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Abstract

In the first part of the report, the complete radiation pattern of a
symmetrical paraboloidal reflector antenna is calculated by high—frequency
asymptotic techniques. These techniques are reviewed and the diffraction coefficients,
derived for GTD, UTD, APO, and CAPO, are compared. The angle regions in which
these methods are valid, are discussed and some associated conflicting statements in
literature are cleared up. It is shown that GTD (or UTD) is the most successful
method to calculate the scattered field for reflector antennas in wide—angle (away
from the antenna axis) regions. To obtain the correct results in the forward— and
rear—axial region, the PO and EEC method are used, respectively. The results
obtained agree well with previous theoretical and experimental work.

In the second part of the report, the wide—angle radiation pattern of an
offset paraboloidal reflecior antenna is calculated using the successful GTD (UTD)
method. It is shown that there are two far—field caustics in the symmetry plane of the
offset configuration: one in the antenna forward—direction and one at a specific angle
determined by the offset configuration. In the latter caustic—region the EEC method
is used. Outside the symmetry plane specific far—field angles are found where GTD
fails; this phenomenon is explained with the help of far—field "caustic" points. To
obtain the complete power pattern, PO is used in the forward axial—region.
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1. Introduction

Reflector antennas have been used for about fifty years in radio astronomy,
microwave communication, remote sensing and satellite tracking. The demand for
highly sensitive antenna systems asks for an accurate calculation of the wide—angle
and the rear—direction antenna patterns in order to examine the harm caused by
possible interfering sources within this angle region. Several methods ([1]-{4]) have
been introduced to calculate the far—field radiation patterns of reflector antennas. To
find the angle region where the results obtained by these methods are valid, some
potential methods are reviewed and compared in this report. These methods are GTD
[5], UTD [6], APO [7], CAPO 8] and EEC ([9]-{11]).

The geometrical theory of diffraction (GTD) ([i2],[13]) introduced by
Keller, is an extension of the geometrical optics (GO) by adding diffraction rays to
the usual GO ray. The corresponding diffracted waves are assumed to follow the laws
of diffraction and to diverge according to GO laws. Consequently, the points of
diffraction and the paths of the rays can be found from the laws of diffraction, and the
amplitude of the fields along the rays can be found from the principle of energy
conservation. So, this theory not only provides a qualitative description of diffraction
in terms of the diffracted rays, but also permits a quantitative determination of the
diffracted field as well. The initial value of the diffracted field at the point of
diffraction is obtained by multiplying the field vector of the incident wave by the
dyadic diffraction coefficient, which was first obtained by Keller by comparing his
diffraction expressions with Sommerfeld’s exact solutions for various canonical
problems. Although the GTD results are not exact solutions to the field equations,
they are the leading terms of an asymptotic expansion of such solutions for high
frequencies. GTD has been widely used to calculate the scattered fields of objects
which dimensions are large compared to the wavelength. However, it gives invalid
results within a few specific far—field angle—regions.

Kouyoumjian and Pathak [6] extended Keller’'s GTD to the uniform
geometrical theory of diffraction (UTD). UTD gives diffraction coefficients which are
also valid in the shadow boundary regions where Keller’s theory fails. Moreover, UTD
gives a compact form of the dyadic diffraction coefficient for electromagnetic waves
obliquely incident on a curved edge (of a perfectly conducting reflector surface). In
this report, the term GTD is used for both Keller’s GTD and UTD, since the latter is
basically an extension of the first and they are based on the same principles.

Physical Optics (PO), simply approximates the currents on the reflector by



the currents derived from the application of the GO theory. By evaluating the
contributions from all parts of the reflector to the field in an observation point, PO
gives the total field. PO is generally used for the calculation of the main-lobe and the
first few sidelobes which appear in an angle—region where GTD fails. The wide—angle
far—field calculation using this method is usually complex and includes time
consuming numerical integrals. But, if there are stationary points in the integral, so
that the stationary phase method can be used, the field integrals can be evaluated
asymptotically. The method using stationary phase integration is called Asymptotic
Physical Optics (APO). The APO, which was first adopted by Rusch ([7],[14]) and
later on extended by Knop [15], has been considered to be a powerful method for the
reflector antenna radiation pattern calculation. However, measurements [8] revealed
that APO gives results with errors up to 6 dB in some angle regions. These errors can
be explained by the unreliable physical optics (PO) approximation of the currents at
the edge of the reflector. Therefore Knop and Ostertag [8] derived the corrected APO
(CAPOQ) diffraction coefficients by introducing multiplication factors.

The equivalent edge current method (EEC or ECM) is used to obtain the
rear—direction patterns of paraboloidal reflector antennas ([9),{10]) which cannot be
calculated with GTD or APO. Therefore, electric and magnetic currents flowing along
the edge of the reflector are introduced, which are derived from the GTD edge
diffraction coefficients.

In the first part of this report, the wide—angle radiation patterns of axially
symmetrical paraboloidal reflector antennas are calculated. In Chapter 2 the
configuration of the reflector antenna and its feed radiation patterns are given. The
different far—field angle regions are described in Chapter 3, which shows that in each
region a different calculation method should be used. In Chapters 4 and 5 the GTD
(UTD) method and the APO (CAPO) method are described. The EEC method is
dealt with in Chapter 6. In Chapter 7, the calculation methods are compared, using
the results of a PASCAL computer program, which was written by the first author.

It is concluded that GTD (UTD) is the most successful method for
calculating the scattered field for reflector antennas in wide—angle regions. To obtain
the correct results in the forward and rear—axial region, the PO and EEC must be
used, respectively. To enssure a smooth transition between the GTD results and those
of both other techniques, the transition angle—regions are evaluated in Chapter 7.

The second part of the report deals with the offset paraboloidal reflector
antenna[20] which is in use for many years. Compared with the front—fed symmetrical
paraboloidal reflector antenna, the offset configuration is free from aperture—blockage



by the feed system and consequently it has a better radiation pattern and VSWR [1].
Its main disadvantage is an inherent cross—polarization, which however can be
eliminated in case of an offset double-reflector antenna configuration. Because of
these advantages, a lot of attention was paid to the design of the offset parabolic
reflector antenna.

However, designing an offset parabolic reflector antenna asks for a more
complex theoretical analysis, because its asymmetric geometry results in numerical
calculation difficulties. Most of the analyses for offset reflector antennas are based on
the work performed by Cook et al.[21}, either by making use of the same geometry, or
by following a similar approach to a different geometry. All these methods can be
classified as being related to the Physical Optics (PO) theory, by using the
current—distribution method or the aperture—field integration method. Because these
methods can only be used in a limited angle region, another method is needed to
calculate the wide—angle radiation pattern.

In this report, the GTD (UTD), which was successfully used for the
symmetrical antenna, has been modified so that it can be used for the calculation of
the wide—angle radiation pattern of an offset reflector antenna. The papers published
on this subject are few [26]. For the analysis of the offset reflector configuration, a
two—dimensional diffraction model, as used for the symmetrical configuration, is
gererally not sufficient and a three—dimensional model is needed. It appears that,
because of the asymmetric geometry, one of the caustics which was found for the
symmetrical antenna to be in the rear—axial direction, now appears in the symmetry
plane at a certain angle with the rear-axial direction.

Chapter 8 of this report describes the offset reflector geometry and the
radiation properties of the feed. The corresponding coordinate systems used for the
reflector and the feed, and the relation between them are also given in this chapter. In
chapter 9 it is shown that the positions of the GTD diffraction points are the same as
the positions of the stationary phase points derived by lerley et al.[23]. Further,
expressions for the diffraction coefficients and the radiation patterns of an offset
paraboloidal reflector antenna are derived using the GTD (UTD) method. As for the
symmetrical antenna, PO is used in the forward—caustic direction, and the EEC
method is used at or near the other caustic direction. The use of EEC in this caustic
direction is discussed in Chapter 10. The transition angle regions for the three
calculation techniques are considered in Chapter 11, where also numerical results are
presented from a PASCAL computer program written by the first author. Finally, the
conclusions of this research are given in Chapter 12.



2. Reflector Configuration and Feed Patterns

In the first part of this report, the axially symmetric paraboloidal reflector
antenna will be considered. Due to its symmetry, the radiation properties of such an
antenna can be described more easily than those of the asymmetric offset antenna,
which will be dealt with in the second part of this report. It should be noted that
possible blockage effects of struts and feed are not considered in this study.

2.1 Configuration and Coordinate Systems

The paraboloidal reflector with focal length f and subtended angle 2¢ is
placed in the z>0 region of the rectangular coordinate system (see Fig. 2—1). The
z—axis is the symmetry axis of the antenna and the feed is placed at the focus (F),
which is positioned at the origin of the rectangular (x,y,z) coordinate system. The O
and the Q" are the intersections of the z—axis with the aperture plane and reflector
surface, respectively.

The paraboloid is given by:

21
14-cosy

(¥a); (2-1)

where: (p,#,) denotes the spherical coordinates to describe the reflection and
diffraction points on the paraboloidal reflector and (r,0,4) are the spherical
coordinates indicating the far—field observation point.

2.2 Feed Radiation Patterns

If both Huygens— and dipole feed polarization are considered, the far—field
pattern of the feed canm, for y—polarization, be written as:

—ik
)= At Gl )[0ysint -+ cont (2-2)



P(I‘,g,¢)

Fig. 2—-1 The Geometry of a Paraboloidal Reflector

with

{cos;ﬁ for dipole feed

1 for Huygens feed

P 1
(152)?

Ay = fl—sinzyfsinz{

P..d
(n32)?

(2-3,a)

for dipole feed
(2-3,b)

for Huygens feed

where Py is the total power radiated by the feed, 5 the intrinsic impedance of free

27

space, k= 1— the wave number and ) the wavelength.



The feed power functions considered are:

Sl { 2(n+1)cosn(y) (#<3) (2-4,a)

where n is a positive real.

The electric field incident to the edge of the reflector is obtained from

Eq.(2-2) by setting 4 = a and replacing g by pq, being the distance from the feed to
the edge of the reflector.
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3 Far—Ficld Angle Region Definition

According to geometrical optics, the direct feed radiation is shadowed by the
reflector when @ is less than a (see Fig. 3—1). Therefore, we call the region f<a the
shadow region, the region #>a the illuminated region, and the angle f=g¢ the shadow
boundary. caustic

caustic
Fig. 3-1 Angle Regions of Far—field Radiation

Due to the focussing properties of the symmetrical parabolic reflector, the
forward—direction (#=r) is a caustic of the reflected rays and due to its rotational
symmetry with respect to the z—axis, both the forward— and rear—direction (#=0) are
caustics of the diffracted rays from the edge of the reflector. The regions in the
vicinity of f=r and #=0 directions are named the forward—axial and rear—axial

region, respectively.
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All the angle regions and the associated fields are listed in Table 1. Here, El
denotes the incident field from the feed, Er denotes the reflected field from the
parabolic surface and E¢ denotes the diffracted field from the edge of the parabolic
reflector. It is clear that the diffracted fields are significant (especially in the region
f<a), and therefore, have to be considered for finding the total far—field radiation
pattern. Table I also includes the techniques which are generally used to calculate the
far—field patterns in the individual regions.

Table I Total Field in Different Angle Regions and Techniques
for Calculating the Far—field Radiation Pattern

D RN N L
Regions Angle Field Techniques
rear—axial region [/ Ed EEC
shadow region f<a Ed GTD or APO
illuminated region a<d<r Ei+Ed GTD or APO
forward—axial region Oxr L Ei+Er4+Ed PO
e e T R e I T T PP e e e

In the shadow and illuminated regions, the patterns are calculated by means
of GTD and APO. In the vicinity of the caustic directions # = r and § = 0, where the
asymptotic methods fail, PO and EEC are used, respectively.
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4 GTD Analysis of the Radiation from Paraboloidal Structures

4.1 Introduction

The GTD ([5],(12],[13]) describes the diffraction phenomena by introducing
various kinds of diffracted rays, such as single—diffracted rays and multiple-diffracted
rays. The corresponding diffracted waves are assumed to follow the laws of diffraction
and to diverge according to GO laws. Consequently, the points of diffraction and the
paths of the rays can be found from the laws of diffraction, and the amplitude of the
fields along the rays can be found from the principle of energy conservation. So, this
theory not only provides a qualitative description of diffraction in terms of the
diffracted rays, but also permits a quantitative determiration of the diffracted field as
well. In this report, only single—diffracted rays are considered; the small contributions
of multiple—diffracted rays being neglected.

The initial value of the diffracted field at the point of diffraction is obtained
by multiplying the field vector of the incident wave by the dyadic diffraction
coefficient, which was first obtained by Keller by comparing his diffraction
expressions with Sommerfeld’s exact solutions for various canonical problems.
Although the diffraction coefficients are derived for canonical problems, such as the
diffraction of a plane, cylindrical, conical or spherical wave at a perfectly conducting
infinite half plane or wedge, the theory can also be used to calculate the field
diffracted from other objects as long as their dimensions are large compared to the
wavelength. In that case only the immediate neighbourhood of the points of
diffraction effectively contributes so that the diffraction can be considered as a local
phenomenon.

According to Keller’s GTD ([12],[13]),the contributions to the field in an
observation point P(r,0,4) come, in the case of the symmetrical reflector antenna
(Fig. 4-1), mainly from two points Q; (i=1,2), which are the intersection points of
the plane containing the lines O’'P and O’F with the edge of the reflector (see
Fig. 4-1).
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P(r,8,4)
T
ot | y
“ o Qo ti=) 4
'.' \ .- )
\ .
\ g . .
/ " | 51 ¢
- \\ l ‘ 6
o'l N F
N B
RN
\
| N
- . b 4
Y
| Qz(po,0,¢2=1+4)
Fig. 4-1 Geometry of Diffracted Rays

The coordinates of these points are thus given by:

51= ¢ (4—1 ,a.)
tr= 41 (4-1,0)

The diffracted field E4(P) due to the diffraction point Q; can be expressed by {6]:
. . —jksd
Bd(P)= D-Ei(Q;) A(shsd) e ¥ (4-2)

where D is the dyadic diffraction coefficient, A(si,s$) is the caustic divergence factor,

sl is the distance from the feed to the point of diffraction, s is the distance
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from the point of diffraction to the observation point, and Bi(Q;) is the incident field
at point Qj.

Because Qj, Q2, P, F and O’ are lying in the same g—plane, we can consider
the case as a two dimensional problem and only take a single g—plane to analyze the
diffracted fields as shown in Fig.4-2.

Fig. 4-2 Two Dimensional Geometry to Analyze the Diffracted Field
To be able to calculate the diffracted field, the following procedure is followed; first
the caustic divergence factor is determined followed by a derivation of the dyadic

diffraction coefficients.

4.2 Calculation of the Caustic Divergence Factor

For diffraction of an incident spherical wave at a curved edge, the caustic
divergence factor takes the following form [6]:

Alpe ’JT_) 4=



where

with

1 1
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n-(s1-359)

Pc Pei

Pc

Pg

=l

pet

vl
bade

wl
-

™
o

Eq.(4-3) is

- (4-4)
pg 8in2fq

the distance between the caustic at the edge and the second
caustic of the diffracted ray,
the radius of curvature of the edge at the diffraction point,

the unit vector normal to the edge at Q; and directed away
from the center of the curvature,
the radius of the curvature of the incident wavefront at the edge

—fixed plane of incidence which contains the unit vectors s and
the unit vector T tangent to the edge at Q;,

the unit vector in the direction of the incident ray,

the unit vector in the direction of the diffracted ray,

the angle between 5} and the tangent T to the edge at the point
of diffraction,

the general formula for the caustic divergence factor. In the

following sections, Eq.(4—3) will be worked out for our specific geometry.

