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Plasmo-magnetoelastic waves in a semiconducting hetero­
structure. I. Plasmo-elastic longitudinal modes

A A F van de Yen
Eindhoven University of Technology. Department of Mathematics and Computing Science,
P.O. Boz 513, 5600 MB Eindhoven, The Netherlands

B Maruszewski
Technical University of Poznan, Institute of Applied Mechanics, ul. Piotrowo 3, 60-965
Poznan, Poland

Wave propagation in semiconducting heterostructures is studied. Interactions of the electrical
field with mechanical (elastic) and magnetic fields are considered. This first part deals with
longitudinal (Rayleigh-type) plasmo-elastic waves in a thin layer on a half space (substrate);
both layer and substrate are semiconducting. The waves show an exponential decay with depth
in the substrate; the longer the waves the more of the wave energy is transmitted through the
layer. Also purely plasmonic waves can exist. These waves are dissipative, and exist only for
values of the wave number exceeding a certain critical value. In our general model an electrical
relaxation term is included in the generalized Ohm's law; the influence ofthis relaxation aspect
has received special attention.

Consider an elastic semiconducting body, possibly built
up oftwo or more semiconducting sub-bodies (heterostruc­
ture). The material is isotropic and, at least for each
sub-body separately homogeneously. The semiconductor
is doped (extrinsic semiconductor of n-type) and, there­
fore, hole field quantities may be neglected in comparison
with the electronic field ones. The diffusion of impurities
is neglected, but the relaxation nature of the charge field
(plasmonic field) is taken into account. Such a situation
mainly occurs in so-called relazation semiconductors.

We are interested in the propagation of waves in
such bodies. These waves show an interaction between
the elastic and plasmonic fields, hence, they are called
plasmo-elastic waves. The equations which govern these
processes have been derived from an extended thermo­
dynamical model (Maruszewski and Van de Ven (forth­
coming), Maruszewski (1987a,b)). As shown there, these
equations can be reduced to a set of two equations for the
unknowns: the displacement u = u(x, t) and the elec­
tric charge density per unit of mass N =N(x, t). These
two equations read (index notation, including summation
convention is used here)

INTRODUCTION those for T =O. All numerical calculations have been per­
formed for a heterostructure consisting of a ZnSe-layer

Semiconducting media are very rich in many physical on aGe-substrate.
phenomena occurring there simultaneously because of their
comparable significance. Not only their electrical prop- BASIC EQUATIONS
erties are important, but especially the interactions be­
tween electrical and mechanical, magnetic or, possibly,
thermal fields give a new look on applications of semicon­
ductors in practice. An example of such an interaction is
the elastodifJuse effect: an interaction between electrical
and elastic fields. In the example we have considered, it
was found that the influence of the plasmonic field (Le.
the electronic charge) on the elastic one is small (in fact
negligible) but, on the other hand, the elastic field gener­
ates extra plasmonic fields of technically relevant magni­
tude. All this is in correspondence with known physical
observations on semiconductors (Maruszewski and Van
de Ven (forthcoming)).

The aspects mentioned above become very evident in
heterostructures built up of a thin layer on a half space
(substrate). In this first part the propagation of longi­
tudinal plasmo-elastic waves in such a heterostructure is
considered, whereas the second part is more concerned
with magneto-elastic shear waves in a semiconducting
heterostructure.

Relaxation effects in semiconducting media is a rela­
tively new aspect in the study of semiconductors. Here,
we have included a relaxation time T in the diffusion equa­
tion for the electronic charge. The influence of relaxation
is investigated by comparing the results for T ::j; 0 with



(5)

(3)U1 = <P,1 - ..p,3, U3 = <P,3 + 1/>,1 •

respectively, we state that if CTI < v < CTII < CLI <
CLlI (the subindex indicates that the constant refers to
the layer (1) or to the substrate (II» there exist purely
ela.stic longitudina.l surface waves, and for these waves
4'(X3) takes the form ('1/1 is no longer relevant to us here)
for -kh < X3 < 0,

Then, (1) yields three equations for the three unknown
variables <p(:l:1I :1:3, t), '1/1(:1:11 :1:3, t) and N(:Cl' :C3, t). These
equations reveal that the general solution can be assumed
of the form

where X3 = k:C3, k is the (real) wave number and v is the
wave velocity (which can be complex, with Re v > 0 and
1m v :::; 0, but is real for purely elastic waves).

