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A Design Approach for Axially Compressed
Unstiffened Cylinders

A R. C. Baristat+
Universitade Federal do Rio de Janeiro

AND

J.G. A . Crotr ‘
University College, London

SUMMARY

The classical critical load analysis of circular cylindrical shells under the
action of uniform axial compression is re-examined. It is shown, through the
inspection of the potential energy, which of the components of the membrane
stiffness are most likely to be eroded during the imperfection-sensitive, non-
linear mode interaction that occurs in the buckling of these shells. Based
upon this reassessment a simplified critical load analysis is outlined which, in
contrast with the classical theory, is shown to predict a critical load
associated with a unique critical mode that appears to agree with the
buckling modes observed in both the present experimental programme and
those described in the literature.

Apart from providing close agreement with observed buckling modes, the
simplified theory is shown to have other advantages which should commend it
to the designer. First, in contrast with other theories to account for its
‘perplexing behaviour’, the present simplified theory does not involve the
lengthy solution of highly non-linear equations. Second, and possibly most
significant, when proper account is taken of all the appropriate parameters
describing the behaviour of the shell, the method provides lower bound
estimates of reported buckling loads. Properly extended therefore, the
method could provide the basis of a simple but safe design procedure.

t Presently engaged in research towards a Ph.D. at University College, London.
i ¢
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INTRODUCTION

. S
;Fi:x;piaeiialgoﬁntlgres;ed circular cylindrical shell, although one of the
. etric forms, and under the action of i
A : ; such a simpl
;a]glgzrr?tt:;ﬁ:gI::g,thdlsplqysla 1bu(:klmg phenomenon whose physiga?
eoretical solution still present formid
These obstacles, and the evi i e ahell structure
, X ident importance of cylindrical
in the aircraft and space industri ety i the marins
: V stries, and more recently in the mari
. . a
i);i:;‘?;rsn éﬁiu:try havelled to considerable scientific effort being direcr;:cel
ing an explanation of its somewhat * ing’ i
Many papers have been wri i P el thooreton
tten covering both experimental and i
treatments, but it is probably sti o be o
nts, y still true to say that noneca i
to provide a satisfactory solution. T i nyetbecon§ldered
foand et 12 . Two excellent reviews of the subject are
! The disc i i i
e dis re%nlcxes between the classical analytical predictions and the
\ experimen Qf‘;; :gs,tand kihe:hsc:atter of these experimental results are
. actors that have been advanced i
both the discrepancies and e ot o
scatter, the effect of initial imperfecti
come to be accepted as the major e aora
‘ jor cause. There seems to be
__agreement in the literature [3-6] that end iti e
greer conditions (at least f i
situations) have a negligible influ i bk
’ ence on the experimental buckli
and behaviour of a circular cylindri et T
yiindrical shell under axial i i
has been substantiated b i aton o) which
y recent. theoretical investigati i
show that when the shell behaviour i i e oee o i
' . aviour is dominated by the infl initi
imperfections, the effect of differ: - ditions (pro ol e
: R ent boundary conditio i
circumferential and radial di o (Pr(?“ded o
o the analyse isplacements are supressed) can be disregarded
imNer\;:;ttycless, the stndies_that have been made on the effect of initial
Seep; ” ;::ns, altlixough hawpg achieved considerable success [7, 8], would
seem 1o b unsuitable for incorporation into engineering practice. In
referer :itgx i;t;el tre:(lievant cixperimentally measured initial imperfeciion
itudes smaller than the shell’s thickness w i
: ‘ ‘ ere tak
::cognt in a thfaor:ucai analysis, and good agreement bi!tl\;:éz
Bu;zc;g;;;t;;:::cl?l&g lgads and the resulting critical loads were obtained
of this deterministic approach is currently limi '
: : ; imited b
| g:hggsavglable imperfection data corresponding to van‘{ms fabric:titg:
stmcturg;s a::nv:geglmeasu;emcnts of imperfection spectra of full scale
available, it is far from clear how the specificati i
st Wik may roqut ! ~ e specifications of design
nees, equire consideration of the imperfecti itivi
Lole ' r perfection-sensitivit
control of many different possible combinations of imperfectior::
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modes, will be made available to engineering practice. So that in the
absence, in the literature, of simple and reliable theoretical estimates for the
buckling load of axially compressed thin cylindrical shells, engineers 0 a
large extent still rely on empirical formulae.

