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Joint elasticity seems to be the main source of compliance in most 
manipulator designs. Feedback linearization control provides us 
with a method for tackling the problem of controlling these 
nonlinear dynamical systems. This report deals with the feedback 
linearization control of a rather simple mechanical system: 
a one-link manipulator with joint elasticity. 

In order to get a better understanding of the feedback 
linearization technique we first discuss some basic concepts from 
differential geometry. With the help of these concepts we derive 
necessary and sufficient conditions for a system to be feedback 
linearizable. The key to applying feedback linearization control is 
finding a (nonlinear) change of coordinates in the state space and 
a (nonlinear) control law. We show how this problem is reduced to 
solving a set of partial differential equations. Then, after an 
accurate modeling of the mechanical system, we put the theory on 
feedback linearization control into practice and simulate the 
dynamical behaviour of the control system using MatLab. 

On the basis of these simulations we conclude that the feedback 
linearization technique is sensitive to changes in the 
systemparameters, and it therefore requires precise modeling. This 
in strong contrast to the findings of Spong in [l]! 

Next, we designed a blueprint for an assignment that can be used 
during the course rrwerktuigkundig regelen IVrr . 
In order to avoid the assumption that feedback linearization is 
some kind of universal remedy f o r  solving any kind of nonlinear 
control problem, we discuss some restrictions and disadvantages of 
the control method. We are aware that this treatment on feedback 
linearization control of a single link manipulator with joint 
elasticity is far from being complete, but it provides a solid 
basis for studying and application of advanced feedback 
linearization control. 
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CHAPTER f 

Introduction 

In this report we study the control problem for a single link 
manipulator with joint elasticity. It has been shown that joint 
elasticity is the dominant source of compliance inmost manipulator 
designs. This joint elasticity may arise from several sources, such 
as elasticity in the gears, belts, bearings etc. and limits speed 
and accuracy achievable by control algorithms designed assuming 
perfect rigidity at the joints. 

As we shall see later on, the differential equation describing the 
dynamics of such a manipulator is nonlinear. Mostly in the last 
decade, several techniques were developed concerned with the 
analysis and design of feedback control laws for nonlinear systems. 
One of these techniques is the so-called feedback linearization. 

The basic idea of feedback linearization is to construct a 
nonlinear control law as an inner loop control, which in the ideal 
case exactly linearizesthe nonlinear system after a suitable state 
space change of coordinates. The designer can then design an outer 
loop control in the new coordinates to satisfy the traditional 
control design specifications. 

The problem here is not only the nonlinearity of the robot dynamics 
(this can for example be compensated by the computed torque 
technique), but because of the elasticity there are more degrees of 
freedom to be controlled/stabilized than motor input signals. 
Probably, the feedback linearization technique can solve this 
problem too. 

Before we go on with the modeling of the plant ,the design and 
simulation of the control system, we shall first give an analysis 
of the feedback linearization control technique. We shall also 
discuss some of the lltoolsll necessary to understand this technique 
of transforming a nonlinear system, via change of coordinates in 
the state space and state feedback, into a linear and controllable 
system. 

P 



CHAPTER 2 

Some Background Theory on 
Feedback Linearization 

In the first part of this chapter we shall discuss 
some 88tools*8 necessary to get a better understanding 
of the feedback linearization technique. With the 
help of these basic concepts, like Lie-bracket, aual 
product, and involutivity we derive the conditions 
for a system to be feedback linearizable. In this 
way, we obtain a brief (and certainly not complete!) 
analysis of the feedback linearization technique. 
In the latter part of this chapter we summarize the 
main results, which will turn out to be usefull when 
we design and simulate the control system in the 
next chapter. 
But first, we shall start with a restriction to the 
class of nonlinear systems to which feedback 
linearization is 

2 . 1  General Notions 

2.1.1 Affine Nonlinear System 

In the following we restrict 
nonlinear systems of the form 

x = f ( x )  

applicable. 

our attention to the class of 

m 

where f (x) , gi (x) , . . . , g ,  (x) are smooth vectorf ields on R”. 
We call such a system an affine nonlinear control system. 
By a smooth vectorfield on R” we will mean a function f: R” + R” 
which is infinitely differentiable. From now on, whenever we use 
the term function or vector field, it is assumed that the given 
function or vectorfield is smooth. 

2 



2.1.2 Lie - bracket 
Let f(x) and g(x) be two vector fields on R". The Lie product or 
Lie bracket of f (x) and g(x )  , denoted by [f ,g] (x) , is a third 
vectorfield defined by 

where 

,respectively 

denote the nxn Jacobian matrices. 

We also denote [f ,g] as ad,(g)  and define a d f k ( g )  inductively by 

with 

2.1.3 Derivative of h(x) along f (x) : Lfh(x) 
Dual oroduct: < d h , f >  

Let h: R" + R" be a scalar function and f ( x )  be a vectorfield on R", 
then the gradient of h, denoted by dh , is the row vector 

ah grad h = dh = Vh = E- ah ... -1 
8x1 axn 

For a scalar function h and a vectorfield f the dual product of dh 
and f is defined as 

3 



- ah - - f ( X >  
ax 

This new function Lfh(x) is sometimes called the derivative of h(x) 
along f (x )  - 
remark: 

as well as in most current literature as in the trendsettinq -~ 

notes on nonlinear control theory by Isidori, the notatioñ 
L,h(x) is used. However, the meaning of <dh,f> and Lfh(x) is 
exactly the same. 

Repeated use of this differential operation is possible: 

example 1: 
derivating h(x) first along f ( x )  and then along g(x) yields 

example 2: 
derivating k times h(x) along f(x) yields a function 
recursively defined as 

4 



2.1.4 Dual product: <dh,[f,g]> 
Derivative of h (XI along r f , q1 :  L,, ,glh (XI 

Let h: R" -, R" be a scalar function and f(x) and g ( x )  be 
vectorfields on R". Then we have the following identities: 

which can also be notated as 

L[f,g,h(x) = L,L,h(X) - LgLfh(X) 
The proof of this identity is rather straightforward 
(see: Appendix IV - 1). 

2.1.5 Frobenius theorem / Involutivity 

The Frobenius theorem can be thought of as an existence theorem for 
solutions to certain sets of first order partial differential 
equations. For a thorough treatment of this theorem we refer to 
[ 4 ] ,  as this subject is so delicate that it is beyond the scope of 
this report. So without any further discussion or proof, we state 
the following: 

Frobenius theorem: 
Let {x,, . . . ,x,} be a set of vector fields that are linearly 
independent at each point. Then the set of vector fields is 
completely integrable if and o n l y  if it is involutive. 

Involutivity: 
A linearly independent set of vector fields {x, '... 'x,) is said to 
be involutive if and only if there are scalar functions aiik:R" + R 
such that 

m 
ixi ,xjI  = a i j s k  

k=l 

For practical applications, the condition of involutivity simply 
means that if one forms the Lie bracket of any pair of vectorfields 
from the set {x,,. .. 'x,}' then the resulting vectorfield can be 
expressed as a linear combination of the original vectorfields 
x, , . . . 'X,. 

5 



2.2 Feedback Linearization f o r  Sinqle Input Systems 

2.2.1 Formal Definition of Feedback Linearization 

We define the following single-input nonlinear system: 

b =  

x = f ( x )  -k g(x)u  

- 0 -  

O 

O 
1 -  

where 
* f (x) and g ( x )  are smooth vector fields on R" 

* UER" 
* f ( 0 )  = o 

This system is feedback linearizable if there exists 

* a region U in R" containing the origin 
* a diffeomorphism T: U -f R" 
* a nonlinear feedback u = cr(x)+B(x)v with B(x) ZO on U 

such that the transformed variables 

satisfy the system of equations 

where 

A =  

4 = AE 

' 0 1 U  *.* O 0  
O 0 1  . * * o 0  

O 0 0  * * * o 1  
0 0 0  - 0 0  

t bv 

6 



remarks : 

* a diffeomorphism is simply a transformation whose 
inverse exists. Both T ( x )  and T-’(E)  are smooth 
mappings, that is, they have continuous partial 
derivatives of any order. We can think of T ( x )  as a 
nonlinear change of coordinates in the state space. 

* the main ingredients of feedback linearization are 
coordinate changes in the state space and nonlinear 
feedback. The idea of feedback linearization is that 
one first changes to the coordinate system 4 = T(xj, 
then there exists a nonlinear control law to cancel the 
nonlinearities in the system. 

7 



2.2.2 Necessarv and Sufficient Conditions for Feedback 
Linearization 

The nonlinear change of coordinates is described in the form: 

E = T(%) 

differentiating with respect to time yields: 

aT = -2 : = A t  + bv ax 

ax 
-i aT : =  A T ( x )  + bv 

writing out of the above matrix equation gives: 

... 

... 

which is the same as 

This set of equations can be renotated as (see: 2.1.3) 

8 



We make the following assumptions: 

I. T ,,..., T, are independent of u =+ 

<dT,, g ( x ) >  = O 

< dTn-, I g ( x ) >  = o 

which can also be notated as 

2 .  v is dependent of u * 
<dT,, g(X)> # O  

which can also be notated as 
LsTn f O 

3. this yields * 

9 



which can also be notated as 

LrTl = T, I LfTn-l = Tn 

+ 

The previous three conclusions can be compactly given in the 
f o1 lowing way : 

k = O,l,...,n-2 

which can also be notated as 

+ 

. . ,n-2 

That the above compact notation completely covers all three 
conclusions is proved in Appendix IV - 2. 

