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Foreword 
At ASML, the software test challenge increases with the complexity of the systems 

being developed. With a price tag of tens of millions of euros apiece, it is impossible 

to provide enough systems for testing. Many people within the organization have a 

full time job in making it possible to test the software without the need for an actual 

machine (or parts thereof).  

We are making the system a reality, by faking it:  

 to cope with limited physical capacity, we fake it 

 to cope with hardware that is still under development, we fake it 

 to cope with conditions that are hard to test, we fake it 

Within the Source program, we focus on simulation. The goal is to provide develop-

ers with a Virtual Source. This is a (software only) virtual representation of the 

machine being developed. Virtualized computer platforms are combined with 

simulated hardware (sensors and actuators) and a simulated environment. The 

simulated environment can be perceived by the sensors and manipulated by the 

actuators.  

Multiple disciplines are involved to create this type of simulation. Where complex 

products are being developed, there is a need for complex development facilities. As 

such, simulation is not a matter of choice, it is a necessity. 

Current simulators have limitations. They are isolated and provide simulated behav-

ior for a narrow part of the hardware and environment. On integration, the simulators 

are unaware of each other, making it impossible to test the integrated software as a 

whole. 

Tom has been given the assignment to investigate simulator integration. Based on a 

dedicated use case, he has investigated how to integrate the isolated simulators. He 

has closely cooperated with software engineers, and challenged and improved the 

simulation model with physics engineers. He integrated available simulators and 

added simulator functionality. As a result, it was made possible to run the use case on 

a virtual environment instead of a physical one.  

The short time span in which he got to know the problem field and the way he single-

handedly developed his own network within the ASML organization deserves 

respect. In time, Tom took ownership and convinced others of the necessity of 

simulator integration. 

Toms work and results have already led to finding a number of defects in the actual 

product. With that, he has successfully demonstrated the benefits of the approach and 

the potential of available isolated simulators. This is a step towards standardization of 

the design, which is not to be underestimated.  

 

Dirk Coppelmans 

Test Architect of the Source Program 

August 23, 2015 
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Preface 
This report documents the final project of Tom Boshoven, for completing the 

Software Technology (ST
1
) program, thereby acquiring the Professional Doctorate 

in Engineering (PDEng). This two-year post-master program was executed at 

Eindhoven University of Technology under the banner of the 3TU. Stan Acker-

mans Institute. It was concluded with a nine-month project, executed at ASML 

Netherlands B.V. (referred to as ASML). This report describes various aspects of 

this project, with a focus on design. 

It should be noted that this report is a public version. In this version, specific 

information, such as the names and behavior of software components, is omitted. 

This information can be found in the confidential version of this report, which is 

available in ASML. 
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Executive Summary 
ASML is the world's leading provider of photolithography systems for the 

semiconductor industry. The new generation of these systems makes use of 

extreme ultraviolet (EUV) light for exposing wafers in order to create integrated 

circuits. Generation of this EUV light, which is done in the EUV Source system, 

requires coordination of various subsystems. Testing the software that drives the 

EUV Source is important for satisfying the ASML business drivers. 

Part of this software is tested on the software-only Devbench platform using 

simulation. This gives the following benefits over testing on a physical machine: 

 Higher availability of test environment  

 Higher coverage of bad-weather behavior 

 Higher configurability of machine 

 Lower risk and cost of testing 

 Higher reproducibility of test results 

Because of these benefits, the goal is to cover as much of the software as possible 

using testing on Devbench. 

Current simulation solutions simulate only parts of the system in isolation. This 

makes integration testing difficult because these parts may interact with each 

other. The interactions between these parts are not simulated. 

By integrating existing simulation solutions, it is possible to achieve simulation of 

a larger part of the system. Such a simulation supports execution of tests that 

require multiple subsystems. As a result, integration test coverage on Devbench is 

increased. 

The integration of simulators can be done by applying a generic approach and 

architecture guidelines to specific test cases. This leads to a high-level architec-

ture that serves as a basis for the design of the interfaces between the simulators. 

By following this approach, a solution can be designed that fits in the software 

architecture of the EUV Source. 

This principle was demonstrated by designing integrated solutions for testing two 

applications for the EUV Source. The design was validated by means of 

prototype implementations. It was shown that that the generic approach works, 

but also that its application leads to better integration test coverage using 

simulation. This leads to a lower dependency on a physical machine for testing, 

which reduces cost and development cycle time. 

Based on these results, the recommendation is to apply this approach in other 

integration test cases. 
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1 Introduction 
ASML is the market leader in the production of photolithography systems for the 

semiconductor industry. The new generation of lithography systems from ASML 

makes use of extreme ultraviolet (EUV) light. Producing this light follows a highly 

complex process, which requires close cooperation of various software and hardware 

components. Because of the high cost and low availability of hardware for testing, 

simulation is used in the qualification of the software. 

1.1 Context 
In order to understand the factors that play a role in the project, it is necessary to 

understand the project context first. In the project, the core concepts are simulation 

and generation of EUV light for photolithography. An introduction to these concepts 

is given in the following sections. 

1.1.1 Lithography 

The wafer scanners that are produced by ASML make use of photolithography 

(simply referred to as lithography) to imprint a pattern on a silicon disk. This process 

is used in the production of integrated circuits (chips). By projecting light onto such a 

disk after coating it with photoresist material, it is possible to write detailed patterns 

onto the disk. 

 

Figure 1.1 – Schematic representation of the lithography process 

The process of creating an integrated circuit, which is shown in Figure 1.1, consists 

of several steps: 

1. Slicing 

A single disc is sliced off from a silicon “boule.” 

2. Polishing 

The disc is polished to make the surface as smooth as possible. 

3. Material Deposition or Modification 

Materials are transferred to the disc. 
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4. Photoresist Coating 

A photosensitive coating is applied to the disc. This coating protects the un-

exposed parts from being etched away in later steps. 

5. Exposure (only step in which ASML wafer scanners play a role) 

The wafer is aligned and exposed to light, imprinting a pattern on the photoresist 

layer. This is the only step of the process that is done inside a wafer stepper or 

wafer scanner. 

6. Developing and Baking 

The photoresist layer is developed and baked onto the wafer. 

7. Etching 

The part of the material on the wafer that is no longer covered by photoresist is 

etched away. 

8. Ashing 

The photoresist layer is removed. After this step, it is possible to continue with 

step 3, in order to form a three-dimensional structure. This is typically done 20 

to 30 times. 

9. Testing 

The result of this process is a disc with a wafer-like pattern. We call these discs 

wafers. Measurements are done to ensure the quality of the wafer. 

10. Dicing 

The wafer is separated into the integrated circuits of which it is now built up. 

11. Packaging 

The result is packaged and can be further processed into, for example, a pro-

cessing unit. 

The wafer scanners developed by ASML perform only the exposure step. 

1.1.2 Extreme Ultraviolet 

In photolithography, the wavelength of the used light can limit the detail of the 

patterns that can be projected onto a wafer. By using light with a shorter wavelength, 

it is possible to produce smaller, more detailed, and hence more efficient chips. The 

amount of detail that is currently required by the industry is on the order of nano-

meters (for comparison: a human hair grows about five nanometers per second). 

By using lasers, it is possible to generate light in the deep infrared spectrum. To 

achieve even shorter wavelengths, the technique that is shown in Figure 1.2 can be 

used. Here, a laser beam (1) hits a droplet of molten tin (2), forming plasma (3). This 

plasma then emits light at extreme ultraviolet wavelengths. A collector (4) then 

focuses this light, after which it is propagated through the rest of the machine. The 

efficiency of this method is increased by performing an additional laser pulse (pre-

pulse) to shape the droplet before hitting it with the main pulse. 

 
Figure 1.2 – Schematic view of laser-produced plasma 

The system that performs this task of generating extreme ultraviolet light, called the 

EUV Source, is indicated in Figure 1.3. It is partially located in the wafer scanner (its 

computers and electronics exist outside the machine) and takes a laser beam as its 

input. Its EUV light output is propagated through the machine to the wafer using 

mirrors.   

(1) 

(2) 

(3) 

(4) 
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Figure 1.3 – Picture of open NXE wafer scanner with EUV Source indicated 

In order to create a stable source of plasma, it is necessary to generate molten tin 

droplets, focus the laser, and time the laser pulses. This has to happen in a coordi-

nated way. These concerns are separated over multiple subsystems. 

1.1.3 Important Drivers 

ASML emphasizes the following drivers: 

 Critical dimension (minimum size of etched features)  

 Image quality  

 Overlay (position error when exposing multiple layers) 

 Focus (focus stability of the projection)  

 Throughput  

 Yield (number of good ICs produced)  

 Availability  

 Cost of Ownership 

 Reliability 

 Time to market 

Focus in this project is on the reliability and time to market. 

The EUV Source is a vital part of a complex and expensive machine. Because any 

period during which this machine is unavailable leads to high cost, customers expect 

high availability from the system. In direct relation to this availability is the relia-

bility of both software and hardware of the system. 

Because the creation of integrated circuits happens in a highly competitive field, new 

features should be available to manufacturers as quickly as possible. This makes 

reducing the time to market an important driver for the company. Improving the 

development efficiency can reduce this time to market and lead to lower cost for the 

company. 

1.1.4 Testing 

Maintaining high software quality is important for satisfying the drivers. Because of 

the size and complexity of the software, ensuring software quality is a significant 

challenge. Software testing is one of the mechanisms that are used to tackle this 

challenge. Software testing on multiple levels (such as unit tests and software 

integration tests) is part of the development and maintenance process. 

Platforms 

In the EUV Source, three testing platforms are used. Proto is a test platform that 

consists of a complete machine. Testbench is a platform that contains the real 

electronics, but is missing mechanics and optics. It is not capable of producing EUV 
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light. Devbench is a software-only platform that is deployed on a virtual machine. 

Figure 1.4 compares these platforms based on functional completeness and availa-

bility. From Devbench to Proto, each platform is more functionally complete but has 

lower availability and exponentially greater cost. 

 

Figure 1.4 – Comparison of test platforms 

The choice of platform depends on the testing requirements. Currently, most of the 

software is tested on Testbench and Proto. Extending test coverage on the Devbench 

should lead to more of the tests being executed on the Devbench before using the 

Testbench and finally Proto. This increases testing capabilities and reduces develop-

ment cycle times, which leads to more reliable software and a shorter time to market. 

Because the capabilities of the Devbench are limiting factors in the choice of the 

testing platform, improving these capabilities will lead to more software being 

verified on this platform. The use of simulation in testing can help improve these 

capabilities. 