Due to the expected difficulty in controlling and measuring the initial
imperfections and pre-buckling deformations while carrying out tests on
full-scale structures, and also because of the difficulties of a subsequent
analysis that takes into account gross initial imperfections and coupling
between modes, alternative lines of research have been directed towards

solutions that could provide lower bounds for the experimental results.
been made in this direction by using advanced

Some attempts [9, 10] have _
ct the minimum post-critical joads, and to

post-critical calculations to predi
use these as the lower limits for imperfection-sensitive buckling loads. But

based on ref. [11] it has been argued [1] that these post-critical calculations
are not as relevant as was at first thought. Not least of the problems

associated with this method is the exceptionally difficult analysis, possibly
highly interactive modes, that is

requiring consideration of very many
needed reliably to determine these post-critical minimum loads.

To overcome this practical obstacle an alternative approach has been
proposed [12, 13], which attempts to define the physical characteristics in
an advanced post-critical state so that they can be used as the basis of an
equivalent eigenvalue analysis. The approach is based on the general notion
that, for shells buckling into modes that derive their stability from the
presence of significant membrane energy in the critical mode, any effect

which undermines the membrane stiffness would give rise to substantial

reductions in the buckling loads. These reductions in buckling loads would
be due to the tendency for both imperfections and mode interactions to

eliminate the membrane energy. In ref. {12] this approach was interpreted

as simply setting the whole of the membrane strain energy in the critical

modes equal to zero, which implies a quasi—inextensional solution of this
problem. For the case of the axially loaded cylinder such a simplistic
approach clearly could not account for many of the known behavioural
characteristics.

The following, then, is an outline of a more systematic application of this
general philosophy to the analysis of the axially loaded cylinder. The
classical critical modes are first re-examined to isolate those components of
the membrane stiffness most likely to be eroded in the non-linear buckling
response. Based on this, a simplified analysis proposed in ref. [14] is
developed and shown to compare favourably with the results of new and
previously reported experimental evidence for this shell. Finally, it is
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suggested How the simplified method could i
/ _ A provide a safe and rati i
for future design of unstiffened cylinders under axial ioa?i rationalbasis

CLASSICAL CRITICAL MQDES RE-EXAMINED

T , K . -
ex};;e?i;gt)o tcarllten:m I:e?mres that, for stability of a structural system to
. potential energy, V, consisting of th i

> Y, V, g of the sum of internal a

dist;x;:sel I;::s:gy, shall be a minimum at the state of equilibrium. If tz}):ei

Sisplaceme c%mponents of the fundamental state (that is, the equilibrium

con tgh ira elgn o t;lxe shel.l whose stability is to be investigated) are called, uf
configuration at some arbitrary neighbouring state, uf -;- u’

where v are kinematically admissi ;
issibl ; .
follows that for Stabiiityy ible small incremental displacements, it

V(F + u) > V(uF) ) H
Using Taylor’s expansion t ide i
one T p n theorem, the left-hand side in eqn. (1) may be
VF +wy=VuS)+ 6V +6V+ - -=VF+V, +V, + (¥3)
AN

where, V., V,,. e

energ}; tlhatzzlr;:. ii?:a:'hccﬁxr:(t{ri?ond’ - .Vi;lnataons of the total potential
. ’ > ic, ..., with respect ] m

displacements, i, and thei ivati to the incremental
, U, their derivatives, : .

as parameters. ¢es, and have coefficients that contain uF

I .
ol :; g: f c;ll;wxqg, the fundamental state of an axially compressed circular
cal shell is taken as a membrane state so that «* is a linear function

of the load parameter, 4 i
oan bem}zn}d the expansion (2) for the present loading case

Fiy b ol =
VIuF(2) + u) = VIuF ()] + V3(u) + AV () + Vi) + AV () + V3(u) + VW)
3)

where, the constant term V[uf(4
s tar )] belongs to the fund
state. As the original configuration is a state of equii?b?i::lal membrane

o Vi, 4) = Vi) + AV (u) = 0 @
which is satisfied by the membrane solution. /

A necessary conditio ility i

n for stability is that the sec iat

; ond va he tota
potential energy must be non-negative, requiring riation of the total

Vi, 4) = V3(u) + AV(u) 2 0 ®)

" The critical case of equilibrium occurs if ¥,(u,d)
linearly independent
the critical point, ‘

(6

| yields the cigenvalue problem whose soluti
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&

