

Integrated simulation in EUV source

Citation for published version (APA):
Boshoven, T. P. M., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software
Technology (ST) (2015). Integrated simulation in EUV source. [EngD Thesis]. Technische Universiteit
Eindhoven.

Document status and date:
Published: 25/09/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/cefa8219-1cdd-4302-9579-272c85c1729d

Integrated Simulation
in EUV Source

Tom Boshoven

Date: September 2015

Integrated Simulation in EUV Source

Eindhoven University of Technology

Stan Ackermans Institute / Software Technology

Partners

ASML Netherlands B.V. Eindhoven University of Technology

Steering Group Tom Boshoven

Dirk Coppelmans

Ernest Mithun Xavier Lobo

Pieter Cuijpers

Date September 2015

Document Status

Public

The design described in this report has been carried out in accordance with the TU/e Code of Scientific Conduct.

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN A catalogue record is available from the Eindhoven University of Technology Library

ISBN: 978-90-444-1389-2

(Eindverslagen Stan Ackermans Instituut ; 2015/051)

Keywords

Integration, Simulation, Software Interfaces, Integration Testing, Simulation Architecture,

EUV Source

Preferred

reference

Integrated Simulation in EUV Source, SAI Technical Report, September 2015. (978-90-

444-1389-2)

Partnership This project was supported by Eindhoven University of Technology and ASML Nether-

lands B.V.

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

endorsement, recommendation, or favoring by the Eindhoven University of Technology or

ASML Netherlands B.V. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the Eindhoven University of Technology or ASML

Netherlands B.V., and shall not be used for advertising or product endorsement purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within this report

is accurate and up to date, Eindhoven University of Technology makes no warranty,

representation or undertaking whether expressed or implied, nor does it assume any legal

liability, whether direct or indirect, or responsibility for the accuracy, completeness, or

usefulness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the

intent to infringe the copyright of the respective owners.

Copyright Copyright © 2015. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including

photocopying, recording, or by any information storage or retrieval system, without the

prior written permission of the Eindhoven University of Technology and ASML

Netherlands B.V.

Foreword
At ASML, the software test challenge increases with the complexity of the systems

being developed. With a price tag of tens of millions of euros apiece, it is impossible

to provide enough systems for testing. Many people within the organization have a

full time job in making it possible to test the software without the need for an actual

machine (or parts thereof).

We are making the system a reality, by faking it:

 to cope with limited physical capacity, we fake it

 to cope with hardware that is still under development, we fake it

 to cope with conditions that are hard to test, we fake it

Within the Source program, we focus on simulation. The goal is to provide develop-

ers with a Virtual Source. This is a (software only) virtual representation of the

machine being developed. Virtualized computer platforms are combined with

simulated hardware (sensors and actuators) and a simulated environment. The

simulated environment can be perceived by the sensors and manipulated by the

actuators.

Multiple disciplines are involved to create this type of simulation. Where complex

products are being developed, there is a need for complex development facilities. As

such, simulation is not a matter of choice, it is a necessity.

Current simulators have limitations. They are isolated and provide simulated behav-

ior for a narrow part of the hardware and environment. On integration, the simulators

are unaware of each other, making it impossible to test the integrated software as a

whole.

Tom has been given the assignment to investigate simulator integration. Based on a

dedicated use case, he has investigated how to integrate the isolated simulators. He

has closely cooperated with software engineers, and challenged and improved the

simulation model with physics engineers. He integrated available simulators and

added simulator functionality. As a result, it was made possible to run the use case on

a virtual environment instead of a physical one.

The short time span in which he got to know the problem field and the way he single-

handedly developed his own network within the ASML organization deserves

respect. In time, Tom took ownership and convinced others of the necessity of

simulator integration.

Toms work and results have already led to finding a number of defects in the actual

product. With that, he has successfully demonstrated the benefits of the approach and

the potential of available isolated simulators. This is a step towards standardization of

the design, which is not to be underestimated.

Dirk Coppelmans

Test Architect of the Source Program

August 23, 2015

iii

Preface
This report documents the final project of Tom Boshoven, for completing the

Software Technology (ST
1
) program, thereby acquiring the Professional Doctorate

in Engineering (PDEng). This two-year post-master program was executed at

Eindhoven University of Technology under the banner of the 3TU. Stan Acker-

mans Institute. It was concluded with a nine-month project, executed at ASML

Netherlands B.V. (referred to as ASML). This report describes various aspects of

this project, with a focus on design.

It should be noted that this report is a public version. In this version, specific

information, such as the names and behavior of software components, is omitted.

This information can be found in the confidential version of this report, which is

available in ASML.

September 2015

1
 Also known under its Dutch name: Ontwerpersopleiding Technische Informati-

ca (OOTI)

v

Acknowledgements
The completion of this project was only possible through the help of several

people. I would like to thank the people who supported me during the course of

this project.

In the first place, I would like to thank my project supervisors, who have been a

big help in the successful completion of this project. In particular, I would like to

thank my company supervisors Dirk Coppelmans and Ernest Mithun Xavier Lobo

for their continuous support and guidance. Dirk’s help in sharpening my soft

skills and his input for my presentations were very useful during the project and

will continue to be useful in the future. Ernest helped take my work to a higher

level through his extremely valuable input in the technical aspects of the project

and his extensive reviews of my documentation. I would also like to thank my

TU/e supervisor Pieter Cuijpers, whose invaluable insights made him an im-

portant part of the project steering group.

During the project, many of my ASML colleagues have contributed to my

project. I would like to thank Ludovico Verducci in particular, for his detailed

explanations that helped me understand the existing software. Furthermore, the

contributions of Pieter Koper to the architecture, and Maarten Dam, with whom I

cooperated on the optical model, are appreciated.

I would like to express my thanks to Ad Aerts, the program director for the

Software Technology program, and management assistant Maggy de Wert, for

their support and care throughout the program. Additionally, I would like to thank

the coaches and trainers for this program. They really helped improving my skills

as a designer.

I am also grateful to my colleagues, the other Software Technology trainees,

whose support and feedback were indispensable in the preparation for this final

project.

Finally, I would like to thank my friends, family, and everyone else I did not

thank explicitly, for their help and support during the nine months of this project.

Tom Boshoven

September 2015

vii

Executive Summary
ASML is the world's leading provider of photolithography systems for the

semiconductor industry. The new generation of these systems makes use of

extreme ultraviolet (EUV) light for exposing wafers in order to create integrated

circuits. Generation of this EUV light, which is done in the EUV Source system,

requires coordination of various subsystems. Testing the software that drives the

EUV Source is important for satisfying the ASML business drivers.

Part of this software is tested on the software-only Devbench platform using

simulation. This gives the following benefits over testing on a physical machine:

 Higher availability of test environment

 Higher coverage of bad-weather behavior

 Higher configurability of machine

 Lower risk and cost of testing

 Higher reproducibility of test results

Because of these benefits, the goal is to cover as much of the software as possible

using testing on Devbench.

Current simulation solutions simulate only parts of the system in isolation. This

makes integration testing difficult because these parts may interact with each

other. The interactions between these parts are not simulated.

By integrating existing simulation solutions, it is possible to achieve simulation of

a larger part of the system. Such a simulation supports execution of tests that

require multiple subsystems. As a result, integration test coverage on Devbench is

increased.

The integration of simulators can be done by applying a generic approach and

architecture guidelines to specific test cases. This leads to a high-level architec-

ture that serves as a basis for the design of the interfaces between the simulators.

By following this approach, a solution can be designed that fits in the software

architecture of the EUV Source.

This principle was demonstrated by designing integrated solutions for testing two

applications for the EUV Source. The design was validated by means of

prototype implementations. It was shown that that the generic approach works,

but also that its application leads to better integration test coverage using

simulation. This leads to a lower dependency on a physical machine for testing,

which reduces cost and development cycle time.

Based on these results, the recommendation is to apply this approach in other

integration test cases.

ix

Table of Contents
Foreword .. i

Preface .. iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xi

List of Tables .. xiii

1 Introduction ... 1

1.1 Context ... 1

1.1.1 Lithography ... 1

1.1.2 Extreme Ultraviolet ... 2

1.1.3 Important Drivers .. 3

1.1.4 Testing .. 3

1.1.5 Simulation ... 4

1.2 Outline .. 6

2 Stakeholder Analysis ... 7

2.1 Stakeholders ... 7

2.2 Possibly Conflicting Stakes .. 8

3 Opportunity Analysis .. 9

3.1 Limitations in Current Simulation Solutions 9

3.2 Opportunities .. 9

3.3 Problem Statement ... 10

3.4 Design Opportunities ... 10

3.4.1 Design Criteria .. 10

3.5 Scope .. 10

3.6 Success Criteria ... 11

3.7 Agreed Deliverables ... 11

3.8 Roadmaps ... 11

4 System Requirements .. 13

4.1 Use Cases ... 13

4.2 User Requirements ... 14

4.3 Nonfunctional Requirements .. 15

5 Solution Direction .. 17

5.1 System Architecture .. 17

5.1.1 Layers .. 17

5.1.2 Simulation ... 18

5.2 Generic Integration of Simulators .. 19

5.2.1 Interfaces ... 19

5.2.2 Synchronization .. 20

5.2.3 Data Flow .. 20

5.3 Case A .. 21

5.3.1 Challenges ... 21

x

5.3.2 Solution Alternatives ... 22

5.4 Case B .. 24

5.4.1 Camera Simulator ... 24

6 System Design .. 27

6.1 Introduction .. 27

6.2 Case A .. 27

6.2.1 Proxy Approach .. 27

6.2.2 Stubs Approach ... 28

6.3 Case B .. 29

6.3.1 Simulation Model .. 30

7 Conclusions .. 37

7.1 Results .. 37

7.2 Future Work ... 37

8 Project Management ... 39

8.1 Introduction .. 39

8.2 Work Breakdown .. 39

8.3 Project Planning and Scheduling ... 40

8.3.1 Evolution of Planning ... 41

8.4 Deliverables.. 41

8.5 Risk Management ... 42

8.6 Conclusions .. 44

9 Project Retrospective .. 45

9.1 Design opportunities revisited .. 45

9.2 Reflection .. 45

Abbreviations .. 47

Glossary ... 48

Bibliography .. 49

About the Authors .. 51

A Use Case Descriptions ... 52

A.1 Qualify CPD ... 52

A.2 Qualify CPD on Proto .. 52

A.3 Qualify CPD on Testbench or Devbench 53

B Project Planning .. 54

B.1 Original Planning... 54

B.2 Final Planning .. 55

xi

List of Figures
Figure 1.1 – Schematic representation of the lithography process 1

Figure 1.2 – Schematic view of laser-produced plasma .. 2

Figure 1.3 – Picture of open NXE wafer scanner with EUV Source indicated 3

Figure 1.4 – Comparison of test platforms .. 4

Figure 1.5 – Data flow in simulation ... 4

Figure 4.1 – Use case diagram for the qualification of CPD applications13

Figure 5.1 – Partial overview of a CPD application control flow18

Figure 5.2 – Partial overview of a CPD application control flow using the Plasma

Simulator ..19

Figure 5.3 – Observer design pattern ..20

Figure 5.4 – Control flow in the Driver Stub and the Mechanical Simulator21

Figure 5.5 – Control flow in a deployment with a proxy component23

Figure 5.6 – Control flow after the integration of the Camera Simulator25

Figure 6.1 – Proxy design pattern ...27

Figure 6.2 – Conceptual view of component-level interactions of the Proxy

component ..28

Figure 6.3 – Conceptual view of component-level interactions of the Motion

Control Stubs ...28

Figure 6.4 – Object adapter design pattern ...29

Figure 6.5 – Design of the simulator model ...30

Figure 6.6 – Sequence diagram demonstrating the behavior of an interaction31

Figure 6.7 – Strategy design pattern ...31

Figure 6.8 – Actuator model element with separated behavior32

Figure 6.9 – Commands versus queries in Actuator class33

Figure 6.10 – Abstract factory design pattern ...33

Figure 6.11 – Application of the Generic Factory pattern in behavior construction

 ...34

Figure 6.12 – Package diagram of Motion Simulator ...35

Figure 8.1 – Project work breakdown structure ..40

Figure 8.2 – Project timeline containing important dates41

Figure B.1 – Initial project plan ..54

Figure B.2 – Global project plan ..55

xiii

List of Tables
Table 1.1 – Mapping between testing platforms and simulation approaches 5

Table 2.1 – Relevant stakeholders ... 7

Table 4.1 – List of functional user requirements and brief verification methods .14

Table 4.2 – Prioritization of the user requirements ...15

Table 5.1 – Software layers in the system architecture ...17

Table 5.2 – List of software layers of simulators ..18

Table 5.3 – Comparison of approaches for case A ...24

Table 8.1 – List of project deliverables ..41

Table 8.2 – Evaluation of project risks ...42

1

1 Introduction
ASML is the market leader in the production of photolithography systems for the

semiconductor industry. The new generation of lithography systems from ASML

makes use of extreme ultraviolet (EUV) light. Producing this light follows a highly

complex process, which requires close cooperation of various software and hardware

components. Because of the high cost and low availability of hardware for testing,

simulation is used in the qualification of the software.