10 



The problem of finding a nonlinear transformation and a nonlinear 
control law is now reduced to the problem of solving 

k = OIlI...,n-2 

f o r  T,. If we can find T, satisfying m the above system of partial 
differential equations, thenT2,. . . , i, a ï e  found inductively from 

i = l,...,n-1 

and the control input u is found from 

<dTnl f> + (dT,, g>u  = v * 

And it is here, where we need the Frobenius theorem in order to 
determine whether or not the set of partial differential equations 
for T, has a solution. First we note that the vectorfields g, 
ad, g,. . . I ad,"-'g have to be linearly independent. Now by the 
Frobenius theorem the set 

1 

<dT,, adfkg> = O 

k = Orl,...,n-2 

has a solution if and only if the set of vectorfields 

{ ad2g,  adflgr . . , adfn-2s$ 

is involutive. 

11 



Putting all this together we can formulate necessary and sufficient 
conditions for a nonlinear system to be feedback linearizable: 

The nonlinear system 

x = f(x) + g ( x ) u  

with 
* f ( x ) ,  g(x) smooth vectorfields 
* f ( 0 )  = o 

is feedback linearizable if and only if there exists a region U 
containing the origin in R" in which the following conditions hold 

I. the vectorfields 

i g, ad&, . . * , a d p g  1 

are linearly independent in U 

11. the set 

{ 9, adfg, . . . , adfn-2g 1 
is involutive in ü 

12 



2 . 3 . 2  Alqorithm €or Feedback Linearization 

STEP 1: 

derive a model for the plant to be controlled and write the state 
equation into the form: 

% = f(x) + g ( x ) u  

STEP 2 :  

the nonlinear system is feedback linearizable if 

I. 

11. the set {g ,  ad,g, ..., ad,"-'g} is involutive. 

the vectorf ields { g ,  ad,g , . . . , ad,"-'g} are linearly independent , 
that is, the matrix P = [ g adfg ... ad,"-'g 3 has full rank n. 
In other words det(P)#O 

this simply means that the Lie bracket of any pair of 
vectorfields from the above set is a linear combination of the 
original vectorfields 

So in order to check these two conditions first compute ad,?, 
ad,g, .. . , ad;-'g out of f ( x )  and g(x )  according to the recipe in 
2 . 1 . 2 .  

2 

S T E P  3 

If the necessary and sufficient conditions of step two are 
satisfied, then by the Frobenius theorem there exists a solution 
for the partial differential equation 

<dT,, aáfkg> = O 

<dT,, ad,R-lg> # o 

k = 0,l , . . . ,n -2  

Solve this set of equations and compute 

Tìil = <Ti, f> 

inductively. 

13 



remark: 

A =  

the solution for T, is not unique, so the transformation 
4 = T ( x )  is not uniformly determined. However, T ( x )  has 
to be a diffeomorphism, so always compute T - ’ ( c )  and check 
derivativity. Pay attention to the neighbourhood where 
the transformation is defined (local/global). 

- 0 1 0  ..* O 0  
O 0 1  **. O 0  

O 0 0  * - o 1  
O 0 0  . - o 0  

STEP 4 

Compute the nonlinear control input u from the condition 

Now w e  have transformed the system 

x = f (x)  + g(x)u  

into a linear and controllable system 

where 

For the control of this system we have many tools at our disposal. 

1 4  



The next blockdiagram schematically depicts the concept of feeaback 
linearization: 

fig 2.1 block diagram for 
feedback linearization 

In the following chapter we shall apply the concept of feedback 
linearization to the control of a single link manipulator with 
joint elasticity, according to the just described algorithm. 

15 



Modeling, Design and Simulation 

In this chapter we derive the equation of motion for 
a single Pink manipulator with joint elasticity 
using the Lagrange equation. We then check the 
conditions for feedback linearization and compute 
the required change of coordinates E = T ( x 9 .  
The feedback linearizing control inputu is computed 
and finally, the results of the simulations using 
MatLab are presented. 

3.1 Modelinq 

Consider a single link manipulator with revolute joint actuated by 
a DC - motor. The elasticity is modeled as a torsional spring with 
known characteristics. For simplicity we consider a linear spring 
with stiffness k. As generalized coordinates we choose the link 
angle q t  and the motor shaft angle qm: in other words, we define 

with I: inertia of the motor shaft 
J: inertia of the link about the axis of rotation 

\i nG. 

fig. 3.1 single lirik manipulator 
with joint elasticity 

16 



The total kinetic energy of the system consists of the kinetic 
energy of the motor and the kinetic energy of the link and is given 

The potential energy is given as 

where m: total mass of the link 
1: distance from the joint axis to the link center of mass - 

g: gravitation 

fig. 3.2 computation of the potential 
energy V 

The Lagrangian of the system, that is, the difference of the 
kinetic energy and the potential energy is given by 

17 



The Lagrange equation of motion can be written in the form 

where 

Substituting the above expressions in the Lagrange equation of 
motion yields the complete expression for the dynamics of the 
system. This is given by 

This set of second order nonlinear differential equations in the 
generalized coordinates can be written in state space form by 
setting 

which yields the state equation 

( - )  k (X1-XJ + J U  1 
J 

18 
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3.2.1 Check for Feedback Linearizability of the System 

In order to check whether or not the system 

O T  

O 

1 

O 

x2 1 l o l  

L 

can be transformed into a linear and controllable system via state 
feedback and coordinates transformation, we have to compute the 
functions adfg(x),  ad:g(x) and ad:g(x), and test if the following 
necessary and sufficient conditions are satisfied: 

I. rank {g,  ad,g, adtg, adf3g} = 4 
11. the set {g,  ad,g, ad:g} is involutive 

For the 4x4 - Jacobians we find 

O 

k (-1 J 

O 

k 
( - )  I 

O 

and for the Lie brackets adf0g, adf’g, ad:g and ad:g we find 

20 
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The matrix 

p = p  

with 

adfg ad29 ad2g ] 

k 
J2 
- -:: O 

O O 

k 
IJ 
- O 

-- 1 O 
J 

O k 
J2 

-- 

1 k 2  
J 2  IJ 

det(P) = - ( - )  

z o  

as long as k>O and I,J<a. 

Thus, det(P) # O which means that rank(P) = 4, that is, full rank 
and therefore condition I is satisfied. 

Condition I1 prescribes that the set {g, ad,g, ad:g} is involutive. 
Involutivity simply means that if one forms the Lie bracket of any pair of vectorfields from the set { g ,  ad,?, ad:g}, then the 

resulting vector field can be expressed as a linear combination of 
the original vector fields. In our case the check for involutivity 
1s rather simple. The vector fields g, ad,g, and adtg are all 
constant. This means that the Lie bracket of any two members of the 
original set of vector fields is zero, which is trivially a linear 
combination of the vector fields themselves. S o  also condition I1 
is satisfied. 

We may end this section by stating that the system 

22 



3.2.2 Computation of the Chanqe of Coordinates 

The transformation = T ( x )  is computed from 

This can also be written as 

which means that for 

k = O  

aT, aT, aT, 
ax, ax, ax, ax, 
---- 

k = 1  - 

23 



We have derived the following set of partial differential 
equations: 

It is quite easy to see that TI can only be a function of x1 alone, 
so TI = T,(xl); therefore we take the simplest solution 

24 



= x2 

* 
k 
I 

= [ O  * 
* 
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x2 

k k 
- - --x2cosx, m91 - 2x2 + 7x4 

I 

A straightforward 

x = l  

Both 6 = T ( x )  and x = T - ' ( [ )  are well defined in R4 and are smooth 
mappings, thus, TI defines a global diffeomorphism. 

26 



LZ 

I I 1 (KX-IX) - + r~ (-+-+ (TX) so3- 

+,ZX) (TX)UTS-- = i-+ (TX) soa- Y s.6uI 

YY I TfiU I Y I 

r.6m 

I I 
I 0 --(Tx)so3-- 3[ 2- Y TfiU 

I (XX) UTSZX- ybur I= 
(EX - x) 

'X 

I TI (EX - x) y - (~X)U~C--- 
1.6U 

ZX 

r L 

1 
O 

O 

O 

] = <3 "JP> 

.I - * * *I= -Y 



We may conclude: 

The form of the control law u = cr(x)+p(x)v is called tiregular 
static state feedback". 

28 
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Parameters used for Simulation 

mass m =  1 [kgl 

length 1 =  1 [ml 

inertia I =  1 [kgm;l 

stiffness k =  l o o  [Nm/rad] 

gravity 4 =  9 . 8 1  [m/s2] 

J =  1 [kgm 3 

A simple linear control law FCL v d-esigned to track a desired 
trajectory yid(t) can be expressed as 

4 

v = - Caií t i  - t i d )  
i=l 

Applying this control law to the system 

y i e l d s  

30 

Writing out this last equation gives 



Defining 

results in the fourth order linear error equation 
e (4 )  + a4e(3)  + a,ë + a,è + ale  = O 

This error equation is asymptotically stable if the poles are 
situated in the left half plane. In mathematical words: Re(A) < O. 
For computational simplicity we choose the poles to lie in A = -10. 
So we obtain as characteristic equation: (A+10)4 = O .  Using 
Pascal's triangle gives 

~4 + 4 0 ~ 3  + 600~2 + 4000A + I O O O O  = O => 

a, = 1 0 0 0 0  

a3 = 600 
a4 = 40 

a2 = 4 0 0 0  

the link position will closely track a desired trajectory. 
We choose the desired trajectory to be 

E l d  = sin(8t) 
S Z d  = 8cos (8 t) 
<3d = -64sin(8t) 

t 4 d  = 4096sin(8t) 
[ 4 d  = -512COS ( 8  t) 

Now, the control law v is completely determined: 
v = 4096sin(8t) - lOOOO(<,-sin(8t)) - 4000(~,-8cos(8t)~ 

- 600 (t3+64cin(8t) - 4 0  (f,+512cos ( 8 t )  ) 

Further, also the complete blockscheme is determined and is given 
on the next page ( f i g  3 . 4 ) .  The computerprogram used for simulating 
the plast under control is given in Appendix 111. 

