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Abstract 

One of the major problems of modelling the dynamic behaviour of a 

rigid robot using only general theorems of dynamics and Newton­

Euler equations, is finding a consistent notation for all the rel­

evant variables. 

A consistent notation can simplify the problem tremendously. 

Apart from this, it facilitates a great deal of insight and sUr­

veyability. 

In this report such a notation is proposed. 
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1. Introduction 

It is generally assumed that any mechanical manipulator can be 

considered to consist of n rigid bodies, called links of arms, 

connected in series by revolute or prismatic joints. One end of 

the open chain is attached to a supporting base, while the other 
end is free. 

For advanced control and design of robot systems, knowledge of 

manipulator kinematics and dynamics is essentially important. 

Kinematics deals with robot arm position with respect to a fixed­

reference coordinate system as a function of time and is often re­

ferred to as the "geometry of motion". Dynamics deals with the 

mathematical formulations of the equations of robot arm motion. 

A robot is a complex mechanical system. Therefore the first step 

in the development of suitable control algorithms is the deriv­

ation of a dynamic model for the robot. Models of rigid robots 

are already well-known. The principles on which the description 

of mechanical manipulators are based, result from an energy con­

sideration (Lagrange) or a forces/torques consideration (Newton­
Euler). Although the energy considerations are from the point of 
view of physics the most elegant, their numeric substantial 

efficiency is less than the algorithms based on the principles of 

Newton-Euler (4,5). In this report we conform to the Newton-Euler 

consideration. 

2. Notation convention 

2.1 Motivation 

Suppose each joint-link pair constitutes one rotational degree of 

freedom (d.o.f.). A joint allows a relative rotation around an 
axis determined by a unit vector (~). 

In every link a body fixed cartesian coordinate system is 
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introduced. 

A fixed external cartesian coordinate system with a vertical 

z-axis is defined too (Fig. 1). 

Every vector can be written in one of the (n+1) coordinate s'ys­

terns. 
In Newton-Euler modelling it is important to compute the different 

representations of vectors in the different coordinate systems. 

Zo 
fixed coordina.e ayatem 

- - ---~r 

- -
joint 

Z, J--~J(2 

............ gm.nt 

'1' 

Fig. 1 Coordinate systems 

Z. 

~--py •• 

x. 

T.e.p. 

-' ~t"r 
point} 

One of the major problems of modelling the 

robot is finding 

ables. Not only 

a consistent notation for 

dynamic 

all the 

behaviour of a 

relevant vari-

the orientation of the joint axis and the posi-

tion of the joints are important, but also the coordinate system 

in which these vectors are represented. 

2.2 Notation formalism 

A notation formalism with the ability to cope with: 

representations in different coordinate systems, 
same sort of vectors in different links, 
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different sort of vectors, 

would be most attractive. 

The modelling of multi-body systems is simplified tremendously and 

it gains a lot of insight if a good, comprehensive and non-trivial 

notation is used. 

The following notation makes a self-correcting modelling-algorithm 

possible. 

1st position and rotation vectors 

where 

c~ 

a represents any of the following vectors: 

E: an arbitrary point 

~: the center of gravity (c.o.g.) 

i: a joint (vector going from the c.o.g. to the rota­

tion-axis of the joint) 

g: a unit vector of rotation 

and the indices mean: 

c the coordinate system in which the vector ~ is represent­

ed. 

(default; 0, inertial coordinate system) 

d vectors referring to joints only (gl,eU,i1,iu ) 

1: referring to the joint with the preceding segment 

u: referring to the joint with the following segment 

e the segment in which the vector a is situated. 

Examples: 

the following vectors describe the geometric of the ith 

link: 

i 1 e. , 
-l. 

i u 
~i' 

i.1 
~i ' 

i ,U 
~i 

p~ is the vector connecting the c.o.g. of the qth segment to 

the joint with the (q_1)th segment presented in the pth 

coordinate system. 



(i _1)th 

segment 

/ 

4 

• u 
I~i 

(i + U
tll 

. u seGment 

\r ' 7- ---

/ 
i ttl •• gment 

Fig. 2 position and rotation vectors of the ith segment 

2nd Forces and moments 

where 

c d 
rft-e 

a represents any of the following vectors: 

.[: force 

~: moment or torque 

and the indices mean: 

b variables referring to the c.o.g. or joints with other 

segements, namely: 

a: component parallel to the rotation axis (joints 

only), 

r: component perpendicular to the rotation axis (joints 

only), 

t: total vector (= default), 

i: resultant of inertial forces and/or moments. 
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c the coordinate system in which the vector ~ is represent­

ed 

d 

(default; 0, inertial coordinate system) 

the point of attachment of the vectors (Eu , 

!:l) : 
1: referring 

segment 
to the joint with the preceding 

u: referring to the joint with the following 

segment 

e the segment in which the vector ~ is situated. 

3rd Transition matrices: 
cA e 

A is the transition matrix from the e th coordinate system to 
the cthcoordinate system (default ; 0) 

4th Inertial matrices: 
c

J e 
J is the inertial matrix of the eth segment expressed in 

the c th coordinate system. 

5th Velocities and accelerations 

c~e 
~ represents any of the following vectors; 

v: linear velocity of the c.o.g. 

y: linear acceleration of the c.o.g. 

00: angular velocity of the c.o.g. 