A Design Approad
= 0, for one or more
displacement fields, u. The condition of stationarity at

5V2(u, j.) =0
on gives the critical modes,

« = u°, and the critical load coefficients 4.
As the energy criterion for elastic stability is based on potential energy

considerations, it will assist later discussion to observe how the different
parts of the energy contribute to the second variation of the total potential
energy about the critical point, ¥, (4", &) = 0. Thus, breaking V, down into
its constituent parts, this critical condition may be rewritten as
V,= U+ Ut Vam + Viu=0
or more completely
Vo= U+ Usy + Uls + Ui

where, U, Ubs, Ulp, are respectively the axial, circu
bending strain energy contributions, Uzmw Uy, Uin are the axial,
circumferential and shear membrane strain energy contributions, and V3,
V4 are the axial and circumferential membrane potential energies
consisting of the two parts
Viu= Uiu + AV2u
- @
Vou= Upm + AVam

b U+ AV St Ut AV =0 Q)
mferential and twist

In these membrane potential energies, AV A V3 are the axial and
circumferential components of what is sometimes referred to as the load

potential.
For the present loading case it is well known that the condition of

stationarity (6) yields the classical eigenvalue problem, associated with the
quadratic form in the identity (7), whose solution shows that many very
close critical load coefficients, A, occur for a family of critical modes, 4.
Investigation of the energy contributions for all these critica modes has
been made inref. [14], but for reasons of space only the most salient features
of this analysis are presented here. In Fig. 1 the energy contributions for
critical modes with one half axial wave (j = 1) are plotted as a function of
the circumferential wave number, i. This shows that:

ated by its axial membrane

(a) the membrane encrgy is largely domin
with the circumferential

strain energy contribution, Ul
membrane strain encrgy, U, negligible;
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+(b)  the bending strain energy is largely made up of its circumferential
component U3y, with the axial bending strain energy, Uj,

effectively zero;

(c)  both the axial and circumferential load potential terms A V34 and

M

' - o
4.V 34 have significant contributions to the second variation of the

total potential energy, with the axial component destabilising, and
the circumferential component stabilising the system.

In contrast, the energy contributi i
, ons for modes with short axial
wavelengths, of which the case of twent f »
: : ; y half waves (j = 20 i
Fig. 2 is typical, show that: ' v ) presented in

(@) it is now the axial membrane strain energy contribution that is
almqst negligible, with the membrane strain energy bein
- dominated by its shear and circumferential contributions: ¢
(b}  all three bending strain energy terms have significant contriimtions
to the bending energy, with its axial contribution déminating;
{c) compared with the one half axial wave, the total strain ener,gy
Upy= U, + Uy, plays a relatively greater role than thé

cilcumferential load poten'tial AVE vidi i
: - s , M pro idin the fe.
instability. ¢’ IM £ sistance to

PRESENT SIMPLIFIED APPROACH

It haq be§n observed as early as 1934 [17] that an axially loaded cylinder
bgcklmg mto a mode with i circumferential waves and J half axial waves,
wili, as l?ucklin 8 progresses, tend to couple with axisymmetric componen?;
(cgms;stmg f’f a combination of a uniform radial contraction and the
axisymmetric mode with 2; half axial waves) so as to relieve the shell of the
need to develop circumferential membrane stresses. That is, a non-linear
coupling can occur that will tend to reduce the effective ci;'cumferential
membrane stiffness to zero. Figure 1 shows that this loss of circumferential
n}embrane stiffness is likely to be particularly significant for the case of a
smg}? half axial wave. For it can be seen that in the j = 1 mode the major
posttive contribution to the second variation of the total potential t’:nerJ
apd therefore greatest stabilising influence, is that arising from g‘;
cxrcumt:ercntial load potential term 4, V3% which is in turn directly related
to the circumferential membrane stiffness of the shell. On the other hand
the circumferential membrane strain energy U, is negligible. The net cﬂ'éc;
of aloss of circumferential membrane stiffness, however, would be a serious

