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H. Duifhuis b) and L. F. Willems 

Institute for Perception Research IPO, Den Dolech 2, Eindhoven, The Netherlands 

R. J. Sluyter 
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(Received 31 August 1979; accepted for publication 10 March 1982) 

Recent developments in hearing theory have resulted in the rather general acceptance of the idea that the 
perception of pitch of complex sounds is the result of the psychological pattern recognition process. The pitch 
is supposedly mediated by the fundamental of the harmonic spectrum which fits the spectrum of the complex 
sound optimally. The problem of finding the pitch is then equivalent to finding the best harmonic match. 
Goldstein [J. Acoust. Soc. Am. 54, 1496-1516 {1973)] has described an objective procedure for finding the 
best fit for stimuli containing relatively few spectral components. He uses a maximum likelihood criterion. 
Application of this procedure to various data on the pitch of complex sounds yielded good results. This 
motivated our efforts to apply the pattern recognition theory of pitch to the problem of measuring pitch in 
speech. Although we were able to follow the main line of Goldstein's procedure, some essential changes had 
to be made. The most important is that in our implementation not all spectral components of the complex 
sound have to be classified as belonging to the harmonic pattern. We introduced a harmonics sieve to 
determine whether components are rejected or accepted at a candidate pitch. A simple criterion, based on the 
components accepted and rejected, led to the decision on which candidate pitch was to be finally selected. The 
performance and reliability of this psychoacoustically based pitch meter were tested in a LPC-vocoder system. 

PACS numbers: 43.70.Gr, 43.70.Ny, 43.66.Hg, 43.66.Ba 

INTRODUCTION 

By and large the problem of how to determine the time 
course of pitch in continuous speech is treated as a 
purely technical issue. The problem can be formulated 
as follows: given an (acoustic) waveform which is al- 
most periodic, determine the "pitch period." An an- 
cillary task is to discriminate between aperiodic and 
(almost) periodic waveforms (unvoiced/voiced). Sev- 
eral pitch detection algorithms aiming at solving the 
problem have been discussed and evaluated by Rabiner 
et al. (1976). 

The process of data reduction, which transforms an 
acoustic waveform into a single number that charac- 
terizes its pitch, obviously requires decision criteria 
to specify what information is to be retained/extracted 
and what to be discarded. On the whole those criteria 

have been chosen on the basis of optimal signal pro- 
cessing, treated as an engineering problem. These 
studies tend to pay little attention to perceptual aspects 
of pitch. 

There is, however, an alternative approach to the 
problem, which, in our belief, can be highly success- 
ful. To begin with, pitch (e.g., of speech) is a subjec- 
tive quantity. Therefore one might argue that the pitch 
meter which operates according to the principles of 
the human pitch extractor (the auditory system) will 
attain the optimum level of performance. This is un- 

,, 

a)Some preliminary results have been presented at the EBBS 
workshop "Hearing Mechanism and Speech" April 1979, G•t- 
tingert, and to the 97th ASA meeting, June 1979, Cambridge, 
MA, paper Y7. 

b)Present address: Department of Biophysics, Laboratory for 
Genera[ Physics, Westersinge[ 34, Gronin_gen, The Nether- 
lands. 

doubtedly the case if the optimization concerns the 
simulation of subjective pitch perception. However, 
many pitch meters find an implementation in vocoder 
systems. Here pitch information is used to trigger the 
"glottal pulses" in the synthesis part of the vocoder. 
Because pitch is not related in a simple way to glottal 
pulse period, the optimization for pitch perception per- 
formance is not necessarily equally effective in a 
vocoder context. The present study, which explores 
this effectiveness, has been set up with the hope that 
the distinction between pitch and glottal period mea- 
surement would be largely academic. We work from 
the point of view that a pitch meter, which performance 
relies on perceptual data, is a useful tool in vocoder 
techniques. The development of theories of pitch per- 
ception over the last decade-provides support for opti- 
mism about the results of this approach. The vast 
amount of published data on pitch of complex tones 
(residue, repetition pitch, musical pitch, virtual pitch; 
see de Boer, 1976, for a review) formed a solid basis 
for this theoretical work. Although the theories are 
based on results of psychoacoustical experiments with 
"laboratory signals" which are usually much simpler 
than speech sounds, the extrapolation of these results 
to speech sounds would seem to be justifiable (see, e.g., 
Schouten, 1962). In one aspect speech sounds are sim -• 
pier than the complex sounds used in psychoacoustic 
experiments: they contain more frequency components 
and in general evoke an unambiguous pitch percept. On 
the other hand, a difficulty of the speech sound is that 
pitch in speech is continuously varying, and psycho- 
acoustic experiments have so far mainly been con- 
cerned with stationary stimuli. This difficulty can be 
dealt with in a pragmatic way. The related question is 
how coarsely the pitch contour can be sampled without 
affecting the perceived melodic line. This constraint 
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touches upon the question of analysis window and pro- 
cessing time, and thus on the question of "real time" 
measurement of pitch (see Sec. IIA). 

A successful quantitative theory of the subjective per- 
ception of the pitch of complex tones has been developed 
by Goldstein and his associates (e.g., Goldstein, 1973; 
Gerson and Goldstein, 1978; Goldstein et al., 1978). 
We propose that (1) this theory is also applicable to the 
(subjective) perception of pitch in speech and (2) that the 
theory can be put into the form of an (objective) algo- 
rithm which will produce pitch values that have a 
psychophysical validity as well as practical applicabil- 
ity. This validity stems from the fact that the data re- 
duction in the algorithm proposed here is based on con- 
straints known from hearing theory, which in turn re- 
lies on psychoacoustical and physiological data. 

In this paper we will not go into the details of the 
psychoacoustics of pitch. We restrict ourselves to a 
description of Goldstein's theory. We shall then dis- 
cuss the additional steps that are involved in its appli- 
cation to speech material. Finally, the resulting algo- 
rithm is presented together with some data on its per- 
formance. The algorithm will briefly be compared with 
existing algorithms. As an example we present results 
of a direct comparison with the parallel processing 
pitch detector (PPROC) by Gold and Rabiner (1969). 

