
"decipher" the signature. Detailed information on the construction and use of certificates
can be found in the next chapter.

6. The 512-bit result of step 5 is shortened to get a bitstring with a length equal to the
output lenght of the hash algorithm used.

7. The outcome is compared with the string stored in step 4, and only if they are equal the
application outputs "OK".

",tificat" 8
1 D 2

user TBlOO CAD

Figure 5.9: The verification process

~

signed
document

CJ
application

OK or not OK

Pa.rt III 55

5.3 DX Card

The DX Smart Card is the first commercially available smart card that has an asymmetric
crypto algorithm implemented. While all other smart cards are based on DES, the DX Smart
Card contains an RSA chip. The available lUask for the DX card has the DES algorithm
implemented, but only for internal use. Note that it is possible to use optional coding to
implement DES for external use.

5.3.1 The chip

The DX Card contains the chip 83C852, which is embedded in a smart card according to the
ISO standard 7816. This chip can perform the equivalent of 40 (S-bit) MIPS for large number
arithmetic, and this enables the DX card to compute a digital signature X' mod n with 512-bit
operands very efficiently. The time that is needed is affected by the number of ones in the
exponent, and whether or not the card makes use of the Chinese Remainder Theorem (see e.g.
[D83J). The Chinese Remainder Theorem requires knowledge of the two primes used to create
the modulus, but the time needed to sign a 512-bit message at 6 Mhz drops from 1.5 to 0.5
seconds on average. Note that the use of the Theorem is limited to the signing operation, since
the two primes are part of the secret key. However, the basic verification of a signat ure costs
only a few milliseconds, since the public verification exponent is fixed to 3.

About the memories We can say that the Data Memory consists of 2 Kbytes of EEPROM. The
Program Memory is a 8 Kbytes ROM, and the working registers are contained in a 256 byte
RAM.

The calculation unit, with its associated software, optimizes the calculation time of exponentia
tions modulo n, used in public key algorithms and zero-knowledge protocols. It needs 196 bytes
of RAM for 512-bit operands when the Chinese Remainder Theorem is used, and 83 to 146
bytes when the classical method is applied. The calculation unit does not carry out a complete
exponentiation in one step, but provides a set of basic instructions from which the complete
exponentiation algorithm can be built by dedicated software. These basic instructions operate
on variable length data fields inside RAM and EEPROM. The most important operation is
to multiply a 24-bit number or a 32-bit number with a long-word (e.g. 512 bits) and add the
result to another long-word. Besides that XORs and shifts might be carried out to give the
final result.

5.3.2 Personal Identification Number PIN

The Personal Identification Number is used for the authentication of the user versus the smart
card.

PIN length

In ISO 9564-1 a PIN length of 4 up to 12 characters. not exceeding 6 digits, is recolUmended.
III practice very often PINs of 4 digits (16 bits) are used. On the DX card, a PIN has to be
stored in 64 bits, so a padding is required.

Part III 56

PIN presentation

The PIN presented by the smart card owner can be transmitted from the CAD to the Smart
Card in clear or encrypted form.
At P.tT.S. PIN presentation protocols will be written which will basically be the same as the
ones for the TBlOO card (section 5.2.3).

5.3.3 Authentication protocols

At the moment, P.I.T.S. had not finished authentication protocols for the DX card, for which
reason we cannot give a detailed protocol description. However, it is obvious t.hat the pro
tocol descriptions will use that the DX card has an RSA algorithm implemented that can
encrypt/decrypt 512-bit messages, using secret and public keys of 512 bits, a 512-bit modulus,
and an exponent of up to 512 bits. Below we give a sketch ofthe basic protocol that will be used.

For the authentication protocols the card contains an RSA key pair. The secret exponent of the
Smart Card with identifier X is denoted by sffc, and its public exponent by vffc. The modulus
is denoted by nffc. When it does not give confusion the identifier X will be omitted. The secret
exponent, the public exponent, and the modulus of a terminal X are denoted by S2AD' v2AD'

and n2 AD respectively. Again, the identifier X will be omitted in the descriptions whenever
possible.
In small systems it is reasonable to assullle that each CAD has an up-to-date directory con
taining the identifiers of all users identified to the system together with the associated public
authentication key (vsc' ns'c). For large applications this will require too much storage, so
then the card has to transfer a certificate containing its public authentication key to th(' t('r
minal that has to verify a message signed with its secret authentication key. In the protocol
descriptions we show the protocols for the case that a certificate has to be send. The certifi
cate containing 1I~ will be denoted by Cert~, and it consists of a lUessage containing (t'~' n~)
that is signed by some authority. More information about certificates can be found in chapter 6.

Smart Card Authentication versus CAD

The authentication process is depicted in figure 5.10. It equals the asymmetric unilateral
authentication protocol of section 5.1.1 in ISO /lEC 9798·3 ([II9798-3]), except for the omission
of some parameters that are not needed in our situation.

Smart Card
R

CAD

generate R

CertsC'. R' mod n
verify Certse

R-' mod n
(R' mod n)" mod n d:o R

Figure 5.10: Smart Card authentication

Part III 57

1. The CAD generates a random nUlllber R and transfers R to the Smart Card.

2. The Smart Card encrypts R with its secret authentication key and transfers the result
R' mod n to the CAD together with the certificate Certsc containing its public key.

3. The CAD verifies the certificate, and retrieves the public authentication key (n, t» from
it. Then it computes (R' mod n)" mod n, and compares the result with the random R
sent.

CAD authentication versus Smart Card

The aim of this protocol is to convince the Smart Card that the CAD which is connected to or
contains the smart card reader is a "genuine" one. The same protocol as above can be executed
with the roles of CAD and card interchanged, as is depicted in figure 5.11.

1. The Smart Card generates a random number R and transfers R to the CAD.

2. The CAD encrypts R with its secret authentication key and transfers the result R' mod n
to the SI11art Card together with the certificate Certc AD containing its public key.

3. The Smart Card verifies the certificate, and retrieves the public authentication key (n, v)
from it. Then it computes (R' mod n)" mod n and compares the result with the random
R sent.

Smart Card
R CAD

generate R

verify CertcAD
CertcAD, R' mod n 'I R' mod n (R' mod n)" mod n == R

Figure 5.11: CAD authentication

5.3.4 Signing and verification

We will now describe the signing and verification processes as given ill the first chapter for the
DX card.

The signing process

The signing process using the DX card is depicted ill figure .5.12 and consists of the following
steps:

Part III 58

1. The user authenticates himself to the smart card by presentation of his PIN. The trans
action from this PIN to the CAD can either be done in clear or in encrypted form.

2. The terminal which is connected to or contains the CAD, and tht' Slllart card perform
a mutual authentication. This is done by pt'rforming an unilateral authentication of tht'
CAD versus the smart card, and an unilateral authentication of the smart card versus tht'
CAD.

3. The document to be signed is brought into the application.

4. The document is transformed to a string the DX card can sign:

• The application transforms the document to ASCII format.

• The signer chooses a hash function from a predt'scribed set.

• The application hashes the document in ASCII format to a string with a fixed (short)
length, depending on the hash function chosen.

• The application uses a publicly known procedure to expand the hash result to a
512-bit string: the intermediate string.

5. The application transfers the intermediate string to the card.

6. The card obtains the signature key and computes the signature.

7. The card transfers the signature to the application.

8. The application creates a signed document containing the original document and the
signature, together with a note on who signed the document. Also information on the
hash function used is included.

1 LJ
user DX CAD

Figure 5.12: The signing process

\

document

l3

D
application

signed
document

Part III 59

The verification process

The verification process using the DX card is depicted in figure 5.13 and consists oCthe following
steps:

1. The user authenticates himself to the smart card by presentation of his PIN. The trans
action from this PIN to the CAD can either be done in clear or in encrypted form.

2. The terminal which is connected to or contains the CAD, and the smart card perform
a mutual authentication. This is done by performing an unilateral authentication of the
CAD versus the smart card, and an unilateral authentication of the smart card versus the
CAD.

Note:
It is not necessary that a smart card is involved in the verification process, since all
parameters needed to verify a signature are public. We assume, however, that only an
authenticated smart card has access to the verification protocol of the application, and
therefore the above two actions are obliged.

3. The signed document is brought into the application.

4. • The application reads out the identity of the signer, and the identification of the
hash function used .

• The application obtains from the signed document the original document and trans
fers this original document to ASCII format .

• The application uses the specified hash function to hash the document in ASCII
format to a string with a fixed (short) length depending on the hash function.

5. The application obtains the public key of the signet by means of a certificate. Detailed
information on the construction and use of certificates can be found in the next chapter.

6. Now there are two possibilities:

6a The application uses this public key to "decipher" the obtained signature.

6b The application transfers the public key a.nd the signature to the DX card which
"deciphers" the signature using the public key and transfers the result back to the
application.

7. The application shortens the 512-bit "deciphered signature", the result of step 6, to get
a bitstring with a length equal to the output lenght of the hash algorithm used.

8. The outcome is compared with the string stored in step 4, and only if they are equal the
application outputs "OK".

Part III

mt;fi<at" B

~ 1 r-- 2 --6b
user DX CAD

Figure 5.13: The verification process

~

signed
document

1
3

B
applicatioll

OK or not OK

60

Chapter 6

Key management

6.1 General considerations

When an application is using cryptographic mechanisms, the security of the application system
is directly dependent on the protection afforded to security parameters or keys. The overall
goal of key management is to provide procedures for handling cryptographic keying material, or,
according to the definition in ISO 7498-2, key management is "the generation, storage, distri
butioll, deletioll, archiving and application of keys in accordance with a security policy". A key
management system only makes sense if it is able to guarantee the connection between an entity
-and its uniquely defined representing keys. This connection lllay be achieved by cryptographic
methods, so that registration of entities becomes an essential part of key management.
The following design criteria can be considered to be important:

• Minimise the physical activity.
This indicates not only that the use of couriers should be kept at a mimilllulll, but also
that entities do not have to travel far to registrate. The last suggest an hierarchical
registration approach.

• Ensure that any dishonest entity may be exposed.
Since it is never possible to prohibit entities from being dishonest, this is the best we can
go for. Sometimes it may be necessary to build a system with a sufficiently high security
to ensure invulnerability even if several users conspire.

• Minimise the number and size of tamper resistant devices required.
Perhaps it can be useful to make a distinction between tamper resistancy to protect keys,
and tamper detectability to prohibit eavesdropping.

• Minimise the number of secure channels required.

• Achieve maximum flexibility.

6.2 Trusted Third Parties

Except for very small systems, one or more parties that can be trusted (to some extent) are
needed for the secure management of cryptogr aphic keys. If 110 sue h trusted parties are available,
ea.ch pair of users who want to communicate must have had physical contact before.

61

Part III 62

6.2.1 Terminology

The term Trusted Third Party (TTP) is used for any "security authority, or its agent, trusted
by the other entities with respect to security-related issues" ([II9798-1]). Its task vary from
user registration, key management and -distribution to being a judge in case of disputes.

More or less the salUe object appears under various names, and corresponding abbreviations in
literature. If the mechanisms used are based on conventional cryptosystems, the trusted party
is generally a Key Distribution Center (KDC) or Key Translation Center (KTC). When public
key algorithms are used, a Key Certification Center (KTC) or Certification Authority (CA)
will be enlployed. .

6.2.2 Tasks

A TTP has lllany and varied tasks. They do not need to be carried out, however, by one and
the same authority. Especially when the users group is rather large, the tasks should be split
among various facilities.

Part of the TTP's duties is related to key management. This starts with registration of each
user of the system. The purpose of this is to allow automatic identification of that entity in the
sequel. This identification can be absolute, which means that a link between an ID and some
physical representation of the identified entity can be esta.blished. The identification can also
be relative, than the entity is only re-identified under some ID. An entity is always represented
by some public data, its public credentials, and some private data, its secret credentials. When
an entity registers, the TTP has to generate or check them. A certificate containing the public
credentials is issued as a proof of registration. This certificate may involve anything from a
protected entry in a certain file to a signature by the TTP on the credentials. This task of the
TTP is performed by a so-called a Certification Authority.

Note:
Usually companies or other organisations will register, while employees of the company (or
members of the organisation) will sign messages on behalf of that company or organisation.
Thus, the signing entities are not the sallle as the registrated entities. Therefore the certificates
on the public keys of the signing entities have to contain not only information on the signing
entities, but also of the covering organisation.