1.1.5 Simulation 

In simulation, a part of the system under test (SUT) is isolated using simulators. By 

replacing a hardware component by a software model, testing can be done without 

using the physical hardware component. The software model then fulfills the role of 

this hardware component in the system. 

Such a software model describes the physical aspects of the hardware component in 

terms of the interactions between actuators and sensors in a system, as shown in 

Figure 1.5. An example of an interaction is the effect of a motor on its encoder. The 

movement of a motor is transferred to its motor encoder, which measures it. This 

transfer can be modeled in a simulator.  

 

Figure 1.5 – Data flow in simulation 

A specific type of simulator with fixed (as opposed to dynamic) behavior is called a 

stub in the company context. Such a stub implements one or more software interfaces 

but does not provide a model of the behavior of the simulated system. The term stub 

is often used loosely, as changing requirements can cause stubs to evolve into more 

complex simulators. 
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Approaches 

We distinguish two approaches to simulation based on whether the entire hardware 

platform is simulated or only the mechanics. How these approaches map to the 

testing platforms in Section 1.1.4 is shown in Table 1.1. 

The simulation approach in which the entire hardware platform is simulated is called 

Software-in-the-Loop (SiL) simulation. Because none of the actual hardware is 

required, the entire system software can be run as a software package on general-

purpose hardware. This type of simulation is limited, because specific properties of 

the hardware platform, such as time behavior, cannot be simulated accurately. 

Another simulation approach is Hardware-in-the-Loop (HiL) simulation. In this 

approach, the real hardware and software infrastructure are present in the system 

under test, but mechanical elements are replaced by simulation. Using HiL simula-

tion, it is possible to execute tests on a system where certain components are not 

available. 

Table 1.1 – Mapping between testing platforms and simulation approaches 

 

Testing Platform Simulation Approach 

Devbench Software-in-the-Loop 

Testbench Hardware-in-the-Loop 

Proto None 

Benefits 

Using simulation over testing on physical hardware provides the following benefits 

for the company: 

 Increased availability of systems for testing 

Not many physical machines are available for testing. By supplementing these 

test environments with simulation, the number of engineers who can test at the 

same time can be increased significantly. Furthermore, waiting times for testing 

can be reduced drastically. By increasing the availability of the physical test en-

vironments, the required time for the software delivery process can be decreased.  

 Higher coverage of “bad weather” behavior 

The behavior of the system can be influenced by problems in the system hard-

ware. It is hard to verify that the software runs correctly under such conditions. 

By simulating these bad weather conditions, specific parts of the software that 

are hard to test can be evaluated. 

 Higher configurability 

The machines that are available for testing represent a small subset of all ma-

chine configurations used by customers of the company. By providing a larger 

set of configurations through simulation, more problems can be prevented before 

the software is deployed at the customers. 

 Lower risk and cost of testing 

The cost of the resources used for testing on the machine is high. Additionally, 

testing on a machine may lead to defects in the machine hardware, which adds to 

the cost and limits the availability. 

 Higher reproducibility of test results 

Because of inaccuracies and noise in sensors, tests do not necessarily produce 

the same results in two identical executions. This complicates the tracing of 

identified problems. In simulation, it is more often possible to produce the same 

behavior in two identical runs.  

SiL simulation using Devbench can give the most benefit during development. 

Because of its high availability, it allows software to be tested more often than when 

using one of the other test platforms. Because of this, the goal is to allow as much of 

the software as possible to be tested on the Devbench. 
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1.2 Outline 
This document describes a method for the integration of simulators within the EUV 

Source. The first part of this report focuses on the project context. First, the various 

project stakeholders and their roles within the project are given in Chapter 2. After 

this, the opportunities are described in Chapter 3. Chapters 4 through 6 focus on the 

design itself, from requirements to design. The technical part of the report is con-

cluded by Chapter 7. Finally, in Chapter 8, the project is described from a project 

management point of view. ■ 
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2 Stakeholder Analysis 
In order to understand the project context, it is necessary to be aware of the project 

stakeholders. This chapter gives an overview of these stakeholders, including their 

main interests in the project and possible conflicts in these interests. 

2.1 Stakeholders 
In the project context, we can identify three main groups of stakeholders. The first 

group of stakeholders is the university. The stakeholders in this group are interested 

in the process and design aspects of the project. The second group of stakeholders is 

the company. The main interest of these stakeholders is the business value of the 

project. The final stakeholder is the trainee. The main interest of the trainee is 

successfully completing the project as judged by stakeholders from the other two 

groups. An overview of the relevant stakeholders is given in Table 2.1. 

Table 2.1 – Relevant stakeholders 

 

Name Role Stakes 

University 

Ad Aerts 3TU. Stan 

Ackermans, 

Software 

Technology 

Program Director 

Ensuring program quality by: 

 Ensuring quality of the projects and 

their results 

 Maintaining good relations with high-

tech companies in the Eindhoven area 

(including ASML) 

Pieter Cuijpers TU/e Project 

Supervisor 

Ensuring the project follows a correct pro-

cess and progresses at the expected pace 

Ensuring report quality on a content level 

Name Role Stakes 

Company 

Ernest Mithun 

Xavier Lobo 

ASML Project 

Mentor 

Ensuring the project follows a correct pro-

cess and leads to a desirable result for ASML 

EUV Source 

Simulation Expert 

Improving development time and code 

quality in the EUV Source by: 

 Improving the number of tests that can 

be run in simulation 

 Improving the availability of test envi-

ronments 

 Determining the architectural approach 

to simulation 

Dirk Coppelmans ASML Project 

Mentor 
See above 

 EUV Source Test 

Architect 

Pieter Koper Simulation 
Competence 
Owner 

See above 
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Table 2.1 – Relevant stakeholders 

 

Name Role Stakes 

Ludovico 

Verducci 

Main Developer / 

Maintainer Plasma 

Simulation 

Changes in code of the Plasma Simulator 

should have: 

 high quality 

 clear documentation 

 minimal impact on existing design 

Daniël Patty Team Leader Qualification of as many CPD applications 

as possible without the need for a machine 

David Hols Reis Engineer working 

with Simulator 

Qualification of CPD applications 

Developer of 

camera simulation 

Integrating camera simulation with plasma 

simulation and image processing to show 

that the simulator works 

Qiaowei Zhang Engineer working 

with image 

processing and 

laser focus 

Having a highly available testing environ-

ment for software integration 

Increased capability of testing bad weather 

scenarios 

Maarten Dam Functional owner 

of CPD application 

Successful qualification of the CPD applica-

tion 

Name Role Stakes 

Trainee 

Tom Boshoven PDEng Trainee Acquiring the PDEng degree by finishing the 

project to a satisfactory degree (as judged by 

a committee) 

Acquiring technical knowledge as well as 

soft skills during the project 

From an organizational perspective, three different groups of stakeholders exist 

within the company. Major stakeholders are located in the Architecture department, 

in the EUV Source Testing and Integration group, and in the EUV Source Embedded 

Software group. The first two of these groups contain a project mentor. 

2.2 Possibly Conflicting Stakes 
The major risk for conflicts between the interests of the stakeholders exists between 

the university and the company. This risk is based on the level of abstraction of the 

solution. The university stakeholders place most emphasis on accurate descriptions of 

a design for a generic problem and the process to achieve this design, where the 

company stakeholders put more emphasis on the design for the concrete case. 

Because of this, it is important to demonstrate not only that the design works as 

intended, but also that it provides value for the company. 

This conflict is approached by focusing on the company value first. The business 

case is at the core of the project definition. The requirements and the design follow 

from this. As much as possible, a high-level design is made for a generic version of 

the problem. At the same time, detailed designs and prototype implementations are 

made for demonstrating the suitability of the design for solving the concrete problem. 

This way, the core interests of both parties are satisfied. ■ 
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3 Opportunity Analysis 
Combining the views of the major stakeholders, we can formulate the questions that 

play a central role in this project. We sketch the opportunities in the company context 

and summarize them in a concise problem statement. 

3.1 Limitations in Current Simulation Solutions 
Simulators are used for executing various test cases on components. These simulators 

are used for testing isolated parts of the system. Test cases that are not limited to 

these sets of components cannot be tested using these simulators, because not all 

interactions in the system are simulated. Executing system-wide tests using simula-

tion requires simulation of three distinct elements: 

 Actuator / sensor interactions within a subsystem 

Example: A motor encoder changing value based on the movement of this mo-

tor. 

 Simulation of the environment 

Example: The hardware platform on top of which the software components are 

running. 

 Interactions between subsystems 

Example: Multiple subsystems collaborate to create EUV light. 

The interactions within a subsystem can be simulated by using existing simulators. 

The environment can be simulated on Devbench using an operating system abstrac-

tion layer in combination with a specific network configuration. The third element, 

which relates multiple subsystems, cannot be satisfied using the existing simulation 

approaches. 

Because of this missing third element, various system-wide test cases can only be 

completed successfully on Proto. This provides an opportunity for improvement. 

3.2 Opportunities 
By allowing simulations to be combined into a single solution, it becomes possible to 

simulate more aspects of a system at the same time in a coherent way. This leads to 

an increased test coverage using simulation. 

This is especially the case for integration tests. Whereas unit tests test for the correct 

behavior of the elements in a software component, integration tests focus on the 

interaction of the component with other components. To this end, a set of compo-

nents is aggregated and the combined behavior of the components is validated. 

The evaluated method for enabling testing of this type of tests is the integration of 

existing simulators. There are two main reasons for integrating existing simulators 

instead of designing a single simulator that simulates all parts of the system: 

 Domain knowledge is reused from the existing simulators. 

Creating a simulator requires a significant amount of research in addition to the 

investment for design and implementation. Existing simulators already store the 

required knowledge. Furthermore, some of the knowledge that is present in exis-

ting simulators may no longer be present anywhere else in the company. 

 Separation of concerns is maintained 

Although there is the added concern of the integration of the simulators and their 

combined behavior, the concern of the internal behavior of the simulators is not 

changed.  
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This leads to the hypothesis that combining existing simulators is an effective way of 

increasing integration test coverage.  

3.3 Problem Statement 
Evaluation of the opportunities leads to the following problem statement: 

 

3.4 Design Opportunities 
The envisioned solution for this is an infrastructure in which multiple simulation 

solutions can be combined to increase integration test coverage. Each simulator 

provides a model for its own part of the system, but may rely on information that is 

provided by other simulators. Designing a solution in which simulators can exchange 

information helps achieve accurate simulation of the entire system. 