31 
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Figure 3.5 shows the result of the simulation. It clearly depicts 
that after some time the link angle closely tracks its desired 
tra j ectory . 

We coulc ask ourselves what happens if we mistakenly assume that 
the motorshaft is rigid. In other words, what is the response of 
the flexible joint system to a rigid control law, that is, a 
control law designed under the assumption that the motorshaft is 
rigid. This control law will be computed in the next chapter. 

Figure 3,6a shows the result if we replace the stiffness of the 
spring in the control law u by a stiffness which is 1.5 times its 
original value. We clearly see that the link angle does not track 
its desired trajectory. 

Figure 3.6b depicts the result when in the control law u the 
stiffness of the spring has been replaced by 1.75 its original 
value. Notice that the amplitude grows with time. The system is 
unstable ! 

Figure 3 . 6 ~  clearly displays the unstable character of the system 
under control. The stiffness of the spring is 2 . 5  times its 
original value. The simulation had to be cut off at t = 1.6 [SI. 

We may conclude that if we design a control law and make the wrong 
assumption, namely that the stiffness of the spring is larger than 
in reality, the plant becomes unstable. However, in [l] Spong 
computes a rigid control law (see form. 5.3: App. I) which he 
applies to a flexible joint system and presents that result (see 
fig, 3 :  App. I). Besides the fact that this control law is wrong 
(see the calculations carried out in section 4.1.1) , our simulation 
with this control law completely fails! We would like to Peave this 
point open for discussion. 
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figure 3.5: reference trajectory and link angle 
k model = 100 
k control law = 100 

2.5 

time [SI 

figure 3.6a: reference trajectory and link angle 
k model = 100 
1- --mi-vnl L ~ u ~ I b s - v -  law = 150 
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time [SI 

f i g u r e  3.6b: r e f e r e n c e  trajectory a n d  l i n k  a n g l e  
k model = 1 0 0  
k c o n t r o l  l a w  = 1 7 5  

f i g u r e  3 . 6 ~ :  r e f e r e n c e  t rajectory a n d  l i n k  a n g l e  
k model = 100 - -  -.. ~ 

k control l a w  = 2 5 0  
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CHAPTER 4 

Further Developments, Future Developments and 
Restrictions 

In the previous chapters we analysed the feedback 
linearization control methodology and applied the 
technique to a simple example. The choice of this 
exanple was n o t  arbitrary. 0: purpose, we used the 
same model as Spong did in [l] and for some 
simulations we succeeded in obtaining the same 
results. 
However, this may not be considered as a formal 
proof for the correctness of our computerprogram, 
but we may assume that the followed strategy is 
right. With this model as a base we made some 
further extensions. First we simplified the model 
by assuming the stiffness of the spring to be 
infinitely large. But as we carried out the 
computations, we noticed that the equations turned 
out to be relatively simple. Then, the idea arose 
to use this example for an assignment meant for 
graduate students in mechanical control 
engineering. So with this idea in mind, we added a 
blueprint for a possible assignment which can be 
used during the course "werktuigkundig regelen Ivf'. 
We hope it will serve the purpose it is meant for. 
Next, we extended the original model by adding 
damping and a nonlinear spring. Furthermore, in 
order to avoid the assumption that feedback 
linearization is some sort of remedy for tackling 
any kind of nonlinear control problem, we discuss 
some restrictions and disadvantages of the 
technique. 

4.1 Further DevePopmentc 

4.1.1 An Educational Example 

This part of our report slightly differs from the rest. When we 
evaluated the mechanical system from chapter 3 in the case of a 
rigid motorshaft(that is k -+ a) we noticed that the equations 
turned out to be relatively simple. So the application of feedback 
linearization control theory in this example could well serve as an 
assignment in the course "werktuigkundig regelen IV" , because it 
highlights some basic, but important notions in nonlinear control 
therzr17 (like €or example Lie-bracket, static ctate feedback und tho 
differential operation L , A ( x ) )  without being compütatiûnâlly 
extensive. So, the next part in our report describes (in Dutch) a 
possible blueprint for such an assignment. We hope it will be 
usefull. 
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SYSTEEMBESCHRIJVING 

Beschouw het volgende mechanische systeem: 

m o b í  

Het systeem wordt als volgt gemodelleerd. Een motor kan via een 
oneindig stijve motoras een koppel u [Nm] uitoefenen op een 
slinger. Dit koppel is de ingang van het systeem. Het 
massatraagheidsmoment van de as bedraagt J [kgm2]. De slin er is 
star, heeft massa m [kg] en massatraagheidsmoment I [kgm J ten 
opzichte van de as door het rotatiepunt. De afstand van het 
rotatiepunt tot het zwaartepunt van de slinger bedraagt 1 [m]. De 
rotatiebeweging van de slinger kan uitsluitend plaatsvinden in het 
verticale vlak. De positie van de slinger wordt vastgelegd met de 
hoek q tussen de verticaal en de hartlijn van de slinger. Deze hoek 
g is de te regelen grootheid. Zijn gewenste trajectorie wordt 
gegeven door qd(t) = sin(8t). De hoek q(t) en zijn fluxie d/dt(q) 
worden op ieder tijdstip en zonder significante fouten gemeten. 

9 

FEEDBACK LINEARISERING 

Doel van dit praktikum is het bovenstaande mechanische systeem 
zodanig te regelen dat de beweging van de slinger zijn gewenste 
trajectorie z o  goed mogelijk volgt. Om dit doel te bereiken wordt 
een techniek toegepast, genaamd "feedback linearization controlff. 
De basisgedachte achter deze techniek is door via een (niet- 
lineaire) transformatie op de toestand en een (niet-lineaire) 
regelingang u het niet-lineaire systeem te transformeren naar een 
lineair en regelbaar systeem. Met andere woorden: 
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Ontwerp een transformatie op de toestand en een terugkoppelwet u = (Y (x) +p (x) v zodanig dat het niet-lineaire systeem f = T ( x ) ,  

x = f(x) + g ( x ) u  

wordt omgezet in het lineaire en regelbare systeem: 

Voor de regeling van dit systeem hebben we verschillende 
sigereedschappent' tot onze beschikking. Het bovenstaande wordt 
schematisch als volgt weergegeven: 
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VRAGEN EN OPBRACHTEN 

1. Bestudeer 5 10.1 t/m § 10.4 uit het diktaat "Lectures on 
advanced control" en de beschrijving van de MatLab tools 
ode23/ode45. 

2. Stel de bewegingsvergelijking op van het systeem en herschrijf 
deze vergelijking naar de toestandsvorm 

H = f(%) + g ( x ) u  

3 .  Controleer of het systeem "feedback linearizable1I is. 

4. Bereken de transformatie op de toestandsvector = T(x), bepaal 
tevens de inverse en ga na of beide voldoende vaak 
differentieerbaar zijn. 

5. Bereken de regelingang u = ar(x)+p(x)v 

6. Verwerk de resultaten van de bovenstaande opgaven in een 
blokschema. Maak hierbij gebruik van het schema op de vorige 
bladzijde. 

7. De regelwet voor v heeft de vorm 

Definieer als volgfout: e(t) = 5, (t) - t , d ( t )  
Ga uit van de vergelijking: 

= At + bv 

en stel de foutvergelijking op in de vorm van: 

ë + a2è + ale = . . .  

Wanneer is deze dv asymptotisch stabiel? Kies voor het gemak de 
wortels van de karakteristieke vergelijking in het punt -10 en 
bereken de waarden van a, en a2. Kies als gewenste trajectorie 
zld(t)= sin(8t). Hoe luidt v? 
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8 .  Simuleer het gedrag van het systeem met MatLab. 
Geef in één figuur weer als functie van t: 

* gewenste trajectorie z,d(t) 
* hoekverdraaiing van de slinger x,(t) 

9. Stel dat we de aanname doen dat de hoekverdraaiing van de 
slinger een kleine uitwijking is rondom de statische 
evenwichtsstand cp = O .  Met andere woorden, we ontwikkelen de 
niet-lineaire termen in een Taylorreeks en beschouwen 
uitsluitend de Oe en de le orde term * 

sin(cp) = cp 
cos(cp) = 1 

Hoe luidt de regelwet u? 
Gebruik nu deze regelwet voor het regelen van het niet-lineaire 
systeem. We zijn dus in feite een niet-lineair systeem aan het 
regelen in de veronderstelling dat het lineair is! 
Geef in een figuur weer als functie van t: 

* gewenste trajectorie z,d(t) 
* hoekverdraaing van de slinger x,(t) 

DE ANTWOORDEN OP DE VRAGEN ZIJN UITGEWERKT IN APPENDIX IV - 3 
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x2 
k -(*)sin(xl) I - ( - - )  I (xl-x3) 

x =  
x4 

lr 1 

Notice that the nonlineariry in the equation is given by the 
potential force -(rngl/I)sin(x,) : it is significant if the robot arm 
is to be controlled for l a rge  displacements from its nominal 
trajectory . 
Another significant nonlinearity in the system will arise if the 
elastic force due to the spring is modeled by a nonlinear function * = $(x,-x3). A typical example is: 

