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Flow-based reputation with uncertainty
Evidence-Based Subjective Logic

Boris Škorić, Sebastiaan J.A. de Hoogh, and Nicola Zannone

Abstract The concept of reputation is widely used as a measure of trustworthiness based
on ratings from members in a community. The adoption of reputation systems, however,
relies on their ability to capture the actual trustworthiness of a target. Several reputation
models for aggregating trust information have been proposed in the literature. The choice of
model has an impact on the reliability of the aggregated trust information as well as on the
procedure used to compute reputations. Two prominent models are flow-based reputation
(e.g., EigenTrust, PageRank) and Subjective Logic based reputation. Flow-based models
provide an automated method to aggregate trust information, but they are not able to express
the level of uncertainty in the information. In contrast, Subjective Logic extends probabilistic
models with an explicit notion of uncertainty, but the calculation of reputation depends on
the structure of the trust network and often requires information to be discarded. These are
severe drawbacks.

In this work, we observe that the ‘opinion discounting’ operation in Subjective Logic
has a number of basic problems. We resolve these problems by providing a new discounting
operator that describes the flow of evidence from one party to another. The adoption of our
discounting rule results in a consistent Subjective Logic algebra that is entirely based on the
handling of evidence. We show that the new algebra enables the construction of an auto-
mated reputation assessment procedure for arbitrary trust networks, where the calculation
no longer depends on the structure of the network, and does not need to throw away any
information. Thus, we obtain the best of both worlds: flow-based reputation and consistent
handling of uncertainties.

Keywords Reputation systems · Evidence Theory · Subjective Logic · Flow-based
reputation models

1 Introduction

Advances in ICT and the increasing use of the Internet have resulted in changes in the
way people do everyday things and interact with each other. Everything people do happens
online, significantly increasing the number of business transactions carried out daily over the
Internet. Often, users have to decide whether to interact with services or users with whom
they have never interacted before. Uncertainty about services and users’ behavior is often
perceived as a risk [2] and, thus, it can restrain a user from engaging in a transaction with
unknown parties. Therefore, to fully exploit the potential of online services, platforms and
ultimately online communities, it is necessary to establish and manage trust amongst the
parties involved in a transaction [11,40,43].
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Reputation is widely adopted to build trust among users in online communities where
users do not know each other beforehand. The basic idea underlying reputation is that
a user’s past experience as well as the experience of other users influences his decision
whether to repeat this interaction in the future. Thus, reputation provides an indication of
services’ and users’ trustworthiness based on their past behavior [36]. When a user has to
decide whether to interact with another party, he can consider its reputation and start the
transaction only if it is trustworthy. Therefore, a reputation system, which helps managing
reputations (e.g., by collecting, distributing and aggregating feedback about services and
users’ behavior), becomes a fundamental component of the trust and security architecture of
any online service or platform [42].

The application and adoption of reputation systems, however, relies on their ability to
capture the actual trustworthiness of the parties involved in a transaction [41]. The quality
of a reputation value depends on the amount of information used for its computation [10,
17,27]. A reputation system should use “sufficient” information. However, it is difficult to
establish the minimum amount of information required to compute reputation; also, differ-
ent users may have a different perception based on their risk attitude [2]. For instance, some
users may accept to interact with a party which has a high reputation based on very few past
transactions, while other users might require more evidence of good behavior. Therefore, a
reputation system should provide a level of confidence in the computed reputation, for in-
stance based on the amount of information used in the computation [15,32]. This additional
information will provide deeper insights to users, helping them decide whether to engage in
a transaction or not. In addition, reputation systems should provide an effective and prefer-
ably automated method to aggregate the available trust information and compute reputations
from it.

Reputation systems usually rely on a mathematical model to aggregate trust informa-
tion and compute reputation [13]. Several mathematical models for reputation have been
proposed in the literature. These models can be classified with respect to the used mathe-
matical foundations, e.g. summation and averaging [14], probabilistic models [15,21,28],
flow-based [6,23,25,35], fuzzy metrics [3,38]. As pointed out in [42], the choice of the
type of model has an impact on the type and amount of trust information as well as on the
procedure used to compute reputation.

Among the others, two prominent reputation models are the flow-based model and Sub-
jective Logic (SL) [15]. Flow-based reputation models use Markov chains as the mathemat-
ical foundation. Flow-based models provide an automated method to aggregate all available
trust information. However, they are not able to express the level of confidence in the ob-
tained reputation values. On the other hand, SL is rooted in the well-known Dempster-Shafer
theory [34]. SL provides a mathematical foundation to deal with opinions and has the natu-
ral ability to express uncertainty explicitly. Intuitively, uncertainty incorporates a margin of
error into reputation calculation due to the (limited) amount of available trust information.
SL uses a consensus operator ‘⊕’ to fuse independent opinions and a discounting operator
‘⊗’ to compute trust transitivity. This makes SL a suitable mathematical framework for han-
dling trust relations and reputation, especially when limited evidence is available. However,
the consensus operator is rooted in the theory of evidence, while the discounting operator
is based on a probabilistic interpretation of opinions. The different nature of these operators
leads to a lack of “cooperation” between them. As a consequence, the calculation of repu-
tation depends on the shape of the trust network, the graph of interactions, in which nodes
represent the entities in the system and edges are labeled with opinions. Depending on the
structure of the trust network, some trust information may have to be discarded to enable
SL-based computations.
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Our desideratum is to have a reputation system which has the advantages of both flow-
based reputation models and SL. In particular, the goal of this work is to devise the math-
ematical foundation for a flow-based reputation model with uncertainty. We make the fol-
lowing contributions towards this goal:

– We observe that the discounting rule ‘⊗’ in SL does not have a natural interpretation
in terms of evidence handling. We give examples of counterintuitive behavior of the ⊗
operation.

– We present a brief inventory of the problems that occur when one tries to combine SL
with flow-based reputation metrics.

– We present a simplified justification of the mapping between evidence and opinions
in SL.

– We introduce a new scalar multiplication operation in SL which corresponds to a mul-
tiplication of evidence. Our scalar multiplication is consistent with the consensus op-
eration (which amounts to addition of evidence), and hence satisfies a distribution law,
namely α · (x⊕ y) = (α · x)⊕ (α · y).

– We introduce a new discounting rule �. It represents the flow of evidence from one party
to another. During this flow, lack of trust in the party from whom evidence is received
is translated into a reduction of the amount of evidence; this reduction is implemented
using our new scalar multiplication rule. Our new discounting rule satisfies x�(y⊕z) =
(x� y)⊕ (x� z). This right-distribution property resolves one of the problems of SL.

Our new discounting rule multiplies evidence instead of opinions and is thus fully based on
the handling of evidence. In contrast to the old discounting rule, the new one does not have
associativity. This, however, does not pose a problem since the flow of evidence has a well
defined direction. The adoption of our discounting rule results in an opinion algebra that is
entirely centered on the handling of evidence. We refer to it as Evidence-Based Subjective
Logic (EBSL).

We show that EBSL provides a solid foundation for the development of reputation mod-
els able to express the level of confidence in computed reputations. Moreover, having an
opinion algebra rooted in a single foundation makes it possible to define an automated pro-
cedure to compute reputation for arbitrary trust networks. We believe that having an auto-
mated procedure is a critical and necessary condition for the implementation and adoption
of reputation systems in online services. To demonstrate the applicability of EBSL to the
development of reputation systems, we make the following contributions:

– We show that replacing SL’s discounting operation ⊗ by the new � solves all the prob-
lems that usually occur when one tries to combines flow-based reputation with SL, in
particular the problem of evidence double-counting and the ensuing necessity to make
computations graph-dependent and to discard information.

– Using EBSL, we construct a simple iterative algorithm that computes reputation for ar-
bitrary trust networks without discarding any information. Thus, we achieve our desider-
atum of automated computation of flow-based reputation with uncertainty.

We stress that this is only one out of many possible reputation models that can be constructed
on top of EBSL. EBSL can be used as a foundation for other existing reputation models,
e.g. reputation models based on random walks [9]. The investigation of these models is an
interesting direction for future work.

The remainder of the paper is organized as follows. The next section presents an overview
of flow-based reputation models and SL. Section 3 discusses the limitations of SL, and Sec-
tion 4 illustrates these limitations when combining flow-based reputation and SL. Section 5
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revisits SL and introduces the new EBSL scalar multiplication and discounting operators.
Section 6 presents our flow-based reputation model with uncertainty along with an iterative
algorithm that computes reputation for arbitrary trust networks. Section 7 presents an evalu-
ation of our approach using both synthetic and real data. Finally, Section 8 discusses related
work, and Section 9 concludes the paper providing directions for future work.

2 Preliminaries

In this section we present an overview of flow-based reputation models (based on [35]) and
of Subjective Logic (based on [15]). We also introduce the notation used in the remainder
of the paper.

2.1 Flow-based reputation

Flow-based reputation systems [6,23,25,35] are based on the notion of transitive trust. In-
tuitively, if an entity i trusts an entity j, it would also have some trust in the entities trusted
by j.

Typically, each time user i has a transaction with another user j, she may rate the trans-
action as positive, neutral, or negative. In a flow-based reputation model, these ratings are
aggregated in order to obtain a Markov chain. The reputation vector (i.e., the vector con-
taining all reputation values) is computed as the steady state vector of the Markov chain;
one starts with a vector of initial reputation values and then repeatedly applies the Markov
step until a stable state has been reached. This corresponds to taking more and more indirect
evidence into account.

Below, we present the metric proposed in [35] (with slightly modified notation) as an
example of a flow-based reputation system.

Example 1 Let A be a matrix containing aggregated ratings for n users. It has zero diagonal
(i.e., Aii = 0). The matrix element Aij (with i 6= j) represents the aggregated ratings given
to j by i. Let s ∈ [0, 1]n, with s 6= 0, be a ‘starting vector’ containing starting values
assigned to all users. Let α ∈ [0, 1] be a weight parameter for the importance of indirect vs.
direct evidence. The reputation vector r ∈ [0, 1]n is defined as a function of α, s and A by
the following equation:

rx = (1− α)sx + α

n∑
y=1

ry
`
Ayx (1)

where ` =
∑n
z=1 rz .

Eq. (1) can be read as follows. To determine the reputation of user x we first take into
account the direct information about x. From this we can compute sx, the reputation ini-
tially assigned to x if no further information is available. However, additional information
may be available, namely the aggregated ratings in A. The weight of direct versus indirect
information is accounted for by the parameter α. If no direct information about x is avail-
able, the reputation of x can be computed as rx =

∑
y(ry/`)Ayx, i.e. a weighted average of

the reputation values Ayx with weights equal to the normalized reputations. Adding the two
contributions, with weights α and 1 − α, yields (1): a weighted average over all available
information.
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The equation for solving the unknown r contains r. A solution is obtained by repeatedly
substituting (1) into itself until a stable state has been reached. This is the steady state of the
Markov chain. It was shown in [35] that Eq. (1) always has a solution and that the solution
is unique.