1.1 Context
In order to understand the factors that play a role in the project, it is necessary to

understand the project context first. In the project, the core concepts are simulation

and generation of EUV light for photolithography. An introduction to these concepts

is given in the following sections.

1.1.1 Lithography

The wafer scanners that are produced by ASML make use of photolithography

(simply referred to as lithography) to imprint a pattern on a silicon disk. This process

is used in the production of integrated circuits (chips). By projecting light onto such a

disk after coating it with photoresist material, it is possible to write detailed patterns

onto the disk.

Figure 1.1 – Schematic representation of the lithography process

The process of creating an integrated circuit, which is shown in Figure 1.1, consists

of several steps:

1. Slicing

A single disc is sliced off from a silicon “boule.”

2. Polishing

The disc is polished to make the surface as smooth as possible.

3. Material Deposition or Modification

Materials are transferred to the disc.

2

4. Photoresist Coating

A photosensitive coating is applied to the disc. This coating protects the un-

exposed parts from being etched away in later steps.

5. Exposure (only step in which ASML wafer scanners play a role)

The wafer is aligned and exposed to light, imprinting a pattern on the photoresist

layer. This is the only step of the process that is done inside a wafer stepper or

wafer scanner.

6. Developing and Baking

The photoresist layer is developed and baked onto the wafer.

7. Etching

The part of the material on the wafer that is no longer covered by photoresist is

etched away.

8. Ashing

The photoresist layer is removed. After this step, it is possible to continue with

step 3, in order to form a three-dimensional structure. This is typically done 20

to 30 times.

9. Testing

The result of this process is a disc with a wafer-like pattern. We call these discs

wafers. Measurements are done to ensure the quality of the wafer.

10. Dicing

The wafer is separated into the integrated circuits of which it is now built up.

11. Packaging

The result is packaged and can be further processed into, for example, a pro-

cessing unit.

The wafer scanners developed by ASML perform only the exposure step.

1.1.2 Extreme Ultraviolet

In photolithography, the wavelength of the used light can limit the detail of the

patterns that can be projected onto a wafer. By using light with a shorter wavelength,

it is possible to produce smaller, more detailed, and hence more efficient chips. The

amount of detail that is currently required by the industry is on the order of nano-

meters (for comparison: a human hair grows about five nanometers per second).

By using lasers, it is possible to generate light in the deep infrared spectrum. To

achieve even shorter wavelengths, the technique that is shown in Figure 1.2 can be

used. Here, a laser beam (1) hits a droplet of molten tin (2), forming plasma (3). This

plasma then emits light at extreme ultraviolet wavelengths. A collector (4) then

focuses this light, after which it is propagated through the rest of the machine. The

efficiency of this method is increased by performing an additional laser pulse (pre-

pulse) to shape the droplet before hitting it with the main pulse.

Figure 1.2 – Schematic view of laser-produced plasma

The system that performs this task of generating extreme ultraviolet light, called the

EUV Source, is indicated in Figure 1.3. It is partially located in the wafer scanner (its

computers and electronics exist outside the machine) and takes a laser beam as its

input. Its EUV light output is propagated through the machine to the wafer using

mirrors.

(1)

(2)

(3)

(4)

3

Figure 1.3 – Picture of open NXE wafer scanner with EUV Source indicated

In order to create a stable source of plasma, it is necessary to generate molten tin

droplets, focus the laser, and time the laser pulses. This has to happen in a coordi-

nated way. These concerns are separated over multiple subsystems.

1.1.3 Important Drivers

ASML emphasizes the following drivers:

 Critical dimension (minimum size of etched features)

 Image quality

 Overlay (position error when exposing multiple layers)

 Focus (focus stability of the projection)

 Throughput

 Yield (number of good ICs produced)

 Availability

 Cost of Ownership

 Reliability

 Time to market

Focus in this project is on the reliability and time to market.

The EUV Source is a vital part of a complex and expensive machine. Because any

period during which this machine is unavailable leads to high cost, customers expect

high availability from the system. In direct relation to this availability is the relia-

bility of both software and hardware of the system.

Because the creation of integrated circuits happens in a highly competitive field, new

features should be available to manufacturers as quickly as possible. This makes

reducing the time to market an important driver for the company. Improving the

development efficiency can reduce this time to market and lead to lower cost for the

company.

1.1.4 Testing

Maintaining high software quality is important for satisfying the drivers. Because of

the size and complexity of the software, ensuring software quality is a significant

challenge. Software testing is one of the mechanisms that are used to tackle this

challenge. Software testing on multiple levels (such as unit tests and software

integration tests) is part of the development and maintenance process.

Platforms

In the EUV Source, three testing platforms are used. Proto is a test platform that

consists of a complete machine. Testbench is a platform that contains the real

electronics, but is missing mechanics and optics. It is not capable of producing EUV

4

light. Devbench is a software-only platform that is deployed on a virtual machine.

Figure 1.4 compares these platforms based on functional completeness and availa-

bility. From Devbench to Proto, each platform is more functionally complete but has

lower availability and exponentially greater cost.

Figure 1.4 – Comparison of test platforms

The choice of platform depends on the testing requirements. Currently, most of the

software is tested on Testbench and Proto. Extending test coverage on the Devbench

should lead to more of the tests being executed on the Devbench before using the

Testbench and finally Proto. This increases testing capabilities and reduces develop-

ment cycle times, which leads to more reliable software and a shorter time to market.

Because the capabilities of the Devbench are limiting factors in the choice of the

testing platform, improving these capabilities will lead to more software being

verified on this platform. The use of simulation in testing can help improve these

capabilities.

1.1.5 Simulation

In simulation, a part of the system under test (SUT) is isolated using simulators. By

replacing a hardware component by a software model, testing can be done without

using the physical hardware component. The software model then fulfills the role of

this hardware component in the system.

Such a software model describes the physical aspects of the hardware component in

terms of the interactions between actuators and sensors in a system, as shown in

Figure 1.5. An example of an interaction is the effect of a motor on its encoder. The

movement of a motor is transferred to its motor encoder, which measures it. This

transfer can be modeled in a simulator.

Figure 1.5 – Data flow in simulation

A specific type of simulator with fixed (as opposed to dynamic) behavior is called a

stub in the company context. Such a stub implements one or more software interfaces

but does not provide a model of the behavior of the simulated system. The term stub

is often used loosely, as changing requirements can cause stubs to evolve into more

complex simulators.

F
u

n
ct

io
n
al

 c
o

m
p

le
te

n
e
ss

Availability

Proto

Testbench

Devbench

Production
Software

Simulator

Hardware

Sensor
Values

Actuator
Commands

High cost

Low cost

5

Approaches

We distinguish two approaches to simulation based on whether the entire hardware

platform is simulated or only the mechanics. How these approaches map to the

testing platforms in Section 1.1.4 is shown in Table 1.1.

The simulation approach in which the entire hardware platform is simulated is called

Software-in-the-Loop (SiL) simulation. Because none of the actual hardware is

required, the entire system software can be run as a software package on general-

purpose hardware. This type of simulation is limited, because specific properties of

the hardware platform, such as time behavior, cannot be simulated accurately.

Another simulation approach is Hardware-in-the-Loop (HiL) simulation. In this

approach, the real hardware and software infrastructure are present in the system

under test, but mechanical elements are replaced by simulation. Using HiL simula-

tion, it is possible to execute tests on a system where certain components are not

available.

Table 1.1 – Mapping between testing platforms and simulation approaches

Testing Platform Simulation Approach

Devbench Software-in-the-Loop

Testbench Hardware-in-the-Loop

Proto None

Benefits

Using simulation over testing on physical hardware provides the following benefits

for the company:

 Increased availability of systems for testing

Not many physical machines are available for testing. By supplementing these

test environments with simulation, the number of engineers who can test at the

same time can be increased significantly. Furthermore, waiting times for testing

can be reduced drastically. By increasing the availability of the physical test en-

vironments, the required time for the software delivery process can be decreased.

 Higher coverage of “bad weather” behavior

The behavior of the system can be influenced by problems in the system hard-

ware. It is hard to verify that the software runs correctly under such conditions.

By simulating these bad weather conditions, specific parts of the software that

are hard to test can be evaluated.

 Higher configurability

The machines that are available for testing represent a small subset of all ma-

chine configurations used by customers of the company. By providing a larger

set of configurations through simulation, more problems can be prevented before

the software is deployed at the customers.

 Lower risk and cost of testing

The cost of the resources used for testing on the machine is high. Additionally,

testing on a machine may lead to defects in the machine hardware, which adds to

the cost and limits the availability.

 Higher reproducibility of test results

Because of inaccuracies and noise in sensors, tests do not necessarily produce

the same results in two identical executions. This complicates the tracing of

identified problems. In simulation, it is more often possible to produce the same

behavior in two identical runs.

SiL simulation using Devbench can give the most benefit during development.

Because of its high availability, it allows software to be tested more often than when

using one of the other test platforms. Because of this, the goal is to allow as much of

the software as possible to be tested on the Devbench.

6

1.2 Outline
This document describes a method for the integration of simulators within the EUV

Source. The first part of this report focuses on the project context. First, the various

project stakeholders and their roles within the project are given in Chapter 2. After

this, the opportunities are described in Chapter 3. Chapters 4 through 6 focus on the

design itself, from requirements to design. The technical part of the report is con-

cluded by Chapter 7. Finally, in Chapter 8, the project is described from a project

management point of view. ■

7

2 Stakeholder Analysis
In order to understand the project context, it is necessary to be aware of the project

stakeholders. This chapter gives an overview of these stakeholders, including their

main interests in the project and possible conflicts in these interests.

2.1 Stakeholders
In the project context, we can identify three main groups of stakeholders. The first

group of stakeholders is the university. The stakeholders in this group are interested

in the process and design aspects of the project. The second group of stakeholders is

the company. The main interest of these stakeholders is the business value of the

project. The final stakeholder is the trainee. The main interest of the trainee is

successfully completing the project as judged by stakeholders from the other two

groups. An overview of the relevant stakeholders is given in Table 2.1.