ß 

I. GOLDSTEIN'S THEORY ON THE PITCH OF 
COMPLEX SOUNDS 

A. Introductory remarks 

The long-standing issue as to whether pitch is medi- 
ated through temporal aspects or frequency content of 
the acoustic waveform has reached an important mile- 
stone during the last decade. In particular the experi- 
ments by Houtsma and Goldstein (1972) revealed that 
residue pitch is perceived when the frequency com- 
ponents of the stimulus are separated and presented 
to different ears of the listener. This implies that 
residue pitch is the result of a synthesis which takes 
place at some level after the cochlea, where auditory 
frequency analysis occurs. The synthesis can be con- 
sidered a spectral pattern recognition process. On 
different grounds essentially the same interpretation 
had been proposed by de Boer (1956) and Whitfield 
(1970). In the beginning of the last decade several theo- 
retical studies appeared aiming at describing this pat- 
tern recognition process in detail. In addition to Gold- 
stein's (1973) theory two other theories were published 
by Terhardt (1972, 1974) and Wightman (1973). How- 
ever, their models of the spectral pattern recognizer 
are not specific enough to allow straightforward quanti- 
tative predictions to be made. In other words, they 
could not be translated into a working algorithm. de 
Boer (1977) has attempted to unify these views, but in 
our opinion the original theory of Goldstein (1973) is 
more transparent. It is acknowledged that Goldstein's 
theory, and thus our pitch extractor, does not account 
for phenomena such as the effects of level and partial 
masking on pitch, which are accounted for in Terhardt's 
theory. However, the most elaborated and quantitative 
theory proves to be best suited for practical implemen- 

NOISY 

ANALYSIS TRANSMISSION 

s(t) _ J analysis• G(f2 (•2)•-• - 
I resolutionl•fN •. _ • 

OPTIMUM 

CENTRAL PROCESSOR PERCEPTION 

harmonic pattern recognitionl 
1. rank order xi,s , 
2. MMLestimate of I • I ,,itch 

3. MML estimate of 
FIG. 1. Schematic block diagram of Goldstein's optimum pro- 
cessor theory for the "central formation" of pitch of complex 
sounds. The spectral analyzer resolves components that are 
less than approxtrnately 1/2 CB (FIg. 2) apart and measures the 
frequencies. These are transmitted through independent noisy 
channels to a central processor. The central processor opti- 
rnally fits a harmonic pattern to the received frequencies. The 
fundamental of the harmonic pattern corresponds to the wanted 
pitch (after Goldstein, 1973). 

tation. Recently Terhardt (1979) has reformulated his 
theory in a more quantitative Way. In this current form 
it contains some elements that are virtually identical to 
parts of our procedure. These will be indicated in Sec. 
IV. 

B. Outline of the theory 

Given a complex sound (by definition a sound com- 
prising more than one spectral component), the fol- 
lowing steps can be distinguished (see Fig. 1). 

(1) The peripheral ear performs a frequency analysis 
which reveals what frequency components are present. 
(The resolving power is limited, amplitude and phase 
information are removed.) The number of resolved 
components is N. 

(2) Information on each resolved frequency component 
f•(i = 1,N) is conveyed stochastically to a "central pro- 
cessor." This provides the central processor with a 
set of independent stochastic representations (described 
with Gaussian probability density functions) of the com- 
ponent frequencies 

/, - x,, p af(x,) : G(f ,, or,), (1) 
where 

G(6, 0r,): (2•r•) '•/•- exp[- (x,-6)•'/2• ]. 
(3) The standard deviation 0r• depends only on the com- 

ponent frequency 

c,(/,). (2) 

This is a result from matching the theory to psycho- 
acoustical data rather than an a priori assumption. 

(4) The central processor makes an optimum estimate 
(maximum likelihood estimation) of the unknown stimu- 
lus fundamental on the assumption that the stimulus fre- 
quencies are unknown harmonics. It turns out that this 
estimation can be split into two successive steps. The 
first optimally labels the frequencies with harmonic 
numbers n•, the second determines the maximum likeli- 
hood estimate of fo,)•, based on the set of X•'s and cor- 
responding •' s. 

(5) The residue pitch corresponds to the estimated 
fundamental fo. 
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By considering the central processor as a system that 
has to match a set of frequencies to a harmonic pattern, 
the relation to pattern recognition is emphasized. The 
pattern, however, is simple: given the harmonic struc- 
ture it is fully determined by a single parameter, viz.fo. 

In the following subsections the steps in Goldstein's 
pitch extraction scheme are discussed in more detail. 

C. Auditory frequency analysis 

The inner ear performs an auditory frequency analysis 
which is roughly characterized by a bank of bandpass 
filters. The effective bandwidth of the filters is approx- 
imately equal to the so-called critical band. Although 
the audio frequency range is often divided into 24 suc- 
cessive critical bands, the peripheral ear actually 
works with 30 000 channels that innervate at least 3000 

different inner hair cells. In other words, in so far as 
the critical bandwidth is a good characteristic of the 
selectivity of the channels, it is by no means an indica- 
tion of the number of independent channels. So if we 
want to resolve the acoustic spectrum in a way similar 
to the auditory resolution we will have to work with 
bandwidths that are related to the critical bandwidth but 

with a spacing of tuning frequencies that is much nar- 
rower. Of course there will then be some correlation 

between information of neighboring channels, due to 
partially overlapping filter characteristics. The criti- 
cal bandwidth is approximately 100 Hz for frequencies 
up to 500 Hz, and 20% of the tuning frequency above 
500 Hz (Fig. 2, see Zwicker and Feldtkeller, 1967, p. 
74 for precise data). According to Plomp (e.g., 1976, 
Chap. 1) the ear can identify components as long as their 
frequencies are separated by more than 15% to 20% with 

1 

0.5 

0.2 

• o.1 

o. o5 

01 ! 
O. •- /Goldstein et al: 

i i i i iiI i i i i i i i 

0.1 0.2 0.5 i 2 5 10 

f (kHz) 

FIG. 2. A plot of the critical band (CB) against center frequen- 
cy. The dashed line gives a simple approximation: Af= 100 
Hz if f< 500 Hz and Af/f •20% if •> 500 Hz. The lower function 
c(•) characterizes the noisiness of the channels in Fig. 1. 
The function is a stylized result of a fit to psychoacoustica[ 
data (Goldstein et al., 1978). 

a minimum distance of about 60 Hz. This distance 
agrees reasonably well with the critical bandwidth. 
Goldstein uses a somewhat better resolution of 10% on 
the basis of an interpretation of available data in terms 
of his theory. The bandwidth determines two factors in 
the further analysis. First, of course, the frequency 
selectivity, but second, and not less important, the 
temporal resolution. The uncertainty relation in the 
frequency-time description states (Stewart, 1931; 
Gabor, 1947): 

(3) 

This means that a time window with an effective dura- 

tion of 10 ms produces a spectral broadening of at least 
100 Hz (effective bandwidth), and conversely, that a 
resolution of 100 Hz requires a time window with an 
effective duration of 10 ms. Assuming a worst case 
resolution (i.e., the narrowest bandwidth) of about 50 
Hz (half the critical band) for component frequencies 
around and below 500 Hz one arrives at a time window 

(temporal integration time) of 20 ms. This being the 
effective duration, the total duration of a shaped time 
window will be about twice this size, i.e., 40 ms. 
Ideally, the time window should be shorter for frequen- 
cies above 500 Hz. 