Because various simulators exist, a generic approach needs to be designed for the 

integration of simulators, so this integration can be achieved in various parts of the 

system. This generic approach is the basis of the concrete designs of an integrated 

simulation solution. 

3.4.1 Design Criteria 

Several criteria play an important role in the design: 

 Genericity 

The solution should be as generic as possible, so it can be applied to other use 

cases as well.  

 Realizability 

One of the main goals of the concrete designs is to demonstrate the feasibility of 

the approach. 

 Documentation 

In order to apply the approach in other use cases, it must be documented in an 

understandable way, so it is as easy to reproduce as possible. 

 Impact 

The design is important in determining the approach for similar projects in the 

future. 

The following two criteria play a less important role in the design: 

 Inventiveness 

If an existing solution can be tailored to fit the problem, it is sufficient. 

 Complexity 

While a solution of low complexity is preferred, this is less important as long as 

this complexity is managed correctly (e.g. through detailed documentation of the 

design and decision process). 

3.5 Scope 
The broad scope of this project is simulation of EUV Source software on a 

Devbench. The goal is to enable increased test coverage in the absence of hardware 

using simulators. This is part of a long-term roadmap for creating and implementing 

an architecture for simulation in the EUV Source. 

In this project, the focus was put on two specific parts of the EUV Source. Instead of 

the entire EUV Source software, only simulation of plasma and simulation of the 

laser focus were evaluated. This leads to a smaller, short-term scope, which better fits 

Achieving better integration test coverage in simulation in a software-only 

environment: 

 Is it possible using only existing simulators? 

 How can we achieve it? 

 What patterns and guidelines can be found? 

 Does the result provide the expected benefits? 



 

11 

 

the duration of the project. The two main use cases that are part of this project (see 

Section 4.1) fall within this scope. 

3.6 Success Criteria 
This project is completed successfully when a generic approach for integrating 

existing simulators is found, enabling a higher integration test coverage in simulation 

on the EUV Source. This approach must be documented and demonstrated by means 

of concrete designs based on two main use cases, as well as prototype implemen-

tations.  

3.7 Agreed Deliverables 
Various project deliverables were agreed upon with the company stakeholders: 

 Project plan 

 Requirements document  

 Design documentation 

 Source code of prototype implementations  

 Final presentation 

The project plan, requirements document, and design documentation are combined in 

this final report. 

3.8 Roadmaps 
Within the company, a simulation roadmap for the EUV Source is being built. This 

roadmap relates use cases, required simulators, and communication flows between 

these simulators. This strongly relates to this project. Whereas the goal of this 

roadmap is to describe the necessary steps for implementing simulation solutions for 

various test cases, the goal of this project is to describe how to design these inte-

grated solutions. ■ 
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4 System Requirements 
After evaluating the opportunities for improving the current solutions, we define a set 

of requirements for this improved solution. These requirements result from the 

domain analysis and the combined views of the various stakeholders. The require-

ments in this chapter form the basis for the design that is presented in later chapters. 

4.1 Use Cases 
The central use case in this project is the qualification of a CPD (Calibration, Per-

formance measurement, Diagnostics) application. This type of application is used for 

automated calibrations of the machine. 

Real hardware is required for testing these CPD applications. In order to test them on 

Devbench, the behavior of this hardware needs to be simulated. Solving the current 

limitations in simulating these aspects is the main opportunity in this project. 

The central use case for this project is “Qualify CPD on Devbench.” This use case 

exists only as part of a bigger process of which the end goal is full qualification of a 

CPD application. In the envisioned process, this qualification is done first on 

Devbench. If this is successful, it is attempted on Testbench, which provides a higher 

level of realism. Finally, qualification on Proto determines acceptance. The eventual 

goal is to find all issues on Devbench or Testbench, so qualification on Proto will be 

successful in the first attempt. 

 
Figure 4.1 – Use case diagram for the qualification of CPD applications 

Figure 4.1 gives an overview of the evaluated use cases for qualifying a CPD 

application (abbreviated to “CPD” in the diagram). Appendix A contains detailed 

descriptions of these use cases. Two specific CPD applications were chosen for 

specific instances of the use cases, based on their requirements. 

The first CPD application (“CPD A”) was chosen as a use case because it could 

already be qualified on a Devbench using high-level simulation. This use case was 

uc UseCases

CPD Dev eloper

Qualify CPD on 

Dev bench

Qualify CPD on 

Testbench

Qualify CPD on Proto

Qualify CPD

«include»

«include» «precedes»

«include»

«precedes»
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used to show that the solution can be applied in an existing case and to demonstrate 

that integrating existing simulations can lead to higher code coverage in simulation. 

The second CPD application (“CPD B”) was chosen as a use case in order to demon-

strate the genericity of the solution, by showing its applicability to a wider range of 

tests. This use case could only be qualified on a machine.  

4.2 User Requirements 
Combined with the use cases, there is a list of functional requirements for the 

solution. These requirements, which are listed in Table 4.1, describe the end goal of 

the project. They exist as a means to ensure that the delivered solution is valuable in 

the company context. The list of requirements is based on the use cases, and is 

created in dialog with the main company stakeholders. 

Table 4.1 – List of functional user requirements and brief verification methods 

 

Deployment 

UR000 The solution must be deploya-

ble on a Devbench 
 Deploy on Devbench 

 Verify other requirements using this 

deployment 

Integration 

UR100 The solution must successfully 

execute CPD A in a configura-

tion in which a simulator is 

used for the laser focus, with 

the real driver software. 

 Configure the solution to use a 

simulator for the laser focus. 

 Execute CPD A successfully using 

default settings. 

 Inspect the output to verify behavior 

is correct. 

UR101 The solution must successfully 

execute CPD B in a configura-

tion in which a simulator is 

used for the laser focus. 

 Configure the solution to use a 

simulator for the laser focus. 

 Execute CPD B successfully using 

default settings. 

 Inspect the output to verify behavior 

is correct. 

UR102 The solution must successfully 

generate camera images during 

the execution of CPD B. 

 Configure the solution to use a 

simulator for the behavior of the la-

ser focus and enable camera simu-

lation. 

 Execute CPD B successfully using 

default settings. 

 Inspect the output to verify behavior 

is correct. 

Configurability 

UR200 The solution must successfully 

execute CPD A in a configura-

tion in which the driver stub is 

used for the laser focus. 

 Configure the solution to use the 

driver stub for the laser focus. 

 Execute CPD A successfully. (Note: 

there is no support for CPD B in this 

stub.) 

 Inspect the output to verify behavior 

is correct. 

UR201 It must be possible to deploy 

the simulators independently 

of each other. 

 Successfully run smoke tests without 

running any other simulator. 

UR202 It must be possible for a user to 

switch between a configuration 

using the driver stub and a 

configuration using a simulator 

for the laser focus. 

 Verify UR100 and UR200 in a single 

sequence. 
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The verification methods in this table describe the basic steps for verification of a 

requirement. 

If a requirement cannot be verified successfully using these steps, it does not neces-

sarily indicate that the solution is incorrect. When verification fails, the cause must 

be explored manually. Assistance from the responsible software developers or 

mechatronics experts may be required for this. If the cause is determined to be a fault 

in an existing simulator or in production software, the problem must be reported. In 

such cases, the requirement can be considered not verifiable until the problem is 

resolved. 

Table 4.2 – Prioritization of the user requirements 

 

Must do Should do Could do Would do 

UR000 

UR100 

UR200 

UR201 

UR101 

UR102 

UR202 

  

The requirements are categorized by priority in Table 4.2. For this prioritization, the 

MoSCoW model is used. In this model, priorities are described from high to low by 

the letters M (must do), S (should do), C (could do), and W (would do or won’t do). 

The set of must do requirements must be satisfied in order to complete the project 

successfully. 

4.3 Nonfunctional Requirements 
In addition to the functional requirements mentioned above, various nonfunctional 

requirements may affect the design. These requirements are based on the use cases 

and the views of the technical stakeholders. The main nonfunctional requirements 

were found to be as follows: 

 Configurability 

It should be easy to select a configuration that suits the use case. This means that 

not only the type of simulation can be selected, but also the hardware configu-

ration. How this configuration is done by the end user is not in the scope of this 

project, but care should be taken to allow this in the design. Through configura-

bility of the solution, a trade-off can be made between coverage, accuracy, and 

performance. 

 Time Behavior 

Although there are no real-time requirements, the solution should be fast enough. 

What this means in practice is that the expected performance varies per use case. 

Generally, the solution must not trigger software timeouts in addition to the 

timeouts caused by the simulators of which it is composed. Changes with a sig-

nificant impact on performance should be evaluated with the relevant stakehold-

ers. 

 Changeability 

Changes in components and interfaces should not have a big impact on the solu-

tion. This keeps the overhead of simulation maintenance low, which is important 

to keep development cycles of the simulated products as short as possible. 

 Installability 

The solution should be deployable with minimal effort and delay for a stream-

lined development and testing process. ■ 
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5 Solution Direction 
Based on the use cases and requirements, we determine a solution direction. This is 

achieved by describing the problem in the context of the system architecture and 

developing a generic approach based on this. By applying this approach to the 

specific test cases, we find high-level solutions to these cases. 

5.1 System Architecture 
In order to provide a generic solution for integrating simulators within the EUV 

Source, knowledge about the EUV Source software architecture is required.  

5.1.1 Layers 

EUV Source software follows a layered architecture in which each component is 

located on exactly one layer. An overview of the layers is shown in Table 5.1. 

Control flow is directed downward (same layer or lower), while measured data is 

directed upward (same layer or higher). The components that are important in the 

context of this project reside in the CPD Applications, Metrology, and Subsystem 

layers. 

Table 5.1 – Software layers in the system architecture 

 

Layer Description 

System Interfacing Communication from the system to external systems 

Application Production application 

CPD Applications Applications used for configuration, performance 

measurements, and diagnostics 

CPD Facilities Generic facilities for CPD applications 

System Control Main sequencing of activities 

Metrology Modeling system settings 

Subsystem Control software for a subsystem 

Domain Facilities Generic facilities for a certain domain 

Generic Facilities Domain-independent facilities 

OS & I/O Abstraction Operating system and hardware abstraction 

CPD applications communicate directly with one of the components on a lower layer 

(specifically the system control layer) to perform actions and measurements on the 

system. The CPD Applications layer is the highest layer that contains components 

that fit the scope of this project. 

