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Abstract

A series of two axisymmetric finite element models
of left ventricular mechanics 1is presented: a
deformation model and a perfusion model. The de-
formation model computes variations of stress,
strain and intramyocardial pressure during the
cardiac cycle. The intramyocardial pressure field
computed by the deformation model is substituted
as an extravascular pressure in a coronary perfu-
sion model. Computed strain, pressure and flow are
compared with experimental data from the litera-

ture.

Introduction

Many authors illustrated the capabilities of the
finite element method for stress and strain ana-
lysis of the myocardial wall. The method can also
be used to simulate the coronary circulation.

The deformation model
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Fig. 1. F.E.-mesh of the deformation model at four
different times during the cardiac cycle
(continuous 1ine), and in the reference
state (dotted line).

30 8-node two-phase axisymmetric finite elements

are used to represent the left ventricular wall.:

The geometry fis derived from multiplanar X-ray
tomographic data supplied by the biodynamics group
of the Mayo clinic, Rochester, Minnesota. A conti-
nuous fiber angle distribution across the wall is

chosen according to Streeter et a].l. A radial,
axial and circunferential displacement is computed
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Fig. 2. Transmural course of principal finite
strains at the equator.

for each of the 117 nodes. The circumferential
displacement allows the ventricle to twist about
its symmetry axis. For the corner nodes we compute
in addition the Tocal intramyocardial pressure.
The tissue is modelled as a spongy material (=
two-phase material) saturated with coronary blood:
redistribution of coronary blood within the wall
is possible. Exchange of blood between the intra-
myocardial coronary bed and the large epicardial
coronary vessels is possible as well. No blood is
allowed to cross the endocardial surface. No dis-
tinction is made between the different microvascu-




lar compartments, nor between intravascular and
extravascular space. The passive properties of the
myocardial tissue are described by an orthotropic
quasi-linear viscoelastic law. The parameters of
the law are derived from experimental data of

several authorsz’3’4. A time, strain and strain
rate dependent contractile fiber stress is super-
imposed on the passive stress during the systolic
phase. The downstream boundary condition is de
scribed by a Tinear 4 element model of the peri-

feral circulation borrowed from Westerhof et a1.5.
Transmural equatorial distribution of strain and
intramyocardial pressure are consistent with expe-

rimental data from the 1iterature6’7’8’9 (fig, 2).
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Fig. 3. Transmural equatorial distribution of

intramyocardial pressure.

When the model is assigned a spongy nature (two-
phase behaviour), the subendocardial tissue pres-
sure is almost equal to the intraventricular
pressure (fig. 3). However, when the material
properties are switched to incompressibility (no
redistribution of coronary blood within the wall),
the subendocardial tissue pressure 1is found to
exceed intraventricular pressure significantly.
This result suggests that intracoronary blood may
play an important role in reducing subendocardial
tissue pressure in the in vivo ventricle. Finally
when the model undergoes a systolic contraction
without generating pressure in the intraventricu-
lar cavity, the systolic subendocardial tissye
pressure is about as high as in a normal cardiac
cycle whether the ventricle is modelled as a two-
phase material (fig. 4) or as an incompressible
material.

Perfusion model
The perfusion model is an axisymmetric version of

the finite element model discussed in the compa-
nion paper. The finite element mesh is obtained by
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Fig. 4. Model result of subendocardial intramyo-
cardial pressure during a left ventricular
contraction at va=O (two-phase simula-
tion).
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Fig. 5. The finite element mesh of the perfusion

model.
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extending the mesh of fig. 1 in a hyperdimension
(fig. 5). Each Tayer of 27 elements represents one
microvascular compartment. The conductance param-
eters of each compartment are evaluated on the
basis of qualitative anatomical data of the geo-
metry of the coronary tree and experimental - data
from the literature of intracoronary blood pres-
sures and flow. Non-linear elastic properties are
attributed to the vessel walls (fig. 6). The in-
tramyocardial pressure field computed by the de-
formation model is substituted as an extravascular
pressure. At the epicardial surface arterial coro-
nary pressure is set to 11 kPa and venous coronary
pressure is set to 0.5 kPa. The coronary pressure
is computed every 5 ms for every node. High sys-
tolic endocardial coronary pressures are computed
for all the compartments, while during diastole
most of the coronary pressure drop occurs in the
arterioles (fig. 7).
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Fig. 6. Non-Tinear compliance of the microcircula-

tory compartments. nb: current blood vol

ume per unit arteriovenous parameter, Nb:
initial blood volume per unit arterio-

venous parameter, pTM: transmural pressure

drop across the vessel wall. The value of
Nb is different for each finite element
layer and is chosen according to Spaanlo.

The high systolic transmural pressure gradient
results in a significant reduction of arterial
coronary flow and a significant increase of venous
coronary flow during systole (fig. 8). These
strong alteration of coronary flow during systolic
contraction are predicted by the model not only
for the normal cardiac cycle but also during con-
traction of an unloaded ventricle (left ventricu-
lar pressure = 0). The poor sensitivity of the

systolic reduction of arterial coronary flow to:
the systolic intraventricular pressure is consis-;

tent with unpublished experimental data of R.
Krams and N. Westerhof (Free university,
Amsterdam) .
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Fig. 7. Transmural coronary blood pressure distri-
bution in section o-qo of the left ventri-
cular model.
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Fig. 8. Total coronary flow as predicted by the
perfusion model.
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Fig. 9 shows the arterial coronary flow pattern at
end-diastole for the normal cardiac cycle and
after occlusion. The top panel pertains to the
basal condition: arterial blood flows then from
the epicardial surface into the wall. The bottom
panel pertains to the situation after occlusion.
In this case significant collateral flow is pre-
dicted along the epicardial plexus from the heal-
thy muscle to the ischaemic muscle.

Fig. 9. Radial and axial coronary flow component
in the basal situation (top) and after
occlusion {bottom). The radial compartment
s positive in the direction pointing away
from the symmetry axis (on this picture:
from right to Teft) and the axial compo-
nent is positive from apex to base.
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Conclusion

The finite element method opens new possibilities
to the modelling of the coronary circulation.
Although a great deal of uncertainty remains con-
cerning the choice of the parameters, we can show
that the model is able to reflect tendencies which
are consistent with the experiment.
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