A Design Approach for Axially Compressed Unstiffened Cvlinders?® RN

destabilisation of the shell; and, because the axial bending strain energy
associated with these long axial waves is negligible (at least for shells with
L/R > 0-5), this coupling and resultant loss of circumferential stiffness
could be expected to occur with very little increase in the total bending
energy. In contrast the relatively lower values of V4,. and the
proportionally higher stabilisation provided by other components of the
second variation of the total potential energy for short axial wavelengths,
like that discussed in.Fig. 2, suggest that the loss of circumferential
membrane stiffness would be less significant for these short wavelengths.
Furthermore, for short axial wavelengths j, the axisymmetric 2/ mode with
which it couples will also involve substantial additional axial bending strain
energy. Simple physical reasoning combined with an analysis of the energy
distributions in the classical critical modes, indicate that buckling will be
accompanied by a loss of circumferential membrane stiffness, and that
because this loss of stiffness has its most pronounced influence on the long
axial wavelengths, it is these modes that could be expected to dominate the.
buckling process. )

The importance of modes with long axial wavelength in the buckling
behaviour of axially loaded shells had been suggested by Donnell and Wan
{18] in the late nineteen-forties. More recently other workers [7, 8, 19] have
reiterated the importance of these long axial waves through more refined
buckling analyses in which full account is taken of small initial
imperfections. In ref. [7] the sensitivity to long axial wavelength
imperfection modes is demonstrated by an analysis of the combination of
an asymmetric component (consisting of i circumferential waves and one
half axial wave) with an axisymmetric component (consisting of a uniform
axial contraction combined with the axisymmetric mode with 2 half axial
waves). In this case, as already observed in ref. [17] the symmetrically
deforming shell was shown to be relieved of the need to develop
circumferential membrane stresses, resulting in a non-linearly de-stiffening
response. ,

In contrast, there are no self-evident modes with which a critical mode
having i circumferential waves and j half axial waves could couple so as to
reduce to zero the incremental axial membrane stresses. Whereas the
coupling to eliminate the incremental circumferential stresses could take
place with the addition of little extra energy, especially for long axial
wavelengths, the couplings required to annul the incremental axial
membrane stresses would all involve substantial additional contributions of
total energy and therefore stiffness.

It would appear therefore, that the combjned effects of mode interactions
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and the de-stiffening caused by small initial imperfections, would result in
only the circumferential membrane energy being lost during the buckling
process. Assuming then, that the bending stiffness in a particular mode is
not affected by small initial imperfections or mode coupling, and this is
certainly the assumption conventionally made in non-linear analysis, a
critical load analysis, in which the entire ci rcumferential membrane energy
is neglected, would from, eqn. (5), require

Us + Ui+ Uil + 22ViE =0 ®

Now, the condition of stationarity (6) yields a reduced energy cigenvalue
problem. The critical load coefficients A} obtained from this problem
appear to be insensitive to end boundary conditions provided the out-of-
plane deflection and the in-plane circumferential displacement are
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supressed [14]. The solution of this problem for simpl ‘
et B p for simply supported ¢nds has

(a) upiike the classical theory, eqn. (7), the present simplified approach
gives a well defined minimum critical load coefficient associated
Wi.th a unique ¢ritical mode, this is shown in Fig. 3;

(b) E_h;; critical mode has only one half axial waveand a cértain number
of circumferential waves, i¥, which depends on the geometry of the
shell. As 1n the case of the classical theory, Jor fixed values of R/t, i*
decreases with increasing L/R; for fixed values of L/R it increé’gjé'

with increasing value of R/,

(¢) theenergy contributions, summarised for the/ = | modein Fig. 4
show that the bending strain energy is not affected by the assunﬁ&
ios.s of circumferential membrane stiffness, but that some
adjustment of the axial membrane energy has occurred;

L ¥ T T T T i th
0 100 200 300 400 500 600 700 8O0 930 1000

Fi6. 5. Theoretical A?/4, curves for fixed L/R ratios.

(d) contrary to the prediction of the classical theory and to a well
accepted idea by many investigators (perhaps due to the lack of
concrete exp_erimental evidence), the critical load as predicted by
the present simplified approach. depends on the length of the shell
even for values of L/R 2 1-0. The curves obtained from the present
tFeorepcaI critical Toad coefficient over classical critical load
coefﬁcne.nt ratios (A*/4) with varying R/t ratio for different fixed
L/R ratios ar:;h:wn in Fig. 5, where for L/R < § the critical load
predicted on the basis of the present theory is significan
by the precise value of L/R.pr B ty affeced
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COMPARISON WITH EXPERIMENTS