Another task of the TTP can be key generation, but it is also possible that each entity gen
erates its own keys. Keying material to be used in symmetric algorithms has to be ezchanged
or distributed in a way that guarantees its origin, integrity and confidentiality. A key can be
exchanged by two entities manually, i.e. by some physical means independently from the com
munication channel, or automatically, i.e. electronically employing key exchange procedures.

When a key has been established, it has to be sto1'ed and r1'otfcted. All parts of th~ hoy momif
nonce are' tasks of thE' key administration of the TTP. This includes ker activation, deactivation,
deletion, recovering, black listing, translation, etc.

Besides its tasks related to the management of keys. and partially overlapping th!!'l1l, a TTP
will also serve as an "electronic notary" ([BGM91]). As a public notary, an eledronic notary
should hay!!' the duty for confidentiality, the professional code of conduct, and stringent rules for
the authentication, verification and secure storage of documents. The notary is trusted because
it is indepedent and impartial. Furthermore, documents pr!!'pared and sign!!'d by a notary are
deemed to be authentic and accurate and therefore provide evidenc!!' in court.

Part III 63

6.3 Distribution of public keys

In this section we will describe how an entity's public key can be made available to the other
entities in an authentic fashion WI11770-3]). Authenticated distribution of public keys can be
achieved without making use of a trusted third party, or involve a certification authority CA.
In both c.ases, the public key of an entity is part of its credentials, which also include at least
its distinguished identity. There may other static infoImation regarding the CA, the entity, or
the involved algorithms be included in the credentials [II9798-3].

6.3.1 Public key distribution without a trusted third party

In this solution, if an entity (say B) wants to have the public key of another entity (say A), he
will get this key directly from A. The protocol is as follows:

1. A sends to B his credentials CredA and B's address.

2. B stores A '5 credentials at a tamperfree place.

3. A computes a check value h(CredA) 011 his credentials and sends it to B using a second,
independent and secure channel.

4. B computes the check value on the credentials of A received in the first pass, and COlll

pares the result with the check value received. If they are equal, B is convinced of the
authenticity of A's public key, and can use it and/or store it in a tamperfree list of active
public keys.

6.3.2 Public key certification

Another way to achieve the authentication of the entities' public keys is by exchanging the
public keys in the form of certificates. A certificate is in [II9i98-3] defined as "the credentials
of an enity signed with the private key of the certification authority CA and thereby rendered
unforgeable" .

For this mechanism it is required that each entity A is in possession of a valid certificate CeriA
of his credentials CredA . An entity (say B) who wants to obtain another entity's (say A's)
public key and verify its validity has to be in possession of the public verification key l'C A of
the certification authority that issued the certificate CertA' The protocol is as follows:

1. A sends to B his certificate CeriA and B's distinghuished identifier.

2. B uses the public verification key VCA of the certification authority to verify the authen-
ticity of the credentials and to check the current validity of A's public key.

Before public keys, generated by an entity himself or by the ('A on behalf of the entity, can
be distributed in the form of certificates, they must hf" certified. For this, an entity A providf"s
the ('A with at least the necessary identifying information and optionalh' his public kf"Y in an
authentic way. Upon receipt, the ('A verifies the authenticity of the identifying information,
optionally generates the asYlllmetric key pair(s) for A, and adds system specific data to get
A '5 credentials CredA. This is signed by the ('A using its own signature key to produce A's
certificate: CeriA = SCA (CredA). The certificate is givf"l1 back to A who puts it in a directory.

Once a certificate has been generated, no special measures need be taken to ensure its confi
dentiality or integrity. The certificates may be stored in a public directory such that the users
can easily get access to them. Another possibility is that a user sends his certificate to each
user when he asks for it; each user luay then have a directory to store the certificates obtained

Part III 64

for later use, or he may store the public keys in a talllperfree place.

A certificate has a lifetime which is indicated by a validity period stated in the certificate, or
which is otherwise defined by the CA's management.

In a system, usually more than one key certification facility will exist to minimize the physical
activity and to spread the working load of the certification. Therefore a construction has to
be made that enables entities A and B that are registered at different certification authorities
CAl and CA2, respectively, to communicate. The notation Cert~ is used for Y's signature on
X's credentials.

In [CCITT88] is explained that it is necessary that a chain of authentication authorities between
A and B (and thus between CAl and CA2) exists. This document assumes the existence of
a public directory, to which all users have access, containing all the certificates of certification
authorities Cert CA

. CA .. .
The cham can be one of, or a combination of, two essentially different components. These are
depicted in figure 6.1.

A B

hierarchical
approach

CA 1 :::. ======::' CA2

/r~ /r~
A B

cross-certification

Figure 6.1: Certification Authority chains

In an hierarchical approach, one "top" certification authority certifies the certificates of the
certification authorities one level lower and the other way around. In this situation, user A

can verify CertfA2 using the chain CA2 - CA - CAl: first A verifies Certgjl, then Certgj2'

and finally CertfA2. A can find all certificates needed in the public directory, except CertfA2
which he receives from B. Another possibility is that all certification authorities certify each
other, so-called cross-certification. Before he can verify CertfA2, user A only has to verify

CertgA i, which he can find in the public directory. The ad vantage of cross-certification is
clear: ~e number of verifications A has to perform is smaller. However. the public' directory
has to contain (much) more certificates than in the hierarchical approach.

6.4 Smart card management

In a key management service not only a secure management of the keys itself has to be defined,
but also a management of the tokens used is required. The key management service KMS /KMT
developed by P.tT.S. uses:

• smart cards. In particular, the TBIOO card is used, but the design of the KMS/KMT is
made easily adaptable to other kinds of smart cards;

Part III 65

• personal calculators, where the KMS/KMT focusses on the Digipass, lllal1ufactured by
the company DIGILINE. This calculator allows secure data transactions as user authen
tication, Ulutual authentication, and data signature (an operation based on a symmetric
algorithm to verify the integrity of data). The Digipass is protected by a PIN;

• floppy disks.

The mal1agelllent lUust be user-friendly and achieve a high level of security.

In the next five parts of this section we will treat some of the aspects related to the l11al1agement
of smart cards in detail. This lllal1agement is valid for the three level hierarchy as introduced
in section 5.2.2. Thereafter, in the last part of this section, we show that the use of smart cards
is not obligated; a smart floppy can be used instead.

6.4.1 PIN modification

For the PIN modification of the Smart Cards, two options have been retained:

• no PIN modification allowed

• PIN modification allowed, with a certain maximulll of modifications after the original PIN
entry.

The option chosen should be indicated in the smart card.

For the TBIOO smart card a detailed algorithm is implemented. In the header of the PIN
zone is indicated whether PIN modification is allowed of not, and if it is allowed, how many
modifications (at most 6 after the original PIN entry).

For the DX smart card, algorithms are not yet implemented. Basically, they can be the same
as for the TBIOO card.

6.4.2 Recycling of blocked Smart Cards

After a three wrong PIN entries, access to the SlUart card will automatically be blocked. This
prohibits that a disrupter who has got hold of the card can by trial and error find the correct
PIN. If the authorized user of the card has made three false PIN entries, it is be possible to
unblock the card.

6.4.3 Invalidation of Smart Cards

The invalidation of parts of a smart card prevents further use of those parts.

In the TBlOO card Data Files and Zones, the struftures of this ('ard (see section 5.2.1), can
be invalidated. If a DF is invalidated, so are all the structures within it: so, to invalidate the
whole card, it is only necessary to invalidate the CDF.

6.4.4 Smart Card Validity Dates

In certain zones on a smart card, validity dates may be stored. The modififatioll of these validity
dates is under the responsibility of the Management Authority (see section 5.2.2). Which keys
have to be presented depends on the write conditions of the specific zone where the Validity
Date has to be modified.

Part III 66

6.4.5 Loss of Smart Cards

In case of loss of a smart card the action(s} to be undertaken depend on the level of that specific
card. We will give an outline of those actions based on the three-level hierarchical key design
as explained in section 5.2.2.

In case the Company Authority looses his Smart Card, a copy of it should be available in a
safe. Clearly, a new copy has to be made immediately and stored again in that safe. It is
very important to point out that every copy has its own Smart Card Keys (depending on the
Smart Card's Serial Number), and since for every action where the Company Authority Card
is requited, a mutual authentication is mandatory with the CAD applying some of these Smart
Card Keys, the system is even protected against an iniruder who could put his hands on the
valid Company Authority Card and its current PIN.

In case one ofthe Intermediate Authorities looses his smart card, it immediately has to inform
the Company Authority (=Security Officer). The Security Officer will personalise a new card.
Again, the keys specific to the Smart Card will be different since they depend on the Smart
Card's Serial Number. But for the TBIOO card the Root Keys, that are dependent on the Root
Keys of the Company Authority Smart Card and the secrets stored in a safe, will be the same.

In case a User looses his smart card, he has to inform immediately the Management Authority.
Then the Management Authority has to contact the Personalisation Authority and the Appli
cation Authority(ies) to personalise a new user card. For the TBIOO card the keys of this new
card are derived from the same Root. Keys stored in the Authority Cards as the keys in the lost
card.

6.4.6 Smart floppy

Smart cards are nowadays generally considered as a convenient, safe, and inexpensive means
for the storage of the secret keys needed in authentication and signature protocols. However,
in order to use smart cards, a smart card reader is needed. Sometimes the requirement for such
smart card readers is impractical, for instance when laptops are used outside of the desk. An
alternative is to put the secret key on a floppy disk, called a prit'ate smart floppy, protected by
a strong password.

While a smart card is protected by a PIN! a Slllart floppy is protected by a password. The
information stored on the two devices, and the functionality of them is exactly the same.

Chapter 7

Legal aspects

Using the exchange of electronic data to replace traditional, paper based exchange of business
documents is still a relatively new concept. Businesses require not only fro111 electronic docu
ment handling that it offers positive advantages over present day message delivery systems in
terms of speed and accuracy of message handling, but also that it can be used to create business
obligations which can be relied upon. Both legal and technical means have a part to play in
ensuring the necessary level of business confidence ([BGM91]).

7.1 Tasks of signatures

At the present time, letters of intent are usually manually signed to make them legally valid.
Technically, letters of intent could be exchanged in any form, but in 1110St countries specific
formats are obliged for specific documents. One of the most important prescriptions is that it
has to be in writing ([R92]), because a declarant has "to write personally his name below the
letter of intent". The manual signature has five functions, but in principle all of them could a.s
least as good be full filled by digital signatures:

1. The concluding function of the signature is that it closes and completes the declaration;
it ma.kes it from an intentition into a statement. Digital signatures do this better than
handwritten ones, since a digitally signed document cannot be changed undetected. It is
no longer possible to have blank signed documents: only completely finished documents
can be signed.

2. A handwritten signature shows the identity of the signer. Also a digital signature achieves
the identification of the signer, because the public key needed to verify it is, e.g. by a
certificate, linked to the signer's identity (or a pseudonym).

3. An handwritten signature has also an authenticity function: it guaral1tf't's the origin of
the letter of intt'nt. A digital signat ure subtle improw< this fUllction, bf'cansf' it does not
guarantee the authenticity of the letter of intent. but of its contt'uts.

4. The signing operation, both manual writing and performing the procedure for computing
a digital signature, warns the signer that he is making a legally valid statement. This
protects him from rushing things.

5. A signat ure is a proof (to a third party) t hat the signer has committed himst'lf to the
text in tht' It'tter of intent.

67

Part III 68

7.2 Privacy aspects

An important advantage of digital signatures above handwritten ones, is that for digital signa
tures not a name, but a key is responsible for the trusthworthiness of an action. This enables
an individual to act under various pseudonyms, which prevents different organisations from
combining their data and making up a complete profile of an individual.

By law, individuals have a right for privacy: banks are not allowed to publish their customer's
financial situation, physicians should keep medical records secret, and so on. Up till now,
this principle right had to be achieved by punishments for contraventions. However, when an
individual cannot be linked to his various records, it is impossible to violate his privacy!

7.3 EDI

ED! (Electronic Data Interchange) is the electronic transfer form computer to computer of
commercial or administrative dat using an agreed standard to structure the message data. The
set of international EDI standards is known as UN IEDIFACT ([I9i35]).