The solution of the purely elastic problem can be
found, for instance, in Farnell (1978) Sect. 2.7.1. Intro­
ducing the longitudinal and transverse elastic wave ve­
locities by

whereas in the half space :1:3 > O.
Let us assume that the propagation of the waves is

along the :l:1-axis. This implies that the resulting prob­
lem is two- dimensional, in the OX1x3-plane, meaning
that the variables u and N are functions of :1:1,:1:3 and
t only and that U2 = O. In that case, the displacement
components U1 and U3 can be expressed in potentials ac­
cording to

(1)

"U· .. + (>. + lI.)u··· - >.nN· = pu-.,- ,&,11 ,.- ),'&) ,'I " ,

- T' 1
TN + (1 + -)N + - N - DN ...,..+.,..+ ,n

er>.n
+7 Uj,jii = 0 .

Here, >. and Jl. are the Lame parameters, >.n is the elastod­
iffusive constant, p the density, .,.. and .,..+ are the relax­
ation time and the life time of the electrons, respectively,
D is the diffusion coefficient and er the electrical conduc­
tivity. A superimposed dot 0 means differentiation with
respect to the time t, whereas, i stands for a/fh~i' In
the first equation, the equation of motion, the influence
of the plasmonic field on the elastic field is represented
by the elastodiffusive term: -\n N,i, whereas the opposite
effect, i.e. the influence of the elastic field on the plas­
monic field appears in the second equation, the diffusion
equation, as the term preceded by er>.n.

The set (1) must be accompanied by the following
jump conditions

(2)

where s is the coefficient of surface recombination. The
first relation expresses the continuity of the stress vector.
The outer surface is supposed to be free of stress. At
material interfaces between sub-bodies still some more,
physically trivial, jump conditions hold (i.e. continuity
of displacements and electron charge).

As shown by Maruszewski and Van de Ven (forth­
coming) by means of a dimension analysis, the influence
of the plasmonic field on the elastic field, i.e. the terms
preceded by -\n in the first (mechanical) equations of (1)
and (2), is negligibly small. On the other hand, the oppo­
site effect, that is the influence of the elastic field on the
electric charge field, represented by the >.n-term in (1), is
of physical relevance. All this is in correspondence with
physical observations on semiconductors. Therefore, we
shall neglect in (1)1 and (2)1 the elastodiffusive terms
with>'n. These equations then represent the purely elas­
tic wave problem, which is assumed to be well-known (cf.
Farnell (1978».

LONGITUDINAL WAVES where

The (real) wave velocity v follows from a dispersion rela­
tion ofthe form v =V(k), for fixed h. We have calculated
for a ZnSe- layer of thickness h = 1O-6m , and for a Ge­
substrate, v and the associated normalized eigenvector
(i.e. A1 + AJ ). Hence, from now on the purely elastic

We wish to apply the equations of the preceding section
to a heterostructure consisting of a half space (substrate)
with grown on it a thin epitaxial film (layer) of thick­
ness h. In this layer longitudinal (Rayleigh-type) waves
can propagate. We take a coordinate system {OX1:1:2X3}
with the O:l:1:1:2-plane coinciding with the interface be­
tween half space and film, and the :l:3-axis pointing into
the half space. Hence, the upper (free) surface of the
layer is given by :1:3 = -h and the interface by :1:3 = 0,

[

V 2] 1/2
(12 - 1- --

( ) - (CLl(II) •
(6)



problem {that is I,O(X3» is considered known. for X3 > 0,
For N(X3) there then remains the following problem