To assess the accuracy of the present simplified theoretical approach in
predicting the buckling wavelengths and the minimum experimental
buckling loads as functions of the shell geometry, including the length
effect, a number of experiments have been performed on commercially '
available thin-walled cylinders; these will be reported in greater detail
elsewhere. In this experimental programme 46 steel and aluminium shells
were tested and, for some of these shells, surface maps of the initial
imperfections and the pre-buckling growth of radial displacements were
obtained using a circumferential and axial traversing transducer, the
output from which was plotted on an X-Y recorder. The main features
observed during these experiments recover some of the findings reported in
previous work by Arbocz and Babcock [4], and provide experimental
confirmation of the analysis procedure outlined in the previous section. The
experiments show that at the last load level prior to buckling, the shell
models displayed a dominant mode with only one half axial wave covering
the entire length of the shell, and that these one half axial wavelengths
increased rapidly as the snap buckling load was approached. Along the
circumferential direction these modes are characterised by a wavy shape
with several relevant short wavelength components. Among these
components the dominant one appeared to be strongly related to the shell's
geometric parameters, length over radius (L/ R) and radius over thickness
(R/t), and was in accord with the i¥ predicted on the basis of eqn. (8). The
advanced post-buckled pattern, observed in all experiments, was
characterised by the well-known diamond pattern in which the axial and
circumferential wavelengths appear 1o be approximately the same.
Surface maps of the initial imperfections and pre-buckling radial
displacements at a load close to the buckling load, P,, for a typical shell
model are shown in Figs. 6, 7(a) and 7(b). In Figs.8and 9 the corresponding
circumferential harmonic contributions to the imperfection mode, and to
the pre-buckling deformation mode at load levels around 90%, of the
eventual experimental buckling load, Py, are analysed at mid-length of the
shell. These figures show that the initial imperfection mode is dominated by
long circumferential wavelengths, while the pre-buckling deformation
mode is dominated by short circumferential wavelengths. Evidently then,
the short wavelength components that dominated the circumferential pre-
buckling deformation had relatively small values in the initial imperfection
mode. What the harmonic analyses also show is the importance of the
axisymmetric, i = 0, component, in the pt;e-buckling deformation modes.
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These axisymmetric deformations, are of course, necessary to accom-
modate the low circumferential membrane stiffness assumed in the
simplified analysis above.

In addition to the present experimental correlations, of which the above
is merely typical, comparisons have also been made with over four hundred
experimental results of axially compressed circular cylinders from over
thirty references {2, 3, 20, 21, and those cited in these references]. Together
with the results of the present experimental programme, these enable a
number of general observations to be made. First, the critical number of full
circumferential waves, ¥ (or more precisely the critical wavelength)
predicted by the simplified theoretical approach above is in close agreement
with the dominant short wavelength mode components observed
experimentally (this can be seen by comparing Figs. 3 and 9). Furthermore,
the one half axial wave predicted by the present theory is also in agreement
with the experimental observations as shown in Fig. 7(b). Unfortunately,
the omission of information about the initial imperfections and the
dominant mode components near or at buckling renders much of the
existing experimental work of little value when it comes to the correlation
between experimental buckling and theoretical critical modes. However, it
is interesting to notice that a certain agreement is obtained when the
circumferential critical modes predicted by the simplified approach are
compared to the number of circumferential waves of the post-buckled
dimple shape reported in some of the existing experimental works. This
feature has been found to occur in the present experimental observations
and is supported by past results [4], namely, that although the axial
wavelength is changed, the dominant number of circumferential waves at
the lastload level prior to buckling is approximately the same as the number
of circumferential waves in the post-buckled pattern.

The second general observation to emerge is that the critical load
predicted by the present theoretical approach provides a lower bound to the
imperfection-sensitive buckling loads. In Figs. 10(a)-10(c) the experimental
buckling loads over classical critical load ratios (Py/P.) are plotted against
their corresponding R/t ratios. These are selected collections of
experimental data for shells with the L/R parameter within the fixed narrow
ranges indicated on each of these figures. The curves obtained from the
present theoretical critical load analysis, again normalised with respect to
the classical critical load, are also plotted for the values of L/R related to the
majority of the experiments. In these plots all reported experimental results
from the above references were used, except, for obvious reasons, those
from reference [41] in ref. [20], which belonged to a group of riveted
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models. Thus, to the extent that these collected data can be considered to
represent a suitably wide sample of the experimental buckling loads, it
appears that a siigh}_ggggndence on the cylinder length does exist. Again,
this confirms the prediction of the present theoretical approach. Although
the length effect on the experimental buckling loads for short cylinders in
which L/R < 0-5 is well known [3] there is as yet little recognition of its
importance for shells with L/R > 0-5. But what these comparisons show

most convincingly is the lower boundedness of the present theoretical
predictions.

