
 

Code generation for the attribute evaluator of the protocol
engine grammar processor unit
Citation for published version (APA):
Bloks, R. H. J. (1993). Code generation for the attribute evaluator of the protocol engine grammar processor
unit. (EUT report. E, Fac. of Electrical Engineering; Vol. 93-E-271). Eindhoven University of Technology.

Document status and date:
Published: 01/01/1993

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/6eec1fc6-3a14-4fd0-9d06-8008f429fa7d


Code Generation for the 
Attribute Evaluator of the 
Protocol Engine Grammar 
Processor Unit 

by 
R.H.J. Bloks 

EUT Report 93-E-271 
ISBN 90-6144-271-0 
March 1993 



Eindhoven University of Technology Research Reports 

EINDHOVEN UNIVERSITY OF TECHNOLOGY 

ISSN 0167-9708 

Faculty of Electrical Engineering 

Eindhoven, The Netherlands 

Coden: TEUEDE 

Code generation for the attri bute 
evaluator of the protocol engine 

grammar processor unit 

by 

R.HJ. Bloks 

EUT Report 93-E-271 

ISBN 90-6144-271-0 

Eindhoven 

March 1993 



CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

Bloks, R.H.J. 

Code generation for the attribute evaluator of the 

protocol engine grammar processor unit I by R.H.J. Bloks. 

- Eindhoven: Eindhoven University of Technology, Faculty 

of Electrical Engineering. - Fig., tab. - (EUT report, 
ISSN 0167-9708 ; 93-E-271) 

Met lit. opg. 
ISBN 90-6144-271-0 

NUGI 832 

Trefw.: compilers i codegeneratie / systeemontwikkeling 

telecommunicatie. 



Code generation for the attribute evaluator of the 
protocol engine grammar processor unit 

Abstract 

report is one of the results of the protocol engine research project, which is targeted 
towards the automatic generation of hardware implementations for modern complex 
data communication protocols. The word 'automatic' implies the use of computers 
to accomplish the task which in rum requires a formal language that can be used to 
describe these protocols. Such a language and a compiler for it have now been cre
ated. The language is based on an extension of context-free grammars and is called 
ProGrIL (Protocol Grammar Interface Language). 

In this document, the process of code generation for the attribute expression evalua
tion will be explained. As described in the Ph.D. thesis (see [Bloks93b]), a protocol 
grammar consists of a set of attributes or variables, a set of symbols, a set of produc
tion rules and attribute relations between the attributes of symbols appearing in the 
rules. Whenever a certain symbol is parsed, the expressions for its attributes must be 
evaluated. These protocol grammars can be implemented on protocol pushdown 
automata, which are extensions of the standard pushdown automaton. One of the 
extensions to this basic automaton is the attribute evaluator, which is in fact a cus
tom designed processor capable of performing all operations required for the manip
ulation of attributes of the protocol grammar. 

All expressions given in the grammar are assignment expressions, using constants, 
declared attributes, and system variables or functions. These expressions must be 
translated directly into machine language code for the attribute evaluator by the Pro
GrIL compiler. This code will be referred to as explicit code. In contrast to the 
explicit code, there is also implicit code, which is necessary for correct operation of 
the system, but is not directly 'programmed' by the writer of the grammar. Instead, 
this code is implicitly defined by and extracted from the grammar. It is used to do 
attribute memory management, passing attribute values, and other system functions. 

Keywords: compilers, telecommunication systems, code generation 

Bloks, R.H.]. 
Code generation for the attribute evaluator of the protocol engine grammar 
processor unit. 
Eindhoven: Faculry of Electrical Engineering, Eindhoven Universiry of Tech
nology, 1993. 
EUT Report 93-E-271. 

Address of the author: 
R.H.]. Bloks 
van Norenburchstraat 2 
5622 KP Eindhoven, The Netherlands 



- IV-



Table of Contents 

Abstract ..................................................... iii 

Introduction ................................................ . 

Code generation for the attribute evaluator of the protocol engine 
graxnrnarprocessorurUt.......... ........ ...... ......... ..... 3 

The grammar processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.1 Top level overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 
1.2 The attribute evaluator .......................................... 5 

1.2.1 
1.2.2 
1.2.3 

2 
2.1 
2.2 
2.3 
2.4 
2.5 

3 
3.1 
3.2 
3.3 
3.4 

3.4.1 
3.4.2 
3.4.3 
3.4.4 
3.4.5 
3.4.6 
3.4.7 
3.4.8 
3.4.9 
3.4.10 
3.4.11 
3.4.12 
3.4.13 
3.4.14 

Instruction execution and pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 
Address generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 
The arithmetic unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 
Attribute evaluator control functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 
Source operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 
Destination operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 12 
Address generator control ........................................ 12 
Flow control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
ALU functions and operands ..................................... 14 
Microcode generation ........................................... 15 
Long attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 15 
Shorr and packed attributes ...................................... 16 
Word sized attributes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Microcode generation for attribute expressions. . . . . . . . . . . . . . . . . . . . . .. 17 
Access mode of an operand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 
Operand references ............................................. 18 
Detection of packed operands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 18 
Low level instruction generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 
Operand class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 21 
Operand locations and read/write accessing ......................... 21 
Setting up base registers for the address generators . . . . . . . . . . . . . . . . . . .. 23 
Intermediate level instruction generation. . . . . . . . . . . . . . . . . . . . . . . . . . .. 24 
Unpacking operands ............................................ 28 
Class dependent destination operand handling. . . . . . . . . . . . . . . . . . . . . .. 29 
Packing operands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 
Automatic assignment value wrapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 30 
Top level instruction generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 
High level expression compilation ................................. 31 

Bibliography. ................. ..... ........ ......... ......... 33 

-y-



- VI -



Introduction 

The exchange of data between computers is governed by common rules dictating the 
format and meaning of message units (packets) used for the communication. Two 
computers can only exchange data if they use the same set of rules, which is usually 
referred to as a communication protocol. Modern protocols that are used on large 
computer networks are flexible and very complex systems, which is why they are 
usually implemented in software running on the communicating computers them
selves. A big disadvantage of software implementations is that they are inherently 
slower than special hardware solutions. With increasing demands for high speed 
communication and extremely high speed network technology (using fiber optics) 
software can no longer utilize available bandwidth and hardware solutions must be 

found. Because of their complexity this is not a trivial matter and it would be very 
desirable to have a system that can construct an implementation automatically. 

The protocol engine Ph.D. research project is directed towards the automatic crea
tion of a hardware implementation for any protocol specified by a formal descrip
tion. The basic idea is that once a protocol has been conceived, it is written down or 
converted into a formal implementation description and then automatically proc

essed, resulting in an output suitable for a low level silicon compiler. 

This means that a formal language is required in which protocols can be described. 
Furthermore, it must be possible to translate any valid description in this language 
into hardware, which implies that a target architecture and a mapping model from 
language to architecture (language semantics) must be defined. Obviously, the target 
architecture and description language are closely related. 

The language that was created is based on standard context-free grammars (ref. 

[Ahon]' [Ah086],[Denning78], [Kainn], [Knuth681 and[Lewis811 for the theory 
oflanguages, automata and computation). Grammars are mathematical models for 
the specification of formal languages and can be used to describe the communicarion 
language of a protocol. The advantage is that the implementation architecture and 
semantic model are known (pushdown automaton) and mathematically provable. 

In order to allow an easy and practical description of modern protocols, some exten
sions must be made 10 the standard context-free grammars (see [Bloks93bL 
[Haas851 and [Anderson85al for the reasons and some possible ways of doing this). 
The resulting protocol grammar has to be formally defined and a language definition 



2 Introduction 

given. Then the implementation architecture (the pushdown automaton, see [Den
ning78] and [Lewis81]) and the mapping model must also be extended and formally 
defined. Finally, the correctness of the mapping must be shown. This is all done in 

[Bloks93b], but not found in any work done by others in this field. 

When a communication protocol is defined in the form of a (set of interconnected) 

protocol grammar(s), it can be translated directly into a (set of) extended pushdown 
automata interconnected as indicated by the grammars to obtain a system whose 
external behaviour is precisely as specified by the grammars. Such a system therefore 

implements the communication protocol. Some specialized prorocol functions may 
be implemented in dedicated hardware units outside the pushdown automata for 
reasons of efficiency. The abstract version of the extended pushdown automaton is 
called a protocol pushdown automaton, and its physical implementation is the 
grammar processor. A protocol engine consists of a nerwork of interconnected gram
mar processors and some dedicated hardware. 