(from (1F) il == ilII (X3) == B3e-(.i:s _ f 3e-(,is , (15)
for -kh < X3 < 0,

dZill A ( dZ ) Z
dx~ -aNI=ArkZ

dx~-1 I,OI(X3)==

= (1-(D 2Ar [Al sinh (lx3+Azcosh (lX3], (7)

for X3 > °(analogously)

where

(1-(D ZAI
r l (2) = «§ _(D A l (2) ,

(1 - (i)zAII
f 3 == (a _(n A3. (16)

where

Hence, r ll r 2 and r3 are known coefficients, representing
(8) the particular solution generated by the purely elastic

wave. The coefficients B l , B 2 and B3 follow from the
boundary conditions (12) and (13), which here result in

and
(17)

(u>.n)
Ar(lI) == pZ D r(II)· (10) where (h = kh)

The boundary (at :1:3 == -h) and jump (at :1:3 == 0)
conditions for N follow from (2)z. At the upper surface
of the film they yield (with(4))

where

at X3 == -kh,

s = k
SI

(1 - ikTIV) .
Dr

(11)

(12)

dl == (3 cosh (3h - S sinh (3h ,
dz == (3sinh(3h- S cosh (3h ,

d3 == (1 cosh (1 h- S sinh (lh ,
d4 == (1 sinh (lh - S COSh(lh .

In case

(18)

(19)

We assume that there exists no surface recombination
of electrons on the interface :&3 = 0 and, moreover, we
require that the electron charge is continuous across this
plane. This yields

dN1 dNII
--D --=0
dX3 dX3

ill - ilii == 0, at X3 == 0 .

The general solution of (7)-(8) reads
for == kh < X3 < 0,

(13)

(17) admits the solution

B l == {«ldz+ (4 Dd3 )f l + (4 D (dz - d4 )fz

-D«4 - (z)dZr 3 }/Il ,

Bz == {«ldl - (3d3)rl + «3d4 + (4 Dddr2

-D«4 - (2)dl f 3}/Il, (20)

B3 == {«ldl - (3d3)rl + (3(d4 - d2)r2

+(D(2d l + (3d2)r3}/Il.

With B l +B3 determined, the solution for the longitu­
dinal plasma-elastic waves (of Rayleigh-type) is known.
We have calculated for a fixed value of h (i.e. h ==
1O-6(m)) and for several values of k E [103,106](m-l ),
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It is seen that the longer the waves are the better they
penetrate the substrate, whereas the shorter the waves
the more of the wave energy is transmitted along the
surface. For very short waves (k = 106 (m- l )) longitu­
dinal plasmo-elastic waves practically exist only in the
layer; we say then that "the wave escapes to the surface" .
However, this effect is much stronger for the relaxation
semiconductor (Fig 1) than for the one without relaxation
(Fig 2). From a comparison of the figures we see that,
firstly, the amplitude of the waves increases with increas­
ing k (shorter waves)-this will become even clearer in the
next figure (Fig 3)-and, secondly, that this amplitude in
the absence of relaxation (rp =0) is much larger (about
a factor 102 ) than in the medium with (maximum) re­
laxation (rp = rt). This effect is also shown in Fig 3,

0
k = 1.00E+0004

k -- 1.00E+0004 0.16

'>t
C1J 0.14
~

*
N 0.12
~

z

0.1

k = 1.00E+0006

SI = 103 (m/sec), AI =60.76, AIl =7.067 * 10-3
•

25--

We have preformed these calculations for two, extreme,
values ofrp/rt(P =I,JI), namely (i) rp/rt = 1 (maxi­
mum relaxation) and (ii) rp/rt = 0 (no relaxation). The
main results are shown in Figs 1-4. In Figs 1 and 2 the
amplitude IN(z)1 ofthe plasmo-elastic waves is displayed
as function of z = X3/h (z E [-1,2]) for k = 106 (m- l )

and k = 104 (m- l
) and for rp/rt = 1 and 0, respectively.

rt = lO- S(sec), rjj =10-5 (sec) , D =6.25 ,

firstly the purely elastic waves (i.e. v and Al + A 3 ) and,
secondly, the plasmo-elastic waves (BI +B3 ). For a ZnSe­
layer on a Ge-substrate the numerical values of the ma­
terial coefficients can be found in Maruszewski and Van
de Ven (forthcoming), Table 1. The relevant ones here
are