Intuitively, A can be seen as an adjacency matrix of a trust network where nodes rep-
resent entities and edges represent the direct trust that entities have in other entities based
on direct experience. Based on the results presented in [35], Eq. (1) can be applied to assess
reputation for arbitrary trust networks.

2.2 Subjective Logic

Subjective Logic (SL) is a trust algebra based on Bayesian theory and Boolean logic that
explicitly models uncertainty and belief ownership. In the remainder of this section, we
provide an overview of SL based on [15].

The central concept in SL is the three-component opinion.

Definition 1 (Opinion and opinion space) [15] An opinion x about some proposition P
is a tuple x = (xb, xd, xu), where xb represents the belief that P is provable (belief ), xd
the belief that P is disprovable (disbelief ), and xu the belief that P is neither provable nor
disprovable (uncertainty). The components of x satisfy xb + xd + xu = 1. The space of
opinions is denoted as Ω and is defined as Ω = {(b, d, u) ∈ [0, 1]3 | b+ d+ u = 1}.

An opinion x with xb + xd < 1 can be seen as an incomplete probability distribution.
In order to enable the computation of expectation values, SL extends the three-component
opinion with a fourth parameter ‘a’ called relative atomicity, with a ∈ [0, 1]. The proba-
bility expectation is E(x) = xb + xua. In this paper, we will omit the relative atomicity
from our notation, because in our context (trust networks) it is not modified by any of the
computations on opinions. In more complicated situations, however, the relative atomicity
is modified in nontrivial ways.

Opinions are based on evidence. Evidence can be represented as a pair of nonnegative
finite numbers (p, n), where p is the amount of evidence supporting the proposition, and n
the amount that contradicts the proposition. The notation e = p + n is used to denote the
total amount of evidence about the proposition. There is a one-to-one mapping between an
opinion x ∈ Ω and the evidence (p, n) on which it is based,

(xb, xd, xu) =
(p, n, 2)

p+ n+ 2
; (p, n) =

2(xb, xd)

xu
. (2)

The bijection (2) holds for any value of the atomicity a. It has its origin in an analysis of the
a posteriori probability distribution (Beta function distribution) of the biases which underlie
the generation of evidence [15]. This distribution is given by

ρ(t|p, n, a) =
t−1+p+2a(1− t)−1+n+2(1−a)

B(p+ 2a, n+ 2− 2a)
, (3)

where t is the probability that proposition P is true, and B(·, ·) is the Beta function. The
opinion x = (p,n,2)

p+n+2 is based on the vague knowledge (3) about t. The left part of (2) holds
because the thus constructed opinion x has the same expectation as (3).

Intuitively, the amount of positive and negative evidence about a proposition determines
the belief and the disbelief in the proposition, respectively. Increasing the total amount of
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evidence (e) reduces the uncertainty. Note that there is a fundamental difference between
an opinion where a proposition is equally provable and disprovable and one where we have
complete uncertainty about the proposition. For instance, opinion (0, 0, 1) indicates that
there is no evidence either supporting or contradicting the proposition, i.e. n = p = 0,
whereas opinion (0.5, 0.5, 0) indicates that n = p =∞.

We use the notation p(x)
def
= 2xb

xu
to denote the amount of supporting evidence underly-

ing opinion x, and likewise n(x)
def
= 2xd

xu
for the amount of ‘negative’ evidence. Moreover,

we use the notation e(x) = p(x)+n(x) to represent the total amount of evidence underlying
opinion x.

SL provides a number of operators to combine opinions. One of the fundamental op-
erations is the combination of evidence from multiple sources. Consider the following sce-
nario. Alice has evidence (p1, n1) about some proposition. She forms an opinion x1 =
(p1, n1, 2)/(p1 + n1 + 2). Later she collects additional evidence (p2, n2) independent of
the first evidence. Based on the second body of evidence alone, she would arrive at opinion
x2 = (p2, n2, 2)/(p2 + n2 + 2). If she combines all the evidence, she obtains opinion

x =
(p1 + p2, n1 + n2, 2)

p1 + p2 + n1 + n2 + 2
. (4)

The combined opinion x is expressed as a function of x1 and x2 via the so-called ‘consensus’
rule; this is denoted as x = x1 ⊕ x2.

Definition 2 (Consensus) [15] Let x, y ∈ Ω. The consensus x⊕ y ∈ Ω is defined as

x⊕ y def
=

(xuyb + yuxb, xuyd + yuxd, xuyu)

xu + yu − xuyu
. (5)

Eq. (5) precisely corresponds to (4). Note that x ⊕ y = y ⊕ x. Furthermore, the consensus
operation is associative, i.e. x⊕(y⊕z) = (x⊕y)⊕z. These properties are exactly what one
intuitively expects from an operation that combines evidence. It is worth noting that the ev-
idence has to be independent for the ⊕ rule to apply. Combining dependent evidence would
lead to the problem of double counting evidence. We formalize and discuss this problem in
Section 3.3.

The second important operation in SL is the transfer of opinions from one party to
another. Consider the following scenario. Alice has opinion x about Bob’s trustworthiness.
Bob has opinion y about some proposition P . He informs Alice of his opinion. Alice now
has to form an opinion about P . The standard solution to this problem is that Alice applies an
x-dependent weight to Bob’s opinion y [4,23,26,31,35]. This is the so called ‘discounting’.
The following formula is usually applied.

Definition 3 (Discounting) [15] Let x, y ∈ Ω. The discounting of opinion y using opinion
x is denoted as x⊗ y ∈ Ω, and is defined as

x⊗ y def
= (xbyb, xbyd, xd + xu + xbyu). (6)

It holds that x ⊗ y 6= y ⊗ x and that x ⊗ (y ⊗ z) = (x ⊗ y) ⊗ z. The discounting rule (6)
is not distributive w.r.t. consensus, i.e. (x⊕ y)⊗ z 6= (x⊗ z)⊕ (y ⊗ z) and x⊗ (y ⊕ z) 6=
(x⊗ y)⊕ (x⊗ z).

In SL, a trust network can be modeled with a combination of consensus and discount-
ing operators. The consensus operator is used to aggregate trust information from different
sources, while the discounting operator is used to implement trust transitivity. Note that, in
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a trust network, SL distinguishes two types of trust relationship: functional trust, which rep-
resents the opinion about an entity’s ability to provide a specific function, and referral trust,
which represents the opinion about an entity’s ability to provide recommendations about
other entities. Referral trust is assumed to be transitive, and a trust chain is said to be valid if
the last edge of the chain represents functional trust and all previous edges represent referral
trust.

3 Limitations of Subjective Logic

Our desideratum is a novel reputation metric that has the advantages of both SL and flow-
based models. On one hand, we aim at an automated procedure for computing reputation
as in flow-based approaches. On the other hand, we aim to determine the confidence in
reputation values by making uncertainty explicit as in SL. In this section, we discuss the
limitations of SL. Then, in Section 4 we show how these limitations affect a naı̈ve approach
that combines flow-based reputation and SL.

3.1 Dogmatic Opinions

Definition 4 The extreme points corresponding to full belief (B), full disbelief (D) and full
uncertainty (U ) are defined as

B
def
= (1, 0, 0) D

def
= (0, 1, 0) U

def
= (0, 0, 1). (7)

The special pointsB,D,U behave as follows regarding the consensus operation:B⊕x = B;
D ⊕ x = D; U ⊕ x = x. The full uncertainty U behaves like an additive zero.

With respect to the discounting rule, the special points B,D,U behave as B ⊗ x = x,
D ⊗ x = U , U ⊗ x = U , x⊗ U = U , x⊗B = (xb, 0, 1− xb), x⊗D = (0, xb, 1− xb).

Opinions that have u = 0 (i.e., lying on the line betweenB andD) are called ‘dogmatic’
opinions. They have to be treated with caution, since they have e = ∞ and therefore over-
whelm other opinions when the consensus ⊕ is applied. We will come back to this issue in
Section 5.1.

3.2 Counter-intuitive behaviour of the ⊗ operation

We observe that the discounting rule ⊗ does not have a natural interpretation in terms of
evidence handling. For instance, if we compute the positive evidence contained in x⊗ y we
get, using p, n notation as introduced in Section 2.2,

p(x⊗ y) = 2
(x⊗ y)b
(x⊗ y)u

= 2
xbyb

xd + xu + xbyu
= 2

1
4p(x)p(y)

1
2n(x)/yu + 1/yu + 1

2p(x)

=
p(x)p(y)

[2 + n(x)][1 + 2p(y) + 2n(y)] + p(x)
(8)

where in the final step we have used 1/yu = 1 + 2p(y) + 2n(y). Similarly, we get

n(x⊗ y) = 2
(x⊗ y)d
(x⊗ y)u

=
p(x)n(y)

[2 + n(x)][1 + 2p(y) + 2n(y)] + p(x)
. (9)
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Eqs. (8) and (9) are complicated functions of the amounts p(x), n(x), p(y), n(y). We show
that they do not have a clear and well-defined interpretation in terms of evidence handling.
For instance, Eq. (8) does not allow us to determine whether the evidence underlying x⊗ y
originates from x or y; one can argue that p(x⊗y) is either a “fraction” of p(y), a “fraction”
of p(x), or contains evidence from both y and x. Even if we try to interpret in the standard
way (see Section 2.2), we can observe that the factor multiplying p(y) in (8) and n(y) in
(9) depends on p(y) and n(y). Hence, the evidence underlying x ⊗ y is not simply an x-
dependent multiple of the evidence underlying y. In fact, the examples below show that in
some cases the contribution from y completely disappears from the equation.

Example 2
Let x, y ∈ Ω, with n(x) = 0, n(y) = 0 and p(y)� p(x). Then p(x⊗ y) ≈ p(x)/4.

Example 3
Let x, y ∈ Ω, with n(x) = 0, p(y) = 0 and n(y)� p(x). Then n(x⊗ y) ≈ p(x)/4.

In both these examples, y is based on a lot of evidence; but even if x contains a lot of belief,
none of y’s evidence survives in x⊗ y. We conclude that the discounting operation ⊗ gives
counter-intuitive results.