Each grammar processor is 'programmed' for a cenain protocol by storing the gram
mar parse tables and microcode for context changes/updates in its memory. Context 
changes occur when the protocol uses variables to store information about the past 

and uses them to guide funher actions. The concept of variables is incorporated in 

the grammar by the extension with attributes. Every symbol can have zero or more 
associated anributes whose values are sent and received along with the symbol and 
store context information that is important for the processing of that symbol. When 
a symbol is processed, the values of attributes can change. In the grammar this is 

indicated by assignment expressions to the attributes. 

To store and update the context of all symbols, the grammar processor contains a 
microprogrammable processing unit, called the attribute evaluator. Every symbol of 
every rule of the grammar has a small program srored in the attribute evaluator, 

which does all the necessary context updating when executed. The parse tables and 
microprograms are all created automatically by a compiler that derives this informa
tion from the protocol grammars. This compiler is patr of a protocol engine design 
system that is currently under development. 

This document describes the architecture and global operation of the attribute eval
uator and how the compiler generates the microcode for the expressions specified in 
the grammar description. 



Code generation for the attribute 
evaluator of the protocol engine 

grammar processor unit 

1 The grammar processor 

The grammar processor is a design for a physically implementable version of the 
rather abstract prorocol pushdown automaton described in the Ph.D. thesis (see 
chapters 4 and 5 of [Bloks93b]). Its operation is also explained there in some detail. 

The diagram of the top level design is reprinted in figure 1. 

1.1 Top level overview 

The pushdown controller implements the actual parsing mechanism. It contains the 
parse tables generated by the compiler, by means of which it can decide what action 
to perform based on the symbol on top of the parse stack, the symbols available at 
the inputs, its internal status and a boolean rule enable flag computed by the 
attribute evaluator. The pushdown controller controls all other pans of the grammar 
processor. 

The parse stack stores the symbols and their action procedure numbers. The symbol 

at the top is used by the pushdown controller, and the action ptocedure number 



4 Top level overview 

refers ro a small program in the attribute evaluator, which conrains the microcoded 

version of the expressions to be evaluated for the associated symbol on the stack, as 

specified in the ProGrIL description. 

Errors Events 

Grammar Processor 

Parse Srack 

proc# snnbol reset tos push pop 

Attribute t t t 
Evaluator resel lOS push pop errors events 

symbol 
proc# proc# 

Pushdown enable enable 
done ready Controller 

call_proc call_proc 
error AEerror 

OUI hs chI discard inv sym in_hs 

oUI_hs 
exUn 

sym s_hs chI chI disc inv sym s_rn 

ouchs ~ a_hs Output Writer • a_hs Input Reader 
ext_out f--- attr 

out(O) ... oUI(n) 
~ attr 

intO) ... in(k) 

Symbol Outputs Symbol Inputs 

Figure 1. Top level design of the grammar processor. 

The attribute evaluator contains a RAM (Random Access Memory) ro srore the 
attribute values, and a custom microprocessor to perform the necessary operations 
on these attributes by executing small programs which are compiled by the ProGriL 

compiler and stored in a program ROM (Read Only Memory) where they can be 

referred ro by a unique number, the so called action procedure number. 

Values of attributes can be sent ro the output writer or received from the input 

reader when required. This I/O is also microprogrammed in the procedures and is 
necessary to implement channel communications of symbols with attributes. 



The attribute evaluator 5 

[Bloks93blThe output writer interfaces a number of output channels to the rest of 
the grammar processor. When a message has to be sent on an output channel, the 

pushdown controller specifies the channel number, the parse stack delivers the sym
bol and the attribute evaluator generates the attribute values. The symbol and values 
are combined and queued for output at the specified channel by the output writer. 

The input reader interfaces a number of input channels to the rest of the grammar 

processor. When a message is received on an input channel, it is queued for process

ing. When the pushdown controller specifies that a message from a channel can be 

processed, it outputs the channel number. The attribute evaluator is started by 

invoking the action procedure for the input symbol, and will receive and process the 
attribute values from the corresponding queue. 

1.2 The attribute evaluator 

Since the goal of this document is to describe the mechanism used to generate the 

microcode programs for the attribute evaluator, a more detailed description of this 

processor shall now be given. Its top level design is shown in figure 2. 

calLproc 
proc# 
done 

enable 
error 

~ 

Attribute Evaluator 
Arithmetic 

cy cy Unit ext_out 
bsy I~ bsy ext_we 

func func cxcrdy 
data data cxcrd 

srddscctl srddscctl ext_in 

ram 1n ram out rslt 
Il-CTL i l 

d_out d_in 
starcproc 

dual potted proc_nr 
RAM done 

enable rd/ra wrlwa 
error 't t 

rd/r_addr wr/w_addr 
wectl wr_ctl base_in l-
rd_ctl rd_ctl 

attr. address wr_offs wr_olfs 
rd_olfs . rd_offs generation & 

conflict conflict access control 

Figure 2. The architecture of the attribute evaluator. 

ext_out 
ext_we 

excrdy 
excrd 
ext_in 



6 Instruction execution and pipelining 

The 4 main parrs are the attribute storage, an access address generation unit, a 

processing IInil and a control unil colllaining the action procedure microcode. The 

Attribute Evaluator has been designed as a multistage pipelined processor unit to 
increase performance. A high performance of this unit is of the utmost imponance 
for obtaining very high throughput protocol engines. For this reason, it was decided 
that 3-operand instructions were to be used (2 sources and 1 destination). 

The attribute storage is implemented as a dual poned RAM with a single read port 
and a single write pon which are murually independent. Because of the pipelining, 
this means that one operand can be read and the result of a previous operation can 
be written simultaneously. 

The micro controller ~-CTL) contains a ROM in which all action procedures are 
stored in the form of microcode. A lookup table translates a procedure identification 
number into a start address in this ROM. The controller starts executing instruc

tions from that address, while generating control and data vectors for the other parts 
of the Attribute Evaluator. 

1.2.1 Instruction execution and pipelining 

Instruction execution takes 5 (pipeline) cycles: 
cycle 1: ~-CTL generates control vectors and computes next instruction address. 
cycle 2: Address generators compute addresses for RAM access and update base 

address registers (if necessary). 

cycle 3: RAM and/or external input are accessed for soutce operand (if necessary). 
cycle 4: ALU processes dara and computes a result (fast operations). 
cycle 5: Result is written to destination. 

As long as no conflicts occur in the pipeline, it remains full. This means that one 
instruction is completed every cycle. Conflicts may hold up or clear (pan of) the 

pipeline structure, thereby decreasing performance, but all conflicts are automati

cally resolved entirely in hardware (i.e. the pipelining effect is transparent to software 
running on the processor). 

All ALU operations may rake one or more cycles. For example an ADD will proba
bly take one cycle, but a multiply or bit shift over multiple bits will take longer 
unless the ALU contains special hardware for these operations. The arithmetic unit 
can inform the ~-CTL that the current operation will not complete at the next clock 
by means of the bsy lines. The pipeline will then be put on hold until the ALU has 
finished its operation. 



Address generators 7 

1.2.2 Address generators 

Addresses of attributes in the storage are generated by two independent address gen

erators, one for the read access and one for the write access. This must be done on a 

register direct with displacement base (in local environments) or by absolute address

ing (in the global environment). This is explained in more detail in chapter 5 of 

[Bloks93bl. Global attributes can be accessed using a fixed (absolute) address in 

memory, and local attributes must be accessed by an offset to a base register, because 

local environments are dynamically allocated and the positions of local attributes are 

therefore not known in advance. The ind function can be implemented by setting 
the base register to its argument and then using offset O. An array element must be 
accessed by computing its address, storing it in the base register, and then using off

set O. This is called indirect addressing. To allow indirect and direct addressing 

simultaneously (for 2-source operations) it is necessary to have 2 base registers: one 

always contains the statt of the current local environment (standard base registery and 

the other can be used for indirect addressing (alternate base register). This has 

resulted in the schematic diagram shown in figure 3. 

Offset 
Addcgen 

.-- f--. Base ~ L f-f--4 ~ 
~ 

mux 
Register mux 

Base 

,. .. 
L-~ 

.. 
4r-

f-- Base ~ mux I mux 
Register 

f-

1 T t Address 

. control I 72 
A-crrl 

Figure 3. A single address generator. 

The address genei'dtrJrs will compute access addresses for attributes under control of 

the ~CTL. Since destination addresses are nor needed until the fifth cycle, they will 
be delayed before they are sent to the RAM. After an address is used, the base register 

can be loaded with the generated address. This represents a pre-add adjust mode. 