The Metrology and Subsystem layers provide the implementation of the high-level 

actions performed by the system. Where the components in the Subsystem layer are 

responsible for the behavior of a single subsystem, components in the metrology 

layer provide coordination of multiple subsystems.  
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Figure 5.1 – Partial overview of a CPD application control flow 

A partial overview of control flow from of a CPD application is shown in Figure 5.1. 

Most layers and subsystems are omitted for simplicity. The CPD application instructs 

a subsystem driver to change the focus position of the laser. This component then 

instructs Motion Control to actuate the hardware components to reach the desired 

beam focus position. It can be observed that the control flow is only directed to lower 

layers of the architecture. 

5.1.2 Simulation 

In simulation, the architecture is extended with simulator components. These compo-

nents exist on the layer of the software component to which they are related. Table 

5.2 lists various simulators with their architectural layers. 

The architectural layer on which simulators are connected to production components 

is called the abstraction layer for the simulation. The abstraction layer separates the 

system under test from simulation. If the abstraction layer is high, test depth is low 

and therefore test coverage is potentially low. Much of the application logic is part of 

simulators. If the abstraction layer is low, test depth is high and therefore test cover-

age is potentially high.  

Table 5.2 – List of software layers of simulators 

 

Simulator Software Component Layer 

Plasma Simulator  Metrology 

Laser Focus Driver Stubs Laser Focus Driver Subsystem 

Mechanical Simulator Motion Control Domain Facilities 

Motion Control Stubs Motion Control Domain Facilities 

Choosing the abstraction layer for simulation creates a separation between production 

software and simulation. In order to be able to capture as much of the production 

software as possible in the SUT (maximizing coverage), it is beneficial to use a low 

layer as an abstraction layer. However, using a low abstraction layer may increase 

complexity. Choosing an abstraction layer means striking a balance between cover-

age and complexity. 

In the abstraction layer, control flow is directed from a production component to a 

simulation component. Between simulators on different architectural layers, the 

control flow is opposite to the control flow of production components on these layers. 

These simulators may direct control flow to a higher layer simulator. The resulting 

data flow goes in the opposite direction. 

Figure 5.2 gives an example of this. It can be seen that in simulation, the control flow 

is directed from the subsystem layer to the metrology layer, which is higher in the 

system architecture. 

CPD 

Applications 
CPD A 

Subsystem 
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Driver 

Domain 
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Motion 
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Figure 5.2 – Partial overview of a CPD application control flow using the Plasma Simulator 

Figure 5.2 can be illustrated by an example sequence. The CPD application requires 

the laser focus position to be moved. To this end, it instructs the responsible sub-

system to perform this task. The Laser Focus Driver Stub, which replaces the Laser 

Focus Driver, receives this request. It notifies the Plasma Simulator of the changed 

focus position, in order to allow it to compute new simulation output.  

5.2 Generic Integration of Simulators 
The first step in integrating simulation solutions is investigating the requirements of 

the integrated solution, based on a set of use cases. These requirements will help list 

the required behavior of the simulators. The reason for assessing these requirements 

is to investigate if they can all be satisfied using the available simulators. If this is not 

the case, it may be necessary to develop a new simulator or extend existing simu-

lators in order to satisfy the requirements. 

After this, a high-level design is created, which contains the production components 

as well as the simulators. In this design, care should be taken to choose the desired 

architectural layer as the abstraction layer. Generally, the abstraction layer that leads 

to the best test coverage is the Domain Facilities layer, which is the lowest domain-

specific software layer. The interfaces in this layer are relatively close to the 

hardware. Choosing this layer includes most application logic in the System under 

Test, while abstracting from the underlying complexities of, for example, motion 

networks. 

5.2.1 Interfaces 

After determining which components should be part of the solution, the interfaces 

between the components should be determined. The interfaces between production 

components and simulators are the provided interfaces of the components at the 

abstraction layer. Reusing these interfaces for the simulators helps ensure that the 

production software behaves the same whether it is used with a simulator or not. 

Interfaces between simulators may be missing or incomplete. 

An investigation is required to determine what information should be exchanged 

between simulators. This is based on the interactions between the physical elements 

in different subsystems that play a role in the evaluated use cases. 

While interfaces between production software and simulators are production inter-

faces with actuators and sensors as important concepts, interfaces between simulators 

only describe physical data. The reason for this is that simulators base their output on 

the actual physical model instead of results of measurements of this model. 

The directions of the interfaces (providing or requiring) are based on the architectural 

layers of the simulators. Components in lower architectural layers may not depend on 

components from higher architectural layers. Because of this, components on lower 

layers may implement interfaces from higher layers, but not the other way around. 

This principle holds for both production components and simulators. 
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As described in Section 5.1.2, this does not apply to control flow, which is mirrored 

for simulators. Control flow in simulation goes to higher architectural layers and 

resulting data flow goes to lower architectural layers. As a result, many interfaces 

have control flow that goes from the component that provides the interface to the 

component that requires it. Because there is no interface in this direction, the control 

flow cannot make use of direct calls to the components. Instead, indirect calls are 

required. 

This can be achieved using the Observer design pattern [1], shown in Figure 5.3. In 

the observer pattern, a certain object (ConcreteObservable, also called 

ConcreteSubject) can have a number of associated objects (ConcreteObserver) that 

get notified of changes in this object through a call to their update method. The 

notified ConcreteObserver can then request the updated state of the 

ConcreteObservable. 

 

Figure 5.3 – Observer design pattern 

5.2.2 Synchronization 

When implementing an interface between simulators, it is important to consider how 

the simulators are synchronized. Synchronization problems may cause missed or 

delayed communication, which can lead to unreliable and hard-to-reproduce simula-

tion results. 

When deploying on the real-time Testbench platform, synchronization can be 

achieved using the task scheduler, because time behavior is predictable in real-time 

environments. However, when deploying on Devbench, which does not provide any 

timing guarantees, additional measures may be required.  

Synchronization issues are likely to occur when an active simulator (which continu-

ously updates based on clock ticks) has to react to incoming data. If this data changes 

multiple times between two clock ticks, not all data is observed by the simulator. 

Whether this causes issues depends on how this data is used by the simulator. 

A possible solution to solving synchronization issues is the use of message queues in 

the communication channel. This ensures that all messages are available in the 

receiving simulator. Note that this may not be sufficient in all cases, because the data 

produced by the receiving simulator may be based on old inputs.  

5.2.3 Data Flow 

In addition to focusing on specific interfaces, it is necessary to consider data flow in 

the system as a whole. An important risk in on this level is deadlock or livelock due 

to cyclic data flow. This may happen, for example, when modeling a feedback loop 

between reactive simulators 
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Such a cyclic data flow can be solved in several ways. One of the options is making 

sure that the feedback loop always terminates, by defining error bounds. Another 

option is to throttle the communication, allowing higher-priority messages to be 

handled first. This can be achieved by using prioritizing event queues in the commu-

nication. A final option is to make sure that one of the simulators in the cycle is 

active. 

5.3 Case A 
As specified in the user requirements, the solution should enable the Laser Focus 

Driver software to be added to the system under test. A simulator is then needed to 

provide the underlying model. The Mechanical Simulator is the simulator that is used 

for testing the laser focus software on Testbench. In combination with the Plasma 

Simulator, it contains all required functionality for executing the CPD A use case. An 

architecture is presented that combines these simulators. 

Figure 5.4 compares this architecture with the existing architecture, which makes use 

of the Laser Focus Driver Stub. The component structure of the simulation is 

changed in such a way that this stub is replaced by the real Laser Focus Driver 

software. 

 

Figure 5.4 – Control flow in the Driver Stub and the Mechanical Simulator 

5.3.1 Challenges 

Integrating the described simulators leads to two main challenges. The first challenge 

is that the Mechanical Simulator is an active simulator, whereas the Plasma Simu-

lator is reactive. This can lead to issues related to synchronization and performance. 

The second challenge is that the Mechanical Simulator does not provide an external 

software interface for retrieving simulation data. In order to integrate the simulators, 

these challenges have to be overcome. 

Limitation 

In a naïve approach to connecting the Mechanical Simulator to the Plasma Simulator, 

all output data from the Mechanical Simulator leads to an update within the Plasma 

Simulator. Because the mechanical Simulator is an active simulator, this output data 

is generated based on a clock frequency. Thus, in this solution, the Plasma Simulator 

would update based on this frequency, and become an active simulator. This is 

undesirable, because: 
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 The update frequency is very high. Plasma simulation requires time to complete, 

so this would have a strong impact on simulation performance. 

 The Devbench platform does not support real-time behavior. Thus, timing is 

inherently unreliable. Time triggers may be delayed and the required information 

may not be propagated to the Plasma Simulator in time (before the CPD applica-

tion measures it). This results in unreliable simulation results that are difficult to 

reproduce. 

Simulation Interface 

In order to execute CPD A successfully, information needs to be exchanged between 

the laser focus and the plasma simulation. In order to do this, an interface is required 

between these two simulators. None of the existing software interfaces can be used 

for this task because they are meant for use in production, and simulation may 

interfere with this. 

Another option is the creation of a new interface. Several significant challenges are 

involved in this approach: 

 The Mechanical Simulator is implemented as part of the Motion Control compo-

nent, which is a production component. Adding an interface to this component 

adds to the complexity of the software and possibly leads to problems in produc-

tion. 

 The architectural guidelines do not allow the addition of an interface that is used 

exclusively for software testing to a component that is used in production be-

cause this leads to unnecessary risks. Furthermore, it introduces an additional 

maintenance and testing burden. Because it is used in production, this burden is 

heavier than for a component that is only used in testing. 

 Due to very limited knowledge of the Motion Control component, a significant 

investment of time and effort is required to not only add an interface to this 

component, but also connect it to the internals of the component. 

5.3.2 Solution Alternatives 

Because of these challenges, a more refined approach is needed. In order to avoid 

synchronization issues, this approach has the following restrictions: 

 The Plasma Simulator should remain reactive. This means that for any set of 

external inputs (triggers from production software), an upper bound can be 

placed on the number of times the Plasma Simulator is updated. 

 All plasma state updates that result from a trigger from production software must 

be processed before the software measures the change. 

This second restriction depends on the software that performs the measurement. In 

the evaluated use cases, no measurements are performed during motion. We choose 

to define the behavior during motion as undefined. Thus, as long as a motion is in 

progress from the perspective of the software, any measurement cannot be considered 

valid. During this time, the state of the plasma can be updated. 

The advantage of doing this is that the system can be treated as fully reactive, be-

cause the system state is always stable at the time of measurement. The main dis-

advantage to doing this is that any measurements that are done during motion (for 

example, due to a bug) may lead to the wrong results, without being detected. 

