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Abstract 

In the first part of the report, the complete radiation pattern of a 

symmetrical paraboloidal reflector antenna is calculated by high-frequency 

asymptotic techniques. These techniques are reviewed and the diffraction coefficients, 

derived for GTD, UTD, APO, and CAPO, are compared. The angle regions in which 

these methods are valid, are discussed and some associated conflicting statements in 

literature are cleared up. It is shown that GTD (or UTD) is the most successful 

method to calculate the scattered field for reflector antennas in wide-angle (away 

from the antenna axis) regions. To obtain the correct results in the forward- and 

rear-axial region, the PO and EEC method are used, respectively. The results 

obtained agree well with previous theoretical and experimental work. 

In the second part of the report, the wide-angle radiation pattern of an 

offset paraboloidal reflector antenna is calculated using the successful GTD (UTD) 

method. It is shown that there are two far-field caustics in the symmetry plane of the 

offset configuration: one in the antenna forward~irection and one at a specific angle 

determined by the offset configuration. In the latter caustic-region the EEC method 

is used. Outside the symmetry plane specific far-field angles are found where GTD 

fails; this phenomenon is explained with the help of far-field "caustic" points. To 

obtain the complete power pattern, PO is used in the forward axial-region. 
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1. Introduction 

Reflector antennas have been used for about fifty years in radio astronomy, 

microwave communication, remote sensing and satellite tracking. The demand for 

highly sensitive antenna systems asks for an accurate calculation of the wide-angle 
and the rear-direction antenna patterns in order to examine the harm caused by 

possible interfering sources within this angle region. Several methods ([1]-[4]) have 

been introduced to calculate the far-field radiation patterns of reflector antennas. To 

find the angle region where the results obtained by these methods are valid, some 

potential methods are reviewed and compared in this report. These methods are GTD 

[5], UTD [6], APO [7], CAPO [8] and EEC ([9]-[11]). 

The geometrical theory of diffraction (GTD) ([12],[13]) introduced by 

Keller, is an extension of the geometrical optics (GO) by adding diffraction rays to 

the usual GO ray. The corresponding diffracted waves are assumed to follow the laws 

of diffraction and to diverge according to GO laws. Consequently, the points of 

diffraction and the paths of the rays can be found from the laws of diffraction, and the 

amplitude of the fields along the rays can be found from the principle of energy 

conservation. So, this theory not only provides a qualitative description of diffraction 

in terms of the diffracted rays, but also permits a quantitative determination of the 

diffracted field as well. The initial value of the diffracted field at the point of 

diffraction is obtained by multiplying the field vector of the incident wave by the 

dyadic diffraction coefficient, which was first obtained by Keller by comparing his 

diffraction expressions with Sommerfeld's exact solutions for various canonical 
problems. Although the GTD results are not exact solutions to the field equations, 

they are the leading terms of an asymptotic expansion of such solutions for high 

frequencies. GTD has been widely used to calculate the scattered fields of objects 

which dimensions are large compared to the wavelength. However, it gives invalid 

results within a few specific far-field angle-regions. 

Kouyoumjian and Pathak [6] extended Keller'S GTD to the uniform 

geometrical theory of diffraction (UTD). UTD gives diffraction coefficients which are 

also valid in the shadow boundary regions where Keller's theory fails. Moreover, UTD 

gives a compact form of the dyadic diffraction coefficient for electromagnetic waves 
obliquely incident on a curved edge (of a perfectly conducting reflector surface). In 
this report, the term GTD is used for both Keller's GTD and UTD, since the latter is 

basically an extension of the first and they are based on the same principles. 

Physical Optics (PO), simply approximates the currents on the reflector by 
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the currents derived from the application of the GO theory. By evaluating the 

contributions from all parts of the reflector to the field in an observation point, PO 

gives the total field. PO is generally used for the calculation of the main-lobe and the 

first few sidelobes which appear in an angle-region where GTD fails. The wide-angle 

far-field calculation using this method is usually complex and includes time 

consuming numerical integrals. But, if there are stationary points in the integral, so 

that the stationary phase method can be used, the field integrals can be evaluated 

asymptotically. The method using stationary phase integration is called Asymptotic 

Physical Optics (APO). The APO, which was first adopted by Rusch ([7J,[14]) and 

later on extended by Knop [15J, has been considered to be a powerful method for the 
reflector antenna radiation pattern calculation. However, measurements [8J revealed 

that APO gives results with errors up to 6 dB in some angle regions. These errors can 

be explained by the unreliable physical optics (PO) approximation of the currents at 

the edge of the reflector. Therefore Knop and Ostertag [8J derived the corrected APO 

(CAPO) diffraction coefficients by introducing multiplication factors. 

The equivalent edge current method (EEC or ECM) is used to obtain the 

rear-direction patterns of paraboloidal reflector antennas ([9],[10]) which cannot be 

calculated with GTD or APO. Therefore, electric and magnetic currents flowing along 

the edge of the reflector are introduced, which are derived from the GTD edge 

diffraction coefficients. 

In the first part of this report, the wide-angle radiation patterns of axially 
symmetrical paraboloidal reflector antennas are calculated. In Chapter 2 the 

configuration of the reflector antenna and its feed radiation patterns are given. The 

different far-field angle regions are described in Chapter 3, which shows that in each 

region a different calculation method should be used. In Chapters 4 and 5 the GTD 

(UTD) method and the APO (CAPO) method are described. The EEC method is 

dealt with in Chapter 6. In Chapter 7, the calculation methods are compared, using 

the res11lts of a PASCAL comp11ter program, which was written by the first author. 

It is concluded that GTD (UTD) is the most successful method for 

calc11lating the scattered field for reflector antennas in wide-angle regions. To obtain 

the correct results in the forward and rear-axial region, the PO and EEC must be 

used, respectively. To ens sure a smooth transition between the GTD res11lts and those 

of both other techniques, the transition angle-regions are evaluated in Chapter 7. 

The second part of the report deals with the offset paraboloidal reflector 

antenna[20J which is in use for many years. Compared with the front-fed symmetrical 

paraboloidal reflector antenna, the offset configuration is free from aperture-blockage 
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by the feed system and consequently it has a better radiation pattern and VSWR [1]. 

Its main disadvantage is an inherent cross-polarization, which however can be 

eliminated in case of an offset double-reflector antenna configuration. Because of 

these advantages, a lot of attention was paid to the design of the offset parabolic 

reflector antenna. 

However, designing an offset parabolic reflector antenna asks for a more 

complex theoretical analysis, because its asymmetric geometry results in numerical 

calculation difficulties. Most of the analyses for offset reflector antennas are based on 

the work performed by Cook et al.[21], either by making use of the same geometry, or 

by following a similar approach to a different geometry. All these methods can be 

classified as being related to the Physical Optics (PO) theory, by using the 

current-distribution method or the aperture-field integration method. Because these 

methods can only be used in a limited angle region, another method is needed to 

calculate the wide-angle radiation pat tern. 

In this report, the GTD (UTD), which was successfully used for the 

symmetrical antenna, has been modified so that it can be used for the calculation of 

the wide-angle radiation pattern of an offset reflector antenna. The papers published 

on this subject are few [26]. For the analysis of the offset reflector configuration, a 

two-dimensional diffraction model, as used for the symmetrical configuration, is 

generally not sufficient and a three-dimensional model is needed. It appears that, 

because of the asymmetric geometry, one of the caustics which was found for the 

symmetrical antenna to be in the rear--axial direction, now appears in the symmetry 

plane at a certain angle with the rear-axial direction. 
Chapter 8 of this report describes the offset reflector geometry and the 

radiation properties of the feed. The corresponding coordinate systems used for the 
reflector and the feed, and the relation between them are also given in this chapter. In 

chapter 9 it is shown that the positions of the GTD diffraction points are the same as 

the positions of the stationary phase points derived by Ierley et aI.[23]. Further, 

expressions for the diffraction coefficients and the radiation patterns of an offset 

paraboloidal reflector antenna are derived using the GTD (UTD) method. As for the 

symmetrical antenna, PO is used in the forward--caustic direction, and the EEC 

method is used at or near the other caustic direction. The use of EEC in this caustic 

direction is discussed in Chapter 10. The transition angle regions for the three 

calculation techniques are considered in Chapter 11, where also numerical results are 

presented from a PASCAL computer program written by the first author. Finally, the 

conclusions of this research are given in Chapter 12. 
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2. Reflector Configuration and Feed Patterns 

In the first part of this report, the axially symmetric paraboloidal reflector 

antenna will be considered. Due to its symmetry, the radiation properties of such an 

antenna can be described more easily than those of the asymmetric offset antenna, 

which will be dealt with in the second part of this report. It should be noted that 

possible blockage effects of struts and feed are not considered in this study. 

2.1 Confi~uration and Coordinate Systems 

The paraboloidal reflector with focal length f and subtended angle 2a is 
placed in the z>O region of the rectangular coordinate system (see Fig. 2-1). The 

z-axis is the symmetry axis of the antenna and the feed is placed at the focus (F), 

which is positioned at the origin of the rectangular (x,y,z) coordinate system. The 0' 

and the 0" are the intersections of the z-axis with the aperture plane and reflector 

surface, respectively. 

The paraboloid is given by: 

2f 
P = ---==-=--

l+cos¢ 
( ¢$a); (2-1) 

where: (p,¢,O denotes the spherical coordinates to describe the reflection and 

diffraction points on the paraboloidal reflector and (r,O,¢) are the spherical 

coordinates indicating the far-field observation point. 

2.2 Feed Radiation Patterns 

If both Huygens- and dipole feed polarization are considered, the far-field 

pattern of the feed can, for y-polarization, be written as: 

-jkp [ ] ~f(p,M)= Ao_e - J Gf(¢,O U¢sine V + cose r 
p 

(2-2) 



with 
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P(r,O,¢) =---__________ ~ 

Fig. 2-1 

0" 0' ' , 

x 

The Geometry of a Paraboloidal Reflector 

for dipole feed 

for Huygens feed 

for dipole feed 

for Huygens feed 

y 

(2-3,a) 

(2-3,b) 

where P t is the total power radiated by the feed, 1/ the intrinsic impedance of free 

27 
space, k= -A - the wave number and A the wavelength. 



The feed power functions considered are: 

{ 

2(n+l )COSn ( II) 
Gf(II)= 

o 

where n is a positive real. 

9 

(2-4,a) 
(2-4,b) 

The electric field incident to the edge of the reflector is obtained from 

Eq.(2-2) by setting" = a and replacing p by Po, being the distance from the feed to 

the edge of the reflector. 
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3 Far-Field Angle Region Definition 

According to geometrical optics, the direct feed radiation is shadowed by the 

reflector when 0 is less than a (see Fig. 3-1). Therefore, we call the region O<a the 

shadow region, the region O>a the illuminated region, and the angle O=a the shadow 

boundary. caustic 

illuminated Region 

Shadow Boundary.4'~.."...."':"-7" 

\ 

o 
caustic 

Shadow Boundary 

I 

Fig. 3-1 Angle Regions of Far-field Radiation 

Due to the focussing properties of the symmetrical parabolic reflector, the 

forward-direction (0="1") is a caustic of the reflected rays and due to its rotational 

symmetry with respect to the z-axis, both the forward- and rear-direction (0=0) are 

caustics of the diffracted rays from the edge of the reflector. The regions in the 

vicinity of 0="1" and 0=0 directions are named the forward-axial and rear-axial 

region, respectively. 
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All the angle regions and the associated fields are listed in Table I. Here, Ei 

denotes the incident field from the feed, Er denotes the reflected field from the 

parabolic surface and Ed denotes the diffracted field from the edge of the parabolic 

reflector. It is clear that the diffracted fields are significant (especially in the region 

O<a), and therefore, have to be considered for finding the total far-field radiation 

pattern. Table I also includes the techniques which are generally used to calculate the 

far-field patterns in the individual regions. 

Table I Total Field in Different Angle Regions and Techniques 

for Calculating the Far-field Radiation Pattern 

r============~========r========~=============== 

Regions Angle Field Techniques 

rear-axial region 0,,0 Ed EEC 

shadow region O~a Ed GTD or APO 

illuminated region a<O<x Ei+Ed GTD or APO 

forward-axial region O"x Ei+Er+Ed PO 

b============================================== 

In the shadow and illuminated regions, the patterns are calculated by means 

of GTD and APO. In the vicinity of the caustic directions 0 = lr and 0 = 0, where the 

asymptotic methods fail, PO and EEC are used, respectively. 
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4. GTD Analysis of the Radiation from Paraboloidal Structures 

4.1 Introduction 

The GTD ([5],[12],[13]) describes the diffraction phenomena by introducing 

various kinds of diffracted rays, such as single-diffracted rays and multiple~iffracted 

rays. The corresponding diffracted waves are assumed to follow the laws of diffraction 

and to diverge according to GO laws. Consequently, the points of diffraction and the 

paths of the rays can be found from the laws of diffraction, and the amplitude of the 

fields along the rays can be found from the principle of energy conservation. So, this 

theory not only provides a qualitative description of diffraction in terms of the 

diffracted rays, but also permits a quantitative determination of the diffracted field as 
well. In this report, only single~iffracted rays are considered; the small contributions 

of muitiple-diffracted rays being neglected. 

The initial value of the diffracted field at the point of diffraction is obtained 

by multiplying the field vector of the incident wave by the dyadic diffraction 

coefficient, which was first obtained by Keller by comparing his diffraction 

expressions with Sommerfeld's exact solutions for various canonical problems. 

Although the diffraction coefficients are derived for canonical problems, such as the 

diffraction of a plane, cylindrical, conical or spherical wave at a perfectly conducting 

infinite half plane or wedge, the theory can also be used to calculate the field 

diffracted from other objects as long as their dimensions are large compared to the 

wavelength. In that case only the immediate neighbourhood of the points of 

diffraction effectively contributes so that the diffraction can be considered as a local 

phenomenon. 

According to Keller'S GTD ([12],[13]),the contributions to the field in an 
observation point P(r,O,¢) come, in the case of the symmetrical reflector antenna 

(Fig. 4-1), mainly from two points Qi (i=1,2), which are the intersection points of 

the plane containing the lines O'P and O'F with the edge of the reflector (see 

Fig. 4-1). 



P(r,IJ,;) 

Fig. 4-1 

r 

'. 

0" 

13 

" " " 

Geometry of Diffracted Rays 

The coordinates of these points are thus given by: 

y 

(4-1 ,a) 

(4-1 ,b) 

The diffracted field Ed(P) due to the diffraction point Q; can be expressed by [6]: 

(4-2) 

where IT is the dyadic diffraction coefficient, A(si,s1) is the caustic divergence factor, 

si is the distance from the feed to the point of diffraction, s1 is the distance 
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from the point of diffraction to the observation point, and Ei(Qi) is the incident field 

at point Qi. 

Because Qb Q2, P, F and 0' are lying in the same ?-plane, we can consider 

the case as a two dimensional problem and only take a single ?-plane to analyze the 

diffracted fields as shown in FigA-2. 