Since the offset can be positive or negative, it is a generalization of both pre-decre

ment and pre-increment modes. This mode is very useful for copying blocks of 

memory, which is required for sdine opetadons on structures and arrays, as well as 



8 The arithmetic unit 

data 110 on the external input/output of the attribute evaluator. Summarizing, the 
address generators offer the following functionality ('base reg' is either standard or 

alternate base register): 

Output value (generated address): 

• Register based indirect addressing with displacement: 
(addrescout = basereg + offsecin) 

• Absolute addressing: 
(address_out = offsecin) 

Base register contents: 

• hold basereg at end of cycle: 
(basereg := basereg) 

• adding offset to basereg at end of cycle: 
(basereg := basereg + offsecin) 

• loading basereg with absolute value at end of cycle: 
(basereg := base_in) 

1.2.3 The arithmetic unit 

The arithmetic unit contains a processing unit (ALU), a timer (TIME), two source 

selectors for the operands and several registers. The value for each operand can come 
from any of 7 sources, and is first srored in a pipeline register ('opr# reg) before it is 
used by the ALU. 

The 'a1u_reg' always contains the value computed by the ALU during the previous 
instruction and it used to resolve many source/destination pipeline conflicts. It is 

considered a pipeline register, since it also holds the destination operand value when 

such a value has ro be written to RAM. 

The temporary register ('temp_reg') makes efficient implementation of more com
plex expression possible because it can be used to hold intermediate values during 
expression evaluation. This register can be used freely (it is only written when explic
itly specified as the destination operand of an instruction). 

The carty output ('cy') plays a special role, because its value is sent to the pushdown 
controller as the 'enable' value at the end of a rule enable condition procedure. The 
ALU can execute many different operations. Some are vety general and can be found 
in most general purpose processors. Others are specialized and not present in any 



Attribute evaluator control functions 9 

other processor. For a list of all high level (ProGrIL) operators and functions, see 
[Bloks93al. A list of ALU functions is provided later in this document. 

func FN_reg FN_reg f- function 

t 
bsy 

bsy fune 
CTL -'" f-- oprl reg - oprl out -

-'" dual 
opr. ALU 

r::: sel. 

~ opr2 reg f-4 opr2 
TIME r-- r cyout cyin 

J r-
data dat",--reg temp_reg :..- ey_reg 

alu_reg f4-

- -. srddst -control srcldsced 

~ .. 
excrdy excwr excrd excout rslt ey 

Figure 4. Internal architecture of the arithmetic unit. 

Because the ALU function code and constant operands (coded in instruction) are 

generated in cycle 1 while the ALU operates in cycle 3, an additional pipdine regis

ter is required for both values CFN_reg' and 'data_reg'). 

2 Attribute evaluator control functions 

Expression operands can be divided into 5 categories: 

category 1: 
category 2: 
category 3: 
category 4: 

category 5: 

Constants 
Internal registers 
Global attributes, excluding artay elements 
Local attributes of the cutrent environment, excluding array ele
ments 
Local attributes in other environments and array elements 



10 Attribute evaluator conuol functions 

Each operand category requires another method of accessing: 

category 1: 
category 2: 
category 3: 
category 4: 

category 5: 

immediate value, coded in ROM 
implied addressing 
absolute addressing, coded in ROM 
register direct with displacement, using base register and coded 
offset in ROM 

register with displacement indirect, using base register and ROM 

coded offset to find value for alternate base register. Then access 

target using offset 0 to alternate base (double category 4 access). 

The strucrure of the processor allows a maximum of two operands for every function 
performed by the ALU. These operands can each be taken from several sources, with 

the following restrictions: 

• Only one of the operands may be of category 1 
• Only one of the operands may be from category set {3, 4, 5} 

These restrictions are the result of hardware limitations. There is only one data field 

in the control ROM that can contain data for the ALU, and only one read access can 
be made to the anribute RAM in each cycle. In fact, these restrictions do not hold if 
both arguments are identical, but that situation would be rare, and will therefore not 

be considered a special case. The first restriction is no problem, since any operation 

on two constants can be precomputed at compile time, and thus eliminated. The 
second restriction is a problem, and requires preloading of one operand into either 

the temporary register or the ALU bus register. It always requires at least one addi
tional cycle. 

General MNEMONIC instruction format: 

<alu function> 

<access mode><source1> 
[ , <access mode><source2> 

1 
[ , <access mode><dest> 1 

<flow control code> <flow control data> 



Amibuce evaluator control functions 11 

Since there is at most one destination, and attribute RAM has a separate and fully 

independent write pon, there are no destination access restrictions. 

The access mode indicates the category of the operand. The following mnemonic 

symbols are defined for these categories: 

# immediate (category 1) 

% implied (category 2) 

<none> absolute (category 3) 
A reg. direct + displ. (category 4) 

AA alt. reg. direct + (convened category 5) 

Table 1. Access Mode Symbols. 

For the register based access modes (4 and 5) it is possible to load the base register 

after an access with the address generated during that access. Acrually, the offset used 

during the last access is added to the value in the base register and stored back in it. 

This can be considered as a pre-increment mode with a variable increment value. In 
the remainder, this mode will be referred to as 'pre-add' mode, and it will be denoted 

by a '+' sign preceding the access mode symbol. 

Numbers can be presented in decimal or hexadecimal format. In the mnemonic out

put listings, all numbers will be in the hex format. To emphasize this, they will be 

preceded by a '$' sign, which is commonly used for this mode. For better legibility, 

numbers in the range 0 .. 9 are not preceded by a '$' since these are the same in both 

radix systems. 

Notations: 

• s, sl, s2 

• d 
• w 
• a 

• p 
• v 
• alb) 

= source operands 
= destination 

= width of system word and memoty 

= address offset (jumps) 
= procedure number 

= constant value 
= bit b of value of a (0 = LSB) 



12 Source operands 

2.1 Source operands 

000 ALUbus %ALU 

001 Temp. register %TEMPREG 

010 Attribute RAM <num> OR A<num> OR AA<num> 

011 ROM #<nwn> 

100 External input %EXTIN 

101 System timer %SYSTIME 

Table 2. Bit coding and mnemonic names for source operands. 

2.2 Destination operands 

0000 ALU bus «none» %ALU 

0001 Temp. register %TEMPREG 

0010 Attribute RAM <num> OR A<num> OR AA<num> 

0011 External output %EXTOUT 

0111 ALU bus, hold CY %ALU_HCY 

1010 BaseO register WR %WBASEO 

1011 Basel register WR %WBASEI 

1100 BaseO register RD %RBASEO 

llOI Basel register RD %RBASEI 

1110 BaseO register RW %RWBASEO 

Illi Basel register RW %RWBASEI 

0100 <undefined> 

0101 <undefined> 

0110 <undefined> 

1000 <undefined> 

1001 <undefined> 

Table 3. Bit coding and mnemonic names for destination operands. 

2.3 Address generator control 

Note that in pre-add access mode, the base register adjust takes place immediately 
after the RAM access. Since the new base value equals the access address, this load 
value has already been computed which means that the load can take place at the 
clock edge between two accesses (i.e. it does not take any additional time). 



Flow control 

000 ind hold 0 

001 ind hold 1 

010 ind pre-add 0 

011 ind pre-add 1 

lOx abs hold 

110 abs pre-add 0 

111 abs pre-add 1 

Table 4. Bit coding for address generator control. 

2.4 Flow control 

0000 

0001 

0010 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

CONT 

IDLE 

JUMP a 

JUMPC a 

JUMPNC a 

JUMPP p 

RET 

RETC 

INITLP v 

TELP 

EXITLP a 

EXITLPC a 

CALL P 
CALLC P 

1100 .. 1111 

pc:= pc + 1 

<reset registers, remain idle> 

pc:= pc + 1 + a 

if cy = 1 ~ pc := pc + 1 + a; 
D cy = 0 ~ pc:= pc + 1; 
fi 

if cy = 1 ~ pc:= pc + 1; 
o cy = 0 ~ pc := pc + 1 + a; 

fi 

pc := PROC(p) 

pop(pc) 

if cy = 1 ~ pop(pc); 
D cy = 0 ~ pc:= pc + 1; 
fi 

pc := pc + 1; push(pc), Idcnt(v) 

decrcnt; 
if cntzero ~ popO, pc := pc + 1; 
D --.cntzero ~ pc := tosO; 
fi 

popO, pc := pc + 1 + a 

if cy = 1 ~ popO, pc := pc + I + a; 
D cy = 0 ~ pc:= pc + 1; 
fi 

push(pc + 1), pc := PROC(p) 

if cy = 1 ~ push(pc + 1), pc := PROC(p) 
D cy = 0 ~ pc:= pc + 1; 
fi 

<undefined> 

Table 5. Bit coding, mnemonics and semantics for flow control functions. 

