
 

Ellipsoidal unfalsified nonlinear controller design of a linear
motion system
Citation for published version (APA):
Kok, T. (2005). Ellipsoidal unfalsified nonlinear controller design of a linear motion system. (DCT rapporten; Vol.
2005.142). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2005

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/8c162a37-08f7-4730-b671-a20d4d00c310


 

 
Ellipsoidal unfalsified nonlinear controller 

design of a linear motion system 
 
 

T. Kok 
 

DCT 2005.142 

Traineeship report 
 
Coach(es):  W.H.T.M. Aangenent 
  J.J.M. van Helvoort 
  M.J.G. van de Molengraft 
 
Supervisor: M. Steinbuch 
 
Technische Universiteit Eindhoven 
Department Mechanical Engineering 
Dynamics and Control Technology Group 
 
Eindhoven, november, 2005 



Abstract 
Ellipsoidal Unfalsified Control (a data-driven model free control theory) is applied to 
determine a nonlinear controller for a linear motion system that ideally outperforms a 
linear controller. 
In this report a number of candidates for nonlinear controller parts are discussed. 
Simulations are done in order to find out which nonlinear parts could outperform 
linear ones. These parts are tested on a dual rotary 4th order motion system. 
Conclusions are made with respect to the possibilities to use Ellipsoidal Unfalsified 
Control to determine a nonlinear controller. 
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Nomenclature 
 
Symbol Quantity     
θ  Control parameters 

*θ  Current implemented control parameters 
)( 1−ktε  Old region of unfalsified control parameters 

)( ktε  New region of unfalsified control parameters 
)( ktF  Region of control parameter sets that is unfalsified by 

the current data 
)(tr  Reference 
)(tu  Plant input 
)(ty  Plant output 

)(tym     Desired trajectory 
))(),(( tytuw  Vector field defining the controller structure 

)(tRv  Virtual references 
)(sGm  Reference model 

)(tYm  Set of reference outputs 
)(sL  Low-pass filter 
)(tΔ  Performance specification 
)0(Σ  Matrix defining the initial ellipsoid 

)(te     Error between reference model- and plant output. 
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Introduction 

 
1.1 Project goal 
In the field of control, the fact that there are fundamental limitations on the 
performance has been the subject of research for many years (H. Bode, 1945 and 
more recent M.M. Seron, 1997). One of these limitations is the bode-sensitivity 
integral which implies that good performance at one frequency means les performance 
at another frequency. This, however, only applies to linear controlled systems.  
There are indications that, if a nonlinear controller is used, these fundamental 
limitations can be overcome. At this moment there are no usable analytical tools that 
enable us to design a nonlinear controller with a better performance then a linear 
version. 
 
Ellipsoidal Unfalsified Control (EUC) (J. van Helvoort, B. de Jager, and M. 
Steinbuch, 2005) is a data driven design method which determines its control 
parameters in such a way that it satisfies certain performance specifications. 
 
In this report EUC will be used to investigate the possibility to design a nonlinear 
controller that ideally outperforms the linear version. Special attention will be paid to 
the resulting controller and understanding why the controller is better. 
 
1.2 Report overview 
This report firstly describes the theory behind ellipsoidal unfalsified control (EUC). In 
chapter 3 a number of candidates for nonlinear controller parts are discussed. Chapter 
5 shows the results of a number of simulations done with these controller parts added 
to a good performing controller structure. The same controller structures are used for 
experiments on a dual rotary 4th order motion system. Finally in chapter 6 some 
conclusions and recommendations are made. 
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2 Theory 
In this research the Ellipsoidal Unfalsified Control (EUC) concept is used to design a 
nonlinear controller. EUC is a data driven control method which determines control 
parameters for a given controller structure in such a way that it can satisfy a given 
performance criterion. EUC is a special case of Unfalsified Control, the theory behind 
Unfalsified Control shall therefore be explained first. 
 
2.1 Unfalsified Control 
Unfalsified Control, in contrast with classical methods, doesn’t use a model of the 
plant. Only the structure of the controller is chosen. The parameter space together 
with this controller structure defines the controller pool. This controller pool contains 
all the controller candidates. The only assumption that has to be made is that at least 
one controller from the original controller pool satisfies a certain chosen performance 
specification at all times. 
 