421

to find:

Aipc; 519) for the Upper Point Q,

Fig. 4-3 shows the upper point Q; and associated vectors in detail. It is easy

n-8, = sina (4-5,a)
H'gld = sin01 (4-—-5,1))
pel = po (4-5,c)
Pg=4a (4""5ad)
Bo=73 (4-5,6)
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X
Fig. 4-3 Geometry of Incident and Diffracted Rays at Q,
Inserting Eq. (4-5) in Eq. (4—4), then in Eq. (4~3) results in:
per= P0 gy (4-6)
1 inga
Allper 819)= 57 Lgi%%rr (s19%pc1) (4-7)

.
b
[ o]

Aos(peo ;82d) for the Lower Point Qo

Fig. 4—4 shows the lower point Q2 and associated vectors in detail. For this

diffraction point, it follows that:

.41 = sina, (4-8,a)
_+
s

2d = - Sinﬂg (4—8 ’b)
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pet = po (4-8,¢)
pg = a (4—8,d)
ﬂo = % (4—8,3)

Fig. 44 Geometry of Incident and Diffracted Rays at Q,

Inserting Eq. (4-8) in Eq. (4-4), then inserting into Eq. (4—3) results in:

Pea= —po %‘2—3’2': (4-9)
Aalpeasat)=cy| L0Eineei(r/2) (s2990¢2) (4-10)
APe2:82°)=55d] g > 293Pc2
4.3 Calculation of the Diffraction Coefficients

According to Kouyoumjian and Pathak [6], the dyadic diffraction coefficient
can be written as:

D= — B P4 Ds— 91 ¢4 Dy, (4-11)



with (see Fig. 4-5):

%0

Fig. 4-5
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the unit vector perpendicular to the incident plane, which
contains the unit vector 8! and the unit vector T,

the unit vector perpendicular to the diffraction plane, which
contains the unit vector s¢ and the unit vector T,

the unit vector parallel to the incident plane and related to si
and o by Bo = ¥1x %

the unit vector parallel to the diffraction plane and related to §d
and 5 by Bo = 3« 3,

> 3

B‘& 60‘

Diffraction at an Edge
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and it is shown in [6] that ﬁg can generally be written in the following form:

o—i(x/4) [F[kL'a(rd-ri)] F[kLa(r d+ri)] (
= Z F 4_12)
i 2/27ksinf, cos(%r—l) cos(i;r—l)
with Ds the scalar diffraction coefficient for the soft boundary condition,
Dn the scalar diffraction coefficient for the hard boundary
condition,
ri the angle between the incident ray and the paraboloidal surface
tangent, which is perpendicular to the plane of incidence,
rd the angle between the diffraction ray and the paraboloidal
surface tangent, which is perpendicular to the plane of
diffraction,
) dyri
a(rdsri) = 2cos2(r—;£) (4-13)
[14]
F(z)= 2j vz exp(jz) f exp(—jr?) dr involving a Fresnel integral,
vz
Li, Lr denote the distance parameters defined as:
- 89(pei+sd) poiprisin?f
Li= (4-14,a)

pei(p1i+sd)(p2i+sd)

s9(per+sd) pp2sin?fy
Lr= (4-14,b)
per(p 17+5%)(par+59)

and
1l the principal radii of curvature of the incident wavefront at
Qua
p1fy2 the principal radii of curvature of the reflected wavefront

at Qu,,
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pel given by:
1 1 2freq1-B)- (3i-Bren)
pet  pel pg 5in?f,

with Tirer) as the normal unit vector to the paraboloidal surface at Q.
Now, the general formulae for the dyadic diffraction coefficients have been

presented. In the following sections the coefficients for the reflector geometry under
consideration will be derived.

431 Diffraction Coefficients for the Upper Point Q,

For the upper diffraction point Q;, Fig. 4--3 shows that:

ri= 5 (4-16,a)
1= 2437 _ (4-16,b)
cos(BIGE) = — sin(%52y) (4-16,¢)
cos(ﬂ‘-i—'z*'r—li) cos( ) (4-16,d)

. dr,d dyrgd
Further, it is easy to see that Li, Lr, cos(igr—‘l) and cos(rl—";—ll) can be

replaced by py, o, -—sin(a 0,) and cos( 1), respectively, due to the focusing properties
of the rotational symmetric pa,rabohc reflector surface. This means that the
arguments of the two functions F(z} in Eq.(4-12) can be written as:

KLia(rd-ri)=2kposin?(%5%) (4-17)

kLTa.(rd+ri)=2kacosﬂ(g‘) — o (when #4#1) (4-18)
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So, Eq.(4-12) for the scalar diffraction coefficients becomes:

oS [F[ﬁkﬂosin”(%ﬂ)]f[m"’“%}} (4-19)

i 2,27k sin(%e—‘) cos(—?)

The function F(z) will approach one if z — o (see Fig. 4—6). Since in the

case f#r (away from the axial direction), z=2kchosﬂ(g1) approaches infinity, the
function F(z) can be approximated by one.

-
FixLal v 21./NL0 o""'f " e

04— VLo

Phase (deg)

Magnitude

W N LU N N |

Tl

RSN R R
%ml 0.04 [« 7] [K1]

KLa

Fig. 4-6 Modified Fresnel Transition Function [6]

Then Eq. (4—19) becomes:

i) [Flzkposinz(%&)l 1 ] (4-20)

B ok sin(252) ;cos(g—‘)

Now, the scalar diffraction coefficients have been obtained. But, the vector
property of the fields still have to be considered. This can be done by expressing the
incident and diffracted fields in terms of two components according to the two
orthogonal directions defined in Fig. 4-5:

Biz Eﬁ;-B3+E ¢;-33 (4-21,2)

Ei=Ej .73 +EJ - 9§ (4-21,b)



22

Inserting Eq. (4-21) in Eq. (4-2), and then comparing it with Eq. (4—11)
shows that the relation between the incident fields and the diffracted fields can be

written in the form [6):
E,i Pec
[ ﬂo” d——-—d—exp(—jksid) (4-22)
E¢1 83 (Pc+5i )

0

-Ds 0

[Eﬁ‘é
P

0 —Dn

For the symmetrical antenna configuration considered in this part of the
report, the incident radiation from the feed is normal to the edge of the paraboloid.
So, fo equals /2 and the directions of the different vectors can be shown as in

Fig. 4-7, where the incident fields are projected on the plane containing siand T, and
the diffracted field from diffraction point Q; is projected on the plane containing §d

and T. Since these two planes generally do not coincide, the projection of all vectors
onto the plane through the diffraction point (Qi) and perpendicular to the tangent

(') of the edge at Q; are drawn in Fig. 4-8. The figure, which will be used later on to
determine the relations between the incident and diffracted field vector components,
shows the relation between the two planes as given in Fig. 4-T.

T
Plane 1 4
E i
0
d
u g |
. . i
d
Eﬁo
Plane 2

Fig. 4-7 Diffraction at Edge (two dimensional in plane parallel to T at Q;)
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i
Plane 1 E¢o Plane 2

%4y ERANNNNNNN

Fig. 48 Diffraction at Edge (in the plane perpendicular to T at Q;)

Considering the diffraction point on the edge of the paraboloidal reflector
the following relations are found for the vector components of the incident and
diffracted fields at the diffraction point Q, (see Fig. 4-9):

E¢(11=—Eﬁ(;l (4—-'23,3.)
E Bt}:-E 45(31 (4-23,b)
Eﬁ;1=Ef¢i51 (4-24)
Egor=Eed, (4-24,b)
E 4 E 4 ~Ds 0 (B,

¢1 _ ﬁOI —_ $ 501 ¢l _ike.d
[Egd}_ [E¢d ~ Lo-milg |y ool

1 01 or

Dg 0 Byl
— s ¢1 ¢l ex To.d
= g .—h p{—jks; 4-25
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Writing Ef(pg,a,£1=¢;) in the form:

[Ew;}: A e—jkﬂo m { cosg J

Efﬂi po Uasinm
and using the far—field approximation:
SV T for amplitude
$1¥ r—pgcos(a—0,) for phase

the field in P, diffracted at Q, yields:

. . _6
Eﬁ _ A, e—.lkf G(a)sine F[kaosmﬁ(gz-—‘)]- 1
Eﬂf -7 . JZwkposinﬂl = Tcos(ﬂl)

sin(5—) R
s orl=f T cos¢y
. J2kposin(S5=1)+4]
UaSin¢1

4.3.2 Diffraction Coefficient for the Lower Point Qo

Proceeding similarly as in the previous section for Q., it is

(see Fig.4—4):

rji= 5
053 (02<557)
ryd= {
a—x

(4-26)

(4-27,3)
(4-27,b)

(4-28)

possible to find

(4-29)

(4-30,a)

(4-30,b)
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B,
Q
z
X

P(r,0,4)

Fig. 4-9 Diffraction at Paraboloid
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005(5-22#): —sin(%—@) (4~31,a)
](02<1§£)
cos(i}”—i) os( 2) (4-31,b)
cos(*2512)= sin(2E02) (4-32,2)
fo2z2
cos(“2FE2)= cos(D2) (4-32,b)
So, the scalar diffraction coefficients for Q; are obtained as:
~i(x/4) [Fl2kposina(®E0n)
Ds= o T — (4-33)
227k sin(=-2) cos(5?)
with
1 (92(15—a)
-1 (62 >%) .

The ¢ is introduced because GTD assumes that D : at the diffraction point
Q2 changes its sign when the observation point moves from the region (02<1"2’£) to the
region (02>%). Furthermore, the single—diffracted ray from edge point Q: does not

contribute to the scattered field in the region (I:Z—ESGQS%) because the ray from Q3 to
the observation point P is blocked by the reflector.



27

From Fig. 4-9 it follows for Q3 that:

d__ d
E¢2—Eﬁo2

d_p d
Eﬂz_E¢oz

-Ds 0]

0 —Dy]

d r_
_ Eﬁw _ Dg 0
E ¢ 0 —Dy,
$o -

Ef¢

i
2 c2 - |
Efd“mxp( ks

i

g

Writing Ee(pg,a,¢2=¢2+7) at Qz in the form:

i s
[Efé2 _ Aoe Jkpo
Efb fo

. gdkeo

fo

and using the far—field approximation:

o r

s9¥ r—pgcos(a+12)

v Gi(a)

v Gila)

the field in P, diffracted at Qa, yields:

cos(ga+1) ]
| U sin(dat7)

—Co5 ¢

L —Uasin¢2

for amplitude
for phase

02 2 —iled
E i“523(pc§+5235ex1)( Jhsa)
$oz

(4-35,2)

(4-35,b)

(4-36,a)

(4-36,b)

(4-37)

(4-38)

(4-39,a)
(4-39,b)
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d . et
[E%} Ao g—Jkr ‘Gf(a)sma F[2kpos i n( ) 2)] 1
al= 0T . A 271kpesind; sin(%ﬁ) cos( )

E92

oil2kposin¥(3E02)_ 1 (4~0)

COStﬁz
Uasinég

4.4 The Total Field

The total field is the sum of the fields originating from the diffraction points
Q1, Q2 and the direct field from the feed.

Because the observation point P(r,4,4) is a far—field point and P, Q; and F
are lying in one ¢—plane, it is possible to write:

g v 0208, (4—41,&)
¢1 = ¢2= ¢, (4—41:b)

Then, the total field can be written as:
Ed E 9 (B¢l

ot ot el o

d d i

E} Bp,) Efp

=Aoe—jkr<l - SmaHFPkﬂoSlnz( )} 1)] —i[2kpsin(Z )+3']

24 27kpesin sin(T) Tcos(g-

d-
B

d
Eg

e

. [F[?kpgsin 2 (a+0)} 1 ] —_][2kposm2(a+0) ir_] cosg ]
€
’ sm(f'-'*'rg) cos(g) U sing

+/ Gf(o)[ co_” ]U[(O—a)] (4-42)

Ugsm¢
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Eq. (4—42) gives the complete field radiation in all the regions excluding the
directions of #=0, r and their vicinities. Radiation patterns calculated using the above
formula are shown in Figs.4—10(a) and 4-10(b) for the E—plane and the H—plane,
respectively. The aperture diameter of the reflector is 1.5 meters, the half subtended
angle a is 60° degrees and the operating frequency of the antenna is 3 GHz. The
observation angles 8=180—0 in the following figures are measured from boresight as
commonly done in literature.

It can be seen from Fig. 4-10(a) that there are discontinuities at 0=£- and

0:%‘5—'. These discontinuities are caused by the ¢g, defined by Eq.(4-34) and used in
Eq.(4—42), which accounts for the blocking effect that the reflector has on the lower
diffraction point Q9. Since the single edge—diffracted field is blocked by the reflector,
the surface diffracted field from the back surface of the reflector gives an important
contribution to the far—field in this region. Therefore, the surface diffracted field has
to be calculated in that region to obtain the continuous radiation patterns.



30

Gun) 0 ' v . v '

0 dB & 23.11 dB

E—plane Far—field Radiation Pattern
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Fig. 4-10(a) E—plane Far—field Radiation Pattern of a Focus—fed Axially
Symmetrical Paraboloid

G{dB) 0 + v v T t d ' T
0dB & 23.151 dB H-—plane Far—field Radiation Pattern
D =151
=10 a = 60 (deg) 7
n=2
Huygens Feed Polarization
=20 GTD Method T

~30}

—40l

=50}

-80F
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Fig. 4-10{b) H-plane Far—field Radiation Pattern of a Focus—fed Axially
Symmetrical Paraboloid
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4.5 Modification of GTD

To calculate the contributions from the surface diffracted field, we can
replace the edge diffraction coefficient for Qi by the surface diffraction coefficients in
the blocked angle region (see Fig. 4-—11). It is stated in [12] that the field diffracted
around a curved surface decreases exponentially with A, and is weaker than the field

diffracted by an edge where the diffraction coefficient is proportional to 1.
Instead of using the GTD edge diffraction coefficient, the GTD diffraction
coefficients are used, multiplied with Rse [25):

Re= (VAT ~1))sin((0 — 250/ (z2)))/VK (443)

to obtain the surface diffracted field. As indicated in [12] the Rse shows that the
surface diffracted field is weaker than the edge diffracted field, because:

A
lim e-1

PETR D B 0

The sin function is employed analogous to the correction factor in APO (Knop and
Ostertag [8]). Furthermore, sin((# — 1_70) / (12%)) is continuous even at the angles 0=%
and 0:1;5. So the Rse is choosen equal to 1 outside the blocked region and gradually
changes from the edge diffraction coefficient (proportional to {X) to the surface

diffraction coefficient (proportional to e)'——l) in the region —%ﬂ <f< ;—.
The E—-plane radiation pattern obtained by this modified GTD method is shown in
Fig.4—-12, for the same antenna configuration as in Fig. 4-10(a).

46 Comparison with literature
A comparison of our formulae with those of Safak [17] shows that some of

his equations (e.g. the €o) differ from ours. However, the pattern presented by Safak
agree with our pattern as shown in Fig. 4-12.
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Fig. 4-11 Surface Diffraction Rays
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Fig. 4-12  E—plane Far—field Radiation Pattern of a Focus—fed Axially
Symmetrical Paraboloid
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5. APO Analysis of the Radiation from Paraboloidal Structures

5.1 Introduction

A technique known as Physical Optics (PO), simply approximates the
currents at the reflector by the currents calculated from the theory of GO. By
evaluating the contributions from all parts of the reflector to the field in an
observation point, PO gives the total field. The accuracy of this method is determined
by the accuracy of the currents approximated by the theory of GO. The far—field
calculation using this method is usually complex and includes time consuming
numerical integrals. Only for some special teflector current distributions can
closed—form expressions be derived and the integrations carried out analytically. But,
if there are stationary points in the integral so that the statiorary phase method can
be used, the field integrals can be evaluated asymptotically. The method using
stationary phase integration to calculate the PO field asymptotically is called
Asymptotic Physical Optics (APO).

Rusch ([7],[14]) first used the APO method to calculate the scattered field
from paraboloidal reflector antennas and gave the corresponding diffraction
coefficients. This method will be used throughout this chapter.

It should be noted that the expressions for the far—field presented in this
chapter do not include the direct radiation from the feed.