The ⊗ rule is inspired by a probabilistic interpretation of opinions. The probabilistic in-
terpretation might suggest that it is natural to multiply probabilities, i.e. that the expressions
(x⊗ y)b = xbyb and (x⊗ y)d = xbyd are intuitively correct. However, we argue that this
is not at all self-evident. When discounting y through x, the uncertainties in x induce an
x-dependent probability distribution on y. This can be thought of as an additional layer of
uncertainty about beta distributions. Let (3) describe opinion y; then the discounting through
x introduces uncertainty about the parameters p and n in the equation (a probability distri-
bution on p and n). It is not at all self-evident that the resulting opinion is x⊗y as prescribed
by Def. 3. It would make equal sense to replace the discounting factor xb by e.g. the expec-
tation xb +axu. In this paper we do not pursue such an approach based on distributions, but
we mention it in order to point out that the ⊗ rule is not necessarily well-founded.

The fact that SL employs on the one hand a consensus rule based on adding evidence
and on the other hand a discounting rule based on multiplying opinions leads to a lack of
‘cooperation’ between the ⊕ and ⊗ operations. Most importantly, the ⊗ is not distributive
with respect to ⊕,

(x⊗ y)⊕ (x⊗ z) 6= x⊗ (y ⊕ z). (10)

Consider the following scenario.

Example 4 Alice has opinion x about Bob’s trustworthiness in providing recommendations.
Bob experiments with chocolate on Monday and forms an opinion y about its medicinal
qualities. On Tuesday he does some more of the same kind of experiments and forms an
independent opinion z. He informs Alice of y, z and his final opinion y ⊕ z. What should
Alice think about the medicinal qualities of chocolate? One approach is to say that Alice
should appraise opinions y and z separately, yielding (x ⊗ y) ⊕ (x ⊗ z) (Note that the
two occurrences of x represent the very same opinion, i.e. the evidence underlying the two
occurrences is the same). Another approach is to weight Bob’s combined opinion, yielding
x ⊗ (y ⊕ z). Intuitively the two approaches should yield exactly the same opinion, yet the
SL rules give (10).

We now present a numerical example that illustrates the issue discussed above.
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Fig. 1: Trust network representing the scenario in Example 4.A is Alice,B1 andB2 are Bob
on Monday and Tuesday respectively, and P is the proposition “chocolate has medicinal
qualities”. Referral trust is drawn as a full line, and functional trust as a double full line.

Example 5 Figure 1 shows the trust network representing the scenario in Example 4. To
highlight that opinions x and y are independent, in the figure we abuse the network notation
and duplicate the node representing Bob: B1 represents Bob on Monday and B2 represents
Bob on Tuesday. The edge between Alice (A) and Bob (dashed rectangle) represents Alice’s
opinion x about Bob’s recommendations. This opinion concerns Bob’s recommendations
regardless of when they are formed (e.g., on Monday or on Tuesday).

Suppose that Alice’s opinion about Bob’s trustworthiness is x = (0.6, 0.1, 0.3), and
Bob’s opinions about the proposition P are y = (0.3, 0.6, 0.1) and z = (0.5, 0.2, 0.3). We
are interested in Alice’s opinion w about P based on Bob’s recommendations. As discussed
in the previous example, we have two approaches to compute such an opinion:

1. w = (x⊗ y)⊕ (x⊗ z) = (0.314, 0.341, 0.345)
2. w = x⊗ (y ⊕ z) = (0.227, 0.324, 0.449)

Clearly, the two approaches yield different opinions, contradicting the intuitive expectation.

3.3 Double counting of evidence in Trust Networks

The ⊕ rule imposes constraints on the evidence that can be aggregated: it requires evidence
to be independent [15]. In the literature, however, there is no well-defined notion of evidence
independence. Some researchers [33,45] assume that pieces of evidence are independent if
they are obtained from independent sources, where two sources are said to be independent if
they measure completely unrelated features. This definition, however, is too restrictive. For
instance, the evidence collected by a sensor at different points in time can also be indepen-
dent.

Evidence is usually extracted from “observations” of a system. In this work we adopt
a notion of evidence independence based on the independence of observations, which we
define in the same way as independence of random variables.

Definition 5 (Independent Evidence) Let oi and oj be two observations and ei and ej the
evidence obtained from oi and oj respectively. We say that oi and oj are independent if and
only if Prob(oi|oj) = Prob(oi). Moreover, we say that ei and ej are independent if they
are obtained from independent observations.

Intuitively, observation independence requires that the probability that oi happens, assum-
ing that oj happened, is the same as the probability that oi happens regardless of oj . The
definition above can be extended to opinions:
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Definition 6 (Independent Opinions) Let x, y ∈ Ω be opinions. We say that x and y are
independent if and only if the evidence underlying x and y is independent.

Combining dependent evidence leads to the problem of double counting evidence.

Definition 7 (Double Counting) Let x, y ∈ Ω. In an expression of the form x ⊕ y we say
that there is double counting if there is dependence between the evidence underlying x and
the evidence underlying y.

Intuitively, dependent evidence shares “part” of the evidence. Therefore, aggregating depen-
dent evidence leads to counting some part of evidence more than once.

Example 6 Consider the expression (y ⊗ x) ⊕ (z ⊗ x), where both occurrences of x are
obtained from the same observation. The evidence underlying x is contained on the left side
as well as the right side of the ‘⊕’. This is a clear case of double counting.

Example 7 Consider the expression (x⊗y)⊕ (x⊗z), again with both instances ‘x’ coming
from the same observation. The evidence underlying x is contained on the left side as well
as the right side of the ‘⊕’, but less evidently than in Example 6, because now x is used for
discounting. In Section 3.2 we showed that the ⊗ rule causes evidence from x to end up in
x⊗ y in a complicated way. Hence the opinions x⊗ y and x⊗ z are not independent, which
causes double counting of x in the expression (x⊗ y)⊕ (x⊗ z).

It is worth noting that double counting of x in the expression (x ⊗ y) ⊕ (x ⊗ z) can also
be observed in Example 5. Indeed, the uncertainty in (x ⊗ y) ⊕ (x ⊗ z) is lower than the
uncertainty in x ⊗ (y ⊕ z), indicating that the result contains more evidence when the trust
network is represented using the first expression.

To avoid the problem of double counting, SL requires that the trust network is expressed
in a canonical form [20,22], where all trust paths are independent. Intuitively, a trust network
expression is in canonical form if every edge appears only once in the expression.

Example 8 Consider the two trust network expressions representing the trust network in
Figure 1 given in Example 4: (x⊗ y)⊕ (x⊗ z) and x⊗ (y ⊕ z). The first expression is not
in canonical form as opinion x occurs twice in the expression; the second expression is in
canonical form as every edge appears only once in the expression. Thus, x⊗ (y ⊕ z) is the
proper representation of the trust network in Figure 1.

In the next section we show that it is not always possible to express a trust network in
canonical form. As suggested in [20,22], this issue can be addressed by removing some
edges from the network. This, however, means discarding part of the trust information, thus
reducing the quality of reputation values.

4 Combining flow-based reputation and Subjective Logic

This section presents a naı̈ve approach that combines flow-based reputation and SL. We
illustrate the limitations of such a naı̈ve approach.

We first introduce some notation and definitions. Flow-based reputation models usually
assume that users who are honest during transactions are also honest in reporting their rat-
ings [23]. This assumption, however, does not hold in many real-life situations [1]. Thus, as
it is done in SL, we distinguish between referral trust and functional trust (see Section 2). We
use A to represent direct referral trust and T to represent direct functional trust. R denotes
the final referral trust and F the final functional trust.
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Fig. 2: Example of a trust network that is problematic for Subjective Logic.

Definition 8 For n users, the direct referral trust matrix A is an n×n matrix, where Axy ∈
Ω (with x 6= y) is the direct referral trust that user x has in user y, and Axx = (0, 0, 1) for
all x.

Note that we impose the condition Axx = (0, 0, 1) in order to prevent artifacts caused by
self-rating [35].

Let TjP be the opinion of user j about some proposition P , and let Rij be i’s (possibly
indirect) opinion about the trustworthiness of user j. The opinion of user i about P based on
direct and indirect evidence can be computed using the following equation:

FiP = TiP ⊕
⊕
j:j 6=i

(Rij ⊗ TjP ). (11)

Eq. (11) computes the final functional trust FiP by combining user i’s direct opinion Tip
with all the available opinions of other users, {TjP }j 6=i. The opinion received from j is
weighted with the ‘reputation’ Rij .

To find Rij , we could try a recursive approach1 inspired by Eq. (1):

Rij = Aij ⊕
⊕
k:k 6=i

(Rik ⊗Akj) for i 6= j. (12)

To demonstrate the problems that occur in this naı̈ve combination of flow-based reputation
and SL, we consider the trust networks shown in Figures 2 and 3. Referral trust is drawn as
a full line, functional trust as a double full line.

Figure 2 is a variant of a network discussed in [20]. We are interested in determining the
opinion F1P of user 1 about some proposition P . User 1 does not have any direct evidence.
The only functional trust about P comes from user 7. Thus, we have to determine R17, user
1’s referral trust in user 7. This is done by taking A67 with the proper weight, namely R16.
Continuing this recursive approach using (12) gives

F1P = [A12 ⊗A23 ⊗A34 ⊗A46 ⊕ (A12 ⊗A23 ⊗A34 ⊗A45

⊕A12 ⊗A23 ⊗A35)⊗A56]⊗A67 ⊗ T7P .
(13)

This, however, is a problematic result. Recall that SL requires trust networks to be expressed
in a canonical form. If this restriction is not satisfied, we face the problem of ‘double count-
ing’ opinions, i.e. applying the ⊕ operation to opinions that are not independent (Def. 7).

In Figure 2, consider the case A45 = U . The canonical solution for this case is

F1P = A12 ⊗A23 ⊗ (A34 ⊗A46 ⊕A35 ⊗A56)⊗A67 ⊗ T7P (14)

1 We consider only scenarios where all entities publish their opinions. If opinions are not published but
communicated solely over the network links, then a recursive equation containing A⊗R (the opposite order
of R⊗A) applies.
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Fig. 3: Example of a trust network containing a loop.

whereas (13) yields

F1P = (A12 ⊗A23 ⊗A34 ⊗A46 ⊕A12 ⊗A23 ⊗A35 ⊗A56)⊗A67 ⊗ T7P . (15)

In (15) the A12 and A23 are double-counted. We conclude that the naı̈ve recursive equation
(12) does not properly reproduce the canonical solution.

There is a further problem, unrelated to the naı̈ve recursive approach. As was shown in
[20], it is not even possible to transform the trust network in Figure 2 into a canonical form
in the general case A45 6= U .