'<j- 20
C1J
~

* 15

N
~

z 10

5

0
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'<j-
C1J 0.07
~

*
N 0.05
~

z

0.03

o.0 8 l--rr " I I "I"" I r "I --,---,----r-r
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z
FIG 1. The amplitude IN(z)\ of the plasmo-elastic wave for
two values of k (k = 106 (m-1

) => v = 3015(m/sec), and
k = 104 (m-1

) => v = 3175(m/sec)) and for r/r+ = 1.

z

FIG 2. The amplitude IN(z)1 of the plasmo-elastic wave for
h = 1O-6(m), for k = 106 or 104 (m-1

) and for r/r+ = O.



where the amplitude at the interface is plotted as a func­
tion of k (k E [1, I06](m- I

)) for the two cases Tp/T; = 1
and Tp/T; = O. One sees that in the first case IN(O)I
attains a maximum at k = 4.1 * I05 (m- l ) (and a sec­
ond, but smaller one, at k = 4.8* I05(m- I )), whereas
this maximum in the second case lies beyond the region
[1,106

]. We note that in the neighbourhood of such a
maximum, the interface plays the role of a frequency
filter for the waves. Finally, we have investigated
the behaviour of IN(O)I for k = 106 (m- l ) as function
of T := Tp/Tt (P = I, II; we took the same value
for T in layer and substrate). The result is depicted
in Fig 4, showing that IN(O)I attains a maximum for
T = l.hl0-4

, and is monotoneously decreasing for larger
values of T (on to a value of IN(O)I = 1.53 * 10-5 for
T = 1).

(21)

(22)(
1"2 _ I" DS)tanh(3h. _ ~ I" =
'>3 '>4 D(3 D + ,>4 O.

the system (17) with the right-hand sides taken equal to
zero has a non-trivial solution. This implies the existence
of purely plasmonic waves, (i.e. only (B1 , B2' B3 ) i- 0).
With (18) the dispersion relation (21) can be rewritten
as

PURELY PLASOMONIC WAVES

In case (19) is not satisfied so that

Solution of this equation yields the wave velocity v as
function of k for a fixed value of h. Since the plasmonic
waves are dissipative, we must require 1m(v) < 0, and,
moreover, Re 'II > O. It turned out that there exists
a solution of (22), satisfying these restrictions, only for
values of k exceeding a certain critical value kl = kl(h),
for h > O. Hence, for 0 < k < k l no solution exists,
whereas for k > kl we can obtain from (22) a complex
wave velocity'll E C, with Re v > 0 and 1m 'II < O.

The critical value kl not only depends on h, but also
on the ratio TP/Tt. For Tp = Tt the behaviour of kl as
function of h (for h E [0, 1O-6](m)) is plotted in FIG 5.
It is seen that k l slightly decreases with increasing h.
Our calculations revealed that the wave velocity v(v E
JR, for k = kI) was almost constant: its value changed
from v = 314 (m/sec) for h -+ 0 to v = 317 (m/sec) for
h = 1O-6(m). Hence, these values of v are much lower
than those for the purely elastic waves.108642

o+::==~--+-----r-+-----r-+---,--1---,---l
o

2

0.5

*
lSI 1
z

60
120~-------------

100
v
OJ
~ 40 80v
* OJ

~

lSI
* 60z

20 lSI

Z 40

20

2 4 6 8 10
0

k * 1e-5 0 2 4 6 8 10

FIG 3. The amplitude IlV(O) I at the interface z = °of the
plasmo-elastic wave as function of it = k * 10-& E [0,10], for
h = 1O-6(m) and for r/r+ =1 and r/r+ = 0, respectively.