In figure 2.3 a block scheme is shown of a model 
reference unfalsified control model. The controller has 
the structure: 
 

(t)*θT))w(u(t),y(tr(t) =  (1) 

C P

w(u,y)

Gm(s)

Unfalsification 
algorithm

u

r

Ym

Rv

y

 
with r(t) a chosen reference signal,  the set of p 
current control parameters and  a p-
dimensional vector field with arguments depending on 
current and past values of u(t), the input of the plant and 
y(t), the output of the plant. 

(t)θ*

))w(u(t),y(t

 
A set of virtual references  is defined: (t)Rv

 

{ }( , ) ( ( ), ( ))T p
v vR (t) r t w u t y tθ θ= = ∈θ   (2) 

Figure 2.1: General unfalsified 
control model.  

 
(1) and (2) imply that for every , the corresponding virtual reference pθ ∈

(t)Rtr vv ∈),( θ  results exactly in the measured  and , if that control parameter 
set θ  were in the feedback loop at the time of the measurement.  

u(t) y(t)

(s)Gm  defines a stable reference model for the desired closed loop behavior. The set 
of reference outputs Y  is defined as (t)m

 
{ }
{ }

( , ) ( ) ( , ) ( , ) ( )

( , ) ( ) ( ( ), ( ))

m m m v v v

T
m m

Y (t) y t G s r t r t R t

y t G s w u t y t

θ θ θ

θ θ

= = ∈

= = ∈ pθ

m

 (3) 

 
The unfalsification algorithm uses Y  to determine the new controller pool with 
only unfalsified controllers. 

(t)

In early works (Michael G. Safonov, and Tung-Ching Tsao, 1994) the unfalsification 
was done by gridding the parameter-space (resulting in a finite set of candidate 
controllers). This means that a constant trade off has to be made between the number 
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of controllers that is taken in to account and the computational load. This need for 
gridding was overcome by (] Fabricio B. Cabral, and Michael G. Safonov, 2003) by 
using an ellipsoid to describe the region containing the unfalsified control parameters. 
The algorithm used here has however a slow convergence. Therefore the algorithm 
used in (van Helvoort, 2005) which has a fast enough convergence to be implemented 
in real time will be explained and used here. 
 
2.2 Ellipsoidal Unfalsified Control 
The need to use gridding is overcome by applying an 
ellipsoidal description of the region containing all unfalsified 
control parameter sets. Hereto the region of unfalsified 
control parameter sets is specified by an ellipsoid .  )ε(tk 1−

Consider the bound on the maximum tracking error 
 

tΔ(t)(t))yL(s)(y(t) m ∀≤−    (4)   

)( 1−ktε

)( ktε

)( ktF

 
with  some low-pass filter to reject noise and L(s) 0>Δ(t)

F(t)

 a 
time dependent threshold value. The region of control 
parameter sets that is unfalsified by the current data, , 
will then be given by 

Figure 2.2: Minimal volume outer-
bounding ellipsoid approximation 
of the intersection. 

 
( )( ){ }Δ(t)θu(t),y(t)(s)wGy(t)L(s)Δ(t)θF(t) T

m ≤−≤−=  (5) 
 
this defines two half-spaces which contain the region of controller parameters 
unfalsified by the current measurement data. This region can also be seen as a 
degenerate ellipsoid: 
 

( )( 2
2T

mF(t) θ L(s) y(t) G (s)w u(t), y(t) θ Δ (t)⎧= − ≤⎨
⎩ ⎭

) ⎫
⎬

(t)

 (6) 

 
The new region of unfalsified control parameters is now the intersection of the two 
regions 
 

1( ) ( )k kt t Fε ε −= ∩  (7) 
 
This will in general not be an ellipsoid. The intersection will therefore be 
approximated by an outer-bounding minimal-volume ellipsoid, so that no parameter 
sets will be falsified incorrectly. 
In (van Helvoort, 2005) an algorithm is given for updating controller parameters using 
a minimum-volume outer-bounding ellipsoid intersection algorithm. This algorithm is 
implemented in a Matlab/Simulink model. Simulations and experiments will be done 
using this model. 
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3 Candidates for nonlinear controller parts 
When EUC is used, limitations are imposed on the controller structure that can be 
used. As stated above this has to be of structure . Vector field 

 should be constructed such that  can be determined uniquely when 
, ,  and past values of  and  are known. As a starting point the 

vector field as mentioned in (van Helvoort, 2005, section 5): 

(t)θ))w(u(t),y(tr(t) *T=
))w(u(t),y(t u(t)

r(t) y(t) (t)θ* u(t) y(t)

 

1
10 1 1

1 2 310 10

1
10

( )
( )

( ) ( ) ( ) ( )
( )

( )

s
s s

s

u t
u t

w(u(t), y(t)) r(t) u t θ u t θ y t θ y t θ
y t

y t

π
π π

π

+
+ +

+

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⇒ = ⋅ + ⋅ + ⋅ +
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

4⋅  

 
 is used. In every experiment a nonlinear term will be added which in theory could 
improve performance. These nonlinear terms must have a structure that enables them 
to be added to the vector field mentioned above. The following controllers can be 
used in this structure. 
 
