
 

Two- and three-dimensional point location in rectangular
subdivisions
Citation for published version (APA):
Berg, de, M. T., Kreveld, van, M. J., & Snoeyink, J. (1991). Two- and three-dimensional point location in
rectangular subdivisions. (Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9129). Utrecht
University.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/17502685-93fa-453a-a6fb-e9a611fa69e7


Two- and Three-Dimensional Point 
Location in Rectangular Subdivisions 

M. de Berg, M. van Kreveld, J. Snoeyink 

RUU-CS-91-29 
August 1991 

Utrecht University 
Department of Oomputer Science 

Padulilin 14, P.O. Box 80.019, 

3508 18 Utrecht, The Netherlands, 

Tel. : ... + 31 - 30 - 5314$4. 



Two- and Three-Dimensional Point 
Location in Rectangular Subdivisions 

M. de Berg, M. van Kreveld, J. Snoeyink 

Technical Report RUU-CS-91-29 
August 1991 

Department of Computer Science 
Utrecht University 

P.O.Box 80.089 
3508 TB Utrecht 
The Netherlands 





Two- and Three-Dimensional Point Location 

in Rectangular Subdivisions* 

Mark de Berg Marc van Kreveld Jack Snoeyinkt 

Department of Computer Science 
Utrecht University 

Abstract 

We apply van Emde Boas-type stratified trees to point location problems in rectangular 
subdivisions in 2 and 3 dimensions. In a subdivision with n rectangles having integer coordinates 
from [1, U], we locate an integer query point in O«loglog U)d) query time using O(n) space 
when d ~ 2 or O(nloglogU) space when d = 3. Applications and extensions of this ''fixed 
universe" approach include point location using logarithmic time an~ linear space in rectilinear 
subdivisions having arbitrary coordinates, point location in c-oriented polygons or fat triangles 
in the plane, point location in subdivisions of space into "fat prisms," and vertical ray shooting 
among horizontal "fat objects." Like other results on stratified trees, our algorithms run on a 
RAM model and make use of perfect hashing. 

1 Introduction 

The point location problem-which seeks to preprocess a set of disjoint geometric objects to be able 
to determine quickly which object contains a query point-is an important and well-studied problem 
in computational geometry. The usual goal of such study is logarithmic-time algorithms and linear

space structures, since this is the lower bound for one-dimensional search in a comparison-based 
model. In two dimensions, researchers have developed several solutions that attain these bounds; 
see Preparata [15] for a survey. In three dimensions, these bounds have not yet been attained, even 
though recent work on dynamic planar point location has lead to advances in spacial point location. 
Goodrich and Tamassia's [8] method, which achieves O(log2 n) query time using O( n log n) space, 
is the current best. 

We will consider the special case of rectangular subdivisions. For our purposes, a rectangle in d 

dimensions is the Cartesian product of d intervals that are closed on the left and open on the right. 
A rectangular subdivision is a partition of a rectangle R into disjoint rectangles R I , R 2 , ••• , Rn whose 
union covers Rj the size of this subdivision is n. The problem of point location in a subdivision is 

-This research was supported by the ESPRIT Basic Research Action No. 3075 (project ALCOM). The first author 
was also supported by the Dutch Organization for Scientific Research (N. W.O.). 

tOn leave from the Department of Computer Science of the University of British Columbia. 

1 



to report the rectangle Ri that contains a query point q E R. Edelsbrunner, Haring, and Hilbert [5] 
extended a planar point location method of Edelsbrunner and Maurer [6] to solve point location 
in a d-dimensional rectangular subdivision in O(logd-l n) query time. Their algorithm handles 
arbitrary coordinates and runs on a pointer machine. 

We use a stronger model of computation, the random access machine (RAM), to support the 
perfect hashing of Fredman, Koml6s and Szemeredi [7]. (All other computation can be performed 
on a pointer machine.) Furthermore, for the first half of this paper, we require that the rectangle 
corners and query points lie in a fixed size integer grid [1, U]d. Stratified trees, a data structure 
introduced by van Emde Boas [16] and extended by him and others [9, 13, 18, 19], exploit the 
power of a RAM on a fixed universe. They have been used for log-logarithmic time queries in one
dimensional point location, more commonly known as searching a list for the successor of a query 
point. Miiller [14] used a type of stratified tree as a two-dimensional point location structure, 
answer queries in a rectangular subdivision of size n using O( (log log U)2) time and O( n log U) 

space. 
We give an new type of stratified tree that emphasizes a tradeoff between space and query time. 

In two dimensions, we can preserve Muller's o «log log U)2) query time using only O(n log log U) 
space or reduce !!pace to linear and increase the query time to O((logU)<l/h» for any constant h. 
We can also achieve O«loglog U)2) query time with linear space by extending van Emde Boas' 
pruning technique [17] to two dimensions. In three dimensions, we can extend the point location 
method, but not the pruning: We achieve O«loglog U)3) query time using O(nloglog U) space or 
O«log U)<l/h» time using linear space, for any constant h. Section 2 describes the data structure 
and subsections 2.1,2.2 and 2.3 describe integer point location in rectangular subdivisions of one-, 
two- and three-dimensional integer grids. 

In Section 3 we apply the point location method to other problems that are not initially defined 
on fixed integer grids. In Section 3.1, we normalize a three-dimensional rectangular subdivision 
having arbitrary coordinates to allow point location using linear space and logarithmic time. Point 
location in k rectangular subdivisions of d ~ 3 dimensions that have total size n takes O(log n + 
k(loglogn)d) time. In Section 3.2, we perform point location among c-oriented polygons or fat 
triangles in the plane in o ((log log n )2) time after a constant number of normalizations. This 
allows point location in a subdivision of 3-space into c-oriented or fat prisms in logarithmic time 
and linear space. In Section 3.3, we perform vertical ray shooting queries among n horizontal objects 
in 3-space using O(1og n(1og log n )2) time. If the objects are rectangles or c-oriented triangles, the 
space is O(nlogn)j and if the objects are fat triangles, the space is O(nlognloglogn). 