T * 1e4

FIG 4. The amplitude I1V(O) I as function of T = r/r+, for
h = 1O-6(m) and k = 106(m-1).
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Maruszewski B (1987a), Coupled evolution equations ofdeformable
semiconductors, Int J Eng Sci 25, 145-153.
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CONCLUSIONS

Starting from a set of two equations and jump condi­
tions, describing the displacement and the charge field
(plasmonic field) in a relaxation semiconductor, we have
derived a system for longitudinal plasmo-elastic waves in
such a medium. We have applied this to a semiconduct­
ing heterostructure built up of a thin layer on a half space
or substrate. Thus, we have calculated the wave velocity
and the amplitudes of plane longitudinal plasmo-elastic
surface waves in the structure. The effect of the plas­
monic field on the elastic field is extremely small (in fact
negligible), but the opposite effect of the elastic field on
the plasmonic field (elastodiffusive effect) remains rele­
vant. In fact, it was just the latter effect that caused the
occurrence of plasma-elastic waves, which were generated
by purely elastic waves. Due to the dissipative character
of the charge diffusion, the wave should be slightly dis­
sipative, but this effect is so extremely small that it is
neglected here.

The plasmo-elastic waves decay in the substrate.
Characteristic for the presence of the layer was the ten­
dency of the waves to escape to the layer; a tendency
which was stronger for shorter waves. Also, this effect
was stronger for relaxation semiconductors than for non­
relaxation ones. On the other hand, the amplitudes for
the plasmo-elastic waves were much larger in semicon­
ductors without relaxation than in those with relaxation.

We have also considered purely plasmonic waves. It
was shown that they only can exist for values of k larger
than a certain critical value ki = kl(h), depending on
the thickness h of the layer and on the relaxation ratio
T. The influence of relaxation was twofold: firstly, the
value of k1 increases for increasing T from T = 0.1 on
and, secondly, dissipation was smaller in a medium with
relaxation then in one without relaxation.

1121.8121.6121.4121.2
5+-~-+-~-+----,--+----,--+---r----l
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6

FIG 5. The critical wave number k1 as function of h for
Tp/rj; == 1.

h * 1e6

2

1121
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For Tp/Tf; = 0 no purely plasmonic waves exist; (22)
then only has a solution with Re v = O. To show how
k i depends on the ratio Tp /Tt, we have calculated ki

for h = 10-6 (m) for several values of T E [0,1]. The
results are shown in FIG 6. It turned out that there did
not exist a solution for ki (with Rev> 0) for values of
T between 0 ~ T < Tc = 0.103, and that the value of
ki strongly decreases for T ! Tc • Finally, we note that
our calculations of vEe for k > ki revealed that the
dissipative character of the waves became stronger for
smaller values of T (less relaxation).

Farnell G W (1978), Types and properties of surface waves, in
Acoustic Surface Waves. A A Oliver (ed), Springer, Berlin,
13-60.
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FIG 6. The critical wave number k1 as function of T for
h == 10-6 (m).



PLASMO-MAGNETOELASTIC WAVES
IN A SEMICONDUCTING HETEROSTRUCTURE.
II. SH-MAGNETOELASTIC MODES.

B. Maruszewski

Technical Univcrsity oj POZIIGli, Institute ojApplied Mcchanics, Ill. Piotrowo 3, 60-965 PoznaJi, Po/and

A.A.F. van de Ven

Eindhoven University oj TechllolofJ', DepaJ1mc/lt ojMathematics and Computing Science, Den Do/ech 2,
5600 MB Eindhoven, The Nether/allds

The paper is dcvoted to the analysis of propagation of thc SH-magnetoelastic (Love-type) waves in an
epitaxial heterostructure collectcd of a magnetic semiconducting layer and nonmagnetic semiconducting
substrate placed into an applied constant magnetic field perpendicular to the interface of the structure.
Numerical results have been obtained for ZIISe-Ge heterostructure. The first order approximation of the
dispersion of SH-magnetoelastic modes comparing to the dispersion of the purely elastic SH modes has
been calculated.

ing with the transverse modes. The formcr case has been
analyzed in the first part of this paper.