The Lagrange equation gets in this case the form: 

~ t j ~  + mgls in (q l )  + k,(ql-q,) + kz (q1-qz)3 = 0 

Jtjz - k1(q1-q2) - k2(q1-q2)3 = U 

4 1  



Up to now ye neglected damping in the system. If we add the damping 
torques b,q, and bmG2 the Lagrange equation of motion is given by 

or in state space form: 

brn k 1 -(-)x4 + ( - )  (X1-X3) + - u  J J J 

The following question now arises, and that is, is this system 
feedback linearizable and if so, compute the nonlinear change of 
coordinates and the nonlinear control input u which transforms the 
original system into a linear and controllable system of the form 

O 0 0  - . o 1  
O 0 0  - . o 0  

; +  

O 
O 

O 

1 

V 

Here we only present the results of the simulation for the above 
system: 

figure 4.5: reference trajectory and link angle for the damped 
system 

figure 4.6: control input u for the damped system 
figure 3.5: reference trajectory and link angle for the 

undamped system 
r i y u r e  4.7: z û l i t ï û l  i n p i t  u fer the  i i r idzmped system e 2  
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4.2 Future Developments 

In this report we only studied feedback linearization applied 
to the state equation. The total set of equations describing 
an affine nonlinear control system is given by 

x = f ( x )  + g ( x ) u  

Y = n(x) 

One might pose the question of when there exists a feedback 
and a change of coordinates, transforming the entire 
description of the system, output function included, into a 
linear and controllable one. Necessary and sufficient 
conditions are given in [ 4 ] .  

In this report we only studied a single link manipulator. In 
the general case of a n-link manipulator the dynamic equations 
represent a multi-input nonlinear system. The conditions for 
feedback linearization of multi-input systems are more 
difficult to state, butthe conceptual idea is the same as in 
the single input case. Derivation of the equations of motion 
for a n-linked manipulator are given in [ 3 ] .  However, they 
neglect damping and use a linear spring. Theory on multi-input 
multi-output nonlinear systems is given in [ 5 ] .  

4 . 3  Restrictions and Disadvantaqes 

Up to now we only discussed the possibilities of feedback 
linearization. The technique of feedback linearization is important 
in that it leads to a control design methodology for some classes 
of nonlinear systems. It is most certainly not a universal remedy 
for tackling any nonlinear control problem. 

The system to be feedback linearized must be an affine 
nonlinear system, that is, the system may be nonlinear in the 
state, but must be linear in the input. The output equation 
may be nonlinear: 

x = f (x) + gi (x)  ui 
i =1 
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In this paper we study the modeling and control of robot manipulators with elastic 
joints. We first derive a simple model to represent the dynamics of elastic joint 
manipulators. The model is derived under two arsumptions regarding d-vnam‘c 
coupìing between the acttcotors and the links, and is useful for cases where ìhe 
elasticity in the joints is of greater significance than gyroscopic interactions between 
the motors and links. In the limit as the joint stiffness tends to infinity, our model 
reduces to the usual rigid model found in the literature, showing the reasonableness 
of our modeling assumptiom. We show that our model is significantly more trac- 
table with regard to controller design than previous nonlinear models that have been 
used to model elastic joint manipulators. Specifically, the nonlinear equations of 
motion thar we deriw are shown to be globally ìinearizable by diffeomorphic coor- 
dinate transformation and nonlinear static state feedback, a result that does not 
hold for previously deriwd models of elastic joint manipulators. We also detail an 
alternate approach to nonlinear control bared on a singular perturbation formuìa- 
tion of the equations of motion and the concept of integral manifold. Weshow that 
by a suitable nonlinear f d b a c k ,  the manifold in state space which describes the 
dynamics of the rigid manipulator, that is, the manipulator withour joint elastiCe, 
can be made invarianr under solutions of the elustic joint system. The implications 
of this result for the control of elastic joinrrobots are discussed. 

1 Introduction 
The proper choice of we&ismatkal rnode!s for sonárol 

system design is a crucial stage in the development of control 
strategies for any system. This is particularly true for robot 
manipulators due to their complicated dynamics. For simula- 
tion purposes one would like as detailed a model as possible, 
while for control design and implementation one would like to 
retain only the most significant dynamic effects in the model 
in order to simplify the analysis and minimize on-line com- 
putational requirements. 

Because of the extreme complexity of the dynamic equa- 
tions of motion for n-link manipuiators with joint elasticity, 
most existing results on the control of such manipulators have 
relied either on computer programs to generate the equations 
f l7J  or have treated special configurations [26] and/or single 
link examples [27]. However, one generally obtains relatively 
little insight from symbolically generated equations, and an 
understanding of the physics underlying the model is of prime 
iiiipurraice in understanding the conrroi probiem. For 
reason we first investigare the probiem of moaeiing tne 
dynamics of elastic joint manipulators. For notational 
simplicity we treat the case of revolute joints driven by DC- 
motors whose rotors are elastically coupled to the links. It 
turns out that by making two rather simple approximating 
assumptions it is possible to derive a model of the system that 

‘This research was partially supported by the National Science Foundation 
under grant DMC-8616091 

Conrributed by the Dynamic Systems and Control Division for publication in 
the JOURNAL OF DYNAMIC S Y m i i S ,  MusuRunm. AND CONTROL. M a n u d p t  
received by the Dynamic Systems and Control Division July 1986. 

is much more amenable to analysis and control than preGous 
models. 

Specifically, we assume 
(AlfThat the kinetic energy of the rotor is due mainly to its 

 OW^ rotation. Equivalently, the motion of the rotor is a pure 
rotation with respect to an inertial frame. We further assume. 
(AZ) The the rotor/gear inertia is symmetric about the rotor 

axis of rotation so that the gravitational potential of the 
system and also the velocity of the rotor center of mass are 
both independent of the rotor position. 

Assumption (Aî) hardly needs any justification and 
Assumption (Al) is easy to justify for a large class of robots, 
since roughly speaking it amounts to neglecting terms of order 
at most l/m where m:l is the gear ratio. in fact, most existing 
models of rigid manipulators are derived under precisely t h w  
same assumptions; see for example Paul [4], equation (6.49). 
The important point is to model the dynamic effects which are 
döminaïïi, in this cajë the jöiñi eiasticity. 

2 Modeling 
We now consider an n-link manipulator with revolute joints 

actuated by DC-motors, and model the elasticity of the fih 
joint as a linear torsional spring with stiffness k,. For nofa- 
Uonal simplicity we take k j  = k for all i. Because of the addi- 
tional degrees of freedom introduced by the elastic coupling of 
the motor shaft to the links we model the rotor of a c h  ac- 
tuator as a “fictitious link,” that is, as an additional rigid 
body in the chain with its own inertia. Thus the manipulator 
consists of n “actual” links and n “fictitious” or rotor links. 

i.t ’ .  
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Fig. 1 Eiastic Joint 

The specific design of the manipuiator will dictate the man- 
ner in which the actuators are coupled to the links. For 
simplicity we discuss the case in which the rotor is directly 
coupled to the link that itaguates as shown in Fig. 1. Other 
configurations, for example when the motors are located on 
link 1 and drive the distal links through cables, etc., can be 
handled by finding the corresponding transformation between 
“actuator space” and “joint space’’ as in 134). The details are 
omitted. 

Refemng to Fig. 1, let q=(ql, . . . qh)T be a set of 
generalized of generalized coordinates for the system where 

(2.1) 

(2.2) 

where Bi is the angular displacement of rotor i and mi is the 
gear ratio. In this case then qz-q2-i is the elastic displace- 
ment of link i. 

Lagrangian Dynamics The rotor, as an intermediate Enk, 
now has its own coordinate frame and inertia tensor 
associated with it. We shall model the “rotor” link as a right 
circular cylinder of radius u and length b. From symmetry 
consideration we may estabüsh the coordinate frame at the 
center of mass and assume that coordinate axes are principal 
axes of the cylinder, wir_h the rotor angle measured about 
the zk axis. The inenia tensor of the rotor is then given by 

qz =the angie of link i, i= 1, . . . ,n 
- 1  

mi 
qz-l = --Si, i= 1, . . . ,n 

O 

rj= o ZYyi i[ (2.3) 

where I,, Iyy, Za are the moments of inertia of the rotor about 
the principal axes. The kinetic energy of the rotor is 

1 1 
2 2 Kri =-M.UTLI, +- wTfioi (2.4) 

where v, represents the velocity of the center of mass of the 
rotor, Mi is the retor ZES, n d  O, is the vmc: cf ~=gu!är 
velocities a b u t  the priicipd mes. 

Now by the symmetry assumption (U) the velocity vi of the 
enter of mass of the rotor can written as a function only of 
the link variables q2, . . . ,qu.-,. If we therefore include the 

1 
=-+rn>q$-, 

The foilowing example gives a simple illustration of the effect 
of the above assumption. 

h m p l e  Consider the cylinder shown in Fig. 2. The rota- 
tional kinetic energy is then 

1 
2 K= -(Z& + ZY& + z=u;> (2.6) 

The principal moments of inertia of the cylinder with 
respect to the coordinate system shown are given by 

1 -  
4 

1 
2 

Z,=-MbZ =z, (2.7) 

13=-Ml? (2.8) 

Due to the gear ratio m:l the angular velocity iot wil1 
generally be a factor of m larger than the angular velocities 
about the other two axes. If we take therefore wc =mu, = mu, 
for the purposes of illustration, the kinetic energy becomes 

- K=-M4(& +bt /m2) (2.9) 

We now approximate according to (AI) the kinetic energy K 

1 
4 

as 
1 
2 

ii=-MU;& (2.10) 

The percent error in the kinetic energy incurred by using the 
expression (2.10) instead of the true kinetic energy (2.9) is then 

(2.1 1) 

(2.12) 

K-I?: 

b2 

H +m2& 

E h r  = - x 100 K 

XI00 - - 

For example if u = I ,  b = 1/2, and rn = 100, the percent error 

Let us now partition the generalized coordinate vector q as 
in kinetic energy is 0.01 percent. 