D. Stochastic transduction 

Whereas the peripheral frequency analysis determines 
the limits of resolving neighboring components, the ac- 
curacy with which frequencies become available to the 
central processor is determined by the noisiness in the 
stochastic channels. It turned out that the description in 
terms of Gaussian noise in the channels [Eq. (1)], char- 
acterized by a standard deviation that depends on fre- 
quency only [Eq. (2)], gives an acceptable account of 
the data. For (• Goldstein ½t al. (1978) propose the fol- 
lowing schematic relation to f: 

(•=0.01f •/", f < 3 kHz, 

(•= (0.01/9V•3-)/3, .•>• 3 kHz (4) 

((• and f in kHz). 

For frequencies below 5 kHz, (• is one order of mag- 
nitude smaller than the critical bandwidth (Fig. 2). On 
the other hand, the value of (• is about one order of 
magnitude greater than the difference limen in frequen- 
cy. 

The assumption of independent stochastic channels is 
in line with the neurophysiological finding that re- 
sponses in auditory nerve fibers from a single ear are 
stochastically independent (Johnson and Kiang, 1976). 
The only correlation found between responses in dif- 
ferent fibers stems from the fact that the channels 

respond to the "same" stimulus in so far as their peri- 
pheral filters overlap. 

E. The central processor 

Given the representations X• (i = 1 to N) of the fre- 
quencies f• (i = 1 to/q), which are harmonic, then the 
likelihood function to be optimized for the best estimate 
of fo iS 
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L = rI G(f•, o.•). (sa) 

Instead of maximizing L, it is standard practice to 
maximize A= logL, which can be written as [using Eq. 
(1)1 

A= - •- log 2rr - log o', - E (x, - n,.f0 )•' 
The optimum estimates of n, and fo (•, and •o) are made 
when the terms in the right-hand part of Eq. (5b) are 
minimum. It is reasonable to assume that the second 

term is relatively insensitive to optimization of n• and 
fo because (r varies slowly with f over the frequency 
range of most interest (/< 3 kHz). Maximizing A is 
then equivalent to minimizing the mean square error 
of "data" and matched harmonics: 

I • (x• - n(fo) •' (6) ' 
Assume for a moment that the optimum values of n• (•) 
are known, then •o follows from 

8•" [ =0 8fo yo-•o ' 
which, after some calculation, gives 

Besides the value of the estimated fundamental, its 
accuracy is important. It turns out that errors in esti- 
mates of fo stem in practice almost entirely from 
errors in the estimated set of harmonic numbers. If 

we ae. ote .aiate sets {m,},, with Z= to 
L then the probability density function of fo will in gen- 
eral have L distinct modes, each of which is relatively 
narrow. For a typical value of •t/fi = 0.01 and a num- 
ber of components N= 6, the relative mode width 
•o•/fo• • 0.004• or i Hz for fo• = 250 Hz. This meets the 
r•uired accuracy range closely enough and is in good 
agreement with Ritsma•s (1963) data on the accuracy 
of residue pitc• A systematic discussion on %• in- 
clu•ng the basis for the above estimate, is given in 
Goldstein•s (19•3) paper. 

Apparently, then, it is impotent to select the right 
set of harmonic numbers. •ldstein (19•3) and •ld- 
stein el al. (19•8) demonstrate that two factors deter- 
mine the probability of selecting the right set. This 
illustrated in Fig. 3, which• for successive harmonics• 
gives a plot (from Goldstein et 
= {•}) as a function of the lowest harmonic number 
and the number of components N. The trends are clear: 
the lower the value of n•'and the larger the value of N• 
the greater will be the probability of estimating the 
proper se) {mi}• and hence the greater the probability 
thatfo• =/o. Although the result of Fig. 3 was deter- 
mined for successive harmonics• it is fairly obvious 
that similar trends will apply to the situation where the 
harmonics are not successive. Figure 3 shows that• 
given a lowest harmonic number m• • • and the number 
of harmonics N ½ 6 the probability of finding the correct 
pitch is near 100%. It seems reasonable to assume that 

,;.- 
number of 

ponents ? . 0 5 10 15 

lowest harmonic number n I 

FIG. 3. The probability of correctly estimating the harmonic 
numbers of the components as a function of the lowest har- 
monic number presented. Parameter is the number of com- 
ponents. In this example, at f0= 300 Hz, it is assumed that all 
components are successive harmonics (after Goldstein et al., 
1978). 

these conditions can usually be fulfilled in speech, so 
that virtually no mode errors are expected in the pitch 
of speech. 

II. APPLICATION OF GOLDSTEIN'S PITCH 

THEORY TO CONTINUING SPEECH 

A. General outline 

The optimum pitch-measuring device can be thought to 
consist of two elements: a spectral analyzer that de- 
tects and measures the frequencies of the harmonic 
components, followed by an optimally functioning har- 
monic pattern recognizer (Fig. 4). The properties of 
analyzer and recognizer are matched to those of the 
model that describes human pitch perception (Sec. I). 
On the other hand they are adapted to current software 
and hardware techniques in digital signal processing. 
For the software algorithm we allow a nonreal-time 

solution provided that the prospect for a real-time hard- 
ware implementation would be left open and even con- 
sidered feasible with present hardware technology. As 
we have seen that pitch is a subjective quantity that re- 
quires integration over a finite time interval, we have 
to allow for a delay of the order of this interval, i.e., 
of about 40 ms (Sec. IC). Updating of varying pitches 
may be required to be faster than this. For the moment 
we will assume an interval of 10 ms for this purpose. 

Although it is common practice to smooth the mea- 
sured pitches according to the expected pitch value, or, 
in other words, to determine the a posterjori pitch, we 
will not include such procedures in this study. Of 
course they are helpful in reducing error rates and in 
economizing the procedures. However, it was deemed 

s(t) 
speech • 
signal 

Spectral analyser 
and 

component finder 

i , ••m pattern recognizeri ß 
Xil 1 select I•i li 

- 2 determine f .t of.•t.I o •itch" 
components m - 

FIG. 4. Schematic block diagram of the pitch meter. First 
the spectrum of the speech signal is measured and component 
.frequencies are determined. On the basis of the frequency val- 
ues the pattern recognizer optimally estimates f0. 
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more fruitful to try to optimize the a priori estimate of 
the pitch, so that the algorithm would give independent 
new estimates on successive samples. This aim had to 
be relaxed when we defined a voiced/unvoiced decision 
rule. A weak form of tracking was used which is based 
on the reliability of the computed pitches. 

