
 

Model-driven scheduling of dynamic streaming applications on
MPSoCs
Citation for published version (APA):
Damavandpeyma, M. (2013). Model-driven scheduling of dynamic streaming applications on MPSoCs. [Phd
Thesis 1 (Research TU/e / Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR759498

DOI:
10.6100/IR759498

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://doi.org/10.6100/IR759498
https://doi.org/10.6100/IR759498
https://research.tue.nl/en/publications/a42c5115-5652-4346-96c4-b02192bf291d


Model-Driven Scheduling of Dynamic
Streaming Applications on MPSoCs

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op donderdag 24 oktober 2013 om 16.00 uur

door

Morteza Damavandpeyma

geboren te Roodbar, Iran



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. H. Corporaal
en
prof.dr.ir. T. Basten

Copromotor:
dr.ir. S. Stuijk

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Damavandpeyma, Morteza

Model-Driven Scheduling of Dynamic Streaming Applications on MPSoCs
/ by Morteza Damavandpeyma. - Eindhoven : Technische Universiteit Eindhoven, 2013.
A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-3460-9
NUR 959
Trefw.: multiprogrammeren / elektronica ; ontwerpen / multiprocessoren /
ingebedde systemen.
Subject headings: data flow graphs / electronic design automation /
multiprocessing systems / embedded systems.



Model-Driven Scheduling of Dynamic
Streaming Applications on MPSoCs



Committee:

prof.dr. H. Corporaal (promotor, TU Eindhoven)
prof.dr.ir T. Basten (promotor, TU Eindhoven)
dr.ir. S. Stuijk (copromotor, TU Eindhoven)
prof.dr.ir. A.C.P.M. Backx (chairman, TU Eindhoven)
prof.dr.ir. M.J.G. Bekooij (University of Twente, NXP semiconductors)
prof.dr.ir. C.H. van Berkel (TU Eindhoven, ST Ericsson)
prof.dr.-Ing. C. Haubelt (University of Rostock)
dr. A.D. Pimentel (University of Amsterdam)

The work in this thesis is supported by the Technology Foundation STW,
applied science division of NWO and the technology programme of the Ministry
of Economic Affairs within the NEST project 10346.

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 287.

c© Morteza Damavandpeyma 2013. All rights are reserved. Reproduction in
whole or in part is prohibited without the written consent of the copyright
owner.

Printing: Printservice Technische Universiteit Eindhoven



Abstract

Model-Driven Scheduling of Dynamic Streaming Applications on MP-
SoCs

Consumer electronics have evolved tremendously in recent decades by the
ever-increasing advances in transistor fabrication technology. Nowadays, even fur-
ther integration of computational and storage elements into a single silicon chip is
feasible. Multi-processor systems-on-chips (MPSoCs) provide high performance,
power efficient and reliable products at low-cost. Platform-based design is a well-
known approach to construct a system using an MPSoC; compared to alternative
design strategies, a platform-based strategy has lower design cost with a shorter
time-to-market at lower risk. In a platform-based design approach, applications
should be mapped to an MPSoC platform. For this purpose, model-based design
approaches are introduced. In a model-based design approach, applications are
captured by using some abstract model; analysis of these models can reveal infor-
mation about the applications in early design stages to accelerate the construction
of a system running on an MPSoC. This thesis focuses on applications from the
multimedia and Digital Signal Processing (DSP) domain executing on an MPSoC.
Such applications are repetitively applying deterministic transformations on an
input stream of indefinite length, for example, a video decoder that decodes a
video stream. These applications are often referred to in literature as stream-
ing applications. Since the 1980s, synchronous dataflow (SDF) graphs are being
used to model streaming applications. However, traditional SDF graphs are not
able to accurately capture modern dynamic applications with different working
modes, also called scenarios. Scenario-aware dataflow (SADF) graphs have been
introduced to tackle this issue. We focus in this thesis on applications described
by SADF graphs, addressing several challenges in mapping these applications to
MPSoCs following a model-driven approach.

Streaming applications are expected to meet specific performance require-
ments, for example throughput and latency. These requirements can be evaluated
by analyzing the underlying SADF models. To utilize all resources available on
an MPSoC and provide better performance (e.g., higher throughput), an appli-
cation is decomposed (or partitioned) into several tasks, allowing those tasks to
run in parallel. The act of assigning processing elements to the tasks of an appli-
cation is called binding. The order according to which tasks will be executed on



ii Summary

a single processing element is indicated by the scheduling decisions. Binding and
scheduling decisions can influence the performance of the design. In this thesis,
we assume a given binding and platform. The main subject of investigation is
how to schedule a dynamic application on an MPSoC in a way that a strict tim-
ing requirement is being assured, and taking into account that modern MPSoCs
allow to adapt frequencies and voltages of their processing elements at run-time
in order to provide a trade-off between performance and energy consumption.

We start our work with the state of the art mapping techniques from the
SDF3 toolkit. The scheduler of SDF3 assumes that enough on-chip memory is
available in MPSoCs to store all application code and data. As a first contri-
bution in this thesis, we refine this assumption by considering the availability of
both off-chip and on-chip memories in a system, taking into account the impact of
the prefetching on the performance when scheduling an application. The design
decisions (binding, scheduling, etc.) must be considered when a specific analysis
(e.g., throughput calculation) is being performed on a dataflow model. A second
contribution in this thesis are two techniques to include mapping decisions into
SADF graphs. These techniques allow faster and more accurate analysis. The
timing properties of an SADF model may be changed by a modification in the
frequencies setting of the underlying MPSoC platform. We employ a parametric
SADF model to capture the effect of changing processor frequencies. The para-
metric SADF model uses expressions to represent the timing properties in terms
of processor frequencies. The throughput of the parametric SADF is required
to be known to decide on the best frequency and voltage settings. As execution
times are not constant, the classical throughput analysis techniques cannot be
used. The third contribution in this thesis is a parametric throughput analysis
technique for SADF graphs. The outcome of our parametric throughput analysis
is a set of expressions representing the critical timing cycles in the application.
As a final contribution, we utilize the information extracted by our parametric
throughput analysis to determine the frequencies and voltages of an MPSoC such
that it minimizes the energy consumption while guaranteeing a certain throughput
requirement. We combine the resulting pro-active dynamic voltage and frequency
scaling (DVFS) technique with a reactive online approach to further exploit the
timing slack identified at run-time.
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Chapter 1

Introduction

1.1 Era of Embedded Systems

General purpose computers, such as personal computers, are used to serve various
functions. In contrast, embedded systems are special-purpose computers devel-
oped to perform dedicated tasks, often with specific timing requirements [5]. An
embedded system is a combination of hardware, software and often even some
mechanical parts.

The Apollo spacecraft was one of the first important designs in which a mod-
ern embedded system is deployed by the MIT Instrumentation Laboratory in the
1960s. The Apollo Guidance Computer was developed to carry out the computa-
tion and electronic interfaces for guidance, navigation, and control of the Apollo
spacecraft [37]. The Intel 4004 microprocessor developed for digital calculators,
introduced in 1971, can also be considered as an early form of today’s embedded
systems. Over the last three decades, the continuous advances in silicon technol-
ogy have made it possible to integrate more transistors into a single chip; such a
technology is called Very-Large-Scale-Integration (VLSI). These VLSI devices can
serve more complex functions. The mass production of VLSI circuits has made
microprocessors cheap enough to be used in any computation-intensive device.
Many of these devices serve one or a few dedicated functions; hence, they are
considered embedded systems.

Nowadays embedded electronic devices are an inevitable part of human life.
The presence of embedded systems is tangible from a simple alarm clock to a
complex spacecraft. Many household appliances, such as washing machines, dish-
washers, microwave ovens, vacuum cleaners, etc, comprise embedded systems to
provide efficient and low cost products. Automotive companies are replacing me-
chanical parts with electronic devices to provide more reliable and efficient vehi-
cles. The aviation industry takes advantage of advanced navigation and guidance
embedded systems to assure safer aeroplanes. Embedded devices also make med-
ical equipment more capable, easier to use and easier to integrate into hospital
systems. These new technologies enable remote supervision and patient monitor-
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ing for long-term treatment and medication. Recently emerged smartphones and
tablets are a prominent example of embedded systems; such products gather mul-
tiple applications from multimedia and digital signal processing (DSP) domains in
a single device. According to International Data Corporation (IDC) [45], vendors
will ship 918.6 million smartphones in 2013; this number is estimated to reach
1.5161 billion in 2017. All of these shows how our lives are tightly coupled with
products developed around embedded systems. In this thesis, we target appli-
cations from multimedia and DSP domains; such applications repeatedly impose
deterministic transformations on an input stream of indefinite length. Video, au-
dio and image processing are prominent examples. These applications are often
referred to in literature as streaming applications.

1.2 Challenges in Embedded Systems Development

Nowadays, multiple microprocessors, DSPs, reconfigurable FPGAs (field pro-
grammable gate arrays), memories, sensors and actuators can all be integrated
into a single chip; such a system is often called a system on chip (SoC). SoCs pro-
vide low-cost, compact, light, low-power, low-energy and efficient products; these
nice properties make SoCs a suitable way of implementing embedded applications.
However, the design complexity also grows with the increased integration of these
components.

To be competitive in the consumer electronics market, the electronics indus-
try tries to introduce alluring products with multiple functionalities; for instance,
current handheld phones include an MP3 player, video display, GPS (global po-
sitioning system) navigation system, web browser, and camera besides their tra-
ditional usage (i.e., making phone calls). Different applications may use shared
resources (e.g., microprocessors, memories, communication links, etc). Such re-
source sharing should not affect the functionality of the product. Functionality
means that a task should be executed according to its design specification. Ap-
plications may require different qualities that must be taken into account in the
development phase. Usually, temporal behavior is considered as one of those
quality metrics; for instance, a video decoder should be able to deliver a video
stream with 20 fps (frames-per-second). These devices are often battery-powered;
hence, it is crucial to develop low-power and low-energy consuming products. The
performance of an application can also be lowered to save more battery energy
(e.g., the quality of a video stream can be reduced in a video decoder applica-
tion). The design, verification, and test of the mentioned composite systems is
a complicated task which further increases the development complexity. More-
over, time-to-market is also a critical issue in the development of these devices.
It is vital for the electronics industry to employ design strategies such that it can
quickly deliver/upgrade products while still respecting all required functional and
temporal requirements. Moreover, the development cost of embedded systems is
rapidly rising by the growth in the design complexity. Keeping these costs under
control is another challenge faced by the electronics industry.

The following summarizes the important challenges in the development of
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embedded systems:

• Managing the ever-increasing design complexity.

• Reducing the time-to-market.

• Providing flexible and upgradable designs.

• Realizing low-power/low-energy systems.

• Satisfying the temporal and functional requirements.

• Handling the rise in design cost.

In the next subsection, we introduce promising strategies that help to meet
the mentioned challenges.

1.3 Successful Strategies in Embedded Systems

This section introduces existing successful strategies in developing embedded sys-
tems. In this thesis, we extend these strategies with novel analysis and modeling
techniques for dynamic streaming applications.

1.3.1 Platform-Based Design

In the past, an electronics company was taking all responsibility and burden
of developing a product from the specification phase to the final manufacturing
phase. Such a development cycle may not be practical considering the increasing
Non-Recurring Engineering (NRE) and design costs, tremendous rise in design
complexity and ever-shortening time-to-market. The refinement of an architec-
ture for a single application is costly and time consuming. Nowadays, VLSI in-
dustries are using pre-designed and pre-characterized components instead of full
custom designs. A design philosophy using such pre-designed components is called
platform-based design [26, 47]. In this philosophy, the steps required to explore
and refine the underlying architecture can be skipped. This promotes the re-use
concept in system design which is called intellectual property (IP) creation. The
IPs or platforms are verified and tested beforehand. This saves design and verifi-
cation time. The platform-based design strategy also prorates the costs involved
in Non-Recurring Engineering (NRE) in making masks and manufacturing setups
by using the same masks as often as possible in different products and in different
companies.

The cost of a product depends on its silicon area and the NRE cost per
product sample. Hence, selecting and designing a platform is a crucial issue. A
platform with low flexibility (or applicability) which is utilized for a limited set
of applications efficiently uses the silicon area and hence its silicon cost can be
lowered. But, a less flexible platform has limited applicability and such a platform
cannot attract many applications from other domains; as a result, the NRE cost
per single chip may increase. The other extreme is developing a flexible platform.
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Figure 1.1: Cost versus flexibility of a platform.

By using a flexible platform, the production volume can be increased to prorate
the NRE and design cost; however, a flexible platform requires more silicon area
and this can increase the cost of a single chip. Figure 1.1 graphically depicts
both extremes; in this figure, cost versus flexibility of an imaginary platform is
shown. The middle region in this figure shows under how much flexibility the
total production cost per single chip can be minimized. This figure is not based
on real values and it is included to graphically highlight the concept of choosing a
platform. In this thesis, we assume that the platform, which is a multi-processor
system-on-chip (MPSoC), is chosen for the class of streaming applications.

Using a platform-based design is a way to deal with the design complexity; it
also reduces the time-to-market and design cost by employing the re-use concept.
Systems developed using a platform are easier to maintain and upgrade. The ap-
plications running on a platform are often expected to satisfy a certain temporal
requirement. The achievable temporal performance depends not only on the ap-
plication properties, but also on the underlying platform. The model-based design
concept, introduced in Section 1.3.2, uses an integrated model to accommodate
both application and platform properties into a single abstract model. The design
decisions should also be captured in the model. Analyzing such a universal model
can be a way to formally determine the achievable temporal performance. The
next subsection is devoted to discuss these related topics.

1.3.2 Model-Based Design

In traditional approaches, system engineers provide a detailed specification of a
system; hardware and software engineers are responsible to implement the pro-
vided specification. There is always a chance that an implemented system does
not follow the given specification. This can happen because a specification may
not include all relevant details or errors may be introduced due to misinterpre-
tation of the specification. Moreover, the traditional approach is slow and time
consuming and it requires interaction between system and hardware/software en-
gineers. Model-based design approaches (e.g., [9, 10, 54, 69, 86]) are introduced to
address such issues. In a model-based approach, a system is expressed in terms
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of a well-defined model. For a model, some intrinsic properties are defined. Func-
tional and temporal behavior of the system are described and can be evaluated
either by a formal mathematical method or by a simulation-based method. The
system described by such models can be directly used as the input to an auto-
matic synthesis/compilation trajectory. Different properties of a system can be
determined by analyzing the model of the system. For a model, the analyzabil-
ity is defined by its ability to capture certain properties of the system using the
model. Models may also differ in capturing different system behaviors; the ex-
pressiveness expresses the potential of a model in describing system behaviors. In
literature several models were introduced for different purposes. Dataflow models
have been used for DSP software synthesis since several decades ago [9, 49, 63, 67].
In [73, 85], detailed surveys on existing dataflow models are presented. A model-
based approach can be automated; this can eliminate extra implementation time
and designer mistakes. As a result, a better and faster design-space exploration
can be possible using a model-based approach [11, 65, 68].

In this thesis, we use scenario-aware dataflow (SADF) [74] graphs to model
applications. SADF graphs are mainly introduced to model dynamic applications
with multiple operating modes, called scenarios. Each scenario of an SADF is
described using a synchronous dataflow (SDF) graph [9, 49, 63, 67]. The scenario
occurrence order is captured using a finite state machine (FSM).

Model-based design is a way to manage the design complexity by abstracting
applications and the platform. This helps to reduce the development cost and
time-to-market. Using a high-level model enables further flexibility in exploring
different alternatives in the design trajectory to provide a flexible and upgradable
design. The high-level model can formally be analyzed to determine the temporal
performance of the system. For this purpose, some temporal guarantees must be
assured by the application and the underlying platform; the predictable design
concept, explained in Section 1.3.3, is used to maintain this temporal behavior.

1.3.3 Predictable Design

A system is called predictable if it assures a reasonable bound on performance of
an application (e.g., a lower bound on the throughput of the application and/or
an upper bound on the latency of the application). Consider a video decoder
application; an implementation of a video decoder is often required to process
a specific number of video frames within a second (i.e., frames-per-second) to
provide an acceptable user-perceived quality.

Predictable system design is concerned with specifying a suitable hardware
platform and an appropriate software design methodology. The hardware plat-
form - in this thesis an MPSoC - must provide timing guarantees for each of its
operations; for example, the worst-case time required to fetch a data element from
a memory is required to be known in advance. These considerations can disallow
using performance enhancing architectural elements such as cache memories and
pipelines which cause a considerable non-determinism and hinder providing tim-
ing guarantees; however, on-going research in embedded systems tries to relax this
issue by introducing new schemes or elements. For instance, scratchpad memo-
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ries (SPMs) are identified as an alternative to cache memories, even though using
SPMs in a system requires extra efforts such as memory profiling. In this thesis,
we assume that the underlying MPSoC platform has predictable resources. Pre-
vious research has shown that a predictable platform is feasible to realize [38, 68].
Employing a predictable hardware platform is a necessity for a predictable sys-
tem but it is not enough. An embedded application which is being executed on
a platform should also be predictable. For example, worst-case processor cycles
required to process a task should be known a priori. The model employed to
describe an application must be monotone [63] since worst-case knowledge is used
to capture the temporal behavior of the application. Monotonicity states that a
reduction in the execution time of an arbitrary actor in the application graph can-
not reduce the throughput of the application [63]. A monotone model is essential
for a model-based design approach since in reality the execution times of tasks
are often below their worst-case values. The SADF model which is the baseline
of this thesis respects the monotonicity property [6, 31].

1.4 Problem Statement

A modern streaming application may run in different modes during its execution;
various processing steps may be employed depending on the input data stream
or the availability of the resources on the underling hardware platform. Such dy-
namism is essential to be captured in a model to provide a better understanding
of the application in later design steps. In previous sections, SADF graphs are
mentioned as a Model-of-Computation for dynamic applications. An application
described by such a dynamic model is often mapped to a MPSoC platform. A
platform usually has several processing elements (or processors); to obtain bet-
ter temporal performance, the application is bound to the multiple processing
elements. The execution of actors (from the SADF model) mapped to the same
processing element can statically be ordered using a schedule. MPSoCs usually
have limited on-chip memories; for this reason, remote memories are used besides
the internal local memories. The remote-local memory transactions must also be
scheduled accordingly. All these decisions influence the final achievable temporal
performance. Moreover, the total energy consumption can be affected by such
decisions. Dynamic voltage and frequency scaling (DVFS) [14] can be used as a
technique to provide a trade-off between performance and the energy consump-
tion. In the rest of this subsection, we enumerate some of the existing issues
on running dynamic streaming applications on MPSoCs. The goal is ensuring a
certain timing behavior when running a dynamic application on an MPSoC; at
the same time, we try to provide a solution with a low energy consumption.

SDF graphs are a special case of SADF graphs with a single scenario; they
have been studied extensively in recent literature. For example, the SDF3 toolkit
[71] implements most of the analysis techniques available for SDF graphs in map-
ping a static application onto a hardware platform. In this thesis, we employ
the SDF3 toolkit as our baseline design flow. Binding decisions are taken using
the SDF3 toolkit. Tasks, also called actors, mapped to a single processing ele-
ment can be ordered using the scheduler implemented within the SDF3 toolkit.
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However, the scheduler from SDF3 assumes that enough (code and data) on-chip
memories are available in the underlying hardware platform to accommodate all
memory objects of an application. This assumption limits the applicability of
the SDF3 design flow; either it can be used for applications with small memory
requirements or it can be used for platforms with large on-chip memories. In a
more realistic case, off-chip memories must also be used. Only the active memory
objects are required to be present in on-chip memories at run-time. The memory
objects may need to be read/writen from/to off-chip memories to/from on-chip
memories during the application life time. The scheduler for such a system re-
quires to specify all transactions between off-chip memories and on-chip memories
besides determining the actors’ execution order. Direct-Memory-Access (DMA)
units are also a common element in current platforms. DMA units are used to
improve the performance of a system by prefetching memory objects. In this way,
computation and data communication can be overlapped to shorten the memory
access latency. Considering prefetching of memory objects using a DMA unit
can further increase the complexity of the scheduler. In this thesis, we present a
scheduler that considers all mentioned aspects. The resulting scheduling (design)
decisions must be encoded in the model. The only available technique [3] to model
mapping into an SDF/SADF graph requires transformation of an SDF graphs (or
each scenario graph of an SADF) to a so-called homogeneous SDF (HSDF) which
is a sub-class of SDF graphs [67]. This transformation often leads to an exponen-
tial increase in the size of the graph that may make later analysis infeasible or
impractical in practice. There is a second drawback to the technique from [3]; the
original graph structure is lost due to the conversion to an HSDF. As a result,
common buffer sizing techniques, that are determining the required buffer space
for data communicated between different actors, cannot find the minimal buffer
size for the original graph. A novel technique is needed to model mappings in
an SDF/SADF graph. This technique should limit the increase in the number
of actors such that analysis times do not increase too much when analyzing the
graph with its schedules. The technique should also preserve the original graph
structure as this enables accurate analysis of graph properties such as buffer sizes.
This thesis presents two techniques that satisfy both requirements. The presented
techniques can be used in any model-based design-flow that models mapping deci-
sions into an SDF/SADF graph (e.g., [9, 10, 54, 69, 86]). Timing analysis of such
a schedule-extended MoC provides insight into the achievable temporal properties
of the mapped application.

The actor execution times may not be fixed during the design trajectory. For
example, actor execution times can change by applying a DVFS optimization.
Throughput of an SDF/SADF graph, i.e., the average number of actor firings
per time unit, is an important metric to determine the performance of a system.
Most of the existing throughput calculation techniques are only applicable to
models with fixed execution times except [33]. Ref [33] introduces a parametric
throughput analysis technique for SDF graphs. The technique finds throughput
expressions for a parameterized SDF in which actors can have a linear function
of some parameters as their execution time. These parameters have a specified
time interval. However, applying SDF throughput analysis to applications with
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a dynamic behavior may result in a loose bound on the worst-case throughput.
This may lead to an over-allocation of resources. So, a new technique is required
to determine throughput expressions when the underling application model is an
SADF. In this thesis, a parametric throughput analysis technique is introduced
for SADF graphs. The proposed parametric throughput analysis technique is used
to find the frequency points for a platform with DVFS possibility.

Streaming applications, such as signal processing and multimedia applica-
tions, are often expected to meet strict timing requirements (e.g., a through-
put constraint). Furthermore, energy consumption is an important design crite-
rion for such applications. DVFS is a commonly used technique to develop low
power/energy implementations. Hence, a multi-processor DVFS controller can
be developed for such streaming applications to provide a timing guarantee while
minimizing the energy consumption. We employ a parametric SADF model to
capture the effect of changing processor frequencies. The parametric SADF model
uses linear expressions to represent the timing properties in terms of processor
frequencies. The throughput of the parametric SADF is required to be known in
the process of constructing the DVFS controller; for this purpose, our parametric
throughput analysis technique can be used. We utilize the information extracted
by our parametric throughput analysis to determine the frequencies and voltages
of an MPSoC in such a way that it minimizes the energy consumption while guar-
anteeing a throughput requirement. We combine the resulting pro-active dynamic
voltage and frequency scaling (DVFS) technique with a reactive online approach
to further exploit the timing slack identified at run-time.

1.5 Contributions

The main contributions of this thesis are listed below:

• A technique is presented to schedule an application on an MPSoC that
contains a limited on-chip memory. The proposed scheduling technique ex-
plores the trade-off between executing actors in a code-driven (i.e., executing
parallel actors) or data-driven (i.e., executing pipelined actors) manner to
optimize temporal properties of the application. The technique also consid-
ers prefetching when choosing a suitable execution order. An earlier version
of this work was published in [20].

• The design decisions (binding, scheduling, etc.) must be considered when
a specific analysis (e.g., throughput calculation) is being performed on a
dataflow model. For this purpose, we present two techniques to include
mapping decisions directly into SADF graphs. This work was published in
[19, 21].

• The SADF model is parameterized by associating the execution time of each
actor in the model with a linear function of some parameters. A throughput
function exists for such a parametric SADF model; evaluating this function
for a specific parameter point reveals the throughput value of the SADF
model for that parameter point. This thesis presents a technique to find
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the throughput function of a parameterized SADF model. This work was
published in [23].

• The parametric SADF model is used to accommodate processor frequency
settings of an MPSoC platform. In this thesis, we present a technique to
select a suitable multi-processor DVFS point for each mode (scenario) of a
dynamic application described by an SADF. The resulting DVFS controller
assures strict timing guarantees while minimizing energy consumption. This
work was published in [22].

1.6 Thesis Overview

This thesis is organized as follows. The two dataflow models-of-computation
which are used used throughout this thesis (i.e., SDF and SADF) are defined in
Chapter 2. The same chapter also introduces the notations and concepts related
to dataflow scheduling. Chapter 3 presents our ILP-based technique for dataflow
scheduling. In Chapter 4, we introduce two techniques to directly model peri-
odic static-order schedules and single appearance schedules into SADF graphs.
Chapter 5 develops a parametric throughput analysis technique for a parameter-
ized SADF graphs. Our parametric throughput analysis technique is employed in
Chapter 6 to design an energy-aware DVFS controller for a dynamic application
described by an SADF graph. A strict throughput guarantee is assured for a
system that uses our DVFS controller. The same chapter explains how our DVFS
controller is amended with a reactive online approach to further exploit the timing
slack identified at run-time. Finally in Chapter 7, we conclude this thesis along
with some recommendations for future work.
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Chapter 2

Dataflow Preliminaries

This chapter introduces terminologies and definitions used in this thesis. The
chapter also motivates the choice made in this thesis to model streaming applica-
tions with Scenario-Aware Dataflow Graphs. The current chapter also introduces
a model transformation technique for dataflow graphs to speed up timing analysis.

2.1 Overview

Dataflow graphs, especially Synchronous Dataflow (SDF) [9, 49, 63, 67] graphs,
are frequently being used to model DSP applications for concurrent implemen-
tation on parallel hardware. Moreover, the behavior of static streaming appli-
cations, such as DSP applications, can be captured using SDF graphs. One of
the main properties that many streaming applications share is applying deter-
ministic transformations on data stream. Consider a smart phone that may be
used to play a movie from YouTubeTM ; continuously, the video stream is being
received over a medium using a network protocol like WLAN, 3G or 4G. At the
same time, video and audio decoding are performed on the received data. Each
of these steps can be modeled using an SDF graph. The algorithms and protocols
used in such devices are getting tuned and revised to provide better bandwidth
utilization, better performance, etc; for this purpose, algorithms are often adapt-
ing themselves to the data stream. For example, a video decoder applies different
processes to different types of video frames. Hence, a single application may
operate in different modes over its run-time. As a result a single (static) SDF
may not be able to accurately model the behavior of a modern streaming ap-
plication. Analyzing an SDF graph that captures all computations performed
in all different modes of an application can lead to inaccurate results. Conse-
quently, a model-driven design approach relying on those analysis results may
incur resource over-allocation and/or extra energy consumption. Excess energy
consumption for hand-held devices is not favorable since these devices are usually
battery-powered. Scenario-aware dataflow (SADF) [74] graphs are introduced to
provide a better model for dynamic applications as compared to SDF graphs.
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Analysis techniques applied to such dynamic models can provide tighter perfor-
mance results and prevent resource over-allocation when implementing dynamic
applications. The focus of this thesis is on techniques and approaches for SADF
graphs. In this chapter, we describe the SADF model which is the baseline of
our work. Since an SADF uses SDF graphs to describe different modes (or sce-
narios) of an application, we first describe the SDF model in Section 2.2. Section
2.3 introduces the SADF model. The concepts related to the dataflow model in
the context of multi-processor systems are discussed in Section 2.4. Max-Plus
algebra can be used to mathematically describe the behavior of dataflow graphs.
As we use some analyses based on Max-Plus algebra in this thesis, Section 2.5 is
devoted to explaining the basics of Max-Plus algebra. Some modeling techniques
(e.g., buffer size modeling) may add a large number of initial tokens to the graph.
In Section 2.6, we introduce a technique to reduce the number of initial tokens in
a dataflow graph without changing the timing behavior of the model. The last
section concludes this chapter.

2.2 Synchronous Dataflow Graphs

A synchronous Dataflow (SDF) graph is a directed graph G = (A,C). A node
a ∈ A, called actor, represents a function (task) of the application. An edge c ∈ C,
called channel, captures (data or control) dependencies between actors. An actor
is connected to a channel via a port. We formally define an SDF as follows.

LetN denote the positive natural numbers, N0 the natural numbers including
0, and N∞0 the natural numbers including 0 and infinity (∞). We assume a set
Ports of ports; each port p ∈ Ports has a finite rate Rate(p) ∈ N.

Definition 1. (Actor) An actor ai is a tuple (In,Out, τi) consisting of a set
In ⊆ Ports of input ports (denoted by In(ai)) and a set Out ⊆ Ports of output
ports (denoted by Out(ai)) with In∩Out = ∅. A non-negative real value τi ∈ R+

is used to represent the worst-case execution time of the actor ai.

In the thesis, the notation τ(ai) is often used to refer to the worst-case exe-
cution time of ai (i.e., τi). Note that the original definition of SDF does not
include time; however, throughout this thesis, we consider timed SDF that in-
cludes worst-case execution times in the definitions of actors.

Definition 2. (SDF) An SDF graph G is a tuple (A,C) consisting of a finite
set A of actors and a finite set C ⊆ Ports2 of channels. The channel source
(destination) is an output (input) port of an actor. Each port of an actor is
connected to only one channel and each channel end is connected to a single
port. For every actor ai = (In,Out, τi) ∈ A, InC(ai) (OutC(ai)) represents all
channels connected to the ports in In (Out).

Figure 2.1 shows an example of an SDF with three actors (A = {a0, a1, a2})
and four channels (C = {c0, c1, c2, c3}). Actors communicate with tokens sent
from one actor to another over the channels. Channels may contain initial tokens,
depicted with a solid dot. The example SDF contains four initial tokens labeled
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Figure 2.1: An example SDF graph.

t0, t1, t2 and t3. An essential property of SDF graphs is that every time an actor
fires (executes) it consumes a fixed number of tokens from its input channels and
produces a fixed number of tokens on its output channels. These numbers are
called the rates (indicated next to the channel ends when the rates are larger
than 1).