13 



14 ALU functions and operands 

2.5 ALU functions and operands 

00000 ADD sI, s2, d cy, d := sl + s2 

00001 UNPK sI, s2, d d:= unpk(sI, s2[w-I), s2[O .. w/2 - I), s2[w/2 .. w-2]) 

00010 SUB sI, s2, d cy, d := s I - s2 

00011 CPLC cy:= -cy 

00100 GT sI,s2 cy:= sl > s2 

00101 GTE sI,s2 cy := sl ~ s2 

00110 LT sI,s2 cy:= sl < s2 

00111 LTE sI, s2 cy := sl $ s2 
01000 EQ sI,s2 cy:= sl = s2 
01001 NEQ sI,s2 cy:= sl ,*-s2 

01010 AFTER sI,s2 cy:= sl after s2{ == (s2 - sI}lw-I)I 

01011 GETC sI,s2 cy:= s2[sI) 

01100 ANDC sI,s2 cy:= cy A s2[sI) 

01101 ORC sI, s2 cy:= cy v s2[sI) 

OIIIO PUTNC s, d d:= -.cy« s 

01111 PUTC s, d d:= cy« s 

10000 SETB sI, s2, d d := s2 biror (I « s I) 

10001 CLRB sI, s2, d d := s2 bitand (biroot (I «sI)) 

10010 MOVE s, d d:= s 
10011 MUL sI, s2, d d:= sl * 52 
10100 SHL sI, s2, d cy, d := sl «s2 (undefined for s2 > w) 

10101 SHR s1,s2,d cy, d := sl »s2 (undefined for s2 > w) 

10110 SHLC s, d d := (s « 1) + cy, cy := s[w-l) 

lOll I SHRC s, d d := (s » I) + (cy« (w - I)), cy:= s[O) 

II 000 AND sl,s2,d d := sl bitand s2 

1I001 OR sI,s2,d d := sl biror s2 

11010 XOR sl, s2, d d := sl bittor s2 

II OIl CHK s1,s2 if (sI<O) v (sl ~ s2) --+ error; 

0 O$sl <s2 -+ skip; 
Ii 

II 100 DIY sI, s2, d d :=sI divs2 

I 1I01 MOD sl, s2, d d :=sl mods2 

1I110 XSGN sI,s2,d d[O .. s2) := sI[O .. s2); d[s2+1J, .. , d[w-I) := sI[s2) 

I II II WRAP sl,s2,d if sl ~ s2 -t d := sl mod s2; 
D sl < 0 -t d := s2 - I - (bitnot(sI) mod s2); 
D O$sI <s2 -t d:= sl; 
Ii 

Table 6. Bit coding, mnemonics and semantics for ALU operations. 



Microcode generation 15 

3 Microcode generation 

Microcode generation for the pascal rype expressions of the protocol grammar is 
quite difficult, because there are so many different types of attributes. Each of the 5 
categories mentioned above requires another way to access it, but for attribute refer
ences (category 3, 4 and 5), the position and size of the attributes also has to be 
taken into account. An attribute can occupy a whole memory word (simple types), a 
partial memory word (strucrure fields) starting at any bit offset, or more than a 
whole word (strucrures and arrays). All of these cases require different strategies for 
accessing such a variable. In the following sections a method for handling these cases 
will be presented. 

In all cases, the generation of code to evaluate a subexpression can be omitted if the 
subexpression is a constant or a simple reference to an attribute, which is not an 

array element. Instead, the subexpression can be compiled directly into a single oper
and of the parent expression. This is not a necessary step, but it will generate much 
better code (more optimized). In the sequel, this rype of optimization will not be 
mentioned explicitly to keep the descriptions as simple as possible. However, in 
practice optimization steps are performed whenever appropriate. 

3.1 Long attributes 

These are variables that occupy more than one whole word in memory. This can 
only be the case for structures and arrays. There are only 4 rypes of expressions that 
can return or operate on a whole structure: 

simple assignment: a := b 
bit test function: a:= tstb(x, b) 
bit set function: a := setb{x, b) 
bit clear function: a:= clrb(x, b) 

The latter two can be rewritten as a simple assignment (a := b), followed byevaluat
ing the expression for x, computing the word address and bit number of bit x in a, 
and finally performing the requested operation. The bit test function can be evalu
ated similarly by evaluating b into a temporary variable space t (t := b) and perform
ing the test operation on t (b can be a complex expression). Therefore, the only 
expression type of concern here is the simple assignment. Since structures always 
start at bit position 0 of a memory word, all words except the last can simply be cop
ied from source to destination. Only the last word of the destination should be 



16 Short and packed attributes 

masked if some of its bits belong to other variables, which can be the case if and only 

if the destination is itself a field of a structure. 

3.2 Short and packed attributes 

Short attributes are attributes whose actual size (number of bits) is less than the 
number of bits in a memory word. This is the case for boo leans, octets, ranges, etc. 
Since attributes always start at a word boundary in memory, short attributes will still 
occupy a whole word. Only fields of structures are tightly packed to fit as many fields 
together in each memory word as possible, with the exception that structures and all 
array elements always start at a word boundary, even if they are fields of a structure. 
A packed variable is a variable that actually occupies less than a whole word in mem
ory, i.e. at least one of the bits of its memory location belongs to another variable. 

A short attribute is stored in a location where some of the bits are undefined. This is 
inconvenient for accessing these attributes, because the unwanted bits have to be 

masked, before the value can be used for any operation (always word based). The 

only good solution is to specifY that the unused bits in short but unpacked attributes 
always have a value, such that accessing the attribute as a word will also rerum the 
proper value. This can be guaranteed by a proper assignment coding algorithm, 
which simply sets unused bits to zero (for unsigned variables) or sign extends the 
store value to full word length before storing it (for signed variables). 

A packed attribute must first be unpacked before it can be used. Unpacking an 

attribute consists of reading the value from the location where it is stored, then shift
ing this value right so that the attribute appears at bit position zero, and finally either 
setting all bits that do not belong to the attribute to zero (if it is unsigned) or sign 
extending the variable to the full word length (for signed variables). 

Assigning a value to a packed attribute is even more difficult. The destination loca

tion must first be read, and all bits that do belong to the target attribute must be set 

to zero. Then the value to be stored must be shifted left to the corresponding bit 

position and masked so that it can not overwrite any bits not belonging to the target. 
Then the destination and new value are merged by ORing and finally the result is 
stored at the destination location. 

Furthermore, a wrapping mechanism will make sure that every value assigned to an 
attribute will be within the value range specified for that attribute. 



Word sized attributes 17 

3.3 Word sized attributes 

Word sized attributes are easy to access. They occupy exacdy one whole memory 

location, which can be accessed either by absolute addressing or by register direct 
with displacement. No packing or unpacking is required. The internal registers and 

constants (category 1 and 2) operands do not require any additional ptocessing since 

they are also one word wide and never packed. 

3.4 Microcode generation for attribute expressions 

To describe the mechanism used for generation of microcode, a few abstract data 

types and definitions have to be introduced: 

3.4.1 Access mode of an operand 

An AccessMode is a set type representing the method to be used for accessing an oper

and. It has the following elements: 

AccessMode = { noAccess, immediate, internal, absolute, stdBase, altBase, deref} 

which mean: 
noAccess: 

immediate: 

internal: 

absolute: 

stdBase: 

altBase: 

deref: 

inaccessible in attribute RAM in current situation 

operand is constant value, coded in instruction 

operand is internal register, implied coding in instruction 

operand is attribute, use fixed address (coded in instruction) 

operand is attribute, use standard base register plus offset 

operand is attribute, use alternate base register plus offset 

operand is attribute, address can be found at location accessible 

from standard base plus offset. 

For accessing variables, it is necessary to have information about their position (off

set in segment) and their size (number of bits) as well. The following functions 

return respectively the accessmode, the offset the needed bit size and the actual bit 

size of any attribute represented by a type VarlD: 

AM: 

VO: 
AO: 
VNB: 
lNB: 

VariD ~ AccessMode 

VarlD ~ Integer 
VarID ~ Integer 
VarID ~ Integer 
VarID ~ Integer 

{ method for access} 

{ whole var. offset in workspace in words} 
{ field offset from start of variable in bits } 
{ needed no. of bits} 
{ allocated no. of bits} 



18 Operand references 

3.4.2 Operand references 

An operand_rifis an abstract data type representing any allowed operand in any 

microcode instruction. It has one of the following forms: 

Onop 
(v) con 

representing the absence of an operand (empty) 
with v E Integer 
representing a constant with value 'v' 
with nr E Integer 
representing the temporary variable stored at offset 'nr' in the space 

available for storage of temporary variables. 
with rn E Name 

representing the internal register, whose name is 'rn' 
(vn, YO, s, v, t, am, vi) txt 

with:vn E VarID 
YO, s, v, t E Integer 
am E AccessMode 
vi E Boolean 

representing the (field of the) attribute whose name is 'vn', beginning 

at bit position's from the stan of the whole attribute (which starts at 
word offset 'YO' in the workspace), actually needing 'v' bits, but occupy
ing 't' bits in memory, accessible using mode 'am'. If 'vI' is true, then 
the operand_ref refers to the value of the variable, otherwise it refers to 
its location (for unpacking). 