B. The spectral analyzer and component finder 
I. Ana/yzer 

Spectral analyzer and component finder have to pro- 
duce the set X• with an accuracy that is comparable to 
that characterized by the subjective (•= (•(•') function. 
This implies a (•= 3 Hz at f= 100 Hz to (•= 10 Hz at •= 1 
kHz. It is an obvious choice to use FFT for the fre- 

quency analysis. This, however, fixes •r for all fre- 
quencies. Therefore the resolving power in the FFT 
should be high enough to discriminate the harmonics 
of the lowest possible fundamental, which will be around 
50 Hz. For zX• one thus has zX•< 25 Hz, which implies a 
time window of 40 ms. Since the frequency range which 
encompasses the relevant harmonics depends on •'o and 
since the resolution required depends on •'o very much 
like the ear's resolving power depends on frequency 
(Fig. 2), we introduced a feedback from •'o to the time 
window duration T•. The duration T• was made in- 
versely proportional to •'o when •o was in the range from 
100 to 400 Hz. For•'o >•400 HzweusedT•=10 ms, for 
fo •< 100 Hz T•= 40 ms. This rule was applied only when 
a reliable pitch measurement had been made. In case 

of uncertainty T• was set to 40 ms. This procedure is 
an ad hoc attempt to implement a resolving power which 
depends on frequency, in line with the size of the criti- • 
cal bandwidth (Sec. IC). In order to determine the fre- 
quencies of the maxima in the spectrum with sufficient 
accuracy, i.e., roughly a factor 10 better than the FFT, 
the peaks in the spectrum were located on the basis of 
parabolic interpolation of three neighboring spectral 
points. 

In combination with Af, the frequency range to be 
covered determines the number of points to be used in 
the FFT. The upper bound of the frequency range is 
determined by the product of the highest •'o to be ex- 
pected and the highest harmonic number that carries 
information, n,•a,. We expect •'o not to exceed 500 H• 
and n,•a, to be in the range of 10 to 15. However, we 
also expect that in the case of high fundamental fre- 
quencies the lowest harmonics will always be present. 
And even if n• = 3 a number of two successive harmonics 
would yield a 100% correct estimate of the set {n•} and 
hence Of•o (see Fig. 3). Therefore we decided to fix 
the maximum frequency to be analyzed at 2.5 kHz. It is 
noted that the existence region of the residue extends to 
5 kHz (Ritsma, 1962). The value of 2.5 kHz, therefore, 
is somewhat small, but in practice we found it more 
than adequate. This sets the number of points at 256. 
Withfma,= 2.5 kHz the sample frequency is 5 kHz, so 
that with 256 points the A• becomes A•'= 19.5 HZ and 
the time window 51.2 ms. This window was filled with 

10 to 40 ms of signal supplemented by 41.2 to 11.2 ms 
of silence (zeros). 

The required word length in bits follows from signal- 
to-noise considerations. The Hamming window used 

produces a "noise" floor at 40 dB below the highest 
peak. This signal-to-noise ratio is roughly matched 
by a quantization into 8 bits, given a stationary ampli- 
tude. For our software simulation we have so far used 

an A/D conversion of 12 bits and a floating point FFT 
with a mantissa of 23 bits. This turned out to be suffi- 

cient to allow us to deal successfully with regular ampli- 
tude variations. 

2. Component finder 

So far Goldstein has not examined the effect of near- 

threshold components. He uses the simple rule that 
suprathreshold components count, independently of 
their amplitudes. In order to be applicable to natural 
sounds the theory requires the specification of a thresh- 
old. In fact even two thresholds will have to be speci- 
fied. First, an absolute threshold, determined by the 
threshold of audibility, and second a relative threshold, 
which comes into operation in the context of other com- 
ponents or noise and which is determined by the psycho- 
physical masked threshold. Apart from the requirement 
that the component amplitudes have to exceed both 
thresholds, the amplitudes play no role in the analysis. 

For each local maximum in the amplitude spectrum 
{AF(r)}, r= 1 to 128, where 

AF(r) >• AF(r- 1)(%AF(r) >AF(r+ 1), (8) 

it is checked whether AF(r) is above threshold; then, 
by parabolic interpolation, amplitude and frequency of 
the peak are determined and finally the shape of the 
peak is checked. The expected peak shape for a sta- 
tionary spectral component follows from the Fourier 
transform of the Hamming window (e.g., in Harris, 
1978), it is straightforward to calculate the spectral 
sample values around a peak. Let a peak occur at f, 
= rAf, then the ratio AF(r + 1)/AF(r)= 1 - (p(T•), where 
{o(T,) runs from 0.03 to 0.4 as T, changes from 10 to 
40 ms. In general a peak occurs at f= (r+ 5)Af, with 
-0.5• < 5 < 0.5. Parabolic approximation of the peak 
shape yields for the expected values around the peak 

/{F(r + i)= [1 - •o(T,)(i - 5) 2]/{F(r + 5), (9) 
where i =- 1, 0, 1 for the points of interest, and AF(r + 5) 
is the calculated pe• level. We used as error mea- 
sure for the goodness of pe• shape 

e• = • [fF(r + i)- AF(r + i)]• • [KF(r + 5)] • : • (•[1 - •(T•)(i- 5)•] • , 

where the observed AF(r+ i)=•F(r+ i)(1+(t). The 
error measure is a weighted sum of the squared rela- 
tive differences be•een expected and observed spectral 
heights. A peak was accepted as component X• when- 
ever e•< 1/4. This rather 1• threshold is required 
because spectral pe•s in real speech sisals tend to be 
broadened by nonstationarity. 