In the present EDI cOlUmunity, it is assumed that the users of ED! will already be in an un
derlying commercial relationship. In the October 1989 version of the United Kingdom EDI
Association's Standard Interchange Agreement is stated as a fundamental principle that the
Agreement only is related to the interchange of data, and not to the various underlying COlU

mercial or contractual obligations of the parties.

It seems wrong to assume that EDI will continue to be used only in closed user communities
between existing trading partners. For technological, liberalisation and international trade rea
sons one can expect that the use of EDI will extend to a larger and less clearly identified user
cOlUlllunity. When EDI users that have had no commercial contact before want to do business,
they need to establish a thrustworthy basis by electronic means. A legally valid digital signature
seems to be essential for this.

In the trade sector SOllle initiatives were taken during the last years to deal with the legal
aspects of EDI in this area ([DS93]). A legal document, known as an Interchange agreement
has been introduced. The Uniform rules of conduct for the interchange of data (UNCID,
[ICC88]), developed by the International Chamber of Commerce and adopted by the United
Nations, provides a basis for establishing interchange agreements. The UNCID rules already
include SOllle security requirements from the EDI systems used: entity identification, (message)
content integrity, and authentication of the message transfer appear as necessary services. Even
an optional request for acknowledgement of receipt from the sender to the receiver is mentioned.
However, in most trade applications up to now, the interchange agreements are applied without
any of the security services. More recently, the CEe publisht'd a model intt'Irhange agreement
which trading partners may adopt as a legal basi~ for trading eiedronirally through Europe
([CEC89]).

Chapter 8

Zero-Knowledge protocols

8.1 Introduction

Zero-knowledge techniques are a relatively new concept in cryptography; the first practical
protocol was described by A. Fiat and A. ShamiI in 1987 ([FS87]). Zero-knowledge authen
tication and signature schemes require significantly Jess computational power than public key
techniques. This makes them very attractive, especially in all environment where smart cards
are employed. The main disadvantage of zero-knowledge techniques is that they usually require
many iterations of a basic protocol, thus many interactions between prover and verifier.

8.1.1 What is zero-knowledge?

Suppose a prover P wants to convince a verifier l' of something using an interactive protocol
ill which the two parties are allowed to exchange messages and generate ralldom numbers. The
protocol to be used should have the following two properties ([vH92]):

• completeness:
If P is right, then a correct protocol execution by both parties results with overwhelming
probability in V accepting the proof.

• soundness
If P is not right, then if V correctly executed the protocol, he will accept P's proof with
negligible probability, no matter how P deviates froUl the correct protocol execution.

A protocol like this is zero-knowledge if V does not learn anything more from the interaction
beyond the validity of P's assertion. More formally ([vH92], [SP89]):

• zero- know ledge
No matter how F behaves, the communicatioll betWf"ell P and " call always be simulated
by a (probabilistic polynomial-time) algorithm that does Ilot know P's secrets.

Zero-knowledge interactive proofs are introduced in [GMR85J.

8.1.2 Zero~knowledge authentication protocols

In a zero-knowledge authentication protocol. an entity prows his identity without revealing
a password or other information ([FFS88]). The computational complexity of zero-knowledge
schemes is typica.lly less than that of public key cryptosystems like RSA, and this complexity
strongly depends on the security level required. The main principles of an interactive zero
knowledge authentication protocol are ([FP91]:

69

Pa.rt III 70

• The security level of the verifier depends on the number of iterations of an elementary
protocol.

• The prover protects himself and his knowledge by giving the verifier in every iteration
access only to a randomly selected part of his information.

• Zero-knowledge protocols make use of one-way funtions in order to protect the prover's
secret data and to minimize informa.tion flow.

• Electronic identification with a zero-knowledge scheme is a non-transitive process, which
means that the verifier does not learn anything that would allow him to impersonate the
prover.

Zero-knowledge mechanisms typically consist of two phases. The first phase is carried out in a.
trusted center. After this phase a user may identify himself without intervention of the center
in a second phase carried out between himself (the prover) and a verifier. No explicit key
management is necessary, the keying material used within the mechanisms is generated by tlle
trusted center and stored at the prover's site only ([FP91]).

phase 1:

phase 2:
I

L

trusted
center

trusted
center

-
I

I

I

J

B keying •

material

I:=ll. prover ... ·7'in-t-er-a-c""ti:-v-e ...

~ protocol

Figure 8.1: Zero-knowledge mechanism

- - - - - -
I

verifier
I I

L J

In the next sections we will describe five zero-knowledge schemes for authentication and sign
ing. First the Fiat-Shamir schemes ([FS87]) will be presented. Then the Guillou-Quisquater
([GQ88]) schemes will be described. This is a special version of a generalization of the Fiat
Shamir schemes. Afterwards an efficiency improvement of the Fiat·Shamir schemes from Oug
and Schnorr ([OS91]) is presented. Then Schorr's scheme ([S90a]), which uses a somewhat
different approach, will be given. Thereafter we will present identity-based schemes of GiIault
and PaiUes ([GP90j) for authentication and signing.

Part III 71

8.2 Fiat-Shamir

At Crypto '86, A. Fiat and A. ShamiI ([FS8i]) presented a zero-knowledge authentication
protocol that can be used with smart cards. This protocol can easily be turned into a signature
scheme. We will describe both schemes below.

8.2.1 Fiat-Shamir authentication protocol

Protocol description

Before the center starts issuing cards, it chooses and publishes a modulus n which is the product
of two distinct random primes p and q, and a pseudo random function f which maps arbitrary
strings to the range [0, n). The function f should be indistinguishable from a truly random
function by any polynomially bounded function. (GGM84] describes a family offunctions which
is provably strong in this sense, but in practice siIllpler and faster functions (e.g. multiple DES)
can be used without endangering the security of the scheme.

The center prepares for each user of the system a string I D, containing all his relevant infor
mation. Then the center computes f(ID, w) for small values of w, and picks k distinct u"s
for f(ID,w) is a quadratic residue modulo n, Le. there is an x E [O,n) such that f(ID,u') =
x 2 mod n. These u,'s ate denoted by 11'1,"" WI;, and the corresponding f(I D, w)) by vJ • Then
the center computes the secret parameters s) as the smallest square root of vj 1 modulo n. Thus
sJ is the smallest number in [0, n) such that s; :::: t,;l mod n, or, equivalently, s;v) = llllod n.
Tbe smart card issued to the user contains I D, the k values wJ ' and the k values S J'

Two remarks about this initialisation are:

• For non-perfect functions f it may be advisable to randomize I D by concatenating it to
a long random string R chosen by the center, stored in the card, and revealed along with
ID .

• It is possible to eliminate the center, and let each user choose its own n and publish it in
a public directory. However, this variant makes the scheme lUuch less convenient.

The only general information a verifier needs to store is the universal modulus n and the function
f.
When a prover A wants to prove his identity toa verifier B, he proves that he knows Sl, ..• ,Sl.

without giving away any information about their values. This is done using the following
protocol, which is depicted in figure 8.2:

step 1 A sends 1 D and the k values Wj to B.

step 2 B generates v} = f(1 D, wJ) for j 1, ... , k.

Repeat steps 3 to 6 for t times, where the i-th iteration.] , t. is the following:

step 3 A chooses at random r. E [0, n) and sends (part of) 1', == r; mod n to B,

step 4 B sends a random binary vector b, = (b, 1 \ •.. , b,!.) to A.

step 5 A responds with y, = r, n s) mod n.
b':i=l

step 6 B checks that y; = x, n v;l mod n, or equivalently that X, .II; n PJ mod n. If
b'J =1 /' •• = 1

only part of x, is sent in step 3, B has to check that this part is equal to the corresponding
part of yl n v] mod n.

bij=l

Part III

And finally:

step 7 B accepts A's proof only if all t checks are succesful.

start-up of
the center

initialisation

trusted
center

choose p,q

publish n = pq

choose and publish f

choose Wj'S

vJ = f{ID,w))

prover

sJ Vj-l/Z mod_n_...,...~---..._-..-_ ..
ID,wj 's'SJ 's

choose r,

X, = rlmod n

72

verifier

authentic.
protocol t times ----x-i---... ·choose bits hI}

Yi

_o'b-,-=--('b,-l-,-·-.. 'b-i .-·)--

r, IT 5 J mod n
bi.i=l

Figure 8.2: Fiat-ShamiI authentication protocol

y; IT t'J mod n
V1 j ::::1

a.ccept only if all t
checks are successful

Fiat and ShamlI ([FS87]) suggest various generalisations of this scheme: the square roots can
be replaced by cu bk or higher roots, and the b, vectors can be made non-binary. However, the
security lemmas proven in the next section cannot be generalised as easy. [0090) calculates
some security and parameter conditions for this case. [MS90] reduces for the original scheme
the verifier's c.omplexity to less than 2 modular multiplications while the prover's complexity
remains unchanged. This is done by letting each user choose his own modulus n, and choosing
the v. values to be the first k primes.

Security

The following lemma, achieving completeness, can easily be proven ([FS8i]):

Lemma 1 If A and B follow the protocol, B alu·ays aCCfpts tho pi·oof os ('al1d.

According to Lemma 2 below, the algorithm is also sound ([FS87]):

Part III 73

Lemma 2 Assume that A does not know the s) values and cannot compute in polynomtal
time the square root of any product of the form IT v;j mod n where aj E {-1, 0, I} for

)

1 :s. j :s. k, and not all a) are zero. If B follows the protocol (and A performs arbitrary
polynomial time computations), B will accept the proof as valid with probabiltty bounded
by 2-l.:t.

In fact, if A does not know the Sj, and cannot compute square roots as stated in the lemma,
the best way to cheat is by guessing the correct vectors bi) and sending ;rj according to them.

The intuitive reason the proof reveals no information whatsoever about the 53 is that the :1:,

are random squares, and each YJ contains an independent random variable which masks the
values of the Sj. All the messages sent from A to B are thus random numbers with uniform
probability distribution, and cheating by B cannot change this fact. This is a sketch of the
proof of Lemma 3:

Lemma 3 For a Jized Ie and arbitrary t, this is a zero-knowledge proof.

Complexity

The number of computations that has to be performed by the two parties in the scheme, the
amount of information that has to be exchanged, and the storage capacity required are calcu
lated below ([FS87], [FP91]).

Time
Both the prover and the verifier need to do t modular squarings, and on average t· k/2 modular
multiplications, which gives t(k + 2)/2 lUultiplications. In addition, the verifier has to compute
the k values t'J'

Communication
The prover has to send the string I D to the verifier, and during the proof t times an x" k bits
bij , and an y, have to be exchanged. Neglecting I D, this sums up to t(21ogz n + k) bits.

Space
To store the secret values sJ, the prover needs a k log2 n-bit ROM. Besides that he needs a
ROM to store his identity I D and the k values 'Wj. If the w) '5 are chosen small, the place
needed to store them is very small, O(k logz k), and we will neglect this. Finally, the prover
needs a logz n-bit RAM to stote r, in each step of the proof.
The verifier needs a k logz n + 10152 n + k-bit RAM to store the values t')} and ;r, and bi during
the proof.

The time, space, comlllunication and security of the scheme can be traded of in many possible
ways, depending Oil the choices of k and t. For an identification scheme. a typical security level
is 2- 2(). For a 512-bit modulus, this can be achieved by choosing I.: 5 and t = 4, which gives
on average 14 multiplications, 323 bytes exchanged and the need for a 320-byte secure memory.
If, for example, k is increased to 18, and if the vectors b, have at most three ones in them, ill
each iteration 988 (::::: 210) vedors are possible. Thus. with two iterations we get already the
Z-20 security level. The number of transmitted bytes drops to 2(640 + 18)/8 = 165, and the
average number of lUultiplications for both parties drops to 2(1 + 2.8) = i.6. The drawback
is that a 1152-byte secure ROM is needed. Note that the verifier nt't'ds to compute at most 6
out of the 18 values v) to verify the proof. The optimal choices of k and t and the matrix btl
depend on the relative costs of the various resources.

Part III 74

Further improvements in speed can be obtained by parallelizing the operations. A can prepare
;1:"+1 and Y .. +l while B is still checking ;l:i and Yi, and parallel multipliers can be used to compute
products in log k dept.

8.2.2 Fiat-Shamir signature scheme

The role of the verifier B in the interactive authentication protocol is passive, but important.
Since the vectors bi are chosen at random, they contain no infonnation, but their unpredictabil
ity prevents cheating by the prover A. To turn this scheme into a signature scheme, B's role is
replaced by the function f.