DESIGN APPROACHES

In the absence of reliable theoretical estimates for buckling of axially
compressed cylinders, engineers have usually relied on empirical formulae
[3,22-24] which relate the buckling load coefficients to the single R/t
parameter. Some of the design curves obtained from these formulae are
shown in Fig. 11 together with that based on the theory of Donngll and
Wan [18] which was proposed in ref. {20] as a lower bound for fabricated
cylinders. The empirical curve proposed by Weingarten ez a/. [3] is a lower
bound for selected test results from fourteen of the references given above,
together with their own experimental results, and appears to be an accepted
design criterion for isotropic aero-space shells. However, in the selection of
the data, many buckling coefficierits lower than their results were omitted
on _the premise that fabrication methods and testing techniques were
significantly inferior; on this basis some of the classic experiments were
therefore omitted. The other design curves shown in Fig. 11 have also been
derived from empirical considerations and are intended for off-shore
structures {22, 23] and pressure vessels [24]. In the same figure, the curves
obtained from the present simplified critical load analysis are shown for
values of L/R equal to 1-0 and 5-0. These represent approximately the
smallest and largest L/R ratios for this vast collection of data.
The first thing to note is that depending on the value of L/ R chosen the
lower bound prediction from the present theoretical approach may be
significantly affected. Secondly, that over a substantial range of R/s ratios
the various past proposals for design lie somewhere between the lower
bounds corresponding to the greatest and least value of L/R used in these
tests. In taking what is therefore an effective average of the lower boundsfor
these different L/ R ratios, past design proposals do not adeguately allow for
the rational inclusion of the L/R effect in design. For this reason they may

A Design Approach for Avially

°
°

o om oo

.
a

oo

»®

e
..t

Py s sg
- ‘000“ P o esbom Gacede ocou:o.
oo

o % ®

Compressed Unstiffened C yviinders

BOUND FOR LIR=10

FrerrbrartATE

BOUND FOR LiR=50

I3
IEREERZ LRSS

o‘gt'i
°

Rt

403

32103

3

2x10

10%
diata for buckling

d. P/

ression. L/ R ratio within the range, 07 < LiR <

P
.

classical critical load (eqn. 7) and P,

i
-]
-3

Det Norske

critical load obtained from eqn. (8); O, past ~
JAPI[23],ASME[24];....

- — Weingarten et al. B + + +
Miller [20].

Veritas [22}; — - —.

of unstiffened cylinders under axial com

P,, where, £, = ¢
1 results. Design curves:

Colfected experimental

5.5, ——, Present approach bound, £,
experimental results; (N, present experimenta

Fic. 11.



- 4

be over conservative for shells with small L/R rati
‘ | ratios, but, more seriousl
could provide non-conservative design loads if used for L/R ratios grcas!:;

than those for which the design curves might be appropriate.

CONCLUDING REMARKS

The_ importan_ce of the present simplified theoretical approach for buckling
of circular cylmdncal'shells under axial compression is demonstrated by its
simple and conservative estimation of buckling loads over a wide range of

geometric parameters.

. While ?he theories that seek to analyse the influence of gross initial
uppcrfegt:ons in calculgting the buckling loads present enormous
difficulties, the present swpliﬁed approach provides reliable theoretical
lower bounds of the buckling loads with a total effort comparable with that
of the classical critical load analysis. But unlike the classical analysis the
present approach successfully predicts the dominant buckling mode
Pfcperly extended, the present simplified theoretical approach cou!(i
eliminate _the need for engineers to use ‘knock down’ factors or empirical
formulae in designing cylindrical shells under axial compression.
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BUCKLING BEHAVIOUR OF

for & > 0 and with 0 < B < 1 For nearly all
styuctures X tw positive so that bifurcation
takes place under increasing load, and 2 is
negative. A similar expression with diffefent
constants Al ' 32 , B is valid for mode dis~
placéments in the opposite direction. The initi-
al post-bifurcation behaviour predicted by the
expansion (5) is illustrated in Fig. 2 for a

symmetric and an asymmetric case. At asymmetric

M A

'
R
- WL e
? * maximum Qs
~ initial unloading 1
o initial yield
(a) ¢ (b) ¥

Fig. 2. Initial post-bifurcation behaviour
in the plastic range in cases where the bi-
furcdtion mode is unigue. Dashed curves

show effect of small initial imperfections.

bifurgatioh the possibility remains that one of
the two post-bifurcation paths does not initial-
ly involve elastic unloading, in which case the
third term of (5} is replaced by a term of order
0%y [32]. The extension of the asymptotic ex-~
pansion (5) to cases of several coincident buck-
ling modes has not yet been formulated.