The above functions and data types are related by the conversion function: 

varopr: VarID ~ operand_ref 

defined by: 

varopr(vn) = (vn, VO(vn), AO(vn), VNB(vn), TNB(vn), AM(vn), true)ext 

3.4.3 Detection of packed operands 

Next, a function named packed is introduced: 

packed: operand_ref x accesstype ~ boolean 

where: accesstype E { readAccess, writeAccess I 



Detection of packed operands 19 

The function packed returns a boolean result indicating whether or not the variable 
it received as an argument is considered packed for the given type of access, i.e: 

packed(op, at) = 

if op :: (. , . , s, v, t, . , vi) txt~ 
[ if at = readAccess ~ 

J 

vi A «s mod syswidth '" 0) v (t '" syswidth» 
o at = writeAccess ~ 

vi A «s mod syswidth '" 0) v (v'" syswidth» 

fi 

o otherwise ~ false; 
fi 

Note: The system constant syswidth is defined to be equal to the width of the 
system data path (memory; alu, buses, etc.). 

To refer to the value of an unpacked word sized operand, a function named value is 
defined that will return this value. 

value: operand_ref ~ Integer 

Some of the functions to be defined next will generate output in the form of 
microcode. This output can be either text or binary code. In either case, it will be 

referred ro as microcode, and a procedure execute is introduced that will accept any 
microcode and execute it. 

microcode = 'a sequence of ascii characters' or 
'a sequence of binary codes' 
representing an executable program for the PPDA. 

execute: microcode ~ {} 

The unpack procedure is defined as follows: given a source operand_ref (src) and a 
destination operand_ref (dst), it generates microcode to unpack 'src' into 'dst'. 

unpack: operand_ref x operand_ref ~ microcode 

unpack(src, dst): 



20 

{src:: (vn, vo, s, v, t, am, true)m} 

execute(unpack(src, dst» 
{ -,packed(dst} /\ value(dst} = value(src} } 

Low level instruction generator 

The implementation of unpack will be described later. 

3.4.4 Low level instruction generator 

Some other data types are defined for the description of the lowest level instruction 
generation process. The first data type is called [nstrOprand it has one of the follow

ing formats: 

(am, offs}ram: 

(nr, offs}tmpv: 

(rn}intl: 

(d}im~: 

Onoam: 

am E {stdb, altb, stdbpincr, altbpincr, absO, absl, absOpincr, 
abs 1 pincr }, is the access mode to generate. 

offs E Integer, is the fixed address or offset for the access. 

nr E Integer, is the offset for the temporary variable. 

offs E Integer, is the offset for access to the temp. var. 

rn E Name, is the internal register whose name is rn. 
d E Integer, is a constant with value d. 

an empry (missing) operand 

The second new data type is called FlowCtl and has only one format: 

(fc, fI) jlw : fc E {COnt, idle, jump, jumpc, jumpnc, jumpp, ret, retc, initlp, 

telp, exitlp, exitlpc, call, calle }, is the flow control function. 

fI E Name, is a label representing flow data (only required for 

some flow control functions). 

The third new data rype is simply the collection of all possible alu functions as 

defined in table 6. It is called ALUFunc. 

Now, a function is definecl that will return (generate) a complete instruction (mne
monic and/or binary code), when given an alu function, source and destination 
operands and flow control information as arguments. 

GenInstr: ALUFunc x 

InstrOpr x InstrOpr x InstrOpr x 
Flowed 
~ microcode 



Operand class 21 

3.4.5 Operand class 

A very important piece of information for any operand_ref is its access mode. Since 

the access mode of an operand is referred to very often, a function is defined that will 
return the access mode of any operand. It will be called class. 

class: operand_ref -t AccessMode 

It is defined as follows: 

class(Onoy = noAccess 

class« v) con) = immediate 

class«nr) tv> = stdBase 

class«rn) inJ internal 

class«. , . , . , . , . , am, ')exJ = am 

3.4.6 Operand locations and read/write accessing 

Next, a few more code generation aid functions will be introduced. The function 

00 will return the location of a variable either as an offset (in the current work

space) or as an absolute address (in the global segment). 

00: operand_ref-tInteger 

It is defined as follows: 

OO(Onop) = 0; 
OO«v) con> = 0; 
OO«nr) tJ = nr + TempSpaceOffset ; 

OO«rn) inJ = 0; 
00«. , vo, s, . , . , am, ')ext) = 

if am = absolute -t vo + (s div syswidth) ; 

o am = stdBase -t vo + (s div syswidth) ; 
o am = altBase -t s div syswidth ; 
o am = deref -t vo ; 
6 

where TempSpaceOffset is the offset for the first location in the current workspace 
that is available for storage of temporary variables. 



22 Operand locations and read/write accessing 

The function GVwill conven an operand_ref for a word sized (unpacked) operand 

to an InstrOprdata type for use by the Genlnstrfunction. 

GV: operand_ref~InstrOpr 

GV does not accept packed attributes or attributes that occupy more than one word 

in memory, because it simply calculates the address or offset of the memory word 
where the first bit of the operand is stored. 

This is how the mapping function GV is defined: 

GV(Ono;J = Onoam; 

GV«v} con} = (v) imme; 

GV«m},J = (m,OO«nr},J}lmpv; 

GV«rn) in) = (rn) inti; 
GV«. , vo, s, . , . , am, .}ext} = 

if am = absolute ~ (absO, 00«. ,vo, s, . , . ,am, .}~}ram; 
D am E {stdBase, deref} ~ (stdb, 00«. ,vo, s, . , . ,am, .}~}ram; 
D am = altBase ~ (altb, 00«. , . , s, . , . , am, .}~}ram; 
6 

To access the destination operand a similar function is used, called PY. The function 
PV can only access unpacked word sized destination operands. It is identical to GV 

except for constants, which can never be the destination of an operation. 

PV: operand_ref ~ InstrOpr 

This is how the mapping function PV is defined: 

PV(op )= if op:: (.)con ~ 
D otherwise ~ 

6 

Onoam; 
GV(op) ; 

Next, the third code generation function is defined. It is called ShailowCompile and 
functions as an interface between higher level compiler functions and the low level 

Genlnstr function. ShallowCompile converts an ALU function with operands and 

flow control into microcode. 



Setting up base registers for the address generators 

ShallowCompile: ALUFunc x 

operand_ref x operand_ref x operand_ref x 

Flowed 

~ microcode 

ShallowCompile (opr, sl, s2, d, mow) =. 

Genlnstr(opr, GV(sl), GV(s2), PV(d), mow); 

3.4.7 Setting up base registers for the address generators 

23 

The alternate read and write base registers are used for every read or write access to 

passed attributes and array elements, for multi word attribute copying (structures) 

and for input and output data transfers to and from the external data path connected 

to the Attribute Evaluator. Therefore they are used quite often and generating code 

for setting those registers up for an access has been implemented in a specialized 

function called SetupAltBase. To define it, yet another data type is introduced: 

basetype = { rdb, wrb, rwb } 

is a set of values representing alternate read, alternate write or 

both base registers. 

And the function definition is: 

SetupAitBase: operand_ref x operand_ref x basetype 

~ operand_ref x microcode 

SetupAltBase generates code to compute the target address (where the first operand 

can be found in attribute RAM), to add that address to the second operand and to 

store the result in the requested alternate base register(s). In most cases, this will take 

just one microcode instruction, but in some cases it takes two. Furthermore, it will 

return an operand_ref which is identical to the first argument but with an access 
mode that has been changed to reflect the change in the alternate base register (i.e. 

the operand is now accessible using an offset to the alternate base). The function 

result of SetupAltBase is a pair whose second element, denoted by (. , .)[2] is 

microcode, and whose first element (. , .)[1] is an operand_ref. 

execute(SetupAltBase(x, d, bt)[2]) has the following effect: 

if x :: (.)con v x:: (.)int~ basel := baseO + value(x) + value(d); 
Ox:: (n) tv ~ basel := baseO + OO(x) + value(d); 



24 Intermediate levd instruction generation 

D X :: (. , • , • , • , • , • , .)ext--7 

fi 

if class(x) = absolute --7 basel := OO(x) + value(d); 

D class(x) = stdBase --7 basel := baseO + OO(x) + value(d); 
D dass(x) = deref --7 basel := MEM(OO(x) + baseO) + value(d); 
D otherwise --7 skip 
fi 

where MEM(a) returns the value stored at RAM location ';i. 