As mentioned above, there are two thresholds for 
AF(r) to exceed'in order to qualify as a significant 
component. The first is the absolute threshoid. Imple- 
mentation of the auditory threshold would require a 
calibration of the system regarding sound pressure 
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frequency (log) 

FIG. 5. After components are identified as local spectral max- 
ima, it is checked whether they are above threshold. The com- 
ponents have to exceed an absolute threshold (determined by 
quantization noise, etc.) and a "masked" threshold, deter- 
mined by masking slopes (stylized) connected with the spectral 
components. In the example, the peaks at Xt and Xt. 1 qualify. 
Those at • are subthreshold and therefore rejected. 

level It is more practical to use a fluctuating thresh- 
old, related to the highest spectral peak or to the total 
energy of the sample. This takes care of window 
"splatter" and quantization noise (cL Sec. IIB/). We set 
the first threshold level at 26 dB below the highest peak 
level, if this threshold exceeded a fixed minimum value. 
The automatic gain control involved in the updating of 
the threshold was of the fast-in-slow-out type; the 
decay time constant was 100 ms. The other threshold 
is the masked threshold. One of two components can 

be masked completely by the other. A simplified 
strategem that can be used is to assume that the pres- 
ence of a component elevates the threshold to a -45- 
dB/oct slope on the high-frequency side and to a 90-dB/ 
oct slope at the other side (cf. Duifhuis, 1972). In the 
example in Fig. 5 the candidate •. is masked by the 
component X•, so that it does not count as a regular 
component. The values given for the slopes are to be 
considered as typical and as being roughly in accord- 
ance with auditory critical band filter characteristics. 
Actually the slopes of the masking pattern depend on 
component frequency as well as on component level. In 
practice the high-frequency side of the masking pattern 
(the 45-dB/oct slope) will present more consequences 
than the low-frequency side. In the results to be pre- 
sented we used only this high-frequency slope. 

Terhardt (1979) also uses absolute and masked thresh- 
olds as criteria for relevance of spectral components. 
His algorithm gives, at the cost of more complexity, a 
rather precise account of the dependence of the masking 
pattern on frequency and level. 

The component finder starts looking for components 
at the low-frequency end of the spectrum, and it never 
looks for more than six components. The output of the 
component finder then consists of an array (X•, i= 1 to 
N, with the parabolically interpolated peaks that ful- 
filled the several criteria. Formally, then, the number 
of components found, N, is restricted to the range 0 
•<N•<6. 

SPEEC H WAVE 12 bits,Fs.5OOOHz 

HAMMING WINDOW 

200pp,40ms 

• t 

FFT 

256 p p 

AMPLITUDE 

FUNCTION 

AMPLITUDE SPECTRUM 

PEAK DETECTOR 

.5 1.0 
FREQ. (kHz) 

I peak > threahold 

2 peak shape test 

6 peaks max. 

COMPONENTS {Xi } imax.•t 
X• X2 X•X,.Xs X6 

FREQ. 

FIG. 6. Flow diagram of the spectral ana- 
lyzer and component finder. The speech 
signal is low-pass filtered (at 2.5 kHz) and 
A/D converted as indicated. Every 10 ms, 
a 40-ms sample is spectrally analyzed 
(FFT). The amplitude spectrum is deter- 
mined, AF0-Af), •-= I to 128, and local 
maxima are detected. For suprathreshold 
maxima, component frequency and ampli- 
tude are determined. Then tt is verified 
whether the peak shape meets the wanted 
criterion (parabolic match), after which 
stage the amplitude information is discard- 
ed. ff six components are found or if the 
entire spectrum is examined (z•< 127), the 
process stops. The information on the com- 
ponents is carried on to the harmonic sieve. 
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A flow diagram of spectral analyzer and component 
finder is presented in Fig. 6. 

C. The harmonic pattern recognizer 

_At this point it is necessary to note a fundamental 
difference between the problems of finding pitch in 
speech and finding pitch for a psychoacoustical stimu- 
lus. In our case the set of components {X•} is less 
clean. In speech as well as in psychoacoustical stimuli 
certain harmonic components may be lacking. How- 
ever, in the speech spectrum one may also, despite 
the criteria mentioned in the above subsection, en- 

counter spurious components that bear no relation to 
the harmonic signal. They arise either from irregu- 
larities in the speech waveform or from interfering 
background sound. Thus our problem is to find a best 
fitting harmonic pattern to the set {X•}, without neces- 
sarily having to classify all N components. 

We now describe a harmonic pattern recognition pro- 
cedure which we will refer to as the harmonic sieve 

procedure. The purpose of the sieve is to establish 
which components are genuine harmonics and which 
are not. The latter will not pass through the sieve, but 
the harmonics will. The harmonics sieve is a one-di- 
mensional sieve in the frequency domain (see Fig. 7). 
The sieve has meshes of a bandwidth W = W(/•) around 
the harmonic frequencies [/=J[o, with j = 1 to J. The 
value of J reflects that only the lower 7 to 15 harmonics 
contribute significantly to residue pitch, or 7 •< J •< 15. 
So far we have used J= 11, in accordance with Gold- 
stein (1973). In approximate accordance with auditory 
frequency resolution, the widths of the meshes are 
chosen to be proportional to their center frequencies, 
i.e., W(f)= 2a•[ o. In order for the sieve to be effective 
at all meshes, successive meshes are not allowed to 
overlap. Since W increases with/•, this implies 

(1 - •)J/o > (1 + •)(J- 1)f o 

or 

c• < 1/(2J- 1)= 1/21 = 0.05. (11) 

of course, •(/) must be wide enough to allow for the 
errors that can arise in the component finder. These 
errors are denoted by •= (•(f), and should not exceed 
the value of Eq. (4). This leaves us with a value of a 
of a few percent. We will next find a bound for the mini- 
mum value of a. 

The harmonic sieve procedure now amounts to suc- 
cessively setting the sieve to all possible values of 
fundamental frequencies, covering the entire range 
encountered in human speech (50-500 Hz). Of course 
the frequency domain is scanned in discrete steps (in- 
dex l, l = 1 to L), the size of each being taken propor- 
tional to f. Obviously the step size should be smaller 
than W (f) in order not to miss parts of the frequency 
scale. Minimizing the total number of steps, L, is 
equivalent to maximizing W(f) or a. In general we 
used a = 5% and a step size of 1/24 octave or approxi- 
mately 3%. 

At each position of the sieve, characterized by the 
fundamental frequency value fo,, it is checked which 

{xil 

1.1 

Xl X2 X3 X4 X5 X6 

' ' ' ' .... ' ' 
ß 

i mmm 

frequency 
(Hz) 

FIG. 7. Example of the harmonic sieve procedure: the com- 
ponent finder produced the set {177, 242, 360, 485, 600, 960 
Hz). The components are plotted on a log-frequency scale. 
The components are then sifted with a harmonics sieve, which 
has meshes 1 to 11 at harmonic intervals. The mesh width 
is approximately 8%. The position of the sieve is character- 
ized by, for instance, that of mesh number 1, which starts 50 
Hz. Then it moves to 500 Hz in steps of 3%. At each position 
it is checked which components pass through the sieve. Re- 
suits for the present example are given in Table I. 

components pass through the sieve, thus qualifying as 
candidate harmonics. A component Xl passing through 
mesh j is labeled with the candidate harmonic number 
m•, =j. Let the total number of components passing 
through the sieve be K,(k, = 1 to K,; l refers to the sieve 
position). If more than one component pass through the 
same mesh, then only the one closest to the center is 
labeled, the other is rejected. Figure 7 together with 
Table I illustrate the procedure with an example. 