While numerous investigations of bifurcation in
the plastic range have been made, as refeorenced
in a survey paper by Sewell [36], only relative-
ly few investigations go beyond the bifurcation
point. The varicus aspects of plastic post-buck-
iing have been discussed thoroughly in Hutchin-
son's survey [33], and the asymptotic theory has
been applied to study a few examples of
structures with symmetric post-bifurcation beha-
viour [37,73] and asymmetric post-bifuycation
behaviour {38,151,152) by Tvergaard and Needle~
marn.

The effect of small initial imperfections on
structures compressed into the plastic range has
been discussed in detail by Hutchinson [39,33],
but has not yet been described by a simple a~
symptotic formula such as Egs. (2) and (3). One
difficulty is that the maxinum support load of
the perfect structure is attained at a limit
point after finite bifurcation mode deflections
(Fig. 2) and not at the bifurcation point, as in
the elastic range, Furthermere, an asymptotic
expansion of the initial part of the equilibrium
solution is only valid up tu the point at which
elastic unloading starts, while representation
of the remaining part of the equilibrium path up
to the maximum support load requires a second
asymptotic expansion that accounts for the grow-
ing elastic unloading rogion {397,

For many structures with large destabilizing
non-linearitics the load at which unloading
starts in the imperfect structure is only
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slightly below the maximum support load. In such
cases a good in@ication of the imperfection-sen-
sitivity is provided by an asymptotic estimate
of this initial unloading leocad for a given imper-
fection [39,33]. In situations where bifurcation
occurs in the elastic range, at stresses just
below the yield stress, the load at which yield-
ing first occurs for a given imperfection is
sometimes representative of the imperfection-
sensitivity [33].

For the special case of a cruciform column
Hutchinson and Budiansky [40]} have made an ana-
lytical investigation of imperfection-sensitivi-
ty in the plastic range, based on a hypoelastic
theory (J, flow theory without elastic unload-
ing}. By ising this hypoelastic theory the dif-
ficulties due to elastic unloading are avoided,
and an asymptotic estimate of the imperfection-
sensitivity is obtained in the form

b
§§,§ 1 - ug2/(2'?’«1»].) )
[

where u >0 and ¥ » 1 . The cruciform is ex-

ceptional in that, often, no strain rate revers-
al occurs before the maximum load, thus making
Eq. {6} valid for elastic-plastic theory. A
similar hypoelastic expansion has been used by
Needleman and Tvergaard [41] to assess the im~
perfection-gensitivity of a square plate, for
which unloading does occur before the maximum
load. Even trhough this expansion does not ac-
count for unleoading, the hypoelastic theory
seems to reveal some of the main features of the
elastic-plastic structure.

Bifurcation load predictions based on deforma~
tion theory are usually in better agreement with
experiments than predictions based on the physi-
cally more acceptable flow theory of plasticity.
As discussed by Hutchinson [33], this discrepan-
cy may be explained by corners in the yield
surface, or by a strong sensitivity to very
small imperfections as in the extreme case of
the cruciform column [40].

3. BUCKLING BEHAVIOUR OF THIN SHELLS
Among different types of structures the buckling
behaviour of thin shell structures attracts
special interest because of the many important
applications and because some of these
structures have an extremely unstable post~buck-~
ling behaviour, resulting in a very strong sen-
sitivity to small initial imperfections. In this
section a discussion is given of shell buckling
behaviour based on investigations in the last
few years, including investigations based on a-
symptotic post-buckling theory, purely numerical
investigations, and experiments. A large number
of earlier publications on the subject have been
referenced by Hutchinson and Roiter [1], Brush
and Almroth [3], and Babcock [42].