5.2 Current Calculation by GO

According to geometrical optics, the induced currents on the reflector are:

2(n rer1<Hy) illumi nated surface (5-1,a)
"o shado wed surface (5-1,b)
with

Hf(p:‘&:{) = %[H * Ef] (5—2)



34

Eq. (5—-1), shows explicitly that the currents at the back of the reflector are
assumed to be zero while they are nonzero at the front of the reflector. So, there has
to be a current discontinuity at the edge of the reflector. For the reason of notation
economy, Eq. (5—1,b) has been ignored in the following section.

Substitution of Eq.(2—2) into Eq.(5—2) and then into Eq. (5-1,a), yields for
an y—polarized feed with Huygens source polarization:

{C)sin(Psiné 7
—ik
obe)= 203 | T os(Ghoing 7 (5-3)
[GTH)cos(§eos¢ 2

Transforming J; from the (p,9,£) coordinate system to the (x,y,z) coordinate
system gives:

o ikp
ne

Js(x,y,2)=Ao 2 fexX+cy ¥ + ¢, 2] (5—4)

with
Cx= 0

¢y= {GTP)eos(d)
¢x= —{CTP)sin(Lsine.

5.3 Field Integration by the Stationary Phase Method

The induced current distribution results in a far—field radiation pattern,
which is given by the following formula [2}:

B(r, 0,6)= ~ip e*jk: [f - -] J(7 ¥ g (5-5)

refl

For the paraboloid geometry of Fig. 2—1, Eq. (5-5) can be expressed in terms of two
components as:
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Eoz_jk ke e (300) k(BT
[E] E{L ff [jsa

¢ Srefl

where

LY
:rs‘v :A{) 28
np

o

p—p - T= p(1—singcosésin fcosg—singsinésin fsing—cosgcoss)

_ dxd
“ cos(g)

c4= cxcosficosg + cycosfsing — c,sind

with

€y= —CxSing + cycosg.

Taking:

ckp —jkr , 2 o
G = —] 34 Ao—
g 1?1’4 UﬂCOS( )

kg —jkr , 2 €
G,=— e Ao—
4~ 7 peos(d)

q(xy}'): p'—B' ?:

Eq. (5—6) can be written as:

(5-6)

(5—7,a)

(5—7,b)

(5-7,¢)

(5-7,d)

(5-7,e)

(5-7,1)

(5-8,a)

(5-8,b)

(5-8,c)
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Ey(x,0,4)= ff G oe—jki(x’Y)dxdy (5-9,a)
Srefl

E(r,0)=[) G ¢e_jk§(x’Y)dxdy. (5-9,b)
Srefl

Using Eq.(5—7,c), Eq.(5-8,c) can be writen as:

¥x,y)= 2—1. { [ xcosg- - 2fsingcos¢ ] 2+ [ ycosg - 2fsing-sin¢ ] 2} (5-10)

For the integral form of Eq. (5—9), it has been proven that if the real and
imaginary parts of the integrand are fast oscillating while Gg and G 4 € smoothly
varying functions, the major contributions to the integral come from points
(Xs,i » ¥s,i) where the phase function #(xs; , ys,i) is stationary. The method for
calculating the contributions from these stationary points is the stationary phase
integration method.

Because both requirements are fulfilled away from the caustic directions
(0=0,r), it is possible to use the stationary phase integration method for the integrals
of Eq.(5-9). Because the stationary points of the first kind give a crude solution, i.e.,
the geometric optics solution [14], the stationary points of the second kind are used,
satisfying [15]:

0 gv 8 Y
_____ =0 (5-11)
ox dy dy dx
where
I(x,y)=x2+y2—2a2=0 (5-12)

is the edge of the reflector.
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After inserting Eq. (5-10) and Eq. (5-12) into Eq. (5—11), two stationary
points of the second kind are found:

Xgi COSfi
[ }z a,[ ] (i=1,2) (5-13)

¥si sinf;

where

ti= ¢ (5-14,2)
o= g+ (5-14,b)

These points coincide with the GTD diffraction points (see the GTD
diffraction points of Eq. (4-1)).

In order to be able to calculate the integrals of Eq. (5—9), we must first
change the variables in such a way that the origin of the coordinate system is at the

stationary point(xs,i , ¥s,i) and the x’—axis directed to the center of the aperture
circle (shown in Fig. 5-1) via :

X = Xgi — £§'j~ X'+ % ¥y (5—15,a)
Y = Vsi —l;—"x’—x-'—;iy’ (5~15,b)

Fig. 5—1 Coordinate System Transformation
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A second transformation is used:

yz

| R ] _
v =x+ (5-16,a)
v =y, (5—-16,b)
so that:
X = xsi—x—fzix"-}— %y“ -—%ﬂ}(y")? (5-17,a)
¥ = ysi— L8 x- Bl v Fed (ym)2 (5-17,b)

Inserting Eq. (5—17) and Eq. (5.13) in Eq. (5—10), gives the following phase function:
4f¢(x",y")=4ﬁ(xsi,ysi)+x"[i4fsin0-2a(1+cos0)]+(y")2[tW] (5-18)
where
418 (x54,ys1)=41% 1—os #)+4afsin 0+a2(1+cost) (5-19)

the minus sign in the formula applies to for the upper stationary point (xs1,ys1) and
the plus sign to the lower stationary point(xss,ys2).

Equation (5—18) can be written more compactly as:

#(x"y")= #(xsi,¥s1) + (x")810,i + (¥") 02, (5-20)
where
$9,i= % sind —%(Hcosﬂ) (5-21,a)
§ ., .= o 5100 (5-21,b)
02,i— _2-5— b

and
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—ik¥(xeives) ° —ik® 0.ax" ® koo (v1)2
Eg,i(fvg,ci)”Gg(xsi,ysi)e ] (xs:,Ysl)j; o Jk¥10,iX dx"f_me k¥ 02,3y )dyn (5-22,a)

E¢ _(r,0,¢)xG¢(xsi,ysi)e“jk§(xSi’YSi)fome_jH1°’ix"dx"fme_jkioz’i(y")zdy" (5-22,b)
11 —o

Evaluating the integrals:

then

where

fme—jki 02,i(Y")2dy"= IL e-j('/4)
—m k#g4,1

J'me"jk0 IO:ix"dxu= -
‘ Jk¥ 10,3

Ikt (xsiysi)  mr GFi(7/4)

Ey G p(Xsi,¥s1)
3)1 0
k32 [ssing- Sr(1+cosg)] |52
e“jkg(XSi:Ysi) NoT: e*j ( 1/4)
B, ] ‘ G (xsi,¥si)
¢:1 ¢
k(3/2) [#sin 0 g‘-f(1+cost$f)],1"“-;-(‘-‘--E

#(xs1,¥s1)=p0—(asinf+zspcosf)

#(xs2,¥52)=p o+ (asinf—zgpcosd)

- ¢
G p(xsi,ysi) = —-j;i% eI 4, % —g.a_
pocos(z)

(5-23,a)

(5-23,b)

(5-24,a)

(5-24,b)

(5—25,a)

(5-25,b)

(5-26,3)
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G gl ysi) = il €3 Ay : 2_"6 (5-26,b)
ocos(g)
and
cg= {Gi{a)sing( cos%cosﬂ * sinﬂsing ) (5—27,a)
C ¢=,] Gr(a )cos;ﬁcosg (56—27,b)
Zsp= PoCOSa (5—27,¢)

So, inserting of Eq. (5—25), Eq. (5-26) and Eq. {5-27) in Eq. (5-24) gives
the far—field radiation patterns from the induced currents at the reflector:

r 0,6) [ A, ,]gf.smg —ijkp ] {e-—jkrejk(asinﬁ+zspcos9)]_{_1_‘ _a I
1sind

{_ —i(r/4) [2(00 s%co s 0+sinfsi ng)/COS%H (5-28,a)

227 | sind~(;00 ) (1+cosf)

E, (r,0,4)%{A a)cosg ,—jkpol | —jkr jk(asinf+zspcosl) li
p E r'sind

[_ /4 [
2427k sinﬂ—(Ii—ig%b—)(l+cos 0}

By (r,0,4)s{ A2 sing kg || —jkro—ik(asinf—zspcost) JI/2)[ 5
N po r sind

{ —i(r/4) [_2(cosgco s 0—sinfs i ng)/cosg”

2427k sxn0+(1—§%g—g-5)(l+cosﬂ)

2

] (5-28,b)

(5-28,c)
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Ey

b

(r,0 ¢)x[A0 fla)cos "ikpo][e—jkre—jk(asinﬂ—zspcos0)][ej('/ 2) a

Po r 1gind

[_ o—i(7/4) (5-28,d)

-2
. §ing
227k [ sm0+(m)(1+0030) ”

These results agree with those given by Rusch [7]. Using Eq.(5—28), the
radiation patterns have been calculated and shown in Fig. 5—2(a) and Fig. 5-2(b).
Although the direct feed radiation is not included in the formulae for calculating the
radiation pattern, it has been included in the patterns shown in the following figures.
It is obvious that there is a singularity at the shadow boundary f=a.

Later on, Knop [15] extended Rusch’s formulas to include the shadow
boundary region. These formulas will be derived in the next section.
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‘ 0di & 23.11 dB F—plane Far—field Radiation Pattern
D= 154
-10p o = 60 (deg) 1
n=2
Huygens Feed Polarization o
—-20+ Rusch's APO Method 1
—3gh g
—40} 4
—50 -
—60 “
—70 i 1 4 4 1 . 4 L 8 (degrees) —
0 20 40 60 a0 100 120 140 160 180

Fig. 5-2(a) E-plane Far—field Radiation Pattern of a Focus—fed Axially
Symmetrical Paraboloid

G(dB) @

0dB & 23.31 dB H-plape Far—field Radiation Paltern
D =154
—10F a = 60 (deg) 1
n=2
Huygens Feed Polarization
~20r Rusch's APO Method -
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Fig. 5-2(b) H-plane Far—field Radiation Pattern of a Focus—fed Axially
Symmetrical Paraboloid



43

5.4 APQO Method for the Shadow Boundary Region

To remove the singularity at the shadow boundary of Rusch’s results for the
paraboloidal reflector, Knop [15] used the following transformations instead of the
ones given by Eq. (5—16):

H
= x4 By G (5-29,2)

y=y (5-29,b)
and

X = Xgi— ig-ix"— x;i x")2- xﬂ:i(y")H x;—iy“ (5—30,a)

y = ysim The— L(x) 2 gai(y" - 25y (5-30,b)
Substitution of Eq.(5.13) and Eq.(5-30) in Eq. (5-10) gives:

$(x",y")=8(xs1,¥ i) +x" & 10,1 +(x" ) 2 03,1 +(y") R 02,1 (5-31)

By including a second—order term (x")284,,; in the phase function of
Eq.(5-20), Knop obtained the fields:

E
/8

By,

zAU&-jkpo—jk(r;asinﬂ——zspcosﬂ) [jae¥j(1r/4)
V2 sind

por

kasin{ ctg(0/2)y? 1. 1
el by (i)
sind

[cos 0*W] {Gr(a)sing
[ } [«I—G?(E)cos ¢J

U*(0) (5-32)

1
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where

tan(e/2)=a/(2f) (5~33,2)
C,=C(W¥) (5-33,b)
5,=S(W") (5-33,¢)
W= |_—Ea‘°’f‘” [17 ctg(0/2)/ctg(e/2)] (5-33,d)

U0 1 (0>a) 2

= 5—33,
o], oo 50
Cx)=f " cos(Zx?)dx (5-33,1)
S(x)= j; xsin(%xﬁ‘)dx (5-33,8)

By factorizing out the field incident to the edge, the phase factor and the
caustic divergence factor, the remaining items of Eq.(5-32) can be identified as the
physical optics diffraction coefficients:

[Dspmi
tho;i

_ ej(7/4)‘/m exp { ijw [1; %_E_g% ] 2}.
1

[(C,~ 3)%i(S,~ %)w*(o){ sin ]] (5-34)

lcost ctg{arz)

These physical optics diffraction coefficients, first obtained by Knop, have
no singularity at the shadow boundary {f=¢) and are therefore continuous at and
through the shadow boundary region. Fig. 5-3(a) and Fig. 5-3(b) show the E—plane
and the H—plane radiation pattern calculated by means of Knop’s improved formulas.

5.5 Corrected APQO (CAPO)

Measurements presented by Knop and Ostertag [8] revealed that APO gave
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errors up to 6dB in the shadow region (about 1300¢8<1750 in their case). Since there
are currents at the front of the reflector and no currents at the back of the reflector
according to GO theory, a current discontinuity must occur at the edge of the
reflector. Knop and Ostertag [8] suggested that the incorrect nature of the GO edge
currents used in APO is the cause of errors in the far—field calculation and this was
proved by measurements. They applied Sommerfeld’s exact results and the PO results
to the equivalent diffraction problem for a half plane, and gave the ratio of
Sommerfeld’s exact results to the PO results in order to correct the APO results.
These ratios are expressed by [8]:

[KS] [Eexact/Epo] [|sin(_§-‘)/cos(_gi)|] (5-35)
K Hexaer/Hpo  lcos(5)/sin(-5)]
where
Eexact denotes Sommerfeld’s exact results for the electric field parallel
to the edge of a half plane,
Hexact denotes Sommerfeld’s exact results for the magnetic field
parallel to the edge of a half plane,
Epo denotes the PO results for the electric field parallel to the edge
of a half plane,
Hpo denotes the PO results for the magnetic field parallel to the
edge of a half plane,
ri,rd defined as before (see Fig. 4-3 and Fig. 44).

By multiplying the APO diffraction coefficients with these ratios, the
corrected APO (CAPO) diffraction coefficients will be obtained. Using the CAPO
diffraction coefficients instead of the ones of APQO, a new set of radiation patterns can
be calculated. If a feed with an omnidirectional power pattern (n=0) is assumed and
the direct feed radiation is not included, the radiation patterns shown in Fig. 5—4(a)
and Fig. 5-4(b) are obtained, they agree with the patterns calculated by Knop for
such an antenna system in [8}. Comparing CAPO with the measurements found by
Knop and Ostertag [8] showed that the CAPO prediction agrees with measurements
even in the shadow region. The radiation patterns found with CAPO for our antenna
system have also been calculated and shown in Fig. 5-5(a), and Fig.5-5(b).
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6. Caustic Region Analysis by EEC

6.1 Introduction

The rear—axial direction of the symmetrical parabolic reflector must be one
of the caustics since diffracted rays from the whole edge of the reflector effectively
contribute to the field on the symmetry axis. Therefore, we cannot use the GTD
method which only takes into account two edge points (see chapter 4). Now, a
technique, named the Equivalent Edge Current Method (EEC or ECM [9]-[11]), is
employed to calculate the field in the rear—direction. The EEC method uses both the
diffraction theory (to obtain the equivalent edge currents) and radiation field integrals
{to sum the contribution from the edge) in order to obtain the total field in the
rear—axial region.

6.2 Equivalent Edge Current Calculation

Again we must assume that the paraboloid is in the far—field zone of the
feed and the feed has the same pattern form as in Chapter 2. For an y—axis polarized
feed with the polarization properties of an Huygens source, the following holds:

Ef(pﬂ&’{):AOe .

; [{ G(#)sin¢ P+ {Gs(¥)cos¢ Z] (6—1,a)

-ikp
He(p,9,¢)=Ac"
np

[—{Gi{F)cost ¥ + {Gr(P)siné Z] (6-1,b)

The incident fields on the edge of the paraboloid are:

Ef(pﬂaarf)one J pou Gf(d)SiIl{ a + 4 Gf(ﬂ)COSf z] (6_2?3')
po
—ikag
Ri(po,0,6)=Ad |- {CRa)cost + {CH@)sin¢ 2 (6-2,b)

P
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Using the GTD diffraction coefficients presenied previously, the diffracted
fields can be expressed by (see Fig. 6—1):

ES= Eg, Dy — - X8 (6-3,2)
i Sy
d_ i 1 ks
Eg= Ery Dy — -€7 (6-3,b)
LY
Due to the relation between the diffracted field components:
d 1.4d
H,=-E —
¢ n 0 (6 3,C)
and the relation between the incident field components:
i 1.0
Hi, =< E -
f{ 7 f!ﬁ’ (6 3,d)
it is possible to derive:
d 1.4
H==E
¢ 00
1 . ks
7 Ef¢ Dy - e
i 1 —ijks
= Hi,Dp- — -e J (6-3,e)
Vs

4 i
E 6 E;g are the electric fields in the ¢—direction parallel to the edge of
the reflector,

d .
E 0 Ef; are the electric fields in the f—direction perpendicular to the
edge of the reflector,

H; , H;E are the magnetic fields in the ¢—direction parallel to the edge of
the reflector,
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d .