~: angular acceleration of the c.o.g. 
c means the coordinate system in which the vector is repres­
ented 

e means the segment in which the vector is situated. 

Some trivial formulas are e.g. 

1 
~i = 

u 
e. 1 
-~-

i-I 
IT 

1;0 



.1 A i.1 
~i = i ~i 
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Note: The right sub index of a transition matrix should always 

match to the left super index of the following matrix or vector; 

writing down this sort of formulas has become very easy. 

At first sight this convention may look intricate, but later its 

compactness will be appreciated. The charm of this formalism will 

be clarified in the continuation of this paper. 

3. Coordinate systems 

There are three possible origins for the body fixed coordinate 

system: 

10 In the center of gravity (c.o.g.) of the segment. 

20 In one of the two joints of the segment i~ or ii. 

30 Arbitrarily. 

The origin will be in the center of gravity for mechanical sim­

plicity. 

There are three possible orientations for the coordinate system: 

10 Parallel to the principal axis of the segment 
20 The Denavit-Hartenberg convention [3] 
30 Arbitrarily. 

It can be proved that for real-time computations the Denavit 
Hartenberg convention is the most attractive one. 

So: 

z-axis ~parallel to e~ 
-~ 

x-axis ~parallel to 1 u e.xe. 
-~ -~ 

y-axis ~parallel u 1 to e.x (e. 
-~ -~ 

where x denotes the cross product. 

u 1 1 u u 
x ~i) = e. - (e . • e.)e. 

-~ -1 -1 -1 

. ~, ",. 



7 

The transformation matrix from the (i+l)th to the ith coordinate 

system is: 

cos 9. 
~ 

-sin 9icos a. 
~ 

sin 9 i sin a i 
i sin 9. Ai+1 = 

~ 
cos 9icos a i -cos 9 i sin a i 

0 sin a. 
~ 

cos (Xi 

with i u i P. and 9 i is the rotation of link i. cos a. = ( e .. e.) 
~ -~ -~ 

4. Kinematic relations 

In order to avoid complex expressions 

use recurrent expressions for segment 

and derivations we shall 

velocities (ro.,v.) and 
-~ -~ 

accelerations ro., v.) with i=l, ... , n. 
-~ -~ 

The following recurrent expressions can be stated [1]. 
for the angular velocity of the ith segment 

for the linear velocity of the ith segment 

for the angular acceleration of the ith segment 

for the linear acceleration of the ith segment 
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Starting with !!lJ = Yo = !!lJ = Yo = Q all other velocities and accel­
erations can be calculated. 

5. Mechanism dynamics 

Let us consider the ith segment. 

Further let iKi and iNi be the total resultant force and moment 
relation to the segment's c.o.g .. 

Now according to Newton-Euler: 

.F. 
~-~ 

.M. 
~-~ 

with: m. 
~ 

J. 
~ 

= m. v. 
~ -~ 

roo 
-~ 

x J. roo 
~-~ 

+ Jimi 

= mass of the ithsegment 

= A.iJ.iA 
~ ~ 

= inertia tensor of the ith segment with 
to the inertial ·coordinate system. 

respect 

F·U -, 

-

FT' .ti-.-;..I __ -fJ·.t 
~ -, 

Fig. 3 Forces and moments acting on the ith segment 



9 

Finally, the relation between the resultant forces/moments and the 

forces/moments in the joints are given by (see Fig. 3): 

.F. + F~ + F':' + m. g = Q 
~-~ -~ -~ ~ 

.M. + ~ M':' + .1 F~ + .u F':' Q + ~i x ~i x = 
~-~ -~ -~ -~ -~ 

where g is the gravitational acceleration vector, 

or: 

F~ = 
-~ 

M~ = 
-~ 

_ (M':' + M +'u FU +.1 F~) 
-~ i-i ~i x -i ~i x -~ 

Starting with MU and FU all other forces and moments can be cal--n -n 
culated. 

Note 1: FU and MU are the forces/moments corresponding with the -n -n 
load in the T.e.p. (tool center point) 

Note 2: Remember: K~ = - K~+l ; ~~ = - ~~+1' 

The required torque in the ith joint is: 

6. The algorithm 

In setting up the algorithm we have to start with two different 
tupes of input data 

data describing the robot configuration; these are parameters 

such as i .u 
~i' 

i.1 
~i' 
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data describing a given trajectory; principally this is a 

sequence of 6(k), ~(k), 6(k) 

with the presented formalism we can draw the following block 

scheme (Fig. 4) and using it writing down the algorithm is a minor 

task. 

mechanical configuration 
i u i.~ i u i 1 i 
j.t J., e., e., J.,m. 
-~ -~ -1 -1 1. 1. 

wanted trajectory 

elk) ,elk) ,elk) 

calculation of A"J. 

1 · f·u.1 ~ ~ calcu atlon 0 ).,].,e.,e. 
-1. -1 -1 -1. 

calculation of w.,v. ,W. IV. 
-1 -1 -1 -l. 

calculation of ,F. I,M, 
1-1 1-1 

~ ~ 
calculation of ~i'~i 

calculation of M. 
a-1 

Fig. 4 Block scheme of the algorithm 
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7. Conclusion 

By using the proposed consistent notation the modelling of the 

dynamic behaviour of rigid bodies is simplified tremendously and 

increases the insight and surveyability. 

required algorithm. 
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