+-+---..... f-L-=-~~ F 
0' 

Fig. 4-2 Two Dimensional Geometry to Analyze the Diffracted Field 

To be able to calculate the diffracted field, the following procedure is followed; first 

the caustic divergence factor is determined followed by a derivation of the dyadic 

diffraction coefficients. 

4.2 Calculation of the Caustic Divergence Factor 

For diffraction of an incident spherical wave at a curved edge, the caustic 

divergence factor takes the following form [6]: 

<J ~ 
A(pc ,s,)= td(-;:~ 

s1(P c+s1) 
(4-3) 



where 

with 

15 

1 1 
-=------ ( 4--4) 

pc Pei 

Pc 

pg 
-I 
n 

Pei 

-I. 
sl 

Po 

pg sin2Po 

the distance between the caustic at the edge and the second 

caustic of the diffracted ray, 

the radius of curvature of the edge at the diffraction point, 

the unit vector normal to the edge at Qi and directed away 

from the center of the curvature, 

the radius of the curvature of the incident wavefront at the edge 

-fixed plane of incidence which contains the unit vectors 1\ and 

the unit vector T tangent to the edge at Qi, 

the unit vector in the direction of the incident ray, 

the unit vector in the direction of the diffracted ray, 

the angle between 1i and the tangent T to the edge at the point 

of diffraction, 

Eq.( 4-3) is the general formula for the caustic divergence factor. In the 

following sections, Eq.( 4-3) will be worked out for our specific geometry. 

to find: 

Fig. 4-3 shows the upper point Q! and associated vectors in detail. It is easy 

-I-Id ·0 n·s! = Sill ! 

Pei = Po 

pg = a 

Po = ~ 

( 4-5,a) 

(4-5,b) 
( 4-5,c) 
(4-5,d) 

( 4-5,e) 



... 
n 

a 

16 

z 

... 
nrefI 

Po 

a 

Fig. 4-3 Geometry of Incident and Diffracted Rays at Q t 

Inserting Eq. (4-5) in Eq. (4-4), then in Eq. (4-3) results in: 

sina 
Pct= Po smUt' 

po s ina 
SmUt 

4.2.2 A2(PC2 ,S2d ) for the Lower Point Q2 

y 

x 

F 

(4--6) 

(4-7) 

Fig. 4-4 shows the lower point Q2 and associated vectors in detail. For this 

diffraction point, it follows that: 

-+ ~ • • 
n· S2' = sma, 

...... d . 0 n'S2 =-Sm2 

( 4--8,a) 

(4--8,b) 



Pei = Po 

Pg = a 

Po =; 

SB 

Fig. 4-4 

0' 
I 
I 
I 
I 
I 
la 
I 
I 

.... 
n 

17 

z 

Q 

Po 

.... 
nrefl 

-- RB 

F 

-y 

Geometry of Incident and Diffracted Rays at Q2 

x 

Inserting Eq. (4-8) in Eq. (4-4), then inserting into Eq. (4-3) results in: 

sina 
Pc2= - Po sin 02' 

A ( d)- 1 po sinaJ(T/2) 
2 Pc2,S2 -s;a sm02 

4.3 Calculation of the Diffraction Coefficients 

( 4-8,c) 

(4-8,d) 

( 4-8,e) 

(4-9) 

(4-10) 

According to Kouyoumjian and Pathak [6], the dyadic diffraction coefficient 

can be written as: 

(4-11) 



18 

with (see Fig. 4-5): 

?~ the unit vector perpendicular to the incident plane, which 

contains the unit vector !Ii and the unit vector T, 
-:Ida 'P the unit vector perpendicular to the diffraction plane, which 

contains the unit vector !ld and the unit vector T, 

the unit vector parallel to the incident plane and related to !Ii 

and ?~ by ~~ = !Ii x ?~, 
the unit vector parallel to the diffraction plane and related to !ld 

and ?~ by ~~ = !ld x ?~, 

Fig. 4-5 Diffraction at an Edge 
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and it is shown in [6] that ITg can generally be written in the following form: 

with 

and 

( 4-12) 

D. the scalar diffraction coefficient for the soft boundary condition, 

Dh the scalar diffraction coefficient for the hard boundary 

condition, 

ri the angle between the incident ray and the paraboloidal surface 

tangent, which is perpendicular to the plane of incidence, 

rd the angle between the diffraction ray and the paraboloidal 

surface tangent, which is perpendicular to the plane of 

diffraction, 

rdrr i 
= 2cos2(-t-) 

ro 
F(z)= 2j Ii exp(jz) f exp(-jr2) dr involving a Fresnel integral, 

Ii 

denote the distance parameters defined as: 

Sd(Pei+Sd) P 1 iP2 iS i n 2fJo 
Li=------------------

Sd(Pe,+sd) P I'P2'S i n2fJo 
L'= -----------

(4-13) 

( 4-14,a) 

(4-14,b) 

Pli,2 the principal radii of curvature of the incident wavefront at 

Qh2, 

P 1',2 the principal radii of curvature of the reflected wavefront 

at Qh2, 
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Per given by: 

1 1 (.... ....) (......... ) 2 nrefl·n . Sl·nrefl 
(4-15) -=--------

with rirefl as the normal unit vector to the paraboloidal surface at Q i. 

Now, the general formulae for the dyadic diffraction coefficients have been 

presented. In the following sections the coefficients for the reflector geometry under 

consideration will be derived. 

4.3.1 Diffraction Coefficients for the Upper Point 0, 

For the upper diffraction point Q h Fig. 4-3 shows that: 

. :r-a 
rl=2 

d_ a+3:r ° q-~- 1 

( 4-16,a) 

(4-16,b) 

(4-16,c) 

(4-16,d) 

Further, it is easy to see that Li, 1', cos(rl~rli) and cos(r 1d!rli) can be 

replaced by Po, lD, _sin(aij"0l) and cos(~), respectively, due to the focusing properties 

of the rotational symmetric parabolic reflector surface. This means that the 

arguments of the two functions F(z) in Eq.(4-12) can be written as: 

kLia(rLri)=2kposin2(~) ( 4-17) 

( 4-18) 
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So, Eq.( 4-12) for the scalar diffraction coefficients becomes: 

D.= e-j(1:j4) {F[2kPOSin2(T)]TF[2kLrCOS~]} 
li 2.,t2TK sin(Y) cos(+) 

( 4-19) 

The function F(z) will approach one if z ---> ID (see Fig. 4--6). Since in the 

case 8fT (away from the axial direction), z=2kLrCOs2(gl) approaches infinity, the 

function F( z) can be approximated by one. 

'.0 ." 
" ~ 

0.' -" "" '" '" "0 
,. "0 

~ 

'" •• >0 '" - . 
·2 r!lIlo) • 2 J.;.Q"o .re •• f,·, y"T -" "' '" "" •• ..IiiLo -?", ..<:: 

'" A. 
~ " .' '0 

'liDO. 0.01 o. '.0 

KLa 

Fig. 4--6 Modified Fresnel Transition Function [6] 

Then Eq. (4-19) becomes: 

( 4-20) 

Now, the scalar diffraction coefficients have been obtained. But, the vector 

property of the fields still have to be considered. This can be done by expressing the 

incident and diffracted fields in terms of two components according to the two 

orthogonal directions defined in Fig. 4-5: 

( 4-21,a) 

(4-21,b) 
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Inserting Eq. (4-21) in Eq. (4-2), and then comparing it with Eq. (4-11) 

shows that the relation between the incident fields and the diffracted fields can be 

written in the form [6]: 

(4-22) 

For the symmetrical antenna configuration considered in this part of the 

report, the incident radiation from the feed is normal to the edge of the paraboloid. 

So, fio equals 'f /2 and the directions of the different vectors can be shown as in 

Fig. 4-7, where the incident fields are projected on the plane containing 1i and 1, and 

the diffracted field from diffraction point Qi is projected on the plane containing sd 
and 1. Since these two planes generally do not coincide, the projection of all vectors 

onto the plane through the diffraction pOint (Qi) and perpendicular to the tangent 

(1) of the edge at Qj are drawn in Fig. 4-8. The figure, which will be used later on to 

determine the relations between the incident and diffracted field vector components, 

shows the relation between the two planes as given in Fig. 4-7. 

Plane 1 

Ed 
Po 

Qi 

.... 
S' 

E I 
Po 

Plane 2 

Fig. 4-7 Diffraction at Edge (two dimensional in plane parallel to 1 at Qi) 
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Plane 1 

Qi 

E i 
¢O 

Fig. 4-8 Diffraction at Edge (in the plane perpendicular to T at Qi) 

Plane 2 

Considering the diffraction point on the edge of the paraboloidal reflector 

the following relations are found for the vector components of the incident and 

diffracted fields at the diffraction point Q I (see Fig. 4-9): 

E d_ Ed 
¢I-- (JOI (4-23,a) 

E/=-E/ 
I 0 I 

(4-23,b) 

E i -E i 
(JOI- f¢1 

( 4-24,a) 

E i -E i 
¢Ol- fOI 

(4-24,b) 

(4-25) 
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[Ef/] e-jkPoJ [COS¢l] ~ = Ao Gf(a) 
EfO' Po U sin¢l 
1. 0 

and using the far-field approximation: 

Sl~ r 

Sl~ r-pocos(a-Ol) 

the field in P, diffracted at Q h yields: 

for amplitude 

for phase 

4.3.2 Diffraction Coefficient for the Lower Point Q 2 

(4-26) 

(4-27,a) 

(4-27,b) 

( 4-28) 

Proceeding similarly as in the previous section for Q2, it is possible to find 

(see Fig.4-4): 

. 1'-a 
r2'=T (4-29) 

r2d=r+~ (02<T-) (4-30,a) 

B O-T (02)T-) (4-30,b) 2+-r 
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Fig. 4-9 
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So, the scalar diffraction coefficients for Q2 are obtained as: 

with 

e-j(;r/4){F[2kPoSin2(~)1 I} 
Ds= fO T~ 

h 2/FiK sin(~) cos(t) 

1 

fO= 0 

-1 

(8 2<9) 

(T~ 02~~) 

(02)~) . 

( 4-31,a) 

(4-31,b) 

( 4-32,a) 

(4-32,b) 

(4-33) 

( 4-34) 

The f 0 is introduced because GTD assumes that D g at the diffraction point 

Q2 changes its sign when the observation point moves from the region (02< ;r2a) to the 

region (0 2);), Furthermore, the single--diffracted ray from edge point Q2 does not 

contribute to the scattered field in the region (;r2a~02~~) because the ray from Q2 to 

the observation point P is blocked by the reflector. 
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From Fig. 4-9 it follows for Q2 that: 

and using the far-field approximation: 

S2~ r 

S2~ r-pocos(a+02) 

the field in P, diffracted at Q2, yields: 

for amplitude 

for phase 

(4-35,a) 

(4-35,b) 

(4-36,a) 

(4-36,b) 

( 4-37) 

( 4-38) 

( 4-39,a) 

(4-39,b) 
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(-HO) 

4.4 The Total Field 

The total field is the sum of the fields originating from the diffraction points 

Q h Q2 and the direct field from the feed. 

Because the observation point P(r,O,¢) is a far-field point and P, Qi and F 

are lying in one ¢-plane, it is possible to write: 

01~02~O, 

¢1 = ¢2 = ¢, 

Then, the total field can be written as: 

( 4-41,a) 

(4-41,b) 

=AOe-jkr!l r a slOa[{F[2kPOSin2(~)lT 1 }oe-j[2kPoSin2(a2o)+il 
r 2" ... POSIO sin(~) cos (g) 

+fo{F[2kPoSin2(~)lT 1 }oe-j[2kPOSin2(~)-il] [ CoS¢] 

sin(~) cos (g) U asin¢ 

+j Gr(O) [ cos¢ ]u[(o-a)l] (4-42) 
U OSIO¢ 
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Eq. (4-42) gives the complete field radiation in all the regions excluding the 

directions of 0=0, 1f and their vicinities. Radiation patterns calculated using the above 

formula are shown in Figs.4-10(a) and 4-10(b) for the E-plane and the H-plane, 

respectively. The aperture diameter of the reflector is 1.5 meters, the half subtended 

angle a is 600 degrees and the operating frequency of the antenna is 3 GHz. The 

observation angles 9=180-0 in the following figures are measured from boresight as 

commonly done in literature. 

It can be seen from Fig. 4-1O(a) that there are discontinuities at 0=; and 

O=T. These discontinuities are caused by the EO, defined by Eq.(4-34) and used in 

Eq.( 4-42), which accounts for the blocking effect that the reflector has on the lower 

diffraction point Q2. Since the single edge-diffracted field is blocked by the reflector, 

the surface diffracted field from the back surface of the reflector gives an important 

contribution to the far-field in this region. Therefore, the surface diffracted field has 

to be calculated in that region to obtain the continuous radiation patterns. 
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4.5 Modification of GTD 

To calculate the contributions from the surface diffracted field, we can 

replace the edge diffraction coefficient for Q2 by the surface diffraction coefficients in 

the blocked angle region (see Fig. 4-11). It is stated in [12] that the field diffracted 

around a curved surface decreases exponentially with A, and is weaker than the field 

diffracted by an edge where the diffraction coefficient is proportional to ,fJ.. 
Instead of using the GTD edge diffraction coefficient, the GTD diffraction 

coefficients are used, multiplied with Rse [25]: 

(4-43) 

to obtain the surface diffracted field. As indicated in [12] the Rse shows that the 

surface diffracted field is weaker than the edge diffracted field, because: 

eA_l 
lim ==0 
A"'O [X 

The sin function is employed analogous to the correction factor in APO (Knop and 

Ostertag [8]). Furthermore, sin((O - T)/(~)) is continuous even at the angles 0==; 
and O==T. SO the Rse is choosen equal to 1 outside the blocked region and gradually 

changes from the edge diffraction coefficient (proportional to [X) to the surface 

diffraction coefficient (proportional to eA -1) in the region T < 8 < ;. 
The E-plane radiation pattern obtained by this modified GTD method is shown in 

Fig.4-12, for the same antenna configuration as in Fig. 4-10 ( a). 

4.6 Comparison with literature 

A comparison of our formulae with those of Safak [17] shows that some of 

his equations (e.g. the fO) differ from ours. However, the pattern presented by Safak 

agree with our pattern as shown in Fig. 4-12. 
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5. APO Analysis of the Radiation from Paraboloidal Structures 

U Introduction 

A technique known as Physical Optics (PO), simply approximates the 

currents at the reflector by the currents calculated from the theory of GO. By 

evaluating the contributions from all parts of the reflector to the field in an 

observation point, PO gives the total field. The accuracy of this method is determined 

by the accuracy of the currents approximated by the theory of GO. The far-field 

calculation using this method is usually complex and includes time consuming 

numerical integrals. Only for some special reflector current distributions can 

closed-form expressions be derived and the integrations carried out analytically. But, 

if there are stationary points in the integral so that the stationary phase method can 

be used, the field integrals can be evaluated asymptotically. The method using 

stationary phase integration to calculate the PO field asymptotically is called 

Asymptotic Physical Optics (APO). 