The linal equations govcrning the lattcr ~ne read

l' 1'1' "p'J'
It Z,ii + IphZji - ,u(pp(1 +Xp) hz + Boapll2,3 =0, (2)

for P = J,lI (as previously, I indicates the layer and II - the
substrate). We see that in this case only the llz-component
of the displacement and hz-component of the magnetic field
are coupled. Therefore we call their evolution in space (XJ,
X3) and time t the SH-magnctoelastic waves. In the vacuum
space outside the structure we simply have llZ =hz= O. The
form of the magnetic side of the problem is assumed as .

I' I'B=Bo+b, Ibl < < IBol, Bo=Bo e3, b =xrh " XI=X,

XII =O( X - denotes the magnctic susceptibility).

INTRODUCTION

Contrary to the first part of this paper "van de Yen, Maru­
szewski: Plasmo-magnetoelastic waves in a semiconducting
heterostructure", the second part is devotcd to considera­
tions concerning the transverse (SH) magnetoclastic modes
in an epitaxial semiconducting heterostructure. This time
the heterostructure is collected of two sub-bodies: the mag­
netic epitaxial layer and nonmagnetic substrate, both IHype
homogeneous and isotropic semiconductors. Because of the
magnetic properties of the structure just the transverse
modes of the plasmo-magnetoelastic waves are the most
intreresting.

Remark, that in this part we try to avoid repetition of
notation explanation that has been done in thc previous parl.

SH·MAGNETOELASTIC WAVES

The problem concerns propagation of the SH-magnetoe]as­
tic waves in a semiconducting heterostructure collected of
the epitaxial layer -h <X3 < 0 and the substratex3 > 0 (II is the
thickness of the layer). The propagation direction isxJ. The
structure is placed into the applied magnetic field of induc­
tion 8 0 perpendicular to the interface X3 = O. The general
wave equations and boundary conditions for the case when
the clastic, electronic (plasmonic) and magnetic fields intcr­
act with each other have been derivcd in "Maruszewski, van
de Yen: Plasmo-magnetoclastic waves in magnctic epitaxial
film grown on a semiconductor". Particular analysis of them
indicates that the wave propagation problem concerning the
above geometry can bc split into two separate ones: into the
problem dcaling with the longitudinal and the problem deal-

Z l' "1' Bo J'
CTJ,II)/',' - It, + p-It'3 =0,

1, _, - }J-'

The boundary conditions are as follows:

- at the free surface X3 = -h:

/ I
liz = 0, llZ,3 = 0,

- while at the interfacex3 = 0

til 1J 1 If
hz = It z , p/c'i1 lt Z,3 =PlI c':rtt lt Z,3'

/ II
ltz = ltz ,

(1)

(3)

(4)



We assume now that the solutions of (1) and (2) in the
form (19)

From the boundary conditions (3) and (4) we can deter­
mine the constants L1 - L 6, which results in a characteristic
equation of the form

,;'~ = ,;'P(X3) e ik(xl-vt) ;

{~ = {P(X3) e ik(xl-vt).

In this way we obtain two scts of equalions

- in the layer (-II <X3<O),

"I Z' "I I "I
Il ,33 + k f3ill + A I II ,3 =0 ,

"I Z Z "I I "I
II ,33 - k YI II - A 2 Il .3 = 0,

- in the substrate (X3> 0)

U
II k2 f32 ')1 + All/II - 0,33- 2" 1'.3-,

II Z Z II II II
",33 - k yz II - A 2 11,3 = 0,

where

(5)

(6)

(7)

(8)

(9)

f3T = (_V )Z _ 1 ,
Cn

, iVf.1o(l+X)ol
Y-I = 1 - -----

k (l-i kvr'j) ,

, ( v )2f3i=l- - ,
cTIl

, i vf.1o (1 +X) all
Y:;= 1------

- k (l-i kvlJ[)

Yaf3Lf3 = 0, a,{3 = 1, ..... ,6.

(20)

(21)

(22)

(23)

(24)

Nontrivial solutions of the above set of linear algebraic
equations exists ony if

(25)

(26)

detYa{3 = o.