(si, qdTwhere 
0; = (q2, q 4 , .  . . . , &)= (2.13) 

-- - 

the inertia tensor of luik 2i- 2 then the first term in (2.4) will 
be included with the kinetic energy of link 2- 2. 

we now invoke Assumption (Al) and model only the 
kinetic energy of the rotor about its principal axis of rotation, 
‘.e., we assume that the second term in (2.4) above is given as 

1 1 .  

In other words ql is the vector of link variables and q2 is the 

We have shown by the previous discussion then that the 
kinetic energy of the system under our modeling assumption 
(Al) is 

K= +:.(91)4 I + +lJ& 
where D (ql) is the inertia of the ‘‘rigid” robot 

rotor mass as Part Of Iink 2i- for the purposes Of vector of actuator ,,ariat>les (divided by the gear ratio). 

1 
(2.15) 

-p:ziai  = --Iai 8: 
2 (2’5) 
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o(qi) = (du(qi )) (2.16) 
which can be calculated using standard techniques, (e.g., for- 
mula 6.66 in (41) once the rotor masses are included as part of 
the proximal links for the calculation of the latter’s inertia ten- 
sor. The n x n matrix J is given by 

\ 

J=diag m:Ial, . . . , rngan] (2.17) 

where the diagonai elements are the motor inertias á b u t  their 
principal axes of rotation multiplied by the square of the 
respective gear ratios. 

We now invoke our second assumption (A2) again that the 
rotor inertia is symmetric about its axis of rolation. This h- 
plies that the gravitational potential is a function only of 91. 
Therefore the total potential energy of the system is 

p= PI (9,) + P2(Ql - q2) (2.18) 
where, as in the case of the kinetic energy, the potential energy 
term PI is found from standard formulae for rigid robots 
(e.g., formula 6.54 in [4]). The second term above is due to the 
dastic potential of the spring and is given as 

1 
2 

[ 

- 
~ 

(2.19) p2 =-k(ql -Q2)r(q, -st). 
The Lagrangian L=K-P of the system is now given by 

1 1 
L=-+?aai)ql ++J42 -PI(%) 

(2.20) 

and the equations of motion arë found from the Euier- 
Lagrange equations 141 using (2.20) to be 

1 
2 --ml -Q2)r(Qi -92)  

m9r)qi +c(q,, q , ) + k ( q l  -q2)=0 (2.21) 

J42 - k(q, -q2)= 24. (2.22) 
The n x n matrix D(ql)  is symmetric, positive definite for 

each qi . The vector C(ql, <i i )  contains coriolis, centripetal, 
and gravitational forces and torques, and can be expressed as 

We note however that the gyroscopic forces between each 
rotor and the other links are not included in this expression as 
a resuit of Assumption (Al). It is interesting to compare the 
simplicity of our model (2.21)-(2.22) witb other models of 
elastic joint manipulators that have been derived in the 
Eterature [13,15, 18,20,23,29]. It turns out that (2.21)-(2.U) 
is structurally similar to the models used in [26) and f271. Thus 
our model can be viewed as the general n-degree-of-freedom 
extension to the models in the latter references. 

Interestingly enough, our model is also the direct extension 
to the case of elastic joints of the familar rigid models that 
have become standard in the literature. In fact, we can easily 
see that the usual rigid model can be recovered from 
(2.21)-(2.22) as the joint stiffness parameters k, tend to infini- 
ty. To see this we assume that in the limit as k - there is no 
elastic deformation, so that 

(2.24) 

On the other hand the force k(q, - q2) transmitted through the 
coupling between the rotor and link remains finite in the rigid 
m e ,  i.e., as k- CD, and it follows that the potential energy P2 
in (2.18) satifies 

1 

91 = q2’ 41 = q 2 -  

(2.25) - m l  2 -92) f (9 i -92 ) -o  
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as k-o, and e - qi -0. Therefore the Lagrani@an Of the rigid 
system L, is obtained from (2.20) as 

(2.26) 1 
L, = + T ( m í l )  + 4 9  1 - Pl(91) 

which leads to the equations of motion for the rigid system by 
applying the Euler-Lagrange equations to (2.26) 

0(91+491 +c(Qi ,  91)=u (2.27) 

The iateratkg kplication of tMs is that the usual textbook 
model of rigid robots is subject to the same assumptkms (A:) 
and (A2) that we use to derive the elastic joint model. 
Gyroscopic forces due to the rotation of the actuators are îìms 
not considered in most existing rigid models. See [32] for an 
exception to this statement which does consider the modeling 
of these gyroscopic terms in the case of the rigid joints. It is of 
interest to note that [32] concluded that these gyroscopic terms 
can indeed by neglected in most cases. 

3 FeedbackLuiemhtion 
It is well known that the rigid robot equations (2.27) may be 

globally linearized and decoupled by nonlinear feedback. T h i s  
is just the familiar inverse dynamics control scheme which 
transforms-(2.27) into a set of double integrator equations 
which can then be controlled by adding an “outer loop” con- 
trol 131). 

The above technique of inverse dynamics control is now 
understood as a special case of a more general procedure for 
transforming a nonlinear system to a hear system, known as 
external or feedback linearization. 

Definition 3.1: A nonlinear system 

i= i 
(3.1) 

= for) + G(x)u 

is said to be feedback linarizable in a neighborhood U, of the 
origin if there is a diffeomorphism T:U,-Rn and nonlinear 
feedback 

24 = a(x) + B(x)u (3.2) 
such that the transformed state 

Y = T(x) (3.3) 
satisfies the linear system 

where (A,  B) is a controllable linear system. 
Necessary and sufficient conditions for a system of the form 

(3.1) to be feedback linearizable are given in [3]. In the case of 
e!zt;c Joint robots. the feedback linearization property was 
investigzted in !13! using computer generated models of the 
manipulator dynamics. These models are sufficiently com- 
plex, even for two link examples that another computer pro- 
gram was used in [13] to check the conditions for feedback 
linearization. The answer was negative, i.e., the elastic joint 
model derived in [13] is not general linearizable in this fashion. 
In this section we show that the new model (2.21)-(2.22) is 
always globally feedback linearizable according to Definition 
3.1. Moreover we do not need symbolic programs to check 
linearizability or to compute the required state space change of 
coordinates or the nonlinear feedback law. These can be 
found by inspection. 

We first write the system (2.21)-(2.22) in state space by set- 
ting 

(3.4) j = A y + B u  
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(3.19) XI = 9, x2 = 41 af4 x2--D-I(c+k(x, a f 4  -x3) )  
x3 = 9 2  x4 = 42 (3.5) Y = -  ax, ax2 

Then we have from (2.21)-(2.22) 
x, = x2 (3.6) +-x4+ af4 ($D-')Xx,+D-'k(J-'k(x~r, -X, )+J- lu)  

3x3 

system one needs, in principle, to check rank conditions and 
involutivity of certain sets of vector fields formed by taking 
Lie brackets of the vector fields defining the state equations 
(3.6143.9). Our model is simple enough, however, that we can 
show global feedback linearizabiity by directly computing the 
required change of coordinates and nonlinear feedback law. 

y = 

Moreover the new coordinates themselves turn out to have 
physical significance for the control problem at hand. 

Consider now the nonlinear state space change of coor- 

: = f i x , ,  x,, x3, %4) + D(x,)-  IkJ- 
(3.7) 

O 1 0 0  O 

O 0 1 0  O 

O 0 0 1  O 

O 0 0 0  1 

Y (3.21) Y +  

L d L -  
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Y, = Y4 

y4 = F(x)+D-'kJ-'u 

: = -B(x)-'a(x)+&-'u 

that is, B(x) = Jk-'D(x) and a = B(x)F(x). 
Now the control law 

u = a(x) + B(x)v (3.24) 
that is, (3.20), which ideally linearizes the system is 
ünachievabk ia ?raa.ie due to parmeter unccrtainq, WIE- 
putational roundoff, unknown disturbances, etc. It is more 
reasonable to assume a control law of the form 

u = &(x) + B(x)v (3.25) 
where &(x) and B(x) are estimated or computed values of o(x) 
and B(x), respectively. In addition, the-functions a and B are 
extremely complicated so that & and B may represent inten- 
tional model simplification to facilitate reai-time computa- 
tion. In what follows Ilxù denotes the usual L,-norm or Eucli- 
dean norm of a vector XER" and, for any matrix M, BMU is the 
corresponding induced matrix norm, i.e., 

where A-(-) denotes the largest eigenvalue of a matrix. W e  
make the following assumptions on the functions a, a, 13, 8. 