Rusch ([7],[14]) first used the APO method to calculate the scattered field 

from paraboloidal reflector antennas and gave the corresponding diffraction 

coefficients. This method will be used throughout this chapter. 

It should be noted that the expressions for the far-field presented in this 

chapter do not include the direct radiation from the feed. 

5.2 Current Calculation by GO 

According to geometrical optics, the induced currents on the reflector are: 

ill urn i nated surface 

shad 0 wed surface 

with 

(5-1 ,a) 

(5-1,b) 

(5-2) 
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Eq. (5-1), shows explicitly that the currents at the back of the reflector are 

assumed to be zero while they are nonzero at the front of the reflector. So, there has 

to be a current discontinuity at the edge of the reflector. For the reason of notation 

economy, Eq. (5-1,b) has been ignored in the following section. 

Substitution of Eq.(2-2) into Eq.(5-2) and then into Eq. (5-1,a), yields for 
an y-polarized feed with Huygens source polarization: 

(5-3) 

Transforming js from the (p,¢,O coordinate system to the (x,y,z) coordinate 
system gives: 

·k 
j 2e-JP ........ :!1 
.(x,y,z)=Ao [cx x + cy y + Cz zJ (5-4) 

qp 

with 

cx= 0 

cy= ~)cos(~) 
Cz= -~)sin(;)sinr 

5.3 Field Integration by the Stationary Phase Method 

The induced current distribution results in a far-field radiation pattern, 

which is given by the following formula [2J: 

E(r,O,¢)= -j4~i e -jkr ff [j.- (j •. r)"iJ Jk(j1-1)ds 
Srefl 

(5-5) 

For the paraboloid geometry of Fig. 2-1, Eq. (5-5) can be expressed in terms of two 
components as: 
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[EO] = -jMe-jkrff [ls.~ Jk(p.i)ds 
E¢ Srefl ls·~ 

(5-6) 

where 

2e-jkp 
ls· -0 =Ao Co 

~p 

(5-7,a) 

-jkp 
18 • ~ =Ao 2e c¢ (5-7,b) 

~p 

p-p . i = p( l-sin ¢cos e sin Ocos ¢-sin ¢sin e sin Osin ¢-cos ¢cos 0) (5-7,c) 

dS=~ 
cos ( ) 

(5-7,d) 

with 

cO= cxcosOcos¢ + cycosOsin¢ - czsinO (5-7,e) 

c¢= -cxsin¢ + cycos¢. (5-7,£) 

Taking: 

·M -jkr A 2 Co 
GO=-J e o-~ 

H ~ pcos( ) 
(5-8,a) 

- - e 0-G - ~ -jkr A 2~ 
¢ H ~ pcos( ) 

(5--8,b) 

t(x,y)= p-p.i, (5-8,c) 

Eq. (5-6) can be written as: 
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EU(r,O,¢)= ff G oe-jkt(x,y)dxdy (5-9,a) 

s re f I 

Elr,O,¢)= ffG¢e-jki(x,y)dxdy. (5-9,b) 

s ref I 

Using Eq.(5-7,c), Eq.(5-8,c) can be writ en as: 

t(x,y)= J {[ xcos£ - 2fsin£cos¢ ] \ [ YCOS£ _ 2fsin£sin¢ ] 2} (5-10) 

For the integral form of Eq. (5-9), it has been proven that if the real and 

imaginary parts of the integrand are fast oscillating while GO and G ¢ are smoothly 

varying functions, the major contributions to the integral come from points 

(x,,; ,y,,;) where the phase function t(x,,; , y,,;) is stationary. The method for 

calculating the contributions from these stationary points is the stationary phase 

integration method. 

Because both requirements are fulfilled away from the caustic directions 

(0=0,:r), it is possible to use the stationary phase integration method for the integrals 

of Eq.(5-9). Because the stationary points of the first kind give a crude solution, i.e., 

the geometric optics solution [14], the stationary points of the second kind are used, 

satisfying [15]: 

where 

ilt ilt ilt lit 
-----=0 
ilx 8y iIy ilx 

t(x,y)= x2 + y2 - a2 = 0 

is the edge of the reflector. 

(5-11) 

(5-12) 
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After inserting Eq. (5-10) and Eq. (5-12) into Eq. (5-11), two stationary 

points of the second kind are found: 

[ 
XSi] [COS~i] 
Ysi = a sin~i 

where 

(i=1,2) (5-13) 

(5-14,a) 

(5-14,b) 

These points coincide with the GTD diffraction points (see the GTD 

diffraction points of Eq. (4-1)). 

In order to be able to calculate the integrals of Eq. (5-9), we must first 

change the variables in such a way that the origin of the coordinate system is at the 

stationary point(xs,i , Ys,i) and the x'-axis 

circle (shown in Fig. 5-1) via : 

x . Yo' 
X = Xsi - -ll x'+ .L...§.1 y' a a 

v .. , X· 
Y = Ysi - aL...li.! x'- -2.! y' a a 

y 

directed to the center of the aperture 

(5-15,a) 

(5-15,b) 

Fig. 5-1 Coordinate System Transformation 
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A second transformation is used: 

so that: 

(y")2 
x' =X" +~ 

x . Vo' X . 
X = Xsi - -B x"+ L..!.! y" - ~ (yllp a a .Ga-

Y = Ysi - III x"- Xsi y" _lll (y")2 a a 2a2 

(5-16,a) 

(5-16,b) 

(5-17,a) 

(5-17,b) 

Inserting Eq. (5-17) and Eq. (5.13) in Eq. (5-10), gives the following phase function: 

4ft (x" ,y" )=4fi (Xsi,y si) +x" [±4fsin 0-2a( 1 +cos 0)1 + (y") 2[ ± 2fs ~ nO] (5-18) 

where 

4ft (Xsi,y s i)=4f2( 1-cos 0)'f4afsin 0+a2( 1 +cosO) (5-19) 

the minus sign in the formula applies to for the upper stationary point (XSi,ySi) and 

the plus sign to the lower stationary point(xs2,Ys2). 

Equation (5-18) can be written more compactly as: 

t(X",y")= t(Xsi,ysi) + (X")t1O'; + (y")2t02,; (5-20) 

where 

t 10';= ± sinO - ~(1+cosO) (5-21,a) 

(5-21,b) 

and 
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E ¢)r, O,¢)"G lxs;,ys;)e -jkt(xs;,ys;) foro e -jkt IO,;x"dx" f"' e -jkt 02,i(y")2 dy" (5-22,b) 
-w 

Evaluating the integrals: 

(5-23,a) 

"' "kX" 1 J: e-J Y 10,iX dx"=--
o jkt 10,; 

(5-23,b) 

then 

(5-24,a) 

(5-24,b) 

where 

t (XSI,y. I)=P 0-( asin O+zspcos 0) (5-25,a) 

t (Xs2,y S2)=P 0+( asin O....zspcos 0) (5-25,b) 

G ( ) "_~ -jkr A 2 Co o Xsi,y.; = -J4iI e 0 -
n 1/ pocos(~) 

(5-26,a) 
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G ( ) .~ -jkr A 2 c¢ ¢ Xsi,Ysi = -J4fi e 0 -
H ~ pocos(~) 

(5-26,b) 

and 

co= (Gf{il)sin¢( cos~osO ,. sinOsin~ ) (5-27,a) 

c ¢={Gf{il)cos¢cos~ (5-27,b) 

zsp= pocosa (5-27,c) 

So, inserting of Eq. (5-25), Eq. (5-26) and Eq. (5-27) in Eq. (5-24) gives 

the far-field radiation patterns from the induced currents at the reflector: 

{
_ e-j( .... /4)[2(COS~OS O+sinOs i n~)/cos~]} 

2y'2fi{ sinO-(l!~~~a)(1+cosO) 
(5-28,a) 

E (r,O,¢),,{Ao[Gf[ii)Cos¢e-jkPo} {e-jkr~k(asino+zsPcOSO)}{~J a} 
¢d Po r sinO 

(5-28,b) 

EO (r,O,¢)O::{Ao[Gf(!!)Sin¢e -jkp o}{e -jkre -jk(aSinO-ZsPCoso)}{ej( .... /2) j . a } 
,2 Po r smO 

{
_ e -j ( .... /4) [-2( cosfco s O-s inOs i n~)/cos~]} 

2y'2fi{ sinO+(l!~~~a) (1+cosO) 
(5-28,c) 
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E (r,o,¢),,{AofGfDl)COS¢e -jkpo}{e -jkre -jk(aSinO--ZsPCoSO)}{~( .. /2) J a } 
¢,2 Po r smO 

(5-28,d) 

These results agree with those given by Rusch [7]. Using Eq.(5-28), the 

radiation patterns have been calculated and shown in Fig. 5-2(a) and Fig. 5-2(b). 

Although the direct feed radiation is not included in the formulae for calculating the 

radiation pattern, it has been included in the patterns shown in the following figures. 

It is obvious that there is a singularity at the shadow boundary O=a. 

Later on, Knop [15] extended Rusch's formulas to include the shadow 

boundary region. These formulas will be derived in the next section. 
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5.4 APO Method for the Shadow Boundary Region 

To remove the singularity at the shadow boundary of Rusch's results for the 

paraboloidal reflector, Knop [15] used the following transformations instead of the 

ones given by Eq. (5-16): 

and 

(X")2 (y")2 
x'= x" + +a- + 2a 

y'= y" 

Substitution of Eq.(5.13) and Eq.(5-30) in Eq. (5-10) gives: 

(5-29,a) 

(5-29,b) 

(5-30,a) 

(5-30,b) 

t(x" ,y")=t (Xsi,ySi)+X"t 10,i+(X")2t 02,;+(y")2t 02'; (5-31) 

By including a second-order term (x")2t 02,i in the phase function of 

Eq.(5-20), Knop obtained the fields: 

[
E 0';] =Ao e -jkpo-jk( nasinO--2spCOsO) [jae T j~ 1"/4)] 
E~ . por 11 SInO 

~" 

(5-32) 



where 

tan( 0/2)=a/(2f) 

C±=C(W±) 

S± =S(W±) 
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W±=! Jkas~nO [h ctg(0/2)/ctg(a/2)]! 

rX lr 
C(x)= Jo cos(:zx2)dx 

(0 ~ 0) 

(0<0) 

(5-33,a) 

(5-33,b) 

(5-33,c) 

(5-33,d) 

(5-33,e) 

(5-33,f) 

(5-33,g) 

By factorizing out the field incident to the edge, the phase factor and the 

caustic divergence factor, the remaining items of Eq.(5-32) can be identified as the 

physical optics diffraction coefficients: 

These physical optics diffraction coefficients, first obtained by Knop, have 

no singularity at the shadow boundary (0=0) and are therefore continuous at and 

through the shadow boundary region. Fig. 5-3(a) and Fig. 5-3(b) show the E-plane 

and the H-plane radiation pattern calculated by means of Knop's improved formulas. 

5.5 Corrected APO (CAPO) 

Measurements presented by Knop and Ostertag [8] revealed that APO gave 
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errors up to 6dB in the shadow region (about 130o~B~175o in their case). Since there 

are currents at the front of the reflector and no currents at the back of the reflector 

according to GO theory, a current discontinuity must occur at the edge of the 

reflector. Knop and Ostertag [8] suggested that the incorrect nature of the GO edge 

currents used in APO is the cause of errors in the far-field calculation and this was 

proved by measurements. They applied Sommerfeld's exact results and the PO results 

to the equivalent diffraction problem for a half plane, and gave the ratio of 

Sommerfeld's exact results to the PO results in order to correct the APO results. 

where 

These ratios are expressed by [8]: 

. rd r i (S] = [Eexact/Epo] = [I Sl n( T.)/cos( z:) I] 
Kh Hexact/Hpo I cos(~)/sin(+) I 

(5-35) 

Eexact 

Hexact 

denotes Sommerfeld's exact results for the electric field parallel 

to the edge of a half plane, 

denotes Sommerfeld's exact results for the magnetic field 

parallel to the edge of a half plane, 

denotes the PO results for the electric field parallel to the edge 

of a half plane, 

Hpo denotes the PO results for the magnetic field parallel to the 

edge of a half plane, 

ri,rd defined as before (see Fig. 4-3 and Fig. 4-4). 

By multiplying the APO diffraction coefficients with these ratios, the 

corrected APO (CAPO) diffraction coefficients will be obtained. Using the CAPO 

diffraction coefficients instead of the ones of APO, a new set of radiation patterns can 

be calculated. If a feed with an omnidirectional power pattern (n=O) is assumed and 

the direct feed radiation is not included, the radiation patterns shown in Fig. 5-4(a) 

and Fig. 5-4(b) are obtained, they agree with the patterns calculated by Knop for 

such an antenna system in [8]. Comparing CAPO with the measurements found by 

Knop and Ostertag [8] showed that the CAPO prediction agrees with measurements 

even in the shadow region. The radiation patterns found with CAPO for our antenna 

system have also been calculated and shown in Fig. 5-5(a), and Fig.5-5(b). 
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6. Caustic Region Analysis by EEC 

lLl Introduction 

The rear-axial direction of the symmetrical parabolic reflector must be one 

of the caustics since diffracted rays from the whole edge of the reflector effectively 

contribute to the field on the symmetry axis. Therefore, we cannot use the GTD 

method which only takes into account two edge points (see chapter 4). Now, a 

technique, named the Equivalent Edge Current Method (EEC or ECM [9]-[11]), is 

employed to calculate the field in the rear-direction. The EEC method uses both the 

diffraction theory (to obtain the equivalent edge currents) and radiation field integrals 

(to sum the contribution from the edge) in order to obtain the total field in the 

rear-axial region. 

6.2 Equivalent Edge Current Calculation 

Again we must assume that the paraboloid is in the far-field zone of the 

feed and the feed has the same pattern form as in Chapter 2. For an y-axis polarized 

feed with the polarization properties of an Huygens source, the following holds: 

-jkp 
Er(p,¢,O=Ao _e - [{Gf(1)sine ~ + {Gf(1)cose Z] 

p 

-jkp 
Itr(p,¢,O=Ao-

e -[-{Gf(1)cose ~ + {Gf(1)sine Z] 
~p 

The incident fields on the edge of the paraboloid are: 

e -jkpo 
Er(po,a,O=Ao [fGf\a)sine ~ + {Gf\a)cose Z] 

Po 

e-jkpo 
Itr(po,a,O=Ao--[-fGf\a)cose h fGf\a)sine Z] 

~ Po 

(6-1,a) 

(6-1,b) 

(6-2,a) 

(6-2,b) 
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Using the GTD diffraction coefficients presented previously, the diffracted 

fields can be expressed by (see Fig. 6-1): 

(6-3,a) 

(6-3,b) 

Due to the relation between the diffracted field components: 

(6-3,c) 

and the relation between the incident field components: 

(6-3,d) 

it is possible to derive: 

where 
d i 

E¢ , Ef~ 
the 

d i 
EO' Ef¢ 

d . 
H¢, H;~ 

the 

(6-3,e) 

are the electric fields in the ¢-direction parallel to the edge of 

reflector, 

are the electric fields in the O-direction perpendicular to the 

edge of the reflector, 

are the magnetic fields in the ¢-direction parallel to the edge of 

reflector, 
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are the magnetic fields in the O---direction perpendicular to the 
edge of the reflector, 

1 

VB 
is the caustic divergence factor derived from Eq. (4-7), or 

Eq. (4-10), in the rear---direction 0 ... 0, Pc'" OJ. 