Cylindrical shells under axial compression.
The long circular cylindrical shell under axial
compression is probably the buckling problem
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that. has been paid most attention. In this case
(Fig. 3a) bifurcation occurs at the classical
buckling stress o, = -(30-v%3 1" 2En/R , but
experiments show buckling loads that are only a
small fraction of the classical load. This
experimental scatter is very well explained by
Koiter theory, ag a result of interaction
between several simultaneous buckling modes, so

© 000

al {b] {c] {d)

Fig. 3. Axially compressed cylindrical

shells. (a) Isotropic shell. (b) Stringer-
stiffoned chell. (¢} Oval shell. (d) Pear-
shaped shell. ‘

that, for example, an imperfection in the shape
of the axisymmetric bifurcation mode with an
amplitudg of half the shell thickness reduces
the buckling load to less than one-third of the
classical [5]. The lowest order asymptotic pre-
dictions for more general imperfection shapes
have recently been studied by Hansen [43], who
finds that non-axisymmetric imperfections also
reduce the load carrying capacity considerably,
and that the bohaviour due to any mixture of
non-axisymmetric modes is described by only
three imperfection parameters.

Instead of taking imperfections in the shape of
the buckling modes, Arbocz and Babcock [44,45]
have measured the imperfections of laboratory
scale shells and have obtained quite good agree-
ment between experimental buckling loads and
buckling loads predicted by a multimode Galerkin
sclution of the nonlinear shell equations, or by
an extended analysis [46] that also accounts for
nonlinear prebuckling deformations due to edge
constraints. Experimental investigations have
also been reported recently in refs. [47,48].

is well known that relaxing the in-plane bounda-
ry condition of zero tangential edge displace-
ment may reduce the critical bifurcation load to
about half the classical value [49]. However,
Narasimhan and Hoff [S50] have found that the
imperfection~gsensitivity corresponding to the
reduced bifurcation load is far less than that
obtained for classical simple support condi-
tions.

For sinusoidal axisymmetric imperfections Koiter
[51] has obtained an upper bound to the lovad at
which the axisymmetric deformation bifurcates
into an . asymmetric shape (Fig. 4 for k = f =
SC) . Being based on a precise nonlinear pre-
buckling solution, this upper bound is valid
even for rather large imperfections. It is
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therefore of interest to note that relatively
small bugkling loads are obtained compared with
the experimental results, which are seldom below
25~30 per cent of the classical value, except
for extremely thin shells., To explain this
Budiansky and Hutchinson [52] have investigated
the initial post-buckling behaviour at these
bifurcation points, and they actually find a
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oy .
8, s Syg—k=0 lm & h st |
M ~ B=4
) %\\ ref. 1531 Mummwm
kuB\
2
at A

i A o "
8 10 8 f & 2
V1 v? 3 vi-v? ]
Fig. 4. Bifurcation loads based on non-
linear prebuckling analysis for axially

compressed cylinder with sinuscidal axi-
symmetric imperfections.

transition from unstable to stable post-buckling
behaviour as the bifurcation load drops below
about 30 per cent of the classical value (Fig. 4
for B = B.) . However, for imperfection wave-
lengths larger than that of the classical bifur~
cation mode, Pedersen [53] finds that this tran~
sition may take place at bifurcation loads below
15 per cent of the classical value (Fig. 4. in
a subsequent paper Pedersen [541 has used a
Galerkin solution to show that loads can be car-
ried above the lower of these bifurcation loads,
even though the initial post-bifurcation behavi-
our is unstable.

Closely ring-stiffened or stringer-stiffened
circular cylindrical shells (Fig. 3b) are far
less imperfection-sensitive than the isotropic
shells. This is predicted by the asymptotic¢
post-buckling analysis of Butchinson and Amasigo
[55], and a subsequent analysis [56] has shown
that nonlinear prebuckling deformations due to
load eccentricity or initial barreling may )
further reduce the imperfection-sensitivity. Bi-
furcation loads are clearly higher with stif-
feners attached to the cutside surface. than with
the same stiffeners attached to the inside sur~
face, as was early observed by van der Neut
[57], but, on the other hand, it turns out that
ocutside~stiffened shells are more imperfection-
gensitive.

Several experiments on stiffened shells machined
out of aluminum or brass have been reported by
Singer, Arbocz and Babcock [58), giving complete
mappings of measured imperfections, and by
Singer, Weller et al. [59-61], who take parti-
cular interest in edge effects such as load ec-
centricity. The experimental buckling loads
obtained are in many tests as low as about 60