Hﬂ , Hf; are the magnetic fields in the (—direction perpendicular to the
edge of the reflector,

— is the caustic divergence factor derived from Egq. (4-7), or

Eq. (4-10), in the rear—direction # -0, p_ - «.

It is possible to obtain any field with knowledge of two out of the four
components E P E ¢ Hpand H P through the relation given by the Eq. (5—2)_, E p and
H , are used in the calculations.

Further, the electromagnetic far—field produced by an infinite long electric
current filament I along the z—axis of a rectangular coordinate system (see Fig. 6—2)
is given by:

Ey= —nkI |§;lﬂ(—s g Jks
L —ijks
H = kI 1 E'H(_x s €

where s is the distance from the current filament to the observation point.

for s»A (6—4)

5d Q;
et}
;
[
|
|
|
I
|
|
|
|
|
[
|
d
-] §

Q2

Fig. 6—1 Diffracted Rays in the Rear Caustic Direction
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If there is an electric current I, and a magnetic current I, on the edge and if
these currents can be locally taken as infinite straight line currents (shown in Fig.6—2)
by considering them as local diffraction phenomena at high frequencies, the electric

current I; and the magnetic current I? on the edge of the reflector will be:

E;= ~1K, |§1Jﬂ(—S g IS (6-5,2)

d_  km —jks
H = -1, s © (6-5,b)

(¢
p)

Fig. 6—2  An Infinite Filament I Along the z—axis

Comparing Eq. (6-5) with Eq. (6-3) and using the equivalence conception,
it is possible to see the diffracted fields as induced by a proper electric current Iz and

a magnetic current I? on the edge. The currents, called the equivalent edge currents

(see Fig. 6-3), are given by:
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(1= 2078 s/ g} ., (6-6.)

(Bm o B 01 g, (56

Half—plane

-3

(a) Diffraction at the Edge of (b) Equivalent Edge Current
Half—plane Sources

Fig. 63 Equivalence Conception

6.3 Edge Current Integration

The field in the rear—axial region is obtained by integrating the fields
produced by the equivalent currents on the edge of the reflector:

B (r,0,4)= gl 3 L0127 H0 00 Dl (6-7,3)
1

B(r,0,0)= L1 K [ (1517 2)21el0 00 Dy (6-7,b)
1
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The vectors Ee(r,0,¢) and Hm(r,0,¢) of Eq. (6—7) can also be written in the

form:
(E ] : 7(1 ecosﬂsin(¢— ) .
0| _ _; kg ~jkr p27|7¢ llreos(¢—£)+6, 4 6—8
B R e 0
(H ) . r'Imcosﬂsin(gﬁ—{)’ .
8| _ _kfy —ikr 27|¢ jlrcos(¢—€)+61, 4 6-8.b
)™ e e ey
where
kpo(pT)= kpgsinasinfcos(§—¢) + kpocosacosd = rcos(§—¢) + 6 (6-8,c)
and

H

¢ i C“WUIJMMWﬂ+ﬂ
n] _]me J; [Igcosﬂsm(gé-{) adf (6-8.4)

Substitution of 1‘2 and I? in Eq. (6-8) yields:

[a:]

Ey

¢

{Ea _ _jkr[f; 21I'Sin£[ COS(‘ﬁ'{) ]ejTCOS(¢_£)d§]aej6 (6—9,8.)
¢

E

- : 2 fsin(¢- : .
= —.]kl'[ ff, Icosf[cos sinf¢ g)leﬁcos(é‘"g)dé]aeﬁ (6-9,b)

cos(¢-¢)

E —cos fsin(¢-¢)

where
—jkpo
Eo= A (6-10,2)
go

vg= Dg-2 4 27k eJ 7/4)—

- (6-10,b)
sm(E—)



55

. 1
= Dy-2 2nk- e —— 41, (6-10,c)
Sln(?')

For the rear—axial direction #=0, the modified Fresnel integrals in Dy and

Ds equals unity (see Fig. 4—6); so, the integrals can be expressed in the form of Bessel
functions:

-EZ‘ _ EuGi{e)ys —jkr 'cosﬂ[Jg(T)+J2(T)]Sin¢] aej6 (6-11,a)
Byl tr [3o(7)-J 2 (7)] coss
9] _ By ke[ Do(7)-T2()]sing ]aejé 6110)
El; = Lcos#[To(7)+To(7)]cosd

This finally results in the total field in the rear—axial direction:

Eo]_{E?)} [EB]_ aEe® —jkr
E, - 2y * Ey B

[{,]—GHE)'VSCOSO[JO(T)+J2( 7) [+ Grl{a)vn[Jo(7)—J2(7)]}sing (6-12)
{{GH@)ws[Jo(r)-Jo( 7)1 +{CrT @) vncos d[o(r)+Js(r)]}cos

Here, we will keep the angle # in the Eq. (6—12) because Ratnasiri et al. [18]
found that Dg and Dy are slowly varying functions in the rear—axial region and the
formula can also be used to calculate the field in the angel region close to the
rear—axial direction (#=0).

Eq. (6-12) holds for all ¢ angles. The E—plane (¢=7) and H—plane (¢=0)
radiation patterns, calculated with EEC are shown in Fig. 6—4(a) and Fig. 6—4(b),
respectively.
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7. Comparison of the Different High Frequency Asymptotic Techniques

In the preceding sections, the GTD (UTD), APO (CAPO) and EEC
methods were used to calculate the wide-angle radiation pattern of a symmetric
parabolic reflector antenna. Therefore, it is interesting to compare the results
obtained by these methods.

7.1 Comparison of GTD and UTD

As mentioned before, Kouyoumjian’s UTD [6] is an extension to Keller’s
GTD [12] and they are based on the same principles. Therefore, both methods are
generally called GTD, although they do have differences. In this part of the report, we
will compare both methods and emphasize the principle differences between them, in
order to distinguish between them we will use the terms GTD and UTD in the
{ollowing part of the report.

For the sake of a comparison, we will repeat the expressions for the
diffracted fields that are obtained when using these methods. The expression given by

Keller in [12] for the diffraction of a plane scalar wave at a straight edge of a half
plane is:

= D.Ui.._l.e_jkr (7""1)

JE

where Ue is the scalar diffracted field, Uj is the scalar incident field at the diffraction
point, r is the distance from the diffraction point to the observation point, and D is
the diffraction coefficient given by:

o—i(7/4) 1 1 o (r-2)
2,R7ksinf, cosT oS I—'Qli

o
=
il

The expression given by Kouyoumjian [6] for the diffracted field is:

BA(P) = D-Bi(Qy)- A(shsd)e it (7-3)
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where all the parameters are those defined in Chapter 4.
It is obvious that Eq. (7-1) is a scalar formula and Eq. (7-3) is a vector
formula. So, the latter can be used to calculate field vectors. Due to the vector

property of Eq. (7-3), the diffraction coefficient D in Eq. (7-3) takes the form of a

matrix. In the ray—fixed coordinate system {6], the matrix D reduces to a diagonal
dyadic matrix, having two non—zero elements: Dg being the diffraction coefficient
under the soft boundary condition and Dy the diffraction coefficient under the hard
boundary condition given by:

—i(7/4) [F[kLia(rd—ri)] F[kL"a(r & 4-ri)] -
=— ¥
A 2Msinﬁol cosEfl—%—r-E cosﬂiﬁtﬂ
as in Eq. (4-12) with
m
Fl2)=2% exp(iz) | _ exp(—ir)er, (-4,2)
NG
a(rderi)= 2cos2(C30), (7-4,b)
Liand L r are the distance parameters. (74,c)

The only difference between Ds,;, from Eq. (7-2) and those given by Eq.
(7—-4), is in the modified Fresnel integral which was introduced by Kouyoumjian to
remove the discontinuity of the edge diffraction coefficients given by Keller. It is
shown in Fig. 4—6 that the integral F(z) - 1 when z - . S0, Eq. (7—2) becomes (7—4)
when the observation point concerned is away from the forward—direction (#=r) and
shadow boundary (f=a).

Due to the vector property of UTD and its validity for all wide—angle
regions, the UTD formulas have been used to calculate the radiation patterns in
Chapter 4.

7.2 Comparison of APO and CAPO

Since both APO and CAPO are derived in detail in Chapter 5, it is possible
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to make a comparison between the results calculated by APO and by CAPO. They
are plotted together in Figs. 7-1(a) and 7—1(b).

It can be seen that there are regions where the difference is great. CAPO is
supposed to correct the errors in APO, which is supported by measurements [8).

7.3 Comparison of GTD (UTD) and (CYAPO

7.3.1 Diffraction Coefficient Comparison of GTD and APO

Finally, for ease and clarity, Keller’'s GTD and Rusch’s APO diffraction
coefficients are compared (because Kouyoumjian’s GTD and Knop’s APO affect only
the fields at or near the shadow boundary of f=a).

After deleting the direct radiation from the feed, the GTD results from

Fq.(4—42), can be written as:
U,sing {1’ a | ~jkr_kpocos(a—0)
cosg i sinf

.
[EOI}z 8 G

Ed

61 fo
—irf4) [ 1 1
[e2m [ ol 6] ] (7-5,a)
k |sin(~~) cos(z)
E, —jkpo U sing) [ j(7/2) _ .
0q = A e- a a E‘] a _-]kr_e.]kPOCOS(d+ﬂ)
[Eﬁ 0 . v Gg( )[ cosf H : J;mv]e
S/ [ 1 L] H )
L” 2/ 27k sin(E-;—g) cos(g-r) (7-5,b)

From the above formulas it is easy to extract the diffraction coefficients:

i) [ 1 1 ]
Dsgtd,l_—' T N 7 (7"6:3')
227k [sin(55-)  cos(s)
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Dhgtd,1= /) [ : + : ] (7-6,b)
T o Lsin(%))  cos(d)
Si(r/4) [ 1 1
sgtd,2= €0 - -5,
Dsgtdy2 2T Lin(% cos(g_)] (7-6,c)
i [ 1 1 ] e
Dhgtdﬂ— @ 2m 5111(5-!-2-—0) + cos(g—) ( y )

The diffraction coefficients from the APO method can also be derived from
Eq. (5—28) easily:

~ia/4) 2

2/27K Linﬂ—(%)(l+cosﬂ)]

Dsapo,1i= — (7—7:3)

D c—I(7/4) '2(cos%cos f+sinfsi n%)/cosg-
hapo,t— — - sina (7_7,b)
2m L smﬂ-—(m)(1+cos())

o e i(7/9)[ 2 (7-1.0)
12— — 3 —i,C
sape 2/FT | sind+(ERL)(1+cos0)
. [1§ . »a a
e—_](x/ti) ~2(cos+cos f—sinfs i ny)/cosy (11.d)
Dhapo,2= — —T,
we /07K | sind+(p3222 ) (1+cost)

The diffraction coefficients (the quantities in square-brackets) in Eqgs. (7—6)
and (7—7) are included in Figs. 7—2(a) and 7-2(b). The comparison performed is not
only for the Dg of the upper diffraction points (Fig. 7—2(a) ) but also for the lower
(Fig. 7-2(b) ), also for the Dy, of both points (which was not included by Rusch[7]).
The diffraction coefficients of the lower point have not been compared in the angle

region %—qg 05%, because the diffracted ray from the lower diffraction point to the
observation point is blocked by the reflector there.
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Figs. 7—2(a) and 7-2(b) show that the diffraction coefficients of GTD and APO have
the same trends and that there are discontinuities where f=a (at 1209). In the figures,
1t can be seen that the differences between the diffraction coefficients become large in
the shadow region.

7.3.2 Radiation Pattern Comparison of UTD and APO

Secondly, the radiation patterns with Kouyoumjian’s UTD and Knop’s APO
were calculated. The results that were obtained from both methods are plotted in
Figs. 7-3(a) and 7-3(b). It can be seen from Fig. 7-3 that, although the differences
between the diffraction coefficients shown in Fig. 7-2 are called "second order" by
Rusch [7], the difference between the resulting radiation patterns appears to be large.

7.3.3 Radiation Pattern Comparison of UTD and CAPQ

From the study done by Knop and Ostertag [8], it was concluded that APO
has to be replaced by CAPO. So, it is interesting to compare the results calculated by
UTD with those from CAPO. As shown in Fig. 7—4, the diffraction coefficients of
CAPO and GTD are numerically indistinguishable and consequently, the radiation
patterns (see Fig.7-5(a) and Fig. 7-5(b)) are almost identical too. Since the CAPO
results agree well with measurements [8], GTD (UTD) gives valid results too.

7.4 Transition Region Between EEC and GTD (UTD)

Because the GTD—method is invalid for the rear—axial region, EEC is used
here. As mentioned in Chapter 6, the EEC—currents have been derived from the GTD
diffraction coefficients. Although these currents are derived from GTD, the EEC
method is able to provide correct fields in the rear—axial direction. This is due to the
fact that EEC is not based on the contributions from two edge points, but on the
integration of the contributions of the complete edge. The close relationship between
EEC and GTD makes it very likely that a smooth transition between the two
methods will be obtained. To see how close to the rear—axial direction the GTD
results are still valid, the far—field in and near the rear—axial direction was calculated
using both EEC and GTD. As an example Fig. 7—6 shows that the transition angle
0GE between GTD and EEC results is about #=5° (8=1750) for the E—plane pattern
of an antenne system with a D/A=15 and n=2.
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The influence of the D/A ratio on the transition angle g is shown in Fig. 7-7(a)
and 7-7(b). As expected, the o 18 almost inversely proportional to D/J. Fig. 7-8

shows that (}GE does not depend on the value of n of the feed function. This is as
expected because the GTD field (Eq.(4—42)) and the EEC field(Eq.(6—12)) have a

common term ,]Gfi a).
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75 Transition Region Between PO and GTD (UTD)

In the forward—axial region, GTD (UTD) is unsuitable because the
forward—direction #=r is another caustic of the paraboloidal reflector. However, PO is
successfully used to determine the mainlobe and the first few side-lobes.

So, it is also interesting to compare the radiation patterns calculated with
PO and GTD to see to which angle near to the forward—direction GTD method can
still be used. As an example, Fig. 7-9 shows that the transition angle QGP is about
B=11°0 (#=169°) for the E—plane pattern of an antenna system with a D/1=15 and
n=2.

The influence of the D/ ratio on the transition angle is shown in Fig. 7-10. As
expected, the 0 is again inversely proportional to D/A. The value of n of the feed
function appeared to be neglectable.

Finally, by combining the modified GTD (UTD), the current—distribution
method and the EEC method, a complete radiation pattern is obtained (see Fig.
7-11).
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8. Offset Paraboloidal Reflector Antenna Configuration
8.1 Reflector Geometry

An offset parabolic reflector configuration is composed of a single—reflector
and a feed at its focus, or two reflectors for which the main offset reflector is
illuminated by the combination of a feed and a sub—reflector. In this report, an offset
parabolic single reflector antenna is considered.

The geometry of the antenna is shown in Fig.8—1. The offset parabolic
reflector is a portion of a paraboloid of revolution around the z—axis with a focal
length of {.

z!