It is possible to obtain any field with knowledge of two out of the four 

components EO' E¢, HO and H¢ through the relation given by the Eq. (5-2), E¢ and 

H ¢ are used in the calculations. 

Further, the electromagnetic far-field produced by an infinite long electric 

current filament I along the z-axis of a rectangular coordinate system (see Fig. 6-2) 

is given by: 

E = - kI JsJk e-jks 
z ~ 1f S 

for s>~ (6-4) 

H = -kI Jsjk e-jks 
¢ .,. s 

where s is the distance from the current filament to the observation point. 

y 

Fig. 6-1 Diffracted Rays in the Rear Caustic Direction 
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If there is an electric current I~ and a magnetic current Ie on the edge and if 

these currents can be locally taken as infinite straight line currents (shown in Fig.6-2) 

by considering them as local diffraction phenomena at high frequencies, the electric 
e . m . 

current I~ and the magnetic current I~ on the edge ofthe reflector will be: 

(6-5,a) 

(6-5,b) 

z 

y 

x 

Fig. 6-2 An Infinite Filament I Along the z-axis 

Comparing Eq. (6-5) with Eq. (6-3) and using the equivalence conception, 
e 

it is possible to see the diffracted fields as induced by a proper electric current I~ and 
m 

a magnetic current I e on the edge. The currents, called the equi valent edge currents 

(see Fig. 6-3), are given by: 



Half-plane 

..... 
S' 
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(6-6,a) 

(6-6,b) 

I 

(a) Diffraction at the Edge of 

Half-plane 

(b) Equivalent Edge Current 

Sources 

Fig. 6-3 Equivalence Conception 

6.3 Edge Current Integration 

The field in the rear-axial region is obtained by integrating the fields 

produced by the equivalent currents on the edge of the reflector: 

Ee(r,O,~)= -h~i e-jkr frt~-(t~.1)r']~kPo(p.1)dl 
1 

(6-7,a) 

Itm(r,O,~)= -jHi e -jkr f [t(-(t~ .1)11~kpo(P .1)dl 
1 

(6-7,b) 
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The vectors Ee(r,O,¢) and gm(r,O,¢) of Eq. (6-7) can also be written in the 

form: 

(6-8,a) 

(6-8,b) 

where 

kpo(p· r)= kposinasinOcos( ¢-O + kpocosacosO = Teos( ¢-O + 0 (6-8,c) 

and 

[E~ =~ [ H~ =-j4~re -jkr fa 2:1" [ mI~COS~ H) ] e-i[ Tcos(¢-O+oJad( (6-8,d) 
E~ -H~J -I(cosOsm(¢-O 

Substitution of I~ and I( in Eq. (6-8) yields: 

where 

-jkpo 
Eo= Ao::

e: ... __ 
po 

(6-9,b) 

(6-9,a) 

(6-10,a) 

(6-10,b) 
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(6-IO,c) 

For the rear-axial direction 0=0, the modified Fresnel integrals in Dh and 

Ds equals unity (see Fig. 4-6); so, the integrals can be expressed in the form of Bessel 

functions: 

(6-11,a) 

(6-11,b) 

This finally results in the total field in the rear-axial direction: 

Here, we will keep the angle 0 in the Eq. (6-12) because Ratnasiri et al. [18] 

found that Ds and Dh are slowly varying functions in the rear-axial region and the 

formula can also be used to calculate the field in the angel region close to the 

rear-axial direction (0=0). 

Eq. (6-12) holds for all ¢ angles. The E-plane (¢=;) and H-plane (¢=O) 

radiation patterns, calculated with EEC are shown in Fig. 6-4(a) and Fig. 6-4(b), 
respectively. 
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7. Comparison of the Different High Frequency Asymptotic Techniques 

In the preceding sections, the GTD (UTD), APO (CAPO) and EEC 

methods were used to calculate the wide-angle radiation pattern of a symmetric 

parabolic reflector antenna. Therefore, it is interesting to compare the results 

obtained by these methods. 

7.1 Comparison of GTD and UTD 

As mentioned before, Kouyoumjian's UTD [6] is an extension to Keller's 

GTD [12] and they are based on the same principles. Therefore, both methods are 

generally called GTD, although they do have differences. In this part of the report, we 

will compare both methods and emphasize the principle differences between them, in 

order to distinguish between them we will use the terms GTD and UTD in the 

following part of the report. 

For the sake of a comparison, we will repeat the expressions for the 

diffracted fields that are obtained when using these methods. The expression given by 

Keller in [12] for the diffraction of a plane scalar wave at a straight edge of a half 

plane is: 

1 -jkr 
Ue=D·Ui·-· e 

II 
(7-1) 

where Ue is the scalar diffracted field, U i is the scalar incident field at the diffraction 

point, r is the distance from the diffraction point to the observation point, and D is 

the diffraction coefficient given by: 

-j(,,-j4) 1 1 
D ~ = - e . [ riLrl T rd+r l ] 

2.fiTkslnJJo cos-r cos-r 
(7-2) 

The expression given by Kouyoumjian [6] for the diffracted field is: 

(7-3) 
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where all the parameters are those defined in Chapter 4. 

It is obvious that Eq. (7-1) is a scalar formula and Eq. (7-3) is a vector 

formula. So, the latter can be used to calculate field vectors. Due to the vector 

property of Eq. (7-3), the diffraction coefficient IT in Eq. (7-3) takes the form of a 

matrix. In the ray-fixed coordinate system [6], the matrix IT reduces to a diagonal 

dyadic matrix, having two non-zero elements: Ds being the diffraction coefficient 

under the soft boundary condition and Dh the diffraction coefficient under the hard 

boundary condition given by: 

as in Eq. (4-12) with 

F(z)=2jy'Z exp(jz) J ro exp(-jr2)dr, 
y'Z 

Li and L r are the distance parameters. 

(7-4) 

(7-4,a) 

(7-4,b) 

(7-4,c) 

The only difference between Ds,h from Eq. (7-2) and those given by Eq. 

(7-4), is in the modified Fresnel integral which was introduced by Kouyoumjian to 

remove the discontinuity of the edge diffraction coefficients given by Keller. It is 

shown in Fig. 4-6 that the integral F(z) .... 1 when z .... roo So, Eq. (7-2) becomes (7-4) 

when the observation point concerned is away from the forward-direction (0=.,-) and 

shadow boundary (0= a). 
Due to the vector property of UTD and its validity for all wide-angle 

regions, the UTD formulas have been used to calculate the radiation patterns in 

Chapter 4. 

7.2 Comparison of APO and CAPO 

Since both APO and CAPO are derived in detail in Chapter 5, it is possible 



59 

to make a comparison between the results calculated by APO and by CAPO. They 

are plotted together in Figs. 7-1(a) and 7-1(b). 

It can be seen that there are regions where the difference is great. CAPO is 

supposed to correct the errors in APO, which is supported by measurements [8]. 

7.3 Comparison of GTD (UTD) and (C)APO 

7.3.1 Diffraction Coefficient Comparison of GTD and APO 

Finally, for ease and clarity, Keller's GTD and Rusch's APO diffraction 

coefficients are compared (because Kouyoumjian's GTD and Knop's APO affect only 

the fields at or near the shadow boundary of O=a). 

After deleting the direct radiation from the feed, the GTD results from 

Eq.(4-42), can be written as: 

[EO~]= Ao e-
jkpo j Gf(a)[ UaSin¢] [!IT] e-jkr.~kpocos(a-O) 

E d P COS" r~ smO 
~ 1 0 ~ 

{ 
-j(:r/4) [ 1 1 ]} 

e 2,f2iK sin( ~) '" cos (g) 
(7-5,a) 

(7-5,b) 

From the above formulas it is easy to extract the diffraction coefficients: 

e-j (:r/4) [ 1 1 ] 
Dsgtd,l= -

2/EK sin(¥) cos(~) 
(7-6,a) 
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-j(~/4) ( 1 1 ] e 
Dhgtd,l= a-O + ~ 

2.piK sine 2) cos(~) 
(7-6,b) 

(7-6,c) 

(7-6,d) 

The diffraction coefficients from the APO method can also be derived from 

Eq. (5-28) easily: 

-j(:f/4)[ 2 ] e 
Dsapod= - sma 

2.piK sinO-{1+cosa)(1+CosO) 
(7-7,a) 

_ e-j(:f/4)[2(COS~OS O+sinOs i n~)/cos~] 
Dhapod- - ----'=---:S'l-=n--=a:-----='----= 

2y'li1( sinO-(1+co sa)(HcosO) 
(7-7,b) 

-j( r/4) [ -2 ] e 
D sapo ,2= - sma 

2.piK sinO+(1+cosa)(HcosO) 
(7-7,c) 

_ e -j (or /4) [-2( cosfco s O-s inOs i n~)/cos~] 
Dhapo,2- - S 1 na 

2.piK sinO+(1+cosa)(1+cosO) 
(7-7,d) 

The diffraction coefficients (the quantities in square-brackets) in Eqs. (7-6) 

and (7-7) are included in Figs. 7-2(a) and 7-2(b). The comparison performed is not 

only for the Ds of the upper diffraction points (Fig. 7-2(a) ) but also for the lower 

(Fig. 7-2(b) ), also for the Dh of both points (which was not included by Rusch[7]). 

The diffraction coefficients of the lower point have not been compared in the angle 

region T$ 0$;, because the diffracted ray from the lower diffraction point to the 
observation pOint is blocked by the reflector there. 
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Figs. 7-2(a) and 7-2(b) show that the diffraction coefficients of GTD and APO have 

the same trends and that there are discontinuities where O=a (at 1200). In the figures, 

it can be seen that the differences between the diffraction coefficients become large in 

the shadow region. 

7.3.2 Radiation Pattern Comparison of UTD and APO 

Secondly, the radiation patterns with Kouyoumjian's UTD and Knop's APO 

were calculated. The results that were obtained from both methods are plotted in 

Figs. 7-3(a) and 7-3(b). It can be seen from Fig. 7-3 that, although the differences 

between the diffraction coefficients shown in Fig. 7-2 are called "second order" by 

Rusch [7], the difference between the resulting radiation patterns appears to be large. 

7.3.3 Radiation Pattern Comparison of UTD and CAPO 

From the study done by Knop and Ostertag [8], it was concluded that APO 

has to be replaced by CAPO. So, it is interesting to compare the results calculated by 

UTD with those from CAPO. As shown in Fig. 7-4, the diffraction coefficients of 

CAPO and GTD are numerically indistinguishable and consequently, the radiation 

patterns (see Fig.7-5(a) and Fig. 7-5(b)) are almost identical too. Since the CAPO 

results agree well with measurements [8], GTD (UTD) gives valid results too. 

7.4 Transition Region Between EEC and GTD (UTD) 

Because the GTD-method is invalid for the rear-axial region, EEC is used 

here. As mentioned in Chapter 6, the EEC-currents have been derived from the GTD 

diffraction coefficients. Although these currents are derived from GTD, the EEC 

method is able to provide correct fields in the rear-axial direction. This is due to the 

fact that EEC is not based on the contributions from two edge points, but on the 

integration of the contributions of the complete edge. The close relationship between 

EEC and GTD makes it very likely that a smooth transition between the two 

methods will be obtained. To see how close to the rear-axial direction the GTD 

results are still valid, the far-field in and near the rear-axial direction was calculated 

using both EEC and GTD. As an example Fig. 7-6 shows that the transition angle 

0GE between GTD and EEC results is about 0=50 (0=1750) for the E-plane pattern 

of an antenne system with a D/ ,1=15 and n=2. 
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The influence of the DjJ. ratio on the transition angle 0GE is shown in Fig. 7-7(a) 

and 7-7(b). As expected, the 0GE is almost inversely proportional to DjJ.. Fig. 7-8 

shows that ° GE does not depend on the value of n of the feed function. This is as 

expected because the GTD field (Eq.(4-42)) and the EEC field(Eq.(6-12)) have a 

common term [Gf\aJ. 
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7.5 Transition Region Between PO and GTD (UTD) 

In the forward-axial region, GTD (UTD) is unsuitable because the 

forward-direction 0=1: is another caustic of the paraboloidal reflector. However, PO is 

successfully used to determine the mainlobe and the first few side-lobes. 

So, it is also interesting to compare the radiation patterns calculated with 

PO and GTD to see to which angle near to the forward-direction GTD method can 

still be used. As an example, Fig. 7-9 shows that the transition angle 8GP is about 

0=11° (0=169 0) for the E-plane pattern of an antenna system with a D/A=15 and 

n=2. 

The influence of the D/ A ratio on the transition angle is shown in Fig. 7-10. As 

expected, the 0GP is again inversely proportional to D/ A. The value of n of the feed 

function appeared to be neglectable. 

Finally, by combining the modified GTD (UTD), the current-distribution 

method and the EEC method, a complete radiation pattern is obtained (see Fig. 

7-11). 
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8. Offset Paraboloidal Reflector Antenna Configuration 

8.1 Reflector Geometry 

An offset parabolic reflector configuration is composed of a single-reflector 

and a feed at its focus, or two reflectors for which the main offset reflector is 

illuminated by the combination of a feed and a sub-reflector. In this report, an offset 

parabolic single reflector antenna is considered. 

The geometry of the antenna is shown in Fig.8-I. The offset parabolic 

reflector is a portion of a paraboloid of revolution around the z-axis with a focal 

length of f. 

z' 

x 

I 

I 

z 14------- f -------I~ 0 

Fig. 8-1 The Geometry of an Offset Parabolic Single Reflector Antenna 

The paraboloid is illuminated by a feed within a cone with half-subtended 

angle a measured from the z'-axis (the axis of the feed). 

x' 
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It can be shown that the projection of the edge of the reflector on the x-y plane 
(fig 8-2(a)) is a circle with diameter: 

4fs ina 
D=---­

(cos Vo+ cosa) 
(8-1) 

Furthermore it appears that the edge curve lies on a plane parallel to the y-axis, 
making an angle Vpo with the x-axis (fig. 8-2(b)): 

t.1 _ si n 0 
grpo - cosa+cos o· (8-2) 

x x 

xo 

o '-------I~ Y z,--,,~~------------- O(F) 

(a) The Projection on x-y Plane (b) The Projection on x.....z Plane 

Fig. 8-2 The Projection of the Edge Curve of the Offset 

Paraboloidal Reflector Aperture 
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8.2 Feed Radiation Properties 

Since the feed axis differs from the symmetry axis of the paraboloid the 

prime (x'S',z') coordinate system has been introduced. The corresponding (p,,¢,,~,) 

sperical coordinate system is used to describe the vectorial radiation pattern of the 

feed. For the offset antenna, the same feed pattern will be used as for the symmetrical 

antenna previously. 