An actor can only fire (execute) if sufficient tokens are available on the chan-
nels from which it consumes. Tokens thus capture dependencies between actor
firings. Such dependencies may originate from data dependencies, but also from
for example dependencies on shared resources. When an actor ai starts its firing,
it removes Rate(q) tokens from all input channels (p, q) ∈ InC(ai) and when it
ends, it produces Rate(p) tokens on all output channels (p, q) ∈ OutC(ai). The
rates determine how often actors have to fire with respect to each other such
that the distribution of tokens over all channels is not changed. This property is
captured in the repetition vector of an SDF.

Definition 3. (Repetition Vector) A repetition vector of an SDF graph G =
(A,C) is a function γ : A → N0 such that for every channel (p, q) ∈ C from
ai ∈ A to aj ∈ A, Rate(p) · γ(ai) = Rate(q) · γ(aj). A repetition vector γ is
called non-trivial iff for all ai ∈ A, γ(ai) > 0. An SDF graph is called consistent
iff it has a non-trivial repetition vector. For a consistent graph, there is a unique
smallest non-trivial repetition vector, which is designated as the repetition vector
of the SDF graph.

The repetition vector of the SDF graph shown in Figure 2.1 is equal to
(a0, a1, a2)→ (1, 2, 6). This shows that the SDF graph is consistent as its repeti-
tion vector is non-trivial. Consistency and absence of deadlock are two important
properties for SDF graphs which can be verified efficiently [8, 53]. Any SDF graph
which is not consistent requires unbounded memory to execute or it eventually
deadlocks. When an SDF graph deadlocks, no actor is able to fire, which is due
to an insufficient number of initial tokens in a cycle of the graph. Any SDF graph
which is inconsistent or deadlocks is not useful in practice. Therefore, we limit
ourself to consistent and deadlock-free SDF graphs.

The special class of SDF graphs in which all port rates are equal to one
is called the class of homogeneous SDF (HSDF) graphs [53]. Any consistent
SDF graph can be converted to an HSDF graph [53, 67] that is equivalent from
the timing perspective. The equivalent HSDF graph of our example SDF graph
(shown in Figure 2.1) is shown in Figure 2.2; each actor in the SDF graph is
repeated in the equivalent HSDF as often as indicated in the repetition vector of
the SDF graph. For example, actors a1 1 and a1 2 are added to the equivalent
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Figure 2.2: HSDF graph of the example SDF graph in Figure 2.1.

HSDF graph in Figure 2.2 in place of actor a1 in the example SDF. The SDF
to HSDF conversion may however lead to an exponential increase in the number
of actors and it has an impact on the speed and possibly also the accuracy of
the result of analysis techniques. As an example, consider applying a buffer sizing
analysis algorithm (e.g., [70]) to our example SDF graph and its equivalent HSDF
graph; the minimum buffer size required for deadlock-free execution of the SDF
graph of Figure 2.1 and its equivalent HSDF graph in Figure 2.2 are 11 and 14
(tokens). Figure 2.3 shows an SDF graph which models a buffer allocation of
[c1 : 2] [c2 : 3] [c3 : 6] into the SDF graph shown in Figure 2.1. Some new
(dashed) channels are added to the initial SDF graph to model these buffer sizes.
The dashed channels in Figure 2.3 are the same as normal channels in an SDF
graph. The buffer modeling is performed using the technique proposed in [70] that
places a back-edge with some initial tokens for each channel in the SDF graph.
The number of initial tokens on the back-edge indicates the free space in the buffer
allocated to the channel. In other words, a buffer size of x ∈ N for a channel that
contains y ∈ N0 initial tokens is modeled by including a back-edge with x − y
initial tokens to the model. For example, the back-edge for channel c2 contains
3 − 1 = 2 initial tokens indicating a buffer size of 3 for channel c2. A self-edge
channel of an actor is not considered during the buffer size modeling because the
memory object of the self-edge is an internal state and it is only accessed by the
actor. Figure 2.4 depicts the HSDF graph in Figure 2.2 that models a buffer size
of 1 for each channel excluding self-edges. Since 14 none self-edge channels exist
in the HSDF graph of Figure 2.2, the common buffer sizing technique results in a
minimum buffer size of 14; when the same buffer sizing technique is applied to the
original SDF graph, a minimum buffer size of 11 is found. This example shows
that a buffer sizing technique may result in over-allocation for HSDF graphs. A
smart buffer sizing technique (e.g., using shared buffers for several channels) can
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Figure 2.3: The SDF graph in Figure 2.1 with the back-edges encoding buffer size
constraints.

be used to relax the over-allocation issue with HSDF graphs, but note that extra
effort and more analysis time may be incurred. Hence, in this thesis, we focus
on SDF-based analysis. Nevertheless, note that HSDF graphs may be favorable
due to their regular structure (i.e., all rates are equal to 1). An actor exists in an
HSDF graph to model a firing of an actor in the original SDF graph of the HSDF
graph; this makes scheduling of HSDF graphs easier compared to scheduling of
the original SDF graphs.

A firing of an actor leads to the consumption of tokens from its input channels
and the production of tokens on its output channels. In order to capture the
behavior of an SDF, we need to keep track of the distribution of tokens over
the channels. The following concept is defined to measure quantities related to
channels (e.g., the number of tokens present in channels).

Definition 4. (SDF State) A state of an SDF (A, C) is a function ω : C −→ N0

that returns the number of tokens stored in each channel. Each SDF has an initial
state ω0 denoting the number of tokens that are initially stored in the channels.

An actor can only be fired if there are sufficient tokens in all of its input
channels. An actor that satisfies this condition in a particular state is said to be
enabled in this state.

Definition 5. (Enabled actor) An actor ai ∈ A is called enabled in a state
ωj of SDF G = (A,C) iff ωj(c) ≥ Rate(q) for each channel c = (p, q) ∈ InC(ai).

Definition 6. (Actor firing) The firing of an enabled actor ai ∈ A in state ωj
results in the transition from state ωj to state ωj+1 and is denoted by ωj

ai−→ ωj+1.
The relation between states ωj and ωj+1 can be expressed as follow: ωj+1(c) =
ωj(c) − Rate(q) for each c = (p, q) ∈ InC(ai) \ OutC(ai), ωj+1(c) = ωj(c) +
Rate(p) for each c = (p, q) ∈ OutC(ai) \ InC(ai), ωj+1(c) = ωj(c) + Rate(p) −
Rate(q) for each c = (p, q) ∈ OutC(ai) ∩ InC(ai) and ωj+1(c) = ωj(c) for each
c = (p, q) 6∈ OutC(ai) ∪ InC(ai);

Consider again our example graph shown in Figure 2.1. Its initial state ω0 is
equal to (c0, c1, c2, c3) → (1, 2, 1, 0). In this state, actors a1 and a2 are enabled.
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Figure 2.4: The HSDF graph in Figure 2.2 with the back-edges encoding buffer
size constraints.

Firing actor a1 would result in a transition from state ω0 to a state (1, 1, 2, 0). We
use this concept of states and transitions to formalize the execution of an SDF.

Definition 7. (Execution) An execution σ of an SDF graph G = (A,C) is an

infinite alternating sequence of states and transitions ω0
ai−→ ω1

aj−→ · · · starting
from a designated initial state ω0.

Definition 8. (SDF graph Iteration) Assume SDF graph G = (A,C) has
repetition vector γ. An SDF graph iteration is a set of actor firings such that for
each a ∈ A, the set contains γ(a) firings of a.

2.3 Scenario-Aware Dataflow Graphs

Streaming applications apply deterministic transformations on data streams. The
data stream is often composed of consecutive data units. As an example, consider
a video decoder application which processes a video stream; the input stream of
a video decoder is a sequence of video frames. Each frame specifies a data unit.
The operation used in a video decoder may deterministically change depending
on the type of the current frame and/or the frame occurrence order. Hence, an
application may run at different modes and require different resource usage (e.g.,
it may show a variation in required processor cycles, buffer sizes, etc). Using
an SDF graph to describe such a dynamic application can result in an inaccurate
model. Scenario-aware dataflow (SADF) [74] graphs are introduced to model such
dynamic applications; an SADF uses a finite state machine (FSM) to capture
any possible change in the operating mode of an application. Each operating
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mode is called an application scenario of the SADF model. The behavior of the
application when operating in a specific scenario mostly remains the same during
the execution of that scenario; hence, each application scenario can be modeled
using a specific SDF graph. A scenario can correspond to the processing of one or
more data units or modeling of a behavior in the system (i.e., a reconfiguration
operation). Hence each scenario is associated with a property called progress. The
progress of a scenario is set to the number of data units processed by one iteration
of the scenario; when no data unit is processed by an iteration of a scenario, the
progress of the scenario is set to zero. In this thesis, the progress of a scenario
is one whenever no progress value is mentioned for the scenario. The following
definition formally introduces the SADF model.

Definition 9. (scenario-aware dataflow (SADF)) An SADF graph is com-
posed of several SDF graphs and an FSM. The set Φ contains all scenarios required
to describe the SADF. The behavior of the SADF graph in each scenario φi ∈ Φ
is described by an SDF graph SDFi. Such an SDF is also referred to as sce-
nario graph. The progress function Prgs : Φ 7→ N0 assigns a natural number
including zero to each scenario φ ∈ Φ that indicates the number of data units
processed by one iteration of scenario φ. The FSM of the SADF graph is a tu-
ple FSM = (Q,Q0, T, L) where Q is the set of all states in the FSM, the state
Q0 ⊆ Q is the set containing the potential starting states of the FSM, the set
T ⊆ Q2 determines all possible state transitions and the state-labeling function
L : Q 7→ Φ specifies for each FSM state one scenario. This function returns the
scenario required to describe the application when it operates in a specific state.

Figure 2.5 contains an example SADF graph. Two scenarios exist in this
SADF graph. Figure 2.5(a) and Figure 2.5(b) show the SDF graphs describing
scenario φ0 and φ1 respectively. Consider the following timing properties for the
SDF graph of scenario φ0: τ(a0) = 2, τ(a1) = 3 and τ(a2) = 1. Consider τ(a0) = 2
and τ(a1) = 2 as the timing properties for the SDF of the scenario φ1. The FSM
of the SADF is shown in Figure 2.5(c). This FSM has three states represented
by q0, q1 and q2 (Q = {q0, q1, q2}). The set Q0 = {q0} specifies q0 as the starting
state of the FSM. The set T = {(q0, q0), (q0, q1), (q1, q2), (q2, q0)} contains all state
transitions in the FSM of the example SADF. The state-labeling function for the
FSM of the example SADF is defined as follows: L(q0) = φ0, L(q1) = φ1 and
L(q2) = φ1. This FSM implies that the scenario φ1 must be executed exactly
twice whenever it is activated and afterwards the scenario φ0 should be executed
at least once. The progress function for the example SADF specifies Prgs(φ0) = 1
and Prgs(φ1) = 1.

The initial tokens in the SDF of each scenario (scenario graph) capture the
dependencies between subsequent iterations of the same scenario graph (as is also
the case in an SDF) or iterations of different scenario graphs. The relation between
the initial tokens in different scenario graphs is established through the token
labels. For example, two tokens (i.e., t0 and t1) exist across the scenario graphs in
Figure 2.5(a) and Figure 2.5(b). These types of tokens are referred to as persistent
tokens in this thesis. Consider the sequence q0q1q2q0 as an example FSM state
sequence; this sequence, by using the state-labeling function, implies φ0φ1φ1φ0
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(a) SDF0 to describe behavior of scenario φ0. The timing properties are τ(a0) = 2, τ(a1) = 3 and
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(b) SDF1 to describe behavior of scenario φ1. The timing properties are τ(a0) = 2 and τ(a1) = 2.
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(c) FSM of the SADF. The state-labeling function specifies L(q0) = φ0, L(q1) = φ1 and L(q2) = φ1.
The progress function specifies Prgs(φ0) = 1 and Prgs(φ1) = 1.

Figure 2.5: SADF with two scenarios.
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Figure 2.6: The execution related to the scenario sequence φ0φ1φ1φ0 for the SADF
of Figure 2.5.

as a scenario sequence for our example SADF. Figure 2.6 depicts the execution
related to the above scenario sequence; as it is shown, multiple iterations can
overlap and provide a pipelined execution across consecutive scenario executions.

2.4 Dataflow Scheduling

In a multi-processor system, multiple actors may be bound to the same processor.
These actors may be enabled at the same time. In such a situation, a schedule
is needed to determine the order in which these enabled actors are fired on the
processor. The fixed port rates make it possible to statically schedule SDF graphs
with a finite schedule per processor that orders the actor firings for that processor
and which is repeated indefinitely. Such a schedule is called a periodic static-order
schedule (PSOS). Note that in a multi-processor system, a separate static-order
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schedule should be constructed for each processor. Each schedule should only
include actors bound to this specific processor. The following definition is used
to formally specify a PSOS.

Definition 10. (Periodic Static-Order Schedule (PSOS)) A PSOS is a
finite ordered list of (a sub-set of) actors in an SDF graph G = (A,C). A PSOS
is denoted by si = 〈α1α2 . . . αn〉∗ where each αj |1≤j≤n is a sub-schedule that
represents an actor from A and n ∈ N is the length of the schedule si, represented
by n = |si|. The set Ai contains all actors that appear at least once in si (Ai ⊆ A).

A PSOS can be represented in a compact format, called a looped schedule
(LS). The following defines the LS term precisely.

Definition 11. (Looped Schedule (LS)) A looped schedule, si = 〈(α1)β1(α2)β2

· · · (αm)βm〉∗, is defined as a successive execution of α1 repeated β1 times followed
by α2 repeated β2 times and so on, where each αj |j∈N is either an actor firing or
a (nested) looped schedule and βj ∈ N|j∈N.

Definition 12. (Single Appearance Schedule (SAS)) A LS in which each
actor appears only once is called a single appearance schedule (SAS).

Assume that the SDF graph of Figure 2.1 is mapped to a platform with two
processors (P0 and P1). Actor a0 is mapped to the first processor (P0) with the
PSOS s0 = 〈a0〉∗ and actors a1 and a2 are mapped to the second processor (P1)
with the PSOS s1 = 〈a1(a2)2a1(a2)4〉∗. PSOS s0 is a SAS; but, PSOS s1 is not a
SAS.

Definition 13. (PSOS Iteration) Given a PSOS si = 〈α1α2 . . . αn〉∗ that
schedules actors in Ai ⊆ A. A PSOS iteration is a sequence of actor firings
following the actor order specified in si starting from actor α1 and ending with
actor αn with a length equal to |si| and including only actors from Ai.

The actor firing order in an execution σ = ω0
ax−→ ω1

ay−→ · · · can be captured
using a list 〈ax, ay, · · · 〉 where the jth element in this list is the actor which is
fired in the transition from ωj−1 to ωj . The notation orderList(σ,Ai) represents
the mentioned list where actors which do not belong to Ai are omitted. For
example, in the SDF graph of Figure 2.1, consider an execution σ that results in
list 〈a1, a2, a2, a1, a2, a2, a2, a2, a0〉 with A1 = {a1, a2}; then orderList(σ,A1) =
〈a1, a2, a2, a1, a2, a2, a2, a2〉. We say that the corresponding execution of an SDF
graph satisfies a PSOS when the SDF graph is executed according to the PSOS.
We use the following to formalize this term.

Definition 14. (Satisfaction) Let σ be an execution of an SDF graph (A,C)
and si a PSOS for actors Ai ⊆ A. If it exists, let σ′ be the prefix of σ such that
it contains exactly γ(ai) occurrences of actor ai ∈ Ai; σ′ covers σ precisely up to
the point that one PSOS iteration is executed. Execution σ satisfies PSOS si iff
σ′ exists and the ordered list orderList(σ′, Ai) corresponds to the order specified
in si.
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When an execution of a consistent and deadlock-free SDF graph satisfies
the specified PSOSs, the channels of the SDF graph need bounded memories
(according to Theorem 1 from [30]). The number of actor appearances of a given
actor in the PSOS is a fraction or multiple of its repetition vector entry. Formally,
each actor ai in the PSOS should appear r · γ(ai) times in the PSOS (with r = u

v
where u, v ∈ N) and the value r is identical for all actors in the PSOS [34]. This
follows from the SDF property that firing each actor as often as indicated in the
repetition vector results in a token distribution that is equal to the initial token
distribution. In this thesis, the term normalized PSOS is used to refer to a PSOS
with r equal to 1.

Definition 15. (Normalized PSOS) A PSOS si is called normalized iff each
actor aj ∈ Ai appears γ(aj) times in one iteration of the PSOS si.

2.5 Max-Plus Algebra for Dataflow Graphs

This subsection introduces Max-Plus algebra in the context of dataflow graphs.
Section 2.5.1 explains the basics of Max-Plus algebra. In Sections 2.5.2 and 2.5.3,
we discus the usage of Max-Plus algebra in throughput calculation of SDF and
SADF models respectively.

2.5.1 Characteristic Matrix

One iteration of an SDF graph resets the token distribution to their initial places.
These tokens may be reproduced at different points in time. A token timestamp
vector is defined to specify the production time of tokens. The notation θk (k ∈
N) is used to accommodate the production time of the tokens needed in the
kth iteration of the graph. Consider θ0 as the initial token timestamp vector of
the SDF graph. Assume that all entries in θ0 are set to zero. For each SDF
graph, a characteristic Max-Plus matrix M |n×n (n = |θ0|) exists that can be
used to calculate timestamp vectors [2]. An entry M [i, j] ∈ M corresponds to
the minimum time distance from the jth token in the previous iteration to the
ith token in the current iteration. The characteristic Max-Plus matrix can be
determined using the technique presented in [29]. Consider τ(a0) = 2, τ(a1) = 4
and τ(a2) = 3 time units as execution times for the three actors in our example
SDF (see Figure 2.1). The characteristic matrix for our example SDF is:

M =


t0 t1 t2 t3

t0 2 9 9 5
t1 2 9 9 5
t2 2 9 9 5
t3 −∞ 4 −∞ −∞


As an example, the matrix M specifies that the minimum time distance from

token t3 in the kth iteration to token t2 in the (k + 1)th iteration is 5 time units
via a2−a0 (5 time units is the result of τ(a2) + τ(a0)). When the ith token is not
dependent on the jth token, then M [i, j] is set to −∞.
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Figure 2.7: Execution of the example SDF graph.

The evolution of the token timestamp vector can be determined by using
Max-Plus matrix multiplication as follows:

θk+1 = M · θk (2.1)

Similar to conventional algebra, Max-Plus algebra operates on real numbers
(i.e., R). However, the role of addition and multiplication operators in Max-Plus
algebra are different from their traditional usage in conventional algebra. In Max-
Plus algebra, addition plays the role of a maximum operator (denoted by ⊕) and
multiplication plays the role of an addition operator (denoted by ⊗). The next
example shows how the timestamp vector θ1 is computed using Equation 2.1:

θ1 = M · θ0 =


2 9 9 5
2 9 9 5
2 9 9 5
−∞ 4 −∞ −∞




0
0
0
0



=


(2⊗ 0)⊕ (9⊗ 0)⊕ (9⊗ 0)⊕ (5⊗ 0)
(2⊗ 0)⊕ (9⊗ 0)⊕ (9⊗ 0)⊕ (5⊗ 0)
(2⊗ 0)⊕ (9⊗ 0)⊕ (9⊗ 0)⊕ (5⊗ 0)

(−∞⊗ 0)⊕ (4⊗ 0)⊕ (−∞⊗ 0)⊕ (−∞⊗ 0)



=


max{2 + 0, 9 + 0, 9 + 0, 5 + 0}
max{2 + 0, 9 + 0, 9 + 0, 5 + 0}
max{2 + 0, 9 + 0, 9 + 0, 5 + 0}

max{−∞+ 0, 4 + 0,−∞+ 0,−∞+ 0}

 =


9
9
9
4


Any timestamp vector θk (k ∈ N) can be determined by iteratively perform-

ing the Max-Plus multiplication of Equation 2.1. Figure 2.7 shows the execution
of the example SDF of Figure 2.1 for two iterations; actor firings related to the
first iteration are shown with light gray color and actor firings related to the sec-
ond iteration are shown with dark gray color. From Figure 2.7, the evolution of
the token timestamp vector can also be obtained (see Figure 2.8).
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Figure 2.8: The evolution of the timestamp vector for the example SDF graph.

2.5.2 Max-Plus Algebra for SDF Throughput Analysis

The technique presented in [32] explains how the throughput of an SDF graph
can be determined using the Max-Plus characteristic matrix of the graph; to
calculate throughput, a Max-Plus automaton graph (MPAG) is built using the
characteristic Max-Plus matrix. The corresponding MPAG for the example SDF
is shown in Figure 2.9. In an MPAG, a node is created for each initial token in
the SDF and if the value M [i, j] of the characteristic matrix is not equal to −∞,
an edge with weight M [i, j] is added from the node of the jth token to the node
of the ith token. The −∞ value for an element M [i, j] means that there is no
dependency from the jth token to the ith token. A cycle in an SDF graph which is
limiting the throughput is called a critical cycle of the SDF graph. A critical cycle
of the SDF graph can be obtained by applying a maximum cycle ratio (MCR)
analysis [87] on the MPAG. We use the YTO algorithm [87] to perform MCR
analysis. The input of the YTO algorithm is a directed graph; each edge of this
graph associated with two values called weight and delay. The MCR analysis
finds a cycle in the directed graph which maximizes the sum of cycle edge weights
over the sum of cycle edge delays; this value corresponds to the inverse of the
throughput. The MPAG can be used directly as an input graph to the YTO
algorithm. The cost assigned to each edge of the MPAG graph is considered as
weight of that edge in the YTO algorithm; the delay of each edge in the input
graph of the YTO algorithm is assumed to be 1 because each edge corresponds
to one iteration of the SDF. There are 3 cycles in the MPAG graph which are
equally critical: the self-edge on node t1, the self-edge on node t2 and the cycle
t1 − t2. Any of these cycles determines the throughput which is equal to 1/9
iterations/time unit in our example SDF.

2.5.3 Max-Plus Algebra for SADF Throughput Analysis

Throughput of an SADF can be calculated using the Max-Plus algebra introduced
in Section 2.5.1. As for an SDF, characteristic matrices can be determined for
each scenario graph. The corresponding matrices for scenarios φ0 and φ1 of the
SADF graph shown in Figure 2.5 are as follows:
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Figure 2.9: MPAG of the example SDF.

Mφ0 =

(
4 −∞
8 4

)
Mφ1 =

(
6 −∞
8 4

)
Each characteristic matrix can be translated to an MPAG (see Section 2.5.1).

Reference [32] explains how to combine the MPAGs of all scenarios of an SADF to
a single MPAG. Figure 2.10 shows the MPAG for our example SADF. In short, a
node is added to the MPAG for each token in the scenario graph of an FSM state
(e.g., node q0/t0 for token t0 in the scenario graph of state q0 in Figure 2.10). The
notation ML(qi) denotes the characteristic matrix of the corresponding scenario
of the FSM state qi (i.e., scenario L(qi)). If ML(qi)[y, x] is not equal to −∞ and
there is a state transition from the state qj in the FSM to the state qi in the FSM,
an edge with weight ML(qi)[y, x] is added from node qj/tx to node qi/ty in the
MPAG. Using MCR analysis on this MPAG, the critical timing cycle (or cycles)
of the SADF can be determined. The constructed MPAG graph can be used as
an input graph to the MCR (YTO) algorithm; the cost assigned to each edge
of the MPAG graph is considered as weight of that edge in the YTO algorithm;
the progress value assigned to the source scenario of each edge in the MPAG is
used as the delay value of that edge in the YTO algrithm. The delay values
in the case of SDF are assumed to be 1 representing the processing of one data
unit in one iteration. However, in the case of a SADF graph, the delay values
can get 0 progress representing the processing of no data unit in one scenario
iteration (e.g., a scenario that models a reconfiguration) or a higher progress
value representing the processing of multiple data units in one scenario iteration.
In our example, two critical cycles are found; the self-edges on the nodes q1/t0
and q2/t0 in Figure 2.10 with the length of 6 are identified as critical cycles in
our example SADF (MCR = 6). Any of these cycles determines the throughput
of the SADF, which for our example is equal to 1/6 iterations/time unit. Each of
these cycles corresponds to 3 times a firing of actor a0 in scenario φ1.
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Figure 2.10: Max-Plus automaton graph of the example SADF.

2.6 Model Transformation

The number of nodes in an MPAG is equal to the sum of the number of initial
tokens in the scenario graphs of all FSM states of the SADF. Initial tokens are
often used to model buffer sizes [68] or schedules in dataflow graphs (see Chapter
4). Consider as an example a common method to model buffer sizes in the SDF
as sketched in Figure 2.11(a). The dashed channel in Figure 2.11(a) models a
limit on the buffer size of channel cl (i.e., the 7 tokens on cm limit the number
of tokens that can be present simultaneously in cl to 7). Note that multiple
tokens on a channel are represented by placing a number next to a single solid
dot instead of placing multiple solid dots; the number next to the single solid
dot indicates the number of tokens on the channel. Dataflow models that contain
implementation aspects such as buffer sizes may therefore contain a considerable
amount of initial tokens. As a consequence, the MPAG may become large which
in turn may lead to a long run-time for a throughput analysis technique. In this
subsection, we introduce two types of model transformations to reduce the number
of initial tokens in the dataflow graph without changing the timing behavior of the
actors. Two token reduction techniques for SDF graphs are presented in Section
2.6.1. Section 2.6.2 explains under which assumptions and how the proposed
token reduction techniques can be applied to SADF graphs. Our token reduction
technique has been published in [23].

2.6.1 Token reduction for SDF Graphs

Consider again the SDF shown in Figure 2.11(a). After applying our model
transformation (explained below), the graph is transformed to the one shown in
Figure 2.11(b) reducing the number of initial tokens from 7 to 3. In Figure 2.11(a),
3 tokens are consumed from cm in each firing of ai. So, initial tokens of a channel
can be grouped based on the consumer actor’s rate (e.g., rate 3). We call this
value grouping factor, represented with gf . Our model transformation replaces
any channel cm from some actor aj with production rate v to some actor ai
with consumption rate w and with n initial tokens with the following constructs:
(1) an actor am with zero execution time; (2) a channel cmj with (n mod gf)
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Figure 2.11: Modeling buffer with size 7 for channel cl.

initial tokens from aj to am with production rate v and consumption rate gf , (3)
a channel cmi with bn/gfc initial tokens from am to ai with production 1 and
consumption rate w/gf . Here, w is consider as the grouping factor (i.e., gf).

The proposed graph transformation does not affect the timing behavior of the
original actors in the graph. In the original graph, actor ai can fire once whenever
at least w tokens exist in channel cm (w = 3 in our example). The n initial tokens
that are present on channel cm all have a corresponding entry in the timestamp
vector θk, i.e., θk(t1) · · · θk(tn) denote the production times of these tokens in the
kth iteration. Firing actor ai consumes w tokens at once from channel cmi. Among
this group of w tokens, the token which has the largest timestamp influences the
start time of the actor firing. In other words, max{θk(t1) · · · θk(tw)} influences
the first firing of ai of the (k + 1)th iteration of the graph. Understanding this
principle enables us to group the n initial tokens as much as possible. We can
form bn/wc groups of tokens and the remaining (i.e., n mod w) tokens should
preserve their individual timestamps.

Grouping initial tokens, on the producer actor side of a channel is also possi-
ble. Figure 2.11(c) shows the resulting graph after applying initial tokens grouping
to the producer side of the channel cm. In this case, the production rate of actor
aj on channel cm (i.e., rate 2) specifies the grouping factor.

2.6.2 Token reduction for SADF Graphs

The introduced token reduction techniques are also applicable to channels of an
SADF where the initial tokens of channels only models intra-scenario dependen-
cies. A token in each of the scenario graphs added to model an inter-scenario
dependency uses the same token labeling in all scenario graphs in the SADF.
When tokens on channels model inter-scenario dependencies, the following con-
siderations are required. The token reduction techniques are also applicable to
SADF channels that contain inter-scenario token labelings when the rates on the
source and destination side of the channels are identical across all scenarios. In



26 Chapter 2: Dataflow Preliminaries

case of different rates for a channel on its destination side for some scenarios,
the token grouping on the consumer side cannot preserve the token timestamp
information; so, this token reduction cannot be applied. In case of different rates
for a channel on its source side for some scenarios, the token grouping on the
producer side gets limited to the minimum amount of the tokens produced into
the channel in one iteration across all scenario iterations. In this situation, the
grouping factor is determined based on the greatest common divisor (GCD) of
the channel’s source side rate in all scenarios. Consider an actor aj which in
each of its firings produces v1, · · · , vs tokens in channel cm in scenarios φ1, · · · , φs
respectively. The grouping factor is specified with GCD(v1, · · · , vs); in this way
timestamp information of tokens can be preserved and the transformation does
not affect the timing behavior of the original actors of the SADF.

As an example, consider an SADF graph with two scenario graphs depicted in
Figure 2.12(a) and Figure 2.12(b). Applying our token reduction technique to this
SADF results in the scenario graphs shown in Figure 2.12(c) and Figure 2.12(d).
The rates on the destination side of the channel c0 are different in the scenario
graphs SDF1 and SDF2; hence, only token grouping on the producer actor side
of c0 is possible. This transformation replaces c0 in the original graphs with an
actor a4 and two channels c00 and c01 (see Figure 2.12(c) and Figure 2.12(d)).
Similar token grouping is performed for c2. Note that our token grouping is
not applicable to c3 because rates on both source and destination rates of this
channel are different across the scenario graphs SDF1 and SDF2. In total, our
model transformation reduces the number of initial tokens from 25 to 14.

2.6.3 Impact of initial token reduction

We evaluate our token reduction technique on benchmark SDF graphs with buffer
sizes identical to the buffers sizes used in the experiments of [33]. The token
reduction techniques (i.e., consumer side grouping and producer side grouping
introduced in Section 2.6) are applied to the graphs. The second column of Table
2.1 shows the number of initial tokens in the original SDF graphs. Using the
consumer side tokens grouping reduces the initial tokens to the amount specified
in the third column. Applying the producer side initial token grouping could
further reduce the initial tokens (see the fourth column).