2 Stratified trees and point location 

In this section we describe our variant of stratified trees and show how they can be used to solve 
point location problems efficiently on a RAM. Conceptually, a stratified tree is an interval tree T 
built on the universe [1, U] with a search tree built on the levels of T. The actual implementation 
depends upon perfect hashing to reduce storage space. First we describe the way we think of 
stratified trees and then the way they are implemented. We will assume that the universe size U 

2 



is a power of 2 and take all logarithms as base 2. 
An intenJal tree T on [1, U] is a complete binary tree that stores intervals of [1, U]-our definition 

will be slightly different from that in Edelsbrunner [4]. Number the levels of the interval tree T 
from the root, level 0, to the leaves, level log U. Number the leaves of T from left to right with 1 
to U. With the jth leaf we associate the interval range p(j) = [j - 1/2,j + 1/2]; an internal node 
r of T is associated with the range p( r) that is the union of the ranges of the leaves of the subtree 
rooted at r. From Figure 1 you can see that the set of ranges on levell partition [1, U] into 2l 

equal-size pieces. 
An interval I = [imin' imax) with integer bounds from [1, U] 

spans a tree node rET if I contains the range p( r). Interval 
I is contained in r if I is contained in p( r). Interval I cuts 
node r if p(r) contains exactly one ofthe endpoints of I. We 
can further distinguish whether I cuts r on the left, meaning 
that I contains the lower bound of p(r), or whether I cuts r 
on the right, meaning that I contains the upper bound of p( r). 
As Figure 1 illustrates, the interval I is contained in the root 
and in one node per level down to some level l I - 1. Then 
I cuts two nodes per level, one on the right and one on the 
left, from iI down to the leaves and spans any nodes between 
them. 

contained 
,,/ .......... 

cuts 
left 

cuts 
right 

/ \ / \ 
cuts 
right spans 

cuts 
left disjoim 

9 » o 
I 

Figure 1: Interval tree T on [1,4] 
and interval 1= [1,3) 

We next form a level-search tree, a balanced k-ary search tree on the levels of T. Figure 2 shows 
an interval tree with a ternary level-search tree. The level-search tree is formed by assigning k - 1 
evenly spaced levels to the root and recursively constructing k subtrees for the levels in between. 
Thus, its height is h = 0(log log U / log k). 

. .............. -...... -==:::::::::::::::::~]\ 
······························0 ··············0-.......... 

·:::::::·0:::::' 

Figure 2: A stratified tree storing two intervals 

At a level-search tree node, there is a natural ordering of the associated levels and children. We 
can say that an associated level is directly below a child if it is one level deeper than the deepest level 
in the subtree rooted at the child. Now, given a subdivision of [1, U] into n intervals I}, 12 , •• • ,In 

with integer bounds, we store the intervals in the stratified tree as follows. Give interval I to the 
nodes that it cuts on level iI, which are the highest level cut nodes, and also to the nodes that 
it cuts on all other levels directly below the path in the level-search tree from iI to the root, as 
depicted in Figure 2. Notice that each interval is given to at most 2h interval tree nodes. By way 

3 



of contrast, each interval is stored in all cut nodes in a van Emde Boas tree. 
Recall that this was the conceptual view of stratified trees. If n <: U, then most of the interval 

tree nodes do not receive intervals; to actually store these empty nodes would be wasteful. To 
implement stratified trees, we create only the level-search tree and store only the full nodes of each 
level, that is, the nodes that receive at least one interval. 

We label the nodes at level l from 1 to -t j the label of the node that contains the integer 
q E [1, U] is one greater than the binary number represented by the first l bits of q. We store the 
labels of full nodes and pointers to their intervals in a table using the perfect hashing scheme of 
Fredman, Koml6s and Szemeredi [7]. (See also Mehlhorn and Naber [13].) This scheme stores m 
full nodes in Oem) space and locates a stored node in 0(1) time. The deterministic preprocessing 
time is the minimum of O( mU) and O( m3 log U)j the expected randomized preprocessing time is 
O( m). Thus we have: 

Theorem 2.1 To store n intervals that partition [1, U] in a stratified tree with a level-search tree 

of height h requires O( nh + log U) space and expected preprocessing time. 

Proof: The level-search tree structure takes O(log n) space, neglecting the storage for asso
ciated levels. These levels store nodes containing 2hn intervals, thus, the maximum number 
of nodes and amount of storage is O( nh) for all levels. The preprocessing is dominated by 
computing perfect hash tables; it is easy to assign intervals to levels and nodes in O( nh) total 
time .• 

Remark: The dynamic perfect hashing technique of Dietzfelbinger et al. [3] can be used to make 
these stratified trees dynamic. The amortized expected time to delete j intervals and replace them 
by k intervals that have the same union is O( (j + k)h) without pruning. The space to store a level 
remains linear and the time to lookup whether a node is stored remains constant. 

In the next subsections, we show how stratified trees answer point location queries in fixed 
universes. 

2.1 One-dimensional point location 

As a warm-up exercise for higher-dimensional point location, we show how to answer point location 
queries in one dimension using our variant of stratified trees. We prove Theorem 2.2. 

Theorem 2.2 Using a stratified tree on [1, U] with a level-search tree of height 1 ~ h ~ log log U, 
one can perform one-dimensional point location in an interval subdivision 11 ,12 , ••• , In using O( nh) 
space and expected preprocessing time and O(h(log u)1/h) query time. By pruning, one can achieve 
O(n) space and preprocessing time and O(1oglog U) query time. 