The problems become even worse when the trust network contains loops, e.g. a loop as
shown in Figure 3. Here too, there is no canonical form. Applying the recursive approach
to Figure 3 gives R13 = R12 ⊗ A23, with R12 = A12 ⊕ R12 ⊗ A23 ⊗ A32. Repeatedly
substituting the latter into itself yields

R12 = A12 ⊕ [A12 ⊕ {A12 ⊕ · · ·} ⊗A23 ⊗A32]⊗A23 ⊗A32. (16)

We observe that taking opinion A32 into account causes excessive double-counting of A12.
If the loop is somehow discarded, then the information contained in A32 is destroyed.

In conclusion, (i) generic trust networks with several connections Aij 6= U cannot be
handled with SL because there is no canonical form for them that avoids double-counting;
(ii) even when there is a canonical result, this result cannot be reproduced by a straightfor-
ward recursive approach.

5 Subjective Logic revisited

This section presents a new, fully evidence-based approach to SL. We refer to the resulting
opinion algebra as Evidence-Based Subjective Logic or EBSL.

5.1 Excluding dogmatic opinions

As mentioned in Section 3.1, dogmatic opinions are problematic when the ⊕ operation is
applied to them. Furthermore, a dogmatic opinion corresponds to an infinite amount of evi-
dence, which in our context is not realistic. In the remainder of this paper, we will exclude
dogmatic opinions. We will work with a reduced opinion space defined as follows.

Definition 9 The opinion space excluding dogmatic opinions is denoted asΩ′ and is defined
as Ω′ def= {(b, d, u) ∈ [0, 1)× [0, 1)× (0, 1] | b+ d+ u = 1}.

We are by no means the first to do this; in fact, the exclusion of dogmatic opinions was
proposed as an option in the very early literature on SL [22].
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5.2 The relation between evidence and opinions: a simplified justification

We make a short observation about the mapping between evidence and opinions. As was
mentioned in Section 2.2, there is a one-to-one mapping (2) based on the analysis of prob-
ability distributions (Beta distributions). Here we show that there is a shortcut: the same
mapping can also be obtained in a much simpler way, based on constraints.

Theorem 1 Let p ≥ 0 be the amount of evidence that supports ‘belief’; let n ≥ 0 be the
amount of evidence that supports ‘disbelief’. Let x = (b, d, u) ∈ Ω′ be the opinion based
on the evidence. If we demand the following four properties,

1. b/d = p/n

2. b+ d+ u = 1
3. p+ n = 0 ⇒ u = 1
4. p+ n→∞ ⇒ u→ 0

then the relation between x and (p, n) has to be

x = (b, d, u) =
(p, n, c)

p+ n+ c
; (p, n) = c

(b, d)

u
(17)

where c > 0 is a constant.

Proof: Property 1 gives (b, d) = (p, n)/f(p, n) where f is some function. Combined with
property 2 we then have p+n

f(p,n) = 1−u. Property 3 then gives 0
f(0,0) = 0, while property 4

gives limp+n→∞
p+n
f(p,n) = 1. The latter yields f(p, n) = p+n+cwhere c is some constant.

Allowing c < 0 would open the possibility of components of x being negative. Thus we must
have c ≥ 0. The requirement 0

f(0,0) = 0 eliminates the possibility of having c = 0, since
c = 0 would yield division by zero. Finally, setting u = c/(p+n+ c) is necessary to satisfy
property 2. �

Theorem 1 shows that we can derive a formula similar to (2), based on minimal re-
quirements which make intuitive sense. Only the constant c is not fixed by the imposed
constraints; it has to be determined from the context. One can interpret c as a kind of soft
threshold on the amount of evidence: beyond this threshold one starts gaining enough con-
fidence from the evidence to form an opinion.

We observe that (17) with its generic constant c is already sufficient to derive the con-
sensus rule ⊕, i.e. the consensus rule does not require c = 2.

Lemma 1 The mapping (17) with arbitrary c implies the consensus rule ⊕ as specified in
Def. 2.

Proof: Consider x = (b1, d1, u1) = (p1, n1, c)/(p1 + n1 + c) and y = (b2, d2, u2) =
(p2, n2, c)/(p2+n2+c). An opinion formed from the combined evidence (p1+p2, n1+n2)

according to (17) is given by (b, d, u) = (p1+p2,n1+n2,c)
p1+n1+p2+n2+c

. Substituting pi = c biui
and ni =

c diui
yields, after some simplification, (b, d, u) = (u1b2+u2b1,u1d2+u2d1,u1u2)

u1+u2−u1u2
. �

Theorem 1 and Lemma 1 improve our understanding of evidence-based opinion forming
and of the consensus rule.

Furthermore, in (2) and (3) we can replace ‘2’ by c and the expectation of t, obtained by
integrating the Beta distribution times t, is still xb +axu! Therefore, in the remainder of the
paper, we will work with a re-defined version of the p(x) and n(x) functions (Section 2.2).
The new version has a general value c > 0 instead of c = 2.
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Definition 10 Let x = (xb, xd, xu) ∈ Ω′. We define the notation p(x), n(x) and e(x) as

p(x)
def
= c

xb
xu

; n(x)
def
= c

xd
xu

; e(x)
def
= p(x) + n(x). (18)

5.3 Scalar multiplication

Our next contribution has more impact. We define an operation on opinions that is equivalent
to a scalar multiplication on the total amount of evidence.

Definition 11 (Scalar multiplication) Let x = (xb, xd, xu) ∈ Ω′ and let α ≥ 0 be a scalar.
We define the product α · x as

α · x def
=

(αxb, αxd, xu)

α(xb + xd) + xu
. (19)

Lemma 2 Let x ∈ Ω′ and α ≥ 0. The scalar multiplication as specified in Def. 11 has the
following properties:

1. α · x ∈ Ω′.
2. 0 · x = U .
3. 1 · x = x.
4. For n ∈ N, n ≥ 2, it holds that n · x = x⊕ x⊕ · · · ⊕ x︸ ︷︷ ︸

n

.

5. The evidence underlying α ·x is α times the evidence underlying x, i.e. p(α ·x) = αp(x)
and n(α · x) = αn(x).

6. If α 6= 0 then (α · x)b/(α · x)d = xb/xd.

Proof: Property 1: It is readily verified that the components add to 1, using xb+xd = 1−xu.
Since α ≥ 0, all three components of α · x are nonnegative, since x ∈ Ω′. Properties 2
and 3: Found directly by substituting α = 0 resp. α = 1 in (19). Property 4: Consider
n = 2. Setting α = 2 in (19) yields 2 · x = (2xb,2xd,xu)

2−xu
=

(2xuxb,2xuxd,x
2
u)

2xu−x2
u

= x⊕ x. The
rest follows by induction. Property 5: We use (17) to map between opinions and evidence.
The positive evidence of x is p(x) = cxb/xu. The positive evidence of α · x is p(α · x)
= c αxb

α(1−xu)+xu
/ xu

α(1−xu)+xu
= αcxb/xu = αp(x). The proof for n(α · x) is analogous.

Property 6: Follows directly by dividing the first and second component of α · x. �

Lemma 3 (Distributivity of the scalar multiplication) Let x, y ∈ Ω′. Let α, β ≥ 0. Then
it holds that

α · (x⊕ y) = (α · x)⊕ (α · y) and (α+ β) · x = (α · x)⊕ (β · x). (20)

Proof: We make extensive use of α · x ∝ (αxb, αxd, xu). First part: On the one hand,
α·(x⊕y) ∝ (α[xuyb+yuxb], α[xuyd+yuxd], xuyu). We have not written the normalization
factor; it is not necessary since we already know that the result is normalized. On the other
hand, (α · x)⊕ (α · y) ∝ (xu[αyb] + yu[αxb], xu[αyd] + yu[αxd], xuyu).

Second part: On the one hand, (α+β)·x ∝ ([α+β]xb, [α+β]xd, xu). On the other hand,
(α·x)⊕(β ·x)∝ ([β ·x]u[α·x]b+[α·x]u[β ·x]b, [β ·x]u[α·x]d+[α·x]u[β ·x]d, [α·x]u[β ·x]u)
∝ (xu[αxb] + xu[βxb], xu[αxd] + xu[βxd], x2u) ∝ (αxb + βxb, αxd + βxd, xu). �

Lemma 4 Let x ∈ Ω′ and α, β ≥ 0. Then α · (β · x) = (αβ) · x.

Proof: α · (β · x) ∝ α · (βxb, βxd, xu) ∝ (αβxb, αβxd, xu). �
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5.4 New discounting rule

We propose a new approach to discounting: instead of multiplying (part of) the opinions
we multiply the evidence. The multiplication is done using our scalar multiplication rule
(Def. 11). We return to the example where Alice has an opinion x ∈ Ω′ about the trustwor-
thiness of Bob, and Bob has an opinion y ∈ Ω′ about some proposition P . We propose a
discounting of the form g(x) · y, where g(x) ≥ 0 is a scalar that indicates which fraction
of Bob’s evidence is accepted by Alice. One can visualize the discounting as a physical
transfer of evidence from Bob to Alice, during which only a fraction g(x) survives, due to
Alice’s mistrust and/or uncertainty. It is desirable to set g(x) in the range [0, 1]: allowing
g(x) < 0 would lead to negative amounts of evidence (not to be confused with the term
‘negative evidence’ which is used for evidence that contradicts the proposition P); allow-
ing g(x) > 1 would “amplify” evidence, i.e., create new evidence out of nothing, which is
clearly unrealistic.

It makes intuitive sense to set limx→B g(x) = 1, limx→D g(x) = 0 and g(U) = 0,
or even to set g(x) = g̃(xb), i.e. a function of xb only, with g̃(0) = 0 and g̃(1) = 1.
For instance, we could set g(x) = xb.2 On the other hand, it could also make sense to set
g(U) > 0, which would represent the “benefit of the doubt”. An intuitive choice would then
be g(x) = xb + axu, i.e. the expectation value corresponding to x. We postpone the precise
details of how the function g can/should be chosen, and introduce a very broad definition.

Definition 12 (New generic discounting rule �) Let x, y ∈ Ω′. Let g : Ω′ → [0, 1] be a
function. We define the operation � as

x� y
def
= g(x) · y =

( g(x)yb, g(x)yd, yu )

(yb + yd)g(x) + yu
(21)

with the · operation as specified in Def. 11.

Differently from ⊗, the operator � has a well-defined interpretation in terms of evidence
handling. The following theorem states that the evidence underlying x � y is a fraction of
the evidence underlying y defined by a scalar weight depending on x.

Theorem 2 Let x, y ∈ Ω′. The operation � (Def. 12) has the following properties:

1. x� y ∈ Ω′.
2. p(x� y) = g(x)p(y) and n(x� y) = g(x)n(y).
3. (x� y)b/(x� y)d = yb/yd.
4. x� U = U .
5. Discounting cannot decrease uncertainty, i.e. (x� y)u ≥ yu.