Using the proposed token reduction techniques makes the MPAG-based throu-
ghput analysis faster for the buffer-aware graphs; for example in the case of
the H.263 decoder (without any token reduction), the throughput analysis lasts
7010 ms. The same analysis for the graph on which consumer side token reduc-
tion is applied requires 1910 ms. The analysis time further reduces to 20 ms for
the graph on which both token reductions are applied. Table 2.2 contains the
throughput analysis times for the benchmark graphs and the transformed graphs.
The results confirm that our token reduction techniques are beneficial in order to
reduce throughput analysis times. We should also mention that token reductions
are performed in a negligible amount of time (< 1 ms) for all benchmark graphs.
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Figure 2.12: Token reduction applied to an SADF with two scenario graphs SDG1

and SDG2.

Table 2.1: Number of initial tokens.
Consum. Cons.+Prod.

Benchmark Original Optimization Optimization
H.263 decoder [72] 1193 600 7
H.263 encoder [62] 304 206 10
Modem [9] 54 44 35
MP3 decoder [72] 30 28 28
MP3 playback [81] 1983 106 106
Samplerate conv. [9] 38 14 14
Satellite receiver [64] 1564 791 48
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Table 2.2: Throughput analysis times (in milliseconds).
Consum. Cons.+Prod.

Benchmark Original Optimization Optimization
H.263 decoder [72] 7010 1910 20
H.263 encoder [62] 390 160 10
Modem [9] 10 <1 <1
MP3 decoder [72] <1 <1 <1
MP3 playback [81] 35050 4270 4270
Samplerate conv. [9] <1 <1 <1
Satellite receiver [64] 12860 5200 230

2.7 Summary

In this chapter, we introduce the traditional dataflow model, i.e., the SDF model
and a more recent dataflow model for dynamic applications, i.e., the SADF model.
The limitations of SDF graphs in modeling dynamic streaming applications were
highlighted; an SADF graph, which is a suitable model to capture dynamic behav-
ior of modern streaming applications, was presented with some formal definitions
and explanatory examples. Max-Plus algebra, as a strong mathematical tool
to analyze dataflow graphs, is also discussed. Performance of an application is
quantifiable by measuring the throughput of the model of the application. The
available throughput calculation techniques - based on Max-Plus algebra - for
dataflow graphs were explained. A model transformation technique is also intro-
duced to provide dataflow graphs with less initial tokens. Reducing the number of
initial tokens has a positive effect on the analysis speed, for analysis of properties
such as throughput and buffer sizes.
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Dataflow Scheduling

The ever increasing performance gap between processors and memories is one
of the biggest performance bottlenecks for computer systems. In this chapter,
we propose a technique that schedules an application, modeled with an SADF
graph, on a multi-processor system-on-chip (MPSoC) that contains a limited on-
chip memory. The proposed scheduling technique explores the trade-off between
executing actors in a code-driven (i.e., executing parallel actors) or data-driven
(i.e., executing pipelined actors) manner to either minimize the run-time (latency)
or maximize the throughput of the application. Our static scheduler identifies
those actor sequences in which it is useful to use a code-driven execution and
those actor sequences that benefit from a data-driven execution. We extend the
proposed technique to consider prefetching when choosing a suitable order. The
technique is implemented using an integer linear programming framework. We
have published an early version of this work in [20]. Our initial work in [20] was
only optimizing the latency and it was only applicable to cycle-free task graphs;
in this chapter, we extend our scheduling technique to deal with more general
models such as HSDF, SDF and SADF. Moreover, schedules are constructed to
also obtain better throughput for the application.

3.1 Overview

MPSoCs are used to fulfill the increasing demand for computational performance
of emerging applications. MPSoCs offer a promising solution to the ever-increasing
digital electronics market desire for more sophisticated and integrated applica-
tions. Nowadays, MPSoCs are used in different electronic devices such as con-
sumer appliances, medical and navigation systems, industrial equipment, etc.
Most of these devices run applications that perform complex processing oper-
ations on streams of input data. The performance of these devices depends on
the performance of the processing elements as well as on the performance of the
memory system. Processor performance has been improving by 60% per year [41].
However, memory access times have improved by less than 10% per year [41]. The
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resulting performance gap between processor and memories encouraged designers
to put more effort into this crucial issue. On-chip memories have been introduced
to alleviate this concern. These memories limit the number of off-chip (remote)
memory accesses. On-chip (local) memory can be used as caches or as scratch-
pad memories (SPMs). SPMs have become an efficient replacement for caches
in novel embedded systems, thanks to their lower energy/area cost and better
predictability [4]. Due to limitations in the size of local memories (i.e., SPMs), an
application (code and data) can only be partially loaded to the SPM. Therefore,
applications must be split into several smaller actors (tasks). Instead of loading a
whole application to local memory, which requires a large memory space, actors
are loaded consecutively one-by-one based on their scheduling order. After the
completion of one actor, its code can be discarded from the local memory and its
data can be written back to the remote memory such that free space is created
for another actor.

Since the focus of this thesis is on dynamic streaming applications, we explain
how a dynamic application described by an SADF graph can be scheduled on an
MPSoC. The performance of iterative streaming applications is often measured
in terms of number of processed data units in a specific amount of time, called
throughput. Each iteration of a streaming application processes a data unit. For
example, in case of a video decoder, one iteration of a video decoder handles one
video frame. The interval between the starting of two consecutive iterations is
called the iteration interval. The iteration interval has an inverse relation with
the throughput of the application. To obtain better throughput, it is desirable to
have schedules with shorter iteration interval. Our technique aims to construct
schedules with a small iteration interval (or high throughput). Moreover, the
objective of our scheduling technique can be adapted to minimize the time needed
to execute the application for one iteration, called latency. Latency specifies the
response time of the application to a given input. To achieve any of the mentioned
objectives, our technique determines an actor execution order that minimizes the
total access time on the local and remote memories. It does this by considering
the ratio between the code size of the actors and the amount of data that is needed
by the actors. Data-intensive actors [28] are scheduled in a data-driven manner
and code-intensive actors [28] are scheduled in a code-driven manner.

We implement the proposed scheduling technique using an integer linear pro-
gramming (ILP) framework. The technique generates a compact ILP formulation.
We apply our technique to an application from the multimedia domain (an MP3
decoder) and on a synthetic graph from a closely related paper. The experimental
results show that our technique reduces the run-time of the MP3 decoder and the
synthetic graph by 7% and 29% respectively when compared to a commonly used
technique.

Nowadays, MPSoCs are equipped with direct memory access (DMA) con-
trollers. DMA was devised to liberate processors from transferring data between
different memories in a memory hierarchy. Using a DMA unit, the transfer of
code or data to/from a local on-chip memory and the execution of an actor on a
processor can be overlapped. At the end of this chapter, we show how our tech-
nique can be extended to take prefetching into account during the scheduling.
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In contrast to scheduling techniques that consider prefetching opportunities in a
post-processing step after construction of the schedule, our technique is able to
find schedules that make better use of prefetching. The experimental results show
that our extended technique reduces the run-time of the MP3 decoder and the
synthetic graph by 8% and 32% respectively when compared to a commonly used
technique that considers prefetching in a post-processing step.

This chapter is organized as follows. Section 3.2 discusses related work on
scheduling in MPSoCs. Section 3.3 explains how we deal with dynamic appli-
cations described by SADF graphs. Section 3.4 presents a motivating example.
Section 3.5 describes our target MPSoC platform. Section 3.6 specifies the ap-
plication properties needed in our scheduling technique. Section 3.7 describes
the proposed scheduling technique. Section 3.8 extends the proposed technique
with the notion of prefetching. Section 3.9 contains an experimental evaluation.
Conclusions are drawn in Section 3.10.

3.2 Related Work

There is a rich literature on mapping applications onto MPSoCs [43, 50, 69].
Mostly, this work proposes mapping algorithms followed by a scheduling tech-
nique to meet design constraints such as performance, energy consumption, com-
munication cost, or memory usage. In this thesis, we rely on existing mapping
methods like the one proposed in [69] and we focus on the scheduling problem.
In this chapter, we explore two groups of related work. The first group considers
the trade-off between code and data in a pipelined parallel system during actor
(task) scheduling. The second group considers code and data prefetching while
scheduling the actors (tasks).

As mentioned before, our scheduling technique considers the trade-off be-
tween the code-driven and data-driven execution of parallel applications that need
to be scheduled on an MPSoC. A similar problem is studied in [84] where the au-
thors propose an evolutionary algorithm to find an optimal schedule for pipelined
parallel task graphs. The algorithm does not consider the effect of memory opera-
tions. Memory access times have a large impact on the performance of streaming
applications. For this reason, and in contrast to [84], we consider memory access
times in our scheduling technique. In [52], a technique is presented to generate a
data-parallel schedule from applications modeled as SDF graphs. Similar to [84],
the authors do not consider the overhead of moving code and data between on-
chip and off-chip memory. Furthermore, they implicitly assume the availability
of unlimited on-chip memory. Our scheduling technique alleviates both of these
issues.

In [16], a prefetching and partitioning technique is presented to minimize
the execution time of nested loops by iteratively re-timing the instructions of
the loops. The approach maps the instructions of the nested loops to multiple
processing units with the objective of increasing parallelism. It only considers the
effect of partitioning on the prefetching efficiency. It does not consider the effect
of scheduling on the prefetching efficiency in a single partition. When compared
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to [16], one aim of our work is finding suitable schedules in order to lower the
latency or boost the throughput of applications by maximizing the amount of the
possible code/data prefetching in MPSoCs.

Much research has been done on optimizing SPM behavior. In [88], a heuristic
is presented to partition variables of an application such that they can be mapped
to the on-chip memories of an MPSoC; the heuristic performs task scheduling
while considering the effect of scheduling on the variable partitioning. The heuris-
tic assumes that the time needed to access the off-chip memory can be hidden
completely through prefetching. In our work, we consider the situation in which
off-chip accesses are not negligible. The authors of [42] investigate the use of
prefetching for SPM memories. Based on profiling information, they add software
prefetching commands inside the application source code to prefetch instructions.
Our work is different from this type of work because we use prefetching at an ac-
tor level granularity to prefetch both code (instructions) and data. Furthermore,
our technique results in a predictable solution because it is computed based on
the dependencies extracted from the dataflow models of the applications and not
based on an approach like profiling that may cause miss-predictions during the
prefetching phase.

The most relevant work to our scheduling techniques is [27] which proposes an
ILP-based solution to map an application modeled with a task graph onto a Cell
processor. The authors assume that the application code fits in the local memory
and they solve the problem of mapping data objects to memories. Scheduling is
left to run-time and no design-time analysis is suggested in [27]. Our technique
provides a design-time approach for the scheduling problem; it finds an efficient
actor order to minimize the run-time of applications without incurring any run-
time overhead. The authors of [27] compare their technique with a few well-known
heuristics. We evaluate our techniques using the same heuristics.

The most recent related work was published in [17]. It presents a scheduling
technique for SDF graphs based on evolutionary algorithms; the technique of
[17] takes prefetching into account to minimize the latency of the application. To
attain a compact ILP formulation, our scheduler assumes that the memory object
of only one actor can be prefetched during the execution of the running actor; the
scheduler of [17] has relaxed this restriction. However, in contrast to [17] which
focuses on latency, the objective of the scheduler presented in this chapter can be
set in a way to either minimize the latency or minimize the iteration interval of
the application.

3.3 Scheduling Strategy

An SADF graph employs an SDF graph to capture the behavior of an applica-
tion operating in a specific scenario. The application may operate in different
scenarios. The place where a scenario switch happens is easily distinguishable in
an SADF execution. Hence, in principle, a schedule can be constructed for each
scenario graph (which is an SDF graph) of the SADF regardless of the scenario
occurrence order. However, considering the scenario occurrence order in schedul-
ing each scenario graph may reduce the remote memory access. For example, an
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actor may fire in different scenarios; the code memory object of this actor may be
required to be loaded to the on-chip memory in two consecutive scenarios; hence,
an effective scheduling strategy will try to preserve this memory object in the
on-chip memory from the first scenario to the second scenario. In this way, there
is no need to reload the same memory object in the second scenario. However,
the exact scenario occurrence order is only known in run-time. In this chapter, we
address the scheduling problem for each scenario independently, assuming that
a scenario repeats indefinitely; this assumption implies that if the current active
scenario repeats, the generated schedules will also consider across scenario op-
timizations. However, in case of different consecutive scenarios, the generated
schedules do not consider across scenario interactions.

The fixed port rates of an SDF graph make it possible to statically schedule
the SDF graph with a finite schedule per processor. Such a schedule orders the
actor firings on the underlying processor. This type of schedules, which are called
periodic static-order schedules (PSOSs), can be repeated indefinitely (see Chapter
2). A separate PSOS should be constructed for each processor. Each PSOS only
includes actors bound to this specific processor. In the following sections, we
introduce a technique to find PSOSs for an SDF graph. Our technique does
not only specify a firing order for actors mapped to a specific processor; we also
determine the ordering required for memory transactions. Since each actor in an
SDF graph may fire several times in one iteration, we use the equivalent HSDF
graph of the SDF graph in our scheduling technique. Conversion of an SDF graph
to an equivalent HSDF graph is a straight-forward procedure; but, this may cause
exponential growth in the graph size. However, this conversion is inevitable when
we are exploring a suitable order for all firings of an actor. The generated schedules
can be encoded into the S(A)DF model using the technique proposed in Chapter
4. Any subsequent analysis or optimization in a model-driven design flow can then
be performed at the S(A)DF level after finding and encoding the right schedules.

In the rest of this chapter, we initially find the fully static schedules which
determine absolute start times of actors and memory operations. Then, we derive
PSOSs from the fully static schedules.

3.4 Motivation and Preliminaries

We assume that each processor has its own local memory to store code and data.
An actor can start its execution on a processor if its code and input data are
available in the local memory and when there is enough space in the local memory
to store all output produced by the actor. We also assume that a DMA unit is
available for each processor.

We show the effect of different scheduling strategies and prefetch-aware
scheduling on the performance of an application when running on an MPSoC
with a simple example. Figure 3.1 shows a sample HSDF graph of an artificial
application. The number close to an actor is the code size of the actor and the
number close to a channel is the size of the data that needs to be communicated
between the actors. The number inside each actor represents the function of the
actor. The actors with the same function number have the same code. For sim-
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plicity, we assume in this example that all actors have the same execution time.
Assume that actors a0-a7 are mapped to one processing element and the remain-
ing actors are mapped to another processing element. For the sake of brevity, we
only discuss the scheduling of actors a0-a7. Consider the situation in which the
processing element, which has to execute these actors, has 40KB of local code
memory and 40KB of local data memory. Here, we assume that the remote mem-
ory access times have a linear relation with the amount of memory objects to
be transferred (i.e., if transferring 100 bytes takes x time units, then transferring
1000 bytes takes 10x time units).

Figure 3.2 shows four alternative schedules for (one iteration of) our example
graph. Schedule A is a code-driven schedule with prefetching, B is a data-driven
schedule with prefetching, C is a combined code and data driven (hybrid) schedule
without prefetching, and D is a hybrid prefetch-aware schedule. The blue bars in
Figure 3.2 indicate when a processing element (pe) is busy executing an actor. The
red bars show the activation of DMA. The green bars indicate that the processing
element and DMA are active simultaneously. Schedules C and D are constructed
using the scheduling techniques proposed in this chapter. In this example, the
goal of our scheduling techniques is to find schedules that minimize the run-
time of applications (i.e., that minimize the execution time of a single HSDF
iteration). However, this objective can be modified to obtain a lower iteration
interval. Generally, our scheduling strategy explores alternative schedules that
use a combination of code and data-driven scheduling while taking the impact of
prefetching into account.

In Figure 3.1, the horizontal arrow shows the direction of consecutive pipelined
actors and the vertical arrow show the direction of parallel actors that may use the
same code (i.e., execute the same function). The actors in our example graph can
be executed in a code-driven or data-driven manner. In a code-driven schedule,
the code needed for subsequent actors will be reused as much as possible. Hence,
the code needs to be loaded only once from remote memory. In a data-driven
schedule, the data needed for subsequent actors can remain in the local on-chip
memory. In other words, scheduling actors in a data-driven manner avoids mov-
ing data between the local and remote memory. Schedule C in Figure 3.2 uses
a combination of both code- and data-driven scheduling. Actors a2 and a5 are
scheduled in a code-driven manner while actors a0, a1, a3, a4, a6, and a7 are
scheduled in a data-driven manner. In general, a code-driven strategy gives bet-
ter performance for actors that have a large code size and a data-driven strategy
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Figure 3.1: An example HSDF graph.
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gives better performance for actors that operate on large data objects.
Schedule D is an extension of schedule C that is optimized for prefetching. It

can be seen in Figure 3.2 that schedule D is able to keep the processing element
and DMA active simultaneously for a longer period of time compared to schedules
A and B (i.e., the total size of the green bars in schedule D is larger than the total
size of the green bars in schedules A and B). This example shows that the order
in which actors are scheduled may have a noticeable impact on the amount of
code and data that can be prefetched. This, in turn, has an impact on the overall
completion time of the schedule or the resulting iteration interval. Schedule D
also provides the smallest iteration interval among all schedules in Figure 3.2.

3.5 MPSoC Platform Template

Figure 3.3 shows the (abstract) MPSoC platform template that is targeted in
this work. The platform template consists of a set of processing tiles (PTs) that
are interconnected through a shared bus or network-on-chip. Let |PT | denotes
the number of processing tiles in the platform. Each processing tile contains a
processing element (pe), a code memory (CM), a data memory (DM), and a direct
memory access (DMA) unit. The DMA unit can work independently from the
processing element and it has direct memory access on the CM and DM as well as
the remote memory. A real world example of this type of architecture is the Cell
processor [46]. Each processing tile is specified by a pair pti = (mc,md) where
mc specifies the capacity of the code memory (in bytes) and md specifies the
capacity of the data memory (in bytes). We use a constant H to model the per-
word read/write latency of the remote memory in terms of clock cycles. Without
loss of generality, we assume that the local memory can be accessed within one
clock cycle. This is similar to the assumption made in [15]. We also assume that
the DMA units of all tiles can work in parallel with each other without causing
interference on the interconnect and remote memory. Partitioning remote memory
into multiple banks is a common solution [24] to realize this assumption.
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Figure 3.3: Target MPSoC platform template.
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3.6 Application Specification and Modelling

An application scenario of an SADF graph described by an SDF graph can be
converted to an equivalent HSDF graph [53, 67] denoted by G = (A,C) where
A is the set of actors and C is the set of channels (according to Definition 2.2).
We assume that the mapping of actors to processing tiles is given. The following
functions are used to specify properties of an actor: η, κ, τ and ψ. The notation
η(ai) specifies the processing tile to which the actor ai is mapped, κ(ai) is the
code size of the actor ai (in bytes), τ(ai) is the execution time of the actor ai (in
cycles), and ψ(ai) is the function identifier of the actor ai. Actors that have the
same function identifier require the same code to be executed. When such actors
are executed immediately after each other on the same processing element, then
we only need to load the code of these actors prior to the execution of the first
actor. The following functions are used to specify properties of a channel: ε and
ϑ. The notation ε(ci) indicates the communication delay in cycles and is equal to
the number of required processor clock cycles to transfer a data object from one
local memory to another local memory. The notation ϑ(ci) specifies the size of a
token (in bytes) getting transferred via ci.

Our technique initially adds some extra actors and channels to the input
HSDF graph. These elements are added to include the mapping information to the
given graph. Initially, we add two dummy actors for each processing element in the
platform. Consider afirst,i and alast,i as the dummy actors added for processing
element pei. Three sets of dependencies are created for each processing element
in the platform as follows: (1) a dependency is created by placing a channel from
the dummy actor afirst,i to each actor mapped to pei; (2) a dependency is created
by placing a channel from each actor mapped to pei to the dummy actor alast,i;
(3) a channel with one initial token is placed from alast,i to afirst,i. The dummy
actor afirst,i is the first actor able to fire on the processing element pei and the
dummy actor alast,i is the last actor to fire on the same processing element. The
added initial token for processing element pei will reset to its initial place after all
actors mapped to pei have completed their firing. The time between consumption
and production of this initial token represents the duration of one iteration on
processing element pei. Figure 3.4 depicts the graph shown in Figure 3.1 after
adding all dummy elements (shown with dotted lines). Actors afirst,1 and alast,1
are added for processing element pe1 and actors afirst,2 and alast,2 are added for
processing element pe2. The dummy actors have an execution time and code size
zero. A dummy actor added for a processing element is assumed to be mapped
on that processing element. The dummy channels have a size and delay of zero.

3.7 Hybrid Scheduling

In this section, we provide an integer linear programming (ILP) formulation to
solve the scheduling problem. The proposed scheduling technique explores the
trade-off between executing actors from the graph in a code or data-driven man-
ner. The scheduler identifies actors with a large code size and consecutive actors
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Figure 3.4: The HSDF graph of Figure 3.1 amended with mapping information.

with a large communication data size. The scheduler chooses a proper scheduling
order for all actors in the graph to optimize the desired objective. The objective
can be set either to minimize the latency or to minimize the iteration interval
(inverse of the throughput) of the application. We call the proposed technique
Hybrid ILP (HybILP). All necessary elements to form the ILP formulation are
explained in the following subsections.

3.7.1 ILP Variables

We consider two groups of ILP variables in our formulation. The first set (denoted
by χ) models the start times of the actors in the graph. These start times also
form the final solution of the scheduling problem. The second set (denoted by
π) captures the ordering of the actors that are running on the same processing
element.

χi start time of the actor ai

πij =

{
1 if actor aj scheduled immediately after actor ai
0 otherwise

Two other variables are also considered in our ILP formulation: II represents
the iteration interval of the application and LAT represents the latency of the
application. The variable LAT is an auxiliary variable in our ILP formulation
which has the following property:

∀1 ≤ i ≤ |PT | → χlast,i ≤ LAT (3.1)



3.7: Hybrid Scheduling 39

Based on the set of π variables (described above), we define a notation to
model the initialization time (IT ) of an actor which is the time needed to complete
all required operations before the actor can be executed. Figure 3.5 shows a simple
graph with four actors. Assume that actor aj will be executed immediately after
actor ai on the same processing element. The following operations are necessary
before the execution of aj :

• WDij : Write the necessary output data of the actors executed before actor
aj to the remote memory (O1 and O2 in Figure 3.5).

• RDij : Read the necessary input data of actor aj from the remote memory
(O3 and O4 in Figure 3.5).

• RCij : Read the necessary code of actor aj from the remote memory (O5 in
Figure 3.5).

In some situations, it is not necessary to perform all these initialization op-
erations. Analysis of the dependencies between actors reveals when certain oper-
ations can be skipped:

• It is unnecessary to read/write the intermediate data between consecutive
actors from/to the remote memory, when the intermediate data can be
used immediately by the next scheduled actor (i.e., O2 and O3 in Figure
3.5).

• It is unnecessary to load the code of an actor from the remote memory if its
function is the same as the previously executed actor since the code of the
actor already exists in the local memory (O5 in Figure 3.5 can be skipped
if ai and aj execute the same function).

Assume that actors ai and aj in the example execute the same function. The
initialization time of actor aj , i.e., ITj , is then equal to:

ITj = (Time of O1) + (Time of O4) (3.2)

We define a term denoted by distance(ai, aj) that expresses the number of
actors - mapped to the same processing element as ai and aj - that exist in a simple
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Figure 3.5: Initialization steps.
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path from ai to aj . In case of multiple paths from ai to aj , the path with the
highest value represents the distance. As an example, consider the HSDF graph
shown in Figure 3.6; in this figure, actors filled with gray color are mapped to
processing element pe1 and the rest of the actors are mapped to processing element
pe2. Consider actor a6 in Figure 3.6; this actor should be scheduled on processing
element pe1 directly either after a1 or after a4 where both distance(a1, a6) and
distance(a4, a6) are equal to zero. When there is no path from ai to aj , the
distance is set to −1. For example distance(a3, a5) in Figure 3.6 is set to −1. In
the case of HSDF graphs, existing tokens on a channel make the first firing of the
consumer side actor of the channel independent from the firing of the producer
side actor of the channel. Hence, we ignore channels with initial tokens when we
calculate the distance values. Note that in deadlock-free graphs, cycles of channels
without initial tokens do no exist, which means that defining distance as the path
with the highest value is well defined.
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a3a5

a0

a1

a6

distance(a1,a6)=0

distance(a4,a6)=0

distance(a2,a6)=1

distance(a3,a5)=-1

Figure 3.6: An example HSDF graph.

Using the distance concept, we can define the initialization time of an actor
aj as follows:

ITj =
∑

ai∈A|η(aj)=η(ai)∧distance(ai,aj)≤0

πij · ITij (3.3)

In Equation 3.3, only actors mapped to the same processing element as aj
with a distance of zero or −1 are considered as an actor that can fire directly
before aj . In Equation 3.3, ITij is the initialization time of actor aj when its
previous actor is known to be actor ai. ITij can be computed as follows:

ITij = H · (WDij +RCij +RDij) (3.4)

ITij is computed by multiplying the size of the memory objects to be trans-
ferred to/from the remote memory (i.e., summation of WDij , RCij , and RDij)
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with the latency of the remote memory (H). In the remainder of this subsection,
it is shown how each part of Equation 3.4 can be computed. We assume that the
size of the actors in the graph and the size of the local memories are of the same
order of magnitude. In other words, the code size of the actors and the interme-
diate data between the actors are assumed to be similar in size. Therefore, we
do not consider the situation in which the memory objects of two different actors
can be placed in the local memory at the same time. These assumptions are in
line with the objective of this work, which is optimizing the memory behavior of
an application running on an MPSoC with limited local memories.

3.7.1.1 Size of the output data

The size of the output data produced by the actor ai which needs to be written
to the remote memory is given by the next equation. It is assumed that actor aj
is scheduled immediately after actor ai.

WDij =
∑

c∈OutC(ai)

ϑ(c)

︸ ︷︷ ︸
α

−
∑

c∈OutC(ai)∩InC(aj)

ϑ(c)

︸ ︷︷ ︸
β

(3.5)

In Equation 3.5, α is equal to the size of all output data produced by the
actor ai and β is the size of all data produced by actor ai and used by actor
aj . The ILP solver could decide to schedule actors that communicate large data
objects between each other in a consecutive order to get a lower initialization time
(i.e., a data-driven scheduling strategy could be selected).

3.7.1.2 Size of the code

The size of the code needed to be fetched from memory to execute actor aj , which
is scheduled immediately after actor ai, is as follows:

RCij =

{
0 ψ(ai) = ψ(aj)
κ(aj) otherwise

(3.6)

Equation 3.6 could force the ILP solver to schedule large actors with the
same functionality in a consecutive order (i.e., a code-driven scheduling strategy
could be selected).

3.7.1.3 Size of the input data

The size of the input data that needs to be read from remote memory to execute
actor aj , which is scheduled immediately after actor ai, is as follows:

RDij =
∑

c∈InC(aj)

ϑ(c)

︸ ︷︷ ︸
α

−
∑

c∈OutC(ai)∩InC(aj)

ϑ(c)

︸ ︷︷ ︸
β

(3.7)

In Equation 3.7, α is equal to the size of all input data needed for actor
aj and β is equal to the intermediate data between actor ai and actor aj . As
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before, the ILP solver could decide to schedule the actors ai and aj immediately
after each other if their intermediate data is large (i.e., a data-driven scheduling
strategy could be selected).

3.7.2 ILP Objective Function

The goal of our optimization is either minimizing the latency (i.e., LAT ) or min-
imizing the iteration interval (i.e., II) of the input graph. Depending on the
desired goal, one of the following equations can be used as the objective func-
tion of our ILP formulation. Equation 3.8 should be used to obtain schedules
with minimum latency and Equation 3.9 should be used to obtain schedules with
minimum iteration interval.

Objective: Minimize LAT (3.8)

Objective: Minimize II (3.9)

3.7.3 ILP Constraints

This subsection introduces the constraints that are used in our ILP formulation.
These constraints force the ILP solver to satisfy essential properties of the appli-
cation (i.e., data dependencies) and intrinsic properties of the scheduling problem
(i.e., avoid resource conflicts).

3.7.3.1 Data dependency constraints

The dependencies between actors should be considered in our ILP formulation;
this can be done by including ILP constraints suggested in Equation 3.10. These
constraints are based on Equation 7 presented in [59]. The notation ω0(c) repre-
sents the number of initial tokens in channel c.

∀c = (ai, aj) ∈ C → χi + τ(ai) + ε(c) + ITj 6 χj + ω0(c) · II (3.10)

The constraint states that the start times of actors ai and aj should allow
sufficient time to execute actor ai, to transfer data from actor ai to actor aj and
to initiate actor aj . The actor aj can fire ω0(c) · II time units earlier than its
allowed time if ω0(c) initial tokens exist on the channel c.

3.7.3.2 Resource conflict constraint

Two actors cannot be executed on the same processing element at the same time.
Any pair of actors that has this possibility should be identified; then, some ILP
constraints should be considered for that pair of actors to prevent such a resource
conflict. Two actors can compete for a processing element if no dependency exists
between them. This condition can be verified by checking whether or not a path
with no initial token exists between two actors in the initial HSDF graph. If a path
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with no initial token exists between two actors, the constraints originating from
dependencies in the graph (i.e., Equation 3.10) can prevent the resource conflict
between those two actors. If no path exist between two actors ai and aj , two
ILP constraints should be added to our formulation according to Equation 3.11.
One constraint considers that ai fires before aj and the other constraint considers
the contrary. However, only one of these statements finally should hold. This
is ensured by adding other constraints introduced later (i.e., Equation 3.13 and
Equation 3.14). In Equation 3.11, MAXINT is a large integer value that exceeds
the sum of the execution times of all actors in the given graph. The following
constraint ensures sufficient time between firing of ai and aj if the ILP-solver
decides to schedule aj immediately after ai (i.e., πij is set to 1 by the ILP-solver).

∀ai, aj ∈ A ∧ η(ai) = η(aj) ∧ distance(ai, aj) = distance(aj , ai) = −1

→ χi + τ(ai) + ε(c) + πij · ITij 6 χj + (1− πij) · MAXINT (3.11)

As an example, consider again the HSDF graph shown in Figure 3.6. When
there is no path between actors ai and aj , both distance(ai, aj) and distance(aj , ai)
are equal to -1. In this case ai and aj are able to compete with each other and
their firings should be ordered. For example in Figure 3.6, both distance(a1, a2)
and distance(a2, a1) are equal to −1. Hence two ILP constraints using Equation
3.11 should be added for a1 and a2.