When we have very few intervals, say n = o (log U), we punt the stratified trees and simply use 
a balanced binary search tree on the interval endpoints. This will give O(loglog U) query time using 
O(n) space. Otherwise, we build a stratified tree using O(nh) space according to Theorem 2.1. 

Consider a stratified tree node T and the (at most two) intervals it receives. If T receives an 
interval Ij that cuts T on the left (right), store Ii's upper (lower) bound. If T receives no intervals, 

4 



that is, if r is empty, then some interval Ij spans p( r). Since an interval Ij is given to two adjacent 

nodes at level iIj' every point in Ij is in Ij n p( r) for some full node r. 
Suppose, just for one paragraph, that we had given each interval Ij to every node that it cuts

this is precisely what is done in forming a van Emde Boas tree. We could then determine if the 
interval containing an integer query q was stored above or below a level i of the interval tree by 
the following procedure: Take the label of q, which is one greater than the number determined by 
the first l bits of q, and, by hashing in constant time, determine if the node rET with that label 
is empty or is stored at level t. If r is empty, then q is inside an interval Ij that spans rand, 
therefore, also spans r's descendents-we need not search deeper in the interval tree. Otherwise, 
test q against the intervals cutting r on the left and right. If either interval contains q, stop and 
report it; otherwise q is inside an interval Ij contained in r and, therefore, also contained in r's 
ancestors-we need not search higher in the tree. 

We have not given each interval to every cut node, however, so we must remember intervals 
that we have seen as we move down the level-search tree. To answer a point location query for an 
integer q, we begin at the root of the level-search tree and set the interval I = [1, U]. 

With a node v of the level-search tree are associated k - 1 levels of the interval tree, the levels 
iI,i2 , •• • ,ilc-I. When the search reaches v, we use the hash table for each levelij to determine if 
the interval tree nodes rj that contains q on levelij is empty or stores one or two intervals. For 
each full node rj, we can check in constant time whether an interval stored with rj contains q and if 
one does, we stop and report it. Otherwise, we use I to help decide in which child of v to continue 
the search in the level-search tree. First, we shrink I by the closest interval boundaries found to 
the right and left of q. Second, we determine which node tj contains the interval I. If none does, 
then we continue the search in the highest child of v, otherwise we continue in the child of v that 
is directly below levelij. Lemma 2.1 proves the correctness of this procedure. 

Lemma 2.1 Let v be a level-search tree node. Let I be the largest interval containing the query q 

that is disjoint from all intervals found in levels associated with nodes on the path to and including v. 

The intervalIj that contains q can be found in the subtree of the highest child of v below all associated 

levels having a node that contains I. 

Proof: Think of adding the root and leaf levels to those associated with Vj then we can find 
two levels i and i', with one child between them, such that I is contained in a node r at level 
£ and not contained in a node at level £'. 

We know that any interval stored in the stratified tree that intersects I is contained in 
I-including the interval that contains q. Thus, since I is contained in r, we need not search 
higher than level l. 

Now, consider the node r' E T that contains q at level i'. The interval I either cuts or 
spans r'-we shall prove that it spans r'. Suppose, instead, that I cuts r. Then I contains 
some interval I' that is stored in the stratified tree and cuts r. But the highest level node that 
I' cuts must then be between i and i', so I' would be stored in node r and would be found to 
contain q or to shorten the interval I. Thus, I spans r and also spans all descendents of r-we 
need not search lower than £'. This establishes the lemma .• 

5 



The proof of Theorem 2.2 is almost complete. For each of the h levels of the level-search tree, 
a query examines Ie - 1 levels of the interval tree in constant time apiece. Query time is O( hie) and 
space is O( nh), where h = log log U / log Ie. Varying the height parameter h gives a space/ query time 
tradeoff': Choosing k a constant gives o (log log U) query time and O(nloglog U) space. Choosing 
h a constant gives O(logl/h U) query time and O( n) space. 

The tradeoff' afforded by h is unnecessary for one-dimensional point location. Instead, one can 
use van Emde Boas' technique of pruning [17] to reduce the space to linear and increase the query 
time by only a constant factor. Choose every log log U th interval boundary to form n / log log U 
super-intervals and store these super-intervals in a stratified tree using O( n) space. Given a query, 
find the containing super-interval in the stratified tree, then use linear search to find the actual 
interval. The query time remains o (log log u). This completes the proof of Theorem 2.2 .• 

Because the union of rectangles is not a set of rectangles, pruning in higher dimensions is more 
difficult. At the end of the next section, we use the planar separator theorem to show that pruning 
is still possible in two dimensions. For three dimensions, however, we need the space/time tradeoff' 
to attain linear space. 

2.2 Two-dimensional point location 

In this section, we show how to perform point location in a rectangular subdivision of the plane by 
using two layers of stratified trees. Theorem 2.3 improves a theorem of Muller [14]. 

Theorem 2.3 Using stratified trees on [1, U]2, one can perform 2-dimensional point location in 
a rectangular subdivision Rt, R2, ... , Rn in O(h(1og U)l/h log log U) query time using O(nh) space 
and expected preprocessing time, for any integer 1 $; h $; log log U. By pruning, one can achieve 
O( n) space after O( n log n) deterministic and OC n) expected preprocessing time. 

To perform point location in a rectangular subdivision of two dimensions, we form a stratified 
tree on the intervals of the x-axis in much the same way as in the previous section. We give each 
rectangle to the highest level nodes that its x-interval cuts and to the nodes cut on all other levels 
directly below the the path to the root of the level-search tree. 

Consider a node T in the interval tree T: it has range p( T) = [Xmin, xmax] and receives a set of 
rectangles 'R that cut it. (See Figure 3.) The intersection of the line x = Xmin or x = Xmax with 
'R is a set of intervals-it is not a subdivision because there are gaps left by rectangles that span 
T or that are stored elsewhere in the stratified tree. IT we fill in these gaps, however, we can use 
one-dimensional point location to find the projection of a query point q onto the the lines x = Xmin 

and x = Xmax. Since filling in the gaps at most doubles the number of intervals, we can locate both 
projections in o (log log U) time using space proportional to the number of rectangles received by T. 