The inlluence of the magnetic field Bo in (17) and (19) is
representcd by the last tcrms in the right-hand sides of these
equations. In practice these (dimensionless) terms are very
small compared to unity. This brings us to define

The purely elastic solution (i.e. Bo = 0) is obtained if
£1 =£2 =0, and contains only the coefficients L 3, L 4 and L 6

(L1 =L2 =L5 =0, then; note that (oI+YI) = (o~-y~) =0 if

£1 = E2 = o.

The general solutions of (6)-(9) read

:l =L 1 cosk<5 1x3 + L 2 sink<51 x3 +

+ L 3 cosk<53 x3 + L4 sink63x3 , (12)

I A~ [<51 .
II = k 2 Z (L I sl11k~ I x3 - L 2 cosk<5 1X3 +°1 + YI

and

,;1 =L5 e-k0'2!3 + L
6

e-k04't 3 ,

where

I

OI,3 = wi + (wi + f3TYT) '2,

2 Z , 1 I I
2wI =f3I-Yj+,A I A 2 ,

k-

1

O~,4 =w~ ± (wi - f3h~} ) 2 ,

(14)

(16)

( 17)

(18)

From the system (24) only the equations for a = 1, a =3
and a =4 remain, and they yield in the common way the
following characteristic equation (cL "Farnell: Types and
properties of surface waves")

I

I 2 (l-(V/c i )'2
tan[kll (VIc/-1)'2] =PIlC; I' (27)

Plci (V'{t)2_ 1) '2

for C1 < v < c2 and with (throughout this section)

c l.~ = CT1,II • (18)

This equation is the dispersion relation for purely elastic
SH-waves (Love waves). In case EI and E2 arc unequal to

zero, this relation will be changed slightly. It is our purpose



and

to calculate in first order of e the changes in the dispersion
relation. (35)

(36)

(37)

2
Yl I??

e :::; -.,--., el = "7 (Oi+Yi) .
(3i+yi I

f-£;\=O,

The elements in the 4°,5° and 6° columns and the 1°,2°
and 3° rows of Z are preceded by a factor e in order to
indicate that these elements are O(e2) with respect to the
remaining ones. The part of2 containing the first three rows
and columns describes the purely elastic SH-waves.

Assuming e small, we can develop the determinant of Z
with respect to e. In doing so we neglect O(e2)-terms and,
moreover, we usc the fact that the determinant of the 3x3
submatrix2a f3' a,f3 E (1,2,3) ,is also 0(£2) (in accordance

with (27». After some elementary calculations (the details
of which arc omitted here) we fino that DetZ = 0 is
equivakntto the relation

where

PII
f = 03 sin kll0 3 - -/- 04 cos klz03 ,

! J

(it wiJJ turn out that this term is O(e2) and

-1 0131 .
!\ = y 1fi11l1(S3+- -Y C I )a 1 . • T 2

n(S\+r Y2 C I)

(30)

(29)

(31)

2
? ., Y?

<52=Y2 + ? - ., e2 ,
{3i - Yi

2 _ 2 {3~
<54 - {32 -? ? e2 .

{3i - Yi

To this end, we substitute (26) into (17) and (19), put the
thus obtained relations into (16) and (Hi), respectively, and
develop these with respect toe. The result reads, up toO(i),

2
2 2· Yl

<5 1 = -Y I + I? ? eI ,
{3i + ri

In the derivation of the laller realtions we have assumed
2 .,

that ReY2 > Re{3i .

An immediate consequence of (30) and (31) is that

(<5I+yi) and (<5~-y~) (appearing in the denominator in the

formulas (13) and (15) for the amplitudses II.II) become
O(e2

). To get rid of this inconvenience we renormalize the
coefficients L b L 2 and L 5, that is we replace them by

(39)

2

. l-i(yISI + !lf32C3) + i ~~ (el-C3)

!lll 1- ikvr'J all
!l=fll' T= II' o=OIT,

l-ikvTIl

In (38) we have used the following abbreviations (notice
that in the evaluation of !\ we may neglect all £-terms, which
among others implies that we may use 0 I = i YI , 0z = I'z,
03 = 13 1, 04 = (3z )

(32)

(34)

(33)

M I =L3 , M 2 =03 L 4, M 3 =L6 ,

L I 0IL I L s
M4 = -.,--." Ms = -.,--." M6 = -"--?'