Due to the asymmetric offset geometry, the radiation pattern of the 

complete antenna system for x'- and y'-polarization will be different. In the next 

chapters, most of the derivations are done for an x'-po!arized feed. If y'-axis 

polarization is used, it will be stated. 
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9. Radiation Pattern Analysis by GTD (UTD) for an Offset Paraboloidal 

Reflector Antenna 

It,.L Introduction 

The angle region definition given in Chapter 3 for the symmetrical reflector 

antenna should be adapted according the offset reflector geometry shown in Fig. 8-1-

This is trivial for the definition of the illuminated and shadow region. However, it will 

be shown that the caustic which is found for the symmetrical antenna in the 

rear-axial direction, now appears at another far-field observation angle. This will be 

dealt with in some detail in this second part of the report. 

Another difference from the analysis of the symmetrical antenna is that the 

diffraction rays do not always hit the reflector edge perpendicular to its tangent. The 

oblique incidence makes an analysis much more complicated, this justifies the 

separate treatment of the application of GTD (UTD) to offset reflector antennas in 

this second part of the report. 

9.2 GTD Diffraction Point Location for an Offset Configuration 

It can be seen from the previous part of this report that GTD is based on 

the ray tracing technique. As shown in Eq.( 4-2), the incident field at the point of 

diffraction (Q) must be known in order to obtain the diffracted field at the 

observation pOint (P). If the rays from a limited number of diffraction points 

contributing to the field at a certain point, or in a certain direction, are known the 

total field can be obtained by simply adding all the individual contributions together. 

Therefore, the locations of the diffraction points have to be found. First, a 

coordinate transformation is introduced. The purpose of this transformation is to 

describe the field in a (x"',y''',z''') coordinate system, with its origin at a edge 

diffraction point and the x" '-axis being the tangent vector (1) at the edge diffraction 

point. The advantage of using such a transformation is that the phenomena related to 

the diffraction can be described easily (e.g. the description of the diffraction cone). 
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9.2.1 Coordinate Transformation 

Since the new coordinate system that has to be introduced is determined by 

the position of the diffraction point and the edge tangent of the reflector at the 

diffraction point, it is a diffraction-poi nt-fixed coordinate system. 

From the previous edge curve equation, the unit 

edge curve at any edge point was derived in [26] as: 

with 

,.p. .... -! .... 
.L = Tx x + Ty y + Tz z 

Tx = -sinC( cospo+cosa) 
Ts 

T _ cos¢ocosaco s C+cos{,-sinposina 
y-

Ts 

T _ sine , sinpo 
z-

Ts 

vector T tangent of the 

(9-1) 

(9-1,a) 

(9-1,b) 

(9-1,c) 

T s=J [-sin{'( cospo+cosa )]2+ [cospocosacos{' + cos {'-sin¢osina ]2+ [sin{'sin¢o]2 

(9-1,d) 

This coordinate transformation is similar to the one presented in [24], 
although it involves a different angle rotation direction and angular rotation sequence 

(see Fig. 9-1). Since the displacement of the origin will not change the expressions for 

the unit vectors, the same (x,y,z) notation is used for the coordinates after moving the 

origin to the edge diffraction point. 

Introducing of the new coordinate system starts by rotating the y-axis 

through an angle a' around the x-axis, which puts it in the new direction yl, 

determined by the intersection of the plane normal to the edge tangent at the edge 

point with the y-z plane (see Fig. 9-1(a) ): 

t ' _ ~ _ cospocosacos{'+cos{'-sinposina ga - - - - , 
Tz sin{'sin¢o 

(9-2) 
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after the first rotation, the (x!,y!,z!) coordinate system is obtained, it has the 
following relation with (x,y,z) coordinate system: 

[
;] = [~ c~~a' -s~na'] [;:]. 
z 0 slna' casa' z! 

(9-3) 

The subscript t has been used to emphasize the transformations used. 

Then, the Xl-axis is rotated through an angle f3 around the y!-axis, which 

puts it in the direction of T. The angle f3 between the x-axis and T is then given by: 

f3 - "" ... - T - _ sin{'(cos¢o+cosa) cos -.1' X - x-
Ts 

(9-4) 

After the second anglular rotation, the (x!',y!',z!') coordinate system is obtained (see 

Fig.9-1(b)). The relation between the (x!',y!',z!') and the (x!,y!,z!) coordinate 
systems is: 

[

X!] [COSf3 0 Sin
f3

] [X!'] 
y! = 0 lOy!'. 

z! -sinf3 0 cosf3 z!' 
(9-5) 

Finally, the y!'-axis is rotated by an angle 1 around the x!'-axis, this puts 

it in the incident plane (containing T and pl. The angular rotation makes the Xtl_Yt" 

plane into the incident plane which facilitates the field calculation later on. 

The angle 1 is given by: 

. ri "'1' sm1=j~s'y (9--6) 

where the Ns is the unit vector normal to the plane containing the T and p vectors, 
given by: 

and 
Ns = det [ Ty T" ] Jt+det [ T" T x] y+det [ Tx Ty ] ~ 

pypz PzPx PxPy (9-7) 
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-f ......-t 
yi' = cosa y + sma z, (9-8) 

So, the new (x!",y!",zl") coordinate system is related to the former (xi',y!',z!') 

coordinate system (see Fig. 9-1( c) ) as given by: 

[
Xl'] [ 1 y!' = 0 

z!' 0 

o 
cos1 

sin1 

o ] [X!"] -si n1 y!". 

COS1 z!" 

(9-9) 

For the sake of convenience, the notation [x"'.Y"',z"'lT is used instead of 

[XI",Y!",z!"lT and the relation between the (x,y,z) and (x"',y"',z"') 

system can then be expressed by a transformation matrix M as: 

coordinate 

[X] [X"'] Y = My'" 
z z", 

with 

M=[~ 
0 

-s~na'] [ cos{J 0 Sin{J] [~ cosa o 1 0 

sina cosa' -si n{J 0 cos{J 

[ '''fi si n{Jsin1 

= sina'sin/1 cos a'cos1-S ina' cos/1sin1 

--cosa'sin/1 sina'cos1+cosa' cos/1sin1 

The matrix M has the orthogonality property: 

so, 

-\ T M =M 

(9-10) 

0 

-s~n1 ] COS1 

si n1 cos1 

,i·fiooo1 ] 
--cos a'sin 1-s i na'cos/1cos1 

-s ina'sin 1+COS a'cos/1cos1 
(9-11) 

(9-12) 



[X'''] [X] y'" = M -1 Y 

Z'" z 

and 

[ 

cosfJ 
-1 

M = sinfJsin7 

sinfJcos 7 
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sina'sinfJ 

cosa'cos 7-Sina'cosfJs i n7 

-cosa's in 7-sina'cosfJcos 7 

(9-13) 

-cos a ' sinfJ ] 
sina'cos 7+COS a'cosfJs i n 7 

-sina'sin 7+COS a'cosfJcos 7 
(9-14) 

With the new (x"',y""z",) coordinate system, the edge diffraction cone can be 
described easily, as will be shown in the next paragraph. 

9.2.2 Diffraction Cone Formed at the Ed!;e Diffraction Points 

The incident ray vector from the feed to the reflector edge can be expressed 
by the radius unit vector in feed coordinate system: 

p' = sinacose' x' + sinasine' y' + cosa z' (9-15,a) 
or 

. e -! Slnacos ' x' ... , 
Px) X 

... 
sinasine y' ... , p'= = py, y (9-15,b) 

cosa z' ... , 
Pz) Z 

then by using the transform matrix similar to Eq.(9-5) for the relation between the 

(x,y,z) and (x',y',z') coordinate system, the p' in Eq.(9-15) can be expressed in the 
(x,y,z) reflector coordinate system: 

-! 
p= 

.... -! sinacos¢ocose '+cosasin¢o x Px x 
-! 

Y 

cosacos¢o-sin a sin¢ocose z 
= 

.... 
py y 

.... 
pz z 

(9-16) 

The angle fJo between the incident ray vector p and the edge tangent T can 
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z 

(a) First Rotation by an Angle a' 

(b) Second Rotation by an Angle P 

x"'(1') 

Yt'" 

(c) Third Rotation by an Angle 7 

Fig. 9-1 Coordinate Transformations 
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be derived from the dot product of the two unit vectors: 

{J "" -t sinFo· sine cos 0 = ~.p = -
T. 

(9-17) 

Now the diffraction cone, formed by diffracted rays from the diffraction 

point at the reflector edge having an half open angle {Jo around the tangent l' (that is 

the x"'-axis), can simply be written in (x"',y"',z"') coordinates as: 

(y"')2 + (z''')2 = tg2{Jo (X"')2 (9-18) 

The cone formed by the diffraction rays at the edge diffraction point is 
shown in Fig. 9-2. 

x 

-to 
5' 

y 

z o 

Fig. 9-2 The Diffracted Rays from the Edge Point of an Offset Reflector 
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So, by using the transformation matrix given in Eq.(9-14) and inserting it 

in Eq.(9-18), the radiation cone in the reflector (x,y,z) coordinates is obtained. This 

will be used in the next paragraph to find the diffraction points and rays contributing 

to the far-field of an offset reflector antenna. 

9.2.3 Diffraction Point Location 

In the following paragraphs, the location of the diffraction points, which 

contribute to the far-field, have been determined. The diffraction points for different 

radiation planes will be dealt with separately. As already mentioned in Chapter 8, x'­

and y'-axis polarization are considered. These two polarizations will give different 

radiation patterns for the principal planes. Therefore it is sometimes more convenient 

to speak of the symmetry-plane (x,--z'-plane) and the asymmetry-plane 

(y,--z'-plane) for an offset configuration. In the following sections an x'-polarized feed 

is assumed. So, the symmetry plane is the E-plane and the H-plane is the 

asymmetry-plane. However, if an y'-polarized feed is considered this will be 

emphasized. 

9.2.3.1 Diffraction Points for the E-plane Pattern Calculation 

For the E-plane radiation pattern calculation, only the rays in a plane with 

y=constant must be taken into account. In the calculation of the diffraction point 

locations, y is taken to be equal to zero, because the origin is moved to the diffraction 

point. Taking the intersection of the diffraction cone (Eq. (9-18)) with the y=O plane 

results in the following equation [26]: 

( cos 2fJ o--cos 2fJ)x 2+ 2cosfJsinfJcosa'xz=O (9-19) 

From Eq. (9-19) it is easy to see that the rays contributing to the E-plane 

have to satisfy: 

{

x=O 

y=O 
(9-20,a) 

or 
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{ 

( C oS2/Jo-eoS2/J)x+2cos/Jsin/icosa'z=o, 

y=O 
(9-20,b) 

Inserting Eq.(9-2), Eq.(9-4) and Eq.(9-17) in Eq.(9-20,b) results in: 

{ 

{ [ (cosvo+cosa)Lsin2¢olx-2( cos¢o+cosa)sin¢oz }sin2~'=O, 

y=O 
(9-21) 

where (' is defined at the x' ,y' ,z' coordinate system with the feed as origin. The 

solutions to this equation are: 

or 

{ 

s i n 2('=O 
(9-22,a) 

y=O 

{ 

[( cos¢o+cosa)LSin2¢olx-2(cos¢o+cosa)sin¢oz = O. 

y=O 
(9-22,b) 

Because Eq.(9-20,a), Eq.(9-22,a) and Eq.(9-22,b) are mathematical solutions to the 

problem, it is still necessary to see which can be obtained in practice. Eq.(9-20,a) 

represents two directions, one in the +z-axis direction (0=0) and the other in the 

antenna forward-direction (0= r). The reason that the direction 0 = 0 is found 

mathematically is that a symmetrical image diffraction cone exists, due to the 

quadratic form of Eq.(9-18) (see Fig. 9-3). 

$'d ~J!/ x 

Reflector 
y 

z ----------Y:
O 

Fig. 9-3 The Existence of an Image Diffraction Cone. 
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The rays given by Eq.(9-22,a) contribute to all angles in the E-plane 

because of the O-angle independency. Since e'=O, 1: are the solutions to Eq.(9-22,a), 

the corresponding diffraction points at the edge of the reflector are the upper point Qu 

and the lower point Qj. 

If (cos¢o+cosa)Lsin2¢ofO then, the rays given by Eq.(9-22,b) will 

contribute to a specific 8-angle direction with z-axis. This angle can be written as: 

(9-23) 

which can be rewritten as: 

2s i n ° 
t g 0= _--"co",s",a,---::+-;c",o=-,s;;.5:'0'---

1 

2tg¢po 
(9-24) 

with the solution: 

(9-25) 

where O=2¢po is the only true solution, because 8=1:+2¢po originates from the 

unphysical image of the diffraction cone. The solution is e'-angle independent, so the 

whole edge will contribute in this specific O-direction. 

9.2.3.2 Diffraction Points for the H-plane Pattern Calculation 

For the H-plane (x=O, for an x'-polarized feed), a similar equation is found: 

( cos 2/Jo-sin 2/Jsin 2a')y2+2sin 2/Jsina'cosa'yz=O, (9-26) 
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From this formula the following equations are found, to which the rays contributing 

to the H-plane pattern have to satisfy: 

or 

{

X=O 

y=o 

{ 

(cOs2Po-Sin2psin2a')Y+2sin2psina'cosa'z=0, 

x=o 

Inserting Eq.(9-2), Eq.(9-4) and Eq.(9-17) in Eq.(9-27,b) results in: 

{

[ (cos¢ocosacos~'+cos{'--£inasin¢o)Ls in2esin2¢o]y 
+ 2 ( cos¢ 0 cos acos~ '+cos~'-s i nasin ¢o)sin~'sin¢oz=O 

x=o 

(9-27,a) 

(9-27,b) 

, (9-28) 

If (cos¢ocosacos~'+cose-sin¢osina)Lsin2~'sin2¢o*0, Eq. (9-28) determines the ray 

which is in the y-'.l plane having an angle 0 with the z-axis: 

(9-29) 

It is clear that Eq.(9-27,a) represents the direction 0=1f, and that Eq.(9-29) 

gives the diffracted rays which contribute to an angle direction O. 