3.7.3.3 Other constraints

The next equation enforces positive start times for all actors.

∀ai ∈ A→ χi > 0 (3.12)

The next equation enforces that only one actor is allowed to be scheduled
immediately after each actor. Actors with distance −1 or 0 from actor ai can
be scheduled directly after ai; the equality of Equation 3.13 ensures only one of
those actors is scheduled directly after ai.

∀ai ∈ A→
∑

aj∈A|η(ai)=η(aj)∧distance(ai,aj)≤0

πij = 1 (3.13)

The next equation enforces that only one actor is allowed to be scheduled
immediately before each actor. Actors with distance −1 or 0 to actor ai can be
scheduled directly before ai; the equality of Equation 3.14 ensures only one of
those actors is scheduled directly before ai.

∀ai ∈ A→
∑

aj∈A|η(ai)=η(aj)∧distance(aj ,ai)≤0

πji = 1 (3.14)

3.8 Hybrid Prefetch-Aware Scheduling

In this section, we refine the HybILP scheduler of Section 3.7 to consider prefetch-
ing. We call this technique Hybrid-Prefetch-ILP (HybPrefILP). To attain a com-
pact ILP formulation, we assume that the memory object of only one actor can
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be prefetched during the execution of the running actor. This assumption reduces
the number of prefetching options which leads to a smaller ILP formulation. As
a result of this limiting assumption, the outcome of our scheduler may become
sub-optimal, but it is practical. However, two limitations for prefetching often
prevent the loading of many memory objects into the local memory. The first
limitation is related to the available free space in the local memory. The second
limitation comes from the limited time that is available to perform prefetching.
Usually, these limitations are barriers to prefetch more than one actor in a realis-
tic application. Hence, this assumption does not typically affect the quality of the
solution significantly. The scheduling technique of [17] can be used when larger
on-chip memories are available.

We refine the HybILP technique by changing the elements of Equation 3.4.
The size of the output data that should be written back to the remote memory
(WDij) is independent from prefetching, but the size of the code (RCij) and data
(RDij) that must be fetched depends on the amount of code and data that is
already prefetched. We introduce two new constants RC ′ij and RD′ij that capture
respectively the size of code and data that need to be fetched after the prefetching
has ended. These constants replace RCij and RDij in Equation 3.4. All other
parts of the ILP formulation in the HybILP technique can be used without any
change.

3.8.1 Size of the code

Assume that actor aj is scheduled after actor ai. The size of the code that needs
to be fetched from the memory after the execution of actor ai has ended (i.e.,
RC ′ij) depends, amongst others, on the amount of free space that is left in the
local code memory. This code space limitation (CSL) is given by:

CSLij = [mc of ptη(aj)]− κ(ai) (3.15)

The notation [mc of ptη(aj)] represents the code memory capacity of the process-
ing element to which aj has been mapped (i.e., the processing element ptη(aj)).

RC ′ij depends also on the execution time of the previous actor as this influ-
ences the time during which the DMA and processing element can run in parallel
(i.e., code can be prefetched). This temporal limitation (TL) is given by:

TLij =

⌊
τ(ai)

H

⌋
(3.16)

We assume that data prefetching is done after code prefetching. The total
amount of the code that can be prefetched does not only depend on the space and
temporal limitations discussed above. It is also limited by the code size of the
actor (i.e., RCij as defined in Equation 3.6). The code prefetched amount (CPA)
is given by:

CPAij = min(RCij , CSLij , TLij) (3.17)

So, the total size of the code that needs to be fetched, when executing actor
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aj directly after actor ai, is equal to:

RC ′ij = RCij − CPAij (3.18)

3.8.2 Size of the input data

Assume once more that actor aj is scheduled after actor ai. The amount of data
that needs to be fetched from remote memory to execute actor aj (i.e., RD′ij)
depends on the amount of data that could be prefetched during the execution of
actor ai. The data prefetched amount depends on the amount of free space in the
local data memory. This so-called data space limitation (DSL) is given by:

DSLij = [md of ptη(aj)]−
∑

c∈InC(ai)∪OutC(ai)

ϑ(c) (3.19)

The notation [md of ptη(aj)] represents the data memory capacity of the process-
ing element to which aj has been mapped.

The data prefetched amount depends also on the running time of the actor
which is executed directly before actor aj and the amount of the time that the
DMA was busy with transferring the code; the latter needs to be considered as
we assume that data prefetching is done after code prefetching. This so-called
data temporal limitation (DTL) is given by:

DTLij = TLij − CPAij (3.20)

The data prefetched amount is limited by the data space limitation, the data
temporal limitation, and the actual data memory requirement of the actor (i.e.,
RDij as defined in Equation 3.7). Hence, the data prefetched amount is equal to:

DPAij = min(RDij , DSLij , DTLij) (3.21)

So, the total size of the data that needs to be fetched, when executing actor
aj directly after actor ai, is equal to:

RD′ij = RDij −DPAij (3.22)

3.8.3 Post-processing

The HybPrefILP scheduler uses the assumption that pre-fetching of memory ob-
jects for actor aj can only be started when its direct predecessor in the schedule
(e.g., actor ai) has started. In practice it may sometimes be possible to start
the prefetching for actor aj earlier. This may lead to a shorter completion time
of the schedule. Consider as an example the schedules shown in Figure 3.7. All
actors in this figure are mapped to a single processing tile with 30KB for each
of the code and data memories. Schedule A is generated using our HybPrefILP
scheduler. This schedule is sub-optimal as the prefetching for actor a2 is only
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Figure 3.7: Post-processing of a schedule.

started when actor a1 starts its execution. In practice, it might be possible to
start the prefetching of a2 earlier. Schedule B uses the property that prefetching
can be started earlier (i.e., when a0 is executing). Extending our ILP formulation
such that it also considers options in which the prefetching is started earlier would
result in a large increase in the number of variables. Therefore, we have decided
to keep our current assumption with respect to the start time of prefetching op-
erations. However, we have included a post-processing step that optimizes the
schedule. This post-processing step tries to fill the free space of the local mem-
ory by prefetching memory object of subsequent actors based on the actor order
generated by the HybPrefILP scheduler.

Algorithm 1 contains the proposed post-processing step after generating the
schedules. This algorithm accepts a schedule sx generated using the HybPrefILP
scheduler for a processing tile ptx. The algorithm prints the possible prefetchings
during the execution sequence indicated by sx. Note that this algorithm verifies
whether the time limit and on-chip memory space allows prefetching more memory
objects or not. The data dependencies may also limit the prefetching; at run-time,
it can be checked whether or not a data object is produced and is available to be
prefetched.

In Algorithm 1, we use cpc and dpc to indicate up to which point in sx
the code objects and data objects are prefetched respectively. For example, cpc
equal to 6 indicates that the code objects of the actors from the currently running
actor in sx till the 6th actor in sx are available in the code memory. codeBudget
and dataBudget specify the free space in the code and data memories respectively.
Lines 1-4 in Algorithm 1 initialize these variable. The for-loop of lines 5-32 iterates
for each element in the input schedule sx; variable i specifies the currently running
actor. For each actor in sx, first it is checked whether or not the code object
of the ith actor in sx exists in the code memory (line 6); if not, the related
code memory should be loaded to the code memory and the related variables are
updated accordingly (lines 7-9). Similar operations are performed for the data
objects of the ith actor in sx (lines 10-13). prefBudget specifies the prefetching
limit imposed by the execution time of the currently running actor (line 15). The
inner for-loop in lines 16-30 checks how many actors can be prefetched while sx[i]
is running. Lines 17-22 checks for the prefetching possibility of code objects and
lines 23-30 do the similar check for data objects. After completion of the ith actor
in sx, the allocated memory space to this actor can be released (lines 31-32).
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Algorithm 1: Prefetch post-processing

input : PSOS sx
input : PT ptx
output: Will be printed out

cpc = 0 /* Code prefetched counter */1

dpc = 0 /* Data prefetched counter */2

codeBudget = [mc of ptx]3

dataBudget = [md of ptx]4

for i← 1 to |sx| do5

if i > cpc then6

PRINT “Load the code object of sx[i]”7

/* Reserve the code memory space of sx[i] */

codeBudget = codeBudget− κ(sx[i])8

cpc = i9

if i > dpc then10

PRINT “Load the data object of sx[i]”11

/* Reserve the data memory space of sx[i] */

dataBudget = dataBudget−
∑
c∈InC(sx[i])∪OutC(sx[i]) ϑ(c)12

dpc = i13

PRINT “sx[i] can execute”14

prefBudget =

⌊
τ(sx[i])
H

⌋
15

for j ← cpc+ 1 to |sx| do16

/* Possible to prefetch the code object of sx[j]? */

if prefBudget > 0 & codeBudget > 0 then17

PRINT “Prefetch the code object of sx[j] while sx[i] is running”18

prefBudget = prefBudget− κ(sx[j])19

codeBudget = codeBudget− κ(sx[j])20

if prefBudget ≥ 0 & codeBudget ≥ 0 then21

cpc = cpc+ 122

/* Possible to prefetch the data objects of sx[j]? */

if prefBudget > 0 & dataBudget > 0 then23

PRINT “Prefetch the data object of sx[j] while sx[i] is running”24

prefBudget = prefBudget−
∑
c∈InC(sx[j])∪OutC(sx[j]) ϑ(c)25

dataBudget = dataBudget−
∑
c∈InC(sx[j])∪OutC(sx[j]) ϑ(c)26

if prefBudget ≥ 0 & dataBudget ≥ 0 then27

dpc = dpc+ 128

else29

break /* No more prefetching is possible */30

/* Release the memory space allocated to sx[i] */

codeBudget = codeBudget + κ(sx[i])31

dataBudget = dataBudget +
∑
c∈InC(sx[i])∪OutC(sx[i]) ϑ(c)32
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At first glance, the complexity of Algorithm 1 appears to be O(n2) (n = |sx|)
because of two nested loops. A precise look at the inner loop at line 16 reveals that
the whole block (lines 16-30) iterates at most n− 1 times in a complete execution
of the algorithm; because each iteration of the block represents the prefetching
of the memory objects of one actor and in total memory objects of n − 1 actors
may be prefetched in one execution of sx. Hence, the inner loop cannot affect the
complexity of the algorithm; as a result, the complexity of Algorithm 1 is limited
to O(n).

3.8.4 PSOS Generation

The obtained schedules using our technique are fully static schedules which deter-
mine the exact starting time of each actor. However, the later analyses in a typical
model-driven design flow often require PSOSs. A PSOS can be generated from a
fully static schedule by ordering the actors based on their start time. For example,
consider the fully static schedule D in Figure 3.1; sorting the actors of this sched-
ule based on their start time results in the PSOS PSOSD = 〈a0a1a3a4a6a5a2a7〉∗.
The PSOSs are often needed to be captured in the model. The PSOSs found for an
HSDF graph can be modeled using the technique presented in [3]. The equivalent
HSDF graph of a scenario graph usually has many actors and channels. Hence, it
is preferable to directly perform the analysis on the SADF graph. To enable this
possibility, we developed a schedule modeling technique to directly model PSOSs
in SADF graphs. The next chapter explains our schedule modeling technique in
detail.

3.9 Experimental Results

The proposed scheduling technique takes an application graph and MPSoC plat-
form as input. It generates an ILP formulation which is solved using CPLEX
[44]. CPLEX is executed on a Linux platform with an Intelr CoreTM i7 running
at 2.67GHz and 4GB of internal memory. Large execution times are often men-
tioned as an important drawback of using an ILP-based solution. Thanks to our
compact ILP formulation, which avoids unnecessary variables and constraints,
the execution time of the ILP solver when looking for a schedule never was more
than a minute for the selected graphs in our experiments (for multi-processor
cases). For example, the HybILP technique needs a run-time of 0.76 seconds to
schedule an MP3 decoder. The HybPrefILP requires 0.96 seconds to schedule the
same application while also considering prefetching. However, in single-processor
cases, more pairs of actors are considered in Equation 3.11 and more variables are
required in the ILP formulation; as a result, the run-time of the ILP solver can
raise to hours in single-processor cases.

To make a comparison between our technique and related work, we implement
the greedy CPU (G-CPU) scheduling technique from [27]. We also implement the
heterogeneous earliest finish time (HEFT) scheduling technique [78] which is a
commonly used heuristic-based mapping and scheduling technique. The existing
techniques find schedules that are minimizing the latency of the applications.
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To the best of our knowledge, our approach is the first work which considers
off-chip memory interactions while scheduling a streaming application on a multi-
processor platform in order to provide better throughput. Hence, we are only able
to assess our technique versus related approaches when latency has been chosen
as the target optimization.

We use three different models to evaluate our scheduling technique. The first
graph models an MP3 decoder. This application is a frequently used application
from the multimedia domain. We manually extract a DAG for this application
(see Figure 3.8). We estimate the execution time of all actors and their memory
requirements when they would be executed on an ARM7TDMI core. An SADF
model of an MP3 decoder is also used in our experiments. The scenarios of this
SADF are identical to the scenarios of the model given in [32], while we used the
profiling information acquired for the ARM7TDMI core. A second DAG is taken
from [27]. It is a synthetic graph with 50 actors. In our experiments, we assume
that the latency of the remote memory is 100 times larger than the local memories
and access to the local memory will take one clock cycle. These assumptions are
in line with realistic values for memory access latencies [36].

3.9.1 MP3 Decoder DAG

MP3 decoding is a frame-based algorithm that transforms a compressed stream of
data into pulse code modulation (PCM) data. Figure 3.8 shows the DAG of the
MP3 decoder. As the graph of this application is composed of two symmetric sub-
graphs, we map each sub-graph onto a single processing element. This mapping
is depicted in Figure 3.8; the upper sub-graph is mapped to the first processing
element (pe0) and the lower sub-graph is mapped to the second processing element
(pe1).

We apply the HybILP, HybPrefILP, HEFT and G-CPU scheduling techniques
to the graph of the MP3 decoder. The HEFT and G-CPU result in the same
outcome; the result of the HybILP and HybPrefILP scheduling is different from
these techniques. HEFT and G-CPU schedule all actors of the MP3 decoder in
a code-driven order. The HybILP and HybPrefILP schedule part-a of the graph
(shown with an arrow in Figure 3.8) in a data-driven order. In part-a, the size
of the intermediate data is larger than the code size of the actors. By using a
data-driven strategy, the data outputted by one actor is consumed immediately
by the next actor. Therefore, there is no need to store/load this large intermediate
data to/from the remote memory. The code sizes of the actors are larger than the
size of the intermediate data in part-b of the MP3 decoder graph. The HybILP
and HybPrefILP schedule part-b in a code-driven order. This decision leads to a
reduction in the number of off-chip memory accesses because with the code-driven
strategy each actor only needs to be loaded once from the remote memory. As a
result of these scheduling strategy decisions, HybILP achieves a schedule with a
7% shorter execution time (in terms of cpu cycles) when compared to HEFT and
G-CPU.

It is possible to apply prefetching to the schedules that are obtained using
HEFT (or G-CPU). The order of actor firings is taken from the obtained sched-
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Figure 3.8: The graph of an MP3 decoder.

ules. The actors are executed according to these schedules; during the execution
of an actor, it is checked whether or not it is possible to prefetch the memory
objects of the actors following the currently running actor. In this scheme, the
prefetching acts as a post-processing step and it cannot affect the actor firing
order to provide shorter schedules. In contrast, our HybPrefILP technique is
able to find shorter schedules by taking prefetching into account at the same
time that our hybrid scheduler (i.e., HybILP) orders the actors. The HybPrefILP
technique finds a schedule with an 8% shorter execution time when compared to
extended versions of HEFT and G-CPU in which prefetching is considered af-
ter obtaining the schedules. These results show that our scheduling technique is
able to construct schedules that are significantly faster when compared to exist-
ing well-known scheduling techniques. The schedule constructed by our hybrid
prefetch-aware technique is 11% faster when compared to a the non-prefetch-
aware schedule constructed by our technique. This shows the advantage of using
prefetching to decrease the run-time of applications.

3.9.2 MP3 Decoder SADF

We have applied our scheduling technique to an SADF model of the MP3 decoder
application to demonstrate the applicability/scalability of our scheduling tech-
nique. We construct an SADF model for the MP3 decoder application using the
scenario information for the MP3 decoder SADF graph from [32] and the profiling
information from the MP3 decoder DAG (i.e., execution times and memory sizes).

Applying our scheduling technique on all scenario graphs of the MP3 decoder
SADF graph results in similar schedules for all scenario graphs. This is due to
the similar memory behavior for this application across different scenarios. The
analysis time of our scheduler scales with the number of scenarios in this applica-
tion. For example, the MP3 decoder SADF model used in our experiment has five
scenarios. HybPrefILP technique takes 4.9 seconds to schedule the MP3 decoder
SADF bound to a platform with two ARM7TDMI cores; the mentioned analysis
time is almost 5 times the analysis time required to schedule the equivalent MP3
decoder DAG; this factor conforms to the number of scenarios in the application.
Optimizing schedules for both throughput and latency yields the same result for
the MP3 decoder SADF; this originates from the fact that the application model
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is partitioned evenly on two processing elements (see Figure 3.8) except for actor
Huf in the model and two partitions can run in parallel independently after firing
of actor Huf.

3.9.3 Synthetic DAG

To further verify the effectiveness of our proposed technique we select the syn-
thetic DAG used in [27]. The mapping decisions computed by HEFT are used
as input to our scheduling technique. We evaluate our technique for three differ-
ent experimental set-ups: first, different sizes of local memories; second, different
amounts of communication-to-computation ratios (CCRs) in the graph; third,
different numbers of processors in the platform.

The size of the local memory can affect the amount of prefetching. We
determine the necessary amount of local memory which is required to execute the
graph. Figure 3.9(a) shows the execution time of the graph (in the number of
processor cycles) for different sizes of the local memory, for two processors, and
a CCR of 1.0. The memory scale factor in Figure 3.9(a) is the scaling factor of
the necessary amount of the local memory. Scaling local memory size from 1.0
to 1.5 times decreases the run-time of the application when using HybPrefILP
by 10%, when using HEFT with prefetching by 10%, and when using G-CPU
with prefetching by 9%. Scaling local memory size from 1.5 to 2.0 times does not
further reduce the run-time of the application. This is due to another limitation of
prefetching which is the time limitation (see Equation 3.16). These results show
that the effect of prefetching is similar in all these three scheduling techniques.
However, overall, the HybPrefILP gives a schedule which is 32% and 39% faster
compared to HEFT with prefetching and G-CPU with prefetching respectively
for all local memory scaling factors in Figure 3.9(a).

The number of off-chip memory accesses determines the required amount of
communication in a multi-processor system. Hence, we explore the effectiveness
of our proposed scheduling (HybILP) for different amounts of communication to
computation ratios. For this purpose, we derive several graphs from the original
graph by scaling the size of the memory objects. CCR is a term for digitizing
the amount of communication in an application. A larger CCR implies a larger
number of remote memory accesses. Figure 3.9(b) shows the execution time of
the graph (in the number of processor cycles) for different CCRs when the graph
is mapped to a platform with two processors and the memory scale factor is
1.0. The required amount of processor cycles increases by increasing the CCR
of the graph. This is due to the fact that more remote accesses are needed
in a graph with larger CCR. Comparing the outcome of HybILP (HybPrefILP)
with the outcome of HEFT (HEFT with prefetching) and G-CPU (G-CPU with
prefetching) in Figure 3.9(b) confirms that our technique outperforms common
heuristic techniques in different CCRs.

By increasing the number of the processing tiles in the MPSoC, the required
amount of the processor cycles decreases (see Figure 3.9(c)). This shows the exis-
tence of parallel actors in the graph that enable actors to execute in a concurrent
way on a multi-processor system. For the selected DAG, HybILP (HybPrefILP)
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Figure 3.9: Execution time of a DAG in different configurations ([# of proces-
sors][CCR][memory scale factor]). Each filled bar shows the execution time of a
technique when considering prefetching and the stacked bar represents the extra
execution time of the same technique without prefetching.
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gives better efficiency to HEFT (HEFT with prefetching) and G-CPU (G-CPU
with prefetching) by using a platform with fewer processors. For example, the exe-
cution time of the HybILP schedule on a platform with two processors is smaller
than the execution time of HEFT and G-CPU schedules on a platform with four
processors. This means that HybILP requires less computation resources com-
pared to HEFT and G-CPU. Increasing the number of processors up to three (or
four) does not reduce the execution time of the graph significantly while using
HybILP (HybPrefILP) for scheduling the selected DAG; this is due to the limited
parallelism in the DAG and on-chip communication overhead. This effect is not
visible in case of using the HEFT or G-CPU heuristics because these heuristics
find longer schedules when compared to HybILP in case of two processors and in-
creasing the number of processors gives a chance to these heuristics to find shorter
schedules. However, the schedules found by HEFT or G-CPU with 4 processors
are still longer than the schedule found by HybILP with 2 processors.

The outcome of the proposed technique for the selected DAG is a hybrid
schedule (i.e., it uses the combination of code- and data-driven scheduling for
actors in the graph) which reduces the amount of remote accesses for large code
elements and large intermediate data elements between the actors. When com-
paring the outcome of HybILP with HEFT and G-CPU, our technique achieves
a 29% and 30% respectively shorter execution time for the selected DAG in a
nominal experimental configuration (with two processors, a CCR equal to 1.0,
a memory scale factor equal to 1.0). By extending HybILP to HybPrefILP, the
execution time of the DAG in the nominal experimental configuration reduces by
32% and 39% compared to HEFT with prefetching and G-CPU with prefetching
respectively.

3.10 Summary

The performance of applications when running on an MPSoC is affected by the
time spent on fetching code and data from remote memories. We present a
scheduling technique to improve the memory behavior of an MPSoC with lim-
ited on-chip memories. We formulate our approaches using an ILP framework.

The proposed technique, HybILP, makes a trade-off between loading code
or data to reduce the run-time of the application or enhance its throughput. In
essence, it chooses the most suitable scheduling strategy for a series of actors in a
graph. Actors with dominant code size are scheduled with a code-driven schedul-
ing strategy and actors that exchange large amounts of data are scheduled with a
data-driven scheduling strategy. Our technique uses a compact ILP formulation
which requires limited time for an ILP solver. To further refine the result of Hyb-
ILP, we extend it to HybPrefILP. The HybPrefILP technique takes the overhead
of prefetching into account when scheduling an application onto an MPSoC.

We evaluated our scheduling technique with a synthetic graph, taken from
recent related work [27], and a common multimedia application (an MP3 decoder).
We achieve a reduction in run-time of 8% compared to a common heuristic solution
for the MP3 decoder application and 32% for the graph from [27]. These results
demonstrate the advantage of our hybrid prefetch-aware scheduling technique.
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We also applied our scheduling technique to an SADF model of an MP3 decoder
application to show the applicability and scalability of our approach when the
model is an SADF. As expected, the analysis time scales with the number of
scenarios in an SADF model. The obtained schedules can be modeled directly
in the S(A)DF model using our schedule modeling technique introduced in next
chapter.



Chapter 4

Modeling Dataflow Schedules

Dataflow graphs can be extended with scheduling decisions, allowing analysis to
obtain properties like throughput or buffer sizes for the scheduled graphs. Analysis
times depend strongly on the size of the graph. SADF graphs can be statically
scheduled using static-order schedules. The only generally applicable technique to
model a static-order schedule in an SADF graph is to convert its scenario graphs,
represented by SDF graphs, to the equivalent HSDF graphs. This may lead to
an exponential increase in the size of the graph and/or to sub-optimal analysis
results (e.g., for buffer sizes in multi-processors). We present techniques to model
two types of static-order schedules, i.e., periodic schedules and periodic single
appearance schedules, directly in an S(A)DF graph. Experiments show that both
techniques produce more compact graphs compared to the technique that relies
on a conversion to HSDF. This results in reduced analysis times for performance
properties and tighter resource requirements. This work was published in [19, 21].

4.1 Overview

Model-based design-flows (e.g., [9, 10, 54, 69, 86]) model binding and scheduling
decisions into the model. This enables the analysis of performance properties (e.g,
throughput [34]) or resource requirements (e.g., buffer sizes [72]) under resource
constraints. Many dataflow analysis algorithms, e.g., throughput calculation or
buffer sizing, are straightforward when a single processor platform is used. For
instance, the buffer sizes can be determined by executing the model according to
a given schedule. However, in a multi-processor environment, analysis algorithms
are not trivial because of the inter-processor communication, amongst other rea-
sons. An S(A)DF can be bound to a multi-processor platform. Each processor
in the platform executes a set of actors from the S(A)DF; the firings of actors
bound to a processor are required to be sequentialized. For this purpose, a finite
periodic schedule (i.e., PSOS) can be constructed. PSOSs only specify the firing
order of actors. This separates them from fully static schedules, which determine
absolute start times of actors (e.g., schedules generated using the technique of
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[7]). Traditionally, for DSP software synthesis, a sub-set of all periodic static-
order schedules is considered. This sub-set contains so-called single appearance
schedules (SAS) [9]. In a SAS, the functional code of the actors is included in a
nested loop structure such that each piece of code occurs only once. This min-
imizes the code size potentially at the cost of additional buffer memory needed
to implement the channels. A model-based design-flow usually uses PSOSs (or a
sub-set of PSOSs such as SASs) for an application modeled with an S(A)DF. In
this way timing (throughput) and memory usage (buffers) can be analyzed.

There is only one technique [3] known to model PSOSs in an S(A)DF. This
technique requires a conversion of the model to an HSDF graph. Consider the
SDF graph depicted in Figure 4.1. Figure 4.2 (without the colored edges) shows
the equivalent HSDF graph of the SDF graph in Figure 4.1. The technique of [3]
sequentializes the actor firings by inserting a channel between each pair of con-
secutive actors in a schedule. At the end of a schedule, it adds a channel with
one initial token from the last to the first actor in the schedule. This ensures
an indefinite execution of the graph according to the schedule. To model PSOSs
s0 = 〈a0(a2)2〉∗ and s1 = 〈(a1)5(a3)3a1(a3)3〉∗, the technique of [3] adds in total
15 channels to the HSDF graph of the example graph (the green edges for s0

and the blue edges for s1 in Figure 4.2). For example, s0 indicates an indefinite
sequence of one firing of a0 followed by two firings of a2. This order is enforced in
the HSDF graph of Figure 4.2 by the green edges between the actors a0 1, a2 1,
and a2 2.

The SDF to HSDF conversion can lead to an exponential increase in the size
of the graph. For example, such a conversion for an H.263 decoder [72] (with
QCIF resolution) increases the graph size from 4 actors to 1190 actors. Note that
the number of actors in the resulting HSDF graph highly depends on how the
application is modeled in the original SDF. The run-time of analysis algorithms
depends amongst others on the size of the graph. As a result, the run-time of
many S(A)DF analysis algorithms may increase drastically when modeling PSOSs
in the graph using the technique from [3]. For example, the buffer sizing algorithm
from [72] takes less than 1 ms on the SDF of an H.263 decoder. Modeling a
schedule into this SDF using the technique from [3], the same analysis lasts 1330
ms. Analysis algorithms are usually repeated more than once in an iterative
design-flow. As an example, for the SDF graph of an H.263 decoder, the design-
flow from [69] performs 8 throughput calculations on the SDF graph to obtain
the desired binding. Hence, it is vital to maintain a compact schedule-extended
graph, i.e., a graph in which schedules are modeled explicitly, to provide a fast
and practical design flow. There is a second drawback to the technique from [3].
The original graph structure is lost due to the conversion to an HSDF graph.
A single channel in an S(A)DF corresponds to a set of channels in the HSDF

a0 a1c0

6
a2

c1

a3c2

33

Figure 4.1: An example SDF.
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Figure 4.2: PSOSs s0 = 〈a0(a2)2〉∗ and s1 = 〈(a1)5(a3)3a1(a3)3〉∗ modeled in the
SDF of Figure 4.1 using the technique from [3]; each ai j actor in the HSDF is an
instance of SDF actor ai.

graphs. In Figure 4.2, for example, the six edges between actor a0 1 and the
a1 j actors correspond to the single edge between a0 and a1 in the SDF graph of
Figure 4.1. As a result, common buffer sizing techniques cannot find the minimal
buffer size for the original S(A)DF. The H.263 decoder buffer sizes are for example
overestimated by 49% when applying the technique of [72] to the HSDF graph.

A novel technique is needed to model PSOSs in an S(A)DF graph. This
technique should limit the increase in the number of actors such that analysis times
do not increase too much when analyzing the S(A)DF graph with its schedules.
The technique should also preserve the original graph structure as this enables
accurate analysis of graph properties such as buffer sizes. In this chapter, we
presented a schedule modeling technique, called DSM, to model any PSOS directly
in an S(A)DF graph. In addition, a second schedule modeling technique, called
SASM, is introduced that is limited to SASs, but that results in more compact
models compared to the first technique when modeling SASs.

DSM and SASM can be used in any model-based design-flow that models
PSOSs into the S(A)DF graph (e.g., [9, 10, 54, 69, 86]). Conversion to an HSDF
graph may be inevitable at some steps of a design trajectory. For example, multi-
processor scheduling may require such conversions, although some techniques exist
that can find schedules for SDFs without any conversion to HSDFs. For example,
the technique presented in [80] solves the buffer sizing and scheduling problems
simultaneously at the SDF level. It is not the conversion from SDF to HSDF itself
that is problematic though. The problem is that analyses or optimizations on large
HSDFs may be time consuming (e.g., throughput analysis) or inaccurate (e.g.,
buffer sizing). With our techniques, obtained schedules can be annotated back
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to the original SDF; hence, the later analysis and optimization can be performed
on the schedule-extended SDF. Besides the already mentioned analyses, also for
example dynamic voltage scaling can be directly applied to a schedule-extended
SADF model of an application mapped to a multi-processor platform (see Chapter
6). Note that code generation is another step which requires an S(A)DF to HSDF
conversion; this conversion can be delayed until all (or most of the) prior analyses
are carried out on the S(A)DF. Ultimately, the proposed techniques may save
significant amounts of analysis time in a multi-processor design flow and they
may lead to more accurate results.

The remainder of this chapter is structured as follows. The next section
discusses related work. Section 4.3 explains our approach in modeling PSOSs
in SADF graphs. Sections 4.4 and 4.5 present our techniques to model PSOSs
and SASs in an SDF graph. Sections 4.6 and 4.7 contain the formal proofs of
the correctness of DSM and SASM respectively. We evaluate our technique by
applying it to several realistic applications in Section 4.8. Section 4.9 concludes
the chapter.