3.1 SPAN filter 
SPAN stands for split-path nonlinear. The block scheme of a SPAN filter is given in 
figure 3.1. As can be seen the filter uses the input in two parallel paths of which the 
gain respectively the sign information is destroyed. With this filter the sign and the 
magnitude can be independently chosen. 
 

ABS

SIGN

u
X

y1

y2

y

p

p

s 1

1

ω
ω
+

1

1

ps
zs

+
+

 
Figure 3.1: Block scheme of a SPAN filter. 

 
As shown in (Aangenent, 2005) this filter is able to improve performance with respect 
to overshoot and settling time of a step response. Because of the structural limitations 
it is not possible to obtain values of p1ω ,  and  using EUC so these values should 
be known. Although it is not possible to design this filter using EUC it could be 
interesting to see if, when this filter is added to the vector field, a high weighting 
factor is assigned to it. 

1z 1p

 
3.2 Nonlinear gain 
A nonlinear gain element multiplies the current controller with a nonlinear gain. The 
gain can be a function of any loop variable. As described in (Aangenent, 2005) this 
kind of filter could be used to reduce the overshoot of a step response without 
increasing the settling time. Again the problem arises that the nonlinearity itself, here 
the nonlinear gain, cannot be determined by EUC. It is possible to determine a 
multiplication factor when the shape of the nonlinear gain is known, e.g. as shown in 
figure 3.2. 
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Figure 3.2: Knl as a function of the error. 

 
3.3 Arbitrary controller 
A large variety of nonlinear controller parts can be added to the linear one. Some 
examples are:  

• A saturation function of one of, or a combination of the variables. 
• A sign function 
• A relay function 
• A deadzone 
• Etc. 

 
EUC should in theory only use the parts that improve the performance. This could 
lead to a controller of which in advance it could not have been expected that it would 
improve the performance. It is of course not possible to use every possible nonlinear 
controller. Therefore a number of randomly chosen nonlinear parts is added.  
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4 Simulation 
Simulations will be performed using Matlab/Simulink. The simulations will be done 
using the same algorithm as used in (van Helvoort, 2005). The settings for the 
simulation are: 
 

22

2

10016
100)(

ππ
π
++

=
ss

sGm  (7) 

20 2400 sin( ) 0 0.05
2 0.05

20 0.05

r(t) t t t

r(t) t

π
π

⎧ = − ≤ ≤⎪
⎨
⎪ = >⎩

 (8) 

)1.0(002.0 teΔ(t) −+=  (9) 

nI)Σ( 4100 =  (10) 
1)( =sL  (11) 

 
)Σ( 0  defines the shape of the initial ellipsoid or initial controller pool (van Helvoort, 

2005) with  the number of controller parts. The reference (r(t)) is shown in figure 
4.1, it is a skew-sinus which is repeated every 5 seconds. A skew-sinus excites the 
system more than a normal sinus this should force the algorithm to falsify more 
controller which could lead to the fact that the system can only be controlled with a 
nonlinear controller part active.  

n
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(a) Reference used in the simulations 
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(b) First 0.05 seconds of the reference  
to illustrate the shape of a skew-sinus 
 

Figure 4.1: Reference as a function of time. 
 
To allow some transient error,  will be multiplied with 30 for 0.1 second every 
time a step occurs.  

Δ(t)

 
The plant is described in state-space form as: 
 

[ ]⎪
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=

xy

u
e

x

ee
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x

0100
0
0

34.6
0

6.444.46.444.4
1000
8.545.58.545.5

0010

 (12) 

 
Which represents a dual rotary 4th order motion system (PATO model). A sample 
frequency of 1.0 kHz is used. 
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4.1 Linear controller 
To be able to compare performance of the nonlinear controllers with the linear one a 
simulation with a linear controller will be done first.  
The simulation is performed using the settings as mentioned above with a vector field 

[ T
ss tytytutu))w(u(t),y(t )(),(),(),( 1
1

1
1

++= ] which leads to a controller of structure 

)()()()()( 1
1

431
1

21 tytytututr ss ++ +++= θθθθ . The simulation is initiated with controller 

parameters .[ ]T* )(θ 0001000 =
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(a) Tracking error during the experiment, along with the 
bounds the error has to stay within. 
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(b) Tracking error when the last known good  is inserted in 
the controller.