Furthermore, in order to support future scenarios that require support for measure-

ments during motion, the simulator design needs to be revised. 

Various possible solutions were evaluated. Because the creation of a new simulation 

interface for the Mechanical Simulator was not considered feasible, one of the 

production interfaces was used. A filter component was evaluated, which evaluates 

the data to find out when to retrieve data from the system. Furthermore, a proxy 

element was evaluated, which evaluates internal system communication to find out 

when to retrieve data. 



 

23 

 

Filter 

The first alternative is to introduce a lightweight “filter” element in the communi-

cation between the Motion Control component and the CPD application. This filter 

constantly reads the machine state from the Motion Control component. It then 

inspects the data to see if it is necessary to send an update to the Plasma Simulator.  

The main challenge here is to define what the conditions for the update should be. 

Because of the low level of abstraction, no set of conditions was found that would 

lead to a bounded number of updates. 

Furthermore, because the solution is not run in a real-time environment, it cannot be 

guaranteed that all generated information is read in time (before measurements are 

performed). This may lead to missed updates, which can ultimately lead to undefined 

behavior and lower reproducibility of results. 

This alternative exclusively uses existing software interfaces and therefore requires 

no changes to production code. However, the implementation depends strongly on 

the domain, so it cannot be applied generically. Finally, it is unclear whether this 

alternative is feasible, and how robust the solution would be to future changes in the 

software. 

Proxy 

The second alternative is to implement a “proxy” element that listens to internal 

communication in order to time the updates. Whenever a command is finished, the 

proxy intercepts the completion message, reads out the required data, and forwards 

the completion message to its original destination. 

 

Figure 5.5 – Control flow in a deployment with a proxy component 

This way, exactly one update is sent per trigger, and all updates are sent before 

motions are completed as observed by the software, because the completion message 

is delayed until after the update is sent. 

This alternative leads to an architectural issue. Because the proxy, which is a simula-

tion component, relays control flow directly to the driver, this driver must also be 

part of simulation, while the requirements state that this should not be the case. 

Figure 5.5 illustrates this by connecting the components based on control flow. 

In relation to this, there is a dependency on the correctness of the intercepted mes-

sages. Because these messages come from the system under test, their correctness 

cannot be assumed. When these messages are not sent correctly, this problem may 
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not be observable in the simulation or the simulation may behave differently. This 

can lead to false positives in tests, or failures that are hard to trace. 

Stubs 

The third alternative is to abstract from Motion Control altogether. Instead of using 

the Mechanical Simulator, the Motion Control Stubs can be used. By attaching a 

reactive model to these stubs, it is possible to satisfy the technical requirements for 

CPD A relating to motion control. 

Creating this model requires knowledge of the workings of the motion control, as 

well as a basic understanding of the laser focus hardware. However, this investment 

results in a simulation that does not require changes in production code and is easy to 

extend to support other use cases, such as the CPD B use case. 

By adding a model to these stubs, they can no longer be regarded as stubs. In the 

remainder of this document, this solution is referred to as Motion Simulator. 

Comparison 

Table 5.3 gives an overview of the presented solutions and compares them based on 

several criteria. These criteria were selected based on the specific qualities of the 

various solutions. 

Table 5.3 – Comparison of approaches for case A 

 

Criterion Interface Filter Proxy Stubs 

Approach is generic ✓  ✓ ✓ 

Data is guaranteed stable ✓  ✓ ✓ 

Allows full test coverage of subsystems ✓ ✓  ✓ 

Subsystem driver not in simulation ✓ ✓ ?
2
 ✓ 

Only minimal system knowledge required   ✓  

No modifications to production code  ✓ ✓ ✓ 

No communication from subsystem level ✓ ✓  ✓ 

Extendable model    ✓ 

The filter solution is disregarded based on its specific nature. The additional interface 

was not considered feasible due to its impact on production code. A detailed design 

and prototype implementation was made of the two remaining alternatives. Section 

6.2 describes the design of these alternatives in detail. 

5.4 Case B 
In order to execute the CPD B use case successfully in simulation, it is necessary to 

simulate optics within the system. Because no simulator exists for this, a simulator 

needs to be created. This is done by extending an existing simulator to support this 

use case. Because of its extensibility, the Motion Simulator, which is the simulator 

based on the Motion Control Stubs, is used. By extending the model of this simula-

tor, the optical properties that are required by CPD B can be simulated. 

5.4.1 Camera Simulator 

In addition to being passed to the CPD application, the data resulting from the optical 

model is used as input for the Camera Simulator. The Camera Simulator provides a 

means of visualizing the simulated data in the form of realistic camera images. These 

images can be viewed to evaluate the behavior of the CPD application. 

                                                           

2
 Because the proxy is higher in terms of communication flow and this proxy could 

be considered a simulation component, the driver can be considered to be running in 

simulation. 
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Figure 5.6 – Control flow after the integration of the Camera Simulator 

Figure 5.6 shows the control flow in a deployment that includes the Camera Simu-

lator. The Camera Simulator is connected to the local file system. This way, camera 

pictures get stored in permanent storage, which is useful for validation and demon-

stration purposes. 

Because the camera exists on the same architectural level as Motion Control, the 

Motion Simulator is allowed to depend on the Camera Simulator and control flow is 

allowed to go from the Motion Simulator to the Camera Simulator. Because of this, it 

is not necessary to reverse the dependency as in the integration with the Plasma 

Simulator. 

Both the Motion Simulator and the Camera Simulator are reactive, so no synchroni-

zation issues need to be taken into account. No cyclic data flow is occurring, so this 

is ignored at this stage. This leads to a simple design in based on direct communica-

tion using the existing interface of the camera simulation. ■ 
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6 System Design 
After applying the generic guidelines on the specific use cases, forming a basis for 

the solutions, we evaluate how these solutions can be designed.  

6.1 Introduction 
Based on the high-level architecture that is described in Chapter 5, the various 

components and interfaces that play a role in the system are designed. The designs 

are separated in the two use cases. 

6.2 Case A 
Out of the four evaluated architectural options for integrating simulation of the laser 

focus with plasma simulation, two were selected for a detailed design. The first 

option that was chosen uses the Mechanical Simulator for simulation and updates the 

information in the Plasma Simulator by intercepting high-level messages. The second 

option that was chosen does not use the Mechanical Simulator but uses the Motion 

Control Stubs instead. Proper simulation is achieved by attaching a model to these 

stubs. These two alternatives lead to different designs. 

6.2.1 Proxy Approach 

In order to update Plasma Simulator at the right moment (right after a motion 

completes, before measurement starts), a proxy class is used. This is an application of 

the proxy design pattern [1].  

The central concept in this pattern, shown in Figure 6.1, is the proxy class. This 

proxy class, which implements the same interface as the subject, is responsible for 

delegating calls to the subject. By extending the proxy, it is possible to add additional 

behavior to some of the calls. For example, it can modify the parameters before 

delegating the calls, it can have additional behavior before or after delegation, and it 

can even choose not to delegate certain calls. 

 
Figure 6.1 – Proxy design pattern 

In the case of the Laser Focus Driver, the real driver (Subject) and the proxy (Sub-

jectProxy) implement the same interface (ISubject). Communications with the client 

(CPD application) are directed to the proxy object. This is done transparently; it has 

no impact on the client code. The proxy delegates all calls to the real driver unmodi-

class Proxy

«interface»

ISubject

method()

SubjectProxy

method()

Subject

method()

Client

delegate

1
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fied. Some of the calls have the side effect of triggering the simulator to perform a 

state update. 

Communication 

The behavior of the proxy is shown in Figure 6.2. After completion of certain high-

level operations (such as initialization and movement of the laser focus point), the 

proxy is triggered to generate an update. This update is generated before the CPD 

application is notified that the focus position was changed. This is done to prevent 

changes to the state of the motion while the update is in progress, thereby eliminating 

possible synchronization issues. 

 

Figure 6.2 – Conceptual view of component-level interactions of the Proxy component 

6.2.2 Stubs Approach 

Instead of intercepting high-level behavior, calls to the Motion Control component 

may be used. This is done by means of the Motion Control Stubs. Figure 6.3 de-

scribes interactions that lead to a state update in the Plasma Simulator. 

 

Figure 6.3 – Conceptual view of component-level interactions of the Motion Control Stubs 

Model 

For simulating motion, a simple model is used. In this model, all motions are instan-

taneous. The timing that is involved in motion is not modeled. For example, if an 

sd Proxy

PlasmaSimulatorMotionControlDriverProxyCPDApplication

setLaserFocus(focus)

updateState(state)

move()

:state

setLaserFocus(focus)

getState()

sd Stubs

CPDApplication Driver MotionControlStubs PlasmaSimulator

move()

updateState(state)

setLaserFocus(focus)
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actuator is instructed to move to a certain position within three seconds, the actuator 

is immediately changed to this position (ignoring the desired timing). This model is 

sufficient for the use cases in the scope of this project. 

Observer 

From Figure 6.2 it can be seen that a direct call is going from the stubs to the Plasma 

Simulator. Therefore, the Plasma Simulator must provide an interface to the stubs, 

which are on a lower architectural layer. This is undesirable for reasons described in 

Section 5.2.1. This dependency is reversed by introducing the Observer design 

pattern. 

After applying this pattern, the Plasma Simulator becomes a listener to state changes 

in the Motion Control Stubs. After each motion, an update is triggered in the Plasma 

Simulator, allowing it to update based on the new state. 

Adapter 

In order for the state of the Plasma Simulator to update correctly, it must react to the 

updates from the Motion Control Stubs. However, the (observer) interface provided 

by these stubs does not match the interface that is used to update state in the Plasma 

Simulator. In order to connect the two interfaces, the adapter pattern [1] is applied. 

This pattern, shown in Figure 6.4, adapts the interface of an object (Adaptee) to 

another interface (ITarget) using an additional class (Adapter). 

 

Figure 6.4 – Object adapter design pattern 

In the specific case of the stubs, the ITarget interface is the observer interface as 

described in the previous section, the Adaptee is the class that is used for updating the 

Plasma Simulator, and the adapter is a new class that translates an update from the 

Motion Control Stubs into an update in the Plasma Simulator. 

Extension Options 

The Motion Control Stubs currently exhibit only simple behavior. In order to cover 

more use cases, its model can be extended to form a complete reactive simulator for 

the Motion Control component. The interface to the Plasma Simulator is designed 

such that this type of extensions does not require changes in the interface. Additional 

features such as error injection require this interface to be extended. 