Fig. 8-1 The Geometry of an Offset Parabolic Single Reflector Antenna

The paraboloid is illuminated by a feed within a cone with half—subtended
angle @ measured from the z’—axis (the axis of the feed).
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{t can be shown that the projection of the edge of the reflector on the x—y plane
(fig 8—-2(a)) is a circle with diameter:

4fsina

D= — (8-1)
(cos¢o+cosa)

Furthermore it appears that the edge curve lies on a plane parallel to the y—axis,
making an angle ¢y, with the x—axis (fig. 8-2(b)):

_ singyg
tg¥po = cosa+Ccosyy’ (8-2)

X

A A

0 >y O(F)
(a) The Projection on x—y Plane (b) The Projection on x—z Plane

Fig. 8-2 The Projection of the Edge Curve of the Offset
Paraboloidal Reflector Aperture
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8.2 Feed Radiation Properties

Since the feed axis differs from the symmetry axis of the paraboloid the

prime (x’,y’,2’) coordinate system has been introduced. The corresponding (p’,#",£’)
sperical coordinate system is used to describe the vectorial radiation pattern of the
feed. For the offset antenna, the same feed pattern will be used as for the symmetrical
antenna previously.

Due to the asymmetric offset geometry, the radiation pattern of the

complete antenna system for x’— and y’—polarization will be different. In the next

chapters, most of the derivations are done for an x’—polarized feed. If y’—axis
polarization is used, it will be stated.
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9. Radiation Pattern Analysis by GTD (UTD) for an Offset Paraboloidal
Reflector Antenna

9.1 Introduction

The angle region definition given in Chapter 3 for the symmetrical reflector
antenna should be adapted according the offset reflector geometry shown in Fig. 8-—1.
This is trivial for the definition of the illuminated and shadow region. However, it will
be shown that the caustic which is found for the symmetrical antenna in the
rear—axial direction, now appears at another far—field observation angle. This will be
dealt with in some detail in this second part of the report.

Another difference from the analysis of the symmetrical antenna is that the
diffraction rays do not always hit the reflector edge perpendicular to its tangent. The
oblique incidence makes an analysis much more complicated, this justifies the
separate treatment of the application of GTD (UTD) to offset reflector antennas in
this second part of the report.

9.2 GTD Diffraction Point Location for an QOffset Configuration

It can be seen from the previous part of this report that GTD is based on
the ray tracing technique. As shown in Eq.(4-2), the incident field at the point of
diffraction (Q) must be known in order to obtain the diffracted field at the
observation point (P). If the rays from a limited number of diffraction points
contributing to the field at a certain point, or in a certain direction, are known the
total field can be obtained by simply adding all the individual contributions together.

Therefore, the locations of the diffraction points have to be found. First, a
coordinate transformation is introduced. The purpose of this transformation is to

describe the field in a (x’,y’”,2’") coordinate system, with its origin at a edge

diffraction point and the x'"’—axis being the tangent vector (T) at the edge diffraction
point. The advantage of using such a transformation is that the phenomena related to
the diffraction can be described easily (e.g. the description of the diffraction cone).
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9.2.1 Coordinate Transformation

Since the new coordinate system that has to be introduced is determined by
the position of the diffraction point and the edge tangent of the reflector at the
diffraction point, it is a diffraction—point—fixed coordinate system.

From the previous edge curve equation, the unit vector T tangent of the
edge curve at any edge point was derived in [26] as:

T=TxX+Tyy+ T, 7% (9-1)
with T, = —siné’( cosyg+cosa) (9-1,a)
Ts
Ty = cosgocosaco s £’+cosé’—singosina (9-1,b)
Ts
Ts

TS=J [—sin{'(cos¢o+cosa)]3+[cosggcosacosé’+cos *~singosina) 2+ [siné ’sing)?
(9-1,d)

This coordinate transformation is similar to the one presented in [24],
although it involves a different angle rotation direction and angular rotation sequence
(see Fig. 9—1}. Since the displacement of the origin will not change the expressions for
the unit vectors, the same (x,y,z) notation is used for the coordinates after moving the
origin to the edge diffraction point.

Introducing of the new coordinate system starts by rotating the y—axis

through an angle o' around the x—axis, which puts it in the new direction yi,
determined by the intersection of the plane normal to the edge tangent at the edge
point with the y—z plane (see Fig. 9—1(a) ):

T, _  cosypcosacosé’+cosé’—singqsina (9-2)
- )
T, sinf’singy

tgo' = —
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after the first rotation, the (xi,yi,z{) coordinate system is obtained, it has the
following relation with (x,y,z) coordinate system:

x 1 0 0 xi
y| = |0 cosa’—sina’| |yi|. (9-3)
zZ 0 sina® cosa’| (zi
The subscript t has been used to emphasize the transformations used.
Then, the x{—axis is rotated through an angle § around the y{—axis, which

puts it in the direction of T. The angle § between the x—axis and T is then given by:

cosf=T-X=Ty=— sinf’(c;s¢g+cosa) (9—4)

After the second anglular rotation, the (x’,y¥,2!’) coordinate system is obtained (see

Fig.9-1(b)). The relation between the (x{’,yi,zi’) and the (xt,y1,2t) coordinate
systems is:

xi cosfi 0 sinf] [xp
yi| = 0 1 0 vyl (9-5)
zt —sinf 0 cosf | |ap

Finally, the yi’~axis is rotated by an angle 7 around the xp'—axis, this puts

it in the incident plane (containing T and g). The angular rotation makes the x;"—y;"
plane into the incident plane which facilitates the field calculation later on.
The angle 7 is given by:

siny = Ns . ?t’ (9-6)

where the N; is the unit vector normal to the plane containing the T and 7 vectors,
given by:

Ny = det| 1v 7% [eder] T

e TxTy]a .
y o pbpx]y+det[ Tz (9-7)

g
and Y
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VI’ = cosa ¥ + sina z, (9-8)

So, the new (xi”,y1",21”) coordinate system is related to the former (x’,yi’z!’)
coordinate system (see Fig. 9—1(c) ) as given by:

xt’ 1 0 0 xt”
yi| = |0 cosy —siny | [yi”]. (9-9)
z{’ 0 siny cosy | (2"

T

For the sake of convenience, the notation [x’,y"’,z’] ~ is used instead of

[xi;”,y{“,zf”]T and the relation between the (x,y,z) and (x'’,y’”z"") coordinate

system can then be expressed by a transformation matrix M as:

b'e x")
y| =M |y” (9-10)
Z zi?)
with
1 0O 0 cosf 0 sinf 1 0 0
M= | 0 cose —Sina’ 0 1 0 0 cosy —siny
0 sina cosa’| | —sinf 0 cosf 0 siny cosy
cosf sinfsiny sinficosy

=| sina’sinf cose’cosy—sina’cosfsiny —cosa’siny—sina’cosfcosy

—cosa’sinf  sina’cosy+cosa’cosffsiny —sina’siny+cos a’coslzcos'y )
9-11

The matrix M has the orthogonality property:
M= MT (9-12)

80,
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X

-1
yn: -— M y (9—13)
gz 9

and
cosf sina’sin g -cosa’sinf
-1 . . . . . .
M =|sinfsiny  cosa’cosy-sina’cosfsiny  sina’cosy+4-cosa’cosfsing

sinfcosy —cosa’siny-sina’cosficosy -—sina’siny+cosa’cosfeos 'r)
(9-14

With the new (x’”,y,2”") coordinate system, the edge diffraction cone can be
described easily, as will be shown in the next paragraph.

9.2.2 Diffraction Cone Formed at the Edge Diffraction Points

The incident ray vector from the feed to the reflector edge can be expressed
by the radius unit vector in feed coordinate system:

7’ = sinacos¢’ X + sinasiné’ ¥’ + cosa 2’ (9-15,a)
or
sinacos ¢’ X’ pxy X
ﬁ’: sinasiné’ }"’ = | py, 'f’ (9-15,b)
— —
cosa z’ Pz 2’

then by using the transform matrix similar to Eq.(9—5) for the relation between the

(x,y,2) and (x’,y’,2’) coordinate system, the p* in Eq.(9—-15) can be expressed in the
(x,y,2) reflector coordinate system:

sinacos¢ocosé’+cosasingy X px X
P = sina sin¢’ Y=oy (9-16)
cosacosyo—sinasingecost’ z P22

The angle §; between the incident ray vector 7 and the edge tangent T can
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x(xe’)

(2) First Rotation by an Angle o’

x  x(T)

yo'(ys)

zt"

(b) Second Rotation by an Angle §
xm(T)

Yh,”

Zt,”

(¢) Third Rotation by an Angle 7
Fig. 9—1 Coordinate Transformations
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be derived from the dot product of the two unit vectors:

s
COSﬂoZT‘;?‘:—S]nﬁD sin{

(9-17)
Ty

Now the diffraction cone, formed by diffracted rays from the diffraction

point at the reflector edge having an half open angle f, around the tangent T (that is
the x’»’—axis), can simply be written in (x’*,y""*,2*) coordinates as:

(572 + (22 = g2 ()2 (0-18)

The cone formed by the diffraction rays at the edge diffraction point is
shown in Fig. 9-2.

Vo
= I’
Sd
5,
/ Ao X
/ A
‘s’i
Yy
—-—
z O

Fig. 9—2 The Diffracted Rays from the Edge Point of an Offset Reflector
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So, by using the transformation matrix given in Eq.(9-14) and inserting it
in Eq.(9-18), the radiation cone in the reflector (x,y,z) coordinates is obtained. This
will be used in the next paragraph to find the diffraction points and rays contributing
to the far—field of an offset reflector antenna.

9.2.3 Diffraction Point Location

In the following paragraphs, the location of the diffraction points, which
contribute to the far—field, have been determined. The diffraction points for different

radiation planes will be dealt with separately. As already mentioned in Chapter 8, x’—

and y’—axis polarization are considered. These two polarizations will give different
radiation patterns for the principal planes. Therefore it is sometimes more convenient

to speak of the symmetry—plane (x’—z’—plane) and the asymmetry—plane

(y'—z’—plane) for an offset configuration. In the following sections an x’—polarized feed
is assumed. So, the symmetry plane is the E—plane and the H-plane is the

asymmetry—plane. However, if an y'-polarized feed is considered this will be
emphasized.

9.2.3.1 _Diffraction Points for the E—plane Pattern Calculation

For the E—plane radiation pattern calculation, only the rays in a plane with
y=constant must be taken into account. In the calculation of the diffraction point
locations, y is taken to be equal to zero, because the origin is moved to the diffraction
point. Taking the intersection of the diffraction cone (Eq. (9-18)) with the y=0 plane
results in the following equation [26]:

(cos2f—cos2f)x2+2cosfsinfcosa’xz=0 (9-19)

From Eq. (9-19) it is easy to see that the rays contributing to the E—plane
have to satisfy:

x=0
[ (9-20,a)

or
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( c 0s?Bo—cos?f)x+2cosfsinfcosa’z=0
, (9—20,b)

y=0
Inserting Eq.(9—2), Eq.(9—4) and Eq.(9-17) in Eq.(9-20,b) results in:

) (9-21)

[ { [ {cos#o+cosa)—sin?go]x—2(cosyo+cosa)singoz }sin2{ =0
y=0

where ¢ is defined at the x’,y’,2’ coordinate system with the feed as origin. The
solutions to this equation are:

§1n2=0
(9-22,a)
y=0
or
[ ( cosgo+cosa)2—sin2gg)x—~2(cosyo+cosa)singoz = 0
. (9-22,b)
y=0

Because Eq.(9-20,a), Eq.(9-22,a) and Eq.(9—22,b) are mathematical solutions to the
problem, it is still necessary to see which can be obtained in practice. Eq.(9-20,a)
represents two directions, one in the +4z—axis direction (#=0) and the other in the
antenna forward—direction (f=r). The reason that the direction # = 0 is found
mathematically is that a symmetrical image diffraction cone exists, due to the
quadratic form of Eq.(9—18) (see Fig. 9-3).

Reflector

z ~af

o

Fig. 9-3 The Existence of an Image Diffraction Cone.
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The rays given by Eq.(9—22,a) contribute to all angles in the E—plane
because of the f—angle independency. Since ¢’=0, r are the solutions to Eq.(9—22,a),
the corresponding diffraction points at the edge of the reflector are the upper point Q,
and the lower point Q;.

If (cosypotcosa)2—sin2ge#0 then, the rays given by Eq.(9-22,b) will
contribute to a specific /—angle direction with z—axis. This angle can be written as:

z ~ (cos#o+ cosa)?-siny,

1gh=X = 2(cos a +cosgy)singy (9-23)

which can be rewritten as:

2sin 0
tgl= cosa +cos%

(cos ¢ o+cosa)?

B 2tg¥po (9-24)
with the solution:
2¢
0= [ P (9-25)
'I+2¢pg

where §=2¢po is the only true solution, because 0=7+2¢,, originates from the

unphysical image of the diffraction cone. The solution is {’—angle independent, so the
whole edge will contribute in this specific #—direction.

9.2.3.2 Diffraction Points for the H—plane Pattern Calculation

For the H—plane (x=0, for an x’~polarized feed), a similar equation is found:

(cos2f,—sin2fsin2a’)y2+2sin2fsine’cosa’yz=0, (9-26)
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From this formula the following equations are found, to which the rays contributing
to the H—plane pattern have to satisfy:

x=0
(9-27,a)
y=0 '
or
{ cos2fo—sin2fsin?a’ )y +2sin?fsine’cosa’z=0
, (9-27,b)
x=0
Inserting Eq.(9-2), Bq.{(9-4) and Eq.(3—17) in Eq.(9-27,b) results in:
[ { cosgocosacosé’+cosé’—sinasingy)2-s in2{’sin2¢ly
[ +2(cosgpcosacosé’+cosé -sinasingy)sing’singoz=0 (9-28)
x=0

If (cosyocosacost’+cosé’—singesina)—sin2f’sin2ye#0, Eq. (9-28) determines the ray
which is in the y—z plane having an angle # with the z—axis:

=Y _ 2(cosyocosacos £ +cosé’~-sinasingy)-siné’sing, (9-29)
V=5 = {cosygcosacosf’+co 8¢’ —sinasingy )2-sin2{’sin2 ¢

It is clear that Eq.(9—27,a) represents the direction f=r, and that Eq.(9—29)
gives the diffracted rays which contribute to an angle direction 4.

Fig. (9—4,a) shows the relation between the far—field angle # and the edge
points of diffraction defined by the angle {’ for the H—plane pattern calculation, as
given by Eq.(9-29). Here, #<180 indicates the half plane where ¢=x/2 and #>180
indicates the other half plane where §=37/2.
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Fig. 9—4(a) The Edge Diffraction Point Angle ¢’ as a Function of
the Far—field Observation Angle § for H—plane Pattern Calculation

9.2.3.3 Diffraction Points for an Arbitrary Plane

For the calculation of the radiation patterns in any plane other than the
symmetry plane (E-plane for x'—axis polarization,§=0) and the asymmetry plane

{H—plane for x'—axis polarization, ¢=1/2), a similar procedure can be followed. The
diffraction cones have to be cut by the corresponding g—plane.

The same steps as for the E— and H—plane calculation can be followed so
that the next equation is obtained:

=7

tgl=

—2{[({cospqcosacos £ *+cosf’-sinypsinalsing-[sin ¢ ’(cosgo+cosa)]cosg}siné’sing,
[(cosgocosacosé’+cosé’—singysina)sing—(cosgo+cosa)sinécosd] 2-sin2gysin2é’

(9—30)
For the radiation pattern in the plane ¢=7/3, the relation between the
far—field observation point and the location of the edge diffraction points involved in
the pattern calculation is shown in Fig. 9—4(b).
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Fig. 9—4(b) The Edge Diffraction Point Angle ¢’ as a Function of
the Far—field Observation Angle ¢ for ¢=1/3

9.2.3.4 _ Stationary Phase Method (APO)

In [15], the radiation pattern of an offset antenna has been calculated from
Asymptotic Physical Optics (APO). As shown in the first part of this report, the
locations of the APO stationairy phase points coincide with those of the GTD
diffraction points for the symmetrical antenna configuration. In order to check the
results obtained in the previous section, it is interesting to compare the locations of
the diffraction points with those for the stationairy phase points, in case of an offset
configuration.
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According to the stationary phase method, the stationary phase points of
second kind [15] satisfy:

N N _

3 55 "5 9T = (9-31)
with

& = k(p—pp-T)=kp(1-74-7) (9-32,2)

¥ = p(1+cos¢)—2f (9-32,b)

where ¢ and ¥ are the phase function and the reflector edge equation, respectively, 7 is

the unit vector in the direction from the feed to the edge of the reflector and T is the
unit vector in the direction from the feed to the far—field observation point.