Protocol description

To sign a message M, A carries out the following protocol:

step 1 A picks random 1'1, ••. ,1'1 E [0, n) and computes Xi r; mod n for all 1',.

step 2 A computes f(M, ;1:1, ... , Zt) and uses its first kt bits as values biJ (1 ~ i S t, 1 S j S k).

step 3 A computes for i = 1, ... , t

y; = 1', II 5 J mod n
b, .. =1

and sends ID, his k values UlJ ' M, the matrix btl and all the y, to B. A's signature on
M consists of the matrix b'J and the y,.

To verify A's signature on M, B acts as follows:

step 1 B computes vJ = f(ID,Ulj) for j I, ... ,k.

step 2 B computes for i = 1, ... ,t

Zi = y; II Vj mod n.
b,.i=1

step 3 B computes f(M,ZI, ... ,zd, and verifies that the first kt bits are the b'J'

Security

To prove the security of the above signature scheme, we assume that f is a truly ra.ndom
function. Then the following lemma follows easily:

Lemma 4 If A and B follow their protocols, B always accepts thf sigl1atU1'f as l'alid.

One obvious way to forge signature for arbitrary messages is to guess thl" matrix b'J' If this
is done T times, the probability of success is T· 2-1:1. In [FS87] is shown that this attack is
essentially optimal if factoring of thl" modulus 11 is infl"asibk This holds t'VI"Il if the forger has
been provided with an a.rbitrary amount of signatuIl"s of his choice.

We want to stress that the a.bove signature scheme coming from a zero-knowledge scheme is
not zero-knowledge. In fact, signature schemes cannot be zero-knowledge by definition, since
if everyone can recognize valid signatures but no one can forge them, B cannot generate by

Part III 75

himself A's messages with the same probability distribution. However! the information about
the Sj values that B gets from signatures generated by A is so implicit that it cannot be used
to forge signatures.

Complexity

In the signature scheme, an adversary knows in advance whether his signature will be accepted
as valid, and thus by experimenting with 21.:1 random values r., he is likely to find a signature
he can send to B. Consequently, the product kt must be larger for a signature scheme than for
an identification scheme; let = 72 is a general accepted value.

The length of the signature, consisting of bij and y, for 1 SiS t, 1 S j S k, is k(t + 10152 n).

Part III 76

8.3 Guillou-Quisquater

In the Fiat-Shamir protocol, the security level is 2-H . To obtain an acceptable level, the number
of iterations (the interaction between prover and verifier), and! or the memory needed by the
prover need to be large. L.C. Guillou and J.J. Quisquater introduced in [GQ88] an optimization
of this protocol. They generalize the squaring by introducing a parameter c, which can have
any value 2:: 2, and compute c-th powers and roots. The parameters k and t are both fixed to 1.
In this way they achieve a protocol with only one iteration, thus three steps, and low memory.
However, the price to pay for this is longer computations.

8.3.1 Guillou-Quisquater authentication protocol

Protocol description

Before describing the protocol, we will define what shadows and imprints are:

• shadow
For a short message (half the length of n), the secret operation S consists of

completing the message with a similar-sized redundancy (the shadow), followed by

extracting the c-th root of the obtained element.

This method with shadow produces credentials.
Due to multiplicative properties of RSA, the shadow lUust not be expressed multiplica
tively in terms of the message .

• imprint
A long message is not signed as chained blocks, but the following secret operation S is
carried out: an imprint h (shorter than n) of the message is computed using a one-way
collision free hash function.

In the description we will use a notation and terminology which differs significantly from the
original paper to show the resemblance with the Fiat-ShamiI protocol of the previous section.

The center computes for a user with identity I D the shadowed identity as described above. The
message completed with the shadow is denoted by v, and tlle c-tll root of v by s. The value s
is issued to the user.
A prover A can now prove his identity to a verifier B using the protocol depicted in figure 8.3:

step 1 A sends ID to B.

step 2 Buses ID to compute v.

step 3 A chooses at random r E [0, n) and sends (part of);r rr mod n to B.

step 4 B sends a random b, (0 :::; b < c) to A.

step S A responds with y = r . 5".

step 6 B compares the given bits of :r with the corresponding bits of y' r -I. mod 11, and accepts
A's proof if they are equal.

Security

Lemmas 1 and 2 of the Fiat-Shamir protocol, achieving completeness and soundness, can easily
be adapted to hold for the Guillou-Quisquater protocol:

Part III

initialisation

authentic.
protocol

trusted
center

compute v

s = v i/d mod n ---------------. s

prover

choose r

x = r C mod n

y r· sl>

ID

x

b

Y

Figure 8.3: Guillou-Quisquater authentication protocol

Lemma 5 If A and B follow the protocol, B always accepts the proof as valid.

77

verifier

compute v

choose b

I
?

X == yet,-I, mod n

Lemma 6 Assume that A does not know s and cannot compute in polynomial time the c-th
root of v" mod n, where 0 < lal < c. If B follows the protocol (and A performs arbitrary
polynomial time computations), B will accept the proof as valid with probability bounded
by l/c.

A cannot do essentially better than guessing the correct b, and the probability of succes is l/c.

Intuitively, the proof reveals no information whatsoever about s because 3.' is a random c-th
power, and y contains an independent random variable which masks the value of s. This makes
the following lemma plausible:

Lemma 7 This is a zero-knowledge proof.

As long as the size of the exponent c is sufficient to reach directly the level of security requested,
no repetitions are needed.

Complexity

The number of computations that has to be performed by the two parties in the scheme, the
amount of information that has to be exchanged, and the storage capacity required are calcu
lated below.

Time
Both the prover and the verifier need to do 2 exponentiations modulo n. and olle modular mul
tiplicatioll. Since exponentiation modulo n can be implemented with about ~ . logo(ezponent)
modular multiplications ([FP91]), the two parties have to perform 3iog2 (+ i modular multi
plications each. In addition, the verifier has to compute 1'.

Communication
The prover has to send the string I D to the verifier, and during the proof 3.', an integer smaller
than c, and an y have to be exchanged. Neglecting I D, this sums up to 210g2 n + log2 c bits.

Part III 78

Space
To store the secret s value, the prover needs a 10g2 n-bit ROM. He also needs a ROM to store
ID. To store r during the proof, a 1082 n-bit RAM is needed.
The verifier needs a RAM of log2 n + log2 c bits to store t' and b during the proof.

8.3.2 Guillou-Quisquater signature scheme

To sign a message M, A carries out the following protocol:

step 1 A picks at random an r E [0, n) and computes :r :.::: r C mod n.

step 2 A computes b :.::: f(M, x).

step 3 A computes y = r . at' mod n and sends his ID and w, M, band y to B. Thus, A's
signature on M consists of band y.

To verify A's signature on M, B acts as follows:

step 1 B computes v:.::: f(ID,w).

step 2 B computes z = ycv-b mod n.

step 3 B verifies that b = f(M, z).

The following lemma can easily be proven:

Lemma 8 If A and B follow their protocols, B always accepts the signature as t'alid.

The signature is the pair (b, y), and has a length of log2 n + log2 c bits.

Part III 79

8.4 Ong-Schnorr improvement of Fiat-Shamir

H. Ong and C.P. Schorr presented on Eurocrypt '90 two improvements to the Fiat-Shamir au
thentication and signature scheme ([OS91]). The communication ofthe authentication protocol
is reduced to one round, while the efficiency of the scheme is preserved. This reduces also the
length of the signatures. For the secret keys small integers can be used, which reduces the time
for signature generation by a factor 3 or 4.

8.4.1 Ong-Schnorr authentication protocol

Protocol description

The center chooses two primes p and q, and computes and publishes their product n. The
center also chooses a key pair consisting of a private and public key, and publishes the public
key,

Each user chooses at random k numbers sJ E [l,n) such that gcd(sJ,n) = 1. These compose
his private key s = (Sl,"., sd. The corresponding public key is v = (VI,"" vd such that

?'
t'J sjW lllodn.

When a user registers at the center, the center prepares an identification string I D, and gener
ates a certificate C(I D, v) for the identification string and the user's public key.

The authentication protocol that is executed by a prover A and a verifier B is as follows:

step 1 (preprocessing) A chooses at random r E [1, nJ and computes x = r2' mod n.

step 2 (initiation) A sends ID, v, C(ID, tI), and x to B.

step 3 B verifies C(ID,t') and sends a random string b = {btj} (1 ::; i::; t, 1::; J'::; k) to A.

step 4 A responds with
)/>,.2'-'

Y = r II s7' mod n.

step 5 B computes z,
'L:>' ?i-l

Z = y2' II t'J' '.1 ~ mod n
J

and accepts A's proof of identity if z x.

This protocol is depicted in figure 8.4.

Security

Using the definitions, a straightforward calculation proves the following:

Lemma 9 If A and B follotl' th€ protocol, B all('ay.~ a('cq1R the pl'oof as "alit!

Part III

start-up of
the center

initialisation

trusted
center

choose p, q

publish n :;: p . q

choose key pair

publish public key

prover

Sj s.t. gcd{s" n) :;: 1
?'

vJ :;: 8;- mod n

8:;: (81,'" sJ.)
v :;: (Vi, ... 81.:)

ID
----t-,---

pre
processing

C(ID, v)

choose r

compute :r :;: r Z' mod n

80
verifier

authentic.
protocol "b ~,-, t.,...., 1,,-

1 D, tI, C(1 D, v), x'verify C(1 D, t')

choose bits b"
---;-b -_'"'1"{'b,)'}--

mod n

y L/,,}2'·'

Z :;: y2t n til' mod n
j .

accept If z :;: :r

Figure 8.4: Ong-Schnorr authentication protocol

Next we consider the possibilities of cheating for A and B.

A fraudulent A can cheat by guessing the challenge b and sending for an arbitrary r

mod n

in step 2, and in step 4 y r.
The probability of success for this attack is 2- H , al1d in [0S':I1] i~ proYeIl that this success rate
cannot be increased unless some non-trivial 2'-t11 root modulo 11 (all be computed easily.

Complexity

Time
Prover A has to do a preprocessing step of computing
protocol A has to compute

. which costs f squarings. During the

\'" /, 0'·' r II s7 ,,- mod n.
j

Part III 81

Using the algorithm below, this can be done in on average t(k + 2)/2 - 1 modular computations
for a randomly chosen b ([OS91]):

y .- II 5J mod n;

b'.1 =1

Y := y2 II 5) mod n for i t 1, ... , 1;
b.j=l

Y := y. r mod n.

Verifier B has to do a similar computation; he has to calculate

'" v .. ?,-1 L....J '3-

y2' II t') i mod n.

J

The following algorithm uses for a random chosen b on average t(k + 2)/2 + 1 computations
([OS91]):

Communication

z := y2 II t'J mod n;
b,j=l

z := z2 II t') mod n for i = t - 1, ... ,1.
0'1._.1=1

The prover has to send ID, t', C(ID, v) and x to the verifier in step 2, which, neglecting ID
and C(I D, v), are (k + 1) log::: n bits. In step 3 the verifier has to send a kt- bit string, and the
prover's response consists of a logz n-bit y. Thus, together (k + 2)log2 n + kt bits have to be
communicated.

Space

The prover needs a k 10gJ n-bit ROM to store the secret s, and ROM which does not have to be
secret to store I D and the k log? n-bit t'. He also needs a RAM of log? n bits to store r during
the proof. - -

The verifier needs a RAM of k logz n + logz n + kt bits to store v, x and b during the proof.

8.4.2 Ong-Schnorr signature scheme

Protocol description

For the signature scheme the same preliminaries as for the authentication scheme are needed,
and one extra: the center has to choose and publish a one-wa!' hash fUll('tion h : Z" x Z"
{O,J}kt.

To sign a message M, A carries out the following protocol:

step 1 (preprocessing) A chooses at random r E ~1. n) and computes x = r2' mod n.

step 2 A computes b = {b'J}:= h(M,x).

step 3 A computes
"\" I. 0,-1

Y = r II s7 0,' mod n.

Pa.rt III

The output is A's signature on M: (b,y).

To verify A's signature, B needs (b, y), v and M, and he a.cts as described below:

step 1 B checks the certificate C(I D, tl).

step 2 B computes

step 3 B checks that h(M,z) == b.