6.3 Case B 
In order to support case B, simulation of optics is embedded in the Motion Control 

Stubs. This is done by extending the simple model from Section 6.2.2 with a more 

advanced model that allows various types of interactions between components, 

turning the Motion Control Stubs into a complete simulator called Motion Simulator. 

class Adapter

Client

Adapter

request()

«interface»

ITarget

request()

Adaptee

specificRequest()

adaptee.specificRequest()

adaptee
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This section restricts itself to describing the design of the extended model, without 

describing the optical model that is implemented as part of this design. 

6.3.1 Simulation Model 

The design of the model, an overview of which is shown in Figure 6.5, is based 

directly on the domain model for simulation, as presented in Section 1.1.5. The 

model consists of model elements (sensors and actuators) and interactions between 

them. Based on the existing interfaces, actuators are modeled as physical actuators 

with small control systems. As such, they have a position, a setpoint, and a trajectory 

end position. Sensors only have a value. 

 

Figure 6.5 – Design of the simulator model 

A specialized interaction (ActuatorEncoderInteraction) exists to allow the sensors to 

measure the actuator positions. In order for a model element not to be dependent on 

its interactions, the observer pattern is used to notify an interaction when the state of 

one of the model elements on which it depends is changed. 

Figure 6.6 shows a sequence of interactions that shows how the observer pattern is 

deployed in this interaction. When the actuator is requested to move, its setpoint and 

position are updated. When this happens, all listeners, including the interaction, are 

updated. The interaction, after being triggered, simply makes the value of the sensor 

equal to the actuator position. 

class SimulatorModel

SimulatorModel

findElement(String): ModelElement

Observable

ModelElement

name: String

name(): String

Actuator

endPosition(float): void

setpoint(float): void

endPosition(): float

startMove()

setpoint(): float

position(): float

Sensor

value(float)

value(): float

Interaction

ActuatorEncoderInteraction

update(Actuator): void

sensor 1

interactions

*

actuator 1

elements *
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Figure 6.6 – Sequence diagram demonstrating the behavior of an interaction 

Although various actuators, sensors, and interactions exist within the system, only a 

few are modeled, in order to support the current use cases. The model is extendable 

with more elements to support other use cases. 

Behavior 

While the simple model that is described in Section 6.2.2 is sufficient for the use 

cases in the scope of this project, future use cases will require different behavior. 

Such behavior can include a model of motion that is more accurate with respect to 

time, or a model that includes broken sensors for testing bad-weather behavior. In 

order to support this type of extensions, the behavior of the model elements is 

separated from the state of the model elements. This generic concept allows the 

behavior of a model element to be changed based on a use case. For example, 

scenarios with broken sensors can be supported by replacing the behavior of a sensor 

with the behavior of a broken sensor. 

 

Figure 6.7 – Strategy design pattern 

This separation is done by means of the strategy design pattern [1], shown in Figure 

6.7. This pattern allows behavior to be defined dynamically. Here, the Client is one 

of the model elements, and each ConcreteStrategy contains a description of the 

behavior of this model element. When requested to perform a certain operation, the 

model element delegates the request to its associated behavior. 

sd ActuatorEncoderInteraction

:ActuatorEncoderInteraction:Actuator

FFA Driver

:Sensor

endPosition(endPosition)

startMove()

update(self)

notify(self)

position(): endPosition

value(endPosition)

class Strategy

Client «interface»

IStrategy

operation()

ConcreteStrategyA

operation()

ConcreteStrategyB

operation()

strategy

1
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Figure 6.8 – Actuator model element with separated behavior 

The application of the pattern results in a structure as shown in Figure 6.8. While this 

figure shows only the actuator model element, this structure is used as a generic 

template for the other model elements. In this figure, the ActuatorBehavior is the 

strategy interface (IStrategy) and classes implementing this interface describe the 

concrete behavior. The state is stored in a separate ActuatorState object, which is 

modified only by the concrete behaviors. 

The implementation of a model element is separated into commands and queries. 

Commands are delegated to the behavior, but queries are executed directly on the 

model. Figure 6.9 shows how this applies to actuators. In this figure, the only 

behavior for the end position is to change the state, but other types of behaviors may 

work differently. 

class ModelElement

Actuator

endPosition(float): void

setpoint(float): void

endPosition(): float

startMove()

setpoint(): float

position(): float

ActuatorState

endPosition(float): void

setpoint(float): void

position(float): void

endPosition(): float

setpoint(): float

position(): float

«interface»

ActuatorBehav ior

endPosition(ActuatorState, float): void

setpoint(ActuatorState, float): void

startMove(ActuatorState)

Observable

ModelElement

name(): String

state

1

behavior 0..1
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Figure 6.9 – Commands versus queries in Actuator class 

An example of a class that implements the ActuatorBehavior interface is the Basi-

cActuatorBehavior class, which captures the model that is described as part of 

Section 6.2.2, in which: 

 an actuator setpoint is equal to its physical position at all times 

 a motion is an instantaneous operation that makes the setpoint and position of an 

actuator equal to the end position of the motion 

This is achieved by providing an implementation of the required ActuatorBehavior 

methods in this class that reflects this model. 

Construction 

Construction of the behaviors is done by means of the abstract factory pattern [1]. 

This pattern, which is shown in Figure 6.10, allows a client to instantiate objects 

without specifying their concrete type. The abstract products in this pattern relate to 

model elements, such as actuators and sensors. 

 

Figure 6.10 – Abstract factory design pattern 

sd ActuatorBehav ior

:Actuator behavior:

BasicActuatorBehavior

state: ActuatorState

Driver

Commands are redirected 

to the behavior

Queries are directly 

performed on the state

endPosition(p)

:p

endPosition(state, p)

endPosition(): float

:p

endPosition(p)

endPosition(): float

class AbstractFactory

Client

AbstractProductA AbstractProductB

ProductA1 ProductA2 ProductB1 ProductB2

AbstractFactory

createProductA(): AbstractProductA

createProductB(): AbstractProductB

ConcreteFactory1

createProductA(): AbstractProductA

createProductB(): AbstractProductB

ConcreteFactory2

createProductA(): AbstractProductA

createProductB(): AbstractProductB

«instantiate»

«instantiate»
«instantiate»

«instantiate»
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For the behaviors, this pattern is applied as in Figure 6.11. By implementing the 

BehaviorFactory interface, a class can determine what type of ActuatorBehavior and 

SensorBehavior can be created. Because currently only the BasicActuatorBehavior 

and BasicSensorBehavior are defined, the BasicBehaviorFactory is the only shown 

factory. 

 
Figure 6.11 – Application of the Generic Factory pattern in behavior construction 

Packages 

The described simulation model is separated into a number of packages. The overall 

architecture is separated into a model, view, and controller (MVC architecture), 

reflected in the names of the packages. In total, five packages are part of the Motion 

Simulator: 

 Model 
This package contains the model elements, combined with their states and (ab-

stract) behaviors. In addition to this, it contains the available interactions and the 

SimulatorModel class, which models the entire system by instantiating and con-

necting the available model elements and interactions. 

 View 
This package contains the interface that is used for observing the model state. It 

is used to connect the Motion Simulator to the Plasma Simulator. 

 Controller 
This package provides the software interface to which the production software 

connects. 

 Observer 
This package is a utility package containing the required classes for the observer 

pattern. This package is reusable between components. 

 BasicBehavior 
This package provides an implementation of the behavior of the model elements. 

While this is currently the only defined behavior, it is possible to create other 

types of behavior by implementing the same set of interfaces from the Model 

package. 

class Behav iorFactory

«interface»

Model::ActuatorBehav ior

endPosition(ActuatorState, float)

setpoint(ActuatorState, float)

startMove(ActuatorState)

«interface»

Model::Behav iorFactory

createBehavior(Actuator)

createBehavior(Sensor)

BasicActuatorBehav ior

endPosition(ActuatorState, float)

setpoint(ActuatorState, float)

startMove(ActuatorState)

BasicBehav iorFactory

createBehavior(Actuator)

createBehavior(Sensor)

«interface»

Model::

SensorBehav ior

value(float)

BasicSensorBehav ior

value(float)

«instantiate»
«instantiate»
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Figure 6.12 – Package diagram of Motion Simulator 

Figure 6.12 shows the relations between the packages. The shown dependencies 

between the Model, View, and Controller are commonly found in MVC architectures. 

The Basicbehavior package provides an implementation of several interfaces in the 

model and therefore depends on the Model package. 

The additional model that is required for the CPD B use case is designed within this 

framework by extending the Model package with additional model elements and 

interactions. This extended model provides all functionality that is required for the 

CPD B use case. ■ 
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7 Conclusions 
The detailed designs were implemented as prototypes. By applying them in the use 

cases, we show that they provide the expected benefits. We then finish by giving 

possible directions for future work that builds on these results. 

7.1 Results 
A generic approach to the integration of simulators in the EUV Source software was 

given. This approach was applied to two use cases, in the form of the validation of 

CPD applications. Doing this resulted in concrete designs and prototype implemen-

tations of these designs. 

These designs make use of existing simulators where possible. Extensions of these 

existing simulators were provided to support the test requirements for which simula-

tion was not available, such as simulation of the optical effects that were required for 

the CPD B use case. 

The prototypes were verified by executing the use cases on the prototype solutions. 

This gave varying results. The CPD A use case was completed successfully, showing 

that the design leads to working software. The first part of the CPD B use case was 

also completed successfully, showing that the integration of simulators leads to 

improved testing capabilities. 

Failure of the second part of this CPD application helped identify concrete problems 

in the functionality of the CPD application itself. These problems, which could 

otherwise only be found on an actual machine, were easy to identify using the camera 

simulation. By finding these issues early, on a highly available test platform, it was 

demonstrated that this method of simulation provides the expected benefits. 

7.2 Future Work 
Because it was shown that the given approach can be used for the integration of 

simulators and can lead to better integration test coverage using Software-in-the-

Loop simulation, most future work is directed towards applying this approach in 

other use cases.  

In the first place, the current designs can be extended to allow for full qualification of 

CPD B, as the development of this application is continued. In addition to this, 

extensions can be made for other CPD applications for which SiL simulation is 

considered appropriate. 

In addition to the subsystems that were in focus of this project, other subsystems can 

also benefit from this approach. For example, applying the approach to CPD applica-

tions for the tin droplets could improve testing in this subsystem. 

Another possible extension is mapping this approach to HiL simulation. This is 

expected to lead to similar benefits as on SiL simulation, but allows better testing of 

integration with the hardware platform and real-time behavior. This would contribute 

to the intended testing process, which is shown in Section 4.1. The intention is to 

qualify the software of the EUV Source using a combination of testing with SiL 

simulation, HiL simulation, and on a real machine. 