For the configuration described previously, the unit vector T can be
expressed as:

sinfcosgd X
T={ sinfsing y (9-33)

—
cos? Z

Since the objective is to find the location of the stationary phase points, it is
convenient to use the feed coordinate system. In such a system, the edge of the
reflector can shown easily.

The unit vector p can be written as:

sing’cosyocosé ’+cosy’singy x
p=1 siny’sinf’ Vi (9-34)
cosy’cosPo-sing > singocosé’ z

The edge is simply found by replacing the ¢’ in Eq.(9—34) by e, which gives:
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3inacosyfecosf ’+cosasingy X

) . . y —
p=4 sinasin{ Y
-

z

cosacosyo-sina s ingycos

Expressing the & and ¥ in the feed coordinate system results in (p=p’):

§ =kp(t—5-T)
=kp'{1-] sinfcosg(sinacosyocost’+cosasingy)
+sinfsingsinasiné’
+cosf(cosacosyo—sinasingocosé )|}
and
§ = p’(1+cosacosyo—sinasingocost’)—2f

The partial derivatives of & and ¥ to {’and p’ are:

—g%—,:kp '(sinfcosgsinacosyosing —sinfsingsinacosé’~cosfsinasingosiné’)

-g%-,zk{l—[ sin flcos ¢(sinacosyocosé '+cosasingy)+sinfsingsinasiné’

+cosf(cosacosyo—sinasinggcos’)]}
and

g%—,=p’sinasin¢osin§’

o _ - )
BF—l+COSGCOS%—SlnaSmiﬁo(‘.OSE
Applying the stationary phase point requirement:
0% 01 0% 9¥ 0

O

yields:

(9-35)

(9-36)

(9--37)

(9~38)

(9-39)

(9—40)

(9-41)

(9-42,a)
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kp’(sin fcosgsinacosgsiné ~sinfsingsinacosé’~cosfsinasingesing’)
- {1+cosacosy—sinasingocosf’)
—k{1-{ sinficosg(sinacos¢ocost’+cosasingp)+sinfsingsinasiné’
+cosf(cosacosye—sinesingocosé?’)]}- psinasingosiné’=0 (9—42,b)

Factorizing the common terms and rearranging Eq.(9-42), we obtain the
following equation which the stationary phase points must satisfy:

sinfcosgsinacosyysiné’~sindsingsinacosé '—cos fsinasinyesiné’
+sinfcosdsinasiné’cosa—sinfsingsinacosé’cosyocosa
+sinfsingsin2esingo—singysinasiné’=0 (9-43)

In accordance with lerley and Zucker [23], the projection of the offset
parabolic reflector on the x—y plane is considered to be the radiating aperture, so
cosf~0 in Eq.(9—36) and, consequently, the terms containing cosf in Eq.(9-43) as well

as the term singgsinasiné’ will disappear. So, in the case of sinf#0, Eq.(9—43) can be
written as:

cosgsinacososiné’—singsinacosé’+cosgsinasiné'cosa
—singsinacos{’cosgocosa + singsin2asingfo=0
(9—44)

Since sina is generally not equal to zero and is the common multiplication
factor, the terms of the above equation, Eq.(9-44) reduces to:

—sing[(1+cosyecosa)cosé’—sinasingg] + cosg(cosa+cosyo)siné’=0 (9—45)
which agrees with the results given by lerley and Zucker [23].

When the approximation, cosfx0, is not made in Eq.(9-36), we find for the
E—-plane radiation pattern calculation (¢=0), that Eq.(9—43) becomes:

sinasiné’[sin#{cos¢o+cosa)—cos fsingo—singe]=0 (9-46)

Some mathematical manipulations and rearranging the terms of Eq.(9-46) gives the
following equations:
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tg0=0 (9—47,2)

or

tg0= 2sing o (cosgotcosa)
(cosgo+cose)2—sin2yg,

(9-47,b)

which results agree with those given by Eq.(9—20,a) and Eq.(9-23).
For the H—plane radiation pattern calculation (g)z%), Eq.(9-43) is given by:

—sinfsine(cos{’+cosé cospocose—sinasingo)—cosfsinasingosiné '—singosinasiné’=0

(9—48)
yielding:
tgf=0 (949,a)
and
- - aistent Leosbommant oot snginal, (o)

which gives the same results as Eq.(9—27,a) and Eq.(9~-29).

To check the position in an arbitrary g—plane, Eq.(9—43) is again used.
Rearranging the terms in Eq.(9-43) in the following way:

sin 0[c05¢sinasin§’(cos¢o+cosa)——sin¢sina(cos¢ocosacos£’+cos{’—sin¢osina)]
—cosfsinesinggsiné *—singgsinasin’=0 (9-50)

and by using the relation of cos20+sin2f=1, the sind and cosf can be derived
separately as:
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sin =0

sin =

2{[(cosgocosa+1) cos&’—singosinalsing—[(cosy ¢ +cosa)cosgsiné’] }siné *singy
[(cosyocosacos ¢ *+cosé'—singgsina)sing—{cosfo+ cosa)siné’ cos g]2+sin2gesin2é?

(9-50,a)

and
cosfi=—1
cosld=

[(cosgocosacosé’+cosé —sinygosina)sing—{ cosyo+cosa)siné ’cosd] 2—sin2gesin 28’ (9-50,b)
[(cosgocosacosé’+cosé'—sinygosina)sing—{(cosgo+cosa)siné ’cosp] 2-+sin2¢esin2£’

Combining the above two equations results in:
=1

tgd=

-2{[(cos¢ocosa+ 1)cosé’singesinalsing-[(cos ¢ o-+cosa)cosgsiné’|}sing’sing,
[(cos¢pocosacosé * +cosé’singgsina)sing—(cosyo+cosa)siné’cosd] 2-sin2¢sin2 £’

{(9-50,c}

Which is exactly the same formula as Eq. (9-30) found for the GTD diffraction
pOInts.

From the above derivations it can be concluded that, also for an offset
antenna configuration, the positions of the stationary phase points coincide with those
of the diffraction points.

9.2.3.5 Caustics in the Symmetry—Plane

Eq.(9-20,a) represents the antenna forward—direction (f=r) which is a farfield
caustic. For a symmetrical paraboloidal antenna, there is also a caustic in the antenna
backward—direction (#=0), but due to the asymmetry this is not a caustic for an
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offset configuration. However, a second caustic for an offset configuration appears at a
specific f—angle, which is completely determined by the offset geometry (4, and o).
The equation for this second caustic is given by Eq.(9-23) because this formula is

¢’>—angle independent. The diffracted rays from the whole edge of the reflector have in
phase contributions in the far—field angle direction f=2¢p, in the symmetry—plane.
The mathematical proof of the existence of a caustic at this specific angle is given in
[26] and was also given in equation form in [27). This proof is based on the calculation
of the distance from the feed to a far field—point measured along a point on the edge.
1t is proved that all these distances are the same. However, the existence of the
second caustic can be demonstrated in a different way. As shown before, the
projection of the edge—curve on the x—z plane is a line given by Eq.(8—2). This means
that the complete edge is in a plane perpendicular to the x—z—plane. If all the rays
from the edge to the far—field obeservation point in the forward—direction are
mirrored at this plane, a second caustic is obtained (see Fig. 9-5). This is due to the
fact that this mirroring has no effect on the length of the rays.

caustic direction

Reflector

FaY

i
()
ALX XN
f115)
ot

i ki
.;“";L%\\\ Front

S
. '."':;;'4'/

Front _|

4 \\\\§

Feed (at Focus)

a) b)

Fig.9—5 The Second Far—field Caustic: a) Side View; b) Back—side View

So, it can be concluded that there is a second caustic in the symmetry—plane in which
the diffracted rays from all the edge points of the reflector give in—phase contributions

and, consequently, it is necessary to use EEC instead of GTD in order to determine
the far—field (see chapter 10)
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9.2.3.6___Conclusion of the E— and H—plane Diffraction Point Analysis

The GTD diffraction points for an offset configuration which contribute to a
far—field observation point have been found and they coincide with the positions of
the points found when using the stationary phase method. This agrees with the results
for the symmetrical parabolic configuration found in the first part of this report .

For the symmetry—plane pattern calculation, it can be seen that there are
two caustics. One in the forward—direction, f=x (given by Eq.(9—20,a) ), which is due
to the focusing properties of the parabolic reflector. However, there is a second
far—field caustic (given by Eq.(9-23)), which is not in the backward—direction #=0 as
is the case of the symmetrical antenna, but it appears at an observation angle #/=2¢p,.
This angle is shown to be completely determined by the offset configuration
parameters ¢, and a.

Except for these two caustic directions, the E—plane (¢=0) radiation pattern
can be calculated from the contributions of the diffracted rays originating from two
edge—points,viz. the upper point Q, (£’=0) and the lower point Q ({’=r), which is
analogous to the symmetrical case (normal incidence, fo=7/2). Because the diffracted
rays hit the edge of the reflector normal to its tangent (8o=7/2), the two—dimensional
model, as used for the symmetrical antenna configuration, is valid for the E~plane
pattern calculation. This implies that the diffraction model for the E-—plane pattern
calculation can be a two—dimensional model.

For the H—plane and the other ¢—planes, fo=7/2 does not hold, so the

two—dimensional model is not valid here and a three—dimensional model has to be
used.

Further, it is shown that for a certain observation angle #, the location of
the diffraction points can be found from Eqs.(9-29) and (9—30) for the H—plane and
arbitrary ¢—plane, respectively.

9.3 Radiation Pattern Calculation

In the following sections, expressions have been derived for the caustic
divergence factor and diffraction coefficient, they are needed for the GTD(UTD)
radiation pattern calculation.
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In the following sections, the E—plane pattern calculation will be dealt with
separately from the pattern in an arbitrary ¢—plane because, for the first analysis
mentioned, the two—dimensional diffraction model is valid; while for the other
analysis, the more complicated three—dimensional diffraction model should be used.

9.3.1 F—plane Pattern Calculation

As found in the previous section, only two points (upper point Q, and lower
point Q) contribute to the E—plane pattern for all § angles except for the two caustic
directions 0=2¢,0 and 0#=x, where all the points on the edge have an in—phase
contribution (see Chapter 10). Therefore, these two directions will be excluded for the
E-plane pattern calculation and a two point method will be used for the remaining
directions. The way of dealing with them, is analogous to that followed for the
symmetrical antenna configuration in the first part of the report. Firstly, the caustic
divergence factors for both points are determined, followed by a derivation of the
corresponding dyadic diffraction coefficients.

9.3.1.1 Caustic Divergence Factor Calculation

As given in paragraph 4.2, the caustic divergence factor for a spherical
wavefront is:

Alposd)=| —Le (9-51)
s9(pc+sd)
To derive the caustic divergence factors for the upper and lower diffraction

point, the enlarged geometry for these two points is illustrated in Fig.9—6(a) and Fig.
9-6(b).
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Fig. 9—6(a)  Edge Diffraction at Upper Diffraction Point

9.3.1.1.1 Caustic Divergence Factor for the Upper Point

For the upper point, shown in Fig. 9-6(a), the following parameters can be

derived:
_ 2f
pei = py = ——— (9-52,2)
1+cos(go+a)
2fsina
pg = ———— COs¥po (9-52,b)

cos $p+cosn
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Bo =5 (9-52,¢)
184 = sin(go+e—ypo) (9-52,d)
1-5d = sin(f—¢po) (9-52,e)
Inserting Eq.(9—52) in Eq.{(9-51) results in:
1 I+cos(gota) [sin{go+a—¥po)-sin(# —¥po)](cosyp+cosa) ( )
—— - 9-53
fet 2f 2fsinacosypg
which can be reduced to (see [26]):
1 sin('“ﬂl)sin( 01=2¢p ) (cosgotcosa)
-2 2 (9-54)
Pet fsinacos¢yg

So, the caustic divergence factor for the field diffracted at the upper point is:

1 | -
A(per,s,d)=—m f3inacos gpo

s34 sin(’rgol)sin( 0 ‘“§¢D°)(cos¢o+cosa)

(s99pcs)  (9-55)

It is clear that there are discontinuities for #;=2¢p, and #,=r, and this
corresponds to the two caustics derived previously.
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9.3.1.1.2 Caustic Divergence Factor for the Lower Point

Following a similar procedure for the lower point, shown in Fig. 9-6(b), we
can write:

. 2f
pel=pr=——— (9-56,2)
1+cos(¢o—a)
2fsina
pg = ——— cos¥po (9-56,b)
cos¢fp+cosa

g
24 ri
8 Y —
-t
d DNrefl
?pﬂ / I
‘)/ i
Yo—a
/7
v -‘ 0

Z

Fig. 9-6(b)  Edge Diffraction at Lower Diffraction Point
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Bo=15 (9-56,c)
n-351 = sin(gpot+a—yo) (9-56,d)
H-gzd = Sin(gﬁpo—ﬂz) (9——56,6)
Inserting Eq.(9—-56) in Eq.(9—51) results in:
1 14cos(go—a) [sin(¢¥po+oe—vo)-sin(¢po—02)](cosyo+cosa) (9-57)
Pet B 2f 2fsinacosyyg
which can be reduced to (see [26]):
1 Sin(1502)sin(02—§¢D°)(COS¢0+COSG)
= (9-58)

fsinacosypo

So, the caustic divergence factor for the field diffracted at the lower point is:

1 . .
A(P(::!:Szd):—d j p fSlIIdCOSVip() ej(7/2) (Szd»pcz) (9—59)
52 Sin(%—z)sin( 0y-2 29)(cos +cosa)

Again, 03=2¢p0 and f,=1 correspond to the two caustics derived before.

9.3.1.2 Diffraction Coefficient Calculation

The general formulas for the diffraction coefficients were given previously as:

= ¥
rd-rl rd+ r1

o~i(7/4) [FIKL a(rd-r!)] FlkLda(r d +ri)]
i=- . } (8—60)
' 2Msxnﬂol COs—5— COs—5—
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Since the diffraction coefficients for the upper and lower point differ from
those found for the the symmetrical antenna configuration, their derivation is

repeated here.

6.3.1.2.1 Diffraction Coefficients fior the Upper Point

From Fig. 9—6(a), which shows the angle definition of the incident and

diffracted rays, it is possible to obtain:

tmgte

Lok g (0e0, 3T 4 Yoty

d =
27— ( 04- 3’—+gl+-a) (gl + JLO“QF_‘1<31<2,)
+a 01 o+
~sin(L2 0<0 4 < +
cos(fd-—r1 m(LQ_) ( Lr)
P ot 31
sm(Lz—) 37 Yo+
+ <0 1 (2'{
_ —cos% (0<0 < a3
cos(i'éﬁ) = 0
1
cosy (g—’r + %ﬂ <0 <2r)
and
L= Pu
Lf-w
So,

e 3(7/4) F[2kpus:n2(mgi)] F[2kL1Tcos2 ]]

D, =
h 227k [ sin( m';‘1—0') cosQ——

(9-61,3)

(9-61,b)

(9-62,2)

(9—62,b)

(9-63,2)

(9-63,b)

(9-64)
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where
1 (0<01<2— + ¥po)
cor=1 0 GF + ppo<t, ST + it (9-65)
-1 (gl+ ?IE£<01<21)

The ¢y, is introduced in order to account for the blocking effect that the reflector has
on the diffracted rays from the edge of the reflector, also, to account for the sign

change when the observation point moves from the angle region Blg%+¢po to the

angle region 01>31r_+ﬂ3_+_a‘

If the direction #;=x, which is one of the caustics, is excluded from the
calculation, Eq.(9—64) becomes:

(9—66)

j 1 0+0—81
D. = 6016_-](’/4 ) F[QkpuSInZ(LQ_)]¥ 1
: 227k sin(PFe=lyy " oot
9.3.1.2.2 Diffraction Coefficients for the Lower Pojnt

Following a similar procedure for the lower diffraction point, which is shown
in Fig. 9—6(b), it is possible to write:

=2y foa (9-67,2)

- f—"iﬁ + 02 (0¢02<k +m‘r“)

rd =

(9-67,b)
02_(T_+J"or“ﬂ_) G+ J’igi <0,<27)
. Ba—tota T 0—a
' —s:n(+) (0< o<y + LQ_)
cos(rd"’"1 2

T) = . O—pota (9-68,a)
T e o



104

0 -
—cosy? (0¢02<5 + ﬂzi)

d+ri
2
s+ 1l <y
and
:

Loi = py (9-69,a)

L21’ —+m (9_‘69,b)
So,

i/ ) [F2kpsind ) Bk preonds
Dfi - o . Urgu-l-a ¥ by (9-70)
V2rk sin( ) cosy*
where
1 (0¢0 ,<F + 2038
€gp = 0 (%‘ + ‘MEE < 02<‘g— + ¢P0) (9_71)

-1 (gl + }5&—21 <02<2'f)

The reason for the introduction of €45 is the same as before.