Security

mod n.

82

A similar calculation as in the a.uthentication scheme shows that z == X, and therefore h(M, z) ==
h(M, x) == b. This proves the following lemma:

Lemma 10 If A and B follow the protocol, B always accepts the signature as valid

In order to falsify a signat ure for message M, the cryptanalyst has to solve the equation

(
to .~'-l)

b h M, y2' If ,,- mod n

for band y.

No efficient way is known to solve this equation.

Complexity

Signer and verifier have to do the same computations as for the signature scheme, except for
the computation of an extra computation of h(M, .). Also the salUe number of bits have to be
transferred, and the same size and kind of memory is needed.

The signature (b, y) has a length oflog2 n + kt bits.

8.4.3 Small integer variant

In the same article the authors propose a variant on the above schemes that reduces the size of
the secure memory needed by the prover, and accelerates the generation of signatures consider
ably ([OS91]), This is done by choosing the 5J to be small integers. The security of the variation
i~ base,d on the assumption that computing 21 -th !?0ts modulo 11 i~ difficult. No particula\~,~~
ntlull 1S known to compute 2f_th roots modulo 1'1 gwen that th",se 2' -th roots are of order n- .

For j = 1, ... , k, let sJ be a random prime in [1,264
]. This interval is large t'nough to ensure

that the 5J ca.nnot bt' found by exhaustivt' enumeration. Tht' parameter t must be at least 4,
so that 81' is at least of order n 2 . The 8.1 must be primes. for if S I = a . i3 with 0,8 E [1, 232],

8) ca.n be found by solving

and this can be done in a.bout 232 steps.

Part III

Let us now consider the efficiency of the schemes. Suppose E bij :; 8 for i = I, ... , t. Then
j

II 8 J < 2512
,

hi'; =1

83

and computing this product does not require any modular reduction. Thus, step 5 of the
authentication protocol, and step 3 of the signature generation protocol require at most 2t -
1 modular multiplications for the prover and signer respectively. The other multiplications
are with small numbers, and the effort computing the product (which is less than 2512 of at
most eight of those sma.ll numbers can be taken to cost about half a modular multiplication
([0891]). Thus, computing the y in both schemes costs an equivalent of jt + 1 full modular
exponentiations. The computation of x = r2' ta.kes t additional modular squarings, but these
can be done in preprocessing mode before the on-line authentication starts, or the message to
be signed is known.

Part III 84

8.5 Schnorr

At Crypto '89 C.P. Schnorr presented somewhat different identification and signature schemes
([S90a]) which are based on the discrete logarithm problem instead of the difficulty oHactoring.

8.5.1 Schnorr authentication protocol

Protocol description

For n E N, let Z" be the ring of integers modulo n. We identify Z" with {I, ... , n}.

The protocol is depicted in figure 8.5, and described below.

Before the (key authentication) center starts issuing cards, it initiates the scheme by choosing:
- primes p and q such that p - 1 divides q;
- a E Zl) with order q;
- its own private and public key.

Every user has a private key s which is a random number in Zq. The corresponding public
key l' is v = 0-' mod p. When a user wants to register, the center generates an identification
st ring I D and signs the pair (I D, 1') consisting of I D and the user's public key l' to get C (I D, t')'

To prove his identity to a verifier B, user A carries out the protocol below:

step 1 A sends ID, {' and C(ID, v) to B.

step 2 B checks l' using C(I D, v).

step 3 A picks at random r E Zq. Then A computes x = aT mod p, and sends x to B.

step 4 B sends a random number e E [0,21
- 1) to A.

step 5 A responds with y r + se mod q.

step 6 B computes i = oYt,e mod p and accepts A's proof of identity if x = 5:.

To reduce the number of bits transmitted, A can hash x to h(x) and send this value to B in
step 3. In step 6, B has now to compare h(i) and h(x).

Security

It is not difficult to check the validity of the following lemma, stating that the algorithm is
sound:

Lemma 11 If A and B follou' the protocol. B aiu'aps acapts tht proof as {'aild.

Next we consider the possibilities of cheating for A and B.

A fraudulent A can cheat by guessing the correct e and sending .r 0' /" in step 3. and y r
in step 5. The probability of success for this attack is 2- 1

. A lemma in ;S90a] proves that this
success rate cannot be increased unless computing log., (' is easy.
The verifier B is free to choose If in step 4\ so he can try to choose If ill order to obtain useful
information from A. But since x is random, x reveals no information. The parameter y equals
y = loga x + es lllod q, and since B cannot compute r loga x from x, it is unlikely that B can

Part III

trusted
center

p,q s.t. ql(p 1)
start-up of

a E Zp of order q
the center

choose key pair

prover

secret key s E Zq

v = 0-' mod p
initialisation 4---__________ __

authentic.
protocol

ID
v

C(ID, v)

choose r E Zq ID,v,C(ID,v)

:r = or mod p -------
y r + se mod

85

verifier

check t'

choose e

-=----:----
0" v' :b :r mod p

Figure 8.5: Schnorr authentication protocol

choose e as to obtain any useful information about $ from y.

Strictly spoken, the scheme is not zero-knowledge because the tripel (:r, y, e) ma.y be a pa.rticu
lar solution of the equation :r = all t,e mod p due to the fact that the choke of e may depend on :r.

Complexity

The complexity of the identification scheme is again divided in the computational complexity,
the amount of communication required, and the space that is needed.

Time
The prover A has to do one exponentiation (to the power r) modulo p and one multiplication
modulo q. Since r < q, this gives about ~ log., q modular multiplications for A. Besides the
multiplications, A can have to c.ompute a hash -result.
B has to compute one y-th power and one e-th power modulo p, and multiply the results mod
ulo p. Neglecting the last multiplication, this sums up to l (log:; q + t) modular multiplications,
but when the algorithm below is used, ~ log2 q -l.- ~t Illultiplications suffice:

Write
r1('''2 q 1- 1

Y = L y,2' witb y, E {a, I}.

and

e= with e, E {o, I}, t, == 0 for i 2: t.
,=0

Compute at> in advance, and obtain x as follows:

Part III 86

i := [lOg2 q l ; z := 1;
while i ~ 0 do i := i 1; z := Z 2o lliVe• mod Pi
if := z.

On average, half of the bits Yi with i ~ t are zero, and e, = Yi = 0 holds for i-th of the i < t,
thus ~ (1082 q - t) + it modular multiplications with z2 have to take place. Neglecting the pre
computation of ov a.nd taking into account the squarings of z, we get on a.verage ~ log2 q + it
modular multiplications.
In addition to the computation of all ve , B has to check the certificate and possibly has to
compute h(f).
Since most of the computational complexity is put on the verifier's side, this protocol is well
suited for applications where only unilateral authentication of a smart card versus an application
is required.

Communication
During the proof, ID, v, C(ID,v), h(x), e and y have to be transfered. Neglecting ID and
C(ID,v), this are at U10st (when h(x) =:1:) 210S2P+loSzq +t bits.

Space
The prover needs a IOS2 q-bit ROM to store his secret key 5, and a ROM to store I D, his
certificate, and the IOS2 p-bit t'. To store r during the proof, a RAM of IOS2 q bits is needed.
The verifier needs a RAM of log2 h(x) + t bits to store h(x) and e during the proof, which is at
most)og2 P + t.

8.5.2 Schnorr signature scheme

The Schnorr identification scheme can be turned into the signature scheme described below.
For that a (hash) function h is needed. This can be the same function as the function that is
used to reduce the number of bits transmitted by hashing ;r to h(x) in the identification scheme.

Protocol description

To sign a message M, A performs the following steps:

step 1 A picks at randolU r E Zq and computes :r = 01' mod p.

step 2 A computes e = h(:r, M) E [0,2t
- 1).

step 3 A computes y = r + Be mod q.

To verify A's signature (e, y) on M, B computes x = olive mod p. Then B computes h(x, M),
and accepts the signature if the result equals e.

If A generated the signature according to the protocol, B will always accept his signature since

Complexity

The work for signature generation consist of one exponentiation to the power rand Ol1e multi
plication (of 5 and e).
The messa.ge M is not used in the computation of Of , thus this preprocessing step can be before
the real protocol starts, and can be stored by A. The exponentiation costs ~ . log2 q modular
llluitiplications.

Part III 87

The multiplication of the q-bit s, and the t-hit e is negligible in typica.l applications where
q ~ 140 bits and t ~ 72,

Signature verification consists mainly of the computation of if = aYv' mod p, which can be
done in ~ log:! q + ~t modular multiplications.

The length of the signa.ture (e, y) is t + logz q.

Part III 88

8.6 Girault·Pailles

M. Girault and J .-C. Pailles constructed an identity-based scheme providing zero-knowledge
authentication and authenticated key exchange ([GP90]). We will describe of these two only
the authentication scheme. As with the authentication schemes discussed in the previous sec
tions, this scheme can easily be turned into a signature scheme, which will be described too.

The attributes of a user consist in all public-key schemes of his identity I D and a pair (s, P) of
a secret key s and a public key P. The public keys need not be protected for confidentiality; on
the contrary: they have to be as public as possible. But this publicity makes them vulnerable
to integrity-attacks. Therefore the attributes of a user must also contain a guarantee that P is
really the public key of the user with identity I D. Depending on the form of this guarantee,
several types of schemes can be distinghuised. But all require the existence of a trusted center.

• In certificate-based schemes, the guarantee G consists of a digital signature on the pair
(ID, P) computed and delivered by the center, the certificate G = C(ID, P). In this case
the four attributes I D, s, P and G are different. When someone needs to authenticate
the user with identity ID, he gets the public triplet (ID,P,G) and checks G with the
help of the center's public key. This is the approach of [19594-8].

• Identity-based schemes are introduced by Shamir on Crypto '84 ([585]). Here the public
key is nothing but the identity (i.e. P = I D), and the guarantee is nothing but the secret
key (i.e. G = s), so that only two attributes exist instead of four. The advantages of this
approach are obvious: no certificate needs to be stored and checked. However, it also has
its drawbacks. In particular, the center can impersonate any user at any moment, since
it has calculated the secret keys.

• In the intermediate scheme of Girault and Pailles the guarantee is equal to the public key
(i.e. G P), so that there ale three attributes: ID, sand P. The scheme is neither a
certificate-based, nor an identity-based one, but its characteristics are closer to those of
an identity-based one, which explains why the authors named it identy-based. It has the
advantage of having no certificates of an identity-based scheme, and the advantage of an
certificate-based scheme that each user can chose his own secret key, and that the center
cannot interfer it from the public key.

8.6.1 GirauIt-Pailles authentication protocol

Protocol description

First a center chooses a modulus n, which is a product of two secret primes p and q. We must
have p = 2fp + 1, and q = 219 + 1, where f, p and q are distinct primes, p,;; »> f. The
cellter also chooses two exponents e and d such that ed = 1 mod (p l)(q - 1). Moreover, the
center chooses an integer 9 of order f modulo both p and q. snch that the multiplicative group
generated by gin Z" is very large. Note that the requirement that 9 has order f modulo p and
q implies that 9 has also order f modulo n. Discussions on these choices follow in the security
section, after the protocol description.
The integers n, f, e and 9 are public, whilst p, q and d are kept secret by the center.

Each user of the system chooses a large random ntllnber s .' f as bis secret key, and computes
g' mod n and gives it to the authority. After haying verified the user's identity, the center
generates an identification string ID and computes

v = ID- d mod n.

Part III

Subsequently the center computes

p = V g-" mod n,

and he transfers both V and P to the user.

In sumlUary, a user's memory contains:
- the universal integers n, I, and h;
- the user's credentials I D and Pi
- the user's secret key s.

89

Now A can prove his identity to B by proving that he knows B. The protocol is as follows:

step 1 A chooses at random :z: E [1, f) and sends (part of) t = hX mod n to B, together with
ID and P.

step 2 B chooses at random c E [0, e) and sends c to A.

step 3 A sends y = :z: + Be mod I to B.

step 4 B compares the given bits of t with the corresponding bits of hy(pe I Dr mod n, and
accepts A's proof if they are equal.

Note that A can compute t in advance, which reduces the amount of computations he has to
perforlll during the protocol considerably.

Figure 8.6 depicts this protocoL

Security

Before stating (and proving) lemmas on the soundness, completeness and being zero-knowledge
of the scheme, we will shortly analyse it.