Table 2.1 – Relevant stakeholders

Name Role Stakes

University

Ad Aerts 3TU. Stan

Ackermans,

Software

Technology

Program Director

Ensuring program quality by:

 Ensuring quality of the projects and

their results

 Maintaining good relations with high-

tech companies in the Eindhoven area

(including ASML)

Pieter Cuijpers TU/e Project

Supervisor

Ensuring the project follows a correct pro-

cess and progresses at the expected pace

Ensuring report quality on a content level

Name Role Stakes

Company

Ernest Mithun

Xavier Lobo

ASML Project

Mentor

Ensuring the project follows a correct pro-

cess and leads to a desirable result for ASML

EUV Source

Simulation Expert

Improving development time and code

quality in the EUV Source by:

 Improving the number of tests that can

be run in simulation

 Improving the availability of test envi-

ronments

 Determining the architectural approach

to simulation

Dirk Coppelmans ASML Project

Mentor
See above

 EUV Source Test

Architect

Pieter Koper Simulation
Competence
Owner

See above

8

Table 2.1 – Relevant stakeholders

Name Role Stakes

Ludovico

Verducci

Main Developer /

Maintainer Plasma

Simulation

Changes in code of the Plasma Simulator

should have:

 high quality

 clear documentation

 minimal impact on existing design

Daniël Patty Team Leader Qualification of as many CPD applications

as possible without the need for a machine

David Hols Reis Engineer working

with Simulator

Qualification of CPD applications

Developer of

camera simulation

Integrating camera simulation with plasma

simulation and image processing to show

that the simulator works

Qiaowei Zhang Engineer working

with image

processing and

laser focus

Having a highly available testing environ-

ment for software integration

Increased capability of testing bad weather

scenarios

Maarten Dam Functional owner

of CPD application

Successful qualification of the CPD applica-

tion

Name Role Stakes

Trainee

Tom Boshoven PDEng Trainee Acquiring the PDEng degree by finishing the

project to a satisfactory degree (as judged by

a committee)

Acquiring technical knowledge as well as

soft skills during the project

From an organizational perspective, three different groups of stakeholders exist

within the company. Major stakeholders are located in the Architecture department,

in the EUV Source Testing and Integration group, and in the EUV Source Embedded

Software group. The first two of these groups contain a project mentor.

2.2 Possibly Conflicting Stakes
The major risk for conflicts between the interests of the stakeholders exists between

the university and the company. This risk is based on the level of abstraction of the

solution. The university stakeholders place most emphasis on accurate descriptions of

a design for a generic problem and the process to achieve this design, where the

company stakeholders put more emphasis on the design for the concrete case.

Because of this, it is important to demonstrate not only that the design works as

intended, but also that it provides value for the company.

This conflict is approached by focusing on the company value first. The business

case is at the core of the project definition. The requirements and the design follow

from this. As much as possible, a high-level design is made for a generic version of

the problem. At the same time, detailed designs and prototype implementations are

made for demonstrating the suitability of the design for solving the concrete problem.

This way, the core interests of both parties are satisfied. ■

9

3 Opportunity Analysis
Combining the views of the major stakeholders, we can formulate the questions that

play a central role in this project. We sketch the opportunities in the company context

and summarize them in a concise problem statement.

3.1 Limitations in Current Simulation Solutions
Simulators are used for executing various test cases on components. These simulators

are used for testing isolated parts of the system. Test cases that are not limited to

these sets of components cannot be tested using these simulators, because not all

interactions in the system are simulated. Executing system-wide tests using simula-

tion requires simulation of three distinct elements:

 Actuator / sensor interactions within a subsystem

Example: A motor encoder changing value based on the movement of this mo-

tor.

 Simulation of the environment

Example: The hardware platform on top of which the software components are

running.

 Interactions between subsystems

Example: Multiple subsystems collaborate to create EUV light.

The interactions within a subsystem can be simulated by using existing simulators.

The environment can be simulated on Devbench using an operating system abstrac-

tion layer in combination with a specific network configuration. The third element,

which relates multiple subsystems, cannot be satisfied using the existing simulation

approaches.

Because of this missing third element, various system-wide test cases can only be

completed successfully on Proto. This provides an opportunity for improvement.

3.2 Opportunities
By allowing simulations to be combined into a single solution, it becomes possible to

simulate more aspects of a system at the same time in a coherent way. This leads to

an increased test coverage using simulation.

This is especially the case for integration tests. Whereas unit tests test for the correct

behavior of the elements in a software component, integration tests focus on the

interaction of the component with other components. To this end, a set of compo-

nents is aggregated and the combined behavior of the components is validated.

The evaluated method for enabling testing of this type of tests is the integration of

existing simulators. There are two main reasons for integrating existing simulators

instead of designing a single simulator that simulates all parts of the system:

 Domain knowledge is reused from the existing simulators.

Creating a simulator requires a significant amount of research in addition to the

investment for design and implementation. Existing simulators already store the

required knowledge. Furthermore, some of the knowledge that is present in exis-

ting simulators may no longer be present anywhere else in the company.

 Separation of concerns is maintained

Although there is the added concern of the integration of the simulators and their

combined behavior, the concern of the internal behavior of the simulators is not

changed.

10

This leads to the hypothesis that combining existing simulators is an effective way of

increasing integration test coverage.

3.3 Problem Statement
Evaluation of the opportunities leads to the following problem statement:

3.4 Design Opportunities
The envisioned solution for this is an infrastructure in which multiple simulation

solutions can be combined to increase integration test coverage. Each simulator

provides a model for its own part of the system, but may rely on information that is

provided by other simulators. Designing a solution in which simulators can exchange

information helps achieve accurate simulation of the entire system.

Because various simulators exist, a generic approach needs to be designed for the

integration of simulators, so this integration can be achieved in various parts of the

system. This generic approach is the basis of the concrete designs of an integrated

simulation solution.

3.4.1 Design Criteria

Several criteria play an important role in the design:

 Genericity

The solution should be as generic as possible, so it can be applied to other use

cases as well.

 Realizability

One of the main goals of the concrete designs is to demonstrate the feasibility of

the approach.

 Documentation

In order to apply the approach in other use cases, it must be documented in an

understandable way, so it is as easy to reproduce as possible.

 Impact

The design is important in determining the approach for similar projects in the

future.

The following two criteria play a less important role in the design:

 Inventiveness

If an existing solution can be tailored to fit the problem, it is sufficient.

 Complexity

While a solution of low complexity is preferred, this is less important as long as

this complexity is managed correctly (e.g. through detailed documentation of the

design and decision process).

3.5 Scope
The broad scope of this project is simulation of EUV Source software on a

Devbench. The goal is to enable increased test coverage in the absence of hardware

using simulators. This is part of a long-term roadmap for creating and implementing

an architecture for simulation in the EUV Source.

In this project, the focus was put on two specific parts of the EUV Source. Instead of

the entire EUV Source software, only simulation of plasma and simulation of the

laser focus were evaluated. This leads to a smaller, short-term scope, which better fits

Achieving better integration test coverage in simulation in a software-only

environment:

 Is it possible using only existing simulators?

 How can we achieve it?

 What patterns and guidelines can be found?

 Does the result provide the expected benefits?

11

the duration of the project. The two main use cases that are part of this project (see

Section 4.1) fall within this scope.

3.6 Success Criteria
This project is completed successfully when a generic approach for integrating

existing simulators is found, enabling a higher integration test coverage in simulation

on the EUV Source. This approach must be documented and demonstrated by means

of concrete designs based on two main use cases, as well as prototype implemen-

tations.

3.7 Agreed Deliverables
Various project deliverables were agreed upon with the company stakeholders:

 Project plan

 Requirements document

 Design documentation

 Source code of prototype implementations

 Final presentation

The project plan, requirements document, and design documentation are combined in

this final report.

3.8 Roadmaps
Within the company, a simulation roadmap for the EUV Source is being built. This

roadmap relates use cases, required simulators, and communication flows between

these simulators. This strongly relates to this project. Whereas the goal of this

roadmap is to describe the necessary steps for implementing simulation solutions for

various test cases, the goal of this project is to describe how to design these inte-

grated solutions. ■

13

4 System Requirements
After evaluating the opportunities for improving the current solutions, we define a set

of requirements for this improved solution. These requirements result from the

domain analysis and the combined views of the various stakeholders. The require-

ments in this chapter form the basis for the design that is presented in later chapters.

4.1 Use Cases
The central use case in this project is the qualification of a CPD (Calibration, Per-

formance measurement, Diagnostics) application. This type of application is used for

automated calibrations of the machine.

Real hardware is required for testing these CPD applications. In order to test them on

Devbench, the behavior of this hardware needs to be simulated. Solving the current

limitations in simulating these aspects is the main opportunity in this project.

The central use case for this project is “Qualify CPD on Devbench.” This use case

exists only as part of a bigger process of which the end goal is full qualification of a

CPD application. In the envisioned process, this qualification is done first on

Devbench. If this is successful, it is attempted on Testbench, which provides a higher

level of realism. Finally, qualification on Proto determines acceptance. The eventual

goal is to find all issues on Devbench or Testbench, so qualification on Proto will be

successful in the first attempt.

Figure 4.1 – Use case diagram for the qualification of CPD applications

Figure 4.1 gives an overview of the evaluated use cases for qualifying a CPD

application (abbreviated to “CPD” in the diagram). Appendix A contains detailed

descriptions of these use cases. Two specific CPD applications were chosen for

specific instances of the use cases, based on their requirements.

The first CPD application (“CPD A”) was chosen as a use case because it could

already be qualified on a Devbench using high-level simulation. This use case was

uc UseCases

CPD Dev eloper

Qualify CPD on

Dev bench

Qualify CPD on

Testbench

Qualify CPD on Proto

Qualify CPD

«include»

«include» «precedes»

«include»

«precedes»

14

used to show that the solution can be applied in an existing case and to demonstrate

that integrating existing simulations can lead to higher code coverage in simulation.

The second CPD application (“CPD B”) was chosen as a use case in order to demon-

strate the genericity of the solution, by showing its applicability to a wider range of

tests. This use case could only be qualified on a machine.

4.2 User Requirements
Combined with the use cases, there is a list of functional requirements for the

solution. These requirements, which are listed in Table 4.1, describe the end goal of

the project. They exist as a means to ensure that the delivered solution is valuable in

the company context. The list of requirements is based on the use cases, and is

created in dialog with the main company stakeholders.

Table 4.1 – List of functional user requirements and brief verification methods

Deployment

UR000 The solution must be deploya-

ble on a Devbench
 Deploy on Devbench

 Verify other requirements using this

deployment

Integration

UR100 The solution must successfully

execute CPD A in a configura-

tion in which a simulator is

used for the laser focus, with

the real driver software.

 Configure the solution to use a

simulator for the laser focus.

 Execute CPD A successfully using

default settings.

 Inspect the output to verify behavior

is correct.

UR101 The solution must successfully

execute CPD B in a configura-

tion in which a simulator is

used for the laser focus.

 Configure the solution to use a

simulator for the laser focus.

 Execute CPD B successfully using

default settings.

 Inspect the output to verify behavior

is correct.

UR102 The solution must successfully

generate camera images during

the execution of CPD B.

 Configure the solution to use a

simulator for the behavior of the la-

ser focus and enable camera simu-

lation.

 Execute CPD B successfully using

default settings.

 Inspect the output to verify behavior

is correct.

Configurability

UR200 The solution must successfully

execute CPD A in a configura-

tion in which the driver stub is

used for the laser focus.

 Configure the solution to use the

driver stub for the laser focus.

 Execute CPD A successfully. (Note:

there is no support for CPD B in this

stub.)

 Inspect the output to verify behavior

is correct.

UR201 It must be possible to deploy

the simulators independently

of each other.

 Successfully run smoke tests without

running any other simulator.

UR202 It must be possible for a user to

switch between a configuration

using the driver stub and a

configuration using a simulator

for the laser focus.

 Verify UR100 and UR200 in a single

sequence.

15

The verification methods in this table describe the basic steps for verification of a

requirement.

If a requirement cannot be verified successfully using these steps, it does not neces-

sarily indicate that the solution is incorrect. When verification fails, the cause must

be explored manually. Assistance from the responsible software developers or

mechatronics experts may be required for this. If the cause is determined to be a fault

in an existing simulator or in production software, the problem must be reported. In

such cases, the requirement can be considered not verifiable until the problem is

resolved.