6 s 18 - '(x) u 5 8 (3.26) 

llM =4.dwhfl 

(A31 There exist positive constants 8 and B such that 

(A4) There is a positive constant u< i such that 

(As) There is a known function +(x,, t )  such that 
IlB-'B-ZUsu 

Ia-an =+< 43 (3.28) 

(3.W 

We note that (A4) can afwayspe satisfied by suitable choice of 
B. For example, the choice 8 =  l /d,  where I is the identity 
matrix and the constant tis 112 (6 + 8) results in I361 

Now we substitute the control law (3.25) into (3.23) which 
results in 

(3.29) 

where A a = â - a ,  and E:=@-'B-I. Note that IIEllcu<l 
from assumption (A4). 

To track a desired trajectory d(t) we first find K such that 
Ä: =A+BK is stable, where A and B are defined by (3.21), 
and we set v = f i ( f ) + K e + A v ,  where e is the vector tracking 
error. 

&?I = 

The above system may now be written in "error space" as 
e=&+ BI AV + ] (3.30) 

where * is the nonlinear function (hereafter referred to as the 
("uncertainty") defined by 

= EH + K@+ av) + B - 
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(3.31) 

The problem of robust trajectory tracking now reduces to 
the problem of stabilizing the system (3.30) by suitable choice 
of the additional input AV. The above formulation is valid for 
any system that is feedback iinearizable as is shown in [331 and 
any number of techniques can now be used to design the input 
AV. However, the problem of stabilizing (3.30) in nontrivial 
since 9 is a function of both e and AV and hence 9 cannot be 
treated merely as a disturbance to be rejected by AV. A more 
sophisticated anaiysis and design is required to guarantee 
stability of (3.30). 

Approaches that can be used to design AV in (3.30) to 
guarantee robust tracking include Lyapunov and sliding mode 
designs [Ó], is], high gaiii @]aili: o.brter apqioâdìs. W e  5hd  
outline one approach to robust stabilization of feedback 
linearkable systems based on Ljiapmov's swad m e h d  See 
1331 for the derails and proofs. 
Firsr we note thar from our assumptions on the uncertainty 

we have 
iiWsu(iifiU+ Men+ IiAv8)+8+ (3.32) 

5 6 + d A v b  
where 6: =u( Bx! + IKe l )  + &b. Suppose that we can 
simultaneously satisfy the inequalities 

IiW s p ( e ,  t )  (3.33) 

I A d  sp(e, t )  (3.34) 
for a known function p(e, r). The function p can be determined 
as follows. First suppose that AV satisfies (3.34). Then from 
(3.32) we have 

This definition of p is well-defined since u < 1 and we have 
1IlS $J+Qp:=p (3.35) 

1 
1-u 

p = 4 .  (3.36) 

It now follows from [33] that the null solution of (3.30) is 
uniformly asymptotically stable (in a generalized sense) if AV is 
chosen as 

BTPe 
IBTPeQ ' 

- if iBrPeO#O 

if IIBTPeU = O  

(3.37) 

- 

(3.32) 

where P is the unique positive definite solution to the 
Lyapunov equation 

A r P + P Ä =  -Q 
for a given symmetric, positive definite Q. The argument is 
completed by noting that indeed UAvll sp.  

4 Integral Manifold Approach 
The above feedback linearizing control scheme requires 

measurement of the link positions and velocities, the motor 
positions and velocities as well as the link accelerations and 
jerks for successful implementation. In this section we present 
a differnt approach based on a reformulation of the dynamic 
equations (2.21)-(2.22) as a singularly perturbed system and 
the concept of integral manifold. In the case of weakly elastic 
joints, such as arise in harmonic drive gear elasticity, this ap- 
proach has the advantage that it may be applied even when on- 
ly the link position and velocity are available for feedback, 
provided that the system has a degree of natural damping at 
the joints. We will make this precise later. 
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zo) = h(q(t), 40. u(0. PI (4.12) Returning to the original system, we set 
1 
k z=k(q*-q,); p=- (4.ij a t )  = &I(O, W ) ,  W), P) (4.13) 

In otherwords, if the system lies initially on the manifold Then z is the elastic force at the joints. If we now choose M,, then the solution trajectory remains on the manifold Mb 

The integral manifold M,. is characterized by the following 
for t>ro. coordinates zand qi we have from (2.21) and (2.22) 

41 = -D(q,)-'c(q,, il)-m-ll)-'z (4.2) 

: = a,(q, i)+A,(q)z 
where we henceforth drop the subscript on q for convenience. 
Likewise, 

P-f = 4 1 - 4 2  (4.3) 

= -D(ql)-'c(q,, *-(D(qi)-' +I-')z-J-'u 

= 42(qr J)+A,(qk+B,u 
in this case not that Q, =o1 a d  B2 is wzstaiiilt md iuvefii- 

bie. The model (4.2)-(4.3) is  singularly perturbed. In the limit 
as p-0(4.2)-(4.3) reduces to the rigid equations of motion. In 
other words, by formally setting p = O  in (4.3) and eliminating 
z from the equations, one obtains the rigid equations (2.24), as 
we now show. 

Setting p = O  in (4.3) and solving for z yields 

Z= -(D-I + J-')-'(D-IC+J-'U) (4.4) 
which, when substituted into (4.2) yields 
6 = -D-IC+D-'(D-~ + J-~)-~(D-~c+J-~u) (4.5) 

= -D-~c+D-I(D-I + J-l)D-lc+D-I(~-l J-I  )-'J-'u 

Now a straightforward caidation shows that the first two 

(4.6) 

term in (4.5) above may be combined to yield 
- D- 1 c+ D- '(0- I + J- 1)- ID- L c 

= - D- 1 c + D- 1 J(D + J) - IC 
= (- D- (D + J) +D-'J)(D + J)-'c 

= - (D+ J)-'c 
Likewise the second term in (4.5) can be simplified as 

U (4.7) D-I(D- I + J - I ~ - ~ J - I  

= D- J(LJ +.I) - 'DJ-' tc 

= [J D- ' (D + J)J-'DJ - 'U = (D + 4-I U 
and so the reduced order system (4.5) simplifies to 

which is just the rigid sytem (2.24). 
4= -(D+J)-'c+(D+J)-'u (4.8) 

Integral Manifold In the 4n-dimensionaI state space of 
(4.2)44.3), a 2n dimensional manifold M, may be defined by 
the expressions, 

(4.99 z= h(q, de ft, PI 

i = h, 9. u, Io (4.10) 
The manifold M, is said to be an integral manifold 

(4.2)-(4.3) if it is invariant under se!i?Ums sf the  SE^^. Iii 
other words. given an ad_m-ssib!e i ~ p t  fmaiu-, ;-i&;, if 
q(t), z(t) are solutions of (4.2)-(4.3) for t> to with initial condi- 
tions q(to) = qo, q(to) = qo, P, $to) = To then 

zo =h(qO, lio, UUO),  P) (4.1 i) 

zo = M q 0 9  do, u(t0)e cc) 
ìmpiies that fort> to 
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partial differential equation, formed by substituting the ex- 
pression (4.9) into the equation (4.3) % 

ph=a2(q, *)+A,(q)h +B,u (4.14) 
in otherwords, if the system lies initially on the manifold 

M,, then the solution trajectory remains on the manifold M, 
for t>ro. 

3h 
ti + - ar! . ai: 

as a4 
= - y  + -(a, t k 

au 
mc! I; is to be s d a í i y  expanded. MtPisugh ehe p.d.e. (4.14) 
is seemingiy diffîcuit we shall actuaiiy find an explicit 
soiution. 

Once h is determined from (4.14), the dynamics of the 
system (4.2)-(4.3) on the integral manifold are given by a 
reduced order system referred as the reducedfleXibl(? System 
formed by replacing z by h in (4.2) 

4=a,(qs, *+A,WMq* d,U,P) (4.15) 
Equation (4.15) is of the same order as the rigid system, but 

as shown in (181 is a more accurate approximation of the flexi- 
ble system than is the rigid model (2.24). We leave it to the 
reader to verify that the reduced flexible system reduces to the 
rigid system (2.24) as the perturbation parameter p tends to 
zero. 

We now utilize the concept of composite control [lo] and 
choose the control input u of the form 

u = m e  J e  "1 PI + U A 1 9  i )  (4.16) 
where Y represents a new input to be specified. We also specify 
u,(O,O)=O so that u=u, on the integrai manifold. The 
variable q represents the deviation of the fast variables from 
the integrai manifold, i.e., - 

1 = 2- m, J e  u s ,  PI (4.17) 

i=i-i;<s* i, u,, p); 

Since u = u, on the integrai manifold we may combine (4.3) 
and (4.14) to obtain 
P9 = lü-cj; 

= Azq + BZU~ 
Therefore, in terms of the variables q and q,  the system 

(4.18) 

(4.2)-(4.3) is rewritten as 
4 = a1 +A,h(q, 9 e  us,-lr)+A,$ 

p d  = A ~ ( Q ) ~ + B ~ U ,  (4.19) 
in order to solve the P.D.E. (4.14) defining the integral 

manifold, we expand the function h in terms of p as 

h(q, 4 e  u s * ~ ) = h ~ ( q ,  4 e U ü ) + M q e 9 ,  UO+FI)+ - (4.20) 

âiìd .i*e a 
u* =u0 + N I  (4.21) 

Substituting these e x p ~ i o n s  into the manifold condition 
(4.14) yields 

p{&o+phl + . . . 1 =a, +A,(h,+phh, + . . . 9  (4.22) 
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Equating coefficients of pk  we obtain the sequence of 

(4.23) 
IXpalitieS 

O = 02 + Azho + BzUo 
(4.24) 

(4.25) 
Equation (4.23) may be solved for ho to yield 

(4.26) 
The derivation now proceeds iteratively. The control u. is 

fust computed at p = O, that is, based on the rigid model, and 
can be any one of the many schemes that have been derived for 
control of rigid manipulators. Given u. then ho is computab!e 
from (4.26). From this, with the given u. we can compute ho 
and so we can write (4.24) as 

A2hl =hO-B21(1. (4.27) 

where the right-hand side contains only known quantities and 
the control. Since both A,, and B, are invertible, we see that 
by setting 

it follows that 
u1 = B ~ l h o  (4.28) 

h, SO and therefore h, =O (4.29) 

From this it follows iteratively from (4.25) and the invertibility 
of A, that h k = û  for k> i. 