θ

 
Figure 4.2: Tracking error as a function of the time. 

 
In figure 4.2(a), the tracking error yrGm −  is shown, together with the bounds  
and . As can be seen the bounds are multiplied with 30 for 0.1 sec every time a 
position change is initiated. When the error intends to pass the bounds the controller 
parameters are updated to force the error to stay within the bounds. Figure 4.2(b) shows 
that the maximum tracking error is 0.098 rad. Within 0.1 sec the tracking error is les than 
0.005 rad. These values will be used as performance criteria. 

)(tΔ+
)(tΔ−

 
4.2 SPAN filter 
In this section a SPAN filter will be added as a nonlinear part. The simulation is 
performed using the settings as mentioned above with a vector field 

[ ]))(()(),(),(),(),( 60
3/10

30
30

1
1

1
1 tusigntutytytutu))w(u(t),y(t ssss ++++= . The simulation is 

initiated with a controller with [ ]T* )(θ 00001000 = . 
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(a) Tracking error during the experiment, along with the 
bounds the error has to stay within. 
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(b) Tracking error when the last known good  is inserted in 
the controller.

θ

 
Figure 4.3: Tracking error as a function of the time with a SPAN filter implemented. 

 
In figure 4.3(a), the tracking error yrGm −  together with the bounds )(tΔ+  and , 
is shown again. In figure 4.3(b) the maximum tracking error of 0.098 rad is shown. 
Within 0.08 sec the tracking error is les than 0.005 rad. The tracking error seems to 
approach 0 a little faster. 

)(tΔ−

 
4.3 Nonlinear gain 
Another simulation is performed with a vector field 

[ ])()(),(),(),(),( 1
1

1
1 tueKtytytutu))w(u(t),y(t nlss ++= . Here  is a function of the 

error as plotted in figure 3.2. The simulation is initiated with a controller with 
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(a) Tracking error during the experiment, along with the 
bounds the error has to stay within. 
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(b) Tracking error when the last known good  is inserted in 
the controller.

θ

 
Figure 4.4: Tracking error as a function of the time with a nonlinear gain controller implemented. 

 
Figure 4.4(b) shows almost the same plots as figure 4.2(b). This is explained when , 
the  representing the nonlinear gain, is examined.  only changes a neglectable 
amount. This means that the nonlinear gain part is not used. 

5θ
θ 5θ
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4.4 Arbitrary controller 
The last simulation that is performed will have a vector field 
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(a) Tracking error during the experiment, along with the 
bounds the error has to stay within. 
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(b) Tracking error when the last known good  is inserted in 
the controller.

θ

 
Figure 4.5: Tracking error as a function of the time with an arbitrary controller. 

 
Figure 4.5 shows that when a arbitrary controller is used it is possible to obtain a good 
performance. Figure 4.5(b) shows that although the maximum tracking error is a little 
bigger it is within the 0.005 band faster than with the linear case.  
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5 Experiment 
The same algorithm as used in chapter 5 is implemented using a TUe/DACS with a 
sample frequency of 0.5 kHz. The setup is a dual rotary 4th order motion system. Again 
the settings are: 
 

22
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sGm  (13) 
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20400
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)1.0(002.0 teΔ(t) −+=  (15) 

nI)Σ( 4100 =  (16) 
 
Again the controller candidates will be discussed as mentioned in chapter 4. 
 
5.1 Linear controller 
The first experiment is done using a linear controller with a vector field 

[ ])(),(),(),( 1
1

1
1 tytytutu))w(u(t),y(t ss ++= . The experiment is initiated with a controller 

with , these parameters were chosen 
because after some trial and error they proved to able to keep the system stable enough 
for the algorithm to continue. 

[ ]T* )(θ 54.7038-2.688416.37023.5004 0 =

0 5 10 15 20 25 30 35 40 45
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

 time  [s]

G
m

r-y
2 [r

ad
]

 
(a) Tracking error during the experiment, along with the 
bounds the error has to stay within. 
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(b) Tracking error when the last known good  is inserted in 
the controller.
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Figure 5.1: Tracking error as a function of the time with a linear controller implemented. 