Table 4.2 – Prioritization of the user requirements

Must do Should do Could do Would do

UR000

UR100

UR200

UR201

UR101

UR102

UR202

The requirements are categorized by priority in Table 4.2. For this prioritization, the

MoSCoW model is used. In this model, priorities are described from high to low by

the letters M (must do), S (should do), C (could do), and W (would do or won’t do).

The set of must do requirements must be satisfied in order to complete the project

successfully.

4.3 Nonfunctional Requirements
In addition to the functional requirements mentioned above, various nonfunctional

requirements may affect the design. These requirements are based on the use cases

and the views of the technical stakeholders. The main nonfunctional requirements

were found to be as follows:

 Configurability

It should be easy to select a configuration that suits the use case. This means that

not only the type of simulation can be selected, but also the hardware configu-

ration. How this configuration is done by the end user is not in the scope of this

project, but care should be taken to allow this in the design. Through configura-

bility of the solution, a trade-off can be made between coverage, accuracy, and

performance.

 Time Behavior

Although there are no real-time requirements, the solution should be fast enough.

What this means in practice is that the expected performance varies per use case.

Generally, the solution must not trigger software timeouts in addition to the

timeouts caused by the simulators of which it is composed. Changes with a sig-

nificant impact on performance should be evaluated with the relevant stakehold-

ers.

 Changeability

Changes in components and interfaces should not have a big impact on the solu-

tion. This keeps the overhead of simulation maintenance low, which is important

to keep development cycles of the simulated products as short as possible.

 Installability

The solution should be deployable with minimal effort and delay for a stream-

lined development and testing process. ■

17

5 Solution Direction
Based on the use cases and requirements, we determine a solution direction. This is

achieved by describing the problem in the context of the system architecture and

developing a generic approach based on this. By applying this approach to the

specific test cases, we find high-level solutions to these cases.

5.1 System Architecture
In order to provide a generic solution for integrating simulators within the EUV

Source, knowledge about the EUV Source software architecture is required.

5.1.1 Layers

EUV Source software follows a layered architecture in which each component is

located on exactly one layer. An overview of the layers is shown in Table 5.1.

Control flow is directed downward (same layer or lower), while measured data is

directed upward (same layer or higher). The components that are important in the

context of this project reside in the CPD Applications, Metrology, and Subsystem

layers.

Table 5.1 – Software layers in the system architecture

Layer Description

System Interfacing Communication from the system to external systems

Application Production application

CPD Applications Applications used for configuration, performance

measurements, and diagnostics

CPD Facilities Generic facilities for CPD applications

System Control Main sequencing of activities

Metrology Modeling system settings

Subsystem Control software for a subsystem

Domain Facilities Generic facilities for a certain domain

Generic Facilities Domain-independent facilities

OS & I/O Abstraction Operating system and hardware abstraction

CPD applications communicate directly with one of the components on a lower layer

(specifically the system control layer) to perform actions and measurements on the

system. The CPD Applications layer is the highest layer that contains components

that fit the scope of this project.

The Metrology and Subsystem layers provide the implementation of the high-level

actions performed by the system. Where the components in the Subsystem layer are

responsible for the behavior of a single subsystem, components in the metrology

layer provide coordination of multiple subsystems.

18

Figure 5.1 – Partial overview of a CPD application control flow

A partial overview of control flow from of a CPD application is shown in Figure 5.1.

Most layers and subsystems are omitted for simplicity. The CPD application instructs

a subsystem driver to change the focus position of the laser. This component then

instructs Motion Control to actuate the hardware components to reach the desired

beam focus position. It can be observed that the control flow is only directed to lower

layers of the architecture.

5.1.2 Simulation

In simulation, the architecture is extended with simulator components. These compo-

nents exist on the layer of the software component to which they are related. Table

5.2 lists various simulators with their architectural layers.

The architectural layer on which simulators are connected to production components

is called the abstraction layer for the simulation. The abstraction layer separates the

system under test from simulation. If the abstraction layer is high, test depth is low

and therefore test coverage is potentially low. Much of the application logic is part of

simulators. If the abstraction layer is low, test depth is high and therefore test cover-

age is potentially high.

Table 5.2 – List of software layers of simulators

Simulator Software Component Layer

Plasma Simulator Metrology

Laser Focus Driver Stubs Laser Focus Driver Subsystem

Mechanical Simulator Motion Control Domain Facilities

Motion Control Stubs Motion Control Domain Facilities

Choosing the abstraction layer for simulation creates a separation between production

software and simulation. In order to be able to capture as much of the production

software as possible in the SUT (maximizing coverage), it is beneficial to use a low

layer as an abstraction layer. However, using a low abstraction layer may increase

complexity. Choosing an abstraction layer means striking a balance between cover-

age and complexity.

In the abstraction layer, control flow is directed from a production component to a

simulation component. Between simulators on different architectural layers, the

control flow is opposite to the control flow of production components on these layers.

These simulators may direct control flow to a higher layer simulator. The resulting

data flow goes in the opposite direction.

Figure 5.2 gives an example of this. It can be seen that in simulation, the control flow

is directed from the subsystem layer to the metrology layer, which is higher in the

system architecture.

CPD

Applications
CPD A

Subsystem
Laser Focus

Driver

Domain

Facilities
Motion

Control

19

Figure 5.2 – Partial overview of a CPD application control flow using the Plasma Simulator

Figure 5.2 can be illustrated by an example sequence. The CPD application requires

the laser focus position to be moved. To this end, it instructs the responsible sub-

system to perform this task. The Laser Focus Driver Stub, which replaces the Laser

Focus Driver, receives this request. It notifies the Plasma Simulator of the changed

focus position, in order to allow it to compute new simulation output.

5.2 Generic Integration of Simulators
The first step in integrating simulation solutions is investigating the requirements of

the integrated solution, based on a set of use cases. These requirements will help list

the required behavior of the simulators. The reason for assessing these requirements

is to investigate if they can all be satisfied using the available simulators. If this is not

the case, it may be necessary to develop a new simulator or extend existing simu-

lators in order to satisfy the requirements.

After this, a high-level design is created, which contains the production components

as well as the simulators. In this design, care should be taken to choose the desired

architectural layer as the abstraction layer. Generally, the abstraction layer that leads

to the best test coverage is the Domain Facilities layer, which is the lowest domain-

specific software layer. The interfaces in this layer are relatively close to the

hardware. Choosing this layer includes most application logic in the System under

Test, while abstracting from the underlying complexities of, for example, motion

networks.

5.2.1 Interfaces

After determining which components should be part of the solution, the interfaces

between the components should be determined. The interfaces between production

components and simulators are the provided interfaces of the components at the

abstraction layer. Reusing these interfaces for the simulators helps ensure that the

production software behaves the same whether it is used with a simulator or not.

Interfaces between simulators may be missing or incomplete.

An investigation is required to determine what information should be exchanged

between simulators. This is based on the interactions between the physical elements

in different subsystems that play a role in the evaluated use cases.

While interfaces between production software and simulators are production inter-

faces with actuators and sensors as important concepts, interfaces between simulators

only describe physical data. The reason for this is that simulators base their output on

the actual physical model instead of results of measurements of this model.

The directions of the interfaces (providing or requiring) are based on the architectural

layers of the simulators. Components in lower architectural layers may not depend on

components from higher architectural layers. Because of this, components on lower

layers may implement interfaces from higher layers, but not the other way around.

This principle holds for both production components and simulators.

CPD

Applications
CPD A

Subsystem
Laser Focus

Driver Stub

Metrology
Plasma

Simulator

Real

Sim

20

As described in Section 5.1.2, this does not apply to control flow, which is mirrored

for simulators. Control flow in simulation goes to higher architectural layers and

resulting data flow goes to lower architectural layers. As a result, many interfaces

have control flow that goes from the component that provides the interface to the

component that requires it. Because there is no interface in this direction, the control

flow cannot make use of direct calls to the components. Instead, indirect calls are

required.

This can be achieved using the Observer design pattern [1], shown in Figure 5.3. In

the observer pattern, a certain object (ConcreteObservable, also called

ConcreteSubject) can have a number of associated objects (ConcreteObserver) that

get notified of changes in this object through a call to their update method. The

notified ConcreteObserver can then request the updated state of the

ConcreteObservable.

Figure 5.3 – Observer design pattern

5.2.2 Synchronization

When implementing an interface between simulators, it is important to consider how

the simulators are synchronized. Synchronization problems may cause missed or

delayed communication, which can lead to unreliable and hard-to-reproduce simula-

tion results.

When deploying on the real-time Testbench platform, synchronization can be

achieved using the task scheduler, because time behavior is predictable in real-time

environments. However, when deploying on Devbench, which does not provide any

timing guarantees, additional measures may be required.

Synchronization issues are likely to occur when an active simulator (which continu-

ously updates based on clock ticks) has to react to incoming data. If this data changes

multiple times between two clock ticks, not all data is observed by the simulator.

Whether this causes issues depends on how this data is used by the simulator.

A possible solution to solving synchronization issues is the use of message queues in

the communication channel. This ensures that all messages are available in the

receiving simulator. Note that this may not be sufficient in all cases, because the data

produced by the receiving simulator may be based on old inputs.

5.2.3 Data Flow

In addition to focusing on specific interfaces, it is necessary to consider data flow in

the system as a whole. An important risk in on this level is deadlock or livelock due

to cyclic data flow. This may happen, for example, when modeling a feedback loop

between reactive simulators

class Observ er

ConcreteObserv er

update()

ConcreteObserv able

«interface»

Observ er

update()

Observ able

attach(Observer)

detach(Observer)

notify()

Call update() on

all attached

observers

observers

*

concreteObservable

1

21

Such a cyclic data flow can be solved in several ways. One of the options is making

sure that the feedback loop always terminates, by defining error bounds. Another

option is to throttle the communication, allowing higher-priority messages to be

handled first. This can be achieved by using prioritizing event queues in the commu-

nication. A final option is to make sure that one of the simulators in the cycle is

active.

5.3 Case A
As specified in the user requirements, the solution should enable the Laser Focus

Driver software to be added to the system under test. A simulator is then needed to

provide the underlying model. The Mechanical Simulator is the simulator that is used

for testing the laser focus software on Testbench. In combination with the Plasma

Simulator, it contains all required functionality for executing the CPD A use case. An

architecture is presented that combines these simulators.

Figure 5.4 compares this architecture with the existing architecture, which makes use

of the Laser Focus Driver Stub. The component structure of the simulation is

changed in such a way that this stub is replaced by the real Laser Focus Driver

software.

Figure 5.4 – Control flow in the Driver Stub and the Mechanical Simulator

5.3.1 Challenges

Integrating the described simulators leads to two main challenges. The first challenge

is that the Mechanical Simulator is an active simulator, whereas the Plasma Simu-

lator is reactive. This can lead to issues related to synchronization and performance.

The second challenge is that the Mechanical Simulator does not provide an external

software interface for retrieving simulation data. In order to integrate the simulators,

these challenges have to be overcome.

Limitation

In a naïve approach to connecting the Mechanical Simulator to the Plasma Simulator,

all output data from the Mechanical Simulator leads to an update within the Plasma

Simulator. Because the mechanical Simulator is an active simulator, this output data

is generated based on a clock frequency. Thus, in this solution, the Plasma Simulator

would update based on this frequency, and become an active simulator. This is

undesirable, because:

CPD

Applications

Domain Facilities

Metrology

Subsystem

Subsystem

CPD A

Mechanical

Simulator

Plasma

Simulator

Real

Sim

Laser Focus

Driver

CPD A

Laser Focus

Driver Stub

Plasma

Simulator

22

 The update frequency is very high. Plasma simulation requires time to complete,

so this would have a strong impact on simulation performance.