On the basis Of the results of the sifting we have to 
decide now which set of candidate harmonic numbers 

{m•}, is the optimum set {•}. This is equivalent to 
recognizing the harmonic pattern of which the set 
{X•} is a (noisy) sample. A common classifier in pat- 
tern recognition techniques is the so-called minimum 
distance classifier. Candidate set and reference set 

(ideal harmonic pattern) are both represented as vec- 
tors in a multidimensional space. The Euclidian dis- 
tance between the endpoints of the vectors is a measure 
of the fit: the best fitting candidate is the one with mini- 
mum distance to the reference. The dimension of the 

space depends on {m•} and may differ from one sieve 
position to another (l). In order to compare adequately 
across l we consider the normalized distance, d, i.e., 
the distance divided by the "unit diagonal" (the square 
root of the dimension). 

At position l the dimension of the space sufficient to 

encompass {m•}, and the reference set is determined as 
follows: denote the highest candidate harmonic -•nK• as 
M•. Then the dimension D is M• plus the number of un- 
classified X•'s (N- K•), in order to allow orthogonal 
representation of all relevant components: D=M• +N 
-K,. The set {x•} is represented by the vector v, the 
elements of which are 

v/:l ifj•{m•},, whenX• is accepted, or ifM,<j•<D, 
when X• is a rejected component 

v• = 0 otherwise. 

The reference set is characterized by the vector u, 

given byu/=l for I•<j•<M• andu/=0 forM•<j•<D. 
The squared distance between u and v is 
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TABLE I. Example of classification by the harmonic sieve. 

Sieve f0, X• 
position 

I (Hz) 177 

Component frequencies (Hz) 

x• x• x4 

242 360 485 

Classified as 

Effective Total Highest 

X• X 6 input number harm. No. Criterion 
number classified classified 

600 960 N l Kl M• C• 

I 50 ... a roll = 5 rn21 = 7 
2 53 ...... rnl2 = 7 

l 120 ß" ml•=2 rt•21 = 3 

L 500 ......... 

rn31 = 10 ,b , 4 3 10 14/3 
ß .. * * 4 1 e 7 11/1 

m31=4 rn4• = 5 rnS• = 8 6 5 8 14/5 

rnlr ' = 1 ß ß ß rn2r ' = 2 6 2 e 2 8/2 

aThe three dots indicate that the component is rejected by the sieve. 
bThe star indicates rejection because the estimated harmonic number would be greater than 11. Components rejected with a star 

do not add to N•. 
CThese fits are rejected immediately because K• (the number of components classified)<Nl/2 (half the number to be recognized). 

d[: (M, + N - 2K ,)/(M, + N- K,) . (12) 
It is straightforward to show that minimizing d, or d• 
is equivalent to minimizing the quantity C r defined as 

C,: (M r + N)/Kr , (13) 

which form is somewhat simpler than Eq. (12). 

The alternative approach of minimizing the angle be- 
tween candidate vector and reference vector leads to a 

criterion that bears some relation to Eq. (13) and 
amounts to minimizing C•* defined as 

C•* = M,N/K• . (14) 
However, in practice the criterion of Eqß (13) proved 
to perform slightly better. 

The minimum of C r over 1:1 to L thus indicates the 
optimum set of harmonic numbers looked for. The best 
estimate off o then follows from substitution of this set 
in Eq. (7). Actually in the algorithm used so far c•(f) 
does not depend on frequency, so that Eq. (7) reduces 
to 

7o: 
(This estimate is more accurate than simply taking 

fo=for for the 1 that minimizes Cr; however, the addi- 
tional accuracy may not always be needed.) 

A minor complication arises if component frequencies 
are rejected because they lie above the highest mesh 
of the sieve. Such components may nevertheless be 
harmonic so they should not contribute to the distance 
in Eq. (12). This is remedied by defining an effective 
number of components at sieve position l as N r :N 
minus the number of X• for which X• > (11 + a)for , and 
by replacing N by N, in Eqs. (12) to (14). The overall, 
rather lax restriction that at least half of the compo- 
nents found should be classified as harmonics, or K 
>•N/2 (N>0), ascertains rejection of the trivial "zero 
solution" N r = 0. 

The harmonic sieve procedure is much more efficient 
than the straightforward optimum estimation procedure 
of calculating (•' for all possible permutations of har- 
monic numbers and selecting the solution that mini- 
mizes (•' (Gerson and Goldstein, 1978). Moreover, it 
is not overly sensitive to spurious components. 

The implementation of tracking is described in the 
next subsection. 

D. Voiced/unvoiced discrimination 

Evaluation of the pitch meter in a vocoder setting re- 
quires an adequate voiced/unvoiced decision rule. For 
this purpose we developed a set of rules, which, how- 
ever, has not been optimized to the same extent as the 
pitch analyzer. It is not clear whether hearing theory 
can provide insight into this point because a listener 
appears to be quite unaware of the voiced/unvoiced 
transitions during an utterance. Instead he perceives 
a continuous melodic line. 

The starting point of our rules is that a speech sam- 
ple which produces a good fit to the harmonics sieve, 
i.e., yielding a C r [Eq. (13)] close to 2, is obviously 
voiced. The acceptable disparity from 2 was made 
to depend on the number of fitting components, Kr, 

C r•<2.1+0.1K r, forKr> 1. (16) 

A pitch for which the inequality is satisfied is judged 
reliable. The only acceptable sieve match for K• = 1 
can occur for Nr= 1, i.e., when the spectrum contains 
only one qualifying spectral component. It can be ac- 
cepted either as fundamental, or, in case of tracking, 
as second or third harmonic. 

Tracking is used in two ways. First, if the previous 
pitch was reliable according to Eq. (16), then a track- 
ing range half an octave wide is centered around this 
pitch value. Within the tracking range potential 
matches are favored by using C•: Cr/2 instead of C r 
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for optimizingfo•. The best match within the range is 
accepted if C• •< 3.5, even though lower values of C• 
might have been obtained outside the tracking range. 
Secondly, if the previous sample has been classified 
as voiced, then the current sample is called voiced as 
long as the best C• is less than 3.5. 

Any acceptable fo within the range from 50 to 500 Hz 
classifies the speech segment as voiced. 