The set-up of the scheme seems to be that of a classic public-key cryptosystem, but the public
key has a very particular feature: it is not only derived frolll the secret key B, but also from a
secret exponent from the center (d). So no one can himself compute his public key. The same
secret exponent is applied to the user's identity, so P and I D are connect by the relation R:

pe I D h -, lUod n.

Therefore anyone can compute h -, mod n, but no one can compute B starting only from P and
I D unless discrete logarithms modulo a composite number can be computed.

The crucial point is that P has not to be certified. since if an impostor substitutes P to the
public key of the user with identity ID, he also has 10 find a number s sudl that R holds with
P and s:

Two strategies are possible. The impostor can first choose P. but does then need to solve
h-" = pe ID mod n, which is the discrete logarithm problem. The second option is to choose
s first, but then pe = h -.' I D-l mod n has to be solyed for unKnown P. This is the problem of
inverting RSA, which in practice is as hard as factoring.

Pa.rt III

trusted
center

p = 21p+ 1,q = 2fq + 1
n pq

prover

start-up of
the center ,d s.t. ed = 1 mod (p-l)(q-l)

initialisation

9 of order I mod P, q

publish n, I, e, 9

choose s < I .. ----.---,-----
V = I D-d mod n g' mod n

P tl g-' mod n
------~~-----V,P

pre- I
computation

choose ;r E [1, f)
t = h" mod n

90

verifier

authentic.
protocol

------,t,..., ·ITD','P;:;----~h·oose c E [0, €) .. ~------------
y = x + se mod I C

Y

Figure 8.6: Girault-Pailles authentication protocol

Now we will consider the requirements on the modulus n:

• First we will gin an algorithm that can factor n if it does not hold that p, q > > > I:

step 1 Compute p -+ q mod I starting from nand f. This can easily be done using that

n = 412pq + 21{p + q) + 1,

and thus

Denote p + q by S.

- - n - 1 21-p+q= T - pq.

Since (n - 1)/(2f) can easily be computed and is an integer, this equation gives us
S mod I. If I is large enough, S can be found from S mod I by exhaustive search.

step 2 Compute S := 2(f S + 1), which equals p + q since

p+ q = 2fp+ 1 + 2fij + 1 l(fl].) -r q) 1) = 2(fS 1).

step 3 Compute p and q by using their product 11 and their sum S:

n.

This algorithm does not work if Sis mucb larger than I, which discourages an exhaustive
search in step 1. This can be achieved by choosing p and q much larger than I (a more
exact requirement can be found in the section "Complexity").

Part III 91

• As usual, p - 1 and q - 1 must have a large prime factor to thwart some well-known
attacks. Since p 1 = 21p, and q - 1 = 2fii, this requirement is satisfied automatically
by the above construction .

• It could occur that the revelation of 9 renders easy the factorisation of n. No proof is
known that it does not, but for u < I:

gcd(g" Imodn,n) 1,

and
gcd (gl 1 mod n, n) = n,

so no factor of n can be obtained by such greatest common divisor computations.

The authentication protocol itself is similar to Schnorr's one, except that n is composite, and
its factors only are known to the trusted center. Hence, its security analysis is quite similar.

The lemma that achieves completeness of the scheme is as usual easy to verify:

Lemma 12 II A and B follow the protocol, B always accepts the proof as valid.

A fraudulent A can guess a challenge c and compute (P'IDY (= h-"C), choose a y at random,
and use them to compute

to send to B in step 1. If B in step 2 indeed sent c, A replies with the y chosen. Since A
computed t as to satisfy B's check, B will accept the proof. The probability that A guesses the
correct c is lie.
Similarly to the proof in [590a], it can be proven that A has no better winning strategy. Thus,
the scheme is also sound:

Lemma 13 Assume that A does not know s, Then if B follows the protocol, he will accept the
proof as valid with probability bounded by lie

Intuitively, B does not learn anything from s because the y he receives from A in step 3 is
"scrambled" by the random number x, and computing x from t is not feasible unless discrete
logarithms can be computed efficiently, By formalizing this, it can be proven that the protocol
is zero-knowledge.

Lemma 14 The protocol is zero-knowledge.

Complexity

As usual, the complexity of the protocol is divided in three aspeds:

Time
A has to compute t and y. The computation of t can be doue iu a precomputation, and costs
about ~ logz f modular multiplications ([FP91J). The computation of y consists mainly of com
puting the product of the logz e-bit number (' and s. The public exponent f can have any value,
so it is adva.ntageous to choose it as small as possible. but still achieving an acceptable high
security level lie. Note that if e is chosen smaller, it suffices to repeat the protocol several
times to achieve the required level of security, Summarising: A must perform ~ logz f modular
multiplications in a precol11putation step, and not even one modular multiplic~tion during the
protocoL

Part III 92

B has to perform one exponentiation modulo an i-bit number and one 11l0duio an e-bit llum
ber, and has to multiply the results, which adds up to ~ (log2 i + log2 e) modular multipications.

Communication
During the proof, I D, P, t, c and y have to be transferred. If I D is neglected, this are
210g2 n + log2 i + log2 e bits.

Space
The prover needs to store the log2 i-bit s in a secret ROM, and the P in a ROM which does
not have to be secret. During the proof, a log2 i-bit RAM is needed.
The verifier needs a RAM of log2 n + log2 e + log2 n bits to store t, c and pe I D.

The authors of the article recommend a 750-bit n. If the exponent e is chosen about 20 to 30
bits, one protocol execution is enough to have a security level of 2- 20 to 2- 30 bits, while it is
still small enable fast and easy computations in the authentication protocol. For signatures, 75
bits are recommended. One can either choose 9 to be small, which makes it easy to generate
primes p and q such that 9 is primitive in GF(p) and GF(q), or choose h = ge to be small to
facilitate the prover '5 and verifier's computations. In the last case, the center derives 9 from h
by computing 9 = hd

• Finally, a I50-bit f (and thus also s) are sufficiently safe.

8.6.2 Girault-Pailles signature scheme

protocol description

When the authentication scheme is used to make a signature scheme, a hash function hash is
needed to replace B's challenge, similarly to the previous protocol descriptions. Thus, hash
hashes an arbitrary length input to a log2 e-bit output.

To sign a message M, the following steps are performed by A:

step 1 A chooses at random x E [0, f) and calculates t = h:J: mod n.

step 2 A computes e = hash(t, M).

step 3 A computes y =;r + sc mod i, and sends ID, P, M, and the signature (e,y) on.M to
B.

B carries out the following protocol to verify the signature:

step 1 B calculates f = hy(pe I D)C mod n.

step 2 B computes c = hash(f, M).

step 3 B checks that c c.

It is dear that Lemma 15 holds true:

Lemma 15 If A and B follow the protocol, B ahl!oys accepts the slgnatU1'e as l'alid.

The length of the signature (e, y) is log2 f + log:? e.

Part III 93

8.7 Comparision

8.7.1 Overview

The table below shows the security and complexity of the schemes discussed in the previous
sections. "SROM" is used as an abbreviation for "Secure ROM".

security # modular cOllllllunication space
multiplications (in bits) (in bits)

prover
Fiat- klog 2 n SROM
Shalllir 2- kt t(k + 2)/2 t(2log2 n + k) log2 n RAM

verifier
(k + 1) log2 n + k RAM
prover

Guillou- logz n SROM

signature
(in bits)

k(log2 n + t)

Quisquater 1 3log2 C + 1 2log 2 n + log::! c log2 n RAM log::! n + logz c c

I

i

verifier
log::! n + logz cRAM

prover prover
t (pre) kIog:! n SROM

Ong- 2- L'1 t(k+2)j2-1 (k + 2)logz n + kt k logz n ROM log21'1 + kt
Schnorr verifier log2 n RAM

! t(k+2)/2+1 verifier
(k + 1) logz n + kt RAM !

prover prover
OS small t (pre) 64k SROM
integer 2- u ~t + 1 (k + 2) log2 1'1 + kt k loSz n ROM log::! 1'1 + kt
variant (t 2: 4) verifie'i- logz n RAM

t(k+2)/2+1 verifier
I (k + 1)log2 n + kt RAM

prover
prover loSz q SROM

Schuorr 2-1 ~ log.., q 2loSzp + logz q + t log2P ROM log:! q + t - -
verifier log2q RAM

3 I 1 verifier '2 og2 q + :it
log2P + tRAM

prover
prover logz f SROM

Girault- ~ log2 f (pre) 21og 2 11 -.l.-]og.: f log] 1'1 ROM
Pailles 1 < 1 + loge t log" f RAM log.: f -.l.- IOS2 f e

verifier verifier
~ (log:! f + log:! €) 21og 2 1'1 + log:! e RAM

-1

Remark:
In tbe table we left the cOlUlllunicatioll of thE' prow!'s idE'ntity string I D and the certificate of
his public key (in the Schnorr scheme) out.

!

Part III 94

8.7.2 Choices for the parameters

Usually a 512·bit n is considered to be sufficiently large to factor, but since factoring this one
n would break the whole system for all users, a very good safety margin is desirable. Therefore
we choose a 75O-bit n in the Fiat·Shamir-like and the Girault-Pailles scheme. In the article of
Schnorr, a size of 512 bits for the prime p, and a 140-bit prime q are proposed. But to enable
a fair comparision of the schemes, we will enlarge the size of p to 750 bits, and the size of q
proportionally to 200 bits. For the f in their scheme, Girault and Pailles recommend a 150-bit
integer.
When we choose a security level of 2- 20 for authentication, and substitute all these values in
the table, we get the following overview of security and complexity for the schemes considered:

security # modular communication space signature
multiplications (in bits) (in bits) (in bits)

prover
Fiat- 750k SROM
Shamir 2- 20 10+ t 1500t+20 750 RAM 750k + 20

(kt 20) verifier
751k + 750 RAM
prover

Guillou- 750 SROM
Quisquater 2- 20 61 1520 750 RAM 770

verifier
770 RAM

prover prover
t (pre) 750k SROM

Ong- 2- 20 9+t 750k + 1520 750k ROM 770
Schnorr (kt = 20) verifier 750 RAM

11 + t verifier
750k + 770 RAM

prover prover
OS small t (pre) 64k SROM
integer 2- 20 ~t + 1 750k + 1520 750k ROM 770
variant (kt = 20; verifi-er 750 RAM

t 2: 4) 11 + t verifier
750k + 770 RAM
prover

prover 200 SROM
Selmon 2- 20 300 1720 750 ROM 220

verifier 200 RAM
305 verifier

770 RAM
prover prover

225 (pre) 150 SROM
Girault- 2- 20 < 1 1670 HiO ROM 170
Pailles verifier 1.50 RAM

255 verifier

•

1520 RAM

Part III 95

8.7.3 Concluding remarks

Zero-knowledge proofs promise to be quite useful for authentication protocols. Besides the
schemes introduced here there are several other suggestions that deserve further study. Ex
amples are techniques based on elliptic curves ([BC90J), permuted kernels ([S90b]), or error
correcting codes ([589]).

Appendix A

A.I Rabin primality test

A composite number passes one round of the algorithm below with probability less than 1/4,
while a prime always passes. The Rabin primality test rabintest ([D9Z]) is the following:

step 1
Set n equal to the integer to be tested for prilllality, and write n = 1 + Z" . a, where a is
odd.

step 2
Generate a random integer b, 1 < b < n, called the base.

step 3
Set j = 0 and z ::: btl mod w.

step 4
If z = 1 go to step 8.

step 5
If z mod n n - 1, go to step 8.

step 6
Set j = j + 1; if j < h set z ::: Z2 mod n and go to step 5.

step 7
fail (n is not a prime).

step 8
pass (n is composite with probability less than 1/4)

Note that t iterations of the algorithm do not necessarily imply that the probability that a
composite number passes is less than ~ t. The error probability depends on the distribution
with which the candidate primes are chosen.

96

Part III 97

A.2 Probprime and probprimeinc

The algorithm probprime below ([D92]) generates a probable prime number p chosen at random
from the interval I, such that p - 1 is divisible by v and gcd(p - 1, e) = L Chosing t' = e = 1
results of course in a totally random prime in I.