 The Devbench platform does not support real-time behavior. Thus, timing is

inherently unreliable. Time triggers may be delayed and the required information

may not be propagated to the Plasma Simulator in time (before the CPD applica-

tion measures it). This results in unreliable simulation results that are difficult to

reproduce.

Simulation Interface

In order to execute CPD A successfully, information needs to be exchanged between

the laser focus and the plasma simulation. In order to do this, an interface is required

between these two simulators. None of the existing software interfaces can be used

for this task because they are meant for use in production, and simulation may

interfere with this.

Another option is the creation of a new interface. Several significant challenges are

involved in this approach:

 The Mechanical Simulator is implemented as part of the Motion Control compo-

nent, which is a production component. Adding an interface to this component

adds to the complexity of the software and possibly leads to problems in produc-

tion.

 The architectural guidelines do not allow the addition of an interface that is used

exclusively for software testing to a component that is used in production be-

cause this leads to unnecessary risks. Furthermore, it introduces an additional

maintenance and testing burden. Because it is used in production, this burden is

heavier than for a component that is only used in testing.

 Due to very limited knowledge of the Motion Control component, a significant

investment of time and effort is required to not only add an interface to this

component, but also connect it to the internals of the component.

5.3.2 Solution Alternatives

Because of these challenges, a more refined approach is needed. In order to avoid

synchronization issues, this approach has the following restrictions:

 The Plasma Simulator should remain reactive. This means that for any set of

external inputs (triggers from production software), an upper bound can be

placed on the number of times the Plasma Simulator is updated.

 All plasma state updates that result from a trigger from production software must

be processed before the software measures the change.

This second restriction depends on the software that performs the measurement. In

the evaluated use cases, no measurements are performed during motion. We choose

to define the behavior during motion as undefined. Thus, as long as a motion is in

progress from the perspective of the software, any measurement cannot be considered

valid. During this time, the state of the plasma can be updated.

The advantage of doing this is that the system can be treated as fully reactive, be-

cause the system state is always stable at the time of measurement. The main dis-

advantage to doing this is that any measurements that are done during motion (for

example, due to a bug) may lead to the wrong results, without being detected.

Furthermore, in order to support future scenarios that require support for measure-

ments during motion, the simulator design needs to be revised.

Various possible solutions were evaluated. Because the creation of a new simulation

interface for the Mechanical Simulator was not considered feasible, one of the

production interfaces was used. A filter component was evaluated, which evaluates

the data to find out when to retrieve data from the system. Furthermore, a proxy

element was evaluated, which evaluates internal system communication to find out

when to retrieve data.

23

Filter

The first alternative is to introduce a lightweight “filter” element in the communi-

cation between the Motion Control component and the CPD application. This filter

constantly reads the machine state from the Motion Control component. It then

inspects the data to see if it is necessary to send an update to the Plasma Simulator.

The main challenge here is to define what the conditions for the update should be.

Because of the low level of abstraction, no set of conditions was found that would

lead to a bounded number of updates.

Furthermore, because the solution is not run in a real-time environment, it cannot be

guaranteed that all generated information is read in time (before measurements are

performed). This may lead to missed updates, which can ultimately lead to undefined

behavior and lower reproducibility of results.

This alternative exclusively uses existing software interfaces and therefore requires

no changes to production code. However, the implementation depends strongly on

the domain, so it cannot be applied generically. Finally, it is unclear whether this

alternative is feasible, and how robust the solution would be to future changes in the

software.

Proxy

The second alternative is to implement a “proxy” element that listens to internal

communication in order to time the updates. Whenever a command is finished, the

proxy intercepts the completion message, reads out the required data, and forwards

the completion message to its original destination.

Figure 5.5 – Control flow in a deployment with a proxy component

This way, exactly one update is sent per trigger, and all updates are sent before

motions are completed as observed by the software, because the completion message

is delayed until after the update is sent.

This alternative leads to an architectural issue. Because the proxy, which is a simula-

tion component, relays control flow directly to the driver, this driver must also be

part of simulation, while the requirements state that this should not be the case.

Figure 5.5 illustrates this by connecting the components based on control flow.

In relation to this, there is a dependency on the correctness of the intercepted mes-

sages. Because these messages come from the system under test, their correctness

cannot be assumed. When these messages are not sent correctly, this problem may

CPD

Applications

Domain Facilities

Metrology

Subsystem

CPD A

Mechanical

Simulator

Plasma

Simulator

Unknown

Sim

Laser Focus

Driver

Unknown Proxy

Real

Unknown

24

not be observable in the simulation or the simulation may behave differently. This

can lead to false positives in tests, or failures that are hard to trace.

Stubs

The third alternative is to abstract from Motion Control altogether. Instead of using

the Mechanical Simulator, the Motion Control Stubs can be used. By attaching a

reactive model to these stubs, it is possible to satisfy the technical requirements for

CPD A relating to motion control.

Creating this model requires knowledge of the workings of the motion control, as

well as a basic understanding of the laser focus hardware. However, this investment

results in a simulation that does not require changes in production code and is easy to

extend to support other use cases, such as the CPD B use case.

By adding a model to these stubs, they can no longer be regarded as stubs. In the

remainder of this document, this solution is referred to as Motion Simulator.

Comparison

Table 5.3 gives an overview of the presented solutions and compares them based on

several criteria. These criteria were selected based on the specific qualities of the

various solutions.

Table 5.3 – Comparison of approaches for case A

Criterion Interface Filter Proxy Stubs

Approach is generic ✓ ✓ ✓

Data is guaranteed stable ✓ ✓ ✓

Allows full test coverage of subsystems ✓ ✓ ✓

Subsystem driver not in simulation ✓ ✓ ?
2
 ✓

Only minimal system knowledge required ✓

No modifications to production code ✓ ✓ ✓

No communication from subsystem level ✓ ✓ ✓

Extendable model ✓

The filter solution is disregarded based on its specific nature. The additional interface

was not considered feasible due to its impact on production code. A detailed design

and prototype implementation was made of the two remaining alternatives. Section

6.2 describes the design of these alternatives in detail.

5.4 Case B
In order to execute the CPD B use case successfully in simulation, it is necessary to

simulate optics within the system. Because no simulator exists for this, a simulator

needs to be created. This is done by extending an existing simulator to support this

use case. Because of its extensibility, the Motion Simulator, which is the simulator

based on the Motion Control Stubs, is used. By extending the model of this simula-

tor, the optical properties that are required by CPD B can be simulated.

5.4.1 Camera Simulator

In addition to being passed to the CPD application, the data resulting from the optical

model is used as input for the Camera Simulator. The Camera Simulator provides a

means of visualizing the simulated data in the form of realistic camera images. These

images can be viewed to evaluate the behavior of the CPD application.

2
 Because the proxy is higher in terms of communication flow and this proxy could

be considered a simulation component, the driver can be considered to be running in

simulation.

25

Figure 5.6 – Control flow after the integration of the Camera Simulator

Figure 5.6 shows the control flow in a deployment that includes the Camera Simu-

lator. The Camera Simulator is connected to the local file system. This way, camera

pictures get stored in permanent storage, which is useful for validation and demon-

stration purposes.

Because the camera exists on the same architectural level as Motion Control, the

Motion Simulator is allowed to depend on the Camera Simulator and control flow is

allowed to go from the Motion Simulator to the Camera Simulator. Because of this, it

is not necessary to reverse the dependency as in the integration with the Plasma

Simulator.

Both the Motion Simulator and the Camera Simulator are reactive, so no synchroni-

zation issues need to be taken into account. No cyclic data flow is occurring, so this

is ignored at this stage. This leads to a simple design in based on direct communica-

tion using the existing interface of the camera simulation. ■

CPD

Applications

Domain Facilities

Metrology

Subsystem

CPD B

Motion

Simulator

Plasma

Simulator

Real

Sim

Laser Focus

Driver

Camera

Simulator

27

6 System Design
After applying the generic guidelines on the specific use cases, forming a basis for

the solutions, we evaluate how these solutions can be designed.

6.1 Introduction
Based on the high-level architecture that is described in Chapter 5, the various

components and interfaces that play a role in the system are designed. The designs

are separated in the two use cases.

6.2 Case A
Out of the four evaluated architectural options for integrating simulation of the laser

focus with plasma simulation, two were selected for a detailed design. The first

option that was chosen uses the Mechanical Simulator for simulation and updates the

information in the Plasma Simulator by intercepting high-level messages. The second

option that was chosen does not use the Mechanical Simulator but uses the Motion

Control Stubs instead. Proper simulation is achieved by attaching a model to these

stubs. These two alternatives lead to different designs.

6.2.1 Proxy Approach

In order to update Plasma Simulator at the right moment (right after a motion

completes, before measurement starts), a proxy class is used. This is an application of

the proxy design pattern [1].

The central concept in this pattern, shown in Figure 6.1, is the proxy class. This

proxy class, which implements the same interface as the subject, is responsible for

delegating calls to the subject. By extending the proxy, it is possible to add additional

behavior to some of the calls. For example, it can modify the parameters before

delegating the calls, it can have additional behavior before or after delegation, and it

can even choose not to delegate certain calls.

Figure 6.1 – Proxy design pattern

In the case of the Laser Focus Driver, the real driver (Subject) and the proxy (Sub-

jectProxy) implement the same interface (ISubject). Communications with the client

(CPD application) are directed to the proxy object. This is done transparently; it has

no impact on the client code. The proxy delegates all calls to the real driver unmodi-

class Proxy

«interface»

ISubject

method()

SubjectProxy

method()

Subject

method()

Client

delegate

1

28

fied. Some of the calls have the side effect of triggering the simulator to perform a

state update.

Communication

The behavior of the proxy is shown in Figure 6.2. After completion of certain high-

level operations (such as initialization and movement of the laser focus point), the

proxy is triggered to generate an update. This update is generated before the CPD

application is notified that the focus position was changed. This is done to prevent

changes to the state of the motion while the update is in progress, thereby eliminating

possible synchronization issues.

Figure 6.2 – Conceptual view of component-level interactions of the Proxy component

6.2.2 Stubs Approach

Instead of intercepting high-level behavior, calls to the Motion Control component

may be used. This is done by means of the Motion Control Stubs. Figure 6.3 de-

scribes interactions that lead to a state update in the Plasma Simulator.

Figure 6.3 – Conceptual view of component-level interactions of the Motion Control Stubs

Model

For simulating motion, a simple model is used. In this model, all motions are instan-

taneous. The timing that is involved in motion is not modeled. For example, if an

sd Proxy

PlasmaSimulatorMotionControlDriverProxyCPDApplication

setLaserFocus(focus)

updateState(state)

move()

:state

setLaserFocus(focus)

getState()

sd Stubs

CPDApplication Driver MotionControlStubs PlasmaSimulator

move()

updateState(state)

setLaserFocus(focus)

29

actuator is instructed to move to a certain position within three seconds, the actuator

is immediately changed to this position (ignoring the desired timing). This model is

sufficient for the use cases in the scope of this project.

Observer

From Figure 6.2 it can be seen that a direct call is going from the stubs to the Plasma

Simulator. Therefore, the Plasma Simulator must provide an interface to the stubs,

which are on a lower architectural layer. This is undesirable for reasons described in

Section 5.2.1. This dependency is reversed by introducing the Observer design

pattern.

After applying this pattern, the Plasma Simulator becomes a listener to state changes

in the Motion Control Stubs. After each motion, an update is triggered in the Plasma

Simulator, allowing it to update based on the new state.

Adapter

In order for the state of the Plasma Simulator to update correctly, it must react to the

updates from the Motion Control Stubs. However, the (observer) interface provided

by these stubs does not match the interface that is used to update state in the Plasma

Simulator. In order to connect the two interfaces, the adapter pattern [1] is applied.

This pattern, shown in Figure 6.4, adapts the interface of an object (Adaptee) to

another interface (ITarget) using an additional class (Adapter).