Proof: Property 1 follows from x � y = g(x) · y and the first property in Lemma 2. Prop-
erty 2: We compute p(x� y) = (x� y)b/(x� y)u using the definition (21), which yields
g(x)yb/yu = g(x)p(y). For n(x � y) the derivation is analogous. Property 3: Follows
directly by dividing the belief and disbelief part of (21). Property 4: Follows by setting
yb = 0, yd = 0 and yu = 1 in (21). Property 5: We have (x�y)u = yu

(yb+yd)g(x)+yu
. Since

yb + yd + yu = 1 and g(x) ∈ [0, 1], the denominator of the fraction lies in the range [yu, 1].
�

2 Even though taking g(x) = xb appears to be similar to the ⊗ rule (6), we show in Section 7 that they
have a very different behavior.
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Corollary 1 Let x, y ∈ Ω′ with g(x) > 0. Let limy→B g(y) = 1, limy→D g(y) = 0 and
g(U) = 0. Then the extreme points B, D, U have the following behavior with respect to the
new discounting rule �,

lim
y→B

y � x = x lim
y→B

x� y = B

lim
y→D

y � x = U lim
y→D

x� y = D

U � x = U. (22)

We stress again that the whole ‘dogmatic’ line between B and D is not part of the opinion
space Ω′, so that we avoid having to deal with infinite amounts of evidence.

Theorem 3 There is no function g : Ω′ → [0, 1] such that x� y = x⊗ y for all x, y ∈ Ω′.

Proof: On the one hand, we have x ⊗ y = (xbyb, xbyd, 1 − xbyb − xbyd). On the other

hand, x�y = (g(x)yb,g(x)yd,yu)
g(x)(yb+yd)+yu

. Demanding that they are equal yields, after some rewriting,
g(x) = xbyu/[1 − xb(1 − yu)]. This requires g(x), which is a function of x only, to be a
function of yu as well. �

Being based on the scalar multiplication rule (and hence ultimately on the ⊕ rule), our
operation � has several properties that ⊗ lacks: (i) right-distribution; (ii) permutation sym-
metry of parties that transfer evidence. This is demonstrated below.

Lemma 5 Let x, y, z ∈ Ω′. Then

x� (y ⊕ z) = (x� y)⊕ (x� z). (23)

Proof: It follows trivially from x� (y ⊕ z) = g(x) · (y ⊕ z) and Lemma 3. �
This distributive property resolves the issue discussed in Section 3.2: using the � oper-

ator, it does not matter if y and z are combined before or after the discounting. This solves
the inconsistency caused by the ⊗ operation.

Notice also that the left-hand side of (23) obviously is not double-counting x; hence also
the expression on the right-hand side does not double-count x. In contrast, the right-hand
side expression with ⊗ instead of � would be double-counting. We come back to this point
in Section 5.6.

Lemma 6 Let y, x1, x2 ∈ Ω′. Then

x1 � (x2 � y) = x2 � (x1 � y). (24)

Proof: x1� (x2�y) = g(x1) · (g(x2) ·y). Using Lemma 4 this reduces to (g(x1)g(x2)) ·y.
Exactly the same reduction applies to x2 � (x1 � y). �

Lemma 6 generalizes to chains of discounting:

x1 � (x2 � (· · · (xN � y))) = [
N∏
i=1

g(xi)] · y. (25)

Expression (25) is invariant under permutation of the opinions x1, . . . , xN .
Note that one property of the⊗ rule is not generically present in the � rule: associativity.

Whereas the old rule has x⊗ (y ⊗ z) = (x⊗ y)⊗ z, the new rule has

x� (y � z) = [g(x)g(y)] · z versus

(x� y) � z = (g(x� y)) · z = [g(g(x) · y)] · z. (26)
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However, it is important to realize that the lack of associativity is not a problem. The transfer
of evidence along a chain has a very clear ordering, which determines the order in which the
� operations have to be performed. (See Section 6.)

Also note that � does not have a left-distribution property for arbitrarily chosen g. It
takes some effort to define a reasonable function g that yields left-distributivity.

Lemma 7 There is no function g : Ω′ → [0, 1] that satisfies lims→B g(s) = 1 and gives
(x⊕ y) � z = (x� z)⊕ (y � z) for all x, y, z ∈ Ω′.

Proof: We consider the limit x → B, y → B. On the one hand, (x⊕ y) � z → B � z = z.
On the other hand, (x� z)⊕ (y � z)→ z ⊕ z. �

It may look surprising that we cannot achieve left-distributivity with a function g chosen
from a very large function space with only a single constraint. (And a very reasonable-
looking constraint at that). But left-distributivity requires g(x ⊕ y) = g(x) + g(y), which
conflicts with the constraint lims→B g(s) = 1.

5.5 New specific discounting rule

One way to satisfy g(x ⊕ y) = g(x) + g(y) is by setting g(x) ∝ p(x). This approach,
however, causes some complications. Suppose we define g(x) = p(x)/θ, where θ is some
constant. If the amount of positive evidence ever exceeds θ, then the discounting factor be-
comes larger than 1, i.e. amplification instead of reduction, which is an undesirable property.
If we redefine g such that factors larger than 1 are mapped back to 1, then we lose the distri-
bution property. We conclude that the “g proportional to evidence” approach can only work
if the maximum achievable amount of positive evidence in a given trust network can be
upper-bounded by θ.

Definition 13 (New specific discounting rule �) Let x, y ∈ Ω′. Let θ be a threshold larger
than the maximum amount of positive evidence in any opinion that is used for discounting.
We define the operation � as

x� y def
= (

c

θ

xb
xu

) · y =
p(x)

θ
· y (27)

with the · operation as specified in Def. 11.

We stress again that θ depends on the interactions between entities within the system, i.e.
on the structure of the trust network and the maximum amount of positive evidence in the
network.

Lemma 8 (Left-distributivity of �) Let x, y, z ∈ Ω′. Then

(x⊕ y)� z = (x� z)⊕ (y � z). (28)

Proof: The right-hand side evaluates to (x � z) ⊕ (y � z) = [g(x) · z] ⊕ [g(y) · z] =
[g(x) + g(y)] · z. The g-function in Def. 13 equals positive evidence divided by θ; hence
g(x) + g(y) = [p(x) + p(y)]/θ. The left-hand side evaluates to g(x⊕ y) · z with g(x⊕ y) =
θ−1p(x⊕ y) = [p(x) + p(y)]/θ. �

Lemma 9 (Associativity of �) Let x, y, z ∈ Ω′. Then

x� (y � z) = (x� y)� z. (29)
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Proof: From (26) we see that x � (y � z) = [g(x)g(y)] · z, but now we have g(x)g(y) =

θ−2p(x) p(y). From (26) we also see (x � y) � z = g(g(x) · y) · z, but now we have
g(g(x) · y) = θ−1p(θ−1p(x) · y) = θ−2p(x) p(y). �

We are not claiming that � is the proper discounting operation to use. It has the un-
pleasant property that the negative evidence underlying x is completely ignored in the com-
putation of x � y. A quick-fix of the form g(x) ∝ p(x) − n(x) does not work since it can
cause g(x) < 0 and therefore x� y /∈ Ω′.

We note that there is no alternative g-function to the ones discussed above if linearity of
g is required. This is formalized in the following lemma.

Lemma 10 The property g(x ⊕ y) = g(x) + g(y) can only be achieved by setting g(x) =
αp(x) + βn(x), where α and β are scalars.

The proof is given in the Appendix. Note that, for sufficiently smooth g, it is possible to
prove that the property g(x ⊕ y) = g(x) + g(y) implies g(g(x) · y) = g(x)g(y), i.e. asso-
ciativity.

5.6 The new discounting rule avoids double-counting

In Section 2.2 we saw that the consensus operation ⊕ should be applied only to opinions
that are derived from independent evidence. If this restriction is not obeyed then we speak of
double-counting. Example 7 showed that in the SL expression (x⊗y)⊕(x⊗z), the evidence
in x is double-counted. If we look at the equivalent expression in which ⊗ is replaced with
�, we get

(x� y)⊕ (x� z) = x� (y ⊕ z). (30)

Here there is obviously no double-counting. Next we look at more complicated EBSL ex-
pressions.

Lemma 11 Let x, y ∈ Ω′ be independent opinions. LetQ,W ∈ Ω′ be opinions independent
of x and y, but with mutual dependence. Then, the expression

(Q� x)⊕ (W � y) (31)

does not double-count any of the evidence underlying Q and W .

Proof: The evidence underlying Q � x is the evidence from x, scalar-multiplied by g(Q).
Likewise, the evidence underlying W � y is a scalar multiple of (p(y), n(y)). Since x and y
are independent, the evidence on the left and right side of the ‘⊕’ in (31) is independent. �

Based on the result above we can conclude that:

Corollary 2 Transporting different pieces of evidence over the same link x with the � op-
eration is not double-counting x.

Thus, many expressions that are problematic in SL become perfectly acceptable in EBSL,
simply because � is just an (attenuating) evidence transport operation, whereas SL’s ⊗ is a
very complicated thing that mixes evidence from its left and right operand (Eqs. 8 and 9).
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6 Flow-based reputation with uncertainty

In this section we will use the discounting rule � without specifying the function g. We
show that EBSL can be applied to arbitrarily connected trust networks and that the sim-
ple recursive approach (12), with ⊗ replaced by �, yields consistent results that avoid the
double-counting problem.

6.1 Recursive solutions using EBSL

We show that the trust networks discussed in Section 3, which are problematic in SL, can be
handled in EBSL. We take the EBSL equivalent of the recursive approach in SL (11), (12),
namely

FiP = TiP ⊕
⊕
j:j 6=i

(Rij � TjP )

Rij = Aij ⊕
⊕
k:k 6=i

(Rik �Akj) for i 6= j, (32)

and demonstrate that these equations yield acceptable results in the case of the trust networks
depicted in Figures 2 and 3.

For Figure 2 we obtain the EBSL equivalent of (13) by using (32) recursively as follows,
F1P = R17 � T7P
R17 = R16 �A67

R16 = (R14 �A46)⊕ (R15 �A56)
R15 = (R14 �A45)⊕ (R13 �A35)
R14 = R13 �A34

R13 = R12 �A23

R12 = A12.

By substituting these expressions from bottom to top we get the end result for F1P . The
result is very similar to (13), but now we have lots of brackets because � is not associative.
We inspect R16,

R16 = ((A12�A23)�A34)�A46 ⊕ (33){
((A12�A23)�A34)�A45 ⊕ (A12�A23)�A35

}
�A56.

We observe that the links A12 and A23 occur three times. The link A34 occurs twice. How-
ever, the computation of R16 only relies on the evidence in A46 and A56; all the other
opinions Aij serve as ‘transport’, i.e. merely providing weights multiplying the evidence in
A46 and A56. Therefore, there is no double counting of evidence.