The first function result element, the new operand_ref is defined as follows: 
SetupAltBase(x, . , .)[1] = 

if x:: (.)con v x:: Oint v x:: (.)/V--7 x; 
D x:: (vn, vo, s, v, t, am, vi) ext--7 

fi 

if am = absolute --7 (vn, vo, 0, v, t, altBase, vl)ext; 

D am = stdBase ~ (vn, vo, 0, v, t, altBase, vi) ext; 

D am = deref ~ (vn, vo, s, v, t, altBase, vI) ext; 

D otherwise --7 skip 
fi 

Here, base 1 is the value in the alternate read, write or both register(s), depending on 
the basetype argument. Similarly, baseO represents the current value of the standard 

base registers (these are always equal to each other). 

Actually, the value of the base registers can not be read back from them. Therefore, 
the value for baseO must be stored in a so called shadow location in RAM. This is 
done in the system segment, which must be accessed using absolute addressing 

mode. 

3.4.8 Intermediate level instruction generation 

Now the microcode compilation process can be defined in terms of the functions 

and procedures described above. The following list shows all possible combinations 
of source operand rypes, and the resulting microcode. Note that this list is for both 
operations requiring zero, one or rwo operands (if either source or destination oper
and is not required, the corresponding InstrOpr argument will be 0 nop and the access 
class value will be o. 



Intermediate level instruction generation 25 

Consider a function Compile that will map an ALU function with at most 2 source 
operands and 1 unpacked word sized destination operand to microcode. The func
tion Compile can be defined recursively. Operations with packed attribute operands 

(classes absolute, stdBase, altBase and dere£) can be compiled by performing some 
preprocessing, and then calling Compile again with simpler arguments. A final argu

ment to this function gives the Bow control function that should be generated at the 
very last instruction generated by this call to Compile. 

Compile: ALU function x 

operand_ref x operand_ref x operand_ref x 
FlowCd 

~ microcode 

Compile (opr, s1, s2, d, ff) will now be defined. The output varies according to the 
operand access modes, but from a higher level the following mode sets must be dis

tinguished (and require different preprocessing): 

set 1: { noAccess, immediate, internal} 

set 2: { absolute, stdBase, altBase } 
set 3: { deref} 

There are 9 set combinations, and for 7 of those a different strategy for code output 
IS necessary. 

A) class{s1) E sed A class{s2) E sed 

Not~ the subcase class(sl} = immediate A class(s2) = immediate should (and will) 

not occur, since: 

a) hardware does not support it and 

b) the high level expression compiler will precompute constant expressions. 

compile (opr, s1, s2, d, ff) = shallowcompile(opr, s1, s2, d, ff); 

B) class{s1) E set2 A class{s2) E sed 

compile (opr, s1, 52, d, ff) = 

if packed{s1, readAccess) ~ 
if (opr = MOVE) A (class(d) i>: {deref, altBase}} ~ unpack(s1, d); 
D (apr * MOVE) v (class{d) E { deref, altBase}} ~ 



26 

fi 

Intermediare level instrucrion generation 

I unpack(51, (ALU)in); 

compile(opr, (ALU) in/' 52, d, ff); 
) 

D -.packed(51, readAcces5) ~ shallowcompile(opr, 51, 52, d, ff); 
fi 

C) dass(5 1) E 5ed " dass(52) E 5etl U 5et2 

compile (opr, 51, 52, d, ff) = 

I 51:= setupaltbase(51, Onop' rdb)[I]; 
compile(opr, 51, 52, d, ff); 

] 

D) dass(51) E setl " dass(s2) E set2 

Thi5 case is identical to B when sl is swapped with s2. 

compile (opr, 51, s2, d, ff) = 

if packed(s2, readAcces5) ~ 

if (opr = MOVE) " (dass(d) i! { deref, altBase} )~ unpack(52, d); 

D (opr"# MOVE) v (dass(d) E {deref, altBase} )~ 

[ unpack(s2, (ALU) in); 

compile(opr, sl, (ALU)in/, d, ff); 
) 

fi 
D -.packed(s2, readAccess) ~ shallowcompile(opr, sl, 52, d, ff); 
fi 

E) dass(sl) E set2 "dass(s2) E set2 

compile (opr, 51, s2, d, ff) = 

if -.packed(51, readAccess) " -.packed(52, readAcces5)~ 

[ compile(MOVE, 51, Onop' (ALU)int' (cont, ")jlw); 
compile(opr, (ALU) in/' 52, d, ff); 

] 

D packed(51, readAcce55) /\ -.packed(52, readAcce55)~ 

[ unpack(51, (ALU)in); 

compile( opr, (ALU) in/' 52, d, ff); 



Intermediate level instruction generation 

] 

D --,packed(sl, readAccess) A packed(s2, readAccess)~ 

[ unpack(s2, (ALU)inJ; 

compile(opr, sl, (ALU)int' d, ff); 
] 

D packed(sl, readAccess) A packed(s2, readAccess)~ 
[ unpack(sl, (TEMPREG)inJ; 

unpack(s2, (ALU)inJ; 

compile(opr, (TEMPREG)int' (ALU)int' d, ff); 

J 
fi 

F) dass(sl) E setl V set2 /\ c1ass(s2) E set3 

This case is identical to C when s 1 is swapped with s2. 

compile (opr, sl, s2, d, ff) = 

[ s2:= setupaltbase(s2, Onop' rdb)[I] ; 
compile(opr, sl, s2, d, ff); 

G) c1ass(sl) E sed A dass(s2) E sed 

compile (opr, sl, s2, d, ff) = 
if --,packed(sl, readAccess)~ 

[ sl:= setupaltbase(sl, Onop' rdb)[I] ; 

J 

compile(MOVE, sl, Onop' (TEMPREG)int' (cont, ")jlw); 

compile(opr, (TEMPREG)int' s2, d, ff); 

D packed(sl, readAccess)~ 

fi 

[ sl:= setupaltbase(sl, Onop' rdb)[I]; 
unpack(sl, (TEMPREG)inJ; 
compile(opr, (TEMPREG)jnl' s2, d, ff); 

J 

27 

This concludes a full list of all possible combinations of packed and unpacked oper
ands of all classes. The code generating function unpack can now be defined in terms 



28 Unpacking operands 

of compile. The expansion of a 'v' bit variable into a full word length is done using a 
function called expand, which will also be defined in terms of compile. 

3.4.9 Unpacking operands 

For unsigned sources, expand uses a masking function to force all bits of a word that 
do not belong to the target attribute to zero, and for signed sources, it sign extends 
the source to a full word length. 

mask: Integer x Integer ~ Integer 
mask (a, b) = ((l «b) -1) «a{ bits a ... a+b-I are logic 1 } 

signed: VarID ~ Boolean 

signed(vn) ¢:::> 'vn is a signed variable' 

expand: operand_ref x operand_ref x Integer x Boolean ~ microcode 

expand(s, d, nrbits, s_signed) = 
if s_signed ~ compile(XSGN, s, (nrbits - 1)eon' d, (cont, ' ')jlw); 
D ..., s_signed ~ compile(AND, s, mask(O, nrbits), d, (cont,' ')jlw); 

6 

Unpack«vn, yo, s, v, t, a, .)txt' d) = 
if s mod syswidth ~ 0 ~ 

[ h: Integer I 

] 

h := s mod syswidth + «v - 1) « syswidth div 2) ; 
ifsigned(vn) ~ h:= h + (1 «syswidth - I) ; 

D ...,signed(vn) ~ skip 
6· , 
compile(UNPK, (vn, YO, s, v, t, a, false)txt, (h) eon ' d, (COnt, ' ')jlw); 

D s mod syswidth = 0 ~ 

6 

[ expand«vn, YO, s, v, t, a, false)txt, d, v, signed(vn» 
] 

As can be seen from this code, unpack only uses the internal ALU bus for its opeta
tion and therefore does not change the value of the internal temp_reg register, nor 
does it use any temporary variables. The special opcode UNPK has the effect as 
described in table 6 as a function unpk with a number of arguments: 



Class dependent destination operand handling 29 

unpk: Integer x Boolean x Integer x Integer ~ microcode 

unpk(val, signed, firstbit, highbit) = 

if signed ~ xsgn(val » firstbit, highbit) 

D -.signed ~ bitand(val » firstbit, mask(O, highbit + 1) 
Ii 

where '»' represents a shift right operation and xsgn is the sign extension operation 
as defined by the corresponding ALU function. 