We have show therefore that the choice of control input 
u, = u0 $- WI (4.30) 

with ui given by (4.B) resuits in h=ho. Thus, on the integral 
manifold, Le., when 9=Q, the dynarrrics Qf the system are 
described by the reduced order system. 

<=U, -AIA2'+ -P.iAi'B+o (4.31) 

= - (ml) +a-' dq,  4) + u0 I 
which is of course just the rigid system. 

We see that we have produced a solution ho of the manifold 
condition (4.14). The fact that ho, given by (4.26), satisfies 
(4.14) is significant. What this implies i s  that by adding the 
corrective control ppcl the integral manifold h becomes the 
rigid manifold ho. To put it another way, the rigid manifold ho 
is made an invariant manifold for the flexible system by the 
corrective control. 

If the control u. is chosen to be the feedback l i n d n g  
control for the rigid system 

we obtain the overaii system 
(4.32) 

(4.34) 

Since B, is nonsingular the fast subsystem (4.34), which is a 
linear system in q parmeterized by q, is controllable for each q. 
Thus there exists a fast control u,(q, i) to place the poles of 
(4.34) arbitrarily. Note that we have not explicitly included 
damping in the model. Thus for each q,  since - A 2  is a 
positive definite matrix, the open loop poles of (4.34) are on 
the io-axis. This shows clearly the resonance phenomonon 
whereby the elastic oscillations from (4.34) drive the slow 
variables through (4.33). Since A, is a function of q the reso- 
nant modes will be configuration dependent, a fact that was 

- ._ experimentally verified in [25]. In case the system (4.34) has 
some inherent natural damping one can show that the fast sub- 
system is of the form 

Table 1 Parameters used for simuiation 

m =  1 MaSS 
Stiffness k =  loo 
Lmgth(2L) L = 1 
Gravity g = 9.8 
Inertias I =  I 

J =  1 

(4.35) 

in which the fast variables, represented by 7, decay to zero 
with u,=O. In other words the integral manifold, which h this 
case is the rigid manifoid becomes an attracting set. Solutions 
off the manifold rapidily converge to the manifold after which 
the system equations are just the rigid equations. In this w e  
the control u, consisting of the rigid control plus the corrective 
control achieves the desired result. The point to note that this 
slow control is a function only of q,  q. Thus the corrective 
control mmpensates for the elasticity using a limited set of 
state measurements. 

If there is no damping in the fast variables, or if the damp- 
ing is insufficient then the fast control uf must be added. Note 
that the choice 

u,=W(!: -  AZ(*) (4.36) 

where {is a new input, when applied to (4.34) results Ui 
cri=!: (4.37) 

Inspecting (4.33), (4.37) we see that we have for dl practical 
purposes produced an alternate feedback linearization of the 
originai system, which exploits the two-time scale property Öf 
the eiastic system. A linear control scheme can now be 
employed, for example 

(4.38) 

f=B,'rl+r&2-i (4.39) 

to place the poles of the system arbitrarily. Note that im- 
plementation of the above control schem-e requires either 
direct measurement of the fast variables, which in this case are 
the elastic f o r m  at the joints and their time derivatives or else 
accurate knowledge of the system paramters in order that 7 
and 4 can be computed from (4.17), which is an issue similar 
to that which arises in the feedback linearization approach of 
section 3. 

5 An Example 
For illustrative purposes consider the single link with the 

flexible joint of Fig. 1 with the parameters shown in Table 1. 
The equations of motion for this system in state space are easi- 
ly computed to be 

xi = x, 
iz = - .MgL/I "nx, - k/Z(x, - x3) (5.1) 
x3 = x4 
x4 = k/J(x, -x3)+ 1/Ju 

where x1 =-gi, x, = q,, etc. 
In the limit as k- 03 the resulting rigid system is 

x, = x, 
X, = - Mgì/(i+ J)sinr, + 1 /(I + J)u c5.9 

(5.4) 

where we take here x1 = , =q,  =q2. 

chosen as 

with v given as a a simple linear control term 

The feedback iinearizing control law for (5.2) may be 

(5.3) u = (I+ ~ ) ( v  +Mgi-sihu,) @ 
P =i$ -a, ( X i  -xf) - U2(X? - $) 

d 

t i  



- 2 .  

- a .  

ng4- Fedback lineadzation control. 1 =reóerence ímjectm ?=link 
aurblts 

designd to track a desired trajectory ++(O. - The feedback linearizing control law computed from (3.19) 
It is intaesting to see the responseaf the flexible joint and (3.20) tunis out to be 

w e m  (5.1)Lo this “rigid contrÖI.*’ At this point one must 
make a choice whether to use the motor variable q2 or the link (5.6) 
variable qi in this control law. Figure 3 shows the response of 
the link variable qi in the flexible joint system (5.1) using the 

*=sin 8f. i t  is interesting to note that if one tries to feedback 

--me. - 

where 
motor variable xl = q2 in (5.3)-(5.4), with a desired tracjectory 

ktd Iriië iinii v-ie 4, in (5.Tjs.4j r~ie ~ j ~ s r ~  L - ~ ~  

) = - ~ ~ / z s ~ ,  ...f (5.7) ” ” 3’ ‘ 
+(Ms + k/lXMgL/Zsinx, +k/l(x, -x3]) .---L.- 

Feedback Linearizatioa Co . Thefeedbacklinearizing 
-formation for this system is given by (3.10X3.13) as A simde linear control law for I designed to track a desired 

Y, = XI (5.5) trajecto;Y t-d(t) can öe expressed as 

Y3 = 
Y4 = - M . l / l C o ~ ~  *xf k/Z& -x*) 1 - 1  

Y2 = x, @) 3- - M g u I  S i n r ,  - WZ(Xl - x,) Cri0)i-d) 

6 
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function xdot=link3(t,x) 
% 
% FEEDBACK LINEARIZATION 
% SINGLE LINK WITH JOINT 
% 
% I  inputfile on behalf of 
% \  

CONTROL OF A 
ELASTICITY 

main program 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

% parameters used for simulation 
% 
m = 1; %i mass 
k = 100; %i stiffness 
1 = 1; % length 
g = 9.81; % gravity 
I = 1; % inertia 
J = 1; % inertia 
bl= 10; %i link damper (kei=O.5) 
bm= 10; % motor damper (ksi=0.5) 
%i 
% * * * * * * * Z t * * * * * * * * * * * * * * * * * * * f i * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * ~ * * * * * *  

% state equation describing plant I 1  

% 
xdot(l)= ~(2); 
xdot(2)= -(rn*g*l/I)*sin(x(l)) - (k/I)*(x(l)-x(3)) - (bl/I)*x(2); 
xdot(3)= ~(4); , 
xdot(4)= (k/J)*(x(l)-x(3)) + (l/J)*U - (bm/J)*x(4); I 
% * * I * * * * * R * R * R * * * * * * * * * * * * R * * R * ~ ~ * * * ~ * * * * * * * * * ~ * * * * * * * * * * * * * * * * ~ * * * * * *  
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I 

FEEDBACK LINEARIZATION CONTROL OF A 
SINGLE LINK WITH JOINT ELASTICITY 

main program 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
set starting values 

obal u m g 1 I J k rij kol LgT4 LIT4 bl bm 

1 = 0.0:  
= [O  o o O ] ' ;  
= 0 . 0 :  

I 

bilt = [to]; ' 
tut = [xOI: 
jut = [u]; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

begin recursive calculation , 
.tart = 0.00:  
:tep = 0.01: 
:top = 2.00; 

~r tel = tetart:tstep:tstop, 

tO = tel; 
tf = tel + tetep; 
[t,x] = ode45('link3',tO,tf,xO) 

n = length(t); 
tn = t(n) : 
xn = x(n,:)': 

I 

ksi(2) = xn(2); ' 
ksi(3) = -(m*g*l/I)*ein(xn(l)I - (k/I)*(xn(l)-xn(3)) r (bl/I)*xn(2): 
ksi(4) = -(m*g*l/I)*xn(2)*cos(xn(l)) - (k/I)*(xn(2)-xn(4)) ... 