Figure 6.4 – Object adapter design pattern

In the specific case of the stubs, the ITarget interface is the observer interface as

described in the previous section, the Adaptee is the class that is used for updating the

Plasma Simulator, and the adapter is a new class that translates an update from the

Motion Control Stubs into an update in the Plasma Simulator.

Extension Options

The Motion Control Stubs currently exhibit only simple behavior. In order to cover

more use cases, its model can be extended to form a complete reactive simulator for

the Motion Control component. The interface to the Plasma Simulator is designed

such that this type of extensions does not require changes in the interface. Additional

features such as error injection require this interface to be extended.

6.3 Case B
In order to support case B, simulation of optics is embedded in the Motion Control

Stubs. This is done by extending the simple model from Section 6.2.2 with a more

advanced model that allows various types of interactions between components,

turning the Motion Control Stubs into a complete simulator called Motion Simulator.

class Adapter

Client

Adapter

request()

«interface»

ITarget

request()

Adaptee

specificRequest()

adaptee.specificRequest()

adaptee

30

This section restricts itself to describing the design of the extended model, without

describing the optical model that is implemented as part of this design.

6.3.1 Simulation Model

The design of the model, an overview of which is shown in Figure 6.5, is based

directly on the domain model for simulation, as presented in Section 1.1.5. The

model consists of model elements (sensors and actuators) and interactions between

them. Based on the existing interfaces, actuators are modeled as physical actuators

with small control systems. As such, they have a position, a setpoint, and a trajectory

end position. Sensors only have a value.

Figure 6.5 – Design of the simulator model

A specialized interaction (ActuatorEncoderInteraction) exists to allow the sensors to

measure the actuator positions. In order for a model element not to be dependent on

its interactions, the observer pattern is used to notify an interaction when the state of

one of the model elements on which it depends is changed.

Figure 6.6 shows a sequence of interactions that shows how the observer pattern is

deployed in this interaction. When the actuator is requested to move, its setpoint and

position are updated. When this happens, all listeners, including the interaction, are

updated. The interaction, after being triggered, simply makes the value of the sensor

equal to the actuator position.

class SimulatorModel

SimulatorModel

findElement(String): ModelElement

Observable

ModelElement

name: String

name(): String

Actuator

endPosition(float): void

setpoint(float): void

endPosition(): float

startMove()

setpoint(): float

position(): float

Sensor

value(float)

value(): float

Interaction

ActuatorEncoderInteraction

update(Actuator): void

sensor 1

interactions

*

actuator 1

elements *

31

Figure 6.6 – Sequence diagram demonstrating the behavior of an interaction

Although various actuators, sensors, and interactions exist within the system, only a

few are modeled, in order to support the current use cases. The model is extendable

with more elements to support other use cases.

Behavior

While the simple model that is described in Section 6.2.2 is sufficient for the use

cases in the scope of this project, future use cases will require different behavior.

Such behavior can include a model of motion that is more accurate with respect to

time, or a model that includes broken sensors for testing bad-weather behavior. In

order to support this type of extensions, the behavior of the model elements is

separated from the state of the model elements. This generic concept allows the

behavior of a model element to be changed based on a use case. For example,

scenarios with broken sensors can be supported by replacing the behavior of a sensor

with the behavior of a broken sensor.

Figure 6.7 – Strategy design pattern

This separation is done by means of the strategy design pattern [1], shown in Figure

6.7. This pattern allows behavior to be defined dynamically. Here, the Client is one

of the model elements, and each ConcreteStrategy contains a description of the

behavior of this model element. When requested to perform a certain operation, the

model element delegates the request to its associated behavior.

sd ActuatorEncoderInteraction

:ActuatorEncoderInteraction:Actuator

FFA Driver

:Sensor

endPosition(endPosition)

startMove()

update(self)

notify(self)

position(): endPosition

value(endPosition)

class Strategy

Client «interface»

IStrategy

operation()

ConcreteStrategyA

operation()

ConcreteStrategyB

operation()

strategy

1

32

Figure 6.8 – Actuator model element with separated behavior

The application of the pattern results in a structure as shown in Figure 6.8. While this

figure shows only the actuator model element, this structure is used as a generic

template for the other model elements. In this figure, the ActuatorBehavior is the

strategy interface (IStrategy) and classes implementing this interface describe the

concrete behavior. The state is stored in a separate ActuatorState object, which is

modified only by the concrete behaviors.

The implementation of a model element is separated into commands and queries.

Commands are delegated to the behavior, but queries are executed directly on the

model. Figure 6.9 shows how this applies to actuators. In this figure, the only

behavior for the end position is to change the state, but other types of behaviors may

work differently.

class ModelElement

Actuator

endPosition(float): void

setpoint(float): void

endPosition(): float

startMove()

setpoint(): float

position(): float

ActuatorState

endPosition(float): void

setpoint(float): void

position(float): void

endPosition(): float

setpoint(): float

position(): float

«interface»

ActuatorBehav ior

endPosition(ActuatorState, float): void

setpoint(ActuatorState, float): void

startMove(ActuatorState)

Observable

ModelElement

name(): String

state

1

behavior 0..1

33

Figure 6.9 – Commands versus queries in Actuator class

An example of a class that implements the ActuatorBehavior interface is the Basi-

cActuatorBehavior class, which captures the model that is described as part of

Section 6.2.2, in which:

 an actuator setpoint is equal to its physical position at all times

 a motion is an instantaneous operation that makes the setpoint and position of an

actuator equal to the end position of the motion

This is achieved by providing an implementation of the required ActuatorBehavior

methods in this class that reflects this model.

Construction

Construction of the behaviors is done by means of the abstract factory pattern [1].

This pattern, which is shown in Figure 6.10, allows a client to instantiate objects

without specifying their concrete type. The abstract products in this pattern relate to

model elements, such as actuators and sensors.

Figure 6.10 – Abstract factory design pattern

sd ActuatorBehav ior

:Actuator behavior:

BasicActuatorBehavior

state: ActuatorState

Driver

Commands are redirected

to the behavior

Queries are directly

performed on the state

endPosition(p)

:p

endPosition(state, p)

endPosition(): float

:p

endPosition(p)

endPosition(): float

class AbstractFactory

Client

AbstractProductA AbstractProductB

ProductA1 ProductA2 ProductB1 ProductB2

AbstractFactory

createProductA(): AbstractProductA

createProductB(): AbstractProductB

ConcreteFactory1

createProductA(): AbstractProductA

createProductB(): AbstractProductB

ConcreteFactory2

createProductA(): AbstractProductA

createProductB(): AbstractProductB

«instantiate»

«instantiate»
«instantiate»

«instantiate»

34

For the behaviors, this pattern is applied as in Figure 6.11. By implementing the

BehaviorFactory interface, a class can determine what type of ActuatorBehavior and

SensorBehavior can be created. Because currently only the BasicActuatorBehavior

and BasicSensorBehavior are defined, the BasicBehaviorFactory is the only shown

factory.

Figure 6.11 – Application of the Generic Factory pattern in behavior construction

Packages

The described simulation model is separated into a number of packages. The overall

architecture is separated into a model, view, and controller (MVC architecture),

reflected in the names of the packages. In total, five packages are part of the Motion

Simulator:

 Model
This package contains the model elements, combined with their states and (ab-

stract) behaviors. In addition to this, it contains the available interactions and the

SimulatorModel class, which models the entire system by instantiating and con-

necting the available model elements and interactions.

 View
This package contains the interface that is used for observing the model state. It

is used to connect the Motion Simulator to the Plasma Simulator.

 Controller
This package provides the software interface to which the production software

connects.

 Observer
This package is a utility package containing the required classes for the observer

pattern. This package is reusable between components.

 BasicBehavior
This package provides an implementation of the behavior of the model elements.

While this is currently the only defined behavior, it is possible to create other

types of behavior by implementing the same set of interfaces from the Model

package.

class Behav iorFactory

«interface»

Model::ActuatorBehav ior

endPosition(ActuatorState, float)

setpoint(ActuatorState, float)

startMove(ActuatorState)

«interface»

Model::Behav iorFactory

createBehavior(Actuator)

createBehavior(Sensor)

BasicActuatorBehav ior

endPosition(ActuatorState, float)

setpoint(ActuatorState, float)

startMove(ActuatorState)

BasicBehav iorFactory

createBehavior(Actuator)

createBehavior(Sensor)

«interface»

Model::

SensorBehav ior

value(float)

BasicSensorBehav ior

value(float)

«instantiate»
«instantiate»

35

Figure 6.12 – Package diagram of Motion Simulator

Figure 6.12 shows the relations between the packages. The shown dependencies

between the Model, View, and Controller are commonly found in MVC architectures.

The Basicbehavior package provides an implementation of several interfaces in the

model and therefore depends on the Model package.

The additional model that is required for the CPD B use case is designed within this

framework by extending the Model package with additional model elements and

interactions. This extended model provides all functionality that is required for the

CPD B use case. ■

pkg MotionSimulator

BasicBehav ior

BasicActuatorBehavior

BasicBehaviorFactory

BasicSensorBehavior

Controller

MotionControlController

Model

Actuator

ActuatorEncoderInteraction

ActuatorState

Interaction

ModelElement

Sensor

SensorState

SimulatorModel

ActuatorBehavior

BehaviorFactory

ModelObserver

SensorBehavior

Observ er

Observable

Observer

View

MotionControlView

MotionControlObserver

«use»

«use»

«use»

«use»

«use»

37

7 Conclusions
The detailed designs were implemented as prototypes. By applying them in the use

cases, we show that they provide the expected benefits. We then finish by giving

possible directions for future work that builds on these results.

7.1 Results
A generic approach to the integration of simulators in the EUV Source software was

given. This approach was applied to two use cases, in the form of the validation of

CPD applications. Doing this resulted in concrete designs and prototype implemen-

tations of these designs.

These designs make use of existing simulators where possible. Extensions of these

existing simulators were provided to support the test requirements for which simula-

tion was not available, such as simulation of the optical effects that were required for

the CPD B use case.

The prototypes were verified by executing the use cases on the prototype solutions.

This gave varying results. The CPD A use case was completed successfully, showing

that the design leads to working software. The first part of the CPD B use case was

also completed successfully, showing that the integration of simulators leads to

improved testing capabilities.

Failure of the second part of this CPD application helped identify concrete problems

in the functionality of the CPD application itself. These problems, which could

otherwise only be found on an actual machine, were easy to identify using the camera

simulation. By finding these issues early, on a highly available test platform, it was

demonstrated that this method of simulation provides the expected benefits.

7.2 Future Work
Because it was shown that the given approach can be used for the integration of

simulators and can lead to better integration test coverage using Software-in-the-

Loop simulation, most future work is directed towards applying this approach in

other use cases.

In the first place, the current designs can be extended to allow for full qualification of

CPD B, as the development of this application is continued. In addition to this,

extensions can be made for other CPD applications for which SiL simulation is

considered appropriate.

In addition to the subsystems that were in focus of this project, other subsystems can

also benefit from this approach. For example, applying the approach to CPD applica-

tions for the tin droplets could improve testing in this subsystem.

Another possible extension is mapping this approach to HiL simulation. This is

expected to lead to similar benefits as on SiL simulation, but allows better testing of

integration with the hardware platform and real-time behavior. This would contribute

to the intended testing process, which is shown in Section 4.1. The intention is to

qualify the software of the EUV Source using a combination of testing with SiL

simulation, HiL simulation, and on a real machine.

A final future direction is related to the design of a simulator model. Part of this

design of the simulator model is a template for elements of a simulator model, based

on the separation of state and behavior. In order to facilitate the creation of these

model elements, code generation can be used. By generating these elements from a

38

high-level description of a model, only the behavioral aspects of the simulation

(interactions and behaviors) have to be provided. Supporting this type of workflow in

the creation of simulator models to support new use cases is future work. ■

39

8 Project Management
In this chapter, we describe the project from a project management perspective. We

focus on the used methods, as well as the risks and challenges during the project.