Fig. (9-4,a) shows the relation between the far-field angle 0 and the edge 

points of diffraction defined by the angle ~' for the H-plane pattern calculation, as 

given by Eq.(9-29). Here, 0<180 indicates the half plane where ¢=r/2 and 0>180 

indicates the other half plane where ¢=31f /2. 
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Fig. 9-4(a) The Edge Diffraction Point Angle ~' as a Function of 

the Far-field Observation Angle 0 for H-plane Pattern Calculation 

9.2.3.3 Diffraction Points for an Arbitrary Plane 

6(deg) 

For the calculation of the radiation patterns in any plane other than the 

symmetry plane (E-plane for x'-axis polarization,¢=O) and the asymmetry plane 

(H-plane for x'-axis polarization, ¢=1:/2), a similar procedure can be followed. The 

diffraction cones have to be cut by the corresponding ¢-plane. 

The same steps as for the E- and H-plane calculation can be followed so 

that the next equation is obtained: 

1

0=1: 

tgO= 

-2{ [( costlocosacos { , +cos{'-s i nVos i na]s i n¢-[ si n { , (costlo+cosa)] cos¢} s inCsi nVo 

[( cos¢ocosacos~' +c 0 s~ '-sinV 0 sina) sin¢-( cos¢ o+cosa lsi n ~'cos¢ ]2-s i n2¢ osin 2 ~' 

(9-30) 

For the radiation pattern in the plane ¢=1:/3, the relation between the 

far-field observation point and the location of the edge diffraction points involved in 

the pattern calculation is shown in Fig. 9-4(b). 
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Fig. 9-4(b) The Edge Diffraction Point Angle e' as a Function of 

the Far-field Observation Angle 0 for ¢=,;/3 

9.2.3.4 Stationary Phase Method (APO) 

O(deg) 

In [15]. the radiation pattern of an offset antenna has been calculated from 

Asymptotic Physical Optics (APO). As shown in the first part of this report, the 

locations of the APO stationairy phase points coincide with those of the GTD 

diffraction points for the symmetrical antenna configuration. In order to check the 

results obtained in the previous seCtion, it is interesting to compare the locations of 

the diffraction points with those for the stationairy phase points, in case of an offset 
configuration. 
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According to the stationary phase method, the stationary phase points of 

second kind [15] satisfy: 

with 

t = k(p-pp o r)=kp(l-p o r) (9-32,a) 

t = p(l+cos¢)-2f (9-32,b) 

where + and t are the phase function and the reflector edge equation, respectively, Ii is 
the unit vector in the direction from the feed to the edge of the reflector and r is the 

unit vector in the direction from the feed to the far-field observation point. 

For the configuration described previously, the unit vector r can be 

expressed as: 

1 

sinOcos¢ Xl 
r= sinOsin¢ ~ 

coso z 

(9-33) 

Since the objective is to find the location of the stationary phase points, it is 

convenient to use the feed coordinate system. In such a system, the edge of the 

reflector can shown easily. 

The unit vector p can be written as: 

1 
sin¢'cos¢ocose '+cos¢'sin¢o ~ 

p= sin¢'sine' y . 
COS¢'cos¢o-sin¢' sin¢ocose' Z 

(9-34) 

The edge is simply found by replacing the ¢' in Eq.(9-34) by ll, which gives: 
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[ 

sinacos.pocos~' +cosasin.po ~ 

p= sinasinC y 
cosacos Vo-sina s invocos~' Z 

Expressing the + and t in the feed coordinate system results in (p=p'): 

and 

+ = kp(1-p.1) 

=kp'{I-[ sinOcos¢(sinacos.pocos~'+cosasinVo) 
+sin Osin¢sinasint 

+cosO( cosacos.po-sinasin)locos{ ')]} 

t = p'(I+cosacosVo-sinasinVocos{')-2f 

The partial derivatives of + and t to ~'and p' are: 

~=kp'(sinOcos¢sinacosvosin~'-SinOsin¢sinacos~'-cosOsinasinVosin~') 

~=k {1-[ sin Ocos ¢( sinacosvocos~' +cosasin¢o)+sin Osin¢sinasin~' 
+cos O( cosacos ¢o-sinasin Wocos~ ')]} 

and 

at ,. . oJ. • t, 
Ff=P slnasln~osln .. 

~= 1 + cosacos vo-sinasin vocos~' 

Applying the stationary phase point requirement: 

yields: 

(9-35) 

(9-36) 

(9-37) 

(9-38) 

(9-39) 

(9-40) 

(9-41) 

(9-42,a) 
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kp' (sin Ocos¢sinacos ¢ osin e '-sin Osin¢sinacos e' -{;os Osinasin ¢ osine') 

. (1 +cos acos ¢ o-sinasin ¢ oCos e') 

-k{ 1-[ sinOcos¢( sinacos ¢ocose' +cosasin ¢o)+sin Osin¢sinasine' 

+cosO( cosacos¢o-sinasin¢ocose')]}. p'sinasin¢osine'=O (9-42,b) 

Factorizing the common terms and rearranging Eq.(9-42), we obtain the 

following equation which the stationary phase points must satisfy: 

sin Ocos ¢sin acos ¢ osine' -sin Osin¢sinacos e '-{;os Osin asin ¢ osin e' 

+sin Ocos ¢sinasin e' cosa-sin Osin ¢sinacos e' cos ¢ oCos a 

+ sin Osin¢sin 2asin ¢ o-sin ¢ osinasine' =0 (9-43) 

In accordance with Ierley and Zucker [23], the projection of the offset 

parabolic reflector on the x-y plane is considered to be the radiating aperture, so 

cos 0",0 in Eq.(9-36) and, consequently, the terms containing cosO in Eq.(9-43) as well 

as the term sin¢osinasine' will disappear. So, in the case of sinOfO, Eq.(9-43) can be 

written as: 

cos ¢sinacos ¢ osin e' -sin¢sinacose' + cos ¢sinasine' cos a 
-sin¢sinacose'cos¢ocosa + sin¢sin2asin¢o=0 

(9-44) 

Since sina is generally not equal to zero and is the common multiplication 

factor, the terms of the above equation, Eq.(9-44) reduces to: 

-sin¢[(1+cos¢ocosa )cose'-sinasin¢o] + cos¢( cosa+cos¢o)sine'=O (9-45) 

which agrees with the results given by Ierley and Zucker [23]. 

When the approximation, cosO",O, is not made in Eq.(9-36), we find for the 

E-plane radiation pattern calculation (¢=O), that Eq.(9-43) becomes: 

sinasine '[sin O( cos¢o+cosa )-{;os Osin ¢o-sin¢o]=O (9-46) 

Some mathematical manipulations and rearranging the terms of Eq.(9-46) gives the 

following equations: 



or 

tgO=O 

tgO= 2sinyo(cos¢o+cosa) 
(cos¢o+cosa )2-sin2¢o 
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which results agree with those given by Eq.(9-20,a) and Eq.(9-23). 

(9-47,a) 

(9-47,b) 

For the H-plane radiation pattern calculation (¢=~), Eq.(9-43) is given by: 

-sin Osina( cos (' +cos (' cos ¢ oCos a-sinasin ¢ 0 )--cos Osinasin ¢ osin ('-sin ¢ osin asin (' = 0 

(9-48) 

yielding: 

tgO=O (9-49,a) 
and 

(9-49,b) 

which gives the same results as Eq.(9-27,a) and Eq.(9-29). 

To check the position in an arbitrary ¢-plane, Eq.(9-43) is again used. 
Rearranging the terms in Eq.(9-43) in the following way: 

sin O[ cos¢sinasin('( cos¢o+cosa )-sin¢sina( cos¢ocosacos( '+cos( '-sin¢osina)] 

--cos Osin asin ¢ osin ('-sin ¢ osin asin (' =0 (9-50) 

and by using the relation of cos 20+sin20=1, the sinO and cosO can be derived 
separately as: 
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1 

sinO=O 

sinO= 

-2{ [( cos¢ocosa+1) cos{'-sin¢osinalsin¢-[( cos¢ 0 +cosa)cos¢sin{'l} sine 'sin¢o 

[( cos¢ocosacos { '+cos{'-sin¢osina )sin¢-( cos Vo+ c os a )sin{' cos ¢j2+sin 2VoS i n2{' 

and 

1 
cosO=-l 

cos 0= 

[( cos¢ocosacos{ '+cos{ '-sin Vosina )sin¢-( cos ¢o+cosa )sin{'cos¢j2-sin 2¢osin 2{ , 
[( cos ¢ocosacos{ '+cos {'-sin ¢osina )sin¢-( cos ¢o+cosa )sin{ 'cos¢j2+sin 2¢osin 2{' 

Combining the above two equations results in: 

1 

0=1: 

tgO= 

(9-50,a) 

(9-50,b) 

-2{ [( cos Focosa+ 1 )cos{'-si nFosi na lsi n¢-[ (cos F o+cosa )cos¢sinC]}si ne 'sinFo (9-50,c) 

[( cos¢ocos acos{ , +cos {' -sinE osina )sin¢-( cos¢o+co sa)s in{' cos¢ j2-sin 2 rosin 2 (' 

Which is exactly the same formula as Eq. (9-30) found for the GTD diffraction 

points. 

From the above derivations it can be concluded that, also for an offset 

antenna configuration, the positions of the stationary phase points coincide with those 

of the diffraction points. 

9.2.3.5 Caustics in the Symmetry-Plane 

Eq.(9-20,a) represents the antenna forward-direction (0=1:) which is a far-field 

caustic. For a symmetrical paraboloidal antenna, there is also a caustic in the antenna 

backward-direction (0=0), but due to the asymmetry this is not a caustic for an 
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offset configuration. However, a second caustic for an offset configuration appears at a 

specific O-angle, which is completely determined by the offset geometry ()lo and a). 

The equation for this second caustic is given by Eq.(9-23) because this formula is 

e'-angle independent. The diffracted rays from the whole edge of the reflector have in 

phase contributions in the far-field angle direction O=2¢po in the symmetry-plane. 

The mathematical proof of the existence of a caustic at this specific angle is given in 

[26] and was also given in equation form in [27]. This proof is based on the calculation 

of the distance from the feed to a far field-point measured along a point on the edge. 

It is proved that all these distances are the same. However, the existence of the 

second caustic can be demonstrated in a different way. As shown before, the 

projection of the edge-curve on the x-z plane is a line given by Eq.(8-2). This means 

that the complete edge is in a plane perpendicular to the x-z-plane. If all the rays 

from the edge to the far-field obeservation point in the forward-direction are 

mirrored at this plane, a second caustic is obtained (see Fig. 9-5). This is due to the 

fact that this mirroring has no effect on the length of the rays. 

caustic direction Caustic Dil~ecl:ioll / 

Reflector 
Reflector 

I.,:.~~-Plane Wave 

Front 

Feed (at Focus) 
Feed (at Focus) 

a) b) 

Fig.9-5 The Second Far-field Caustic: a) Side View; b) Back-side View 

So, it can be concluded that there is a second caustic in the symmetry-plane in which 

the diffracted rays from all the edge points of the reflector give in-phase contributions 

and, consequently, it is necessary to use EEC instead of GTD in order to determine 
the far-field (see chapter 10) 
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9.2.3.6 Conclusion of the E- and H-plane Diffraction Point Analysis 

The GTD diffraction points for an offset configuration which contribute to a 

far-field observation point have been found and they coincide with the positions of 

the points found when using the stationary phase method. This agrees with the results 

for the symmetrical parabolic configuration found in the first part of this report. 

For the symmetry-plane pattern calculation, it can be seen that there are 

two caustics. One in the forward-direction, O=1r (given by Eq.(9-20,a) ), which is due 

to the focusing properties of the parabolic reflector. However, there is a second 

far-field caustic (given by Eq.(9-23)), which is not in the backward-direction 0=0 as 

is the case of the symmetrical antenna, but it appears at an observation angle O=2¢po. 
This angle is shown to be completely determined by the offset configuration 

parameters ¢o and a. 

Except for these two caustic directions, the E-plane (¢=O) radiation pattern 

can be calculated from the contributions of the diffracted rays originating from two 

edge-points,viz. the upper point Qu (f=O) and the lower point QI (~'=:r), which is 

analogous to the symmetrical case (normal incidence, f3o=r/2). Because the diffracted 

rays hit the edge of the reflector normal to its tangent (f3o=:r/2), the two-dimensional 

model, as used for the symmetrical antenna configuration, is valid for the E-plane 

pattern calculation. This implies that the diffraction model for the E-plane pattern 

calculation can be a two-dimensional model. 

For the H-plane and the other ¢-planes, f3o=1:/2 does not hold, so the 

two-dimensional model is not valid here and a three-dimensional model has to be 

used. 

Further, it is shown that for a certain observation angle 0, the location of 

the diffraction points can be found from Eqs.(9-29) and (9-30) for the H-plane and 

arbitrary ¢-plane, respectively. 

9.3 Radiation Pattern Calculation 

In the following sections, expressions have been derived for the caustic 
divergence factor and diffraction coefficient, they are needed for the GTD(UTD) 

radiation pattern calculation. 
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In the following sections, the E-plane pattern calculation will be dealt with 

separately from the pattern in an arbitrary ~-plane because, for the first analysis 

mentioned, the two-dimensional diffraction model is valid; while for the other 

analysis, the more complicated three-dimensional diffraction model should be used. 

9.3.1 E-plane Pattern Calculation 

As found in the previous section, only two points (upper point Qu and lower 

point QI) contribute to the E-plane pattern for all 0 angles except for the two caustic 

directions 0=2¢po and 0=1:, where all the points on the edge have an in-phase 

contribution (see Chapter 10). Therefore, these two directions will be excluded for the 

E-plane pattern calculation and a two point method will be used for the remaining 

directions. The way of dealing with them, is analogous to that followed for the 

symmetrical antenna configuration in the first part of the report. Firstly, the caustic 

divergence factors for both points are determined, followed by a derivation of the 

corresponding dyadic diffraction coefficients. 

9.3.1.1 Caustic Divergence Factor Calculation 

As given in paragraph 4.2, the caustic divergence factor for a spherical 
wavefront is: 

pc (9-51) 

To derive the caustic divergence factors for the upper and lower diffraction 

point, the enlarged geometry for these two points is illustrated in Fig.9-6(a) and Fig. 

9-6(b). 