In the case of Figure 3, i.e. with a loop, recursive use of (32) gives the direct EBSL
equivalent of (16). We have

R13 = R12 �A23 (34)

R12 = A12 ⊕R13 �A32

= A12 ⊕ (R12 �A23) �A32. (35)

Eq. (35) gives an expression for the unknown R12 that contains R12. It can be solved in
two ways. The first is to repeatedly substitute (35) into itself. We define a mapping f(x) =
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A12 ⊕ (x � A23) � A32. From (35) we see that R12 is a fixed point of f . The fixed point
can be found approximately by setting x = A12 and repeatedly applying f until the output
does not change any more.

R12 ≈ fr(A12) for large r. (36)

R12 = A12 ⊕ ([A12 ⊕ ({A12 ⊕ · · ·}�A23)�A32]�A23)�A32. (37)

Convergence will be fast if A23 and A32 contain a lot of uncertainty. In Eq. (37) we observe
that (i) The evidence contributing to R12 comes from the first A12 and from the final A32.
(ii) All the other occurrences of opinions Aij are only used to compute the weights for the
scalar multiplication.

The second method is to treat (35) as two independent equations in two unknowns (the
two independent components of R12 ∈ Ω′) and to solve them algebraically. This can be
quite difficult if the function g is complicated, since g has to be applied twice,

R12 = A12 ⊕ g(g(R12) ·A23) ·A32 (38)

⇔{
p(R12) = p(A12) + g(g(R12) ·A23)p(A32)
n(R12) = n(A12) + g(g(R12) ·A23)n(A32).

(39)

The solution is simple in the following special cases:

– If g(A12) = 0 and g(U) = 0 then R12 = A12.
– If A23 6= U , g(x) > 0 for x 6= U , and A32 → B then R12 → B. The direct A12

can be overwhelmed by the indirect A32, even if user 1 has little trust in user 2. This
demonstrates the danger of allowing opinions close to full belief.

– If A23 → B and g(B) = 1 then R12 → A12 ⊕A32.

6.2 Recursive solution in matrix form

The recursive equation (32) for obtaining the Rij solutions can be rewritten in matrix no-
tation. We choose g such that g(U) = 0. We are looking for the off-diagonal components
of a matrix R or, equivalently, for a complete matrix R which has the uncertainty ‘U ’ on its
diagonal. Let X be an n × n matrix containing opinions; it is allowed to have a non-empty
diagonal, e.g. Xii 6= U . We define a function f as

f(X)
def
= A⊕ {[offdiagX] �A}, (40)

where ‘offdiagX’ is defined asX with its diagonal replaced by U entries, and an expression
of the form X � A is a matrix defined as (X � A)ij =

⊕
kXik � Akj . Note that f(X)

is a matrix that can have a non-empty diagonal. Solving (32) is equivalent3 to the following
procedure:

1. Find the fixed point X∗ satisfying f(X∗) = X∗.
2. Take R = offdiagX∗.

3 An even more compact formulation is possible if one is willing to temporarily use the full belief B in
the computations. Let ‘1’ be the diagonal matrix. Let Z = B1 + R. Solving (32) for R is equivalent to
solving Z = B1⊕ (Z �A) for Z.
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One approach to determine the fixed point X∗ is to pick a suitable starting matrix X0 and
then keep applying f until the output does not change any more, X∗ ≈ fN (X0). Another
approach is to treat the formula f(X∗) = X∗ as a set of algebraic equations, whose com-
plexity is affected by the choice of the g function.

At this point, two important questions have to be answered: i) whether the recursive
approach for (40) converges, i.e. if the fixed point exists, and ii), when it converges, whether
the fixed point solution is unique. When there are no loops in the network, then trivially we
have convergence and the fixed point is unique. Intuitively, the repeated applications of f
after the trust network has been completely explored do not propagate additional evidence.

In the case of general networks the situation is more complicated. We can prove that
there is no divergence. In every iteration of the mapping X 7→ f(X), the new value of X is
of the form Xij = Aij ⊕

⊕
k g((offdiagX)ik) ·Akj . We see that the evidence in each Akj

gets multiplied by a scalar smaller than 1. Hence, no matter how many iterations are done,
the amount of evidence about user j that is contained in X can never exceed the amount of
evidence about j present in A. This puts a hard upper bound on the amount of evidence in
offdiagX, which prevents the solution from ‘running off’ towards full Belief. Hence, the
evidence underlying Rij cannot be greater of the total amount of evidence underlying the
opinions in A about user j.

It can be observed that, being flow-based, our fixed point equation for the matrix R has
the same form as the fixed point equation for a Markov Chain. The main difference is that in
an ordinary Markov chain there is a real-valued transition matrix whereas we have opinions
Aij ∈ Ω∗, and in our case multiplication of reals is replaced by � and addition by ⊕. In
spite of these differences, we observe in our experiments that every type of behavior of
Markov Chain flow also occurs for R. Indeed, experiments on real data show that we indeed
have convergence (see Section 7). Moreover, for some fine-tuned instances of the A-matrix,
which are exceedingly unlikely to occur naturally, oscillations can exist just like in Markov
chains; after a number of iterations the powers of A jump back and forth between two states.
Just as in flow-based reputation (1), adding the direct opinion matrix A in each iteration
dampens the oscillations and causes convergence.

6.3 Recursive solutions using the � discounting rule

We investigate what happens when we replace the generic EBSL discounting operation �
by the special choice � as specified in Def. 13. First we consider the case of Figure 2. The
generic Eq. (33) reduces to

R16 = A12 �A23 �A34 �A46 ⊕
A12 �A23 �A35 �A56 ⊕
A12 �A23 �A34 �A45 �A56

= A12 �A23 � {A34 �A46 ⊕ (A35 ⊕A34 �A45)�A56} . (41)

Notice that we do not have to put brackets around chains of � operations because they are
associative (Lemma 9). Also notice that in (41) the common ‘factor’ A12 � A23 has been
pulled outside the brackets. We are allowed to add and remove brackets at will because of
the associativity and full distributivity of �.

Next we consider Figure 3, the loop case. Eq. (39) reduces to{
p(R12) = p(A12) + 1

θ2 p(R12)p(A23)p(A32)
n(R12) = n(A12) + 1

θ2 p(R12)p(A23)n(A32)
(42)
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which is easily solved,

p(R12) =
p(A12)

1− θ−2p(A23)p(A32)
(43)

n(R12) = n(A12) +
p(A12)p(A23)

θ2 − p(A23)p(A32)
n(A32). (44)

We observe that the system parameter θ has to be chosen with great caution. If values p(Aij)
can get too close to θ then the fraction in (43) may explode and may result in p(R12) > θ,
which is problematic. Let us define pmax = maxij p(Aij). Then it is necessary to set θ ≥
pmax · (1+

√
5)/2. (This bound is obtained by setting p(A12) = p(A23) = p(A32) = pmax

in (43) and demanding that p(R12) ≤ θ.)

7 Evaluation

We have implemented our flow-based reputation model with uncertainty and performed a
number of experiments to evaluate the practical applicability and “accuracy” of the model
using both synthetic and real-life data. Note that, while it is possible to define some limiting
situations (synthetic data) in which a certain result is expected, in general numerical experi-
ments cannot ‘prove’ which approach is right because there is no ‘ground truth’ solution to
the reputation problem that we could compare against. The only thing that can be verified by
numerics is: (i) do the results make sense? (ii) is the method practical? Thus, we have used
synthetic data to compare the accuracy of the opinions computed using different reputation
models. On the other hand, we used real-life data to study the practical applicability.

Experiments for assessing the robustness of the reputation model against attacks like
slandering, self-promotion and Sybil attacks [8,13,35], have not been considered in this
work and are left for future work, as our goal here is the definition of the mathematical
foundation for the development of reputation systems. A study of the robustness against
attacks requires to consider many other aspects that are orthogonal to this work.

In the remainder of this section, first we briefly present the implementation; then we
report and discuss the results of the experiments.

7.1 Implementation

We have developed a tool in Python. It implements the procedure for computing the fixed
point described in Section 6.2. All SL and EBSL computation rules presented in this paper
have been implemented in a Python library.

The tool takes as input a log containing recorded user interactions. Based on the evidence
contained in the log, the tool extracts the direct referral trust matrix A. The tool repeatedly
iterates the recursive equation until it converges, that is, the difference between the new
matrix R(k+1) and the previous one R(k) is less than a certain threshold. In particular the
termination condition is set as follows:∑

i,j

δ(R
(k+1)
ij , R

(k)
ij ) < 10−10 (45)

where δ(x, y) def
= |xb − yb|+ |xd − yd|+ |xu − yu|.
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Source Target Evidence Opinion Axy

1 2 (400, 300) (0.570, 0.427, 0.003) 0.571
2 3 (10, 5) (0.588, 0.294, 0.118) 0.667
3 4 (500, 0) (0.996, 0.000, 0.004) 1.0
3 5 (500, 0) (0.996, 0.000, 0.004) 1.0
4 5 (500, 0) (0.996, 0.000, 0.004) 1.0
4 6 (500, 0) (0.996, 0.000, 0.004) 1.0
5 6 (500, 0) (0.996, 0.000, 0.004) 1.0
6 7 (5, 5) (0.417, 0.417, 0.166) 0.5
7 P (10, 90) (0.098, 0.882, 0.020) 0.1

Table 1: Evidence, opinions, and aggregate ratings for case C1.

7.2 Synthetic Data

We have conduced a number of experiments using synthetic data to analyze and compare the
different approaches for trust computation. The goal of these experiments is to analyze the
behavior of the reputation models in a number of limiting situations for which it is known a
priori how the result should behave.

Experiment Settings The experiments are based on the trust network in Figure 2. We con-
sidered six approaches: (i) the flow-based method without uncertainty in Eq. (1); (ii) the
flow-based SL approach presented in Section 3; (iii) SL in which the specification of the
trust network is transformed to canonical form by removing the edge from 4 to 5 (i.e., A45

is set to U in Eq. (14)); (iv) EBSL with g(x) = xb; (v) EBSL with g(x) =
√
xb; and (vi)

EBSL using the operator �.
To make the results comparable, we specify the amount of positive and negative evidence

(p, n) for each edge in the trust network and use such evidence to compute the opinions
used for EBSL and SL as well as the aggregate ratings (Axy) used for flow-based reputation
(without uncertainty). The mapping between evidence and opinion is computed using (2).
For the mapping between evidence and aggregated ratings, we use an approach similar to
the one presented in [35]:

Axy =
1

2
+
p− n

2e
(46)

where Axy = 1 means fully trusted, Axy = 0 fully distrusted, and Axy = 1
2 neutral.