8.1 Introduction
One of the characteristics of this project is that it combines knowledge about the

system architecture with detailed knowledge about the evaluated subsystems and

their software implementations. In order to manage acquiring this knowledge, the

project was divided into a number of milestones, each preceded by its own domain

and risk analysis. Based on the results of this analysis, the exact target for the

milestone was determined by aligning the views of the main stakeholders.

The user requirements and overall project plan were used as a basis for this target,

but the analyses determine the actual steps. This approach is robust against dealing

with unknowns by allowing milestone targets to flexible based on the learned

information during the moments where this information is most relevant.

Each milestone builds upon the solution design and contains a prototype implemen-

tation of the design. The design is part of this document and the code of the proto-

types is delivered documented and tested as part of this project.

The project is separated into two phases, each with a focus on a specific use case.

The first phase contains two milestones and the second phase contains three mile-

stones.

8.2 Work Breakdown
Figure 8.1 shows the work breakdown structure of the project. This figure shows how

the design aspect of the project is split into two phases, both consisting of milestones.

40

Figure 8.1 – Project work breakdown structure

8.3 Project Planning and Scheduling
The overall project schedule is shown in Figure 8.2. This schedule marks several

important dates in the project, including the ends of the two phases and the final

presentation.

R
eq

u
ir

em
en

ts

Business Case

User Requirements

Use Cases

D
es

ig
n

Solution Direction

Case A

Design

Milestone 1 (Proxy)

Milestone 2 (Stub)

Milestone 3 (Observer)

Case B

Design

Milestone 1 (Model)

Milestone 2 (Camera)

V
er

if
ic

at
io

n

Unit tests

Validation tests

D
o

cu
m

en
ta

ti
o

n

Intermediate
Presentation

XPO Presentation

Final Presentation
+ Defence

Final Report

Full version
(confidential)

Abbreviated version
(public)

41

Figure 8.2 – Project timeline containing important dates

Appendix B contains the project Gantt charts. This chart divides the work over the

available time. The allocated time slots leave a buffer before deliveries. This allows

for delays in deliveries. The time allocation evolves during the project, as more data

such as deadlines and presentation dates is available. This results in shifts and

changes in the length of the allocated time slots.

It should be noted that the global project plan does not show deadlines. Instead, it

shows when each work item will be worked on. At the end of such a period, the item

may not be 100% completed. This may happen because, for instance, the item

requires verification by other parties. At the end of the period, the required effort

before release should be minimal, and the risks for a work item should be addressed.

The overlapping time slots allow for a risk-based time division. In such a case, time

is allocated to both items, where the item with the highest risk gets priority.

It can be seen that the final weeks of the project are empty. This time is used for

finalizing activities such as support and knowledge transfer. Furthermore, it allows

room for extensions to the prototype implementation if needed.

8.3.1 Evolution of Planning

Over the course of the project, several changes were made to the original planning.

This original planning is shown in Appendix B.1. Apart from small shifts, caused by

new information regarding deadlines for deliverables, there are changes in the

milestones. The main difference is that the first phase has one missing milestone, and

the second phase has one extra milestone.

This change is caused by the changes from the analysis phases. While it was original-

ly expected that a simulator could be integrated in a single, larger milestone, an

investigation led to two distinct approaches. Both were executed as separate mile-

stones, and both could be executed in the original time span set for the first phase.

Similarly, in the second phase, the original expectation was to enable image pro-

cessing in the first milestone. After analysis, it was found that this was not required

in order to satisfy the requirements. Instead, more effort was required in the other

elements, due to the missing optical model.

The final change is the distinction between the public and confidential report, which

was not present in the original planning.

8.4 Deliverables
The list of deliverables for the project is given in Table 8.1. Because of the possible

confidentiality of some of the contained information, public deliverables require a

review by the company’s Technical Publications Board (TPB) before delivery. The

submission date for this review is denoted by the internal deadline. For most public

deliveries, an additional week is added on top of the regular two weeks for the TPB

review in order to allow processing of the feedback from this review.

Table 8.1 – List of project deliverables

January February March April May June July August September

January 31

Ini tial Project Plan

February 16

Problem
Description

September 25
XPO PresentationApril 13

Intermediate

Presentation September 8

Final

Presentation

April 24

FFA Simulator
Integration Prototypes

May 1

FFA Simulator
Integration Design

August 17

FFMBPC on Devbench
Des ign + Prototypes

August 5

Review Draft Final
Report

42

Deliverable Confidentiality Deadline

(internal)

Deadline

(external)

Notes

Initial Project

Plan

Confidential 2015-01-30 2015-01-30

Requirements

Document

Confidential 2015-03-05 2015-03-05 Part of Final

Report

Intermediate

Presentation TU/e

Public 2015-03-16 2015-04-13 Requires TPB

Review

Initial

Performance

Evaluation

Public 2015-03-31 2015-03-31 Submitted to OOTI

before third PSG

Meeting

Intermediate

Performance

Evaluation

Public 2015-06-02 2015-06-02 Submitted to OOTI

before fifth PSG

Meeting

Design Document Confidential 2015-09-21 2015-09-21 Part of Final

Report

Abbreviated Final

Report

Public 2015-08-11 2015-09-01 Submitted to exam

committee after

TPB review

No concept version

because of TPB

screening

Draft Final Report 2015-07-14 2015-07-28 Requires TPB

confidentiality

check

Submitted for

technical writing

review by Judith

Strother

Concept Final

Report

Confidential 2015-09-01 2015-09-01 Submitted to exam

committee

Deadline: 7

working days

before Final

Presentation

XPO Presentation Public 2015-09-03 2015-09-25 Requires TPB

Review

To be determined

not later than the

beginning of

September

Final Presentation Confidential 2015-09-08

2015-09-08

Final Report Confidential 2015-09-21 2015-09-21 After changes

proposed at Final

Presentation

Deadline: 3 days

after Final

Presentation

Article Project

Booklet

Public 2015-09-06 2015-09-20 Requires TPB

review

8.5 Risk Management
Table 8.2 describes a set of risks for the project, including mitigation strategies. The

risks with the highest magnitude (probability multiplied by impact) are at the top of

this table.

Table 8.2 – Evaluation of project risks

Threat Consequences Strategy Method

1. A required Not all requirements Avoid Evaluate candidates early.

43

Table 8.2 – Evaluation of project risks

Threat Consequences Strategy Method

component cannot be

integrated because of

technical reasons or

scope.

are satisfied. Control Negotiate whether the

integration is essential.

Accept Develop a version of the

component that can be

integrated.

2. A component

cannot run on the

required system.

The component

cannot be

integrated.

Avoid Make an inventory of the

components and try to run

them on the system.

Accept Allocate time for (partial)

porting of the components.

3. The main source

of information on a

component becomes

unavailable for an

extended period.

Part of the system

may have to be

reverse engineered,

which requires

additional time.

Avoid Find at least one other

source for the required

knowledge, if possible.

Control Get most of the required

information as early as

possible.

4. Priorities of

requirements from

stakeholders change.

Example:

Stakeholders may want

to deploy on

Testbench as opposed

to Devbench.

The wrong problem

is solved.

Avoid Have a view of the long-

term goals and discuss the

priorities beforehand in

order to be able to

anticipate.

Control Discuss implications and

feasibility within the project

and change task priorities

accordingly.

5. New

requirements arise.

The solution is not

changed with the

problem, which may

lead to results of

little value.

Avoid Have a view of the

important stakeholders and

on how the system is going

to be used.

Control Discuss feasibility, priority

and change project plan

accordingly.

6. Hidden

complexities occur in

the design.

More time is needed

to implement

prototypes.

Avoid Ask experts on the current

architecture about the

problems they think will

occur.

Accept Make sure enough time is

allocated to the

implementation steps.

7. A supervisor is

unavailable for an

extended period.

An important party

is not supervising

process and

progress, so the

project may move in

the wrong direction.

Control Discuss a replacement

supervisor, preferably with

knowledge about the

project.

8. Office space at

the company is lost.

Access to my

stakeholders or

sources of

information is

limited.

Control Discuss contact methods for

important stakeholders.

44

Table 8.2 – Evaluation of project risks

Threat Consequences Strategy Method

9. Data is lost. Part of the project is

undocumented.

Avoid Save all data in a location

that is automatically backed

up through the company

backup process. The "How

to Secure Data" intranet

page describes where to

store which types of files.

10. Documents or

presentations are not

approved for

publication.

Deliverables cannot

be made in time or

presentations cannot

be given.

Avoid Plan enough time for

modifications after review,

before the deadline.

Control Leave time to switch

presentation dates with a

colleague.

Accept Make a confidential version

and an abridged public

version, with most of the

details removed.

11. Required

software becomes

unavailable.

Example:

Build server,

Devbench

Code can

temporarily not be

written or tested.

Avoid Be aware of planned

downtimes and plan

activities accordingly.

Control In case of an extended

period, negotiate about

making the tooling (or

similar tooling) available

for this project.

Accept Plan a buffer period for this

type of problems.

During the project, some of these risks occurred. Risk 1 occurred in the integration of

the Mechanical Simulator. Multiple approaches were evaluated and eventually,

another candidate was chosen. Risk 3 occurred with during integration on the Plasma

Simulator side. Some reverse engineering was done to understand how data is

generated in this component. Because this was caused by a hidden complexity (risk

6), avoidance was not possible. This hidden complexity occurred despite the avoid-

ance step of consulting experts because no expert has knowledge about both the

Plasma Simulator and CPD B.

8.6 Conclusions
Early on in the project, a strategy was devised to deal with acquiring knowledge

throughout the project. This led to a risk-oriented process that is flexible, in order to

accommodate new knowledge, and involves the important stakeholders in decisions

about the project direction.

Although this process resulted in a project with a difficult-to-predict course, the focus

on risk and benefit for the stakeholders in the decision process ultimately led to a

solution that not only satisfies the main requirements, but also gives valuable insights

into the current software architecture. ■

45

9 Project Retrospective
At the end of the project, we look back on the design opportunities, to evaluate their

role in the final design. Finally, we reflect on the project as a whole.

9.1 Design opportunities revisited
The main design opportunity in this project was the creation of an architecture that

combines the capabilities of multiple simulators by integrating them. This was

addressed in both a generic and a specific way, where the latter was shown to be an

answer to the problem statement.

In the design, the focus was put on the four design criteria of genericity, realizability,

documentation, and impact.

The genericity criterion was addressed by the generic solution. The approach and

guidelines in this solution are generic to the EUV Source software, and can therefore

be applied to other use cases within this system as well.

The realizability criterion was addressed by the specific solutions. By making designs

that focus on specific use cases, it was possible to make prototype implementations to

demonstrate feasibility.

The documentation of the approach is part of this document. The solutions are

documented at a level that is expected to be understandable for a software engineer or

architect working on the EUV Source. This facilitates the application of the docu-

mented approach in other parts of the EUV Source.

The impact criterion was addressed by demos of the prototype implementations.

Showing that this approach leads to software that can be used easily with existing test

scenarios helped demonstrate that the integration of simulators is a feasible and

useful method for increasing integration test coverage.

9.2 Reflection
As in many projects in new environments, I spent a lot of time in this project on

acquiring the required domain knowledge, getting familiar with the way of working

within the company, and finding connections within the company. In order to do this,

regular conversations with the various stakeholders were important. For this reason,

it was useful to have an overview of the project stakeholders.

In addition to the information relating to the company and the problem domain,

information was needed about the system. One of the things that helped me a lot in

understanding the system architecture was the creation of the prototype implementa-

tions. Because these prototypes make use of various real software components, I

developed new insights into the system works by building these prototypes. This

hands-on experience with the architecture during the design phases contributed

strongly to my understanding of the way the system works as a whole, leading to a

better overall design.

During the project, I did not only obtain knowledge that applies specifically to this

project. I also developed knowledge and skills in the general topics of simulation and

the integration of components within a software architecture. On the organizational

side, the main skills I practiced were working with risks and unknowns, as well as

communication with stakeholders.