We make the following assumptions:
- The Rabin prilnality test described above in A.l is available, named rabintest, called with
input n and producing output "pass" or "fail"
- A good random number generator randomchoice is available that is called with an interval I
as input and returns a random odd number from I (see for example [MS91]).
- A table that contains all odd primes less than a fixed number r is available.
- A function gcd for computing the greatest COllllllon divisor of two integers is available.

step 1
If I = [a ... b], define i by i:= [oa ••. !:] .

... 1' ... '11

step 2
Compute n as n = 2v . randomchoice(i) + 1.

step 3
If n is divisible by a prime less than r, or gcd(n - 1, e) f; 1 go to 2.

'step 4
Set i = O.

step 5
Set i = i + 1 and do rabintest(n); if rabmtest(n) = fail go to 2.

step 6
If i < t go to 5.

step 7
output n.

In [DL91] the probability that this procedure outputs a composite number is analysed in the
cases where the interval is of the form [2"-1 ... 2"] for some k, and e = v = 1, and in [D92] is a

tablt> showing some results. This probability appears to be (much) less than f. For example,

for a 30o.-bit n, 10 iterations give already an error probability of at most 142.
An alternative to probprime is probprimeinc ([D92]) , generating a probable prime number p
chosen at random from the interval I by incremental search, such that p 1 is dh;sible by t>

and gcd(p - l,e) = 1.
Probprimeinc chooses at random an odd starting point n .. sue h that lill - 1 is divisible by t' and
examines no, no + 2t> •• ••

This algorithm is more economical in its use of random bits. and testdivision by small primes
can be done much mOle efficiently: first compute the residue of nil modulo each small prime
in the table. Each time the current candidate is increased by 21'. 2r is added to the residue
modulo each of the small primes and it is tested that none of tIle residues be,omes zero. III
[BDL91J is shown that the optimal r equals

R
r= ,

D ·log(R/D)

Part III 98

where R is the time needed to do one Rabin test, and D the time needed to divide a candidate
prime number by a prime less than r.

The algorithm is as follows:

step 1
If I = [a . .. b], define i by i := [2~' ... 2b.J

step 2
Compute n as n = 2v . randomchoice(i) + 1, and initialize testdivision.

step 3
Set n = n + 2v, and if now n is not in I, go to 2.

step 3
If n is divisible by a prime less than r (use optimized testdivision), or gcd(n - l,e) f:. 1,
go to 2.

step 4
Set i = O.

step 5
Set i = i + 1 and do rabintest(n); if rabintest(n) = fail, go to 3.

step 6
If i < t, go to 5.

step 7
output n.

If one accepts an upper limit on the number of candidates to be examined, the probability
that the output is a composite number can be estimated in the case v = e = 1. This error
probability is dependent on the number of candidates. In [D92] a table can be found.

Part III 99

A.3 Provprime

We will give a recursive algorithm for generating provable primes proposed by Maurer ([D92]'
[M90]). It is based on the following number theoretic result by Pocklington:
If
• n - 1 = F R with q}, ... ,qt the distinct prime factors of F,

'1"10--1

• there exists a number a such that 0"-1 1 mod n, and for all i, 1 :s i :s t, gcd(0 --;;;- -1, n) 1,
and
• F> yn,
then n is a prime.

This suggests the following algorithm provprime for generating a random prime in some interval
[low ... high]:

step 1

Generate recursively ql, q2, ... where ql 2: q2 2: ... until their product F is larger than
..,ffiIih.. Set t equal to the number of q's that are generated.

step 2
Choose at random an even number R and compute n as n = F R + 1.

step 3

Choose at random a number a such that a" -1 1 mod n.

step 4
Set i = L

step 5
'~-l

Compute gcd(a -;;- - 1, n).
If the outcome is not equal to 1, go to 2.

step 6
If i < t set i = i + 1 and go to 5.

step 7
output n.

Maurer shows that if the q's are large, nearly any choice of a will suffice for proving primality
of n if n is prime.

The algorithm can be speeded up in various ways:

• After step 2., test division on small primes should be used. Since all candidates are of
the fOlm n:: FR + 1 for fixed F, one call translate tht' condition that nOlle of the small
primes divides n into a condition on R. Concretely. if n = F R I 0 mod p, then
R -F-1modp. So we can precompute _F- 1 modulo each small primE' used for test
division and check for every candidate for each p if R = _F-l mod p ([M90j).

• When a candidate has passed test division. a Rabin test with base :2 (see Annex A.I)
should be done. This base gives the most efficient Rabin test possible. and it excludes
virtually all composites. Furthermore. if 11 passes the test it is implicitely checked that
2"-1 == 1 mod n. It is therefore advantageous to choose a = 2 in step 3 ([D92]).

• Finally, the improvement in [BLS75] of Pocklingtons result can be used. Here the following
theorem is proved:

Part III 100

Given n = F R + I, suppose we have an a satisfying Pocklingtons conditions. Let R be
the odd part of R, and F be . Let rand s be defined by R = 2· F . 8 + r, where

1 :s r < 2 . F. Suppose F > Vfn. Then n is prime if and only if s = 0 or r2 - 88 is not a
square.
This refined condition is somewhat more computationally costly to verify, but this makes
little difference in practice if the Rabin test is used before. Experience shows that the
above result is only used for the final candidate, and the extra computations to find R,
F, rand s, and perhaps a square root computation take negligible time compared to
the exponentations. Furthermore, only 5% of the integers a: have all primes less than
-0i, and this will be detected after generation of the first prime. Although it biases the
distribution of the primes generated slightly, this small percentage ca.n safely be neglected.
This sinlplifies the code and saves time compared to the original version for the circa 30%
of the integers with largest prime factor less than ~.

Palt III 101

A.4 Strongprime

The algorithm 5trongprime below ([D92]) generates a prime P chosen at random from the in
terval I based on a seed s, such that it can be used in RSA with public exponent v satisfying
the last two constraints.

To define some notation, let r, 5 and t be primes that divide p- 1, p+ 1 and r -I respectively.
Strongprime uses the procedure probprime (or probprimeinc which makes the scheme more effi
cient) of Annex A.2. The procedure randomchoice that is used in these two procedures chooses
primes based in a scheme initialized by the procedure initrand on a random seed s passed as
a parameter. It is possible to use provable primes which can be produced by the algorithm of
Annex A.3 instead of probable primes produced by probprime or probprimeinc.
Furthermore, fixed parameters C1 and C2, based on the interval I, have to be chosen to control
the size of p - 1, p + 1 and r - 1. If 1::= [a ... b), a possible choice for them such that r, 5, and
t are the maximal allowed size where there is still a good change of finding a prime in I with
the right properties is:

1 1
Cl ::= . h()' and C2 == ---;;::::=:::;===:=;=;:

2 . bftlengt a 2 . v' bftlength(a)

At the other extreme, the constant 2 in both formulas can be replaced by a larger number such
that r, 5 and t are of the minimal required size.
The algorithm 5trongprime is the following:

step 1

If I = [a ... b], define II by II := [Cl va ... c1 Vb], and 12 by 12 :== [czva·.· czVbj.

step 2
Compute t as t ::= probprime(Il' I, 1).

step 3
Compute sass = probprime(I2 , 1, 1).

step 4
Compute r as r ::= probprime(I11 t, 1).

step 5
Compute Po as Po = 5 r

- 1 - r,·-l mod rs.

step 6
If Po is even, then set Po = Po + rs.

step 7
output probprime(I, Po, v).

Part III 102

A.S Computations of discrete logarithms and factoring
of a "hard integer"

The table below gives information on the computation time needed for computing discrete log
arithms over GF(p) and GF(2"), and the factorization of an integer that is the product of two
primes of about the sime size.

!
discr. log

I
discr. log integer

over GF(p) over GF(2") factorization

asymptotics exp(Jlog(p)) exp(.vn) exp(Jin(n)ln(ln(n»

largest compo p 224 bits n 503 n 365 bits
(400 MIPS years)

sugg. par am. p 512 bits n 993 n = 1186 n 512

projected 5,000,000 4000 100,000,000 500,000
running time MIPS MIPS MIPS MIPS

,I
years years years years

Note that 1 MIPS year is the amount of computation performed in a year by a 1 Million
Instructions Per Second machine (::::: 3 . 1013 instructions).

Bibliography

[17498-2]
ISO 7498-2: 1989
OSI Information processing systems - Open systems Interconnection - Basic Reference
Model - Part 2: Security architecture.

[17816-1J
ISO 7816-1: 1987

Identification cards - Integrated circuit(s) cards with contacts - Part 1: Physical charac
teristics.

[17816-2J
ISO 7816-2: 1988

Identification cards - Integrated circuit(s) cards with contacts - Part 2: Dimensions and
location of the contacts.

[17816-3J
ISO/lEe 7816-3: 1989
Identification cards - Integrated circuit(s) cards with contacts - Part 3: Electronic signals
and transmission protocols.

[19564-1J
ISO 9564-1: 1990

Banking - Personal Identification Number Management and Security - Part 1: PIN Pro
tection Principles and Techniques.

[19594-8]
ISO 9594-8: 1990

Information processing systems - Open Systems Interconnection - The Directory.

[I9i35]
ISO 9735; 1988

Electronic data interchange for administration, commerce and transport (EDIFACT) _
Application level syntax rules (amended and reprinted 1990).

[II9796]
ISO/lEe 9796: 1991

Information technology - Security techniques - Digital sigl1ature scbeme giving message
recovery.

[II9798-1]
ISO/lEe 9798-1: 1991

Information technology - Security techniques - Entity authentication mechanisms - Part
1: General Model.

103

Part III 104

[119798-2]
ISO/IEC 9798-2: CD 1992
Information technology - Security techniques - Entity authentication mechanisms - Part
2: Entity authentication using symmetric techniques.

[119798-3]
ISO/IEC 9798-3: WD 1993
Information technology - Security techniques - Entity authentication mechanisms - Part
3: Entity authentication using a public key algorithm.

[II10118-1J
ISO/IEC 10118-1: DIS 1992
Information technology - Security techniques - Hash functions - Part 1: General.

[II 10118-2]
ISO/IEC 10118-2: DIS 1992
Information technology - Security techniques - Hash functions - Part 2: Hash functions
using an n-bit block cipher algorithm.

[111166-1J
ISO 11166-1: CD 1991
Banking - Key Management by means of asymmetric algorithms - Part 1: Principles,
Procedures and Formats.

[1111770-3J

[A92]

ISO flEC 11770-3: WD 1992
Key Management - Part 3: Key Management Mechanisms Using Asymmetric Crypto
graphic Techniques.

J .C. Anderson, Responses to NIST's proposal, Comlllunications of the ACM, Vol.35, No.7,
ppAl-52, 1992.

[AMV89J
G.B. Agnew, R.C. Mullin, S.A. Vanstone, Digital Signatures for the CA34C168 Data
Encryption Processor, Document 834168.MD603.02, University of Waterloo, Waterloo,
Ontario, Canada, Calmos CA34C168 Application Notes, August 1989.

[ANSI8l]
Data Encryption Algorithm, X3.92, American National Standards Institute, 1981.

[BB78]
B. Blakley and G.R. Blakley, Security of Number Theoretic Public Key Cryptosystems
Agains Random Attack, Cryptologica. 11\ three parts: Part I: Vo1.2(4), pp.305-32l, oktober
1978; Part II: Vo1.3(1), pp.29-42, January 1979: Part Ill: Vo1.3(2). pp, 105-118, April 1979,

[BB79J
G.R. Blakley and I. Borosh, Rit'est·Shamir-AdlflJlan Public Key Cryptosystems Do Not
Always Conceal Messages, Compo &: Math. with Appl.. \'01.5, pp.169-178, 1979.

[BC90]
A. Bender and G, Castagnoli, On the Impl£1lleniail0n of ElliptiC CIII'I'f Cryptosysiems,
Proceedings of Crypto '89, Lecture Notes in Computer Science Vo1.435, Springer· Verlag,
pp.l86-192, 1990.

Part III 105

[BDL91]
J. Brandt, I. Damgaard and P. Landrock, Speeding up Prime Number Generation, Pro
ceedings of Asiacrypt '91, Springer verlag, 1991.

[BGM91]
Barents, Gasille and Mout, '!'rusted third parties and similar services, TEDIS Programme,
report for the Commission of the European Communities DG XIII, October 1991.

[BLS75]
J. Brillhart, D.H. Lehmer and J.L. Selfridge, New Primality Criteria and Factorizations
l)f 2'" ± I, Math. Compo 29, pp.620-647, 1975.