3.4.10 Class dependent destination operand handling 

As stated at the introduction of the compile function, it can only handle unpacked 

(word sized) destination operands, because the code it generates simply writes the 

result to the destination as a whole word. Therefore, some preprocessing is required 

if the destination operand is anything else but unpacked and word sized. The desti

nation operand can never be a multiple word sized operand because those types of 

expressions are handled separately, as explained before. The only cases in which pre

processing is required are therefore those where the destination is packed or where its 

access mode is deref (or both). Note that internal registers and temporary variables 

are never packed. 

In case the destination's access mode is deref, the only preprocessing required is to set 
up the alternate base register for write access to the start location of the destination 

operand. The call to Genlnstr in the deepest level of compile will then automatically 

compile a write access relative to the alternate write base register with offset O. 

In case the destination operand is packed but does not have access mode deref, it is 

first changed into the operand (TEMPREG)jnp which means that the result of the 

operation will be left in that internal register. From there, it is packed into the real 

destination by a special function called pack. This function will be defined below. 

Finally, in case the destination is a packed operand with access mode deref, the same 

actions are taken as in the previous case, but just before calling pack the alternate 

write and read base registers are set up to the start of the destination operand. Pack

ing requires both a read and a write access to the destination, which is why both 

alternate registers must be set up. 



30 Packing operands 

3.4.11 Packing operands 

The pack procedure is defined as follows. It takes a source operand_ref (src) and a 
starting bit number in src, a destination operand_ref and (since it is often the last 
step for an expression) final How control dara, and generates microcode for the pack
ing of'src' into 'dst'. 

pack: operand_ref x Integer x operand_ref x FlowCd ~ microcode 

pack(src, fb, dst, ff): 

{ ..., packed(src) I 
execute(pack(src, fb, dst, ff» 
{ packed(dst) A value(dst) = value(src) I 

The exact operation of pack depends on the types of the variables it operates on. In 
general, unpacking and packing variables is an expensive operation, which is why it 
must be performed as little as possible. Packing is only necessary for assigning values, 
whereas unpacking is necessary for every read access to a shorr variable. Although 
packed variables must always be unpacked, there is a way to dramatically reduce the 
necessiry of unpacking the short variables (those variables that occupy a whole word 
in memory, but actually use less). If it is guaranteed that accessing shorr variables as 
words will return the same value as accessing through unpack, the unpack is no 
longer necessary for these cases. This guarantee can in fact be made, if for every 
assignment to such a variable, the value to be stored is expanded first. The pack pro
cedure will do this for shorr variables. 

3.4.12 Automatic assignment value wrapping 

It was also stated that it would be impossible to assign values to an arrribute that are 

outside the specified range for that attribute. For example, assigning -4 to a range 
variable <-2 .. +6> would actually assign +5 (wrapping). This is generalization of the 
well known modulo N arithmetic. In this case, N is the cardinaliry of the range (the 
number of integer values within the range), and the base is not 0, but the lowest 
value in the range. The ALU has a function called WRAP that can force a value to be 
in the range <O .. K-b when given a source operand, K and a destination operand. 
Pack will use this function to enforce the more general wrapping technique for the 
appropriate attributes. 



Top level insrruction generation 31 

For assignments to packed variables, the pack procedure will also generate code to 
shift the source value to the correct bit position, and to replace the corresponding 
bits in the destination by the new source value. 

3.4.13 Top level instruction generation 

Now, the top level microcode generation function can be defined, that handles all 
cases, independent of operand categories and types. The function Generate takes an 
ALU function, 2 source operands, one destination operand and flow control for the 
last microcode instruction to be generated as arguments and generates microcode to 
perform the given operation. 

Generate: ALU function x 

operand_ref x operand_ref x operand_ref x 

FlowCd 
-7 microcode 

If the destination is packed for write access then the compile function is called with 
destination TEMPREG. Next, if the destination is an array element or has access 
mode deref, then the alternate read and write base registers are setup to point to the 
destination variable. Finally pack is called to pack the value now in TEMPREG into 
the real destination. 

If the destination is not packed for write access then the alternate write base register 
is setup if (and only if) the destination is an array element or has access mode deref, 
after which the compile function is called directly with unchanged arguments. 

3.4.14 High level expression compilation 

Compiling the high level expressions into microcode now simply becomes a matter 
of a treewalk, while calling the Generate function at every level. At the same time, 
intermediate results have to be stored somewhere. The internal registers are used by 
compile and can not be used for temporary result storage on this level. The number 
of intermediate values to store depends on the width of the expression tree, and can 
therefore have almost any value. That is why these results will be stored in attribute 
RAM at positions above the current work space. These locations are called TMPV's 
{TeMPorary Var's}. Their number and position are computed at compile time and 
hardcoded into the expressions. Keeping track of these TMPV's is another task to be 
performed during treewalk. The last function to be performed during this phase is 
evaluation of constant expressions. 



32 High level expression compilation 



Bibliography 

Aho72 Aho, A.V. and JD. Ullman 
The theory of parsing, translation, and compiling. Vol. I: Parsing. 
Englewood Oiffs: Prentice Hall, 1972-1973. 

Ah086 Aho, A.V. el al. 
Compilers: Principles, techniques and lools. 
Amsterdam: Addison Wesley, 1986. 

Anderson85a Anderson, D.P. and L.R. Landweber 
Prolocol specification by real-time attribule grammars. 
In: Prolocol specification, tesling and verification. Proc. of the IFIPWG6.14th inl. conf., Sky
lOp Lodge, Pennsylvania, USA, June 11-14, 1985. Ed. by Y. Yemini el al. 
Amslerdam: North-Holland, 1985. P. 457-465. 

Anderson85b Anderson, D.P. and L.H. Landweber 
A granunar-based methodology for prolocol specification and implementation. 
In: Data communications. Proc. of the 9th symp., Wbistler Mountain, Britisb Columbia, Sepl. 
10-13, 1985. 
Wasbington DC: IEEE Computer Sociely, 1985. P. 63-70. 

Bloks91 Bloks, R.H.1. 
A protocol engine architecture. 
In: Computer systems. Proc. of the 4th workshop, Amsterdam, Ok!. 11, 1991. Ed. by P. Hartel 
and H. Muller. 
AmSlerdam: Computer Systems Dept., Univ. of Amsterdam, 1991. P. 43-62. 

Bloks92 Bloks, R.HJ. 

Bloks93a 

Bloks93b 

Denning78 

Fisher88 

Haas85 

A metagranunar for ProGrlL. 
Digital Information Systems Group, Faculty of Electrical Engineering, Eindhoven Universily 
of Technology, November 1992. 
Internal Repurt no. PRO/EB/9202. 

Bloks, R.HJ. 
ProGrlL: A language for the definition of pro loco I grammars. 
Eindhoven: Facully of Electrical Engineering, Eindhoven University of Technology, 1993. 
EUT Report 93-E-270. 

Bloks, R.HJ. 
A grammar based approach towards the automatic implementation of data communication 
protocols in hardware. 
Dissertation,Eindhoven University of Technology. 
To be published approx. May 1993. 

Denning, PJ. el al. 
Machines, languages and computation. 
Englewood Oiffs: Prentice-Hall, 1978. 

Fisber, C.N. and RJ. Leblanc 
Crafting a compiler. 
Amsterdam: Benjamin/Cummings, 1988. 

Haas, O. 
Spezifikation von Kornmunikationsprotokollcll auf der Basis aLu'ibuticrtcr Granllnatikcn. (in 
German). 
Dissertation, Technische Universillil MUnchen, 1985. 



Bibliography 34 

Haas86 Haas, O. 

Kain72 

Knuth68 

LewisSl 

Linn83 

Lunteren91 

Sunsltine82 

Ural84 

Fonnal protocol specification based on attribute grammars. 
fu: Protocol specification, testing and verification. Proc. of the IFIP WG 6.1 5th int. conf., 
Toulouse-Moissac, France, June 10-13, 1985. Ed. by M. Diaz. 
Amsterdam: Elsevier,1986. P. 39-48. 

Kain,R.y. 
Automata theory: Machines aod laoguages. 
London: McGraw-Hill, 1972. 

Knuth,D.E. 
Seroaotics of context-free laoguages. 
Mathematical Systems Theory, vol. 2 (1968), no. 2, p. 127-145. 

Lewis. H.R. aod C.H. Papadimitriou 
Elements of the theory of computation. 
Englewood Cliffs: Prentice-Hall, 1981. 

Linn, RJ. aod WE. McCoy 
Producing tests for implementations of OS! protocols. 
fu: Protocol specification. testing and verification. Proc. of the IFIP WG 6.1 3rd into conf., 
Rilschlikon, Switzerlaod, May 31-June 2, 1983. Ed. by H. Rudin and C.H. West. 
Amsterdam: North-Hollaod, 1983. P. 505-520. 