An important realization that I will take away from this project is the importance of

demoability: the appeal of a product in a demonstration. In the initial stages of the

46

project, most presentations were accompanied by abstract figures and explanations,

which were not easy to follow for some of the stakeholders. In later stages, demos of

the prototype implementations helped illustrate the concepts behind the design, while

involving the audience more.

In the final stages of the project, we chose to integrate the Camera Simulator into the

existing solution. The main reason for this choice was to improve demoability. After

creating a prototype implementation including this Camera Simulator, the demos

started to look more impressive. This made it easier for the audience to see the added

value of the project, leading to enthusiastic reactions from various stakeholders.

This enthusiasm was important because of the intention to use the results of this

project in the company. As the project reached its final phases, people gradually

became convinced this is a good approach to testing using simulation.

The final prototype for the second phase was evaluated by two of the eventual users

of the simulation solution, to get feedback from their experience. They could execute

most of the steps in simulation as they could on the actual machine, and the results of

the simulation looked realistic. Both users found the prototype very helpful in finding

issues in the software without needing the actual machine.

During these evaluations, an actual problem was identified in the functionality of the

software. This helped further underline the usefulness of this type of testing during

the development process. By finding this issue and having the capabilities of testing

the fixed software, a lot of the testing time on the machine can be prevented, which

gives significant benefits to the company and validates my work in this project. ■

47

Abbreviations
Abbreviation Meaning

ASML Not an abbreviation
3

CPD Calibration, Performance Measurement, Diagnostics

EUV Extreme Ultraviolet

HiL Hardware-in-the-Loop

IP Image Processing

MoSCoW Must do, Should do, Could do, Would (or Won’t) do

OOTI Ontwerpersopleiding Technische Informatica (see ST)

OS Operating System

PDEng Professional Doctorate in Engineering

SiL Software-in-the-Loop

ST Software Technology

SUT System under Test

TU/e Eindhoven University of Technology

3
 ASML was originally a joint venture between the Dutch companies Advanced

Semiconductor Materials International (ASMI) and Philips. The L in its name stands

for Lithography.

48

Glossary
Term Description Section

Active Simulator Simulator that updates its model based on time

events

5.2.2

Adapter Design pattern that maps an interface onto

another interface

6.2.2

ASML Company in Veldhoven that produces machines

for photolithography

1

Beam See Laser

Camera Simulator Reactive simulator capable of producing camera

pictures

5.4.1

CPD Application Application used for calibration, performance

measurement, or diagnostics purposes

4.1

Devbench Testing platform used with software-in-the-loop

simulation within the company

1.1.5

EUV Source System producing EUV light by pointing a laser

at a droplet of molten tin

1.1.2

Hardware-in-the-Loop Testing method in which mechanics, but not

electronics, are replaced by simulation

1.1.5

Laser Powerful, directional beam of light, input to the

EUV Source

1.1.2

Lithography See photolithography

Mechanical Simulator Active simulator of motions required for laser

focus

5.3

MoSCoW Method for prioritizing requirements 4

Motion Control Component for controlling motions for laser

focus

5.1

Motion Control Stubs Stubs for the Motion Control component

Motion Simulator Reactive simulator; extension of Motion Control

Stubs with a model

5.3.2

6.3.1

Observer Design pattern in which an object subscribes to

updates of the state of another object

5.2.1

Ontwerpersopleiding

Technische

Informatica

See Software Technology 5.3.2

Photolithography Engraving patterns using light 1.1.1

Plasma Simulator Reactive simulator that simulates the generation

of plasma

5.1.2

Proto Complete machine used for testing 1.1.5

Proxy Design pattern in which an object intercepts

communication with another object

5.3.2

Reactive Simulator Simulator that updates its model based on new

inputs

5.2.2

Scanner See Wafer Scanner

Software Technology Designers’ program resulting in PDEng degree

Software-in-the-Loop Testing method in which the hardware platform is

replaced by simulation

1.1.5

Stub Simulator with fixed (as opposed to dynamic)

behavior

1.1.5

System under Test System that is being tested for correct operation

Testbench Testing platform used with hardware-in-the-loop

simulation within the company

1.1.5

Wafer Scanner Machine that engraves patterns on silicon wafers,

used to create integrated circuits

1.1.1

49

Bibliography

[1] E. Gamma, J. Vlissides, R. Johnson and R. Helm, Design Patterns: Elements of

Reusable Object-Oriented Software, Pearson Education, 1994.

51

About the Authors
Tom Boshoven received his Bachelor of Science degree

from the Department of Mathematics and Computer

Science of Eindhoven University of Technology in 2011.

After this, he continued studying and received his Master

of Science degree in Computer Science and Engineering

from the same university in 2013. During his studies, he

specialized in formal systems analysis, in particular the

model-checking problem. Throughout his studies, he

played a role as a software developer for robot soccer

team Tech United. During the last year of his studies, he

worked part-time as a software developer for an online

video platform. After moving to New York City for three

months to continue his work for this company as a full-

time software engineer, he came back to follow the Software Technology program.

52

A Use Case Descriptions
This appendix contains detailed descriptions of the use cases presented in Section

4.1.

A.1 Qualify CPD
Two specializations exist of this generic use case. These specializations only influ-

ence the scope of the test. They are therefore not described separately.

Level User-Goal

Scope CPD Application

Brief Description The CPD application is qualified as efficiently as possible

by first qualifying it on a Devbench, then a Testbench, and

finally Proto.

Primary Actor CPD Developer (DEV)

Stakeholders and

interests

Developer and owner of the application want to release the

application as early as possible. Part of this process is

qualifying it.

Precondition CPD Application is implemented and a Test Performance

Specification (TPS) is available.

Minimal Guarantees None

Success Guarantees CPD Application is fully qualified.

Main Success

Scenario

1. DEV: Qualify CPD on Devbench

2. DEV: Qualify CPD on Testbench

3. DEV: Qualify CPD on Proto

Extensions 1. A. Qualification on Devbench is unsuccessful.

 DEV: Evaluate the problem, fix the implementa-

tion or test plan, and restart scenario.

1. B. Qualification on Devbench is not possible due to

missing essential functionality in a simulator.

 Skip to step 2.

2. A. Qualification on Testbench is unsuccessful.

 DEV: Evaluate the problem, fix the implementa-

tion or test plan, and continue with step 1.

3. A. Qualification on Proto is unsuccessful.

 DEV: Evaluate the problem, fix the implementa-

tion or test plan, and continue with step 1.

Comments If qualification on Testbench or Proto is unsuccessful (2.A.,

3.A.), it can be useful to evaluate why the problem was not

detected in the earlier steps. This way, failures can help

improve simulation.

Similarly, if qualification cannot be performed on Devbench

or Testbench, it can be useful to add the missing function-

ality to these environments, so they can be performed in

these environments in the future.

A.2 Qualify CPD on Proto

Level User-Goal

Scope CPD Application

Brief Description The test plan is executed on a Proto machine.

Primary Actor DEV (CPD Developer)

Precondition CPD Application is implemented and a Test Performance

Specification (TPS) is available.

Minimal Guarantees None

Success Guarantees CPD Application is fully qualified.

53

Main Success

Scenario

1. DEV: Request access to Proto and wait for availability.

2. DEV: Install a patch containing the CPD Application

on Proto.

3. DEV: Execute steps as described in TPS.

Comments The TPS for the application describes under which condi-

tions qualification is successful.

A.3 Qualify CPD on Testbench or Devbench
These two scenarios are described together, as they are very similar.

Level User-Goal

Scope CPD Application

Brief Description The test plan is executed on a Testbench or Devbench using

simulation.

Primary Actor DEV (CPD Developer)

Precondition CPD Application is implemented and a Test Performance

Specification (TPS) is available.

Minimal Guarantees None

Success Guarantees None

Main Success

Scenario

1. DEV: Request access to the environment and wait for

availability.

2. DEV: Install a patch containing the CPD Application

on the requested environment.

3. DEV: Execute steps as described in TPS.

Extensions 1. A. A step in the TPS fails.

DEV: Log the issue and continue executing the

described steps to find more issues. The

scenario fails.

Comments The waiting time in step 1 is short (<1 minute) for

Devbench, and may be longer for Testbench.

54

B Project Planning
This appendix contains Gantt charts showing how the project milestones are dis-

tributed over the available weeks.

B.1 Original Planning

Figure B.1 – Initial project plan

W
e

e
k

Task

Fin
al R

e
p

o
rt

Fin
alize

 Fin
al R

e
p

o
rt

M
ile

sto
n

e
 2

P
h

ase
 2 D

e
sign

D
o

cu
m

e
n

tatio
n

P
re

p
are

 In
te

rm
e

d
iate

 P
re

se
n

tatio
n

P
re

p
are

 X
P

O
 P

re
se

n
tatio

n

P
re

p
are

 Fin
al P

re
se

n
tatio

n

M
ile

sto
n

e
 2

P
h

ase
 1 D

e
sign

D
e

sign
 P

h
ase

 2

M
ile

sto
n

e
 1

M
ile

sto
n

e
 3

In
itial D

e
sign

In
itial R

e
se

arch

D
e

sign
 A

n
alysis

R
e

q
u

ire
m

e
n

ts

D
e

sign
 P

h
ase

 1

M
ile

sto
n

e
 1

14-Sep

21-Sep

28-Sep

P
ro

je
ct P

lan
n

in
g

In
itial P

ro
je

ct P
lan

n
in

g

Fin
alize

 P
ro

je
ct D

e
scrip

tio
n

03-Aug

10-Aug

17-Aug

24-Aug

31-Aug

07-Sep

22-Jun

29-Jun

06-Jul

13-Jul

20-Jul

27-Jul

11-May

18-May

25-May

01-Jun

08-Jun

15-Jun

30-Mar

06-Apr

13-Apr

20-Apr

27-Apr

04-May

16-Feb

23-Feb

02-Mar

09-Mar

16-Mar

23-Mar

05-Jan

12-Jan

19-Jan

26-Jan

02-Feb

09-Feb

55

B.2 Final Planning

Figure B.2 – Global project plan

W
e

e
k

Task

P
h

ase
 2 D

e
sign

P
u

b
lic Fin

al R
e

p
o

rt

14-Sep

11-May

18-May

25-May

01-Jun

08-Jun

15-Jun

P
re

p
are

 X
P

O
 P

re
se

n
tatio

n
04-May

16-Feb

23-Feb

02-Mar

13-Apr

20-Apr

21-Sep

28-Sep

D
e

sign
 A

n
alysis

R
e

q
u

ire
m

e
n

ts

03-Aug

10-Aug

17-Aug

24-Aug

31-Aug

07-Sep

22-Jun

29-Jun

06-Jul

13-Jul

20-Jul

27-Jul

27-Apr

09-Feb

M
ile

sto
n

e
 2

D
e

sign
 P

h
ase

 1

05-Jan

12-Jan

19-Jan

26-Jan

02-Feb

09-Mar

16-Mar

23-Mar

30-Mar

06-Apr

Fin
al R

e
p

o
rt

D
o

cu
m

e
n

tatio
n

Fin
alize

 Fin
al R

e
p

o
rt

P
ro

je
ct P

lan
n

in
g

In
itial P

ro
je

ct P
lan

n
in

g

Fin
alize

 P
ro

je
ct D

e
scrip

tio
n

In
itial D

e
sign

In
itial R

e
se

arch

M
ile

sto
n

e
 1

D
e

sign
 P

h
ase

 2

P
re

p
are

 In
te

rm
e

d
iate

 P
re

se
n

tatio
n

M
ile

sto
n

e
 1

M
ile

sto
n

e
 2

P
re

p
are

 Fin
al P

re
se

n
tatio

n

M
ile

sto
n

e
 3

P
h

ase
 1 D

e
sign

56

58