This proves that the total space required is O( nh). 

6 



IT the projection of q lies in a y-interval of a rectangle R E 'R, then we can 
check in constant time if q also lies in the x-interval of R. Thus, to locate the 
rectangle containing a query q, we begin at the root of the level-search tree 
and set the line segment I to the portion of the horizontal line through q with 
x coordinates in [1, U]. At a level-search tree node II, we use hashing to obtain 
the node containing q at each of the k - 1 levels associated with II and use 
one-dimensional point location to check for rectangles containing q. IT none is 
found, we shrink the segment I to lie between closest rectangles intersecting I 
to the right and left of q. We continue the search in the child of II directly below 
the lowest associated level that has a node containing I. Again, Lemma 2.1 
proves the correctness of this procedure. 

For each of the h levels of the level-search tree, a query examines k - 1 levels 
of the tree in o (log log U) time apiece. Thus, query time is O(hk log log U), 
where h = log log U flog k. Except for the pruning, this establishes Theo
rem 2.3. Choosing k a constant gives a O((1oglog U)2) query time algorithm 

o 
node t 

Figure 3: 
Rectangles 
given to T 

o 
I 

using O( n log log U) space. Choosing h a constant gives a O(logl/h U log log U) algorithm with 
linear space. 

Remark: This point location structure can be made dynamic using dynamic perfect hashing [3]. 
An operation that replaces j rectangles by k rectangles that have the same union induces O( (j + k)h) 
changes in 1-dimensional structures, each of which takes 0(1) expected amortized time, if dynamic 
pruned stratified trees are used for the 1-dimensional subproblems. The entire space/query time 
tradeoff can be achieved. Unfortunately, the 2-dimensional pruning described below cannot be used 
in a dynamic setting. 

For the remainder of this section, we develop a two-dimensional analogue of van Emde Boas' 
pruning technique to reduce the space to linear while increasing the query time by only a constant 
factor. Specifically, we prove that we can collect the rectangles Rb R 2, ••• , Rn into groups of size 
0«loglogU)2) and cover these groups by a new subdivision into m = O(nfloglogU) rectangles 
R'b R'2, ... , R'm such that every new rectangle R~ intersects only one group. We can store the 
new rectangles R'l, R' 2, ••• , R'm in a point location structure that uses O( n) space and find the 
rectangle Ri containing a query point in O«loglog U)2) time. Rectangle Ri tells us a unique 
group of o «log log U)2) rectangles that we can search exhaustively. Thus, the pruning part of 
Theorem 2.3 will be established when we prove Lemma 2.2. 

Lemma 2.2 Given a rectangular subdivision Rb R2, ... , Rm we can group the rectangles into sets 

'RI, 'R2, ... , 'Rml each of size O«loglog U)2), and find a new subdivision R'b R'2, ... , R'm with at 

most m = o (n/log log U) rectangles such that each new rectangle Ri intersects the rectangles of 

only one set 'Rj. The time required is O(nlogn). 

Proof: Lipton and Tarjan's planar separator Theorem [11] states that any planar graph on v 

vertices has a subset of 2V2V vertices whose removal separates the graph into components with· 
at most 2v/3 vertices each. This subset can be found in O(n) time. 

7 



The dual graph of the rectangular subdivision Rl, R2, ... , Rn-the graph whose vertices are 
rectangles and whose edges join rectangles that share a portion of a boundary-is planar. While 
a connected component of this graph has v > (log log U)2 vertices (rectangles), we apply the 
planar separator theorem to remove a small set of vertices so that no component remaining has 
more than 2v /3 vertices. Because every component is reduced by a constant fraction in time 
proportional to its size, this takes O( n log n) time altogether. 

When the algorithm terminates, we collect all rectan
gles whose corresponding dual vertices are removed into a 
set e. Removing the rectangles of e from the subdivision 
leaves connected groups of size at most (log log U)2. For each 
group, We take the union and decompose it into rectangles 
by computing its vertical adjacency map-making vertical 
cuts through the reflex vertices of the boundary of the union. 
This can be done by a simple sweep if the boundary vertices 
are sorted. Let D be the set of all rectangles formed in this 
manner. Figure 4 illustrates a small rectangular subdivision 
and a decomposition into rectangles of C and D. 

We will let CuD be our new subdivision. Because each 
Figure 4: The rectangles of 
C and D 

rectangle of D lies inside a union of at most (log log U)2 rectangles, it is clear that a new 
rectangle intersects at most (log log U)2 old rectangles. We must show that the number of 
rectangles leu DI is o (nflog log U). It is sufficient to bound ICI since the number ofrectangles 
in D is proportional to the boundary complexity of the union of connected components, which 
is proportional to I C I. 

Following Lipton and Tarjan [11], we form a tree on the set of all components constructed by 
the algorithm: a component that splits is the parent of the resulting components. We number 
each component in the tree by the greatest distance to a leaf. Leaves, components that are not 
split, are numbered o. 

The components numbered 1 are split once, thus they have size at least (log log U)2 . By 
induction, the components numbered i each have size at least (3/2)i-l(loglog U)2. Since a 
vertex is in at most one component with a given number, there are mi ~ n(2/3)i-l /(loglog U)2 
components numbered i. 