Lunteren, J. vao 
Ontwerp vao een attribuut evaluator als onderdeel vao een grammatica processor. 
Digital fuformation Systems Group, Faculty of Electrical Engineering, Eindboven University 
of Technology, 1991. StudentrepoI1 (in Dutch). 

Sunsbine, C.A. 
Fonnal modeling of communication protocols. 
fu: Computer nerworks aod simulation II. Ed. by S. Schoemaker. 
Amsterdam: North-Hollaod, 1982. 

Ural, H. aod R.L. Probert 
Automated testing of protocol specifications and their implementations. 
fu: Communications architectures & protocols. Proc. ACM Sigcornm '84 symp., June 6-8, 
1984, Montreal, Quebec, Caoada 1984 in Computer Communications Review, vol. 14 (1984), 
no. 2, p.149-155. 
New York: ACM, 1984. 



Eindhoven University of Technology Research Reports ISSN 0167-9708 
Coden: TElJEDE 

Faculty of Electrical Engineering 

1247) J6zwiak. L. and T. Spmova-Kwaaitaal 
DRCOMPOSITIONAL STATE ASSIGNMENT WITH REUSE OF STANDARD DESIGNS: Using counters as sub
machines and using the method of maxImal adjacensies to select the state chaIns and the 
state codes. 
EUT Report 90- E- 247. 1990. ISBN 90-6144-247-6 

(246) . M.J. and J.N. 
VERIFICATION THE SYNCHRONOUS MACHINE WITH RECTIFIER WITH TWO 

DAMPER WINDINGS ON THE DIRECT AIlS. 
EUT Report 90-E-246. 1990. ISBN 90-6144-248-6 

(249) Zhu. Y.C. and A.C.P.M. Backx. P. Eykhoff 
MULTI VARIABLE PROCESS IDENTIFICATION FOR ROBUST CONTROL. 
RUT Report 91-E-249. 1991. ISBN 90-6144-249-4 

1250) Pfaffenh~fer. F.M. and P.J.M. Cluitmans. H.M. Kuipers 
£MDABS: Design and tormal specifIcatIon of a datamodel for a clinical research database 
system 
EUT Report 9H-250. 1991. ISBN 90-6144-250-8 

(251) EiJudhoveli. J.T.J. van dnd U de ,long. L. Stok 
THE ISCIS DATI FLOW GRIPH: SemantIcs and textual format. 
EUT Report 9H-251. 1991. iSBN 90-6144-251-0 

1252) Chen. J. and P.J.1. de Haag!. N.H U. Herben 
WIDE-ANGLE RADIATION PATTERN mCULATJON OF P!R!HOLOIDAL REFLECTOR ANTENNAS: A comparat iv, 
study. 
EUT Report 9H-252. 1991. ISBN 90-6144-252-4 

(2531 Haan. S.U. de 
A PWM CURRENT-SOURCE INVERTER FOR INTERCONNECTION BETWEEN A PHOTOVOLTAIC ARRAY AND THE 
UTILITY LINE. 
EUT Report 91-E-m. 1991. ISBN 90-6144-253-2 

12541 Velde. M. van de and P.J.N. C ; 
EEG ANALYSIS FOR MONITORING DEPTH. 
EUT Report 91-E-254. 1991. ISBN 90-6144-254-0 

(2551 Smolders. U. 
AN EFFICIENT METHOD FOR ANALYZING MICROSTRIP ANTENNAS WITH A DIELECTRIC COVER USING A 
SPECTRAL DOMAIN MOMENT METHOD. 
EUT Report 91-E-255. 1991. ISBN 90-6144-255-9 

12561 Backx. A.C.P.M. and A.A.H. Dame" 
IDENTIFICATION FOR THE CONTROL OF MIMO INDUSTRIAL PROCESSES. 
EUT Report 91-E-256. 1991. ISBN 90-6144-256-7 

12571 Maag!. PJ. 1. de and H.G. ler Morsche .. l.L.M. van den Broek 
A SPATIAL RECONSTRUCTION TECHNIOUE APPLICABLE TO MICROWAVE RADIOMETRY. 
EIIT Report 92-£-257. 1992. ISBN 90-6144-257-5 

1258: VleesbouWers. J.N. 
DERIVATION OF A MODEL OF THE EXCITER OF I BRUSH LESS SYNCHRONOUS MACHINE. 
EUT Report 92-E-258. 19\2. JSB~ 90-6144-256-3 



Eindhoven University of Technology Research Reports ISSN 0167-9708 
Coden: TEUEDE 

Faculty of Electrical Enaineering 

(259) Orlov. V.B. 
DEFECT NOTION AS THE ORIGIN Of THE l/f CONDUCTANCE NOISE IN SOLIDS. 
EUT Report 92-E-259. 1992. ISBN 90-6144-259-1 

(260) Rooijackers. J.E. 
ALGORITHMS FOR SPEECH COOING SYSTEMS BASED OK LINEAR PREDICTION. 
EUT Report 92-E-260. 1992. ISBN 90-6144-260-:, 

(2611 Boom. T.J.J. van den and A.A.H. Danen. Martln Klompstra 
IDENTIFICATION FOR ROBUST CONTROL USING AN H-lofinJty NORM. 
EUT Report 92-E-261. 1992. ISBN 90-6144-261-3 

(262) Groten. M. and W. van Etten 
USER LINEWIDTH MEASUREMENT IN THE PRESENCE OF RIN AND USING THE RECIRCULATING SELF 
HETERODYNE METHOD. 
EUT Report 92-E-262. 1992. ISBN 90-6144-262-1 

(263) Smolders. U. 
RIGOROUS ANALYSIS OF THICK MICROSTRIP ANTENNAS AND WIRE ANTENNAS EMBEDDED IN A SUBSTRATE. 
EUT Report 92-E-263. 1992. ISBN 90-6144-263-X 

(264) Frerlks. L.W. and P.J.M. Clultnans. N.J. van Gils 
THE ADAPTIVE RESONANCE THEORY NETWORK: (Clusterlng-) behaviour lD relation with brainstem 
audltory evoked potential patterns. 
EUT Report 92-E-264. 1992. ISBN 90-6144-264-8 

12651 Wellen. J.S. dnd F. ~,rout •. ".F.C. Sche •• ,,". f, S •• lbruaae. L M F Kallfo"n 
MANUFACTURING AND CIiMlACTERIzmON or GUS/ALGAAS MULTIPLE OUANTUMWELL RIDGE WAVEGUIDE 
USERS. 
EUT Report 92-£-265. 1992. ISBN 90-6144-265-6 

(2661 Cluitmans. L. J. M. 
IISING GENETIC ALGORITHMS FOR SCHEDULING DATi FLOw GRAPHS. 
EUT Report 92-E-266. 1992 ISBN 90-6144-266-4 

i2671 J6zmk, L. and U.H. van DiJ! 
1 METHOD FOR GENERAL SIMUUINEOUS FULL DECOMPOSITION or SEOUENT!iL MACHINES: 
Algorithms and lmple.,ntatlon. 
EUT Report 92-E-267. 1992. ISBN 90-6144-267-2 

(268) BOOB. H. van den and W. van Etten. W.H.C. de Kro~. P. van Benne!o •. F. HUllskens. 
L. Klessen. F. de Lel]er 
AN OPTICAL ASK AND FSK PHASE DIVERSITY TRANSMISSION SYSTEM. 
EUT Report 92-E-266. 1992. ISBN 90-6144-266-0 

(2691 Putten. P.H.A. van der 
NULTIDISCIPLINAIR SPECIFICEREN EN ONTWERPEN VAN MICROELEKTRONICA IN PRODUKTEN (in Dutch). 
EUT Report 93-E-269. 1993. ISBN 90-6144-269-9 

(2701 ~. R.H.J. 
PROSRIL: A langu.ge for the definition of protocol grammars. 
EUT Report 93-E-270. 1993. ISBN 90-6144-270-2 

12711 Bloks. R.H.J. 
CODE GENERATION FOR THE ATTRIBUTE EVALUATOR OF THE PROTOCOL ENGINE GRAMMAR PROCESSOR UNIT. 
EUT Report 93-£-271. 1993. ISBN 90-6144-271-0 


	Abstract
	Table of contents
	Introduction
	1. The grammar processor
	1.1 Top level overview
	1.2 The attribute evaluator
	2. Attribute evaluator control functions
	2.1 Source operands
	2.2 Destination operands
	2.3 Address generator control
	2.4 Flow control
	2.5 ALU functions and operands
	3. Microcode generation
	3.1 Long attributes
	3.2 Short and packed attributes
	3.3 Word sized attributes
	3.4 Microcode generation for attribute expressions
	Bibliography