4.2 Related Work

The technique from [3] is the only available technique to model PSOSs in an SDF,
through a conversion to an HSDF. As already explained, this technique may result
in a long run-time for analysis algorithms and/or inaccurate results from these
algorithms. Our techniques alleviate both shortcomings of the technique from [3].

The work in [82] models the effect of a budget scheduler or preemptive TDMA
scheduler on the temporal behavior of the SDF, either by computing an accurate
worst-case response time or, more precisely, by introducing additional actors to
model the timing impact as a latency-rate model. In contrast, for non-preemptive
schedules, such as PSOSs, we focus on the ordering of actor firings; their execution
time remains the same. We force an SDF to follow the PSOSs selected for each
processor. This allows SDF analysis to obtain properties like throughput or buffer
sizes for the scheduled SDF. This is also true for the models of [82]. However,
for non-preemptive schedules, our results are tighter and our techniques require
less analysis time. The authors of [76] have shown that an SDF can be used to
consider an application with resource sharing possibilities; they perform buffer
sizing under a throughput constraint considering a given schedule for the actors
using a shared resource. For shared resource analysis, they use event-models [40]
which is based on realtime-calculus [77]. Our approach differs from [76], since
modeling schedules directly into SDFs enables us to use dedicated analysis for
dataflow graphs. Moreover, the technique of [76] can only handle an SDF with
limited types of cycles, such as cycles formed by self-edges or the back edges
modeling the buffer capacity between two actors. However, staying in dataflow
domain, as is done in our technique, does not impose such a limitation on the
graph structure.

Ref [83] uses some new (custom) components, e.g., if − then−else, to model
schedules in an SDF. These components are not supported by the common model-
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based design-flows using SDFs (e.g., [9, 10, 54, 69, 86]) and cannot be modeled
in an SDF using the basic elements of an SDF (i.e., actors and channels). Our
techniques eliminate the need for any new (custom) component. As a result, any
analysis technique for SDFs is directly applicable to the schedule-extended SDF.

4.3 Modeling Schedules in SADF Graphs

As discussed before in Chapter 2, an SADF graph uses an SDF graph to describe
the behavior of a scenario in the model. A set of PSOSs can be devised for
each scenario in the SADF graph by using a static scheduling technique (e.g., the
scheduling techniques presented in Chapter 3). In the rest of this chapter, we
present two schedule modeling techniques, i.e., DSM and SASM, to model PSOSs
and SASs directly in an SDF graph. These techniques are also used to model
schedules generated for a scenario of an SADF directly into a scenario graph of
the SADF, which is an SDF graph.

An actor ai in a PSOS should appear r ·γ(ai) times in the PSOS (with r = u
v

where u, v ∈ N) and the value r is identical for all actors in the PSOS [34]. This
is imposed by the SDF property that firing each actor as often as indicated in
the repetition vector results in a token distribution that is equal to the initial
token distribution. As stated before, the term normalized PSOS refers to a PSOS
with r equal to 1. We limit ourselves in the remainder to PSOSs in which r
is a unit fraction (i.e., r = u

v with u = 1 and v ∈ N), although our schedule
modeling techniques can also be directly applied to model other PSOSs (i.e., in
which u ∈ N) in case of SDF graphs. PSOSs generated for a scenario graph of the
SADF should cover one iteration of the scenario graph (i.e., r equal to 1); this is
the only limitation of our schedule modeling techniques for SADF graphs when
compared to the schedule modeling techniques for SDF graphs.

4.4 Modeling Periodic Static-Order Schedules

In this section, we introduce a technique to model PSOSs in an SDF. We first
illustrate all ingredients of our approach through a running example, and then
discuss the algorithm and the main steps in the algorithm in more detail. Note
that a schedule is correctly modeled if and only if any execution of the schedule-
extended graph satisfies the schedule and if any execution of the original graph
that satisfies the schedule is still feasible in the schedule-extended graph.

4.4.1 Running example

Here we briefly introduce our approach in modeling a PSOS in an SDF using a
running example. For this purpose consider the example SDF shown in Figure
4.1 and the PSOS s1 = 〈(a1)5(a3)3a1(a3)3〉∗ which is a schedule for a1 and a3.
Our approach captures this schedule in the SDF in three steps, that (i) remove
auto-concurrency, (ii) avoid inter-iteration execution, and (iii) enforce the correct
scheduling decisions.
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In the example SDF, a single firing of a0 produces 6 tokens in channel c0;
then 6 firings of a1 can be performed simultaneously. This simultaneous firing
of an actor is called auto-concurrency ; in practice, this corresponds to executing
multiple instances of a function (task) in parallel. Auto-concurrency for an actor
cannot be handled in a real hardware platform, unless more than one processor
is allocated for that actor. Here, we focus on the case that an actor is mapped
to one processor. Hence, auto-concurrency must be removed from the model. To
sequentialize firings of an actor, a self-edge with one initial token must be added
to that actor; this way auto-concurrency can be removed for that actor. Figure
4.3(a) shows the example SDF of Figure 4.1 in which any auto-concurrency related
to a1 and a3 is removed by adding two self-edges (shown in red).

In one PSOS iteration, each actor must fire a specific number of times. Actors
must not be able to get fired more than the number of times indicated by the
PSOS. Consider the following situation in the example SDF of Figure 4.1. Two
firings of a0 provide 12 tokens in channel c0; this number of tokens is enough for
12 firings of the actor a1. The first 6 firings of a1 belong to the first iteration
and the second 6 firings belong to the second iteration. The second 6 firings
of a1 can occur before the completion of the first PSOS iteration of s1; in this
case, the resulting execution does not satisfy the given PSOS s1. This situation
is called inter-iteration execution. To prevent inter-iteration execution related to
s1, we create a dependency from the last actor appearing in s1 to the first actor
appearing in s1; see the blue elements in Figure 4.3(b). This dependency limits
the firing of the first actor to a number of firings required in one PSOS iteration.

In the SDF of Figure 4.3(b), consider the case that actors a0, a1 and a2 have
fired 1, 3 and 1 times, respectively. The initial token distribution is changed to
the distribution shown in Figure 4.3(c). In this graph, both a1 and a3 from PSOS
s1 are enabled; but, only the firing of a1 must be granted at this point to form an
execution that satisfies the given PSOS s1. We call such a state in which several
actors are enabled a decision state. Later on, a precise definition is given for this
concept. According to schedule s1, actor a3 must get enabled after 5 firings of a1.
For this purpose, a dependency is created from a1 to a3 (shown with green actor
and channels in Figure 4.3(d)); this new dependency prevents a3 from getting
enabled unless a1 has completed 5 firings. Another decision state can be found
after a1 has completed 5 firings; once again, both a1 and a3 from PSOS s1 are
enabled at this point; but, the firing of a3 must take place. For this purpose, a
dependency is created from a3 to a1 (see Figure 4.3(e)). This new dependency
prevents a1 from getting enabled from the current state onwards unless a3 has
completed 3 firings. The 5 initial tokens on the added input channel to a1 ensure
that the first 5 firings of a1 can take place as planned. The SDF of Figure 4.3(e)
shows the final solution that models the PSOS s1 in the SDF of Figure 4.1.

4.4.2 The algorithm

Algorithm 2 captures our technique, called decision state modeling (DSM). DSM
accepts an SDF and one or several PSOSs as its input. In the algorithm n + 1
(n ∈ N0) is the number of processors (or input PSOSs). DSM ensures that actor
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Figure 4.3: Step-by-step modeling of the PSOS s1 in the SDF of Figure 4.1.



62 Chapter 4: Modeling Dataflow Schedules

c1

6

c0 c2

3 3

1.ω6

6

6 6

6

62
6

3

5
a

c0.pre
c0.pro c1.pro c

1.pre

c1.a
 ω
3  9

c1.a ω
3  61  6

c
1.a ω1  9

c1.a ω

6

a1a0 a2 a3

a1.enda0.end

1.ω9
a

cse.0

cse.1 cse.2

cse.3

Auto-concurrency 

Decision states

Inter-iteration execution

Figure 4.4: PSOSs s0 and s1 modeled in the SDF of Figure 4.1 using DSM.

firings of each PSOS follow the specified order in that PSOS; the output of DSM is
a new SDF that models the provided PSOSs in the input SDF. Figure 4.4 depicts
the corresponding SDF of Figure 4.1 which models the PSOSs s0 = 〈a0(a2)2〉∗
and s1 = 〈(a1)5(a3)3a1(a3)3〉∗ using DSM. The remainder of this section discusses
the three main steps of the algorithm - removing auto-concurrency, avoiding inter-
iteration execution, enforcing correct decisions in decision states - in detail.

The description of some basic functions used in Algorithm 2 is as follows.
The function AA(G, anew) is responsible to include the actor anew in the SDF
G. The function AC(G, cnew, asrc, adst, srcRate, dstRate, initTok) adds the
channel cnew from source actor asrc to destination actor adst; the production rate
of asrc on this channel is equal to srcRate and the consumption rate of adst on
this channel is equal to dstRate; this channel is initialized with initTok initial
tokens. The function CNT (aj , si) returns the number of times that the actor
aj is fired in one iteration of PSOS si. The function BEF(ak,j,si) returns the
number of times that ak appears from the first position in the PSOS si to and
including the jth position in the PSOS si; the function AFT(ak,j,si) returns the

number of times that ak appears from the (j + 1)
th

position in the PSOS si to
the last position in the PSOS si.

4.4.3 Auto-concurrency

An actor ai ∈ A can be enabled multiple times simultaneously in an SDF state ωj
if ωj(c) ≥ k · Rate(q) for each channel c = (p, q) ∈ InC(ai) where k ∈ N, k ≥ 2.
This is called auto-concurrency. The firings of actor ai should occur sequentially
according to the PSOS to which ai belongs. This sequential execution can be
enforced by adding a self-edge with one initial token to actor ai (Line 1 in Algo-
rithm 2). In Figure 4.4, channels cse.0 − cse.3 (shown in red) are used to prevent
any auto-concurrency in the SDF of Figure 4.1.

4.4.4 Inter-iteration execution

Consider actor a0 in the SDF of Figure 4.1; the 1st firing of a0 belongs to the 1st

PSOS iteration of s0 and the 2nd firing of a0 belongs to the 2nd PSOS iteration of
s0 and so on. Since a0 has no input channel, it can always be fired regardless of
other actors in the graph. This behavior, which is called inter-iteration execution,
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can prevent an SDF execution from satisfying the given PSOSs. Inter-iteration
execution happens when one PSOS iteration has not been completed and an actor
from that PSOS can proceed its firings beyond the current PSOS iteration. Lines
4-8 in Algorithm 2 are used to control this undesirable actor enabling. This
part of the algorithm adds (per PSOS) one actor and two channels to create a
dependency between the last and first actor appearing in the PSOS. The added
components limit, within one PSOS iteration, the firing of the first actor in the
PSOS (i.e., aF ) to the count of actor aF (i.e., CNT (aF , si)) in one iteration of
the PSOS si. The next iteration of the PSOS si can only commence if the last
actor in PSOS si (i.e., aL) fires CNT (aL, si) times in one iteration of the PSOS
si. In other words, the next iteration of a PSOS can only commence after the
completion of the current iteration of this PSOS. In Figure 4.4, actor a0.end and
channels c0.pre and c0.pro are added to prevent any inter-iteration execution in
PSOS s0. Actor a1.end and channels c1.pre and c1.pro are added to prevent any
inter-iteration execution in schedule s1. These elements are shown in our example
in blue in Figure 4.4.

Algorithm 2: Decision State Modeling (DSM)

input : SDF G(A,C), PSOSs {s0, · · · , sn}
output: G extended with schedules {s0, · · · , sn}
add a self edge with 1 initial token for each a ∈ A1

{s′0, µ0, · · · s′n, µn} ← normalize(G, {s0, · · · , sn})2

for i← 0 to n do3

/* To control inter-iteration execution */

aL := last actor in si4

aF := first actor in si5

AA(G, ai.end)6

AC(G, ci.pre, aL, ai.end, 1, CNT(aL, si), 0)7

AC(G, ci.pro, ai.end, aF , CNT(aF , si), 1, CNT(aF , si))8

/* To control decision states */

Ω, pos← getDecisionStates(G, s′i, {s′0, · · · , s′n} \ s′i)9

Ω← reduceDecisionStates(Ω)10

Ω← foldDecisionStates(Ω, µi)11

foreach ωj ∈ Ω do12

AA(G, ai.ωj
)13

foreach ak ∈ ∆j do14

if ak is the actor of choice then15

AC(G, ci.akωj , ak, ai.ωj , 1, CNT(ak, si), AFT(ak, pos[ωj ], si) )16

else17

AC(G, ci.akωj
, ai.ωj

, ak, CNT(ak, si), 1, BEF(ak, pos[ωj ], si))18



64 Chapter 4: Modeling Dataflow Schedules

a0

a1
c0

a2
c1

2

3

Figure 4.5: An example SDF.

a2

a0
ω0 ω1

a1
ω2

a1
ω3

a2
ω4

a1
ω5

P1

P0

a2 a2 a1
a2

Figure 4.6: The state space of the SDF of Figure 4.5 when PSOSs s′0 = 〈a0〉∗ and
s′1 = 〈(a1)2a2a1a2〉∗ are used.

4.4.5 Decision states

This sub-section presents the third step of DSM. It first defines the concept of a
decision state and then proceeds with the algorithm for identifying decision states;
after explaining two optimization steps, it ends with the technique to enforce the
appropriate schedule decisions.

4.4.5.1 Concept

Multiple different actors mapped to a single processor may be enabled in a specific
state. Here, we describe such situations in an SDF execution. Consider the SDF
in Figure 4.5. Assume that a0 is mapped to processor P0 with PSOS s′0 = 〈a0〉∗
and a1 and a2 are mapped to processor P1 with PSOS s′1 = 〈(a1)2a2a1a2〉∗. For
brevity, we only discuss the actors mapped to processor P1. The corresponding
state space - for one SDF iteration - when executing our example SDF using the
PSOSs s′0 and s′1 is visualized in Figure 4.6. In this figure, the actors mapped
to processor P0 (P1) are surrounded by a square (circle). Auto-concurrency and
inter-iteration execution are excluded using the constructs introduced in Section
4.4.3 and Section 4.4.4 resp. The periodic behavior of the PSOSs is obvious from
the state space where one SDF iteration moves the graph to its initial state, i.e.,
ω0 (see Figure 4.6). There are some states in Figure 4.6 in which more than one
actor is enabled (e.g., ω1−ω5) on processor P1. In such a situation, the execution
related to those actors can deviate from the specified PSOS. We use the following
definition to formalize such a situation.

Definition 16. (Decision State) Consider the PSOS si as a schedule for actors
Ai ⊆ A and an execution σ of an SDF (A,C) which satisfies PSOS si. A state
ωj ∈ σ is a decision state iff multiple different actors from Ai are enabled in ωj.

We use Ω to refer to the finite set containing all decision states occurring in
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the execution of an SDF up-to one iteration of a PSOS. The following terminology
describes the enabled actors in a decision state.

Definition 17. (Opponent Actor Set) Let ωj ∈ Ω be a decision state for
PSOS si. The opponent actor set ∆j of the decision state ωj is a finite set which
contains all actors that are enabled in decision state ωj and that belong to Ai.

The finite set ∆j represents the opponent actors in the decision state ωj ∈ Ω.
One of the enabled actors in a decision state ωj , in line with the given PSOS si,
should be selected to fire. The following is used to describe such an actor.

Definition 18. (Actor of Choice) Consider the PSOS si which schedules
actors Ai ⊆ A and the opponent actor set ∆j of the decision state ωj in an
execution σ of the SDF G(A,C) which satisfies si. An actor ac ∈ ∆j is called
the actor of choice of the decision state ωj iff the firing of actor ac in state ωj
is a necessity for the execution σ in order to satisfy the PSOS si. Since a PSOS
specifies a fixed firing order, there can only be a single actor of choice in any
decision state.

Lines 9-18 in DSM show how we deal with non-deterministic execution due
to decision states. DSM models the given PSOSs one-by-one iteratively. The
ordering of PSOSs in DSM does not have any impact on the final behavior. In
each iteration of the for-loop in line 3, we enforce the execution of the actors in
the current schedule of interest (i.e., schedule si) to follow schedule si. The next
sub-section explains how decision states of the schedule of interest are extracted.
At the same time, a value is preserved for each decision state that captures the
relative position of that decision state with respect to the beginning of the schedule
of interest; the notation pos[ωj ] refers to this position for ωj . For example, in the
SDF of Figure 4.1, pos[ω6] = 5 since the relative position of ω6 with respect to
the beginning of the schedule of interest (i.e., s1) is 5 (in Figure 4.7 consider 4
firings related to s1 have been occurred before ω6 and the 5th actor firing related
to s1 is going to happen in ω6). For each ωj ∈ Ω extracted for si, DSM adds
an actor (ai.ωj

in line 13) and one channel between the new actor ai.ωj
and each

opponent actor in the set ∆j (lines 14-18 in Algorithm 2). The elements added in
each decision state (e.g., ωj) postpone the execution of the actors in ∆j \ {ac} to
the state after decision state ωj . Hence, ac (i.e., the actor of choice) is the only
actor which can be fired in the state ωj .
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Figure 4.7: The state space of the SDF of Figure 4.1 when the PSOS s1 =
〈(a1)5(a3)3a1(a3)3〉∗ is the schedule of interest (i.e., sc) in Algorithm 3.
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Algorithm 3: Get Decision States

input : SDF G, PSOS sc, PSOSs {so1, · · · , son}
output: Decision state set Ω
output: relative positions pos

ωj ← the initial state of G1

for i← 1 to |sc| do2

ωj ← maxExec(G, ωj , {so1, · · · , son})3

if sizeof(enabledActors(G, ωj, sc)) >1 then4

pos[ωj ]← i5

Ω← Ω ∪ {ωj}6

∆j ← enabledActors(G, ωj , sc)7

ωj ← fire(G, ωj , sc[i])8

4.4.5.2 Decision state identification

Algorithm 3 shows our technique to detect all decision states within PSOS sc.
Assume sc is a PSOS for the actors mapped to processor Pc. Schedules so1 · · · son
are PSOSs for the other actors of the SDF mapped to the other processors (de-
noted by Po1 · · ·Pon). The output of Algorithm 3 is a set that contains all decision
states for PSOS sc. This algorithm also returns the relative positions of decision
states with respect to the beginning of sc. In Algorithm 3, the input schedules are
normalized PSOSs. The function normalize (in line 2 of Algorithm 2) normalizes
the input PSOSs. The function returns the normalized PSOSs along with their
normalization factors. The normalized PSOS s′x can be achieved by repeating µx
times the input PSOS sx (i.e., s′x = (sx)µx). µx is the normalization factor of
sx and can be calculated by dividing the repetition vector entry of an arbitrary
actor in sx by the count of that actor in the PSOS sx (in our running example,
µ0 and µ1 are 1).

After normalizing the input schedules, all situations that can lead to multiple
actors (mapped to the same processor) being ready to fire must be discovered.
An actor in the schedule of interest sc could be affected by the execution of an
actor in the other schedules as well as by another actor in sc. Processors can run
at different clock rates; these differences and inter-processor dependencies cause
variation in the number of tokens on the inter-processor channels originating
from the actors mapped to the other processors to the actors mapped to the
processor of interest (i.e., Pc). The number of tokens on the input channels
of an actor determines whether an actor is enabled or not. To determine any
possible actor enabling within sc, a necessary and sufficient number of tokens
on all inter-processor channels entering to the actors mapped to processor Pc
must be considered. We will now explain what necessary and sufficient number
of tokens means in our algorithm. Each iteration of the schedule of interest sc
requires that the actors mapped to the other processors are fired up-to at most
their repetition vector entry values. Hence, only executing one iteration of the
other schedules so1 · · · son is enough to provide a necessary number of tokens on
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inter-processor channels entering to the actors mapped to processor Pc. More
than one iteration for the other schedules so1 · · · son may be feasible; this may
cause an actor in sc to be enabled more than its count in one iteration of sc.
The inter-iteration prevention constructs introduced in Section 4.4.4 control this
undesired actor enabling. So, we only extract decision states within one iteration
of the normalized schedule to provide a sufficient number of tokens.

Also, DSM does not impose any limitation between PSOSs since no depen-
dency is created between actors mapped to different processors. PSOSs can in-
dependently be iterated if the dependencies in the SDF allow that. We allow
the actors on the other processors to be executed (according to their schedules)
as much as they can; the corresponding execution is named maximal execution.
The maximal execution will stop at one point either due to a dependency on the
actors on the processor Pc or because one PSOS iteration is completed. The SDF
state (denoted by ωj in Algorithm 3) should be kept during the operation of the
algorithm. The maximal execution is represented by the function maxExec in
Algorithm 3. After one maximal execution, the number of tokens on the inter-
processor channels entering into the actors on the processor Pc determines any
possible enabled actor. The preserved state (i.e., ωj) will be added to the decision
state set (Ω) if more than one actor on the processor Pc is enabled at this state
(line 6 in Algorithm 3). The current position (i.e., i) in the schedule of interest
sc is also preserved for the discovered decision state (see line 5 in Algorithm 3).
All enabled actors will be recorded as opponent actors of the state ωj (line 7
in Algorithm 3). The execution of the actors on the processor Pc is continued
by executing the enabled actor in line with sc to determine all possible decision
states (line 8 in Algorithm 3). The function fire(G,ωj , sc[i]) fires the actor at
the ith position in the PSOS sc. The process is repeated until a full iteration of
the PSOS has been examined. In the end, the set Ω contains all possible decision
states when executing sc.

Figure 4.7 depicts the resulting state space from applying Algorithm 3 on
the SDF of Figure 4.1 when s1 is the schedule of interest (i.e., sc). In the SDF of
Figure 4.1, five consecutive decision states (Ω = {ω5 · · ·ω9}) have been found for
s1 and no decision state has been found for s0 (see Figure 4.7).

4.4.5.3 Redundant decision states

Here, we explain an optimization proposed in DSM to remove unnecessary decision
states. DSM adds some components (per decision state) to create a dependency
from the actor of choice of a decision state to the other opponent actors of that
decision state. Such a dependency delays the firing of those opponent actors to
the state after the decision state. The added components are explained in detail
in Section 4.4.5.5.

It is possible to have several consecutive decision states which are delaying
the firing of an actor to several states later. For example, three consecutive
decision states (ω7 − ω9) exist in Figure 4.7 that all delay the firing of a1; the
added components in ω7 delay the sixth firing of a1 to ω8; the added components
in ω8 delay the sixth firing of a1 to ω9; and so on. The latest decision state
in the sequence of decision states ω7 − ω9 is enough to delay the firing of a1 to
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ω10. Hence, the decision states ω7 − ω8 are redundant and can be removed from
the decision state set Ω. The function reduceDecisionStates is responsible for
removing redundant decision states. Note that it would be possible to perform
this reduction during the decision state identification step. This optimization can
significantly reduce the number of extra components in the final SDF. Decision
state ω5 is also redundant according to our optimization. So, only two decision
states ω6 and ω9 are necessary to model s1 in the SDF of Figure 4.1.

4.4.5.4 Decision state folding

In Algorithm 2, the input PSOSs are normalized to find all decision states. The
normalization of PSOSs is required to explore sufficient states of an SDF. Con-
sider PSOSs s2 = 〈a0〉∗ and s3 = 〈a2 a1〉∗ for our second example SDF in Figure
4.8. To obtain normalized PSOSs, µ2 and µ3 must be equal to 3 and 4 re-
spectively. This leads to the following normalized PSOSs: s′2 = 〈(a0)3〉∗ and
s′3 = 〈(a2 a1)4〉∗. Decision state identification for s′3 results in 5 decision states.(a2
−
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shows the corresponding execution of s′3. In

construct
(
ax
ay

)
, ax is the enabled actor in line with the PSOS and ay is the other

enabled actor if any at all. In this execution, the 1st, 3rd, 5th and 7th states are
similar in behavior since the same actor, i.e., a2, is expected to fire in all of those
states.

Modeling a repetitive behavior for a PSOS si, also models this behavior for
its normalized PSOS (i.e., s′i = (si)

µi). Using this property, we can merge decision
states appearing in all µi repetitions of the PSOS si. We call this optimization
decision state folding (line 11 in Algorithm 2). Folding groups the similar states.
In our example, the 1st, 3rd, 5th and 7th states are grouped and represented with
one state. Similarly, the 2nd, 4th, 6th and 8th states are grouped. So, the above
execution shrinks to

(
a2
a1

)(
a1
a2

)
. After grouping all similar states in the original

execution into a representative state, it is considered a decision state if any of the
group members is a decision state. In practice, a decision state in a state of the new
folded execution will be considered as a decision state for each of the equivalent
states in the original execution. This cannot violate the execution according to
the input PSOS because DSM ensures that only the actor of choice executes in a
decision state. This optimization could reduce the number of decision states up
to µi times in a normalized PSOS s′i. The firings related to those actors enabled
in the last state except the actor of choice of that state are supposed to happen in
subsequent PSOS iterations; this is already ensured by preventing inter-iteration
execution (see Section 4.4.4). Hence, after folding, the last state can be ignored as
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Figure 4.8: A third example SDF.
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a decision state. In our third example, decision state folding reduces the number
of decision states from 5 to 1 for the PSOS s3.

4.4.5.5 Enforcing a schedule in decision states

In our first example SDF, only two actors are enabled in decision state ω6 (i.e.,
∆6 = {a1, a3}) (see Figure 4.7). Actor a1 is the actor of choice in ω6 and a3

is the only opponent actor whose execution should be delayed to the state after
ω6. To enforce firing of a1 and to prevent firing of a3 in ω6, DSM creates a
dependency from a1 to a3 by adding actor a1.ω6 and channels c1.a1ω6 and c1.a3ω6 .
The rates and initial tokens related to the new elements are set in such a way
that the execution of the graph in other states are not affected. The actor a1.ω6

is only responsible for decision state ω6. So, a1.ω6
needs to only fire once in an

iteration. For this purpose, the port rates of a1.ω6
on its channels (i.e., c1.a1ω6

and
c1.a3ω6) are set to 6. The added dependency channels from the newly added actor
in decision state ωj (e.g., a1.ω6 in ω6) to the opponent actors which are not the
actor of choice (e.g., a3 in ω6) only provide enough tokens for their execution in
states ω0−ωj−1 (e.g., 0 tokens for a3 in ω0−ω5); these actors cannot be enabled
due to the lack of initial tokens in the newly added channels in the corresponding
decision state (e.g., there will be no token in c1.a3ω6

in ω6). Hence, only the actor
of choice amongst the opponent actors of a decision state will be enabled in that
state (e.g., only a1 can fire in ω6). The delayed actors in a decision state (e.g.,
ωj) will have sufficient tokens on the incoming channel from the newly added
actor for that decision state (i.e., ai.ωj

) after firing of the actor of choice in ωj .
For example, there will be 6 tokens in channel c1.a1ω6

after the firing of a1 (i.e.,
the actor of choice) in decision state ω6; hence, the actor a1.ω6

immediately fires
and then provides sufficient tokens for later firings of a3. So, the delayed actor
in decision state ω6 (i.e., a3) will no longer be blocked due to the absence of
tokens in channel c1.a3ω6

after the decision state ω6. The firing of actor a1 after
decision state ω6 produces 1 token in channel c1.a1ω6

and the firings of actor a3

after decision state ω6 consumes 6 tokens from channel c1.a3ω6
; as a result, the

number of tokens in the new channels are reset to the initial values at the end of
one iteration of the schedule s1. Hence, the periodic behavior is also achievable
for the added components.

DSM also adds actor a1.ω9
and channels c1.a1ω9

and c1.a3ω9
to the graph for

the other decision state ω9. The components added in decision state ω9 show
similar behavior as the components added in ω6.

4.5 Modeling Single Appearance Schedules

A well-known class of scheduling techniques are single appearance schedules (SASs)
in which each actor appears exactly once in the LS form. This aspect makes SASs
suitable to minimize code memory size. s2 = 〈(a0a1)5a2〉∗ is a PSOS and SAS for
part of the SDF (i.e., actors a0-a2) in Figure 4.9.

DSM is able to model any PSOS. However, more compact graphs are possible
for SASs. Algorithm 4 presents our single appearance schedule modeling (SASM)
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Figure 4.9: An example SDF.
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Figure 4.10: SDF of Figure 4.9 extended with s2 = 〈(a0a1)5a2〉∗ using SASM.

technique. Similar to DSM, SASM adds some extra actors and channels to the
original SDF to model the given schedules. The original channels and actors
in the schedule-extended SDF are preserved and distinguishable from the newly
added elements by any of our techniques. Hence, both our techniques preserve
the original structure of an SDF. This property can be beneficial when a resource
allocation algorithm needs to be applied on the schedule-extended graph; a re-
source allocation algorithm can easily distinguish an original actor (or channel)
from an actor (or channel) which is added to model the schedules.

We know that each actor appears only once in a SAS; this property can help
us to model a SAS in an SDF in a smarter way than DSM does. An actor (or
a nested inner LS) should be executed a specific number of times before another
actor (or another nested inner LS) starts executing. In s2 = 〈(a0a1)5a2〉∗, the
nested inner LS (a0a1) must be executed 5 times before a2 starts firing. This
type of execution control can be handled using a counter construct. The key idea
of SASM is to implement a counter concept in the graph. Later, we explain how
we implement such counters to model SASs in an SDF. Similar to DSM, auto-
concurrency can be eliminated by adding a self-edge with 1 initial token to each
actor in the SDF (see line 1 in Algorithm 4). The rest of Algorithm 4 deals with
implementing the counter concept.