III. PERFORMANCE 

We implemented the pitch-measuring algorithm de- 
scribed above in a FORTRAN IV computer program, x run 
on a P857 minicomputer. As mentioned in Sec. IIA, in 
this phase of the project we did not aim at real-time 
operation, and transparency of programs was favored 
to par simony. 

The speech material used in this study was borrowed 
from a set of Dutch test sentences developed for audio- 
logic tests by Plomp and Mimpen (1979). Twenty-five 
sentences were copies of the original material (female 
speaker), 25 sentences were re-recorded with a male 
speaker. The speech waveform was low-pass filtered 
at 5 kHz and sampled at 10 kHz using a 12 bit A/D con- 
version, and then stored on disk. These signals were 
subjected to a tenth-order LPC analysis, yielding ten 
filter coefficients and the amplitude parameter. The 
LPC analysis operated on 25-ms segments, shaped 
with a Hamming window and pre-emphasized by a first- 
order filter 1-•z 'x with • = 0.9. The LPC analysis was 
executed every 10 ms. 

The pitch analysis used the same stored signals, but 
they were low-pass filtered (digitally) at 2.5 kHz, and 
sampled down to 5 kHz. The signals are processed with 
the algorithm described in Sec. II, thereby creating 
pitch files and voiced/unvoiced parameters which line 
up with the LPC parameters. 

For a comparative judgment of the performance of 
our pitch meter we also implemented the parallel pro- 
cessing pitch detector (PPROC) of Gold and Rabiner 
(1969), using the FORTRAN programs by Rabiner and 
McGonegal (unpublished report). It used the same ma- 
terial as our meter (which we will designate the DWS 

detector in this section). PPROC was used in this 
evaluation because it belongs to the set of pitch meters 
which has been evaluated objectively by Rabiner et al. 
(1976) as well as subjectively by McGonegal et al. 
(1977). PPROC ranked among the better algorithms 
(e.g., third in the subjective test) and it happened to be 
the test which was available in full detail so that a fair 

comparison was possible. 

The pitch analysis results of DWS and PPROC were 
used in a software resynthesis of the test material. 
The comparative performance was evaluated in a pref- 
erence test where each sentence was presented suc- 
cessively in each of the two versions, in random order. 
Twenty listeners took part in the test. Ten of them had 
experience in phonetics or in psychoacoustics, the 
others were naive listeners. Although some listeners 
interpreted the task as a two-alternative-forced choice 
task, with the response alternatives (prefer DWS; 
prefer PPROC), most listeners included a third re- 
sponse alternative, viz. (no preference). 

The results of the preference test are presented in 
Table IL Four out of the 50 test sentences were used in 

an introductory session. The data in the table are based 
on the responses to the 46 remaining sentences, half of 
which are pronounced by a male speaker (m) and half 
by a female speaker (f). The overall result of the test 
indicates a marked 2.7 over 1 preference for DWS over 
PPROC. The "no preference" responses form a small 
category. In 92% of the presentations the listeners 
came up with a preference response. Dividing the re- 
sponses in the "no preference" class equally over the 
two other classes results in the binary total response. 
The differences between results for male and female 

speakers and for experienced and inexperienced listen- 
ers are considered marginal. Interindividual differ- 
ences are characterized by a standard deviation of ap- 
proximately 10%. All subjects showed a greater than 
50% preference for DWS (range 52%-85%). 

In other words, the present test shows a clear prefer- 
ence for the DWS-pitch algorithm over PPROC. On the 
basis of this limited data it is, of course, not possible 
to make general claims on the performance of our meter 
as compared to other known algorithms, but the results 

TABLE H. Results of the preference test, averaged across the test sentences and the subjects 
within the two categories. 

Prefer PPROC No preference 
Speaker m f av m f av 

Listener (in %) (in %) 

Experienced 19 26 22 9 9 9 
(n=•O) 

Unexperienced 30 24 27 4 7 6 
(n=•O) 

Prefer DWS 

rn f av 

(in %) 

72 65 69 

65 69 67 

Total 25 7 68 

Binary total 28 72 
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FIG. 8. Unsmoothed •0 measurements from both DWS and 
PPROC pitch detectors of an utterance by a male speaker. 
The amplitude contour and a broad phonetic transcription are 
lined up with the •0 contours. 

obtained so far are promising. This statement is also 
based on informal results of a comparison with an ad- 
vanced autocorrelation method used at our institute 

(Vo•en and Willems, 1977). 

Figures 8 to 11 present examples of the performance 
of the two pitch algorithms, which are selected from the 

de wI t ß zw a; n d o.' k onderw a t er 

5O0 

400, 

200' 

100' 

5O0 

400 

200, 

100, 

50 

FIG. 9. As Fig. 8, male speaker. 
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FIG. 10. As Fig. 8, female speaker. 

set of 46 sentences used in the above test. In the upper 
part one finds the phonetic transcription of the utter- 
ance and a sound level measure based on the rms ampli- 
tude in each segment. The lower two panels give the fo 
measurements for the two algorithms. The utterances 
are judged unvo•ced at the points where no pitch values 
are displayed. 

It is clear that both PPROC and DWS have little diffi- 
culty in catching the overall melodic line in an utter- 
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FIG. 11. A,s Fig. 8, female speaker. 
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ance. Problems arise almost exclusively in the voiced/ 
unvoiced decisions. We argued that hearing theory does 
not have a ready solution to the voiced/unvoiced problem 
because in listening to a normal utterance one does not 
have a clear voiced/unvoiced percept. However, it is 
also apparent that the ear is quite sensitive to errors 
in the voiced/unvoiced decision in a vocoder system. 
This indicates that the ear has a clear picture of the 
expected value of the signal, given its past. It is not 
clear, as yet, whether this picture exists on a peri- 
pheral auditory level or on a more central level. We 
suspect, however, that the more fruitful application of 
perception to this issue goes beyond the level of classi- 
cal hearing theory and would require a link with human 
speech recognition. 

PPROC and DWS both show few octave errors. The 

total number of octave errors as judged by visual in- 
spection from the pitch records as shown in Figs. 8 to 
11 amounts to 19 for PPROC and 16 for DWS, i.e., 2.4% 
and 2.0%, respectively. 

So far we have tested our pitch detector only in a 
limited set of conditions. Relevant tests include per- 
formance for different speakers and for poor signal to 
noise conditions. Unfortunately, these tests fall beyond 
the scope of the present study, which wants to empha- 
size the new approach rather than its complete evalua- 
tion. 