Let us look at the contribution to e from the mi components that are numbered i. If nj is the 
size ofthe jth component numbered i, then the contribution to C is El~j~m; 2";2nj. Because 
the sum El~j~m; nj ~ n, the Cauchy-Schwarz inequality states that the maximum contribution 
occurs when the components have equal sizes; the contribution is at most mi2";2n/mi = 
2v'2nmi. Summing over all positive component numbers gives the maximum total contribution: 

This completes the proofs of Lemma 2.2 and of Theorem 2.3 .• 

8 



Remark: On integer grids, this data structure can improve many algorithms that use point lo
cation as a subroutine. For a simple example, reporting the k horizontal segments that intersect 
a vertical query segment can be performed in O( (log log n)2 + k) time by preprocessing Chazelle's 
hive graph [2]. 

2.3 Three-dimensional point location 

By now, the method for three-dimensional point location should come as no surprise: use a stratified 
tree with two-dimensional point location as secondary structures at each node. That the method 
breaks down in four dimensions may come as more of a surprise. Thus, we merely outline the proof 
of Theorem 2.4. 

Theorem 2.4 Using stratified trees on [1, U], one can perform :I-dimensional point location in a 
rectangular subdivision Rb R2, ... , Rn in o (h(log u)l/h(loglog U)2) query time using O(nh) space, 
for any integer 1 ::; h ::; log log U. 

Again, we form a stratified tree on the intervals of the x-axis and give each rectangular box to 
the highest level nodes that its x-interval cuts and to the nodes cut on all other levels directly below 
the path to the root of the level-search tree. Let 'R be the set of boxes that cut a node T E T on the 
right (the set cutting T on the left is handled similarly). All boxes of'R intersect the plane through 
the right boundary of the interval p( T), forming a set of 2-dimensional rectangles. We extend this 
to a rectangular subdivision of the plane by forming the vertical adjacency map-making vertical 
cuts from the corners of rectangles of 'R. This process of "filling the gaps" in the plane increases 
the number of rectangles by a constant factor. We can then use two-dimensional point location to 
find the projection of a query point q onto the planes bounding p( T) in O( (log log U)2) time and 
linear space. This proves that the total space required is O( nh). 

If the projection of q lies in a 2-dimensional rectangle, then we can check in constant time if 
q lies in the 3-dimensional rectangular box that created it. Thus, to locate the rectangular box 
containing a query q, we begin at the root of the level-search tree and set the line segment I to 
the portion of the line through q and parallel to the x-axis that has x-coordinates in [1, U]. At a 
level-search tree node v, we use hashing to obtain the node containing q at each of the k - 1 levels 
associated with v and use two-dimensional point location to check for boxes containing q. If none 
does, we shrink the segment I to lie between the closest boxes intersecting I to the right and left 
of q. We continue the search in the child of v directly below the lowest associated level that has a 
node containing I. Lemma 2.1 proves the correctness of this procedure. The analysis of running 
time is the same as in the previous section except for substituting two-dimensional point location 
with pruning as the secondary structure. This establishes Theorem 2.4 .• 

Varying the height parameter h gives a space/query time tradeoff: Choosing h = flog log Ul 
gives o (log log U) query time and O( n log log U) space. Choosing h a constant gives O(logl/h U) 
query time and linear space. 

This method cannot be extended to higher dimensions because we can no longer "fill the gaps" 
using linear space. There are sets of k boxes in 3-dimensions that are contained only in rectangular 
subdivisions of size n(k3/ 2). 

9 



3 Applications to other domains 

The previous section developed data structures for point location problems in fixed universes; the 
problem domains were fixed size integer grids. In this section, we look at some easy applications 
of these data structures to problem domains that are not (initially) fixed grids. These include a 
logarithmic-time linear-space point location structure for rectangular subdivisions of three dimen
sions using arbitrary coordinates, locating a single point in several subdivisions, point location 
among c-oriented polygons or fat triangles in the plane and among prisms with c-oriented or fat 
bases, and vertical ray shooting among horizontal rectangles or c-oriented or fat triangles. Our 
approach is two-pronged: First, to extract one or more grids from a problem and preprocess them 
for point location. Second, to normalize a query point to these grids by binary search and then 
perform point locations. We gain by having only one search for the normalization of a query point. 

3.1 Point location in rectangular subdivisions of real 3-space 

We begin with two simple examples of normalization. The first is the problem that motivated this 
research. 

Theorem 3.1 Given a three-dimensional rectangular subdivision of size n having arbitrary real 

coordinates, we can answer point location queries in o (log n) time on a RAM using linear space 

and O( n log n) expected preprocessing time. 

Proof: Every rectangular prism is a product of intervals from the three coordinate directions. 
For each of the three coordinate directions, form a sorted and ranked list of the bounds of these 
intervals and replace each real interval [a,b) with the integer interval [rank(a), rank(b». This 
takes O(nlogn) preprocessing. 

The rectangular subdivision can now be considered as a subdivision of the integer grid whose 
maximum coordinate is n. We can therefore apply Theorem 2.4 and compute a linear space 
point location structure that reports the rectangle containing a query grid point in O(log n) time. 
(IT the height of level-search trees in all dimensions are taken to be h = 3, for example, then 
these bounds are attained without pruning and the expected time to build the data structures 
is O(n).) 

To answer a query for a real point q, we normalize q to a grid point: we replace each 
coordinate of q by its rank, which we determine by a binary search in the list of bounds for 
that coordinate. Then we report the box that contains this grid point. Both normalization and 
grid-point location take O(log n) time .• 

A related (and trivial) example deals with locating a point in several subdivisions of total size 
n. All bounds of rectangle intervals from a given axis can be collected into one sorted and ranked 
list and all normalizations can performed on this list. 

Theorem 3.2 A query point can be located in k rectangular subdivisions of d ~ 3 dimensions that 

have total size n in o (log n + k(log log n )d) time. 

10 



Remark: By collecting the planar subproblems that arise in the skewer trees of Edelsbrunner, 
Haring, and Hilbert [5] and applying Theorem 3.2, we obtain an O(1og nd- 2(log log n )2) point 
location method for rectangular subdivisions of d > 2 dimensions. 