If the direction f,=x, which is one of the caustics is excluded from the
calculation, Eq. (9—70) becomes:

(9-72)

e )[Flzkmsin%"?—ﬂjﬁn 1 ]

= £
227k sin(m) cosgz

0.3.1.3 _Incident Field at the Edge of the Reflector

According to the chapter 2, the field incident to the reflector from a

x’—polarized feed is:

—ika?
Belp #,€)= A/ (P )(U cos P 4sing') (9-73)
Ik
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or

—jkp? U cosf P
Ef(ﬂ’:?”:f,):AO%{ ¢COS€ ] (9-74)

p: Sin{’ 31

and for the edge point, Eq.(9-73) and Eq.(9—74) becomes:

—ikp’
Ef(p’,a,{’):Aoe—']’—pf@(Uacosf’iﬁ%sin{’?') (9-75)
or ?
—1ko? U r B
(g, £)=AS— Ge(a) “C(-)si 3] (6-76)
P’ sinf? ¢

For the upper diffraction point Qu(p3,a,0), the incident field from the feed is
given by:

Ef(ﬂu,ﬂ,0)=A%[ U ¥

Pu 0 Z’

Insertion of Agand U " as defined in chapter 2, in Eq.(9-77) results in:

(9-77)

kpy 1y
Be(pusa0)=(1 )EM[ a] (9-78)

Pu 0 ?’
for Huygens feed polarization.

By using a transformation, the E(pu,a,O) can be expressed by E(pu,¢o+a,0)
in the reflector coordinate system, yielding:

| o~ ikpu 19
Br(pu o2 0)=(r 0t € Gf(“)[on (9-79)
Pu

So, the incident field at Qu{pu,¥o+a,0) in the (p,,¢) reflector coordinate
system is:

-1k a
Be(pu,po+a,0)= (nPt)’w [} (9-80)

fu
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similarly, the incident field at Qi(p1,%0—0,0) is:

—ik
Be(orbo,0)= (e €/ Ge(a) 7 (9-81)

£l

9.3.1.4 Far—field Pattern Calculation

9.3.1.4.1. Contribution of the Upper Point to the Far—field

Since the dyadic diffraction coefficient, which relates the diffracted field to
the incident field, is defined in the edge—fixed coordinate system (shown in Fig. 9-1),
the diffracted and incident fields have to be transformed to this coordinate system. In
Fig. 9—7, the field vectors are defined and their components are related as follows:

RLH (822
B\ =54 (820
Eof =—E ¢E‘; (9-83,a)
By =~Egy, (3-83,b)

So:
3
E§, By

R ~ iy p— ™ )
Dn 0 E¢01 fcl e—JkSq
0 —Dsg| Eﬁ:)l J4 S(}(Pcl‘*‘sib

r N r i y———— )
- Dn 0 Ef¢x Pci e—-.]ksq

0 —Ds] ~Ef21_‘ s4(pcitst)
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| ~jkpy —jks¢ [Dn O Y[19
=(n%)7%1ejs [ " H ] (9-84)

Pu Sq 0 Ds 0 z

. X
P(r,0,4) P ?
_ ¥
514 ?
E d
01
z -} 0
E d X
do1
o A
- s
§qd d /
EﬁOZ // _S_, A Ei
d Ve !
Fos g A b
// Eﬁﬂl
Q Ef
-, oz
321 El
Bo2 s
z - O(F)

Fig. 9—7 Two—dimensional Ilustration of the Field Vector Relation
for Edge Diffraction at the Upper and Lower Point
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using the far—field approximation:

sid=r for amplitude (9-85,a)
s 19=r—pyc0s($o+0~01) for phase (9-85,b)

gives:

g . B otad;
[ E01] - (ﬂ_g_t)% ¢ Ikt Gf(ﬂ)pclEm [F[2kp“sm ( ; ) . 18 }
EJ, L J pu? 87k sin(Lete=0) cos gl

.e-j{kpu[]--‘COS(yf?o-}-a_gl)]_l_%}[ 1 -a}
0¢

e_jer Gyr(a)fsinacosyng
r Spuzrksin(%p—l—)sin(kgjﬂ)(cos%%-cosa)

. -0
F[2kpysin?( LQ——D'*'C' ] 1
"eot { T P 7
sm(lb"—r—l) cosz!

.e—j{kpu[mos(¢o+a—eo1+;}}[ ! z] (o-86)
0

9.3.1.4.2. Contribution of the Lower Point to the Far—field

1
= (1322

Similarly, the relation between the field components at Q; are:

e o1
Eﬁgz = Efﬁiz (9-87,0)

d__mpd
El,,-,2 = qu02 (9-88,a)
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d__p.d
Eyl=-Bgl (9—88,b)
So:
d d
Eﬂz} - {Eﬁﬁoz
d d
E¢2 Eﬂoz
_ i
I R B S P ¥
0 ~Ds) [Egi J{ s3(pertsd)
— i -
0 Em} per_ kst
0 —Ds Eféz Sg(ﬂcz'*'sg)
P4 =ik ks (Dn 0 J[19
= (77)? Ge(@)per—r— (8-89)
B st o p,Jlo?
using the far—field approximation:
§gd=r1 for amplitude (9-90,a)
$3d=1—p1C08( fo—a~03) for phase (9-90,b)
gives:
d i o la—Yota
Eoz] - (Byte Jkrl Gr{a)por, , {Fl?km“‘;(—%—n ! ]
Egz L p1? 87k sin(—zg“’—'l'q) cosTiz
.e—j{kpl[l-COS(ﬂz—¢0+ﬂ)]— i—} 1 3]
0¢
= 1?1%)% eIk } Gi{a)fsinacostyg
T
8p12wksin(%'ﬁ)sin(ﬁ’lg-ﬂlﬁ)(cosﬁwcosa)

FlzkpsinaUfetty) g
" £ +
! sin(—-g—gz' 0"H') cosg‘-’

.e—j{kpl[l_cos(g'f‘%“*“ﬂ)]“ i}[ ! ﬁJ (9~91)

0%
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9.3.1.4.3. Total Radiation Pattern in E—plane

The total field can now simply be obtained by summing the direct field from
the feed and the diffracted fields from the diffraction points:

Ed E i Ed Ed
S -
E¢ Ef¢ E¢1 E¢2

where the direct field is:

E ; —jkr 19
0 ] = (15— ’ Q| 0—¢o|)[ 02] (9-93)

i
Ef¢

9.3.2 Arbitrary ¢—plane Pattern Calculation

The radiation pattern calculation in an arbitrary g—plane differs from the
E—-plane pattern calculation because generally the incident rays are not normal to the
tangent at the diffraction point. Therefore, the calculation is more complex than the
calculation for the E—plane, and a three—dimensional diffraction model is needed.

A similar procedure as for the E—plane is followed, starting with calculating
of the caustic divergence factors and the diffraction coefficients. But firstly, the edge
of an offset reflector is shown in Fig. 9—8 in order to illustrate its geometry in the
reflector coordinate system.
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D/2

Fig. 98 Three—dimensional Model of Edge Diffraction
for an Offset Configuration

9.3.2.1 Caustic Divergence Factor Calculation

Eqs.(4-3) and (4-4) show that for the calculation of the caustic divergence
factor expressions are needed for 1, i, 84, pg, pc and fo. The unit vector n is parallel

to the intersection line between the plane perpendicular to the unit vector T and the
plane formed by the edge of the reflector, and is given by:

-4 Ty T, |z T T = T Tyl=2
n= det[ 0" cos fipo ]x+det[ cos;po sin;pg ]y+det[ sin;po OY]Z (9-94)

Further, §i is the unit vector in the direction of the incident ray, which
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for this case coincides with p:

si=g (9-95)
with
singecosa +cos¢’cosPosina X px X
p=[ singsing’ 3}'] = [ py 3?} , (9-96)
cOs $ocosa —cosé’sinyosing z Pz 2

3d can be considered as being parallel to the unit vector T to the far—field observation
point, so:

. - =
sinflcos¢ x Ix X

Fdx T =[ sinflsing }'] = [ Iy ?] (9-97)
cosl z T, Z

As shown in Fig. 98, the center of the reflector aperture is at Qq (x0,¥0,20),
with its coordinates in the reflector coordinate system (see [26]) given by:

21si Il]bo
Xp=— (9-98)
cos o+ cosa
Yo=0 (999)
Zg=Xo/tg¢m (9—100)
where
singo(cos ¥ o+cosa)
tg¥n= (9—101)

cosa(cosgotcosa)-sinyg,
The vector radius pngn pointing from the feed (F) to Qg is:

X0

Pufn = (singy X + cosyy 2) (9-102)

singp
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with
singo(cospo+cosa)
singp= , (9-103,a)
sin2¢gsin?a+cos 2 a{cosyo+cosa)?
cosa(cos ¥ ¢+cosa)-sin 2 ¢y
COS = , (9-103,b)
sin2?¢osin?a4-cos2a(cosyo+cosa)?
The vector from the feed to any diffraction point at the edge of reflector is:
singocosa +cosé’cosfosina X px X
pp=p| sinasin¢’ }'J = p[ Py Sr'] (9-104)
cosygcosa —cosé’singgsing z P2 Z
with
2f
p= (9—105)

14+cosyocosa—cosé ’singgsina

Knowledge of the pp and pmﬁm is necessary to find the unit vector n, in the
direction from the center Qo of the edge curve to the edge of the offset reflector:

-+ =

1y = ££-fnfn (9-106)
IPP_Puml
where
PPx—Xo X
pB‘PmBm = [ ppy 57,} (9_107)
ppz—Xq/tgVn z

| 0p—~pupn| = 1/ (ppx—x0)2+(ppy)2+(0p %0/ tg¥n)? (9-108)

Because the edge curve is elliptical, the curvature radius of the edge at any
point is given by:



114

3
(a?sin?t+b2cos?t]?

Pg= (9-109)
ab(sin?t —cos2t)

slith t, being the angle between 1, and the projection of X on the edge plane, given

byll4  sin(t)= no-¥y (9-110)
and
2fsina
a= (9-111,a)
(cospo+cosa)cosypo
2fsinea
b (9-111,b)
cosyPot+cosa
with
(cosgg+cosa)
COsYpo= (9-111,c)

1| (cosyptcosa)?+sinZyg

Since pei=p and fo can be deriv from Eq.(9-17), p can be obtained by

inserting 7, 81, 54, pg in Eq.(4—4). Which allows the caustic divergence factor to be
derived using Eq.(4-3).

9.3.2.2 Diffraction Coefficient Calculation

The general expression for the dyadic diffraction coefficient given in section
4.3 (Eq.(4-12)) shows that, ri and rd are needed for the calculation. ri in the
equation, is the angle between the incident plane and the reflector tangent plane at
the diffraction point, while rd is the angle between the diffraction plane and the
reflector tangent plane at the point of diffraction.

The incident plane is the plane containing the vectors ,'9’ and T, where the

unit normal vector Ny is given by:
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R, = det[ ;1;? E: ]i’+det[ f: E:“ ]§'+det[ }; Ez ]‘z’ (9-112)

and the unit normal vector Nref) of the plane tangent to the reflector at the diffraction
point is:

refl = —cosgﬁ' + singﬁ

—cos&sing X
= —sin{sing y (9-113)

_‘
—COSg Z

So, the angle i can be calculated by taking the dot product of the vectors

Ns a-nd Href]:
cos{ri)=N-Nref1. (9-114)

The diffraction plane is the plane containing the unit vector sd and T. In

the far—field, the 34 is approximately parallel to the unit vector T ag given Eq.(9-97):
s0, the unit normal vector Ng of the diffraction plane is:

RN = det[ Ty T ]i:*+det[ Ta Ty ]}'+det[ Tx Ty ]‘z‘ (9-116)
A

| ) Iy I'x rx ry

Similarly, the the angle rd can be calculated by taking the dot product of

the vectors Nd and ﬁ'ren:

cos(rd)= Ng-flen1. (9-117)
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For a paraboloidal reflector and a spherical incident wave, it was shown
previously that:

Li=p (9-118,a)
Li- (9-118,b)

By knowing the rd, ri and f,, the D § can be obtained from:

e 354 [Flipalreri) 1 } oot1e)

o ¥ d
& 2\/Trlisinﬁol cosrﬂ;—1 cosr——'lg'-r—1
where ¢ is introduced as before to account for the blockage effect of the reflector.

9.3.2.3 Incident Field at the Edge of the Reflector

Now, expressions for the caustic divergence factors and the diffraction
coefficients have been derived. But, the diffraction coefficients, which relate the
diffracted field vector to the incident field vector, can be defined in the edge—fixed
coordinate system; therefore, it is necessary to express the incident and diffracted
fields in the (x7,y,2"") coordinate system, which is a diffraction—point—fixed
coordinate system.

In Chapter 2, the incident field at the edge in (p’,#",{’) spherical feed
coordinate system is given as:

~jkp’
Ef(P’,0,5’)=AOE—J?(O)(Uacos{’ﬁ’ﬂin{’?’) ' (9—120)
p ?
or in the (x',y’,2’) rectangular feed coordinate system as:

Ef}in ;’
Be(x,y',2’) = | Eg}, ¥’ (9-121)
Ef%) E,
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where
EfJiu
E’f}ifr -
Ef%:
ik cos 2£’(cosalU +1)-1
= Ay Gi(a)| cos¢ ’sin{’(cosaUa+1) (9—122)

)
P -U sinacos ¢’

After transformation to the (x,y,z) reflector coordinate system, the incident field
becomes:

Efl
Eil | =
Esl

—jkp’ cosyofcos 2¢’(cosa U +1)-1]-U sinacos¢’sings
= A, e—m cos§’sing’ (cosal +1 ) (9-123)
P -singolcos2é’(cos aUa-l-l)—l]—Uacosyﬁosinacosé’

Finally, by using the transformation matrix MT, the expression of the incident field

in (x'”,y*",2”?) system is obtained as:

Ef;::: Ef:}:
Erd, | = MY | Bed |. (9-124)
Etl,, JoFH

Fig. 9-9 shows the vectors in the (x'”,y'’,z’"") coordinate system, the
(pt,8t,¢t) coordinate system is used in the figure for relating the spherical and the
rectangular field components. The incident and diffracted field vector can be written
as [26]:

Eﬂ% E;tn)
E i | = AlB-t| Ej,,, (9-125,a)
E¢% %n:
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and
E pcg E,{
Eg‘g =Ars Ey(g
Eﬂ E¢
Eg:n
= A Bt | E$» (9-125,b)
Egan

where Ay is a rectangular to sherical coordinate transformation matrix and B—t is a
matrix given by:

010]. x(zt,T) T
100 o \\] rd—;n
f’f \\./
¥ (xt) \\\
/ ~ -
/ i
/ /
/ /
/
/
/
/
/
/
/
~ /
Z’”( t,) \\- /
' B/
/
/
/
/
/
\\ /
\\\ /
~ /
\\
-.\\//

Fig. 9-9 The Incident and Diffracted Field Vectors in (x’,y"?,2"")
Coordinate System
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0.3.2.4. Diffracted Field from the Diffraction Point

The relation between the vector components shown in Fig. 99 are:

Eyi=— B (9-126,2)
Bgi=—E (9-126,b)

and
Eyf=-Eg (9-127,a)
Egf = Byl (9-127,b)

Similarly, by using the transformation matrices Ag;, Al (spherical to rectangular
transformation):

Eg Exd
Eg = Ars Eyd
Eg E,d

Ex(’l”
= AI‘S M Ey()ln
EZ(}H

E.{
= A M Bt | E§

E.¢
E ¢
- Ars M Bt Azr Eo‘é (9—128)
Eﬂ
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Since Epgi and E p§ are zero, it 1s possible to write (using Eq.(9-126) and
Eq.(9-127)):

E Ed
[ ot = ;] (9-129,2)
Egtl By
and
E,i —E,i
[ ﬁ{,} ={ 9%] (9-129,b)
Byl LBt
80.
Byt _ Eﬁg]
BRI
L Eﬁoi] T
0 Dy E¢ i §4( pct+sd)
0
Dy ~E i .
- 0 ‘ﬁ} _pe kst (9-130)
L0 Dn _E¢% sd(pc+sd)

Inserting Eq. (9-129) in Eq.(9-130), and the result in Eq.(9-128), the
diffracted field can be obtained.