0i+Yi 0i+Yi 0i-Yi

where

respectively. Furthermore, we change the numbering of the
coefficients and the sequence of the equations (24) in such
a way that we arrive at the reordered set

ZIl Z\2 0 eZI4 eZ1S 0
0 Z22 Z23 0 f:Z25 £Z26

Z31 0 Z33 eZJ4 0 eZ36
Z=

Z41 Z42 0 Z44 Z45 0
0 Z52 Z53 0 Z55 Z56

Z61 0 2 63 2 64 0 2 6(,

where e is defined as

The matrix Z is of the form



This is the first order perturbation for small e (i.e.
I£ I «1) of the dispersion we are looking for.

(49)

(47)

(48)

On denoting

A-A
R(kh) =-VE

The complete relation for the phase velocity then reads

v VO A-A .,
-=-+-Ve+O(c).
cTJ cT/

NUMERICAL RESULTS

2(132+ 2) £
r = .!. (02_ 2) = Y2 1 Yl 2

£ 2 Y2 2( 2 (32) £ 1 .
YI Y2- 2

In calculating YI,2 and f31,2 for use in (38)-(39) we must

take for v the velocity v0 of the purely elastic SH wave

(following from (27)). This is consistent with the neglect of
0(£2)-terms in the evaluation of A.

We proceed by developing the right-hand side of (37) with
respect to £. This has to be done in two steps: firstly, we
substitute (30)-(31) for 01 .;. 04' and, secondly, we must

account for the fact that v is a first order perturbation (in £)
of vo' In this way we obtain

i)

with

with

of--------"~~- - - --_
-----......~.~--••• _(1)

",R
,

~.

.12 ~
-16 ~
.20 I I I I

o 2 4 kh 6 8 10

Fig. 1. Real(l) and imaginary(2) parts ofR(klz) for It = 1m.

«1 E·4

we did calculations for R(kll) (in its first order approxima­
tion) of dispersion of the SH-magnetoelastic modes in the
case of ZIISe-Ge heterostructure with respect to various
thickness of the epitaxial (ZIISe) layer II.

(43)

(42)

and

ii)

i f3I I-l f32
A = -2? (53+ kh f3I C3) - -2? (rc3+kh(31 53)' (41)

Yi Yi

In (40), A is preceded by a factor £ and, therefore, for the
explicit calculation of A we may use v = V o in (41)

Oncemore, it is noted in the evaluation of V according to
(43) one must use Vo for v, that means that in (43) (and in
(41) and (38)) one must read for f31,2

PI ~ [(::1' -1]~ P2~ [1- (::n~ (45)
The right-hand side of (42) is 0(£2) because the left-hand

side of it is zero for v = Vo in accordance with (27) .

Pll
P = PI' (44)

(x 1E-5) -- - - - - __~.:~----_- __ (11 __~_ •

-2 -.......... -

~
·6

-10

·14

.~-18 -

-22
0

I I I
2 4 kh 6 8 10

Fig. 2. Real(l) and imaginary(2) parts of R(khJ for It = 0./
111.

Recapitulating the results derived above we sec that we
have expressed DetZ = 0 in the relation

from which the following expression for the first ordcr
perturbation (in e) of the phase velocity v can be derived
(CI =cTJ)

VI
V- + A - A = a

C 'I
(46)

It is easily seen from Figs. 1-4 that the SH-magnetoelastic
modes arc (with respect to their length) much more damped
for the thick layer (long wave propagation) than for very thin
one (short wave propagation) where damping effect practi­
cally vanishes. For the thickness of the layer between 0.1 m
and 0.01 III (lhe real parl of the phase velocity perturbation



is practically negligible), there is no influence of the plasmo­
magnetic field on the purely elastic SH waves (27).

(.lE-13)

79

-2 (x 1 E-S)
59

·6
2) 39
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Fig. 3. Real(l) and imaginary(2) parts ofR(klz} for II = 10-2

111.
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