+(bl/I).^2*xn(2) + ((bl*m*g*l)/(I.^2))*sin(xn(l)) ... 
+ ( (bl*k) / (I. -2) * (xn (1) -xn (3) 1 : 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
computation of the control input u 

zî = sin(/*tn): 
22 = cos(û*tn); 

, v = 4096*21 - 10000*(ksi(l)-zl) ... - 4000*(ksi(2)-8*z2).. . 
- 600*(ksi(3)+64*zl) ... - 4O*(ksi(4)+512*22); 

rij = [m*g*l/I*xn ( 2 )  *sin (xníl) + (bl*m*g*l/I.^2) *cos (xnil) +(bl*k),/ (1.̂ 2) : 
(-m*g*l/I) *cos (xn (1) ) -k/I+ (bl/ï) .*2;- (bl*k) /I. ̂ 2;k/I] ' : 

kol = [xn ( 2 i ; - (bl/ I ) *xn ( 2 - (m*g * 1 /I * s i n  (xn ( 1 

LIT4 = rij*kol; 
- (k/I * (xn i 1 ) -xn (3) ) : 

xn ( 4 )  ; - (bm/J) *xn (4) + (k/J) * (xn (i1 -xn (3) ) 1 : 

x0 = xn; 
tout = [tout.; ~ n ]  ; 
xout L [xout xn]; 
uout = [uout;ul: 

end 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% output 

xld = sin(/*tout)! 
plot(pout,xout(l,:) ',tout,zld), 
title('FEEDf3ACK LTNEARIZATION CONTROL OF A DAMPED SYSTEM'), 
xlabel('time [s]'),ylabel('ref. traj. & link angle'),pause 
meta a:f145g 

clg 
plot(tout,uout), 
tiVle('FEEDBACK LINEARTZATION CONTROL OF A DAMPED SYSTEM'), 
xlabel('time [s]'),ylabel('control input u'),pause 
meta a:f145k 

I 

' , I  
1 



I 

unction xdot=link (t ,x) 

FEEDBACK LINEARIZATION CONTROL OF A 
SINGLE LINK WITH JOINT ELASTICITY 

inputfile on behalf of main program 

, '  



5 FEEDBACK LINEARIZATION CONTROL CV A 
i SINGLE LINK WITH JOINT ELASTICITY 

I main program 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
define and initialize parameters 

Ilobal u m g 1 I J k 

.o = 0 . 0 :  
;o = .[O o o O ]  '; 
1 = 0.0:  

l 

out = [to]: 
:out = [xO]; 
lout = [u]; 
i * * * * * * * * * * R * * * * * * * * * * * * * * * * * * * * * * * ~ , * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

I begin recursive calculation 

start = 0.00;  
step = 0.01; 
stop = 2.00: 

or tel = tstart:tstep:tstop, 

tO = tel: 
tf = tel + tstep: 
[ t , x] = ode 4 5 ( ' 1 ink ' , t O ,  t f , x0 

zl = sin(8*tn): 
22 = cos(8*tn); 

I 

I1 

xout = [xout xnl; 
uout = [uout;ul; 

end 

% * * * * * k * * * * X * * X * * * * f ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

%i output ,, 

zld = 'si,n(8*tout): 
plot(tout,xout(l,:)',tout,zld), 
title('FEEDRACK LINEARIZATION CONTROL'), 
xlabel('time [s]'),ylabel('fef. traj. & link angle'),pause 
meta a:f135g 

clg plot(tout,uout), 

title('FEEDBACK LINEARIZATION CONTROL'), 
xlabelt'time [s]'),ylabel('control input u'),pause 
meta a:f135k 

* 

\ 
I 

* *  



FEEDBACK LINEARIZATION CONTROL OF A 
SINGLE LINK WITH JOINT ELASTICITY 

main program 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I set starting values 

 loba al u rn g 1 I J k k2 

o = 0.0; 
:o = [ O  o o O ] ' ;  
I = 0 . 0 ;  

out = [tol: 
:out = [xOJ; 
lout = [u]; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

6 begin recursive calculation 

.start = 0.00:  
:step = 0.01; 
.stop = 2.00; 

tor tel = tstart:tstep:tstop, 

to = tel; 
tf = tel + tstep; 
[ t , XI = ode 4 5 ( ' 1 ink ' , t O ,  t f , x0 ) 

n = length(t1; 
tn = c(n); 
xn = x(n,:)'; 

* * * X * * * * * * * X * * * * * * * * * * * * ~ * ~ * * * R * t * R * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * R * * * * * *  

% computation of coordinates transformation 

ksi(1) = xn(1); 
ksi(2) = xn(2); 
ksi(3) = -(rn*g*l/l)*sin(xn(l)) - (k/I)*(xn(l)-xn(3)); 
ksi ( 4 )  = - (m*g*l/I) *xn (2) *cos (xn (1) 1 - (k/I) * (xn ( 2 )  -xn(4) ) ; ' 

zl = sin(8*tn): 
22 = cos(8*tn)': 

. .. '\Y . 4096*21 10000* (ksi (1 ) i -a l ) .  

. 4000* (ksi (2I-iB*z2). .. .. . 600* (ksi(311+64*zl). 
- 40" (ksi (4)+'512*22) ; 

I1 

, ... (m . g . 1 . J /k2 ) *sin (xn ( 1 1 ) . (xn ( 2 ) . ̂2+ (m * g  . 1 /I ) *cgs (xn ( 1 ) ) . k2/ I ) ... 
-J*(xn(l)-xn(3))*((m*g~l/I~*cos(xn~l))+k2/I+k2/J~... 
+(I*J/k2) *v; 

I 
1 

xout = [xoiit xnl; 
uout = [UOlit;UI; 

end 
% t t * * * * * * X * * * X * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * ~ * *  

% output 

z î d  = sin(û*tout): 
plot(tout.xout(l,:)',tout,zld), 
title('R1GID CONTROL APPLIED TO FLEXIBLE JOINT'), 
xlabel('time [s]'),ylabel('ref. traj. & link angle'),pause 
meta a:f136g 

clg 
subplot, (211) 
plot(tout,xout(î,:)',tout,zld), 
title('R1GID CONTROL APPLIIED TO FLEXIBLE JOINT'), 
xlabel('time [s]'),ylabel('re€. traj. & link angle'),pause 
meta a:f136k 
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unction xdot=linka(t,x) 

FEEDBACK LINEARIZATION CONTRIOL OF A 
SINGLE LINK WITH JOINT ELASTICITY 

inputfile on behalf of main program 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
parameters used for simulation 

= 1; %i mass 
= 100; . 4 stifness 
= 1; 4 length 
= 9.81; 4 gravity 
= 1; %i inertia 
= 1; % inertia 

lfa = -(m*g*l)/(I+J); 4 constant 
eta = l/(I+J); 4 constant 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

dot(1)- ~ ( 2 ) ;  
dot(2)= alfa*sin(x(l)) + beta*u; 

state equation describing plant 

R * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ~ * * * * * * * * * * * * * * ~ * *  

I 

I 

I 



Fk;EUBACK LINEAKIZAI'ION CON'I'KVL OF A 
SINGLE LINK WITH JOINT ELASTICITY 

J 
main program (opgeve û) 

set starting values 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I 

lobal u m g 1 I J k alfa beta 

o = 0 . 0 :  
o = [O  O ] ' ;  

= 0.0:  

3Ut = [to]; 
out = [xO]; 
3Ut = [u]: 
R * R * * * * * t R * * * * * * * * * * * * * * * * * * * * * * * R R * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

begin recursive calculation 
1 

start = 0 . 0 0 :  
step = 0.01: 

3r tel = tstart:tstep:tstop, 

3tOP = 2 . 0 0 ;  

t O  = tel; 
tf = tel + tstep; 
[t,x] = ode45('link2',tO,tf,xO) 

n = lengthft); 
tin = t(n); 
x h  = x(n,:)'; 

computation of coordinates transformation 

ksiil) = xn(1): 
ksi(2) = xn(2); 

computation of the control input u 

zl = sin(û*tn); 
22 = cos(û*tn); 

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * k * * * * * * * * * * * * * * * * * * U * * * * * * * * * * * * * * * * * * * ~  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I 

- 

v = -64*21 - 100" (k8i (l)-Zl) - 20* (kûi (2)-8*z2) 
u = (l/beta) * (v-alfa*sin(xn(l) 1 )  ; 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
reset initial state and update Output 

I 

x0 = xn; 
tout = [tout;tnl; 
xout = [xout xnl; 
uout = [uout;ul; 

qd 

output 

Id = sin(û*tout); ' I  
lot(tout,xout(l,:) 'itoutizld) 
itle('FEEDBACK LINEARIZATION CONTROL'), 
iabel('time [ u ]  '1 ,ylabel('ref. traj. h link angle') ,pauflia 
.ta a:f143g 

l i .  L 1  8 ,  

% S I N G L E  LINK WITH JOINT ELASTICITY 

( O P 9 ~ ~ C  9) % main program 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% set starting values 

global u m g 1 I J k alfa beta 

to = 0.0: 
xo = [O  O ] ' ;  
u = 0 . 0 :  , 

tout = [tol; 
xout = [xOI; 
uout = [u]; 

i 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
% begin recursive calculation 

tstart = 0 . 0 0 -  
tstep = 0.0î~i 
tstop = 2.00; 

for tel = tstart:tstep:tstop, 

tO = tel: I 
tf = tel + tstep: 
[t,x] = ode45('link2',tO,tf,xO) 

n = length(t1; 
tn = t(n); 
xn = x(n,:)'; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
computation of coordinates transformation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

end 

% output 

zld = sini8*tout); , 

computation of the control input u 

zl =: sin(û*tn); 
22 = cos(û*tn); 

V = -64*21 - lOO*(ksi(l)-zl) - 20*(k~ 
u = (l/beta) * (v-alfa*xn(l)) ; 

remt initial state and update output 

x0 c xn; 
tout = [tout;tn]; 

, xout = [xout xnl: 
uout = [uout;ul: 

' . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(2) -8*22 

t*******  

, 

. . . . . . . . . . . . . . . . . . . . .  

plot ( tout , xou t ( 1, : 1 i tout , zld ) , 
title('L1NBAR CONTROL APPLIED TO NONLINEAR PLANT'), 
xlabal('time [s]'),ylabel('ref. traj. h link mgle'),pauee 
meta a:f1444 
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