9.3.2.5. Total Radiation Pattern in an Arbitrary g—plane

The total field in any observation angle ¢ is the sum of the direct field from
the feed and the diffracted fields from the two diffraction points. In this way, the
radiation pattern of an offset paraboloidal reflector antenna can be obtained in an
arbitrary ¢—plane.
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10. The EEC Method for the Far—field Caustic in the Symmetry Plane

In Chapter 9, it is found that for an offset reflector configuration there is a
far—field caustic in the symmetry plane at the angle #=2¢p,. Since the GTD (UTD)
fails at caustics, the equivalent edge current method (EEC), described in Chapter 6, is
employed to determine the field at and around this caustic.

In contrast to a symmetrical configuration, the equivalent edge current for a
offset configuration is not flowing in the {—direction. In the next section expressions
are derived for this edge current and the far—field induced by this current.

10.1 EEC for an Offset Configuration

According to the GTD (UTD), the diffracted field in a ray~fixed coordinate
d
system consists of two components, Eﬂo and E ¢: (see Fig. 9—7). Only the field

d d
components EﬁOSinﬂo and Hﬁosinﬁn will give a contribution in the T—direction (see
Fig.10—1).So:

d d .,
ET=Eﬂosmﬂo (10-1,a)
d d,

_1nd.
-nE%smﬂo (10~1,b)

Fig.10~1 Equivalent Edge Current
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Using Eq.(6—3) and Eq.(6-5) for the fields at the edge of the reflector
results in:

e 2f2rk —jrfd, 9.

Ip= J%e Eﬂosmﬂo (10-2,a)
w227k ~—jrf4;, 4.

Lp=— 22K ~7/4g 5osinfy (10-2,b)

The far—field induced by these edge currents is obtained by using the formulas given
by Silver [1]:

E'(r,0,)=—L K f 1. )P T g1 (10-3,2)
1

H(r,0,)=—ikL1 ¢ T f 1= D)7l T (10-3,b)
1

Inserting Eq.{10-2) in Eq.(10-3) gives:

_Ee- . I ¢ o =+ =

0 | =1tk Tg]akﬂﬂ-rdl (10-4,2)
E 111
- - T¢
[ HY ] : Lo7 o o

Hg =k g ITg KPP gy (10—4,b)
- 79 - ity

where
0T

B'(r,0.9)=| E, 7 (10-5,a)
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—

Or
R(r,04)=| H,7 (10-5,b)
m
H ¢3
and
Ipr T e, ¥
€ e
To=|1p, 8| T8=|12,2 (10—6)
e
Ipy 9 I3 9
From Eq. {10—4), it is possible to obtain:
- Ee - I e
U= ke | T elkopoT g (10-7,2)
L Py L gy
=7
LE? ~H,
I m
_k ~jk T¢ | jkpp T
= e f 1 $ [efkor-T g (10-7,b)
LL= 7y

The total field will be the sum of the field induced by the equivalent edge
current and the direct incident field from the feed in case no blockage occurs:

m i

e
Egl [Eg| [Eo] [Bro
E = Ee + Em + Ei
§ ¢ ¢ ¢
e m i
. J A | /17 ) E
=——j§%e Jkl‘f ITg IT‘?‘ }e.}kpﬂ T+ {0 (10-8)
1L Iy —Lpgl/n Fig
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11. Numerical Results and Discussions

11.1 Offset Configuration

The calculation methods described in the previous chapters have been
applied to the offset configuration shown in Fig. 11-1. X

A A
Qu — 1

z?

D/2

¥po Qy o .

fo
0 —*Y |__‘:< O(F)
f

{
|
!

|
l
|

z
o
Fig. 11-1  Geometry of an Offset Paraboloidal Reflector Antenna

The system parameters used being ¢o=45° and 2=30° which results in
¥po=24.2° and f/D=0.79. The feed has a power radiation function of the form given

by Eq.(2—4) with n=2, and the polarization properties of a Huygens source with x'—

oI y’'—axis polarization.

11.2. Numerical Results

Using GTD (UTD) as described in the previous chapters, the power

radiation pattern in the symmetry and asymmetry planes, were calculated for x’—axis
polarization. They are shown in Fig. 11-2(a) and Fig. 11-2(b), respectively.
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30k Symmetry—plane Radiation Pattern -
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fo = 450, o =300
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x'—axit Polarization, n =2
10 GTD Method -
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=10
—-20
-30F-
—40} .
__50 L 1 1 L 1 1 1
~150 ~100 —50 0 S0 100 150
Fig 11-2(a) Symmetry Plane Far—field Radiation Pattern of an Offset

Paraboloidal Reflector Antenna

GdB) 40

30

T T

Asymmetry—plane Radiation Pattern
D/d = 10, {/D = 0.79
Yo =459, o = 300

Huygens Feed Polarization
x'—axis Polarization, n = 2
GTD Method

—30} -
—40 - .
_50 A 1 ) . AL —_—— 1 1
-150 ~100 —50 0 50 100 150 B{deg)
Fig. 11-2(b) Asymmetry Plane Far—field Radiation Pattern of an Offset

Paraboloidal Reflector Antenna,
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The horizontal axis is the far—field observation angle measured from the
forward—direction of the reflector antenna. The notation <0 indicates the half plane
where ¢=0 for the symmetry plane or ¢=r/2 for the asymetry plane; 8>0 indicates
the half plane where ¢=r for the symmetry plane or ¢§=37/2 for the asymmetry plane.
The vertical axis is the gain function in dB.

From the patterns shown in Fig. 11-2, it can be observed that there are
some discontinuities, especially for the E—plane radiation pattern in the angle region

1100<B8<130° and at Bx—132%(20,,—180°). The discontinuities in the H-plane are
discussed seperately in the next section.

The discontinuities in the region 1109<8<130¢ are caused by the blocking
effects of the reflector on one of the edge diffracted rays. Taking the surface diffracted
rays into consideration, a smoother pattern will be obtained (see Fig. 11-3).

The discontinuity at the angle 8=2¢,,—180° is in the direction of one of the
caustics. Since the GTD (UTD) method fails at caustics, the EEC method is used in
the caustic region. As an example the radiation patterns calculated by GTD (UTD)
and EEC are compared in the near—caustic angle region in Fig. 114 for a antenna
system with D/1=10 and n=2. The transition angle 0y, between the GTD and EEC
for this caustic region is shown in Fig. 11-5 as a function of D/). Again, this angle is
almost inversly proportional to D/A. The transition angle is independent of the n of
the feed function for the same reason as with the symmetrical antenna. The complete
E—plane radiation pattern, including the EEC results for the caustic is plotted in Fig.
11-6.

Due to the focussing properties of the parabolic antenna, the
forward—direction, =0, is also a far—field caustic. Here, the PO is used to calculate
the radiation pattern. The results in this region calculated by the GTD (UTD) and
the PO are given in Fig. 11-7. The calculation shows that PO removes the singularity
in the forward—direction and the PO and GTD patterns agree well away from this
caustic direction. The D/} dependence of the transition angle HGP is shown in Fig.
11-8. Again the dependence of the feed function n is neglectable.

Using the modified GTD (UTD) for the wide—angle region pattern
calculation, and the EEC and PO in or near the caustic directions, the complete

radiation pattern shown in Fig.11-9 for an offset reflector antenna with x’—axis feed

polarization is obtained finally. Fig.11--10 shows similar patterns for y’—axis
polarization. Finally, Fig. 11-11 shows the patterns for an antenna with the same
geometry but a large D/} (=72).
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Fig. 11-3(a) Symmetry Plane Far—field Radiation Pattern of an Offset
Paraboloidal Reflector Antenna
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Fig. 11-3(b) Asymmetry Plane Far—field Radiation Pattern of an Offset
Paraboloidal Reflector Antenna
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Fig. 11-4 Comparison of the Symmetry Plane Far—field Radiation Pattern
of an Offset Paraboloidal Reflector Antenna in the Caustic
Region using GTD or EEC
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Fig 11-5 The Transition angle 05 p as a Function of D /A (n=2).
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Fig. 116  Symmetry Plane Far—field Radiation Pattern of an Offset

Paraboloidal Reflector Antenna Including the EEC Method
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11-7(a)  Comparison of the Symmetry Plane Far—field Radiation
Pattern of an Offset Paraboloidal Reflector Antenna in the
Antenna Forward Direction using GTD or PO
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Fig.11-8 The Transition Angle p as a Function of D/ (n=2).
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Fig. 11-9(a) Complete Far—field Radiation Pattern in the Symmetry Plane
of an Offset Paraboloidal Reflector Antenna
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Fig. 11-9(b}) Complete Far—field Radiation Pattern in the Asymmetry
Plane of an Offset Paraboloidal Reflector Antenna
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Fig. 11-10(a) Complete Far—field Radiation Pattern in the Symmetry Plane

of an Offset Paraboloidal Reflector Antenna (y’—axis polarization)
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Fig. 11-11(a) Complete Far—field Radiation Pattern in the Symmetry Plane
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Plane of an Offset Paraboloidal Reflector Antenna (D/3 = 72)
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11.3 Pattern Discontinuities

As can be seen from the radiation patterns presented in the previous section
discontinuities appear in the asymmetry plane (¢=r/2) at some specific far—field
observation angles. The same is observed in Fig. 11-13, where the radiation pattern
for the plane ¢=x/3 is shown. The discontinuity in the forward direction has already
been explained. The other discontinuities are caused by the fact that at these specific
0—angles, the p c(Eq.(4—4)) of one of the edge diffracted rays becomes infinitely large.
This means that the second caustic of that ray (the first caustic is at the edge) is at
infinity (the far—field region). The GTD method will not apply at this far—field point
because it is a caustic point in the sense the calculated gain function g(8). The
explanation for this is that not a spherical wave but a cylindrical wave originates from
the edge point. Fig. 11-12 shows the position of the second caustic points on the
diffraction cone as a function of ¢ for a certain edge diffraction point. It shows that
the caustic distance becomes infinitely large for a particular ¢—plane.

Edge Point Q

Diffraction Cone

Fig. 11-12. The Position of the Second Caustic. Caustic Line
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Fig. 11-13 Far—field Radiation Pattern of an Offset Paraboloidal Reflector
Antenna in the Plane ¢=1/3.

For the pattern calculation in an arbitrary g—plane, the 8 angles where g
becomes infinitely large can be calculated. The results are shown in Fig. 11—14.
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Fig. 11-14 The Angle @ Where p. Becomes Infinite large $(deg)
as a Function of ¢.
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Since EEC is has been used successfully in this report for far—field caustic
directions where all the diffraction points have pc=w and make in phase contributions
to the far—field in the caustic direction, it is perhaps possible to use a modified EEC
method for the angles where the discontinuities appear. For the standard EEC, the
caustic divergence factor is taken to be:

P
Alpe,sd) = ,@Tﬁm = J_S% (11-1)

The modified EEC-method should take into account any change in the caustic
divergence factor for a part of the edge and modify the equivalent edge current
accordingly.
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12 Conclusions

In the first part of this report, high—frequency asymptotic techniques for
determining the wide—angle far—field radiation patterns of axially symmetrical
parabolic reflector antennas are reviewed. The asymptotic techniques considered were
GTD, UTD, APO and CAPO. The far—field derived with these methods consists of
the field coming directly from the feed, as well as the reflected and diffracted field
contributions from the reflector. It appears that, for calculating the diffracted field
contributions, the two—dimensional diffraction model is sufficient because of the
axial-symmetry of the antenna system. The mathematical formulae describing the
total far—field were derived for the different calculation techniques. By doing this,
some conflicting statements in literature, associated with the validity of the methods
in different regions, have been clarified.

Starting with Keller’s GTD, it is shown that if Kouyoumjian’s modified
diffraction coefficients are used, and if the surface diffracted rays are included,
continuous radiation patterns for the wide—angle region will be obtained when using
this modified GTD (UTD) method.

From a comparison between the radiation patterns calculated by the GTD
(UTD) and APO methods, it was found that they differed in the shadow region
especially. This is explained by the incorrect nature of the edge currents used in APO.
To compensate for this deficit, the corrected APO (CAPQ} was suggested by Knop
and Ostertag [8]. The patterns calculated with CAPO and GTD (UTD) appear to be
almost identical. However, the CAPO method needs more computing time than the
GTD (UTD) method, because more complicated mathematical formulas are involved
in CAPO.

The pattern in the forward- and rear—axial region can be obtained with the
PO and EEC methods, respectively, because the high—frequency asymptotic
techniques will fail in those far—field caustic directions. It was shown that there is a
smooth transition between PO, GTD(UTD) and EEC.

S0, the conclusion from the first part of the report is that complete radiation
patterns can be obtained using of the modified GTD (UTD) for the wide—angle
region, and the PO and EEC in or near the two caustic directions. The results hold
for a symmetrical parabolic reflector antenna configuration, when the effects of feed
and support strut blockage are not taken into account.

The second part of the report deals with the far—field analysis of a reflector
antenna configuration which is free from aperture blockage. It is shown that for such
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an offset—reflector antenna, both the two— and three—dimensional diffraction models
are needed to calculate the complete radiation pattern. For the symmetry plane (¢ =

0°), the two—dimensional GTD (UTD) model which includes the surface diffracted
fields, gives smooth patterns for the wide—angle regions. Besides a far—field caustic in
the forward direction, a second caustic was found in the symmetry plane at a specific
angle which is completely determined by the offset—parameters. For valid results in
these near—caustic angle regions, PO and EEC had to be used. Again, a smooth
transition was found between the three different methods.

For calculating the radiation pattern in the other ¢—planes, the
three—dimensional diffraction model was needed because the incident rays are
generally not normal to the tangent of the reflector edge. Patterns from the
three—dimensional model showed some discontinuities, which were due to the fact
that the caustic distance of one of the two edge diffracted rays became infinitely large.
The angles where this phenomenon occur can be calculated and the corresponding
plots have been shown in this report.

So, from the theoretical analyses and the numerical calculations presented in
the second part of this report, it was concluded that GTD (UTD) is a valid method
for predicting the wide—angle radiation pattern in the symmetry plane of an offset
reflector antenna and it can be used for any arbitrary plane except some specific angle
regions where the caustic distance of one of the diffracted rays becomes very large. In
those angle regions, contributions to the far—field come from a part of the reflector
edge around that diffraction point, therefore it seems likely that a modified EEC
method can be used to obtain a smooth radiation pattern in any arbitrary §—plane.
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