3.2 Point location among c-oriented polygons and fat triangles 

In this section we explore a method to extend the rectangular point location scheme to a set l' of 
polygons in the plane that have disjoint interiors. Suppose we can find a rectangular subdivision of 
the plane such that each rectangle in the subdivision intersects only a constant number of polygons 
of 1'; we call such a subdivision a sparse rectangularization SR(p) of the set of polygons p. Then 
we could answer a point location in l' by locating the query point q in SR(p) and comparing q to 
the polygons of l' that intersect the rectangle containing q. 

Not every set l' admits a sparse rectangularization: if, for example, the set contains a vertex 
with more than a constant number of incident polygons then no sparse rectangularization of l' 
exists. Therefore we study the restricted class of c-oriented polygons; polygons whose edges are 
parallel to a fixed set of c orientations, for some constant c. Furthermore, rather than looking 
for a single sparse rectangularization, we partition a set of c-oriented polygons into a constant 
number of sets of quadrilaterals, each of which admits a sparse rectangularization. The size of all 
rectangularizations (the total number ofrectangles) will be linear in the number of polygon edges. 
Different rectangularizations will use different orientations for their axes; a query point must be 
normalized in several new orientations. As we have seen in Section 3.1, however, applications that 
perform several point locations gain by performing the normalizations only once. 

Let l' be a set of c-oriented polygons with disjoint interiors and assume, without loss of gener
ality, that one of the c possible orientations is parallel to the x-axis. To obtain a family of sparse 
rectangularizations, we decompose each polygon P of Pinto trapezoids (some of which can degen
erate into triangles) by slicing through each vertex of P with the longest horizontal segment that 
is contained in P. Each trapezoid has (one or) two edges that are horizontal, which we call its top 
and bottom edges, and a left and a right edge. Since l' is c-oriented, we can partition the resulting 
set of trapezoids into c - 1 subsets pb"" P c- 1 according to the orientation of their left edge. 

Consider one subset Pi. Compute the horizontal trapezoidation of the left edges of trapezoids 
in Pi, as shown in Figure 5. The planar subdivision thus obtained is called the horizontal adjacency 
map the left edges of Pi, denoted ADJ(pi), because the endpoints of each left edge are connected 
to the horizontally adjacent left edges. If we apply a skew transformation to make the left edges 
vertical, then the horizontal adjacency map is a rectangularization of Pi. The next lemma proves 
that it is a sparse rectangularization. 

Lemma 3.1 ADJ(pi) is a sparse rectangularization of Pi with linear size. 

Proof: Since the numbers of trapezoids, edges, and vertices in ADJ('Pi) are proportional to 
the number of left edges in 'Pi, the horizontal adjacency map ADJ(pi) is a rectangularization 
of linear size. 

To prove the sparseness of ADJ(pi) , we show that each rectangle R E ADJ('Pi) intersects at 
most one trapezoid of Pi. By construction, the only vertices of trapezoids in Pi that touch R 

11 



............ , ...................................... . 

Figure 5: The horizontal adjacency map for the left edges of the shaded trapezoids 

lie on the horizontal edges of R. Thus, there is at most one trapezoid whose left edge is the left 
boundary of R. Since rectangle R is not considered to include its right boundary, any trapezoid 
that extends to the right from this boundary does not intersect R .• 

Lemma 3.1 enables us to perform fast point location in Pi: first we perform fast point location in 
ADJ(Pi) and then we test in constant time whether the query point is inside the trapezoid that 
intersects the rectangle of ADJ(Pi) that contains the query point. Observe that the query point 
needs to be normalized in both the y direction and in the direction perpendicular to the left edges 
of Pi in order to perform fast point location in ADJ(Pi). Applying this scheme to each Pi leads to 
the following theorem. 

Theorem 3.3 After c normalizations, one can perform 2·dimensional point location among c
oriented polygons with n vertices in O( (log log n )2) query time using O( n) space and O( n log n) 
expected preprocessing time. 

We can obtain the same result for fat triangles, where a triangle is fat if every internal angle 
contains at least one of a set of c fixed orientations. Note that an equivalent restriction is for each 
internal angle to be greater than some fixed angle (J. 

Corollary 3.2 After c normalizations, one can perform 2-dimensional point location among n fat 
triangles in O( (log log n )2) query time using O( n) space and O( n log n) expected preprocessing time. 

Proof: Given a fat triangle, first cut it into two triangles by a c-oriented cut through a vertex, 
then make c-oriented cuts through the remaining two original vertices. This results in four 
triangles tt, t2, t3 and t4 such that each ti has two c-oriented edges. Once all triangles have 
been cut, group them into c( c - 1) classes based on the orientations of the c-oriented edges. 
For each class, apply a skew transformation so that the two c-oriented edges are horizontal and 
vertical, then compute a vertical adjacency map. A rectangle in this adjacency map intersects 
at most two triangles, so the sparse rectangularization method can be used for point location .• 

One way to extend these algorithms to three dimensions is to consider subdivisions into prisms 
whose bases are parallel c-oriented polygons or fat triangles. The next theorem is a generalization 
of Theorem 3.1. 

12 



Theorem 3.4 In a subdivision of 3-space into prisms whose bases are parallel c-oriented polygons, 
with constant c, or parallel fat triangles we can perform point location in o (log n) time using linear 
space and O( n log n) expected preprocessing time. 

Proof: We first perform all the required normalizations in o (log n) time as in Theorem 3.1. 
Then we use a stratified tree, with height parameter h = 3, on the direction parallel to the axes 
of all the prisms as in Section 2.3. The secondary structures of this stratified tree are the point 
location structures for c-oriented polygons or fat triangles developed in this section. The query 
time can be balanced with the time to do normalizations, as in Theorem 3.1.. 