IV. DISCUSSION 

Performance of our pitch meter has been compared 
directly with performance of the parallel •rocessing 
meter (PPROC) of Gold and Rabiner (1969). The latter 
method ranks amongst the best discussed by Rabiner 
et al. (1976) and by McGonegal et al. (1977). The re- 
sults of the new pitch meter proved to compare favor- 
ably with PPROC. The primary differences are that 
our psychoacoustically based pitch meter (DWS): 

(1) makes fewer octave errors; 

(2) cannot be trapped at an incorrect pitch because it 
employs a weak form of tracking, and that only on the 
basis of "reliable" pitches; 

(3) seems to perform better in poor signal-to-noise 
conditions such as low signal levels and voiced/unvoiced 
transitions (as judged from performance at amplitude 
ramps). 

It is noted in passing that a final smoothing element 
added to our algorithm would produce a better pitch 
record in voiced speech. But, of course, this also en- 
hances performance of most other pitch meters. 

The first results of this evaluation lead to the conclu- 

sion that the pitch meter, based on Goldstein's (1973) 
theory on the perception of pitch of complex sounds, 
performs better than PPROC. The parallel processing 
meter PPROC operates exclusively on information in 
the time domain. Its mechanism is not directly com- 
parable with the principle of our meter. A comparison 
with frequency domain pitch meters appears more ap- 
propriate, although some of the characteristics of fre- 
quency domain meters have, of course, their logical 

counterparts in the time domain. First we compare 
our procedure with the somewhat related "cepstrum" 
method. Three differences present themselves. The 
first difference is that in our method (as in Goldstein's) 
a severe data reduction takes place after the first spec- 
tral transformation. The actual spectrum is in fact 
reduced (or sharpened) to a line spectrum, where the 
lines occur at the suprathreshold peaks in the ampli- 
tude spectrum. The sharpening caused by this data 
reduction apparently leads to a "sharper" ultimate re- 
sult. The second difference is that we base our esti- 

mate of fo on the lowest harmonics in the spectrum 
(highest harmonic number •< 11, highest harmonic fre- 
quency •< minimum of 11 f0 and 2.5 kHz). Higher (mea- 
surable) harmonics are not represented with sufficient 
accuracy to allow a reliable estimate of their harmonic 
numbers and hence of their fundamentals. Therefore 

taking higher harmonics into account leads to a decrease 
in performance rather than an increase. They do not 
carry useful, retrievable information in the frequency 
domain. The third, and probably most important, dif- 
ference is that our procedure makes explicit use of the 
fact that the frequency components stem from a har- 
monic sequence. Each estimate for fo uses specific 
harmonic number information of each component. The 
estimated harmonic numbers result from a simultaneous 

optimum fit of all components. One obvious restriction 
which follows from this is that harmonic numbers of 

different components have to be different. This, in 
combination with the criterion for best fit, reduce the 
occurrence of octave errors. 

It is noted that the first two points mentioned above 
are, to a certain extent, also applied in the pitch detec- 
tor proposed by Seneff (1978). Like ours, her detector 
consists of a peak-picker followed by some sort of pat- 
tern recognizer. The peak-picker covers a frequency 
range up to 1.1 kHz, which is still more than an octave 
narrower than ours. Her recognizer works on the basis 
of peak distances, taking into account the fact that in a 
harmonic spectrum the distances between peaks are all 

equal to fo. This procedure, we would argue, does not 
make optimum use of the information carried by the 
frequencies. It only uses the restriction that successive 
peaks probably stem from successive harmonics, but it 
does not use the estimates of the harmonic numbers. 

Moreover, in a slightly inharmonic signal the pitch is 
not equal to that of the difference tone (Schouten, 1940) 
but to that of the fundamental of the best harmonic fit 

(e.g., de Boer, 1956; Goldstein, 1973). Pilot experi- 
ments by one of the present authors with a detector 
similar to Seneff's lead us to believe that our harmonic 

pattern recognizer gives a better performance. 

The harmonic sieve procedure described in Sec. IIC 
is formally almost identical to Terhardt's (1979) pro- 
cedure of finding near coincidences of subharmonics of 
the component frequencies. The basic difference lies 
in the specification of the criterion for the best fit. 
T erhardt maximizes the number of fitting components 
K•, without taking account of noisy or missing compo- 
nents, as happens in DWS by maximizing K•/(M• +N). 
Spurious noisy components are dealt with in an interac- 
tive (nonautomatic) way. As noted by Terhardt, his 
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pitch extractor is related to the period histogram meth- 
od by Schroeder {1968) and the HIPEX system by Miller 
(1970). In these systems the near coincidence of sub- 
harmonics is determined in the time domain, although 
Schroeder also mentions the possibility to do the com- 
putation in the frequency domain. Schroeder is not spe- 
cific on the criterion for coincidence, but the values 
used by Miller and by T erhardt are similar to the ones 
proposed in this paper. Besides the difference in opti- 
mization criterion, additional differences with DWS are 
that the separation of spectral components occurs much 
more coarsely (using a filter bank) and secondly that 
the level of spectral components plays a role. Miller 
(1970) claims that the performance of HIPEX is similar 
to that of cepstrum, which ranked among the lowest 
both in the evaluation by Rabiner et al. (1976) and in that 
by McGonegal et al. (1977). 

Obviously not all constraints that were derived in Sec. 

II, and based on psychoacoustic data, are entirely new 
for technical pitch extractors. For those that are not 

(e.g., a 40-ms window) the discussion in Sec. II may 
provide an additional support. 

There are reasons to believe that the robustness of 
our pitch meter in poor signal-to-noise conditions 
should result in a performance similar to human per- 
formance. This point needs further psychoacoustical 
study. Furthermore, the present procedure will 
probably prove successful in voice separation algo- 
rithms (cf. Parsons, 1976), albeit that the criterion for 
best fit will have to be adapted. It will have to reflect 
the hypothesis that, for example, two harmonic signals 
were presented. 

V. CONCLUSION 

We have implemented Goldstein's (1973) theory of 
pitch perception in a practical algorithm which mea- 
sures pitch in speech. The application of the insights 
of hearing theory leads to a very successful pitch 
meter. Theoretically, performance would be equal to 
human performance; practically, this goal appears to 
be within reach if not reached yet. 

The performance of the proposed procedure compares 
favorably to that of the parallel processing pitch detec- 
tor (PPROC, Gold and Rabiner, 1969). Prospects for 
real-time hardware implementation [Sluyter et al., 
(1980)] as well as for application to voice separation 
systems are promising. 

1The texts of the programs which implement the DWS pitch de- 
tector are available on request as IPO report 394 by L. F. 
Willems. 
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