Figure 4.10 shows the graph of the SDF in Figure 4.9 which models the
schedule s2 using SASM. Schedule s2 has a nested a0a1; this can be replaced
with α01 to form a looped schedule representation (i.e. s2 = 〈(α01)5a2〉∗ where
α01 = a0a1). A counter in SASM is implemented by one actor acnti (e.g., acnt3 in
Figure 4.10), a counter channel ccnti (e.g., ccnt3) and a limiter channel climi

(e.g.,
clim3

). A counter in SASM has two properties: first, it counts the number of times
that element αi (e.g., α01 above) is being executed; second, it limits the element
αi+1 (e.g., a2) to be executed to βi+1 times (e.g., 1 as the number of repetitions
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Algorithm 4: SAS Modeling (SASM)

input : SDF G(A,C), PSOS si ={(α1)β1(α2)β2 ...(αn)βn}
output: G extended with schedule si

add a self edge with 1 initial token for each a ∈ Ai1

for i← 1 to n do2

if αi is not an actor then3

SASM (G, αi)4

AA(G, acnti)5

/* adding a counter channel */

AC(G, ccnti , rightMost(αi), acnti , 1, RN(rightMost(αi), α
βi

i ), 0)6

/* adding a limiter channel */

if i = n then7

AC(G, climi , acnti , leftMost(α1), RN(leftMost(α1), αβ1

1 ), 1,8

RN(leftMost(α1), αβ1

1 ))
else9

AC(G, climi
, acnti , leftMost(αn+1), RN(leftMost(αn+1), α

βn+1

n+1 ), 1,10

0)

of a2 is one). The counter channel ccnti (e.g. ccnt3) is placed from the rightmost
actor in αi (e.g., actor a1 in α01) to the actor acnti (e.g., acnt3); the production
rate of the rightmost actor in αi on ccnti is set to 1 and the consumption rate
of acnti on ccnti is set to the number of times that the rightmost actor in αi can
be executed in αi

βi (e.g., 5 as the number of times that a1 can be executed in
α01

5 is five). In Algorithm 4, the function rightMost(αi) (leftMost(αi)) returns
the rightmost (leftmost) actor in element αi (e.g. rightMost((a0a1)5) returns
actor a1). The function RN(a,αi

βi) retrieves the count of a in element αi
βi (e.g.

RN(a0,(a0a1)5) returns 5).
The limiter channel climi (e.g., clim3) is placed from acnti (e.g., acnt3) to

the leftmost actor in the next element, i.e., αi+1 (e.g., a2). SASM performs
the placement of the counter constructs in a circular way. In other words, the
next element of αj is considered to be α(j+1) mod n where j ∈ N∧ j ≤ n for a LS

{(α1)β1(α2)β2 ...(αn)βn}. The production rate of acnti on climi
is set to the number

of times that the leftmost actor in αi+1 can be executed in αi+1
βi+1 (e.g., 1 as

the number of times that a2 can be executed in element a2) and the consumption
rate of the leftmost actor in the next element, i.e., αi+1, from climi is set to 1. So,
element αi+1 depends on actor acnti (because of climi) and actor acnti depends
on αi (because of the ccnti); the βi executions of αi produce enough tokens on the
counter channel ccnti and then actor acnti can be fired. The firing of actor acnti
provides enough tokens on limiter channel climi

to only allow βi+1 executions for
the next element αi+1. Hence, by adding these components we enforce that αi+1

can be executed βi+1 times after αi is executed βi times.
The limiter channel of the counter construct added for the last element (i.e.,
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Figure 4.11: Optimization of SASM.

(αn)βn) in a LS {(α1)β1(α2)β2 ...(αn)βn} is initialized with some initial tokens to
prevent a deadlock in the graph. The number of initial tokens on the limiter
channel is set to the count of the left most actor of α1 in the first element of that
LS (i.e., (α1)β1). Line 8 in SASM performs the token initialization. Inter-iteration
execution cannot happen because SASM always creates a dependency from the
last actor in the schedule to the first actor in the schedule.

In Figure 4.10, the actor acnt3 is added to count the number of times that
the sequence a0a1 is executed. The consumption rate of actor acnt3 on its input
channel is 5; this means that after 5 executions of sequence a0a1 the next actor
(i.e., a2) can be enabled. Also, the actor acnt3 limits the number of times that
actor a2 should get enabled; this can be done by choosing the value 1 as production
rate of actor acnt3 on its output channel. In other words, the actor a2 can only
fire once because of the limitation imposed by actor acnt3 . The actor acnt1 (acnt2)
is added to ensure the single execution of actors a1 (a0) after the single execution
of actor a0 (a1). The actor acnt4 is added to ensure that the sequence a0a1 can
be executed 5 times after the actor a2 is executed once.

SASM is applied recursively (line 4 in SASM) to model the nested LS αi. For
example, SASM(G, a0a1) will be called inside SASM(G, (a0a1)5a2); the result of
the recursive call is shown in Figure 4.10 with a rectangle marking the inner-loop.

Some of the elements added by SASM can be removed without affecting
the outcome. Consider Figure 4.11(a) which contains a counter actor and two
channels that can be discarded in the following cases:

• The counter actor acnti can be removed if rate p is equal to 1. The counter
actor and two channels in the original form are replaced with channel cxy
(see Figure 4.11(b)).

• The counter actor acnti can be removed if rate q is equal to 1. The counter
actor and two channels in the original form are replaced with channel cxy
(see Figure 4.11(c)).

The newly replaced channel cxy is only necessary if there is no other equivalent
channel in the original SDF. The channels (p, q) and (p′, q′) which have the same

source actor ax ∈ A and sink actor ay ∈ A are equivalent if the equation Rate(p)
Rate(p′) =

Rate(q)
Rate(q′) = ω0(c)

ω0(c′) is true. Applying these optimizations on Figure 4.10 replaces all

components added by SASM by channel c01 (see Figure 4.12). The SDF which
models schedule s2 in the SDF of Figure 4.9 with DSM and the HSDF-based
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Figure 4.12: SDF of Figure 4.9 extended with s2 = 〈(a0a1)5a2〉∗ using optimized
SASM.

techniques result in a graph with 10 (26) and 13 (21) actors (channels) resp. The
SDF which models the same schedule with SASM only has 5 (9) actors (channels).

4.6 Correctness of DSM

This section discusses the correctness of DSM in modeling a single PSOS for a
sub-set of the actors of the SDF. The extra actors and channels added by our
techniques to model a PSOS (e.g., si) are only placed between actors of that
schedule (i.e., Ai) and this is not imposing any restriction on the other actors of
the SDF (i.e., actors in A\Ai). Hence, if we can model a single PSOS in the SDF,
then we can model multiple PSOSs by applying the algorithm multiple times.

DSM adds some actors, denoted by Asi , and channels, denoted by Csi to
model the PSOS si in SDF G(A,C). G′(A′, C ′) is the SDF that models si in G
using DSM where A′ = A ∪Asi and C ′ = C ∪ Csi .

The existence of a repetition vector for an SDF G(A,C) ensures a balance
between production and consumption rates. Hence, a balance equation can be
defined as follow for each channel c = (p, q) ∈ C where p and q are ports of
actors ap and aq respectively: Rate(p) · γ(ap) = Rate(q) · γ(aq). The existence
of a repetition vector γ for an SDF ensures that each balance equation related
to a channel in the SDF holds; under this situation the SDF is consistent. The
following proposition shows the consistency of the schedule-extended SDF G′.

Proposition 1. The SDF G′(A′, C ′) which models PSOS si in the consistent
SDF G(A,C) is consistent.

Proof. The SDF G is consistent. Hence, a non-trivial repetition vector γ exists
for G. We need to show that a non-trivial repetition vector γ′ exists for G′. The
balance equation related to each self-loop added by DSM (in line 1 of Algorithm
2) to remove auto-concurrency is always valid because the source and destination
actor of the self-loop channel are identical with production and consumption rate
equal to 1. The rates of the other channels added by DSM (for decision states
or inter-iteration execution) share the following properties: (1) the newly added
channel c ∈ Csi , which is added by DSM (in all lines 7, 8, 16 or 18 of Algorithm
2), is between an actor ap ∈ A(= A′ \ Asi) and an actor aq ∈ Asi ; (2) the rate
of the new channel on the side of the actor aq is equal to the count of the actor
ap in one iteration of si (i.e., CNT (ap, si)); (3) the rate of the new channel on
the side of the actor ap is equal to 1. From these properties we conclude that
aq ∈ Asi , which is added by DSM (in both line 6 and 13 of Algorithm 2), fires
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only once in each iteration of si. Consider aq as the producer (see Figure 4.13(a))
of the newly added channel (i.e., (aq, ap) ∈ Csi); then, the only firing of aq in one
iteration of si provides CNT (ap, si) tokens for all firings of ap in one iteration of
si. Now reconsider actor aq as the consumer (see Figure 4.13(b)) of the newly
added channel (i.e., (ap, aq) ∈ Csi); as a result, all firings of actor ap in one
iteration of si provide CNT (ap, si) tokens for only one firing of aq.

Let set Ai be the set of the actors in the PSOS si. Consider that each actor
ap ∈ Ai appears r · γ(ap) times in the PSOS si (r = u

v where u, v ∈ N) where the
value r is identical for all actors in si. The appearance count of the actor ap ∈ Ai
in si is represented by CNT (ap, si) and it is assumed to be equal to u

v · γ(ap).
We can write the above statement as follow: CNT (ap, si) · v = γ(ap) · u. From
this equation we can conclude that u iterations of the SDF G cause v iterations of
the PSOS si, leading to v firings of each of the actors added by DSM (i.e., actors
from the set Asi). So, in u iterations of the SDF G (or v iterations of the PSOS
si) the following equation holds for each channel (ap, aq) ∈ Csi or (aq, ap) ∈ Csi
(where ap ∈ Ai and aq ∈ Asi):

CNT (ap, si)︸ ︷︷ ︸
Rate(aq)

· v︸︷︷︸
γ′(aq)

= 1︸︷︷︸
Rate(ap)

· γ(ap) · u︸ ︷︷ ︸
γ′(ap)

(4.1)

The entries of the repetition vector of the schedule-extended graph can be
obtained using Equation 4.1. So a non-trivial repetition vector γ′ can be found
for the schedule-extended SDF G′. The relation between the repetition vector of
the schedule-extended SDF and the repetition vector of the original graph is as
follows: γ′(aq) (where aq ∈ Asi) is equal to v and γ′(ap) (where ap ∈ A) is equal
to γ(ap) · u.

The following proposition states that inter-iteration execution for actors of
a PSOS si is impossible in the SDF G′ which extends the original SDF G with
PSOS si using DSM.

Proposition 2. PSOS inter-iteration execution is impossible for any actor ap-
pearing in PSOS si = 〈α1α2 . . . αn〉∗ in the SDF G′(A′, C ′), which models PSOS
si in the SDF G(A,C) using DSM.

Proof. Let set Ai be the set of the actors in the PSOS si. In one iteration of a
PSOS si, an actor ap ∈ Ai could be enabled more often than its designated num-
ber (i.e., CNT (ap, si) times). DSM prevents this by creating a dependency from
the last actor appearing in si (i.e., actor aL = αn) to the first actor appearing
in si (i.e., actor aF = α1) (see lines 4-8 in DSM). This dependency is created by

CNT(ap,si)1
ap aq

(a) aq is producer

CNT(ap,si)1
ap aq

(b) aq is consumer

Figure 4.13: Extra actor aq added by DSM in different situations.



4.6: Correctness of DSM 75

inserting a new actor ai.end and two channels ci.pre and ci.pro. The source (des-
tination) actor of the channel ci.pre is aL (ai.end) with rate 1 (CNT (aL, si)). So,
one firing of ai.end needs CNT (aL, si) tokens available in ci.pre; for this purpose
actor aL should fire CNT (aL, si) times. The destination actor of the channel
ci.pro is aF ; the consumption rate of aF from ci.pro is 1. The source actor of
the channel ci.pro is ai.end; the production rate of ai.end to ci.pro is CNT (aF , si).
So the firing of aF related to one iteration of PSOS si needs CNT (aF , si) tokens
available in ci.pro; for this purpose actor ai.end should fire once. The channel ci.pro
is initialized with CNT (aF , si) number of tokens; this number of tokens provides
enough tokens for actor aF to fire CNT (aF , si) times in one iteration of PSOS si.
The subsequent firing of actor aF depends on the firing of the actor ai.end and the
firing of the actor ai.end demands CNT (aL, si) times a firing of actor aL. Hence,
the firing of aF belonging to the subsequent iteration of si can be performed only
after aL finishes all of its firings belonging to the current iteration of si (i.e., after
completion of the current iteration of si). This holds because actor aF is the first
actor which should be fired in an iteration of si and other actors in si cannot get
enabled before the first firing of aF . This second fact is guaranteed by adding
decision state constructs (i.e., lines 12-18 in DSM) for any possible decision state
and Proposition 6 below.

Even after eliminating inter-iteration execution from the SDF, multiple actors
from a schedule may be enabled in an SDF iteration. We call such a state a
decision state. The following proposition shows that analyzing only one SDF
iteration is enough to identify all possible decision states.

Proposition 3. Executing an SDF G(A,C) for one iteration is enough to find
all decision states within a PSOS si.

Proof. Let the set Ai be the set of the actors in si and Ao = A\Ai the remaining
actors in A. Consider inter-processor channels, which are defined as channel
originating from the actors in Ao to the actors in Ai denoted by Cipc = {(ap, aq) ∈
C|ap ∈ Ao ∧ aq ∈ Ai}. The execution of an actor ap ∈ Ao where (ap, aq) ∈ Cipc
up-to its entry in the repetition vector of the SDF produces γ(ap) · Rate(ap)
tokens in the corresponding channel (ap, aq) ∈ Cipc. Actor aq ∈ Ai consumes
those produced tokens within one iteration of the normalized PSOS si (because
γ(ap) ·Rate(ap) = γ(aq) ·Rate(aq)). Hence, actors in Ai can receive the required
tokens from all inter-processor channels Cipc for one iteration of the normalized
PSOS si. This means that all possible decision states related to PSOS si are
detectable.

Actors in Ao could possibly fire more than the number mentioned above (i.e.,
corresponding value in vector γ) if the channel dependencies in the SDF allow
additional firings of these actors. This could cause more than enough tokens (for
one iteration of the normalized PSOS si) in channels Cipc. This could enable an
actor in Ai more than its designated number in one iteration of the normalized
PSOS si. To avoid this undesirable actor enabling, some constructs are added to
the graph to prevent inter-iteration execution (see Proposition 2). As a result,
extra tokens produced by further firing of the actors Ao cannot enable any actor
in Ai more than its designated value in one iteration of the normalized PSOS si.
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So, executing actors in the SDF up-to their repetition vector entry (i.e., one SDF
iteration) is enough to find all decision states within si.

The identified decision states may be redundant. Proposition 4 discuses the
proposed decision state reduction in the DSM.

Proposition 4. Let σ be an execution of an SDF (A,C) and a PSOS si which
schedules actors Ai ⊆ A. In the execution σ, consider y consecutive decision
states ωx+1, ωx+2, · · · , ωx+y. Assume that ao ∈ Ai is an opponent actor in each
of these decision states but not the actor of choice in any of them. It is sufficient
to only consider the last decision state ωx+y to postpone the firing of the opponent
actor ao in those consecutive decision states to the state ωx+y+1 ∈ σ.

Proof. The purpose of the components added by DSM (i.e., lines 13-18 in Algo-
rithm 2) in a decision state ωj ∈ Ω is to prevent any opponent actor ao which is
not the actor of choice in decision state ωj from getting enabled in that state and
as such to postpone that firing to the state ωj+1. It is assumed that the opponent
actor ao is enabled in the consecutive decision states ωx+1, ωx+2, · · · , ωx+y. Sup-
pose that the opponent actor ao was fired e times before the first decision state
(i.e., ωx+1) where 0 ≤ e < γ(ao). The components added by DSM in the last
decision state ωx+y prevent the opponent actor ao from getting enabled for the
(e+ 1)th time in decision state ωx+y. As a result, the opponent actor ao can also
not be enabled in states ωx+1, ωx+2, · · · , ωx+y−1 after adding DSM components
for decision state ωx+y. So, the components added by DSM in the last decision
state of consecutive decision states are enough to prevent the firing of an opponent
actor which is not the actor of choice in those consecutive decision states.

Decision state folding overlaps the consecutive repetitions of the designated
PSOS in an SDF iteration to reduce the number of decision states. The following
proposition states that decision state folding does not dismiss any decision state.

Proposition 5. Consider PSOS si = 〈α1α2 . . . αn〉∗ for the sub-set of actors
Ai from SDF (A,C); assume si is repeated µi times to form the corresponding
normalized PSOS (s′i = 〈(si)µi〉∗) to identify decision states related to PSOS si.
After decision state folding all decision states are preserved.

Proof. Normalization can be done by repeating si µi times (µi is the normal-
ization factor of si). Decision state identification is applied to the normalized
PSOS s′i = 〈(si)µi〉∗ = 〈α1α2 . . . αn︸ ︷︷ ︸

1st

α1α2 . . . αn︸ ︷︷ ︸
2nd

· · ·α1α2 . . . αn︸ ︷︷ ︸
µi

th

〉∗. Decision point

constructs are added based on the given PSOS si. Folding groups the identified
decision states of the normalized PSOS s′i in the following manner: the state re-
lated to the firing of an actor αj in si is considered as decision state if a decision
state is found at least in one of the µi states that αj fires in the execution related
to s′i.

The corresponding state related to firing of the actor αj in si which is consid-
ered as a decision state imposes a decision state to all µi corresponding states of
actor αj in s′i. So, no decision state will be lost after decision state folding and the
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only effect is introducing unnecessary decision state controlling. We need to show
that this extra controlling does not affect the execution of the SDF according to
the schedule. The construct added in a decision state is used to guarantee exe-
cution of the actor of choice of that decision state. Even if a state is not a decision
state, the added constructs for that unnecessary decision state only ensure that
the only enabled actor in that state (i.e., the actor of choice) can be fired. This
does not violate the actor firing order according to the PSOS in that state.

DSM adds some components per decision state to enforce the firing of the
enabled actor in a decision state which is in line with the given PSOS (i.e., actor
of choice). Proposition 6 explains how those components can guarantee the firing
of the actor of choice in the decision state.

Proposition 6. The PSOS si is a schedule for actors Ai ⊆ A from SDF (A,C).
Let ωj ∈ Ω be a decision state within PSOS si and ∆j ⊆ Ai the set of the opponent
actors in decision state ωj. The actor of choice in decision state ωj (denoted by
actor ac) is the only actor which can fire in decision state ωj among all actors
in ∆j after applying DSM. Also, one iteration of the resulting schedule-extended
SDF resets the tokens to their initial positions (i.e., the periodic behavior of the
original SDF is also preserved).

Proof. We need to show that the opponent actors ∆j \ {ac} can not be enabled
in the decision state ωj after applying DSM. Accordingly, the actor of choice ac
in the decision state ωj is the only actor which can fire in ωj among all actors in
∆j .

In the DSM technique, actor ai.ωj
is added for each decision state ωj ∈ Ω

within the PSOS si. An opponent actor ak ∈ ∆j \ {ac} in the decision state ωj
is dependent on the new actor ai.ωj

because of the added channel ci.akωj
; this

channel is initialized with BEF (ak, pos[ωj ], si) tokens. The rate of the channel
ci.akωj on the side of ak (ai.ωj ) is equal to one (CNT (ak, si)). The new actor
ai.ωj

is also dependent on the actor of choice ac of the decision state ωj because
of the added channel ci.acωj

; this channel is initialized with AFT (ac, pos[ωj ], si)
tokens. The rate of the channel ci.acωj

on the side of ac (ai.ωj
) is equal to one

(CNT (ac, si)).
An opponent actor ak ∈ ∆j \ {ac} fires BEF (ak, pos[ωj ], si) times before

decision state ωj and every time the opponent actor ak consumes one token from
ci.akωj

. So, the BEF (ak, pos[ωj ], si) firings of ak before ωj consume all tokens
which were available in channel ci.akωj

. Hence, the opponent actor ak ∈ ∆j \{ac}
cannot fire in ωj . Firings of the opponent actor ak ∈ ∆j \ {ac} from decision
state ωj onward will be dependent on the firing of ai.ωj to provide the required
tokens in channel ci.akωj . As mentioned before, ai.ωj depends on the actor of
choice ac. So, the opponent actor ak ∈ ∆j \ {ac} cannot fire from decision state
ωj onward, unless the actor of choice ac of the decision state ωj fires. Hence, the
actor of choice ac is the only actor among the other opponent actors in ωj which
can fire. The actor of choice ac is fired BEF (ac, pos[ωj ], si) times by state ωj and
this results in BEF (ac, pos[ωj ], si) tokens being produced in channel ci.acωj ; as
channel ci.acωj is initialized with AFT (ac, pos[ωj ], si) tokens, the number of tokens
in this channel is BEF (ac, pos[ωj ], si) +AFT (ac, pos[ωj ], si) = CNT (ac, si) after
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firing ac in decision state ωj . So, there will be sufficient tokens (for one firing of
ai.ωj ) on the only channel leading to ai.ωj after firing of the actor of choice ac in
decision state ωj . Then, firing of ai.ωj

consumes all CNT (ac, si) tokens that are
present in channel ci.acωj

and it produces CNT (ak, si) tokens in channel ci.akωj

(ak ∈ ∆j \ {ac}); therefore, the opponent actors ∆j \ {ac} are not any more
dependent on ai.ωj in the remainder of the current iteration of si.

The firings of the opponent actor ak ∈ ∆j \ {ac} after decision state ωj con-
sumes AFT (ak, pos[ωj ], si) tokens from channel ci.akωj

; as a result, at the end of
the PSOS iteration, the number of tokens on this channel returns to its initial value
which is BEF (ak, pos[ωj ], si) (because BEF (ak, pos[ωj ], si) = CNT (ak, si) −
AFT (ak, pos[ωj ], si)). The actor of choice ac fires AFT (ac, pos[ωj ], si) times after
decision state ωj and the number of tokens in ci.acωj returns toAFT (ac, pos[ωj ], si).
These initial token resettings at the end of the PSOS iteration ensure the peri-
odic behavior for the added components in each decision state. Thus, in a decision
state only the actor of choice (which is in line with the given schedule) amongst
all opponent actors of the decision state can fire and this eliminates any non-
determinism because of the decision state.

The following theorems state the correctness of DSM in modeling a single
PSOS for a sub-set of the actors of the SDF.

Theorem 1. Consider PSOS si as a schedule for actors Ai ⊆ A from SDF
G (A,C). Assume G′(A′, C ′) is the SDF that models si in G using DSM. For any
execution σ′ of G′(A′, C ′) it holds that σ satisfies si where it is assumed that σ is
the execution of G(A,C) with orderList(σ,A) = orderList(σ′, A).

Proof. Proposition 6 states that in a decision state of si, an enabled actor of the
decision state which is in line with si is the only actor able to fire in that state
among all enabled actors in Ai. So, the order of si is the only possible order of
actor firing for those actors of G′ in the set Ai. Proposition 2 implies that the
next PSOS iteration cannot interfere. Hence, for any execution σ′ of G′(A′, C ′),
orderList(σ′, Ai) has the form of (si)

κ where κ ∈ N (i.e., infinite repetition of
si). It is assumed that orderList(σ,A) = orderList(σ′, A); as Ai ⊆ A, we can
conclude that orderList(σ,Ai) = orderList(σ′, Ai). Hence, orderList(σ,Ai) also
has the form of (si)

κ and this form satisfies si; in other words, σ satisfies si.

Theorem 2. Consider PSOS si as a schedule for actors Ai ⊆ A from SDF
G(A,C). Assume G′(A′, C ′) is the SDF that models si in G using DSM. For any
execution σ of G that satisfies si it holds that there is exactly one σ′ that is an
execution of G′(A′, C ′) such that orderList(σ,A) = orderList(σ′, A).

Proof. It is assumed that the firing order of actors belonging to the set A in
execution σ′ has the same actor firing order as in execution σ and execution σ
satisfies si. We should show that there is precisely one execution with the property
of execution σ′ and that is a valid execution for G′. In a precise way, the actor
firing order related to the set A in execution σ is a possible actor firing order for
the original actors (i.e., actors not added by DSM) of G′ when σ′ is an execution of
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G′. Actor ax from orderList(σ,A) belongs either to Ai or to Ao = A\Ai (x ∈ N).

The state transition ωx
ax−→ ωx+1 in execution σ is related to the firing of ax. The

state transition ω′y
ay−→ ω′y+1 in execution σ′ is related to the firing of ay. The

difference between states from execution σ and σ′ is only in the extra channels
added by DSM (i.e., Csi). Any channel from Csi is connected to an actor from Ai;
in other words, it is not connected to any actor from Ao. Incoming channels of an
actor determine whether that actor can fire or not. Consider ω′y from execution
σ′ has the same content of state ωx from execution σ for all channels in C. Hence,
each ax ∈ Ao that fires in ωx of execution σ can also fire in ω′y of execution σ′ (i.e.,
ay is ax) because the content of the state related to channels Csi has no influence
on actor enabling for any actor from Ao. But, when an actor ax belongs to Ai,
the content of the state related to channels C ′ could manipulate the actor firing
order. It is assumed that firings of actor ax in execution σ satisfy the PSOS si;
actor ax can also fire in the corresponding state (i.e., ω′y) of execution σ′ (i.e., ay
is ax) because components added by DSM force the firing of the actor which is in
line with the given si (i.e., ax) among all actors in Ai (see Proposition 6). So, the
firing order of actors from A′ \Asi in execution σ′ follows the same firing order as
it is indicated in execution σ. Each actor a ∈ Asi also has a single possible firing
order in each PSOS iteration; if a is added to control the actor firing in a decision
state, it fires before the actor of choice in the decision state (see Proposition 6)
and if it is added for the inter-iteration prevention, it fires at the end of the PSOS
iteration (see Proposition 2). Hence, there exists only one possible firing order in
execution σ′ for each actor a ∈ Asi . So, all actors from A′ have exactly one firing
order in execution σ′ where orderList(σ,A) = orderList(σ′, A).

The size of the schedule-extended graph (e.g., G′) is dependent on the number
of decision states found in the given schedule (e.g., si). In this section, decision
state identification for a sub-set of actors of G (i.e., Ai ⊆ A) which belong to the
schedule of interest (i.e., si) is explained regardless of existing other schedules for
the rest of the actors in the SDF (i.e., actors in Ao = A \ Ai). In our implemen-
tation, we consider other possible schedules designated for the rest of the actors
(i.e., actors in Ao) to reduce the number of the decision states and as a result the
size of the schedule-extended graph. As we explained in Section 4.4.5.2, actors
which do not belong to si should fire according to their schedule (if there is any)
to perform their maximal execution. Firing of any actor ao ∈ Ao, which belongs
to another PSOS sj (j 6= i), in function maxExec of the DSM algorithm should
satisfy the schedule to which ao belongs. In other words, a0 in function maxExec
of DSM fires if (1) ao is enabled and (2) its firing satisfies sj . Without the second
condition, firing of ao could enable an actor from si and lead to unnecessary de-
cision states. So, considering other schedules in the function maxExec of DSM
algorithm removes such redundant decision states.
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4.7 Correctness of SASM

This section discusses the correctness of SASM in modeling a periodic static-
order SAS for a sub-set of the actors of the SDF. We can model multiple SASs
by applying the algorithm multiple times.

SASM adds some actors, denoted by Asi , and channels, denoted by Csi to
model the SAS si in SDF G(A,C). G′(A′, C ′) is the SDF that models si in G
using SASM where A′ = A ∪Asi and C ′ = C ∪ Csi .

Between any (nested) LSs αu and αv, where v = (u mod n) + 1, in a LS
SAS si ={(α1)β1(α2)β2 ...(αn)βn}, SASM adds one counter actor acntu and two
channels ccntu and climu . The following propositions shows how these components
control the actor firings in αu and αv.

Proposition 7. For any (nested) LSs αu and αv, where v = (u mod n) + 1, in
LS si ={(α1)β1(α2)β2 ...(αn)βn}, SASM ensures that αv can only be executed for
βv times after αu is executed for βu times.

Proof. SASM creates a dependency from the right-most actor (RMA) in αu
to the left-most actor (LMA) in αv by adding one counter actor acntu and two
channels ccntu and climu

. The channel ccntu is placed from the RMA in αu to
acntu ; the production rate of the RMA in αu on channel ccntu is set to one and
consumption rate of acntu on channel ccntu is set to the number of times that the
RMA in αu is needed to fire in βu executions of αu. Hence, actor acntu can fire
once after the looped schedule αu is executed for βu times (the 1st behavior). The
channel climu is placed from acntu to the LMA in αv; the production rate of acntu
on channel ccntu is set to the number of times that the LMA in αv is needed to
be fired in βv executions of αv and the consumption rate of the LMA in αv on
channel ccntu is set to one. Hence, the looped schedule αv can be executed for
βv times after one firing of acntu (the 2nd behavior). It is assumed that SASM is
recursively applied to each (nested) looped schedules in si. Considering both of
the explained 1st and 2nd behaviors provides that αv can only be executed for βv
times after αu is executed for βu times.

SASM only places a specific number of initial tokens (i.e., the number of
times that the LMA of α1 should fire in α1

β1) on the last limiter channel (i.e.,
climn

) to prevent deadlock in execution; the following proposition explains how
this prevents inter-iteration execution in the schedule-extended graph.

Proposition 8. Inter-iteration execution is impossible for any actor appearing
in SAS si in the SDF G′(A′, C ′).

Proof. Considering the behavior described in Proposition 7 for all pairs of con-
secutive (nested) looped schedules in si ensures that the next schedule iteration
cannot be started before the current schedule iteration ends. The initial token
placed on the last limiter channel (i.e., climn

) only provides tokens for β1 ex-
ecutions of the looped schedule α1; the executions of α1 related to the current
schedule iteration consumes all tokens on the last limiter channel and this prevents
the next iteration from being executed until completion of the current iteration
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(i.e., αn is executed for βn times).

The following theorems state the correctness of SASM. These theorems are
similar to the theorems given in Section ??.

Theorem 3. Consider SAS si ={(α1)β1(α2)β2 ...(αn)βn} as a schedule for actors
Ai ⊆ A from SDF G (A,C). Assume G′(A′, C ′) is the SDF that models si in
G using SASM. For any execution σ′ of G′(A′, C ′) it holds that σ satisfies si
where it is assumed that σ is the execution of G(A,C) with orderList(σ,A) =
orderList(σ′, A).