A final future direction is related to the design of a simulator model. Part of this 

design of the simulator model is a template for elements of a simulator model, based 

on the separation of state and behavior. In order to facilitate the creation of these 

model elements, code generation can be used. By generating these elements from a 
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high-level description of a model, only the behavioral aspects of the simulation 

(interactions and behaviors) have to be provided. Supporting this type of workflow in 

the creation of simulator models to support new use cases is future work. ■ 
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8 Project Management 
In this chapter, we describe the project from a project management perspective. We 

focus on the used methods, as well as the risks and challenges during the project. 

8.1 Introduction 
One of the characteristics of this project is that it combines knowledge about the 

system architecture with detailed knowledge about the evaluated subsystems and 

their software implementations. In order to manage acquiring this knowledge, the 

project was divided into a number of milestones, each preceded by its own domain 

and risk analysis. Based on the results of this analysis, the exact target for the 

milestone was determined by aligning the views of the main stakeholders. 

The user requirements and overall project plan were used as a basis for this target, 

but the analyses determine the actual steps. This approach is robust against dealing 

with unknowns by allowing milestone targets to flexible based on the learned 

information during the moments where this information is most relevant.  

Each milestone builds upon the solution design and contains a prototype implemen-

tation of the design. The design is part of this document and the code of the proto-

types is delivered documented and tested as part of this project. 

The project is separated into two phases, each with a focus on a specific use case. 

The first phase contains two milestones and the second phase contains three mile-

stones. 

8.2 Work Breakdown 
Figure 8.1 shows the work breakdown structure of the project. This figure shows how 

the design aspect of the project is split into two phases, both consisting of milestones. 
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Figure 8.1 – Project work breakdown structure 

8.3 Project Planning and Scheduling 
The overall project schedule is shown in Figure 8.2. This schedule marks several 

important dates in the project, including the ends of the two phases and the final 

presentation. 
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Figure 8.2 – Project timeline containing important dates 

Appendix B contains the project Gantt charts. This chart divides the work over the 

available time. The allocated time slots leave a buffer before deliveries. This allows 

for delays in deliveries. The time allocation evolves during the project, as more data 

such as deadlines and presentation dates is available. This results in shifts and 

changes in the length of the allocated time slots. 

It should be noted that the global project plan does not show deadlines. Instead, it 

shows when each work item will be worked on. At the end of such a period, the item 

may not be 100% completed. This may happen because, for instance, the item 

requires verification by other parties. At the end of the period, the required effort 

before release should be minimal, and the risks for a work item should be addressed. 

The overlapping time slots allow for a risk-based time division. In such a case, time 

is allocated to both items, where the item with the highest risk gets priority. 

It can be seen that the final weeks of the project are empty. This time is used for 

finalizing activities such as support and knowledge transfer. Furthermore, it allows 

room for extensions to the prototype implementation if needed. 

8.3.1 Evolution of Planning 

Over the course of the project, several changes were made to the original planning. 

This original planning is shown in Appendix B.1. Apart from small shifts, caused by 

new information regarding deadlines for deliverables, there are changes in the 

milestones. The main difference is that the first phase has one missing milestone, and 

the second phase has one extra milestone. 

This change is caused by the changes from the analysis phases. While it was original-

ly expected that a simulator could be integrated in a single, larger milestone, an 

investigation led to two distinct approaches. Both were executed as separate mile-

stones, and both could be executed in the original time span set for the first phase. 

Similarly, in the second phase, the original expectation was to enable image pro-

cessing in the first milestone. After analysis, it was found that this was not required 

in order to satisfy the requirements. Instead, more effort was required in the other 

elements, due to the missing optical model. 

The final change is the distinction between the public and confidential report, which 

was not present in the original planning. 

8.4 Deliverables 
The list of deliverables for the project is given in Table 8.1. Because of the possible 

confidentiality of some of the contained information, public deliverables require a 

review by the company’s Technical Publications Board (TPB) before delivery. The 

submission date for this review is denoted by the internal deadline. For most public 

deliveries, an additional week is added on top of the regular two weeks for the TPB 

review in order to allow processing of the feedback from this review. 

Table 8.1 – List of project deliverables 
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May 1

FFA Simulator 
Integration Design

August 17

FFMBPC on Devbench
Des ign + Prototypes

August 5

Review Draft Final 
Report
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Deliverable Confidentiality Deadline 

(internal) 

Deadline 

(external) 

Notes 

Initial Project 

Plan 

Confidential 2015-01-30 2015-01-30  

Requirements 

Document 

Confidential 2015-03-05 2015-03-05 Part of Final 

Report 

Intermediate 

Presentation TU/e 

Public 2015-03-16 2015-04-13 Requires TPB 

Review 

Initial 

Performance 

Evaluation 

Public 2015-03-31 2015-03-31 Submitted to OOTI 

before third PSG 

Meeting 

Intermediate 

Performance 

Evaluation 

Public 2015-06-02 2015-06-02 Submitted to OOTI 

before fifth PSG 

Meeting 

Design Document Confidential 2015-09-21 2015-09-21 Part of Final 

Report 

Abbreviated Final 

Report 

Public 2015-08-11 2015-09-01 Submitted to exam 

committee after 

TPB review 

No concept version 

because of TPB 

screening 

Draft Final Report  2015-07-14 2015-07-28 Requires TPB 

confidentiality 

check 

Submitted for 

technical writing 

review by Judith 

Strother 

Concept Final 

Report 

Confidential 2015-09-01 2015-09-01 Submitted to exam 

committee 

Deadline: 7 

working days 

before Final 

Presentation 

XPO Presentation Public 2015-09-03 2015-09-25 Requires TPB 

Review 

To be determined 

not later than the 

beginning of 

September 

Final Presentation Confidential 2015-09-08 

 

2015-09-08 

 

 

Final Report Confidential 2015-09-21 2015-09-21 After changes 

proposed at Final 

Presentation 

Deadline: 3 days 

after Final 

Presentation 

Article Project 

Booklet 

Public 2015-09-06 2015-09-20 Requires TPB 

review 

8.5 Risk Management 
Table 8.2 describes a set of risks for the project, including mitigation strategies. The 

risks with the highest magnitude (probability multiplied by impact) are at the top of 

this table. 

Table 8.2 – Evaluation of project risks 

 

Threat Consequences Strategy  Method 

1. A required Not all requirements Avoid Evaluate candidates early. 
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Table 8.2 – Evaluation of project risks 

 

Threat Consequences Strategy  Method 

component cannot be 

integrated because of 

technical reasons or 

scope. 

are satisfied. Control Negotiate whether the 

integration is essential.  

Accept Develop a version of the 

component that can be 

integrated. 

2. A component 

cannot run on the 

required system. 

The component 

cannot be 

integrated. 

Avoid Make an inventory of the 

components and try to run 

them on the system. 

Accept Allocate time for (partial) 

porting of the components. 

3. The main source 

of information on a 

component becomes 

unavailable for an 

extended period. 

Part of the system 

may have to be 

reverse engineered, 

which requires 

additional time. 

Avoid Find at least one other 

source for the required 

knowledge, if possible. 

Control Get most of the required 

information as early as 

possible. 

4. Priorities of 

requirements from 

stakeholders change. 

Example:  

Stakeholders may want 

to deploy on 

Testbench as opposed 

to Devbench. 

The wrong problem 

is solved. 

  

Avoid Have a view of the long-

term goals and discuss the 

priorities beforehand in 

order to be able to 

anticipate. 

Control Discuss implications and 

feasibility within the project 

and change task priorities 

accordingly. 

5. New 

requirements arise. 

The solution is not 

changed with the 

problem, which may 

lead to results of 

little value. 

Avoid Have a view of the 

important stakeholders and 

on how the system is going 

to be used. 

Control Discuss feasibility, priority 

and change project plan 

accordingly. 

6. Hidden 

complexities occur in 

the design. 

More time is needed 

to implement 

prototypes. 

Avoid Ask experts on the current 

architecture about the 

problems they think will 

occur. 

Accept Make sure enough time is 

allocated to the 

implementation steps. 

7. A supervisor is 

unavailable for an 

extended period. 

An important party 

is not supervising 

process and 

progress, so the 

project may move in 

the wrong direction. 

Control Discuss a replacement 

supervisor, preferably with 

knowledge about the 

project. 

8. Office space at 

the company is lost. 

Access to my 

stakeholders or 

sources of 

information is 

limited. 

Control Discuss contact methods for 

important stakeholders. 
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Table 8.2 – Evaluation of project risks 

 

Threat Consequences Strategy  Method 

9. Data is lost. Part of the project is 

undocumented. 

Avoid Save all data in a location 

that is automatically backed 

up through the company 

backup process. The "How 

to Secure Data" intranet 

page describes where to 

store which types of files. 

10. Documents or 

presentations are not 

approved for 

publication. 

Deliverables cannot 

be made in time or 

presentations cannot 

be given. 

  

  

Avoid Plan enough time for 

modifications after review, 

before the deadline. 

Control Leave time to switch 

presentation dates with a 

colleague. 

Accept Make a confidential version 

and an abridged public 

version, with most of the 

details removed. 

11. Required 

software becomes 

unavailable. 

Example: 

Build server, 

Devbench 

Code can 

temporarily not be 

written or tested. 

Avoid Be aware of planned 

downtimes and plan 

activities accordingly. 

Control In case of an extended 

period, negotiate about 

making the tooling (or 

similar tooling) available 

for this project. 

Accept Plan a buffer period for this 

type of problems. 

During the project, some of these risks occurred. Risk 1 occurred in the integration of 

the Mechanical Simulator. Multiple approaches were evaluated and eventually, 

another candidate was chosen. Risk 3 occurred with during integration on the Plasma 

Simulator side. Some reverse engineering was done to understand how data is 

generated in this component. Because this was caused by a hidden complexity (risk 

6), avoidance was not possible. This hidden complexity occurred despite the avoid-

ance step of consulting experts because no expert has knowledge about both the 

Plasma Simulator and CPD B. 

8.6 Conclusions 
Early on in the project, a strategy was devised to deal with acquiring knowledge 

throughout the project. This led to a risk-oriented process that is flexible, in order to 

accommodate new knowledge, and involves the important stakeholders in decisions 

about the project direction. 