[BS89]
Bach and Shallit, Factoring with Cycil)tromic pl)lynomials, Math. Compo 52, pp.201-219,
1989.

[CEC89]
Commission of the European COlllmunities, The legal pl)sition l)f the member states with
respect tl) electronic data interchange, TEDIS report, 1989.

[CCITT88]

[D83]

CCITT, Data Communication Networks Directory, Recolllmendations X.500 - X.52},
1988.

D.E. Denning, Cryptography and Data Security, Addison-Wesley PubL, 1983.

[DL91]

[D92]

1. Damgaard and P. Landrock, Improved bounds for the Rabin primality test, manuscript,
submitted to Math. Comp., 1991

1. Dalllgaard, RSA Key Generation, Danish input for TR on generation of primes and
modulus, SC27/W62 N133, March 23, 1992.

[DH76]

W. Diffie and M.E. Hellman, Neu' Directions in Cryptography, IEEE Trans. on Informa
tion Theory, VoL IT-22 (6), pp.644-654, 1976.

[DP89]

D.W. Davies and W.L. Price, Security for Computer Networks, John Wiley &; sons, 1989.

[DS91a]

M. De Soete, Public Key Algorithms, Proceedings of the ESAT course "State of the Art
and Evolution of Computer Security and Industrial Cryptography", KU Leuven, Springer
Verlag, to appear.

[DS91b]

M. De Soete, Smart Cards and then' ApplicatIOns, ProreE'dillgs of CompsE'c 91, EIse>,iE'r
Science Publishers Ltd., pp.14i-154, 1991.

[DS93]

M. De Soete, The Key To Open ED!: Digital Slgnatllrt. presE'llted at EEMA conference,
January 1993.

[EG85]

T. El Gamal, A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms, IEEE Trans. on Information Theory, Vo1.31-4, pp.469-472, 1985.

Part III 106

[FFS88]
U. Feige, A. Fiat and A. ShamiI, Zero-Knowledge Proofs of Identity, Journal of Cryptology
1, pp.77-94, 1988.

[FP91]
W. Fumy and A. Piau, On the Complezity of Asymmetric Smart Card Authentication,
Smart Card 2000, ed. D. Chaum, Elsevier science publishers B.V., Amsterdam, The
Netherlands, pp.181-190, 1991.

[FS87)
A. Fiat and A. Shamir, How to prove yourself: practical solutions to identification and
signature schemes, Advances in Cryptology: Proceedings of Crypto '86, Lecture notes in
Computer Science Vo1.263, Springer-Verlag, pp.186-194, 1987.

[GGM84]
O. Goldreich, S. Goldwasser and S. Micali, How to construct random junctions, 25th
symposium on Foundations of Computer Science, October 1984.

[GMR85]
O. Goldreich, S. Micali and C. Rackoff, The knowledge complezity of interactive proof
systems, Proceedings of STOC '85, pp.291-304, 1985.

[GP90)
M. Girault and J .-C. Pailles, An identity-based scheme providing zero-knowledge authen
tication and authenticated key ezchange, working paper ISO/IEC JTCl, 1990.

[GQ88]
L.C. Guillou and J.J. Quisquater, A practical zero-knowledge protocol fitted to security
microprocessors minimizing both transmission and memory, Proceedings of Eurocrypt
'88, Lecture Notes in Computer Science VoI.330, Spinger-Verlag, pp.123-128, 1988.

[ICC88)

[K87]

[L9I]

International Chambers of Commerce, Uniform rules of conduct for interchange of trade
data by tele-transmission, Paris, 1988.

N. Koblitz, A Course in Number Theory and Cryptography, Graduate Text in Mathemat
ics 114, Springer-Verlag New York Inc., 1987.

X. Lai, Detailed DescNption and a Software Implementation of the IPES Cipher, Signal
and Information Processing Labora.tory, ETH Zurich, November 8, 1991.

[LLMP90)
A.K. Lenstra, H.W. Lenstra Jr., M.S. Mana.ss~ and 1.M. Pollard, Thf number field s~et'e,
Proc. of STOC 90, pp.564-5i2, 1990.

[LM91a]
A.K. Lenstra and M.S. Manasse, Factormg u'ith two largE primes, Advances in Cryptology,
Proceedings of Eurocrypt '90, Springer- Verlag. pp. i2-82, Berlin 1991.

[LM91b]
X. Lai and J.L. Massey, A Proposal for a NfU: Blod Encryption Standard, Advances in
Cryptology, Proceedings of Eurocrypt '90, Springer-Verlag, pp.189-404, Berlin 1991.

Part III 107

[LM091]
B.A. LaMacchia and A.M. Odlyzko, Computation of discrete logarithms in prime fields,
Advances in Cryptology, Proceedings of EUIOcrypt '90, Springer-Verlag, pp.616-618, 1991.

[M90]
U.M. Maurer, Fast generation of RSA products with almost maximal diversity, Advances
in Cryptology - EUlocrypt '89, Lecture Notes in Computer Science 434, Springer Verlag,
pp.636-647, 1990.

[MPW92]
C.l. Mitchell, F. Pipet and P. Wild, Digital Signa.tures, Contemporary Cryptology, The
Science of Information Integrity, edited by G.l. Simmons. IEEE Press, New York, pp.325-
378, 1992.

[MRW89]
C. Mitchell, D. Rush and M. Walker, A Remark on Hash Functions for Message Authen
tication, Computers & Security Vol.8, pp.55-58, 1989.

[MS90]
S. Micali and A. Shamir, An improvement of the Fiat-Shamir Identification and Signature
Scheme, Proceedings of Crypto '88, Lecture Notes in Computer Science Vo1.403, Springer
Verlag, pp.244-247, 1990.

[MS91]

[N92]

S. Micali and C.P. Schnorr, Efficient, Perfect Polynomial Random Number Generators,
Journal of Cryptology Vol.3, pp.157-172, 1991.

l. Nechvatal, Public Key Cryptography, Contemporary Cryptology, The Science of Infor
mation Integrity, edited by G.J. Simmons. IEEE Press, New York, pp.177-288, 1992.

[NBS77]

Data Encryption Standard, Federal Information Processing Standards Publication 46,
National Bureau of Standards, US Department of Commerce, January 1977.

[NIST91]

A proposed Federal Information Processing Standard for Digital Stgnature Standard
(DSS), National Institute for Standardisation and Technology, August 1991.

[NIST92a]

A proposed Federal Information Processing Standard for Secure Hash Standard (SHS),
National Institute for Standardisation and Technology, January 31, 1992.

[NIST92b]

American National Standard X9.30-199X, Publ1c A'ey cryptograph y using irret'ersible algo
rithms for the financial sert'tces mdustry parf 1: Thf Dlglfol Slgnaiu1'f. Algonthm (DSA),
American Bankers Association, USA, februari 18, 1992.

[0090]

K. Ohta and K. Okamote, A Modification of the Fiat-Shami1' Scheme, Proceedings of
Crypto '88, Lecture Notes ill Computer Scien('e Vo1.403. Springer-Verlag, pp.2.32-243,
1990.

[0591]

H. Ong and C.P. Schnorr, Fast Signature Generation with a Fiat Shamir - Like Scheme,
Proceedings of Eurocrypt '91, Lecture Notes in Computer Science Vol,473, Springer
Verlag, pp,432-440, 1991.

Part III 108

[P85]

[R78)

[R91]

[R92]

C. Pomerance, The quadratic sieve factoring algorithm, Advances in Cryptology, Pro
ceedings of Eurocrypt '84, Lecture Notes in Computer Science Vol.209, Springer-Verlag,
pp.169-182, 1985.

R. Rivest, Remarks on a Proposed Cryptanalytic Attack of the M.l. T. Public Key Cryp
tosystem, Cryptologica, Vo1.2(1), pp.62-65, January 1978.

R.L. Rivest, The MD4 Message Digest Algorithm, Proceedings of Crypto '90. Lecture
Notes in Computes Science Vol. 537, Springer-Verlag, pp.303-311, 1991.

A. Rossnagel, Digitale Unterschriften und Verfas$1l.ngsvertrciglichkeit, Kommunikation &
Sicherheit, edt. H. Reimer and B. Struif, TeleTrusT Deutschland e.V., Bad Vilbel· Darm
stadt 1992.

[RD91]
R. Rivest and S. Dusse, The MD5 Message-Digest Algorithm, Network Working Group,
Internet draft [MD5-A), July 10, 1991.

[RSA78]

[585]

[587]

[S89]

[S90a]

R. Rivest, A. Shamir and L. AdJeman, A method for obtaining digital signatures and
public key cryptosystems, COllllll. of the ACM, Vo1.21, pp.120-128, 1978.

A. Shamir, Identity-based cryptosystems and signature schemes, Proceedings of Crypto
'84, Lecture Notes in Computer Science Vo1.196, Springer-Verlag, pp.47-53, 1985.

R.D. Silverman, The multiple polynomial quadratic sieve, Math. Comp., VA8, pp.329-339,
1987.

J. Stern, An Alternative to the Fiat-Shamir protocol, presented on "Kryptographie", Ober
wolfach, 1989.

C.P. Schnorr, Efficient Identification and Signatures for Smart Cards, Proceedings of
Crypto '89, Lecture Notes in Computer Science Vo1.435, Springer-Verlag, pp.239-252,
1990.

[S90b]

[592]

A. Shall1ir, An Efficient A uthenticatioll Sen t 111< B(l$trt on PUl11utt-d Ii f1'ncis, Proc!:'edil1gs
of Crypto '89, Lectuf!:' Notes ill Comput!:'f Sciellce \'01.435. Springer-Verlag, pp.606-609,
1990.

Ernest F. Brickell and Chris Holloway, Proceedings of Secur/com 92, all exceptional tu

torial day on: "Electronic signature algorithms and protocols". ('NIT Paris - La Defense
- France, March 1 i, 1992.

[SN77]
G.J. Simmons and J.N. Norris, Preliminary Comments on the M.I. T. Public Key Cryp
tosystem, Ctyptologica, Vol.I(4), ppA06-414, October 1977.

Part III 109

[SP89]

[T91]

J. Seberry and J. Pieprzyk, Cryptography, An Introduction to Computer Security, Ad
vances in Computer Science Series, Pretence Hall, Australia, 1989.

Das Te/eTrusT-Zertifikat, Version 1, Working version of TeleTrusT AG4, edited by W.
Schneider, GMD, June 4, 1991.

[T92a]

[V92]

TeleTrusT Object identifiers Register, Draft version 1 of TeleTrust AG4, edited by Klaus
Trual, GMD, Januari 24, 1992.

K. Vedder, Smart Cards, Proceedings of the Sixth Annual European Computer Conference
on Computer Systems and Software Engineering, The Netherlands, pp.630-635, May 4-8,
1992.

[vH92}
E. van Heijst, Special Signature Schemes, doctoral thesis, University of Technology Eind
hoven, July 6, 1992.

[v09I]
P.C. van Oorschot, A comparision of public-key cryptosystems based on integer factor
ization and discrete logarithms, Proceedings of Crypto '90, Lecture Notes in Computes
Science Vol. 537 , Springer-Verlag, pp.576-581, 1991.

[v092]

P.C. van Oorschot, A Comparision of Practical Public Key Cryptosystems Based on In
teger Factorization and Discrete Logarithms, Contemporary Cryptology, The Science of
Information Integrity, edited by G.J. Simmons. IEEE Press, New York, pp.289-322, 1992.

	Voorblad
	Part I General Information
	Contents
	Chapter 1 MBLE/PITS
	Chapter 2 Security in Signalling
	Chapter 3 Digital Signatures
	Part II Security in Signalling
	Contents
	Abstract
	Chapter 1 Context and general principles
	Chapter 2 Security functions in signalling
	Chapter 3 Applications of security functions in signalling
	Chapter 4 Information security
	Chapter 5 Security models
	Chapter 6 Security in signalling revisited
	Chapter 7 Notations
	Part III Digital Signatures
	Contents
	Chapter 1 Introduction
	Chapter 2 Digital signature schemes
	Chapter 3 Hash functions
	Chapter 4 Combining hash functions and signature schemes
	Chapter 5 Smart cards
	Chapter 6 Key management
	Chapter 7 Legal aspects
	Chapter 8 Zero-Knowledge protocols
	Appendix A