3.3 Vertical ray shooting queries 

The problem of vertical ray shooting among horizontal objects in space can be seen as a gener
alization of 3-dimensional point location in a subdivision. In this section we apply the fast point 
location technique to speed up vertical ray shooting queries among horizontal rectangles or hori
zontal c-oriented or fat triangles. Because one normalization can serve for several point locations, 
we can improve query times from 0(1og2 n) to o (log n(log log n )2) for these problems. Similar 
improvements are possible for any structure that uses a (rectangular or c-oriented) point location 
structure as an associated structure. 

The problem we study is this: Let S be a set of horizontal objects (parallel to the xy-plane) 
in 3-space. We want to preprocess S such that the first object hit by a ray directed vertically 
downward (parallel to the z-axis) can be determined efficiently. First we consider horizontal axis
parallel rectangles and later horizontal c-oriented polygons and fat triangles. Because we use only 
standard data structures such as binary search trees and segment trees, we keep the description of 
our structures short and leave the details to the reader. 

Let S = {Rh ... , Rn} be a set of n horizontal axis-parallel rectangles. For a rectangle Ri = 
[Xi, xD X [Yi, yD X Zi, we call [Xi, xD the x-interval of Ri. The structure for answering vertical ray 
shooting queries in S will be a two-level tree. The main tree is a segment tree T on the x-intervals 
of the rectangles. For a node v in T, let Sv be the subset of rectangles in S whose x-intervals span 
the interval range of v, but not the range of the parent of v. The set of rectangles Sv is stored 
as follows at v: Project the rectangles onto the yz-plane and construct the vertical adjacency 
map of the resulting set of line segments. Preprocess this adjacency map, which is a rectangular 
subdivision, for fast point location according to theorem 2.3. 

A ray shooting query with a vertical ray a is performed as follows. First, the y- and z-coordinates 
of the starting point of a are normalized by binary search. Then we search with the x-coordinate 
of the starting point in the segment tree. At every node v on the search path, we perform a ray 
shooting query with the projection of a onto the yz-plane in the projection of Svi this is done by 
locating the normalized projection of the starting point in the vertical adjacency map stored at v. 
Finally, we compare the O(log n) rectangles that we have found and select the one that is hit first. 

Theorem 3.5 Vertical ray shooting queries in a set of n horizontal axis-parallel rectangles can be 
answered in time O(logn(loglogn)2) with a structure that uses O(nlogn) space. This structure 
can be built in O( n log2 n) expected time. 

13 



Proof: The vertical adjacency map at node v has size I Sill and it can be constructed by a 
simple sweep line algorithm in time O(ISllllog ISIII). By Theorem 2.3, and the fact that each 
rectangle is stored in at most log n nodes, the bounds on the space and the construction time 
follow. 

The time for a ray shooting query is dominated by the point location queries that we perform 
at the O(logn) nodes on the search path in the segment tree, each taking 0((loglogn)2) time 
by Theorem 2.3 .• 

Next, we tum our attention to vertical ray shooting queries among horizontal c-oriented trian
gles, where c is a constant. Observe that we cannot use the same approach as among horizontal 
rectangles; a horizontal rectangle is intersected by a vertical ray if and only if it is intersected in 
both the projection onto the xz-plane and the projection onto the yz-plane, which is not true for 
triangles. Instead, we use a theorem of Alt et al. [1], which says that the boundary complexity of 
the union of a set of homothetic triangles is linear in their number. 

We partition the triangles into (~ sets, depending on the orientations of the edges; each set S 
consists of homothetic triangles. We can answer the ray shooting query on each set independently 
and choose the best result. 

The structure for vertical ray shooting queries in S is a two-level structure. The main tree is 
a binary search tree T on the z-coordinates of the triangles. With each node v of T we associate 
the set SII of triangles whose z-coordinates are stored in the leaves of the subtree rooted at v. At v 
we store the union of the projections onto the xy-plane of the triangles in SII' preprocessed for fast 
point location according to Theorem 3.3. Beside this two-level structure we have c binary search 
trees to perform the normalizations that are needed for the fast point location structure. 

A query with a vertical ray Q is performed as follows. First, we normalize the x- and y

coordinates of Q. Then we search with the z-coordinate of the starting point of Q in T. Let 
Vl, ••• ,Vt be an enumeration in depth-decreasing order of the nodes that are left son of a node on 
the search path but that are not on the search path themselves. Notice that the set Ul<i<t SII; 
is exactly the set of triangles that have smaller z-coordinate than the starting point of ~. -Also 
notice that if Q intersects triangles in both SII; and SlIj' with i < j, then the triangles in SII; are 
intersected first. Hence, a ray shooting query can be answered as follows. Test SIIJ.' SII2' ... , until 
the first SII; is found that contains at least one triangle intersected by Q. Then start walking down 
the subtree rooted at Vi, turning right whenever at least one triangle is intersected at the right son 
of the current node, and turning left otherwise. The leaf where the search ends will contain the 
first triangle that is hit. To test whether a set SII contains at least one triangle that is intersected, 
we can use the fast point location structure associated with v: if the intersection of Q with the 
xy-plane is contained in the union of the projected triangles then at least one triangle is stabbed, 
otherwise Q misses all triangles. 

Theorem 3.6 Vertical ray shooting queries among a set of n horizontal c-oriented triangles can 
be answered in time 0(logn(loglogn)2) with a structure that uses O(nlogn) space. This structure 
can be built in 0(nlog2 n) expected time. 