For the analysis we consider three cases. Table 1 presents the evidence along with the
derived opinions and aggregated ratings for our first case (C1). In this case, we use θ = 1000
for EBSL using operator �. In the second case (C2), we consider the same evidence except
for the edge from 7 to P which is now (10, 900). The corresponding opinion and aggregate
rating are T7P = (0.011, 0.987, 0.002) andA7P = 0.011 respectively. In the last case (C3),
we consider the evidence for all edges to be (10000, 0) and we set θ = 20000. In this case,
all opinions are equal to (0.9998, 0.0000, 0.0002) and aggregated ratings are equal to 1.

Results The results of the trust computation are presented in Table 2 in terms of opinions
(trust value for flow-based method), and in Table 3 in terms of amount of evidence. Note
that in Table 3 we have not included the amount of evidence for the flow-based approach of
(1) as it it not possible to reconstruct it from trust values.

The results confirm our expectation about the impact of the trust network representa-
tion on the trust computation when SL is used. As expected, the uncertainty component of
opinion F1P computed using SL is larger when the trust network in Figure 2 is represented
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C1 C2 C3
Flow-based 0.401 0.392 0.501
Flow-SL (0.024, 0.220, 0.756) (0.003, 0.246, 0.751) (0.9993, 0.0000, 0.0007)
SL (canonical form) (0.014, 0.123, 0.863) (0.002, 0.137, 0.861) (0.9990, 0.0000, 0.0010)
EBSL (g(x) = xb) (0.095, 0.859, 0.046) (0.011, 0.984, 0.005) (0.9998, 0.0000, 0.0002)
EBSL (g(x) =

√
xb) (0.097, 0.873, 0.030) (0.011, 0.986, 0.003) (0.9998, 0.0000, 0.0002)

EBSL (�) (0.000, 0.000, 1.000) (0.000, 0.006, 0.994) (0.9970, 0.0000, 0.0030)

Table 2: Comparison in terms of trust values r1P and opinions F1P .

C1 C2 C3
Flow-SL (0.065, 0.582) (0.007, 0.655) (2763.7, 0)
SL (canonical form) (0.032, 0.284) (0.004, 0.319) (1999.16, 0)
EBSL (g(x) = xb) (4.166, 37.490) (4.166, 374.901) (9998, 0)
EBSL (g(x) =

√
xb) (6.455, 58.095) (6.455, 580.946) (9999, 0)

EBSL (�) (0.000, 0.001) (0.000, 0.011) (781.25, 0)

Table 3: Comparison in terms of amount of evidence underlying opinion F1P .

in canonical form. Indeed, in this case some trust information (i.e., evidence) is discarded
(Recall that uncertainty depends on the amount of evidence; the larger the amount of evi-
dence, the lower the uncertainty. See Section 5.2). In contrast, the representation of the trust
network in Eq. (13) is affected by double counting, leading to more evidence and thus to a
lower uncertainty component of F1P .

The results show that the SL and EBSL approaches preserve the ratio between belief and
disbelief components (Table 2) and consequently the ratio between positive and negative
evidence (Table 3). This ratio is close to the one between the positive and negative evidence
underlying the functional trust T7P . If the amount of evidence increases (C2), one would
expect that the amount of evidence underlying opinion F1P increases proportionally to the
increase of the amount of evidence underlying T7P (Theorem 2). Accordingly, the amount
of positive evidence underlying F1P should be the same in C1 and C2, and the amount
of negative evidence underlying F1P in C2 should be ten times the amount of negative
evidence in C1. We can observe in Table 3 that this is true for EBSL but not for SL. This is
explained by the fact that x⊗y is not an x-dependent multiple of the evidence underlying y,
as was shown in Eqs. (8) and (9).

Finally, in the last case (C3) we have considered a limiting case where every trust re-
lation in the network of Figure 2 is characterized by a large amount of positive evidence.
Here, one would expect that the opinion F1P is close to (1, 0, 0) and the trust value r1P
close to 1. From Table 2 we can observe that SL and all EBSL approaches meet this expec-
tation. However, if we look closely at the evidence underlying such an opinion (Table 3),
we can observe that when the SL discounting operator ⊗ and EBSL operator � are used, a
large amount of evidence is “lost” on the way. In contrast, we expect the amount of evidence
underlying F1P to be close to that of T7P (Theorem 2). Table 3 shows that EBSL, both for
g(x) = xb and g(x) =

√
xb, preserves the amount of evidence when referral trust relations

are close to full belief.
Moreover, Table 2 shows that the value of r1P is close to neutral trust rather than to

full trust. This can be explained by Eq. (1) and the impossibility to express uncertainty. On
the one hand, at each iteration Eq. (1) computes a weighted average of aggregated ratings
where weights are equal to the trust a user places in the users providing recommendations.
On the other hand, the flow-based approach does not distinguish between neutral trust (equal
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amount of positive and negative evidence) and full uncertainty (zero evidence). In particular,
the lack of evidence between two users is represented in the matrix of aggregated ratings A
as neutral trust (see Eq. 46). In sparse trust networks (i.e., networks with only a few edges)
like the one in Figure 2, the neutral trust used to express uncertainty has a significant impact
on the weighted average used to compute trust values.4 These results demonstrate that the
ability to express uncertainty is fundamental to capture the actual trustworthiness of a target,
which is one of the main motivations for this work.

7.3 Real-life Data

We performed a number of experiments using real-life data to assess the practical applica-
bility of EBSL and flow-based reputation models built on top of EBSL. In particular, we
study the impact of various discounting operators on the propagation of evidence and the
convergence speed of the iterative procedure.

Experiment Settings For the experiments we used a dataset derived from a BitTorrent-based
client called Tribler [29]. The dataset consists of information about 10,364 nodes and 44,796
interactions between the nodes. Each interaction describes the amount of transferred data in
bytes from a node to another node. The amount of transferred data can be either negative,
indicating an upload from the first node to the second node, or positive, indicating a down-
load.

To provide an incentive for sharing information, some BitTorrent systems require users
to have at least a certain ratio of uploaded vs. downloaded data. Along this line, we treat
the amount of data uploaded by a user as positive evidence, and the downloaded amount as
negative evidence. Intuitively, positive evidence indicates a user’s inclination to share data
and thus to contribute to the community.

It is worth noting that Tribler has a high population turnover and, thus, the dataset con-
tains very few long living and active nodes alongside many loosely connected nodes of low
activity [9]. This results in a direct referral trust matrix that is very sparse (i.e., most opinions
are full uncertainty). In this sparse form it is inefficient to do large matrix multiplications.
To this end, we have grouped the nodes into 200 clusters, each of which contains about
50 nodes. Intuitively, a cluster may be seen as the set of nodes under the control of a single
user.

For the experiments with real data, we considered four reputation models: (i) the flow-
based SL approach presented in Section 3; (ii) EBSL with g(x) = xb; (iii) EBSL with
g(x) =

√
xb; and (iv) EBSL using the operator �. Note that, due to the large number of

interconnected loops in the trust network, we did not consider SL in which the trust network
is transformed into a canonical form.

In all four models we computed the final referral trust matrixR. The amount of evidence
in the matrix A is visualized in Figure 4. Figure 4a presents the amount of positive evidence,
and Figure 4b the total amount of evidence (sum of positive and negative). We can observe
the presence of a few active users who had interactions with a lot of other users (visible
as dark lines). A horizontal dark line in Figure 4a indicates a user who downloaded data
from many other users. The vertical dark lines in Figure 4b represent negative evidence:
many users uploading to the same few users. Note that Figure 4b is not symmetric, since an
interaction never results in user feedback from both sides.

4 It worth noting that a trust value close to 1 can be obtained by Eq. 1 only if the trust network is a complete
graph in which the aggregate rating associated with each edge is close to 1.
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(a) Positive evidence (b) Sum of positive and negative evidence

Fig. 4: The evidence in the direct opinion matrix A for the Tribler data. For each pair (i, j)
the amount of evidence underlying the opinion of i about j is shown as a shade of gray,
using a logarithmic gray scale. White corresponds to zero, black to 8.7 · 106, which is the
maximum amount of evidence occurring in a single matrix entry in the experiments.

It is also interesting to note the clusters of strongly connected users who often interact
with each other (for instance the top-left corner).

Results The amount of evidence in R is presented in Figure 5 (only positive evidence) and
in Figure 6 (sum of positive and negative evidence). For most users, the amount of evidence
in R has increased compared to the initial situation (Figures 4a and 4b). The plots are char-
acterized by uniform vertical stripes, indicating that (most) users have approximately the
same amount of (positive) evidence about a given user. The amount of evidence, however,
remains close to 0 for those users who had very few interactions with other users (horizontal
white lines in Figures 5 and 6). It is also worth noting that the diagonal ofR is clearly recog-
nizable as a white line. This is due to the fact we impose the diagonal to be full uncertainty,
i.e. users cannot have an opinion about themselves, to reduce the effect of self-promoting.

The choice of the discounting operator, which defines how evidence is propagated, has
a significant impact on the amount of evidence in R. Ideally, users should be able to use the
available trust information to decide whether to engage an interaction with another user [42].
Therefore, a reputation system should allows users to gather as many recommendations (i.e.,
evidence) as possible from trusted users. However, the use of the � operator causes most
of the evidence to be lost along the way. This can be clearly understood by observing that
the initial situation in Figure 4a (Figure 4b respectively) and the final referral trust matrix R
in Figure 5a (Figure 6a respectively) are almost the same. Figures 5b and 6b show that the
⊗ operator propagates more evidence than �. We remind the reader that ⊗ causes double-
counting as well as discarding of evidence as shown in Examples 2 and 3. The � operator
with both g(x) = xb and g(x) =

√
xb results in the propagation of more evidence compared

to the� and⊗ operators, as shown in Figures 5c and 5d (positive evidence) and in Figures 6c
and 6d (total evidence). These findings confirm the results obtained with the synthetic data
(Table 3). Therefore, we conclude that the � operator is preferable to the other operators.
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(a) R obtained using � (b) R obtained using ⊗

(c) R obtained using � with g(x) = xb (d) R obtained using � with g(x) =
√
xb

Fig. 5: Positive evidence in the final referral trust matrix R for the Tribler data. For each
pair (i, j) the amount of positive evidence underlying the opinion of i about j is shown as a
shade of gray, using a logarithmic gray scale. White corresponds to zero, black to 8.7 · 106,
which is the maximum amount of evidence occurring in a single matrix entry in all the
experiments.