 
Figure 5.1(a) shows the tracking error of the experiment when the EUC algorithm is 
running. Figure 5.1(b) shows the response to a skew-sinus when the last good controller 
parameter set is implemented. The maximum tracking error is 0.24 rad and the tracking 
error is within the 0.05 rad band after 0.18 sec. 
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5.2 SPAN filter 
An experiment is done with a vector field 
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(a) Tracking error during the experiment, along with the 
bounds the error has to stay within. 
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(b) Tracking error when the last known good  is inserted in 
the controller.
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Figure 5.2: Tracking error as a function of the time with SPAN filter implemented. 

 
Figure 5.2 shows the tracking error during the experiment. Figure 5.2(b) shows that the 
performance does not outperform a linear controller. The maximum tracking error seems 
to be a little smaller but the final error is almost 0,05 rad. This is caused by the fact that 
the experiment runs for only 45 sec. EUC is not able to find a controller parameter set 
that forces the final tracking error to go to 0. 
 
5.3 Nonlinear gain 
Another simulation is performed again with the same settings with a vector field 

[ ])()(),(),(),(),( 1
1

1
1 tueKtytytutu))w(u(t),y(t nlss ++= . Here  is a function of the 

error as plotted in figure 4.2, this function is symmetrical with respect to the y-axe. The 
simulation is initiated with controller 

. 

)(eKnl

[ ]T* )(θ 054.7038-2.688416.37023.50040 =
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(b) Tracking error when the last known good  is inserted in 
the controller.
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Figure 5.3: Tracking error as a function of the time with a nonlinear gain controller implemented. 
 
Figure 5.3 shows the tracking error of the EUC experiment when a nonlinear gain part is 
added to the linear controller. The tracking error of the response to a skew-sinus when the 
last known good controller parameter set is used is shown in figure 5.3(b). The maximum 
tracking error and the time to get within the 0.05 rad band are bigger than when only a 
linear controller is used. 
 
5.4 Arbitrary controller 
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Figure 5.4: Tracking error as a function of the time with a nonlinear gain controller implemented. 
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Figure 5.4(a) shows that the experiment only runs for 15 sec. After 15 sec the system 
becomes to unstable for the EUC algorithm to continue. This of course leads to a very 
bad performance as shown in figure 5.4(b). 
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6 Conclusions and recommendations 
A number of nonlinear candidates were implemented in a EUC algorithm. 
 
6.1 Conclusions 
Because of the limitations with respect to the controller structure it is not possible to 
design a nonlinear controller using solely EUC.  

• The requirement that  can be determined uniquely from the other data leads to 
the fact that it is not possible to use only a nonlinear controller. Therefore the 
nonlinear controllers used in the paper are always implemented parallel with a 
linear controller.  

u(t)

• The requirement that the controller has to be of structure  
with  the set of controller parameters means that when a nonlinear controller 
is implemented only the best multiplication factor can be determined using EUC. 
The parameters within the nonlinear part have to be tuned by hand. 

(t)θ))w(u(t),y(tr(t) *T=

(t)θ*

• Every time the controller parameters are changed the system has to endure a 
shock. This can lead to falsely falsified controller parameters. As stated in (van 
Helvoort, 2005, section 2.4) several update scenarios are possible. Of these 
possibilities the least aggressive one was used to minimize this shock. 

• EUC starts from the assumption that the performance specification is given by 
tΔ(t)(t))yL(s)(y(t) m ∀≤−  which in other words leads to good performance 

with respect to tracking. Thus it is not possible to give performance specifications 
with respect to robustness. 

 
6.2 Recommendations 
During the research, a point of further investigation was noted: 

• The normal Unfalsified Control concept has fewer limitations on the controller 
structure and the performance specification. This might lead to the ability to 
determine nonlinear controller parameters.  
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A. Matlab/Simulink scheme of the EUC algorithm 
In this appendix the Matlab/Simulink model as used for the simulations and experiments 
is given. 
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Figure A.1 Matlab/Simulink block scheme. 
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Figure A.2 Auxiliary function used in the Matlab/Simulink model 
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Figure A.3 Controller used in the Matlab/Simulink model 
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Figure A.4 Unfalisfication algorithm used in the Matlab/Simulink model 
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