Proof. Considering Proposition 7 for all pairs of consecutive (nested) LSs in si
guarantees that the order specified in si is the only possible order of actor firing
for those actors of the SDF G′ in the set Ai. Proposition 8 implies that subsequent
SAS iterations cannot interfere. Hence, for any execution σ′ of SDF G′(A′, C ′),
orderList(σ′, Ai) has the form of (si)

κ where κ ∈ N (i.e., infinite repetition of
si). It is assumed that orderList(σ,A) = orderList(σ′, A); as Ai ⊆ A, we can
conclude that orderList(σ,Ai) = orderList(σ′, Ai). Hence, orderList(σ,Ai) also
has the form of (si)

κ and this form satisfies si; in other words, σ satisfies si.

Theorem 4. Consider SAS si as a schedule for actors Ai ⊆ A from SDF
G(A,C). Assume G′(A′, C ′) is the SDF that models si in G using SASM. For
any execution σ of G(A,C) that satisfies si it holds that there is exactly one σ′

that is an execution of G′(A′, C ′) such that orderList(σ,A) = orderList(σ′, A).

Proof. It is assumed that the firing order of actors belonging to the set A in
execution σ′ is the same as in execution σ and σ satisfies si. We should show that
there is precisely one execution with the property of execution σ′ and that is a
valid execution for G′. The actor firing order related to the set A in execution
σ (i.e., orderList(σ,A)) is a possible actor firing order for the original actors
(i.e., actors not added by SASM) of G′ when σ′ is an execution of G′. Actor
ax from orderList(σ,A) belongs either to Ai or to Ao = A \ Ai (x ∈ N). The

state transition ωx
ax−→ ωx+1 in execution σ is related to the firing of ax. The

state transition ω′y
ay−→ ω′y+1 in execution σ′ is related to the firing of ay. The

difference between states from execution σ and σ′ is only in the channels added
by SASM (i.e., Csi). Any channel from Csi is connected to an actor from Ai;
in other words, it is not connected to any actor from Ao. Incoming channels of
an actor determine whether that actor can fire or not. Consider state ω′y from
execution σ′ has the same content of state ωx from execution σ for all channels
in C. Hence, each ax ∈ Ao that fires in ωx of execution σ can also fire in ω′y of
execution σ′ (i.e., ay is ax) because the content of the state related to channels
Csi has no influence on actor enabling for any actor from Ao. But, when an actor
ax belongs to Ai, the content of the state related to channels C ′ could manipulate
the actor firing order. As we assume firings of ax in execution σ satisfy si, ax can
fire in the corresponding state (i.e., ω′y) of execution σ′ (i.e., ay is ax) because
components added by SASM force the firing of the actor which is in line with
the given SAS si among all actors in Ai (considering Proposition 7 for all pairs
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of consecutive nested LSs) and it is assumed that ax is in line with si. So, the
firing order of actors from A′ \ Asi in execution σ′ follows the same firing order
as indicated in σ. Each counter actor acntx ∈ Asi also has a single possible firing
order in each schedule iteration; it fires once after the LS αx executed for βx times
(see proof of Proposition 7). Hence, there exists only one possible firing order in
σ′ for each actor a ∈ Asi . So, all actors from A′ have exactly one firing order in
σ′ where orderList(σ,A) = orderList(σ′, A).

4.8 Experimental Results

In this section, we evaluate our techniques experimentally. We first explain the
experimental setup. We then evaluate our techniques in terms of the sizes of
the schedule-extended graphs, comparing our techniques to that of [3]. We fur-
ther consider the throughput analysis time when analyzing the schedule-extended
graphs obtained by different techniques. Note that the throughput that is achiev-
able for a given schedule is independent of the way it is encoded. It is the analysis
time itself that is of interest. Finally, we look at the accuracy of buffer sizing
analysis. The accuracy of obtained buffer requirements does depend on the way
schedules are encoded.

4.8.1 Experimental setup

The DSM and SASM techniques have been integrated in the SDF3 [71] dataflow
tool set. We use a set of DSP and multimedia applications (see the first column
of Table 4.1) to assess our DSM and SASM techniques.

In our experiments, applications are bound to a multi-processor platform
using the technique of [69]. A PSOS determines the actor firing order and as such
it influences the enabled actors in a state; as a result, the number of decision states
can be different for different PSOSs. The size of the schedule-extended graph using
DSM depends on the number of decision states in the given schedules. We use a
list scheduling approach from [25] to determine PSOSs for the applications. We
use two different variations to verify DSM in different situations. The first list
schedule uses forward priorities (Lfp) and the second one uses reverse priorities
(Lrp). Actors closer to the inputs of the graph have higher priority in the Lfp
schedules compared to actors closer to the outputs of the graph and vice-versa in
Lrp schedules.

The scheduling technique presented in [60] is used to derive SASs for our
benchmark applications. The technique in [60] also minimizes the required buffer
sizes when determining a SAS. However, the technique in [60] cannot directly be
used for multi-processors. We have utilized the technique of [60] to find SASs for
a multi-processor platform. Initially the binding technique from [69] is used to
bind the SDF to a multi-processor platform. Then, the technique of [60] is applied
to the SDF to derive a SAS for all actors in the SDF. This SAS is decomposed
into some smaller SASs using the binding information; each of the smaller SASs
is a schedule for one processor in the platform. Consider an example SDF with
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5 actors denoted by a0 − a4. Assume a0, a1 and a3 are bound to processor P1

and a2 and a4 are bound to processor P2. Applying the technique of [60] to this
imaginary SDF gives the SAS s0 = 〈(a0(a1

2a2a3
4)3)2a4

5〉∗ for the whole SDF.
This SAS can be decomposed using the binding information to form a SAS for
each of the processor in the platform. Only considering actors bound to P1 in
s0 results in s01 = 〈a0(a1

2a3
4)3〉∗ which is a SAS for the actors bound to P1.

Similarly, a SAS s02 = 〈a2
6a4

5〉∗ can be extracted from s0 to order actors bound
to P2. This way we utilize the technique of [60] for multi-processor platforms.
The optimality of the generated schedules from the performance or buffer sizing
perspective is debatable. However, we use this adapted SAS technique merely
to provide some near-optimal inputs to evaluate our SASM schedule encoding
technique versus the existing technique. Our techniques do not affect the quality
of the scheduling result itself.

4.8.2 Comparison on graph sizes

Table 4.1 contains the size of the schedule-extended graphs using the HSDF-based
and DSM techniques to model Lfp and Lrp schedules for a single core platform
(see the first two rows of each application line). Using schedules generated by
Lfp, the number of decision states is less than when Lrp is used, except in the
channel equalizer and MP3 playback applications. By using Lfp scheduling, actors
closer to inputs have higher priority compared to actors closer to outputs. This
leads to consecutive execution of an actor followed by consecutive execution of
another actor with lower priority and so on. Thanks to our optimization in
DSM, considering only one decision state before a context switch will be sufficient
(e.g., decision state ω9 in Figure 4.7) and the number of decision states can be
reduced significantly. Usually SDF actors closer to outputs are dependent on
actors closer to inputs; this dependency can prevent an actor from being executed
consecutively in a graph scheduled by Lrp. As a result, the number of context
switches in a graph scheduled by Lrp will typically be larger compared to Lfp.
Hence, the effectiveness of the decision state optimization in DSM decreases and
extra elements are required to model the schedules in the graph. The exceptions
in the channel equalizer and MP3 playback are due to the existence of a cycle in
the SDF; the cycle can increase the number of context switches in the schedule
and as a result, Lfp could result in the same or a higher number of decision states
in DSM compared to Lrp. However, DSM always outperforms the HSDF-based
technique regardless of the input schedule in our experiments. The number of
actors (channels) using DSM is 66% (71%) lower compared to the HSDF-based
technique on average and 22% (17%) lower in the worst-case observed in our
experiments. The average case refers to the mean value of the obtained results
and the worst-case reports the smallest graph size reduction (i.e., reduction in
numbers of actors and channels compared to the HSDF-based technique).

SASs are a suitable class of schedules that minimize code memory size. DSM
is able to model any arbitrary schedule in an SDF. SAS can be modeled using
DSM; however, it is possible to consider the intrinsic property of SASs when
modeling a SAS in an SDF. Our second technique, SASM, uses the fact that each
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actor appears only once in the looped schedule form. SASM models the counter
concept in the graph in order to force actors to be executed a specific number of
times. The third row of each application line in Table 4.1 contains the size of the
schedule-extended graphs using the HSDF-based, DSM and SASM techniques to
model SASs, generated by the technique developed in [60].

SASM results in a schedule-extended SDF with a limited number of extra
actors and channels. For example, SASM only adds 2 (8) extra actors (channels)
to the original graph of the MP3 playback application in order to model a SAS,
while the HSDF-based technique adds 1057 (37522) extra actors (channels) to
model the same schedule. The graphs obtained by SASM have 88% (85%) and
48% (30%) less actors (channels) compared to the HSDF-based technique on
average and in the worst-case among the benchmark applications. Using the DSM
technique to model the same SASs results in 46% (57%) and 27% (15%) less actors
(channels) compared to the HSDF-based technique on average and in the worst-
case. Our results confirm that the techniques proposed in this chapter achieve a
more compact schedule-extended graph compared to the available technique.

4.8.3 Comparison on analysis times

The time required to perform an analysis on an SDF depends on the size of the
graph and the number of cycles in the graph. As an example, the throughput anal-
ysis of [34] is performed on the schedule-extended graphs using our techniques and
the HSDF-based technique. Our experiments are performed to evaluate the im-
pact of the graph size on the analysis time of a common analysis technique. Note
that other techniques (e.g., YTO [87]) can be employed to calculate throughput of
HSDFs, but the size of the schedule-extended HSDFs is such that our conclusions
remain the same. The benchmark graphs are mapped onto multi-processor plat-
forms with two or three processors. Table 4.2 contains the throughput analysis
times when SASs, list forward priority (Lfp) schedules and list reverse priority
(Lrp) schedules are used as input schedules. The results show the superiority of
SASM over DSM and the HSDF-based technique. Note that the SDF to HSDF
conversion is fast; the numbers reported for the HSDF-based technique in Table
4.2 are related to the run-time of the throughput analysis from [34]. In our exper-
iment, the run-time of a throughput calculation for HSDFs is long independent
of the analysis technique used (i.e., state-space [34], YTO [87], etc.).

vld iq
594 594

idct mc

Figure 4.14: SDF of H.263 decoder application.
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4.8.4 Comparison on buffer sizes

To further analyze the effectiveness of our techniques, the buffer sizing algorithm
from [72] is applied to the schedule-extended SDFs of the H.263 decoder and
MP3 decoder. Figure 4.14 depicts the SDF of the H.263 decoder. Besides the
compactness of the schedule-extended graph, our techniques preserve the original
structure of an SDF (when ignoring the added actors and channels), allowing
accurate buffer sizing, which is not guaranteed for the state of the art technique.
The H.263 decoder is mapped to a platform with two processors. The actors vld
and iq are mapped to the first processor with a PSOS 〈vld(iq)594〉∗ and the actor
idct and mc are mapped to the second processor with a PSOS 〈(idct)594mc〉∗.
The analysis time for buffer sizing on the schedule-extended H.263 decoder is less
than 1 ms when using DSM (or SASM) to model the schedules. The same analysis
takes 1330 ms when using the technique from [3] to model the same schedules
in the same graph. Figure 4.15(a) shows the Pareto space of throughput and
buffer size when modeling the schedules with DSM (or SASM) and the HSDF-
based technique [3]. In this experiment, the schedules are first modeled in the
graph; then, the buffer sizing technique of [72] is applied. A single channel in
an SDF corresponds to a set of channels in the equivalent HSDF. As a result,
the buffer sizing technique cannot find the minimal buffer size when applying
it on the equivalent HSDF. Our experiments show these inaccuracies. Applying
buffer sizing on the graph which models the schedules using the technique from
[3] results in 49% overestimation in required buffers compared to applying the
same buffer sizing technique on the graph which models the schedules with one
of our techniques. Note that the maximal achievable throughput is independent
of the way schedules are encoded. The analysis results confirm this. Only the
computed buffer sizes differ. For instance in both cases of Figure 4.15, the maximal
throughput for the given schedules is always achievable, also by using the HSDF-
based schedule modeling technique; the latter suggests the need for larger buffers
though. Figure 4.15(b) shows results for the MP3 decoder. We use the mapping
and scheduling from [32] for a platform with 3 processors. The analysis time
on the graph which models the schedule using one of our techniques is 594 ms
while 141610 ms is required to perform the same analysis on the graph using the
technique from [3]. Using the technique from [3] results in 226% overestimation
in buffer size compared to using our techniques.

Modeling a PSOS in an SDF using DSM requires execution of one complete
SDF iteration. The number of states in one iteration could be exponential in
the number of actors in the graph. However, for all real-world SDFs used in our
experiments, the execution time of DSM is below 1 ms. SASM also models SASs
based on the structure of the schedules in their looped form; as each actor appears
once in a SAS, the complexity of SASM depends on the number of actors in the
graph. Similar to DSM, the execution time of SASM is always below 1 ms in our
experiments. The complexity of our techniques relates to the length of the SDF
iteration and the number of processing tiles in the platform (i.e., |PT |). Hence,
the complexity of our techniques is bounded to O(|PT | ·

∑
a∈A γ(a)).
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Figure 4.15: Pareto space of schedule-extended graphs modeled by DSM and
HSDF-based techniques (the scales of the two graphs are different).

4.9 Summary

We present two techniques, DSM and SASM, to model PSOSs and SASs di-
rectly in an S(A)DF. The resulting graphs are much smaller (often much less
than half the size) than graphs resulting from the state of the art technique that
requires conversion of the model to an HSDF graph. This results in a speed-up
of analysis techniques. Computing the trade-off between buffering and through-
put for multi-processor platforms, for example, becomes several orders of mag-
nitude faster. Moreover, properties like buffer sizes can be analyzed more ac-
curately. The techniques have been integrated in the SDF3 tool set available
at http://www.es.ele.tue.nl/sdf3. This allows easy integration of the techniques
in multi-processor design flows. In the following chapters, we use the proposed
schedule modeling techniques to amend the application model with scheduling
decisions.



Chapter 5

Parametric Throughput
Analysis

5.1 Overview

The timing behavior of an application depends on its binding, scheduling, buffer
allocation, etc. Dynamic voltage and frequency scaling (DVFS), which is a com-
monly used technique to reduce the energy consumption, has also a direct influ-
ence on the timing behavior of an application. Common design space exploration
(DSE) frameworks [11, 65, 68] perform several throughput calculations to deter-
mine the performance of multiple solutions in the design space. Moreover, at
run-time, throughput calculation might be required when a run-time parameter
(e.g., frequency of a processor) is changed. Both at design-time and at run-
time, throughput analysis must be performed as fast as possible. To address this
challenge, [33] introduces a parametric throughput analysis technique for SDF
graphs. The technique finds throughput expressions for a parameterized SDF
graph in which actors can have parameters as their execution time. These pa-
rameters have a specified time interval. The combination of all parameters of
the SDF forms a multi-dimensional parameter space. A divide and conquer tech-
nique is used to determine all throughput regions in the parameter space. Each
throughput region corresponds to a critical timing cycle in the SDF graph. For
each region a throughput expression is discovered using a state-space exploration
technique. The discovered throughput expressions can be used in any DSE frame-
work or run-time manager to quickly compute the throughput of an SDF when
the concrete values for all parameters are known. An evaluation of these through-
put expressions (instead of a complete throughput analysis) can be done quickly
while providing the same result.

When all actors have a fixed actor execution time, throughput analysis can
be performed using the techniques from [34] (in case of SDF) or [32] (in case of
SADF). However, when executing a design-time mapping flow, the actor execution
times are only fixed near the end of the flow. Existing mapping flows re-evaluate
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the throughput of an SADF whenever a mapping decision changes the actor exe-
cution times. The impact of this design decision can typically only be assessed
after a throughput analysis is performed. Since many design alternatives must be
evaluated, it is crucial to have a fast throughput analysis technique. Moreover,
existing state-of-the-art throughput analysis techniques provide limited informa-
tion to steer the design decisions (i.e., the critical cycle can be extracted, but it
is often not possible to determine how design decisions influence this cycle or any
of the other cycles in the graph).

The existing technique from [33] is not directly applicable to SADF graphs.
Applying SDF throughput analysis on applications with a dynamic behavior may
result in a loose bound on the worst-case throughput. So, a new technique is
required to determine throughput expressions for dynamic applications. This
chapter presents such a parametric SADF throughput analysis technique. We use
several real-world applications to evaluate our technique. Our experiments show
that our technique is also better scalable than the one from [33]. The throughput
expressions found using our technique can be applied to solve practical problems;
in Chapter 6, we demonstrate how our parametric throughput analysis technique
can be used to determine the lowest multiprocessor frequency setting under an
application throughput constraint.

The remainder of this chapter is structured as follows. Section 5.2 con-
tains the related work. Section 5.3 demonstrates how we parameterize an SADF
model. Section 5.4 explains the divide and conquer approach from [33]. Section
5.5 explains how we find a throughput expression for a parameter point using a
Max-Plus automaton graph. We evaluate our technique on several realistic appli-
cations in Section 5.6. Section 5.7 concludes. This chapter is based on the paper
published as [23].

5.2 Related Work

The technique from [33] performs throughput analysis for SDF graphs when the
execution time of the model is parameterized. SADF graphs are proposed to refine
SDF graphs for dynamic applications. In [32], a Max-Plus-based SADF through-
put analysis is introduced. Neither the technique from [32] nor [33] can determine
throughput for parameterized SADF graphs. We propose a technique to enable
throughput analysis for parameterized SADF graphs. Our technique can also be
used to determine throughput expressions for parameterized SDF graphs. Similar
to [33], we use a divide and conquer approach to determine throughput regions. In
order to determine the throughput expression of a throughput region, we extend
the MPAG-based analysis from [32] to a symbolic MPAG-based analysis.

Symbolic executions of the scenario graphs are used in our parametric through-
put analysis technique to determine the Max-Plus matrices of an SADF. Symbolic
executions may not be practical for large graphs. Approaches to symbolic exe-
cution for timing analysis like [39, 51] solve this issue by removing redundant
expressions which are not affecting the critical paths. In our case, we only need
to determine the Max-Plus characteristic matrices for a parameter point. We
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a0

c0

a1 a2

c1

c2

c3

t1t0

(a) Scenario graph.

q0 q1

(b) FSM.

a0 a1 a2 Parameter range
scenario φ0 6p1 2.5p2 2p2 1 ≤ p1 ≤ 5
scenario φ1 1p1 4.5p2 1p2 1 ≤ p2 ≤ 5

(c) Actor execution times in scenario φ0 and φ1.

Figure 5.1: SADF with two scenarios φ0 and φ1. The state-labeling function for
the FSM is defined as follows: L(q0) = φ0 and L(q1) = φ1. The progress function
specifies Prgs(φ0) = 1 and Prgs(φ1) = 1.

avoid complex redundant expression elimination by evaluating only the resulting
terms for the given parameter point after each symbolic firing of the actors. In this
way, only the terms which have the largest values amongst all terms propagate to
the next step of the symbolic execution. Moreover, the techniques developed in
[39, 51], which calculate timing expressions for integrated circuits, are limited to
the single scenario cases and do not generalize to SADF.

5.3 Parametric SADF

A parametric SADF is identical to an SADF except that the actor execution
times are not constant. Instead they are a function of a set P of parameters.
Each parameter pi ∈ P can have any real value within an interval (i.e. pi ∈
Ii = [mini,maxi] ⊂ R). Consider as an example the SADF shown in Figure
5.1. In this graph, the actor execution times are a function of two parameters p1

and p2. The parameterized execution times of our example parameterized SADF
are shown in Figure 5.1(c). For simplicity, we assume in our example that the
execution time of each actor depends only on a single parameter. Our technique
(and implementation) can handle arbitrary linear expressions of the parameters

to specify the execution time of each actor, i.e., k0 + Σ
|P |
i=1ki · pi represents the

general form of an actor execution time where each ki ∈ R is a constant.

5.4 Parameter Space and Divide and Conquer Ap-
proach

Consider a parameterized SADF that uses a set P of different parameters in the
actor execution times. These parameters form a |P |-dimensional parameter space

which is a convex polyhedron, i.e.,
∏|P |
i=1 Ii where Ii = [mini,maxi] is the interval

to which parameter pi ∈ P belongs. Figure 5.2 shows the 2-dimensional parameter
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Figure 5.2: Throughput regions of the example SADF for the parameter space
I1 × I2. Expressions for the throughput regions: MCR1 = 5.5p2, MCR2 =
3p1 + 4.5p2 and MCR3 = 6p1 + 2.5p2.

space for our parametric example SADF. In this figure, the square ν0−ν1−ν2−ν3

is the initial convex polyhedron. A throughput value Th(νi) can be assigned for
each parameter point νi inside the parameter space. The throughput of parameter
point νi can also be calculated by evaluating a throughput expression ei for the
given point νi; e.g., er = 1

3p1+4.5p2
is the throughput expression for the parameter

point νr : {p1 = 2, p2 = 4} and evaluating the expression er for νr results in the
throughput amount er(νr) = 1

24 for the given parameter point. In [33], it is shown
that such a throughput expression ei can be used to calculate the throughput for
all points in a convex sub-polyhedron in the initial parameter space polyhedron
(see Proposition 5 from [33]). Hence, the initial parameter space is composed of
one or several but a finite number of convex sub-polyhedrons and for each sub-
polyhedron a throughput expression exists. Such a sub-polyhedron is called a
throughput region.

As in [33], we use the same divide and conquer strategy to determine all
throughput regions. The parameter space determines the initial polyhedron (e.g.,
the square in Figure 5.2). Initially, a random point νr is selected inside the
polyhedron. As a first step, the throughput expression er for this point must
be identified. The algorithm that does this is explained in the next sub-section.
Once the throughput expression er has been found for this random point νr, the
divide and conquer technique from [33] evaluates the throughput of each corner
point νc in the initial polyhedron. When the throughput Th(νc) in a corner
point νc is equal to the throughput found when evaluating the expression er for
this point, then this point νc belongs to the same throughput region as point
νr (see Proposition 8 from [33]); if this statement holds for all corner points
of a polyhedron, the polyhedron will be identified as a throughput region with
throughput expression er (see Corollary 6 from [33]). If Th(νc) is not equal to
er(νc), then it holds that the corner point νc belongs to another throughput region
than the random point νr. In that case, a new throughput expression ec can be
identified for the corner point νc. The hyperplane er − ec = 0 cuts the initial
polyhedron into two convex sub-polyhedrons. For each convex sub-polyhedron the
divide and conquer strategy is performed recursively until all throughput regions
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are identified. The interested reader is referred to [33] for a detailed description
of the divide and conquer technique.

Algorithm 5: Throughput expression for a parameter point

input : SADF G
input : Parameter-Point νr

output: Throughput-Expression er

n ← number of scenarios in G1

sg1 · · · sgn ← scenario graphs of G2

fsm← FSM of G3

for i← 1 to n do4

symGi ← getSymG(sgi, νr)5

symMPAG← getSymMPAG(symG1 · · · symGn, fsm)6

MPAG← evaluateSymMPAG(symMPAG, νr)7

criticalCycle← maximumCycleRatio(MPAG)8

reward = 09

foreach channel c ∈ criticalCycle do10

periodExp ← periodExp + getTerm(c, symMPAG)11

reward = reward + delay(c)12

er ← reward/periodExp13

5.5 Throughput Expression for a Parameter Point

In [33], a time-based state-space exploration is used to find the throughput expres-
sion for a parameter point νr in the parameter space of an SDF. The technique
is not directly applicable when more than one scenario in an application exists.
Extending a time-based state-space exploration technique for a situation with
multiple scenarios is not trivial because of the drastic growth in the number of
states during the state-space exploration. In [32], two techniques to compute
throughput of an SADF are presented, i.e., an iteration-based state-space explo-
ration and an approach based on MPAG analysis. Inspired by [32], we use an
approach based on MPAG analysis to perform parametric throughput analysis
of an SADF. The complexity of the approach based on MPAG analysis depends
less strongly on the number of parameters than the state-space approach. In an
MPAG, iteration boundaries across all scenarios are distinguishable; this makes
the throughput analysis for SADF graphs feasible. Algorithm 5 shows the pseudo-
code of our algorithm to compute the throughput expression er of a parameter
point νr in a parametric SADF G. In Section 2.5.3, it is explained how an MPAG
can be used to compute the throughput when all actors have a known execution
time (i.e., when all parameter values are fixed). We extend this MPAG to a sym-
bolic MPAG that can be used to compute symbolic throughput expressions. As a
first step, a symbolic Max-Plus characteristic matrix of each scenario graph must
be computed (line 4-5). Next, these matrices must be combined into a symbolic
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MPAG (line 6). As a third step, the symbolic MPAG is evaluated for a concrete
parameter point νr. This results in a concrete MPAG (line 7) from which the
critical cycle can be extracted using a maximum cycle ratio algorithm (line 8).
The YTO algorithm [87] is used to perform MCR analysis. The input of the YTO
algorithm is a directed graph; each edge of this graph is associated with two val-
ues called weight and delay (see Section 2.5.3). Note that the evaluated concrete
value of each edge in the symbolic MPAG is used as weight of that edge in the
YTO algorithm and the progress value assigned to the scenario on the source side
of each edge in the symbolic MPAG is used as delay of that edge in the YTO al-
gorithm. Using a relation between the edges in the concrete and symbolic MPAG,
the critical cycle in the concrete MPAG can be translated into a symbolic cycle
(expression) in the symbolic MPAG. This symbolic expression is the inverse of the
symbolic throughput expression er. Lines 9-13 in Algorithm 5 are responsible to
identify the symbolic critical cycle using the concrete critical cycle. The variable
reward in the algorithm is used to count the number of data units processed in
the critical cycle; this is done by summing up the delay values assigned to those
edges of the MPAG in the critical cycle (see line 12). The symbolic expression
of the critical cycle (i.e., periodExp) divided by the reward results in a symbolic
MCR that is the inverse of the throughput expression.

Algorithm 6: Symbolic matrix extraction (getSymG)

input : SDF g
input : Parameter-Point νr

output: Symbolic Max-Plus Matrix symG

while one iteration of g is not completed do1

foreach enabled actor a ∈ g within one iteration do2

symbolicFire(a)3

prune timetamps of produced tokens by firing a for the point νr4

extract symG from the resulting timetamps5

Algorithm 6 represents our approach to determine the symbolic Max-Plus
matrix of a scenario graph, which is an SDF, for a specified parameter point.
A symbolic execution of the given graph g - up to one iteration - is performed
to determine the token timestamps (lines 1-4 in Algorithm 6). In the symbolic
execution, the parameterized actor execution time expressions and a symbolic
timestamp for each initial token are used. Figure 5.3 illustrates the symbolic exe-
cution of scenario φ1 in our example SADF. Step S.1 shows the initial graph and
steps S.2, S.3 and S.4 show the graph after consecutive firing of the actors a0, a1

and a2 respectively. Each actor firing is performed symbolically (symbolicFire in
Algorithm 6). For example the firing of actor a0 consumes a token from chan-
nel c1 and produces a token with timestamp τa0 + t0 = p1 + t0 on channel c0.
Comparing steps S.1 and S.4 shows that the graph returns to the initial token
distribution after one iteration (as expected). The token timestamps in step S.4
contain the symbolic dependencies of the initial tokens at the end of this itera-
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Figure 5.3: Symbolic execution of scenario graph φ1 of our example SADF.

tion to the initial tokens at the end of the previous iteration. For example, the
timestamp max(p1 + 4.5p2 + t0, 4.5p2 + t1) of the reproduced token t0 in step S.4
implies that token t0 depends on the production time of the tokens t0 and t1 in
the prior iteration. The distance of t0 in the current iteration to t0 and t1 in the
previous iteration are at least p1 + 4.5p2 and 4.5p2 respectively; this information
is used to construct the symbolic Max-Plus characteristic matrix of the scenario
graph (line 5 in Algorithm 6). In our example, the matrices for scenarios φ0 and
φ1 are equal to:

Mφ0
=

(
6p1 + 2.5p2 2.5p2

6p1 + 4.5p2 4.5p2

)
Mφ1

=

(
p1 + 4.5p2 4.5p2

p1 + 5.5p2 5.5p2

)
In practice, it is often not feasible to perform a complete symbolic execution

of one iteration of a scenario graph. This is caused by the number of terms
that appear in the maximum (max) operator of the token timestamps. In our
example, both max operators contain only two terms, one for each initial token.
The number of terms may however grow rapidly when a graph contains more
initial tokens and/or has a large repetition vector rendering a complete symbolic
execution impractical. Ref. [39] encounters a similar issue when trying to identify
timing expressions for the critical paths in an integrated circuit. This issue is
solved by removing redundant expressions which are not affecting the critical
paths. In our case, we only need to determine a symbolic Max-Plus characteristic
matrix valid for a concrete parameter point (line 7 and 8 in Algorithm 5). This
allows us to evaluate the maximum operation (in a token timestamp) for the given
parameter point after each symbolic firing of an actor (line 4 in Algorithm 6). In
this way, only the terms which have the largest values among all other terms
in the maximum operator propagate to the next step of the symbolic execution.
This prevents an explosion in the number of terms in the maximum operation.
We construct the symbolic MPAG using the FSM of the SADF and the symbolic
Max-Plus matrices symG1 . . . symGn in the same way as the concrete MPAG
is constructed in [32]. The only difference is that we use expressions instead of
concrete numbers as edge weights. The function getSymMPAG in Algorithm 5 is
used to construct the symbolic MPAG symMPAG. Figure 5.4 shows the symbolic
MPAG for our example SADF.

To find the critical cycle, and hence the throughput expression, a maximum
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Figure 5.4: Symbolic MPAG of the example SADF.

cycle ratio (MCR) analysis must be performed on the symbolic MPAG. As the
parameter point νr is known, we evaluate the term of each edge in the symbolic
MPAG for the parameter values in νr. The function evaluateSymMPAG in Algo-
rithm 5 is used for this purpose. The result of the evaluation for the parameter
point νr : {p1 = 2, p2 = 4} is shown in Figure 5.4 as a number that follows the
term of the edge. These numbers are used as a weight for the corresponding edges.
Using the MCR analysis algorithm proposed in [87] (function maximumCycleRa-
tio in Algorithm 5), the algorithm identifies a critical timing cycle (criticalCycle)
which in turn is used to determine the throughput expression. Note that the
progress value of each scenario in our example SADF is assumed to be one; as a
result, all edges in the MPAG receive the delay value of one for the MCR anal-
ysis. The critical timing cycle in our example graph is the cycle between nodes
q0/t1 and q1/t0 in Figure 5.4. The symbolic terms of each edge in the critical
cycle are used to determine the throughput expression for the given parameter
point (lines 9-13 in the algorithm). In our example, for the given point (i.e.,
νr : {p1 = 2, p2 = 4}), periodExp = 6p1 + 9p2 and the throughput expression
is er = 2

6p1+9p2
(is shown by MCR2 = 3p1 + 4.5p2 in Figure 5.2). This expres-

sion is used as an expression for a throughput region in the divide and conquer
technique. Continuing the divide and conquer, different throughput expressions
result for the corner points. The symbolic MCR for ν0 and ν2 are calculated as
follows respectively: MCR1 = 5.5p2, MCR3 = 6p1 + 2.5p2. The hyperplanes
MCR1 −MCR2 = 0 and MCR3 −MCR2 = 0 divide the parameter space into
three throughput regions (see Figure 5.2) for the example parameterized SADF.