Convergence We have analyzed the convergence of the iterative approach using the Tribler
dataset. The experiments show that the reputation models built on top of EBSL converge.
In particular, EBSL with g(x) = xb converges after 47 iterations, EBSL with g(x) =

√
xb

converges after 24 iterations, and EBSL using the � operator after 9 iterations. One can
observe that, in all the cases, convergence is fast. Accordingly, we believe that the proposed
reputation model can handle real scenarios. In the experiments we also analyzed the con-
vergence of the naı̈ve approach that combines flow-based reputation and SL, as presented
in Section 3. Here convergence is not reached in a reasonable amount of time: after 1000
iterations we still have

∑
i,j δ(R

(k+1)
ij , R

(k)
ij ) ≈ 10−8.
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(a) R obtained using � (b) R obtained using ⊗

(c) R obtained using � with g(x) = xb (d) R obtained using � with g(x) =
√
xb

Fig. 6: The sum of positive and negative evidence in the final referral trust matrix R for the
Tribler data. For each pair (i, j) the total amount of evidence underlying the opinion of i
about j is shown as a shade of gray, using a logarithmic gray scale. White corresponds to
zero, black to 8.7 · 106, which is the maximum amount of evidence occurring in a single
matrix entry in the experiments.

To study the link between our approach and Markov chains, we performed additional
experiments (not reported here) with a number of limiting situations, i.e. synthetic data
unlikely to occur in real life. In particular, we studied the EBSL case where the powers of
A show oscillations, i.e. Ak+2 = Ak with Ak+1 6= Ak. Here Ak stands for ((· · · � A) �
A) � A. This can occur in Markov chains too. In flow-based reputation (1) the added term
(1−α)sx dampens the oscillations and thus improves convergence. Similarly, in our EBSL
experiments the added term A in each iteration (40) gives a convergent result in spite of the
oscillatory nature of A. This strengthens our conviction that EBSL correctly captures the
idea of reputation flow.
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8 Related Work

The notion of uncertainty is becoming an important concept in reputation systems and, more
in general, in data fusion [5,24]. Uncertainty has been proposed as a quantitative measure
of the accuracy of predicted beliefs and it is used to represent the level of confidence in
the fusion result. Several approaches have extended reputation systems with the notion of
uncertainty [15,30,32,39]. For instance, Reis et al. [32] associate a parameter with opinions
to indicate the degree of certainty to which the average rating is assumed to be representa-
tive for the future. Teacy et al. [39] account for uncertainty by assessing the reputation of
information sources based on the perceived accuracy of past opinions. Differently from the
previous approaches, Subjective Logic [15] considers uncertainty as a dimension orthogonal
to belief and disbelief, which is based on the amount of available evidence.

One of the main challenges in reputation systems is how to aggregate opinions, espe-
cially in the presence of uncertainty. SL provides two main operators for aggregating opin-
ions: consensus and discounting (see Section 2.2). Many studies have analyzed strategies for
combining conflicting beliefs [16,19,37] and have proposed new combining strategies and
operators [7,44]. In Section 5.2, we re-confirm that the standard consensus operator used in
SL is well-founded on the theory of evidence.

In contrast, less effort has been devoted to studying the discounting operator. Bhuiyan
and Jøsang [4] propose two alternative discounting operators: an operator based on opposite
belief favouring, for which the combination of two disbeliefs results in belief, and a base rate
sensitive transitivity operator in which the trust in the recommender is a function of the base
rate. Similarly to the traditional discounting operator of SL, these operators are founded on
probability theory. As shown in Section 3, employing operators founded on different theories
has the disadvantage that these operators may not “cooperate”. In the case of SL, this lack
of cooperation results in the inability to apply SL to arbitrary trust networks. In particular,
trust networks have to be expressed in a canonical form in which edges are not repeated.
A possible strategy to reduce a trust network to a canonical form is to remove the weakest
edges (i.e., the least certain paths) until the network can be expressed in canonical form
[20]. This, however, has the disadvantage that some (possibly even much) trust information
is discarded. An alternative canonicalization method called edge splitting was presented in
[18]. The basic idea of this method is to split a dependent edge into a number of different
edges equal to the number of different instances of the edge in the network expression.
Nonetheless, the method requires that the trust network is acyclic; if a loop occurs in the trust
network, some edges have to be removed in order to eliminate the loop, thus discarding trust
information. In contrast, we have constructed a discounting operator founded on the theory
of evidence. This operator together with the consensus operator allows the computation of
reputation for arbitrary trust networks, which can include loops, without the need to discard
any information.

Cerutti et al. [7] define three requirements for discounting based on the intuitive un-
derstanding of few scenarios: Let A be x’s opinion about y’s trustworthiness, C the level
of certainty that y has about a proposition P , and F = A ◦ C the (indirect) opinion that
x has about P . (i) If C is pure belief, then F = A; (ii) If C is complete uncertainty, then
F = C; (iii) The belief part of F is always less than or equal to the belief part ofA. Based on
these requirements, they propose a family of graphical discounting operators which, given
two opinions, project one opinion into the admissible space of opinions given by the other
opinion. These operators are founded on geometric properties of the opinion space. This
makes it difficult to determine whether the resulting theory is consistent with the theory of
evidence or probability theory. Our discounting operator satisfies requirement (ii) above,
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⊗ � �
Associativity yes no yes
Left-distribution no no yes
Right-distribution no yes yes
Recursive solutions no yes yes

Table 4: Comparison of the operators ⊗, �, and �.

but not requirements (i) and (iii); indeed, for g(A) > 0 it holds that A � B = B (where
B represents full belief). It is worth noting that the requirements proposed in [7] are not
well founded in the theory of evidence: B means that there is an infinite amount of positive
evidence; discounting an infinite amount of evidence still gives an infinite amount of evi-
dence. In Theorem 1, we provided a number of desirable properties founded on the theory
of evidence. In particular, if p + n → ∞ then u → 0. Accordingly, if C = B the uncer-
tainty component of F should be equal to 0, regardless of the precise (nonzero) value of the
uncertainty component of A.

To our knowledge, our proposal is the first work that integrates uncertainty into flow-
based reputation.

9 Conclusion

In this paper, we have presented a flow-based reputation model with uncertainty that al-
lows the construction of an automated reputation assessment procedure for arbitrary trust
networks. We illustrated and discussed the limitations of a naı̈ve approach to combine flow-
based reputation and SL. An analysis of SL shows that the problem is rooted in the lack of
“cooperation” between the SL consensus and discounting rules due to the different nature
of these two operators. In order to solve this problem, we have revised SL by introducing a
scalar multiplication operator and a new discounting rule based on the flow of evidence. We
refer to the new opinion algebra as Evidence-Based Subjective Logic (EBSL).

A generic definition of discounting (the operator �) lacks the associative property satis-
fied by the SL operator ⊗. This, however, is not problematic since the flow of evidence has
a well defined direction. Furthermore, the operator � has right-distributivity, a property that
one would intuitively expect of opinion discounting. One can choose a specific discounting
function g(x) proportional to the amount of positive evidence in x. The resulting discounting
operator is denoted as�. As shown in Table 4, this operator is completely linear (associative
as well as left and right distributive). However, it has potentially undesirable behavior since
it ignores negative evidence, and requires a carefully chosen system parameter related to the
maximum amount of positive evidence in the system.

The adoption of the discounting operator � results in a system that is centered entirely
on the handling of evidence. We have showed that this new EBSL algebra makes it possi-
ble to define an iterative algorithm to compute reputation for arbitrary trust networks. Thus,
EBSL poses the basis for the development of novel reputation systems. In particular, our
opinion algebra guarantees that trust information does not have to be discarded, thus pre-
serving the quality of the aggregated evidence. Moreover, making the uncertainty of the
computed reputation explicit helps users in deciding how much to rely on it based on their
risk attitude. In our opinion, this will facilitate the adoption and acceptance of reputation
systems since users are more aware of the risks of engaging a transaction and, thus, can
make more informed decisions.



Flow-based reputation with uncertainty 31

The work presented in the paper poses the basis for several directions of future work.
We have shown how EBSL can be used to build a flow-based reputation model with un-
certainty. However, several reputation models have been proposed in the literature to com-
pute reputation over a trust network. An interesting direction is to study the applicability
of EBSL as a mathematical foundation for these models. This will also make it possible to
study the impact of uncertainty on the robustness of reputation systems against attacks like
self-promotion, slandering and Sybil attacks.
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A Associativity and Left-Distributivity of � Imply Linearity of g

We present a proof of Lemma 10. The proof technique requires that opinions and the operations⊕ and · form
a vector space with an inner product defined on it. There is no such thing as an opinion ‘−x’ (inverse of x
with respect to ⊕) in Ω or Ω′, so we have to broaden our scope. We define an extended opinion space

Ω∗
def
= {(b, d, u) ∈ [−1, 1]2 × [0, 1] | |b|+ |d|+ u = 1}
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that allows for negative belief and/or disbelief components. We have to slightly modify the relation between
evidence and opinions, so that negative amounts of evidence can be represented,

(b, d, u) =
(p, n, c)

|p|+ |n|+ c
; (p, n) = c

(b, d)

u

with c > 0. Here p and n can be negative. This relation automatically leads to a slightly modified definition
of evidence addition (⊕) and scalar multiplication,

x⊕ y def
=

(xbyu + ybxu, xdyu + ydxu, xuyu)

|xbyu + ybxu|+ |xdyu + ydxu|+ xuyu

α · x def
=

(αxb, αxd, xu)

|αxb|+ |αxd|+ xu
.

For x, y ∈ Ω and α ≥ 0 all this reduces to the algebra of Sections 2.2 and 5.3; For x, y ∈ Ω∗ and α ∈ R
all the nice linear properties still hold.

The space Ω∗ with the ⊕ and · operations is a vector space. (The underlying space of (p, n) evidence
pairs has also been turned into a vector space by allowing negative amounts of evidence.) We introduce an
inner product on this vector space as follows,

〈x, y〉 def= p(x)p(y) + n(x)n(y).

It is easily verified from the definitions that this expression satisfies all the requirements for being an inner
product, namely 〈x, y〉 = 〈y, x〉; 〈x, y ⊕ z〉 = 〈x, y〉+ 〈x, z〉; 〈x, x〉 ≥ 0 and 〈α · x, y〉 = α〈x, y〉.

With all this structure in place we can now invoke the Riesz-Fréchet theorem [12],

If Ω∗ is a real Hilbert space and g a linear functional, then there exist a unique vector v ∈ Ω∗ such
that g(x) = 〈v, x〉 for all x ∈ Ω∗.

Here ‘linear functional’ means that the linear property g(x⊕ y) = g(x) + g(y) holds. Hence, the only way
to achieve this property is to set g(x) = 〈v, x〉, i.e. a linear combination of p(x) and n(x).
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