/ 
/ 

¢po / 

/ 

/ 

Fig. 9-6(a) 
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¢o+a 

z 

Edge Diffraction at Upper Diffraction Point 

9.3.1.1.1 Caustic Diver~ence Factor for the Upper Point 

x 

o 

For the upper point, shown in Fig. 9-6(a), the following parameters can be 

derived: 

2f 
Pei = PI = -----

l+COS(¢o+o) 
(9-52,a) 

2fs i na 
pg = COS¢po 

COS¢o+cosa 
(9-52,b) 
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(9-52,c) 

(9-52,d) 

(9-52,e) 

Inserting Eq.(9-52) in Eq.(9-51) results in: 

-= 
1 Hcos( Vo+a) [sin(¢o+a-¢po)-sin( 0 dpo)]( cos¢o+cosa) 

Pel 2f 2fsinacos¢po 
(9-53) 

which can be reduced to (see [26]): 

Pel fsinacos¢po 
(9-54) 

So, the caustic divergence factor for the field diffracted at the upper point is: 

fSinacos¢po (9-55) 
sin(~)sin( 0 I-~¢PO)( COs¢o+cosa) 

It is clear that there are discontinuities for OI=2¢po and 01='1', and this 

corresponds to the two caustics derived previously. 
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9.3.1.1.2 Caustic Divergence Factor for the Lower Point 

Following a similar procedure for the lower point, shown in Fig. 9-6(b), we 

can write: 

2£ 
Pei = P2 = ----­

l+cos(¢o-a) 

2fs i na 
pg = cos¢po 

cos¢o+cosa 

/ 

~ 
I 
I 
I 
I 

~ 

Vo-a 

z 

Fig. 9-6(b) Edge Diffraction at Lower Diffraction Point 

(9-56,a) 

(9-56,b) 

x 

o 
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(9-56,c) 

(9-56,d) 

(9-56,e) 

Inserting Eq.(9-56) in Eq.(9-51) results in: 

1 l+cos( ¢o-a) [sin( ¢po+a-¢o)-sin( ¢PO-02)]( cos¢o+cosa) 
-= 
{lc2 2£ 2£sinacos¢po 

(9-57) 

which can be reduced to (see [26]): 

1 sin(~)sin(~)(cosvo+cosa) 
= 

PC2 £sinacos¢po 
(9-58) 

So, the caustic divergence factor for the field diffracted at the lower point is: 

(9-59) 

Again, 02=2¢po and 02='K correspond to the two caustics derived before. 

9.3.1.2 Diffraction Coefficient Calculation 

The general formulas for the diffraction coefficients were given previously as: 

(9-60) 
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Since the diffraction coefficients for the upper and lower point differ from 

those found for the the symmetrical antenna configuration, their derivation is 

repeated here. 

9.3.1.2.1 Diffraction Coefficients for the Upper Point 

From Fig. 9-6(a), which shows the angle definition of the incident and 

diffracted rays, it is possible to obtain: 

rd = \ ¥ + rota - 0 1 

2:r- ( 01- 3:r+~o+a) 

\

-Sin(¢o+a-O l ) 

d.... . 2 
r r ' cos -(----r) - . (Fo+a-O l ) sm 2 

and 

So, 

(O~O 1 <¥ + b¥) 
(¥ + ~<01<2:r) 

(¥ + Fot a <0 1 <2:r) 

(9-61,a) 

(9-{i1,b) 

(9-62,a) 

(9-62,b) 

(9-63,a) 

(9-{i3,b) 

(9-64) 



where 
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(0~01<¥ + ¢Po) 

(¥ + ¢p 0 <0 1 <¥ + ¢O~Q) 
(¥ + ¢o!a <0 1<2:.-) 

(9-{i5) 

The f 01 is introduced in order to account for the blocking effect that the reflector has 

on the diffracted rays from the edge of the reflector, also, to account for the sign 

change when the observation point moves from the angle region el~~+¢pO to the 

angle region 01> 3:r+¢~+a. 

If the direction 01=1:, which is one of the caustics, is excluded from the 

calculation, Eq.(9-64) becomes: 

(9-66) 

9.3.1.2.2 Diffraction Coefficients for the Lower Point 

Following a similar procedure for the lower diffraction point, which is shown 
in Fig. 9-6(b), it is possible to write: 

. 1: ¢02"a rl = 2' + (9-{i7,a) 

(9-67,b) 

(9-68,a) 



and 

So, 

where 
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(0$02<~ +~) 

(~ + ~ <02<27) 

(0$0 2<~ + ~) 
(~+ ~ < 02<f + ¢po) 

(¥ + ¢02 a <0 2 <2:1-) 

The reason for the introduction of f 02 is the same as before. 

(9--68,b) 

(9--69,a) 

(9--69,b) 

(9-70) 

(9-71) 

If the direction O2=1:, which is one of the caustics is excluded from the 

calculation, Eq. (9-70) becomes: 

(9-72) 

9.3.1.3 Incident Field at the Edge of the Reflector 

According to the chapter 2, the field incident to the reflector from a 

x'-polarized feed is: 

(9-73) 
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or 

(9-74) 

and for the edge point, Eq.(9-73) and Eq.(9-74) becomes: 

(9-75) 

or 

(9-76) 

For the upper diffraction point Qu(p~,a,O), the incident field from the feed is 

given by: 

(9-77) 

Insertion of Ao and U ¢' as defined in chapter 2, in Eq.(9-77) results in: 

(9-78) 

for Huygens feed polarization. 

By using a transformation, the E(pu,a,O) can be expressed by E(pu, ¢o+a,O) 
in the reflector coordinate system, yielding: 

(9-79) 

So, the incident field at Qu(pu,¢o+a,O) in the (p,¢,O reflector coordinate 
system is: 

(9-80) 
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similarly, the incident field at Ql(pl,¢O-a,O) is: 

(9--81) 

9.3.1.4 Far-field Pattern Calculation 

9.3.1.4.1. Contribution of the Upper Point to the Far-field 

Since the dyadic diffraction coefficient, which relates the diffracted field to 

the incident field, is defined in the edge-fixed coordinate system (shown in Fig. 9-1), 

the diffracted and incident fields have to be transformed to this coordinate system. In 
Fig. 9-7, the field vectors are defined and their components are related as follows: 

(9--82,a) 

(9--82,b) 

(9--83,a) 

E d- Ed 
~ - - fJ 
~ I 0 I 

(9--83,b) 

So: 

pel e -jks1 

S1(Pel+s1) 

= _ [ -Dh 0] [E+] ° -Ds E t f, I 

pel e -jks1 

S1(Pel+s1) 
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z ~-"':"":":'----~ O(F) 

Fig. 9-7 Two-dimensional Illustration of the Field Vector Relation 

for Edge Diffraction at the Upper and Lower Point 

(9-84) 



using the far-field approximation: 

sld=r 

sld=r-pucos( VO+a-Ol) 

gives: 
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for amplitude 

for phase 

(9-85,a) 

(9-85,b) 

- ( Pt)~e-jkr J Gr(a)fsinacosvpo - TJ2i' --
r 8Pu2rksin(~)sin( OI-~VPO)(cosvo+cosa) 

(9-86) 

9.3.1.4.2. Contribution of the Lower Point to the Far-field 

Similarly, the relation between the field components at Ql are: 

E i -
¢02 -

E i 
r¢2 

(9-87,a) 

Ei-
{302 -

E i 
d2 

(9-87,b) 

Ed- Ed 82 - - ¢O2 (9--88,a) 



So: 

using the far-field approximation: 

s2d=r 

s2d=r-PJcos( ¢O-a-02) 
gives: 
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Pe2 e -jksY 

sY(Pc2+s9) 

pe2 e-jks9 

s~(Pe2+s9) 

for amplitude 

for phase 

(9-88,b) 

(9-89) 

(9-90,a) 

(9-90,b) 

= (~~)~e-jkr j Gda)fsinacos¢po 

r 8pJ2:rksin( :r202)sin( 02-~¢pO)( cos¢o+cosa) 

(9-91) 
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9.3.1.4.3. Total Radiation Pattern in E-plane 

The total field can now simply be obtained by summing the direct field from 

the feed and the diffracted fields from the diffraction points: 

(9-92) 

where the direct field is: 

(9-93) 

9.3.2 Arbitrary ¢-plane Pattern Calculation 

The radiation pattern calculation in an arbitrary ¢-plane differs from the 

E-plane pattern calculation because generally the incident rays are not normal to the 

tangent at the diffraction point. Therefore, the calculation is more complex than the 

calculation for the E-plane, and a three-dimensional diffraction model is needed. 

A similar procedure as for the E-plane is followed, starting with calculating 

of the caustic divergence factors and the diffraction coefficients. But firstly, the edge 

of an offset reflector is shown in Fig. 9-8 in order to illustrate its geometry in the 

reflector coordinate system. 
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x 

z ..... 1------S----....::::lII O 

Fig. 9-8 Three-dimensional Model of Edge Diffraction 

for an Offset Configuration 

9.3.2.1 Caustic Divergence Factor Calculation 

D/2 

Eqs.( 4-3) and (4-4) show that for the calculation of the caustic divergence 

factor expressions are needed for ii, s;, Sd, Pg, Pc and fio. The unit vector ii is parallel 

to the intersection line between the plane perpendicular to the unit vector T and the 

plane formed by the edge of the reflector, and is given by: 

... d t[ Ty Tz ] ... d [ Tz Tx]-t d [ Tx Ty]-t 
n = e 0 COSVpo x+ et COSVpo sinVpo y+ et sinVpo 0 Z 

(9-94) 

Further, Si is the unit vector in the direction of the incident ray, which 



for this case coincides with p: 

with 

-+. -+ Sl=p 

[ 

sin¢ocosa +cose'cos¢osina lI.] 
p= sinasine' y 

cos¢ocosa -cose'sin¢osina i 
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(9-95) 

[ 

Px lI.] 
= Py~, 

pz z 

(9-96) 

-gd can be considered as being parallel to the unit vector -; to the far-field observation 

point, so: 

[ 

sinOcos¢ lI.] 
-gd",-;= sinOsin¢~ = 

cosO z 
[

rx ~] 
ry y 

-+ 
I z Z 

(9-97) 

As shown in Fig. 9--8, the center of the reflector aperture is at Qo (XO,YO,zo), 

with its coordinates in the reflector coordinate system (see [26]) given by: 

where 

2fs i n¢o 
Xo 

cos¢o+cosa 

yo=o 

zo=XO/tg¢m 

sin¢o( cos ¢ o+cosa) 
tg¢m= -------­

cosa( cos ¢o+co s a)--sin2¢o 

The vector radius PmPm pointing from the feed (F) to Qo is: 

~ xo. ~ -+ 
pmPm = -- (sm¢m x + cos¢m z) 

sin¢m 

(9-98) 

(9-99) 

(9-100) 

(9-101) 

(9-102) 
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with 

sinv o( co SVo+cosa) 
sinVm= , 

sin2voS i n2a+cos 2 a( cosFo+cosa)2 
(9-103,a) 

cosa( COS V o+cosa)--tlin 2 Vo 
COSVm= , 

sin2Vosin 2a+co s 2a( cos V o+cosa)2 
(9-103,b) 

The vector from the feed to any diffraction point at the edge of reflector is: 

.... [ sinvo~osa +cOS{'COSVOSina~] [Px~] 
PP=P s I naslll{' y = P py Y 

cosVocosa-{;os{'sinVosina 1 pz 1 
(9-104) 

with 

2f 

1 +cos Vocosa--eos{ 'sin Vosina 
(9-105) p 

Knowledge of the pp and PmPm is necessary to find the unit vector no in the 

direction from the center Qo of the edge curve to the edge of the offset reflector: 

.... .... 

ti - pp-pmpm 
0- -+ -+ 

iPP-PmPmi 
(9-106) 

where 

[ 

PPexo 'i] .... .... .... 
PP-PmPm = Ppy ~ 

ppz-XO/tgVm Z 

(9-107) 

(9-108) 

Because the edge curve is elliptical, the curvature radius of the edge at any 
point is given by: 



Pg= 

3 
[a 2sin 2t+b 2cos2tF 

ab(sin2t -cos 2t) 
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(9-109) 

slith t, being the angle between iio and the projection of x on the edge plane, given 

by1l4 sin(t)= iio'y (9-110) 

and 

2 fsina 
a=-------

(cos¢o+cosa )cos¢po 
(9-11l,a) 

2fs i na 
b (9-111,b) 

cos¢o+cosa 

with 

(cos¢o+cosa) 
(9-111,c) 

Since Pei=p and Po can be deriv from Eq.(9-17), Pc can be obtained by 

inserting ii, si, sd, Pg in Eq.(4-4). Which allows the caustic divergence factor to be 

derived using Eq.(4-3). 

9.3.2.2 Diffraction Coefficient Calculation 

The general expression for the dyadic diffraction coefficient given in section 

4.3 (Eq.( 4-12)) shows that, ri and rd are needed for the calculation. ri in the 

equation, is the angle between the incident plane and the reflector tangent plane at 

the diffraction point, while rd is the angle between the diffraction plane and the 

reflector tangent plane at the point of diffraction. 

The incident plane is the plane containing the vectors p and T, where the 

unit normal vector Ns is given by: 
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N. = det [Ty Tz ]x+det [Tz Tx ]y+det [Tx Ty]-Z 
pypz pzPx PxPy 

(9-112) 

and the unit normal vector ri ren of the plane tangent to the reflector at the diffraction 

point is: 

riren = --cos~ p + sin~ ~ 

[

--COS ~sin~ xl 

= -sin~Sin~ ~ 
--cos~ z 

(9-113) 

So, the angle ri can be calculated by taking the dot product of the vectors 

N. and riren: 

(9-114) 

The diffraction plane is the plane containing the unit vector sd and T. In 

the far-field, the "?d is approximately parallel to the unit vector -; as given Eq.(9-97): 

~d..... -I ..... -I S ~ r =rx x + ry y + rz z 

so, the unit normal vector N d of the diffraction plane is: 

Nd = det [Ty Tz ]x+det[ Tz Tx ]Y+det[ Tx Ty]-Z 
Iyrz IzI x Ix1y 

(9-115) 

(9-116) 

Similarly, the the angle rd can be calculated by taking the dot product of 

the vectors N d and ri refl : 

(9-117) 
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For a paraboloidal reflector and a spherical incident wave, it was shown 
previously that: 

By knowing the rd, ri and flo, the Dit can be obtained from: 

D 
_ fQe- j (r/4) F[kpa(r<Lri)] 1 } 

it - - =----j d , T ---"'d+""-',.--- . 
2..tril<sinflo cosT cOST 

(9-1l8,a) 

(9-1l8,b) 

(9-119) 

where fO is introduced as before to account for the blockage effect of the reflector. 

9.3.2.3 Incident Field at the Edge of the Reflector 

Now, expressions for the caustic divergence factors and the diffraction 

coefficients have been derived. But, the diffraction coefficients, which relate the 

diffracted field vector to the incident field vector, can be defined in the edge-fixed 

coordinate system; therefore, it is necessary to express the incident and diffracted 

fields in the (x"',y"',z"') coordinate system, which is a diffraction-poi nt-fixed 

coordinate system. 

In Chapter 2, the incident field at the edge in (p',)!',n spherical feed 

coordinate system is given as: 

(9-120) 

or in the (x'S',z') rectangular feed coordinate system as: 

[

Eft ii' 1 
Er(x',y',z') = Ef~J!' 