Proof: The union of the projections of the homothetic triangles in SII is a set of 3-oriented 
polygons, whose total complexity is O(ISIII) by a theorem of Alt et al. [1]. This bound, together 

14 



with Theorem 3.3 and the fact that EI'151'1 = O(nlogn) establishes space bounds. All unions 
can be constructed in O( n log2 n) time by a divide and conquer algorithm similar to that of 
Kedem et al. [10]. Computing the point location structures takes additional O(nlog2 n) deter
ministic and O( n log n) expected preprocessing time. Because all normalizations are performed 
beforehand, the point location queries take o «log log n)2) time, leading to a total query time 
of o (log n(loglog n)2) .• 

For fat triangles we have a similar result with a slightly worse space 
bound because the union of fat triangles can have superlinear complexity. 
We attain the result in a similar fashion: First we break our triangles 
into triangles with two sides parallel to a given c orientations, as in 
corollary 3.2. Then we partition the resulting triangles into 4(;) sets; 
the triangles of a given set 5 have two edges whose orientations are 
drawn from a fixed set of c orientations and whose directions from their 
intersection point are the same. As Figure 6 illustrates, the triangles of Figure 6: Triangles of 
5 can be viewed as triangles whose lower and leftmost edges are parallel a set 5 
to the x and y axes after a suitable affine transformation. We will independently answer vertical 
ray shooting queries on each of the sets 5 and report the best answer. 

To answer ray shooting queries among the triangles of 5 we use the tree of unions, as in 
Theorem 3.6. 

Theorem 3.7 Vertical ray shooting queries among a set of n horizontal fat triangles can be an
swered in time O(logn(loglogn)2) with a structure that uses O(nlognloglogn) space. This struc
ture can be built in O( n log2 n log log n) expected time. 

Proof: By a theorem of Matousek et al. [12], the union of the triangles in 51' is bounded by 
O(151'l1oglog 151'1) line segments. Since all lower and rightmost edges of of triangles in 51' are 
parallel to the x- or y-axis (under a suitable affine transformation), the horizontal adjacency map 
of the union consists of trapezoids with known top, bottom and left edges. Thus, we can extend 
the horizontal adjacency map to a sparse rectangularization and perform each point location 
in o «log log n)2) query time after normalization. Because all normalizations are performed 
beforehand, the total query time is O(log n(loglog n)2). 

Storage space is dominated by the complexity of all unions, which is O( n log n log log n). All 
unions can be constructed in O(nlog2 nloglogn) time by a divide and conquer algorithm [12] 
and computing the point location structures takes additional O( n log2 n log log n) deterministic 
and O( n log n log log n) expected preprocessing time .• 

Acknowledgements 

We thank Kurt Mehlhorn for discussions on perfect hashing and Mark Overmars for discussions of 
fat objects. 

15 



References 

[1] a. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Niher, S. Schirra, and C. Uhrig. Approximate 
motion planning and the complexity of the boundary of the union of simple geometric figures. In 
Proceedings of the Sizth Annual ACM Symposium on Computational Geometry, pages 281-289, 1990. 

[2] B. Chazelle. Filtering search: A new approach to query-answering. SIAM Journal on Computing, 
15(3):703-723, Aug. 1986. 

[3] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert, and R. E. Tarjan. 
Dynamic perfect hashing: Upper and lower bounds. In Proceedings of the !9th IEEE Symposium 
on Foundations of Computer Science, pages 524-531, 1988. Revised version: Bericht Nr. 77, Reihe 
Informatik, Paderborn, Januar 91. 

[4] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Berlin, 1987. 

[5] H. Edelsbrunner, G. Haring, and D. Hilbert. Rectangular point location in d dimensions with applica
tions. Computer Journal, 29:76-82, 1986. 

[6] H. Edelsbrunner and H. A. Maurer. A space-optimal solution of general region location. Theoretical 
Computer Science, 16:329-336, 198!. 

[7] M. L. Fredman, J. Koml6s, and E. Szemeredi. Storing a sparse table with 0(1) worst case access time. 
Journal of the Association for Computing Machinery, 31(3):538-544, 1984. 

[8] M. T. Goodrich and R. Tamassia. Dynamic trees and dynamic point location. In Proceedings of the 
!Ind Annual ACM Symposium on Theory of Computing, 1990. 

[9] D. Johnson. A priority queue in which initialization and queue operations take O(loglog D) time. Math. 
Systems Theory, 15:295-309,1982. 

[10] K. Kedem, R. Livne, J. Pach, and M. Sharir. On the union of Jordan regions and collision-free trans
lational motion amidst polygonal obstacles. Discrete & Computational Geometry, 1:59-71, 1986. 

[11] R. J. Lipton and R. E. Tarjan. Applications of a planar separator theorem. In Proceedings of the 18th 
IEEE Symposium on Foundations of Computer Science, pages 162-170, 1977. 

[12] J. MatouSek, J. Pach, , M. Sharir, S. Sifrony, and E. Welzl. Fat triangles determine linearly many holes. 
Technical Report 174/90, Computer Science Dept., Tel-Aviv University, 1990. 

[13] K. Mehlhorn and S. Niher. Bounded ordered dictionaries in O(loglogN) time and O(n) space. Infor
mation Processing Letters, 35:183-189, 1990. 

[14] H. Muller. Rasterized point location. In H. Notemeier, editor, Proceedings of the WG 85, pages 281-294. 
Trauner Verlag, 1985. 

[15] F. P. Preparata. Planar point location revisited. International Journal of Foundations of Computer 
Science, 1(1):71-86, 1990. 

[16] P. van Emde Boas. Preserving order in a forest in less than logarithmic time. In Proceedings of the 16th 
IEEE Symposium on Foundations of Computer Science, pages 75-84, 1976. 

[17] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and linear space. Infor
mation Processing Letters, 6:80-82, 1977. 

[18] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an efficient priority queue. 
Math. Systems Theory, 10:99-127,1977. 

[19] D. E. Willard. Log-logarithmic worst-case range queries are possible in space 9(N). Information 
Processing Letters, 17:81-89, 1983. 

16 