Although this process resulted in a project with a difficult-to-predict course, the focus 

on risk and benefit for the stakeholders in the decision process ultimately led to a 

solution that not only satisfies the main requirements, but also gives valuable insights 

into the current software architecture. ■ 



45 

 

9 Project Retrospective 
At the end of the project, we look back on the design opportunities, to evaluate their 

role in the final design. Finally, we reflect on the project as a whole.  

9.1 Design opportunities revisited 
The main design opportunity in this project was the creation of an architecture that 

combines the capabilities of multiple simulators by integrating them. This was 

addressed in both a generic and a specific way, where the latter was shown to be an 

answer to the problem statement. 

In the design, the focus was put on the four design criteria of genericity, realizability, 

documentation, and impact. 

The genericity criterion was addressed by the generic solution. The approach and 

guidelines in this solution are generic to the EUV Source software, and can therefore 

be applied to other use cases within this system as well. 

The realizability criterion was addressed by the specific solutions. By making designs 

that focus on specific use cases, it was possible to make prototype implementations to 

demonstrate feasibility. 

The documentation of the approach is part of this document. The solutions are 

documented at a level that is expected to be understandable for a software engineer or 

architect working on the EUV Source. This facilitates the application of the docu-

mented approach in other parts of the EUV Source. 

The impact criterion was addressed by demos of the prototype implementations. 

Showing that this approach leads to software that can be used easily with existing test 

scenarios helped demonstrate that the integration of simulators is a feasible and 

useful method for increasing integration test coverage. 

9.2 Reflection 
As in many projects in new environments, I spent a lot of time in this project on 

acquiring the required domain knowledge, getting familiar with the way of working 

within the company, and finding connections within the company. In order to do this, 

regular conversations with the various stakeholders were important. For this reason, 

it was useful to have an overview of the project stakeholders. 

In addition to the information relating to the company and the problem domain, 

information was needed about the system. One of the things that helped me a lot in 

understanding the system architecture was the creation of the prototype implementa-

tions. Because these prototypes make use of various real software components, I 

developed new insights into the system works by building these prototypes. This 

hands-on experience with the architecture during the design phases contributed 

strongly to my understanding of the way the system works as a whole, leading to a 

better overall design. 

During the project, I did not only obtain knowledge that applies specifically to this 

project. I also developed knowledge and skills in the general topics of simulation and 

the integration of components within a software architecture. On the organizational 

side, the main skills I practiced were working with risks and unknowns, as well as 

communication with stakeholders. 

An important realization that I will take away from this project is the importance of 

demoability: the appeal of a product in a demonstration. In the initial stages of the 
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project, most presentations were accompanied by abstract figures and explanations, 

which were not easy to follow for some of the stakeholders. In later stages, demos of 

the prototype implementations helped illustrate the concepts behind the design, while 

involving the audience more. 

In the final stages of the project, we chose to integrate the Camera Simulator into the 

existing solution. The main reason for this choice was to improve demoability. After 

creating a prototype implementation including this Camera Simulator, the demos 

started to look more impressive. This made it easier for the audience to see the added 

value of the project, leading to enthusiastic reactions from various stakeholders. 

This enthusiasm was important because of the intention to use the results of this 

project in the company. As the project reached its final phases, people gradually 

became convinced this is a good approach to testing using simulation. 

The final prototype for the second phase was evaluated by two of the eventual users 

of the simulation solution, to get feedback from their experience. They could execute 

most of the steps in simulation as they could on the actual machine, and the results of 

the simulation looked realistic. Both users found the prototype very helpful in finding 

issues in the software without needing the actual machine. 

During these evaluations, an actual problem was identified in the functionality of the 

software. This helped further underline the usefulness of this type of testing during 

the development process. By finding this issue and having the capabilities of testing 

the fixed software, a lot of the testing time on the machine can be prevented, which 

gives significant benefits to the company and validates my work in this project. ■ 
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Abbreviations 
Abbreviation Meaning 

ASML Not an abbreviation
3
 

CPD Calibration, Performance Measurement, Diagnostics 

EUV Extreme Ultraviolet 

HiL Hardware-in-the-Loop 

IP Image Processing 

MoSCoW Must do, Should do, Could do, Would (or Won’t) do 

OOTI Ontwerpersopleiding Technische Informatica (see ST) 

OS Operating System 

PDEng Professional Doctorate in Engineering 

SiL Software-in-the-Loop 

ST Software Technology 

SUT System under Test 

TU/e Eindhoven University of Technology 

  

                                                           

3
 ASML was originally a joint venture between the Dutch companies Advanced 

Semiconductor Materials International (ASMI) and Philips. The L in its name stands 

for Lithography. 
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Glossary 
Term Description Section 

Active Simulator Simulator that updates its model based on time 

events 

5.2.2 

Adapter Design pattern that maps an interface onto 

another interface 

6.2.2 

ASML Company in Veldhoven that produces machines 

for photolithography 

1 

Beam See Laser  

Camera Simulator Reactive simulator capable of producing camera 

pictures 

5.4.1 

CPD Application Application used for calibration, performance 

measurement, or diagnostics purposes 

4.1 

Devbench Testing platform used with software-in-the-loop 

simulation within the company 

1.1.5 

 

EUV Source System producing EUV light by pointing a laser 

at a droplet of molten tin 

1.1.2 

Hardware-in-the-Loop Testing method in which mechanics, but not 

electronics, are replaced by simulation 

1.1.5 

Laser Powerful, directional beam of light, input to the 

EUV Source 

1.1.2 

Lithography See photolithography  

Mechanical Simulator Active simulator of motions required for laser 

focus 

5.3 

MoSCoW Method for prioritizing requirements 4 

Motion Control Component for controlling motions for laser 

focus 

5.1 

Motion Control Stubs Stubs for the Motion Control component  

Motion Simulator Reactive simulator; extension of Motion Control 

Stubs with a model 

5.3.2 

6.3.1 

Observer Design pattern in which an object subscribes to 

updates of the state of another object 

5.2.1 

Ontwerpersopleiding 

Technische 

Informatica 

See Software Technology 5.3.2 

Photolithography Engraving patterns using light 1.1.1 

Plasma Simulator Reactive simulator that simulates the generation 

of plasma 

5.1.2 

Proto Complete machine used for testing 1.1.5 

Proxy Design pattern in which an object intercepts 

communication with another object 

5.3.2 

Reactive Simulator Simulator that updates its model based on new 

inputs 

5.2.2 

Scanner See Wafer Scanner  

Software Technology Designers’ program resulting in PDEng degree  

Software-in-the-Loop Testing method in which the hardware platform is 

replaced by simulation 

1.1.5 

Stub Simulator with fixed (as opposed to dynamic) 

behavior 

1.1.5 

System under Test System that is being tested for correct operation  

Testbench Testing platform used with hardware-in-the-loop 

simulation within the company 

1.1.5 

Wafer Scanner Machine that engraves patterns on silicon wafers, 

used to create integrated circuits 

1.1.1 
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A  Use Case Descriptions 
This appendix contains detailed descriptions of the use cases presented in Section 

4.1. 

A.1 Qualify CPD 
Two specializations exist of this generic use case. These specializations only influ-

ence the scope of the test. They are therefore not described separately. 

Level User-Goal 

Scope CPD Application 

Brief Description The CPD application is qualified as efficiently as possible 

by first qualifying it on a Devbench, then a Testbench, and 

finally Proto. 

Primary Actor CPD Developer (DEV) 

Stakeholders and 

interests 

Developer and owner of the application want to release the 

application as early as possible. Part of this process is 

qualifying it. 

Precondition CPD Application is implemented and a Test Performance 

Specification (TPS) is available. 

Minimal Guarantees None 

Success Guarantees CPD Application is fully qualified. 

Main Success 

Scenario 

1. DEV:  Qualify CPD on Devbench 

2. DEV:  Qualify CPD on Testbench 

3. DEV:  Qualify CPD on Proto 

Extensions 1.  A.  Qualification on Devbench is unsuccessful. 

  DEV:  Evaluate the problem, fix the implementa-

tion or test plan, and restart scenario. 

1.  B.  Qualification on Devbench is not possible due to 

missing essential functionality in a simulator. 

 Skip to step 2. 

2.  A.  Qualification on Testbench is unsuccessful. 

  DEV:  Evaluate the problem, fix the implementa-

tion or test plan, and continue with step 1. 

3.  A.  Qualification on Proto is unsuccessful. 

  DEV:  Evaluate the problem, fix the implementa-

tion or test plan, and continue with step 1. 

Comments If qualification on Testbench or Proto is unsuccessful (2.A., 

3.A.), it can be useful to evaluate why the problem was not 

detected in the earlier steps. This way, failures can help 

improve simulation. 

Similarly, if qualification cannot be performed on Devbench 

or Testbench, it can be useful to add the missing function-

ality to these environments, so they can be performed in 

these environments in the future. 

A.2 Qualify CPD on Proto 

Level User-Goal 

Scope CPD Application 

Brief Description The test plan is executed on a Proto machine. 

Primary Actor DEV (CPD Developer) 

Precondition CPD Application is implemented and a Test Performance 

Specification (TPS) is available. 

Minimal Guarantees None 

Success Guarantees CPD Application is fully qualified. 
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Main Success 

Scenario 

1. DEV:  Request access to Proto and wait for availability. 

2. DEV:  Install a patch containing the CPD Application 

on Proto. 

3. DEV:  Execute steps as described in TPS. 

Comments The TPS for the application describes under which condi-

tions qualification is successful. 

A.3 Qualify CPD on Testbench or Devbench 
These two scenarios are described together, as they are very similar. 

Level User-Goal 

Scope CPD Application 

Brief Description The test plan is executed on a Testbench or Devbench using 

simulation. 

Primary Actor DEV (CPD Developer) 

Precondition CPD Application is implemented and a Test Performance 

Specification (TPS) is available. 

Minimal Guarantees None 

Success Guarantees None 

Main Success 

Scenario 

1. DEV:  Request access to the environment and wait for 

availability. 

2. DEV:  Install a patch containing the CPD Application 

on the requested environment. 

3. DEV:  Execute steps as described in TPS. 

Extensions 1.  A.  A step in the TPS fails. 

DEV:  Log the issue and continue executing the 

described steps to find more issues. The 

scenario fails. 

Comments The waiting time in step 1 is short (<1 minute) for 

Devbench, and may be longer for Testbench. 

 

  



 

54 

 

B  Project Planning 
This appendix contains Gantt charts showing how the project milestones are dis-

tributed over the available weeks. 

B.1 Original Planning 

 
Figure B.1 – Initial project plan 
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B.2 Final Planning 

 
Figure B.2 – Global project plan 
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