Ef~, z' 

(9-121) 
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where 

[ 
Ert] 
Er~, = 
Efz, 

·k ' [COS2~'(COSaU +1)-1 ] -J P a 
=Ao

e /Gr(a) cos~'sin~'(c08aU +1) , a 
p -U asinaco s ~ , 

(9-122) 

After transformation to the (x,y,z) reflector coordinate system, 

becomes: 

the incident field 

[ 
Er~] 
Er~ = 

Er~ 

-jkp' [COS¢O[COS 2(' (cos a U a +1)-1]-U asinacos~' SintlO] 
= Ao e j Gr(a) cos~'sin~'(cosaUa+1) 

p' -sin¢o[ cos 2(' (co s aU a +1)-1]-U acos¢osinacos eo 
(9-123) 

Finally, by using the transformation matrix MT, the expression of the incident field 

in (x"',y"',z''') system is obtained as: 

(9-124) 

Fig. 9-9 shows the vectors in the (x''',y''',z''') coordinate system, the 

(pt,Ut,¢t) coordinate system is used in the figure for relating the spherical and the 

rectangular field components. The incident and diffracted field vector can be written 

as [26]: 

(9-125,a) 
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and 

(9-125,b) 

where Ars is a rectangular to sherical coordinate transformation matrix and B-t is a 

matrix given by: 

[
0 1 0]. 

B-t= 001 
100 

Y"'(xt) 

/ 
/ 

/ 
/ 

/ 

z'''(yt) 

/ 
/ 

/ 

x"'(zt,T) _ -""7 .-'- ::: -1- r d-/ 
_- ........ I 

.- ..... / .-'- ..... --- ~ ........ 
~.- / .......... 

/ / .......... 
/ /) 

/ / 

fJ / / 
o 511 / / 
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.......... / / 
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I (30 

/ ..... 'Y 

s' ~~ / 
I 

/ / 
/ / 

/ / 
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I 
/ 

Fig. 9-9 The Incident and Diffracted Field Vectors in (x"',y"',z"') 

Coordinate System 
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9.3.2.4. Diffracted Field from the Diffraction Point 

The relation between the vector components shown in Fig. 9-9 are: 

(9-126,a) 

(9-126,b) 

and 

(9-127,a) 

(9-127,b) 

Similarly, by using the transformation matrices Asr, A~r (spherical to rectangular 

transformation) : 

(9-128) 
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Since Ep? and Epi are zero, it is possible to write (using Eq.(9-126) and 
Eq.(9-127»: 

(9-129,a) 

and 

(9-129,b) 

so: 

Pc e -jksd 

sd(Pc+sd) 

pc e-jksd 

sd(Pc+sd) 
(9-130) 

Inserting Eq. (9-129) III Eq.(9-130), and the result in Eq.(9-128), the 

diffracted field can be obtained. 

9.3.2.5. Total Radiation Pattern in an Arbitrary i-plane 

The total field in any observation angle 0 is the sum of the direct field from 

the feed and the diffracted fields from the two diffraction points. In this way, the 

radiation pattern of an offset paraboloidal reflector antenna can be obtained in an 

arbitrary ¢-plane. 
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10. The EEC Method for the Far-field Caustic in the Symmetry Plane 

In Chapter 9, it is found that for an offset reflector configuration there is a 

far-field caustic in the symmetry plane at the angle O=2Vpo. Since the GTD (UTD) 

fails at caustics, the equivalent edge current method (EEC), described in Chapter 6, is 

employed to determine the field at and around this caustic. 

In contrast to a symmetrical configuration, the equivalent edge current for a 

offset configuration is not flowing in the ~-direction. In the next section expressions 

are derived for this edge current and the far-field induced by this current. 

EEC for an Offset Configuration 

According to the GTD (UTD), the diffracted field in a ray-fixed coordinate 

system consists of two components, Ep: and E¢: (see Fig. 9-7). Only the field 
d d 

components EposinPo and HposinPo will give a contribution in the T-direction (see 
Fig.lO-l).So: 

IE d. R =- ~ sml'O 
~ ~o 

Po 

Ie 
T Q 

E d 
¢o 

I 

~ 

Fig.l0-l Equivalent Edge Current 

(10-I,a) 

(lO-l,b) 
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Using Eq.(6-3) and Eq.(6-5) for the fields at the edge of the reflector 
results in: 

I e _ 2JriK -jr/4E d. f3 
T -- """"""7iK e f3 0 sm 0 (10-2,a) 

(1O-2,b) 

The far-field induced by these edge currents is obtained by using the formulas given 

by Silver [IJ: 

Ee(r,O,?)=-j~Zr e-jkr f [r"-(r"or)iJejkppor dl (10-3,a) 
1 

Itm(r,O,¢)=-j~~i e-jkr f [rm-(rm 0 r)rJ~kpp 0 r dl (10-3,b) 
I 

Inserting Eq.(1O-2) in Eq.(10-3) gives: 

(10-4,a) 

(10-4,b) 

where 

Or 

(10-5,a) 
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(1O-5,b) 

and 

(10--6) 

From Eq. (10-4), it is possible to obtain: 

(10-7,a) 

(1O-7,b) 

The total field will be the sum of the field induced by the equivalent edge 

current and the direct incident field from the feed in case no blockage occurs: 

(10-8) 
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11. Numerical Results and Discussions 

11.1 Offset Configuration 

The calculation methods described in the previous chapters have been 

applied to the offset configuration shown in Fig. 11-1. 
x 

Qop 

D/2 

x 

Xo D 

OL----.. ~y .-...X.---4-........ _----1----"'I O(F) 
z 

1-4~--f~--~ 

Fig. 11-1 Geometry of an Offset Paraboloidal Reflector Antenna 

The system parameters used being Wo=45° and a=30o which results in 

Vpo=24.20 and f/D=O.79. The feed has a power radiation function of the form given 

by Eq.(2-4) with n=2, and the polarization properties of a Huygens source with x'-

or y'-axis polarization. 

11.2. Numerical Results 

Using GTD (UTD) as described in the previous chapters, the power 

radiation pattern in the symmetry and asymmetry planes, were calculated for x'-axis 

polarization. They are shown in Fig. 11-2(a) and Fig. 11-2(b), respectively. 



G(dll) 40 

30 

20 

10 

-20 

-30 

-40 

125 

~-----I--- - --7'----~---~, --- ---~t----· --~----, 

Symmetry-plane Radiation Pattern 

D/l = 10, flO = 0.79 

~o = 4.50, a = 300 

Huygens Peed Polarintion 
x'-axil Polarization, n = 2 

GTD Method 

-50~-~---~----L---~-

-150 -100 -50 o 50 100 150 

Fig 11-2(a) Symmetry Plane Far-field Radiation Pattern of an Offset 

G(dU) 40 

30 

20 

10 

a 

-10 

-20 

-30 

-40 

Paraboloidal Reflector Antenna 

-. --,---.. -----,----~~--~, ---- -_._- -r---------~ 

Asymmetry-plane Radiation Pattern 

D/A = 10, flD = 0.79 

Buygens Feed Polarization 

x'-a.xi5 Polarization, II = 2 

GTD Method 

-50 ---------'- ---~,-____ -'._., ---.: _~ __ . __ -----.l ______ ~ ___ ~_---' 

-150 -100 -50 a 50 100 150 9{deg) 

Fig. 11-2(b) Asymmetry Plane Far-field Radiation Pattern of an Offset 
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The horizontal axis is the far-field observation angle measured from the 

forward-direction of the reflector antenna. The notation B <0 indicates the half plane 

where ¢=O for the symmetry plane or ¢=-x /2 for the asymetry plane; 9>0 indicates 

the half plane where ¢=-x for the symmetry plane or ¢=3,; /2 for the asymmetry plane. 

The vertical axis is the gain function in dB. 

From the patterns shown in Fig. 11-2, it can be observed that there are 

some discontinuities, especially for the E-plane radiation pattern in the angle region 

110°<8<130° and at 9:::-132 0(20po-1800). The discontinuities in the H-plane are 

discussed seperately in the next section. 

The discontinuities in the region 110°<8<130° are caused by the blocking 

effects of the reflector on one of the edge diffracted rays. Taking the surface diffracted 

rays into consideration, a smoother pattern will be obtained (see Fig. 11-3). 

The discontinuity at the angle B=2Vpo-1800 is in the direction of one of the 

caustics. Since the GTD (UTD) method fails at caustics, the EEe method is used in 

the caustic region. As an example the radiation patterns calculated by GTD (UTD) 

and EEe are compared in the near---{;austic angle region in Fig. 11-4 for a antenna 

system with D/A=10 and n=2. The transition angle 0GE between the GTD and EEe 

for this caustic region is shown in Fig. 11-5 as a function of D/ A. Again, this angle is 

almost inversly proportional to Dj A. The transition angle is independent of the n of 

the feed function for the same reason as with the symmetrical antenna. The complete 

E-plane radiation pattern, including the EEe results for the caustic is plotted in Fig. 

11-6. 

Due to the focussing properties of the parabolic antenna, the 

forward-direction, 8=0, is also a far-field caustic. Here, the PO is used to calculate 

the radiation pattern. The results in this region calculated by the GTD (UTD) and 

the PO are given in Fig. 11-7. The calculation shows that PO removes the singularity 

in the forward-direction and the PO and GTD patterns agree well away from this 

caustic direction. The D / A dependence of the transition angle 0 GP is shown in Fig. 

11-8. Again the dependence of the feed function n is neglectable. 

Using the modified GTD (UTD) for the wide-angle region pattern 

calculation, and the EEe and PO in or near the caustic directions, the complete 

radiation pattern shown in Fig.11-9 for an offset reflector antenna with x'-axis feed 

polarization is obtained finally. Fig.ll-10 shows similar patterns for y'-axis 

polarization. Finally, Fig. 11-11 shows the patterns for an antenna with the same 

geometry but a large D / A (=72). 
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11.3 Pattern Discontinuities 

As can be seen from the radiation patterns presented in the previous section 

discontinuities appear in the asymmetry plane (¢='K/2) at some specific far-field 

observation angles. The same is observed in Fig. 11-13, where the radiation pattern 

for the plane ¢='K/3 is shown. The discontinuity in the forward direction has already 

been explained. The other discontinuities are caused by the fact that at these specific 

O-angles, the p c(Eq.( 4-4)) of one of the edge diffracted rays becomes infinitely large. 

This means that the second caustic of that ray (the first caustic is at the edge) is at 

infinity (the far-field region). The GTD method will not apply at this far-field point 

because it is a caustic point in the sense the calculated gain function g(8). The 

explanation for this is that not a spherical wave but a cylindrical wave originates from 

the edge point. Fig. 11-12 shows the position of the second caustic points on the 

diffraction cone as a function of ¢ for a certain edge diffraction point. It shows that 

the caustic distance becomes infinitely large for a particular ¢-plane. 

Edge Point Q 

Diffraction Cone Caustic Points 

Fig. 11-12. The Position of the Second Caustic. Caustic Line 
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For the pattern calculation in an arbitrary ¢-plane, the B angles where Pc 

becomes infinitely large can be calculated. The results are shown in Fig. 11-14. 
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Since EEe is has been used successfully in this report for far-field caustic 

directions where all the diffraction points have pc=OJ and make in phase contributions 

to the far-field in the caustic direction, it is perhaps possible to use a modified EEe 

method for the angles where the discontinuities appear. For the standard EEe, the 

caustic divergence factor is taken to be: 

(11-1) 

The modified EEe-method should take into account any change in the caustic 

divergence factor for a part of the edge and modify the equivalent edge current 

accordingly. 
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12 Conclusions 

In the first part of this report, high-frequency asymptotic techniques for 

determining the wide-angle far-field radiation patterns of axially symmetrical 

parabolic reflector antennas are reviewed. The asymptotic techniques considered were 

GTD, UTD, APO and CAPO. The far-field derived with these methods consists of 

the field coming directly from the feed, as well as the reflected and diffracted field 

contributions from the reflector. It appears that, for calculating the diffracted field 

contributions, the two--dimensional diffraction model is sufficient because of the 

axial--symmetry of the antenna system. The mathematical formulae describing the 

total far-field were derived for the different calculation techniques. By doing this, 

some conflicting statements in literature, associated with the validity of the methods 

in different regions, have been clarified. 

Starting with Keller's GTD, it is shown that if Kouyoumjian's modified 

diffraction coefficients are used, and if the surface diffracted rays are included, 

continuous radiation patterns for the wide-angle region will be obtained when using 

this modified GTD (UTD) method. 

From a comparison between the radiation patterns calculated by the GTD 

(UTD) and APO methods, it was found that they differed in the shadow region 

especially. This is explained by the incorrect nature of the edge currents used in APO. 

To compensate for this deficit, the corrected APO (CAPO) was suggested by Knop 

and Ostertag [8J. The patterns calculated with CAPO and GTD (UTD) appear to be 

almost identical. However, the CAPO method needs more computing time than the 

GTD (UTD) method, because more complicated mathematical formulas are involved 

in CAPO. 

The pattern in the forward- and rear-axial region can be obtained with the 

PO and EEC methods, respectively, because the high-frequency asymptotic 

techniques will fail in those far-field caustic directions. It was shown that there is a 

smooth transition between PO, GTD(UTD) and EEC. 

So, the conclusion from the first part of the report is that complete radiation 

patterns can be obtained using of the modified GTD (UTD) for the wide-angle 

region, and the PO and EEC in or near the two caustic directions. The results hold 

for a symmetrical parabolic reflector antenna configuration, when the effects of feed 

and support strut blockage are not taken into account. 

The second part of the report deals with the far-field analysis of a reflector 

antenna configuration which is free from aperture blockage. It is shown that for such 
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an offset-reflector antenna, both the two- and three-dimensional diffraction models 

are needed to calculate the complete radiation pattern. For the symmetry plane (¢ = 

0°), the tw~imensional GTD (UTD) model which includes the surface diffracted 

fields, gives smooth patterns for the wide-angle regions. Besides a far-field caustic in 

the forward direction, a second caustic was found in the symmetry plane at a specific 

angle which is completely determined by the offset-parameters. For valid results in 

these near-caustic angle regions, PO and EEC had to be used. Again, a smooth 

transition was found between the three different methods. 

For calculating the radiation pattern in the other ¢-planes, the 

three-dimensional diffraction model was needed because the incident rays are 

generally not normal to the tangent of the reflector edge. Patterns from the 

three-dimensional model showed some discontinuities, which were due to the fact 

that the caustic distance of one of the two edge diffracted rays became infinitely large. 

The angles where this phenomenon occur can be calculated and the corresponding 

plots have been shown in this report. 

So, from the theoretical analyses and the numerical calculations presented in 

the second part of this report, it was concluded that GTD (UTD) is a valid method 

for predicting the wide-angle radiation pattern in the symmetry plane of an offset 

reflector antenna and it can be used for any arbitrary plane except some specific angle 

regions where the caustic distance of one of the diffracted rays becomes very large. In 
those angle regions, contributions to the far-field come from a part of the reflector 

edge around that diffraction point, therefore it seems likely that a modified EEC 

method can be used to obtain a smooth radiation pattern in any arbitrary ¢-plane. 
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