5.6 Experimental Results

A comparison between our technique and an existing parametric throughput anal-
ysis technique for SDF graphs is made in Section 5.6.1. The performance of our
technique on SADF graphs is evaluated in Section 5.6.2. All experiments are
performed on an Intel core i7 (3 GHz) running Linux.
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5.6.1 Comparison with [33] on SDF Graphs

Since SDF graphs are a special case of SADF graphs, we can compare our tech-
nique for SADF throughput analysis to the only existing parametric throughput
analysis technique for SDF graphs, i.e., [33]. In our comparison, we use the same
set of SDF graphs (see Table 5.1) with the largest parameter range used in [33].
In this case, the parameterized actors show a variation in their execution time
between their nominal value and 150% of this value. Table 5.1 shows the number
of parameters (#p) in each SDF, the number of throughput expressions (#exp)
and the run-times of the technique presented in [33] and our technique. Note that
the model transformation introduced in Section 2.6 is applied to all benchmark
graphs before performing our parametric throughput analysis. The results show
that our technique is faster on almost all benchmark SDF graphs. The MP3
playback and modem SDF graphs are the only graphs on which our technique is
slightly slower. This is due to the large number of initial tokens in the graphs
which results in a large MPAG and in a long run-time of the MCR algorithm.

Table 5.1: Number of throughput regions and run-time SDF graphs.
Benchmark #p #exp. [33] (ms) Ours (ms)
H.263 decoder [72] 4 1 94 80
H.263 encoder [62] 5 1 36 20
Modem [9] 7 1 96 116
MP3 decoder [72] 8 1 164 160
MP3 playback [81] 1 1 1348 1680
Samplerate conv. [9] 4 2 168 128
Satellite receiver [64] 9 3 69376 33478

The divide and conquer algorithm which is used in both [33] and in our
technique performs two different kinds of throughput calculations. It needs to de-
termine throughput expressions for some parameter points and compute concrete
throughput values for corner points of throughput regions. The technique from
[33] uses a state-space exploration to determine the throughput expressions and
concrete throughput values. The state-space exploration needs to keep track of
all parameters in its state-space exploration which makes its run-time dependent
on the number of parameters. The size of the MPAG used in our technique is not
dependent on the number of parameters. Therefore, the run-time of the MCR
algorithm is also independent of the number of parameters. Only the function
evaluateSymMPAG in Algorithm 5 depends on the number of parameters. How-
ever this function only evaluates a symbolic MPAG for a parameter point and this
can be done in a negligible amount of time. As a result, the run-time of our tech-
nique is almost independent of the number of parameters in the graph. The blue
line in Figure 5.5 shows the run-time of our symbolic throughput computation
(i.e., Algorithm 5) when increasing the number of parameters. In this experiment,
a parameter models the execution time of an actor. Increasing the number of pa-
rameters in this experiment implies that the execution times of more actors in the
model are parameterized. The results shown in Figure 5.5 confirms the indepen-
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dence of the run-time of our symbolic throughput computation of the number of
parameters. Figure 5.5 also compares the overall run-time of the technique from
[33] and our technique (including both the symbolic throughput computation as
well as all concrete throughput computations at the corner points). When increas-
ing the number of parameters, more concrete throughput computations need to
be performed. Our concrete throughput analysis technique (which is in principle
intended for the more expressive SADF model) is slower than the dedicated SDF
technique used in [33]. As a result, part of the gains in our symbolic throughput
computation are lost. However, the total analysis time of our approach is smaller
than the analysis time of the technique of [33] in most of the benchmark graphs
(see Table 5.1).
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Figure 5.5: Execution time when varying number of parameters.
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Table 5.2: Number of throughput regions and run-time SADF graphs.
Benchmark #sce. #p #exp. Time (ms)
MPEG4 decoder [75] 9 4 3 488
MP3 decoder [32] 5 8 3 2792
WLAN [58] 4 10 3 2342
Mapped MP3 decoder [32] 5 3 4 1252
Mapped WLAN [58] 4 3 10 196

5.6.2 Performance of our technique on SADF graphs

Our throughput analysis technique is tested on a set of SADF graphs described
in the literature (see Table 5.2). Our benchmark consists of a set of realistic
applications, i.e., an MPEG-4 decoder with 9 scenarios, an MP3 decoder with
3 scenarios, and a wireless LAN (WLAN) receiver with 4 scenarios. For the
latter two applications, we use both a version in which each actor is mapped to
a different processor and a version in which some actors are mapped to the same
processor (labeled ‘Mapped’ in Table 5.2). In the MPEG-4 decoder, each actor is
mapped to a different processor. The execution time of all actors is parametrized
with a linear expression in which the execution time of the actor in the non-
parameterized SADF model is multiplied with a parameter pi that corresponds
to the processor on which the actor is mapped. The actor execution times are
varied between their nominal value and 500% of this value (i.e., 1 ≤ pi < 5). These
large parameter ranges allow us to show the scalability of our approach when the
parameter ranges are large. Table 5.2 shows the number of throughput expressions
(#exp, corresponding to the number of throughput regions) of each SADF and
the time used by our technique to discover these expressions. The experimental
results show that our technique is able to handle realistic applications within a
limited run-time.

5.7 Summary

SADF graphs with parameterized execution times enable analysis of implementa-
tion decisions that could change the timing property of the application across all
scenarios. The only existing parametric throughput analysis technique can handle
a less expressive MoC, i.e., the SDF model. Experimental results show that our
technique outperforms this technique despite the fact that we can handle a more
expressive MoC, i.e., SADF model. Moreover, our technique offers better scala-
bility when the number of parameters increases. In the next chapter, we use our
parametric SADF throughput analysis to devise a DVFS controller to minimize
total energy consumption for a throughput-constrained application running on a
multi-processor platform.
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Chapter 6

Throughput-Constrained
DVFS

Many streaming applications must provide timing guarantees (e.g., throughput)
to assure their quality-of-service. For instance, a video decoder which is running
on a mobile device is expected to deliver a video stream with a specific frame
rate. Moreover, the energy consumption of such applications on handheld de-
vices should be as low as possible. This chapter proposes a technique to select
a suitable multiprocessor DVFS point for each mode (scenario) of a dynamic ap-
plication described by an SADF. Our technique assures strict timing guarantees
while minimizing energy consumption. The technique is evaluated by applying
it to several streaming applications. It solves the problem faster than the state
of the art technique for dataflow graphs. Moreover, the DVFS controller devised
using the proposed technique is more compact and reduces energy consumption
compared to the controller devised using the counterpart technique. An online
approach is combined with our design-time DVFS technique to further lower the
operating frequencies by exploiting the possible slack produced at run-time. An
initial version of this work was published as [22].

6.1 Overview

Streaming applications, such as signal processing and multimedia applications,
are often expected to meet certain timing requirements. Furthermore, energy
consumption is an important design criterion for such applications. DVFS [14]
is used to develop low power/energy implementations. This chapter presents a
technique to determine for each scenario an energy-aware frequency setting while
satisfying a throughput constraint. It is assumed that the application (SADF) is
already mapped and scheduled to a platform with multiple processing elements.
The technique presented in Chapter 4 is used to include mapping and scheduling
information into the SADF model. The switching cost of DVFS is considered in
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our analysis.
Ref. [89] addresses the same problem as we do. In the DVFS controller of [89]

devised for an SADF, a power mode (i.e., DVFS operating point) is specified for
each possible state of the application. Timestamps are used to distinguish between
states. Timestamps capture the miss-aligned completion of the iterations on a
platform with multiple processing elements. In [89], an initial state is selected
as starting point; for each possible scenario transition from that state a low-
power mode that satisfies the timing requirement for the upcoming iteration is
considered as desired power mode for that specific scenario switch. This can
lead to a new state or a recurrent state. In case of a new state, the exploration
should be continued for the new state. The exploration is stopped if all discovered
states are recurrent. This way, all possible states within the given power modes
are traversed; the authors of [89] categorize their approach within the state-space
based techniques. Our approach is distinguishable from [89] for several reasons:

1. In [89], only one iteration is considered in power mode selection which can
result in a greedy slack distribution within just that iteration; this prevents
fair slack distribution over multiple iterations. In contrast, we do power
mode selection over all iterations involved in all critical timing cycles; a
critical timing cycle is defined as a cycle that limits the throughput. In
our approach, slack can be used across multiple iterations which generally
provides higher energy savings.

2. The state-space-based DVFS technique can result in many distinguishable
states. This makes the analysis a time consuming procedure. In our ap-
proach, the critical timing cycles are identified and resolved by choosing
suitable frequency settings for the processing elements that execute the ac-
tors involved in those cycles; processing elements not involved in any critical
cycle can operate at their lowest frequency. The analysis time of our tech-
nique on four realistic benchmark models is much smaller than the analysis
time of the state-space based technique on the same applications.

3. Our DVFS controller is more compact than the one from [89] reducing the
storage requirement. For a WLAN application, our technique only requires
storing 4 sets of processor frequencies (equal to the number of scenarios)
while the state-space based technique requires for the same application a
controller with 277 frequency sets.

Our technique requires to identify which actor firings in which scenarios are
part of the critical timing cycle and on which processing elements those actors are
executed. For this reason, the SADF model is extended to a parametric SADF
model to accommodate the processor clock cycle periods (i.e. inverse of the fre-
quencies) in the model. In this model, instead of using concrete values, linear
expressions (e.g., as shown in Figure 6.1(c)) provide the actor execution times in
terms of some parameters (scale factors). As an example consider the paramet-
ric SADF depicted in Figure 6.1 with two scenarios φ0 and φ1; both scenarios
use the same scenario graph shown in Figure 6.1(a). The timing properties of
scenarios are specified according to Figure 6.1(c). In this example, parameters
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Figure 6.1: Parametric SADF with two scenarios φ0 and φ1. The state-labeling
function for the FSM is defined as follows: L(q0) = φ0 and L(q1) = φ1. The
progress function specifies Prgs(φ0) = 1 and Prgs(φ1) = 1.

can get a value from the associated set; For example p1,1 can be assigned with a
value from set SFS1. The FSM of the example SADF is shown in Figure 6.1(b).
The processors can be explicitly modeled with some initial tokens. This makes it
possible to identify when an iteration has ended on a processor to allow switching
to another DVFS operating point. The timing expressions of critical cycles in a
parametric SADF reveal which processors are involved in the critical cycles and
how much their clock cycle periods (or frequencies) contribute to the length of
these timing cycles. This information is used to choose energy-aware frequencies
per application scenario to ensure a throughput-constrained solution. The fre-
quency choices are made at design-time and are used at run-time to enable DVFS
on iteration boundaries. Our technique is applied to four streaming applications:
an MPEG4 video decoder [74], an MP3 audio decoder [32], a WLAN receiver [58]
and the baseband (physical layer) processing of the Long Term Evolution (LTE)
standard [55]. In all cases, our proposed technique is faster than the technique
from [89] and it provides significant energy saving compared to the counterpart
technique; furthermore, our technique constructs more compact DVFS controllers.
We combine the resulting DVFS setting obtained from our design-time technique
with a reactive online approach to further exploit the timing slack produced at
run-time.

The remainder of this chapter is structured as follows. Section 6.2 discusses
related work. Section 6.3 presents our design-time DVFS assignment technique.
Section 6.4 shows how the results of our design-time DVFS technique can be used
with a run-time DVFS approach. The experimental results are given in Section
6.5. Section 6.6 concludes.

6.2 Related work

Related DVFS approaches can be viewed from three different angles:
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• Design policy.

• Application model.

• Solution granularity.

The design policy determines whether the DVFS choices are made at run-time
[1, 18] or design-time [61, 66]; the first type predicts the workload and adjusts the
supply voltage and the operating frequency of the underlying processing elements
at run-time. The second ones assume that the workload of applications are known
at design-time. Run-time approaches suffer from extra timing and energy over-
heads. Design-time approaches can result in pessimistic solutions if the behavior
of the applications is not captured properly. The application models to devise a
DVFS controller may be static or dynamic; in static models (e.g., SDF and task
graphs) [61, 66], actors (tasks) use the worst case as their execution time (i.e.,
WCET). Dynamic models (e.g., SADF) [35, 89] capture execution time variation.
Static models are simple and easy to analyze which make them suitable for static
applications. Dynamic models are favorable for more dynamic applications (e.g.,
modern multimedia applications). The solution granularity determines how often
a voltage and frequency switch can occur in a design. In a fine-grained solu-
tion [61, 66], a DVFS may happen before executing actors (tasks); in a coarse-
grained solution [89], the DVFS may happen before executing iterations (e.g.,
processing a video frame). The overhead of DVFS, the size of the actors and the
size of the iteration determine which granularity is suitable for a system.

Our technique analyzes SADFs to devise a coarse-grain DVFS controller at
design time for dynamic throughput-constrained applications. SADFs are suitable
to capture the dynamic behavior of applications. We offer a coarse-grained DVFS
solution to avoid overhead because of the frequent voltage and frequency switches
in fine-grained solutions. However, fine-grained solutions like [61] can be beneficial
when the overhead is negligible. Some run-time approaches (e.g., [79]) use WCET
information to perform better run-time power management. Our technique can
also be used to provide initial information for such run-time techniques to further
tune the final solution and loosen the run-time overhead. We demonstrate such
a run-time refinement by considering an online DVFS approach at run-time.

Among the related work, [89] is the most similar to ours. The technique
of [89] suffers from state-space explosion and it requires much time for the analysis;
our technique finds solutions for all of our benchmark applications in seconds to
minutes, depending on the number of scenarios and frequency points. Moreover,
using [89] results in pessimistic solutions because of the greedy approach used in
its voltage and frequency selection. Our technique considers all iterations involved
in the critical timing cycles to effectively utilize slack; in this way, workloads are
balanced across multiple iterations and frequencies can be lowered. As a result,
our technique assures better solutions in terms of energy consumption. The DVFS
controller devised by our technique is more compact than the DVFS controller of
[89]; this can save considerable memory space to store the controller.

The authors of [86] develop a game theory-based technique to synthesize
a controller for SADFs; they optimize throughput by modifying the scheduling
policy. The resulting controller of [86] is optimized for a single design metric
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(i.e., only throughput), while our technique reduces energy consumption under
a throughput constraint. Note that our technique is a heuristic which provides
sub-optimal solutions and the technique of [86] finds optimal solutions. Extend-
ing the game theory-based technique of [86] to consider two design metrics is
a relevant, but challenging problem which requires further research. Ref. [35]
presents a technique to detect application scenarios at design-time; it also devises
a pro-active voltage scaling by predicting the scenario sequences. However, the
technique of [35] is not applicable to multiprocessor platforms.

6.3 Off-line DVFS Approach

Power consumption in VLSI circuits depends linearly on the operating frequency
and quadratically on the supply voltage of the processing elements [12]. While
lowering the voltage supply, the maximal possible operating frequency also re-
duces. Hence, lowering the voltage and frequency could reduce the total energy
consumption quadratically at linear time cost [13]. So, in our technique, the exe-
cution times are expressed linearly in terms of the processor clock cycle periods
(i.e. inverse of the frequencies) and energy consumption is expressed quadratically
in terms of the processor frequencies.

6.3.1 Overview

This section presents a multiprocessor frequency assignment technique for dy-
namic applications modeled by SADF graphs in such a way that a strict through-
put requirement is guaranteed. In the following subsection, we show how to
capture the timing delays resulting from DVFS in an SADF model. Our DVFS
assignment technique starts with the minimum energy option; in other words, it
assigns the lowest possible frequency (or the highest clock cycle period) to each
processor running in an application scenario. The initial setting may violate the
required throughput. So, the technique checks whether or not the initial setting
satisfies the throughput; if the throughput is satisfied, the initial setting is re-
ported as final solution. In the other case, our technique finds a critical timing
cycle in the application which violates the throughput. Then, the frequency of the
processors involved in the critical cycle are increased to make that cycle fit within
the required throughput. Even after resolving the first critical cycle, some other
timing cycles may exist which are violating the throughput. Those timing cycles
are similarly resolved one after another until all of the timing cycle in the SADF
model respect the required throughput. Section 6.3.3 discusses our technique in
detail.

6.3.2 Modeling Voltage and Frequency Scaling in SADF

DVFS can be viewed upon as a reconfiguration at run-time. This can be effec-
tively modeled in SADFs as a reconfiguration scenario. In the FSM of the SADF,
an intermediate state must be placed before switching to another original FSM’s
state. Two reconfiguration states are added to the FSM of our example SADF
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Figure 6.2: Modeling mapping and reconfiguration in the example SADF. The
state-labeling function for the FSM is defined as follows: L(q0) = φ0, L(q1) =
φ1 and L(reconf1) = L(reconf2) = φreconf . The progress function specifies
Prgs(φ0) = 1, Prgs(φ1) = 1 and Prgs(φreconf) = 0.

to capture the reconfiguration steps (see Figure 6.2(a)). For a reconfiguration
state, a reconfiguration scenario is defined. A reconfiguration scenario captures
any step involved in the reconfiguration operation. For instance in our example
SADF which is mapped to a platform with two processing elements, the reconfig-
uration requires setting the frequencies and voltages for two processing elements.
The SDF of the reconfiguration scenario for each of the processing elements con-
tains an actor with a self-edge; on that self-edge, a token with a label indicating
the related processing element models the processing resource dependency be-
tween consecutive iterations (see Figure 6.2(b)). The execution time of the added
actors are set to the DVFS delay. This way, the overhead of switching between
different frequency points on iteration boundaries is considered. Mapping should
also be modeled in the scenario graphs of the SADF. The technique presented in
Chapter 4 is used for this purpose. Figure 6.2(c) shows such a modeling for the
scenario graph of the example SADF; the processor tokens in this SDF establish
the resource dependencies among all scenarios. This effect is shown graphically
in Figure 6.3; in this figure, an example scenario transition from scenario φ0 to
scenario φ1 is depicted. The time required to capture the DVFS delay is modeled
by a reconfiguration scenario shown with φreconf in Figure 6.3. Hence processor
tokens pe1 and pe2 can be released (to be used by φ1) after the DVFS setting
completion on both of the processing elements.

6.3.3 Clock cycle period settings under a throughput constraint

The used SADF is a parametric model. Algorithm 7 contains our heuristic tech-
nique to identify the scale factors (parameters) which result in energy savings
under a throughput constraint. G represents the given parametric SADF and
Period represents the inverse of the required throughput. The set SFS of scale
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pe1

 time 

t0
t1

scenario s1

pe2

Φ0
Φ1

Φreconf

DVFS delay on pe1

DVFS delay on pe2

Figure 6.3: Processor tokens to model resource dependency across scenarios.

factors is also required as an input to the algorithm. Each SFSj ∈ SFS contains
all concrete values that a parameter pi,j can obtain (i.e., all allowed scale factors
for processor pej). Solution is a set which contains the final concrete values for
all parameters (as the output of the algorithm). For the example SADF, 65 time
units is specified as the timing constraint (i.e, Period = 65). The DVFS delay is
assumed to be 1 time unit in our example.

As a first step, the existence of any valid solution for the given scale factors is
checked by the function feasibilityCheck (lines 1-2 in Algorithm 7); this is checked
by extracting the critical timing cycle for the case that all parameters (scale
factors) are set to their minimum values (i.e. the highest processor frequencies).
The problem is not feasible in case the length of the critical cycle is larger than
the timing constraint (i.e., Period); otherwise, the analysis is continued to find
the desired solution.

Initially, all parameters in the parametric SADF are set to their maximum
value (lines 5-7 in Algorithm 7); this assures the lowest energy consumption,
although this may not satisfy the timing requirement. The technique iteratively
refines the initial parameter setting to obtain a parameter point that meets the
timing constraint. The repetitive part of the algorithm (lines 8-25 in Algorithm
7) is composed of two main steps followed by a re-initialization step. In each
of the main steps, a critical cycle of the SADF for the given parameter point is
extracted by function getCriticalCycle; the technique presented in Chapter 5 is
used for this. In case of multiple critical cycles with equal length, one of them is
chosen arbitrarily. The other cycles can be processed in later repetitions of the
algorithm. The extracted critical cycle must be resolved by choosing a proper scale
factor for the parameters involved in the critical cycle; our scale factor selection
approach, which is abstracted by function resolveCycle in the algorithm, picks a
parameter point amongst all possible combinations of the involved parameters in
the critical cycle to achieve the lowest energy consumption while still meeting the
timing requirement. The complexity of resolveCycle depends on the number of
parameters that contribute to the critical cycle (denoted by ρ) and the number of
possible clock cycle (or frequency) points for each of the processing elements
(denoted by π). So, the number of parameter points required to be verified
by resolveCycle is equal to πρ because each parameter in the critical cycle can get
π different values. The value of π depends on the platform property; the value
of ρ depends on the application property and at worst case ρ can be equal to the
number of parameters in the parametric SADF model. Hence, resolveCycle has
an exponential complexity. However, our experiments on several real applications
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Algorithm 7: Throughput-constrained DVFS for SADF

input : Parametric SADF G
input : Timing constraint Period
input : Scale factor sets SFS = {SFS1 . . . SFSn}
output: Scale factor set Solution

if feasibilityCheck(G, min1 . . .minn, Period) 6= ”Feasible” then1

return Solution← ∅2

n ← number of processing elements3

m ← number of scenarios in G4

for j ← 1 to n do5

for i← 1 to m do6

pai,j = maxj7

while true do8

/* step 1 */9

criticalCycleExpr1 ← getCriticalCycle(G, pa)10

if |criticalCycleExpr1| > Period then11

pb← resolveCycle(criticalCycleExpr1, pa, SFS, Period)12

else13

return Solution← pa14

/* step 2 */15

criticalCycleExpr2 ← getCriticalCycle(G, pb)16

if |criticalCycleExpr2| > Period then17

pc← resolveCycle(criticalCycleExpr2, pb, SFS, Period)18

else19

return Solution← pb20

/* re-initialization */21

for j ← 1 to n do22

for i← 1 to m do23

if pbi,j 6= pci,j then24

pai,j = pci,j25
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reveal that only a few parameters contribute to the critical cycle (i.e., in practice
ρ is small); hence, verifying all parameter points can be done quickly (refer to
Section 6.5).

Figure 6.4 depicts the application of our algorithm to the example SADF. At
step 1 of the 1st repetition, the critical timing cycle with expression 10p1,1 + 7p1,2

is extracted when all parameters are initialized with a value of 5 time units.
This cycle violates the required timing constraint of 65 time units. Hence, the
parameters p1,1 and p1,2 must be set in a way that this cycle gets bounded within
the required period. All parameter combinations of p1,1 and p1,2 are shown in
Figure 6.4(a) (left-top); the points marked with solid black dots are not valid
selections as they violate the timing constraint. Among the rest of the parameter
points, p1,1 = 3 and p1,2 = 5 are selected since this choice assures the lowest
energy consumption at this stage. In this example, we assume that the platform
is homogeneous and processing elements consume equal amounts of energy when
they are operating at the same frequency. The resulting parameter point after
step 1 (i.e., parameter point pb) is fed to step 2. The first critical cycle now has
been resolved by step 1; the next critical cycle can be extracted in step 2. The
new critical cycle found in step 2 can be resolved similarly as step 1. As shown in
step 2 of the 1st repetition in Figure 6.4, only parameter p1,2 contributes to the
second critical cycle; so, p1,2 is reduced to value 4 in order to resolve the critical
cycle found in step 2. The outcome of the second step is the parameter point pc.
Resolving a critical cycle by one step cannot enlarge other critical cycles found in
prior steps; because in function resolveCycle, we restrict our choice to parameter
points in which all parameters have values smaller than or equal to the ones in
the input parameter point argument of resolveCycle.

Both of the main steps decrease parameters in order to shrink the identified
critical cycles. The re-initialization step (lines 22-25 in Algorithm 7) provides
an opportunity for parameters to avoid unnecessary frequency increase for some
processing elements involved in critical timing cycles when possible. Consider
that pa is the parameter point to be used in the subsequent algorithm repetition.
The re-initialization step updates the parameters in pa with the values of the
parameters whose values have been reduced in step 2. Parameters which were
only reduced in step 1 of the current repetition keep their original values. In this
way, they are reconsidered in the next algorithm repetitions. The reason for not
changing the parameter values for those parameters that were only changed in the
first step is that the critical cycle of the first step may have been affected by the
adaptations made in the second step. As a result of the re-initialization step, the
information obtained in one repetition is used in subsequent repetitions to provide
better parameter point selection. In the second repetition of the algorithm for
our example SADF, resolving the first critical cycle 10p1,1 + 7p1,2 is performed
with the knowledge that parameter p1,2 should get a value smaller than 5 because
of the critical cycle 16p1,2; the solid red dots in Figure 6.4(c) display this effect.
Hence, step 1 in the second repetition of the algorithm reduces p1,1 to 4 (instead
of 3 after step 1 of the 1st repetition). The critical cycle identified by step 2 in the
second repetition is already smaller than the required Period and the algorithm
stops further analysis and reports the current parameter point (i.e., pb in the
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second repetition) as the final solution.
The algorithm stops either after step 1 or step 2 (line 15 or line 20 in the

algorithm) whenever the length of the critical cycle in one of those steps is smaller
than the timing requirement; if not, the re-initialization step fixes the values of
those parameters which are reduced in step 2 for the subsequent repetitions. This
ensures that by each repetition of the algorithm some parameters get smaller and
eventually the timing requirement is met. In our algorithm, two main steps per-
form parameter point selection, each considering the information from one critical
cycle. Increasing the number of main steps in our algorithm allows considering
more critical cycles in our parameter point selection; however, more steps implies
more analysis time. Empirically, the number of main steps is set to two in our
heuristic.

6.4 Online DVFS Approach

The proposed approach in Section 6.3 offers a design-time frequency assignment
for each scenarios of an SADF graph. Our design-time approach uses the worst-
case execution times for an actor running in a specific scenario. Using scenarios
makes it possible to assign a better worst-case execution time value to each actor
in the model; in other words, the worst-case execution time of an actor running
in a specific scenario is a good estimation of the actual execution time of that
actor at run-time. However, this may not hold for any actor. As an example,
consider a variable length decoding (VLD) actor that receives data items with
non-deterministic lengths; the length of a data item is only known after receiving
all bits. Hence, a design-time DVFS approach using the worst-case execution
time of a VLD actor may assign an unnecessarily high frequency to the under-
lying processing element. Some timing slack will be generated at run-time when
the worst-case and actual execution times are different. Since this difference is
only detectable at run-time, only an online (also called run-time) approach can
exploit the slack to lower the frequencies and consequently lower the total energy
consumption.

We use our design-time approach to derive the initial frequencies for all sce-
narios in the SADF graph. As an example, consider the SDF graph show in
Figure 6.5(a) as a scenario graph of an SADF graph. Assume that actors a0 and
a1 running on processing element pe0 with design-time frequency setting f0 and
actors a2 and a3 running on processing element pe1 with design-time frequency
setting f1. These frequencies are selected to ensure a throughput constraint of
1/22 iterations per time unit. The frequencies f0 and f1 are selected based on
the worst-case execution times; and when the underlying processing elements
are running at these frequencies the worst-case execution times are as follows:
τ(a0) = 14, τ(a1) = τ(a2) = 8 and τ(a3) = 12. One iteration of the SDF graph
is shown in Figure 6.5(b) when actual execution times of the actors are equal to
their worst-case values. However, in practice, an actor may fire before its expected
worst-case value. Assume that the actual execution time of actor a0 when running
on pe0 with frequency f0 in one iteration is 4 time units. Figure 6.5(c) depicts this
situation. The difference between the worst-case and the actual execution times
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a0 c0
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a3a2
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(a) A scenario graph (SDF).
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(b) One iteration considering worst-case execution times with design-time frequencies.
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(d) One iteration considering actual execution times with run-time frequencies. f ′0 = f0/2 and
f ′1 = f1/2.

Figure 6.5: Demonstration of an online DVFS approach. Actors a0 and a1 running
on processing element pe0 with design-time frequency setting f0. Actors a2 and
a3 running on processing element pe1 with design-time frequency setting f1.
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Table 6.1: The specification of benchmark applications.

Benchmark #sce. #p.e. π #par timing constraint

MPEG4 dec. 9 4 2 36 20 frames/sec.

MP3 dec. 5 3 2 15 20 frames/sec.

WLAN 4 3 2 12 250k OFDM symbols/sec.

LTE 5 2 5 10 100 symbols/sec.

determines the generated slack. Hence, on each of the processing elements, a slack
of 14 − 4 = 10 time units is generated. This slack can be utilized to lower the
operating frequencies of the underling processing elements. In our example, the
frequencies of processing elements executing a1 and a2 can be reduced respectively
from f0 and f1 (assigned by the design-time approach) to f ′0 and f ′1. We assume
that the DVFS delay is equal to 1 time unit. So considering the DVFS delay in
our example leads to extra available slack− 2× (DV FS delay) = 10− 2× 1 = 8
time units for execution of actors a1 and a2. Hence, at run-time, the frequency
of pe0 when executing a1 can be reduced to f ′0 = f0 × 8/(8 + 8) = f0/2 without
violating the throughput constraint. Similarly, at run-time, the frequency of pe1

when executing a2 can be reduced to f ′1 = f1 × 8/(8 + 8) = f1/2.

6.5 Experimental Results

The proposed DVFS technique for SADFs is compared to the related work (i.e.,
[89]) which uses an approach based on state-space exploration. This comparison
is performed because [89] is the closest approach to our technique in the literature
and we solve a similar problem for (scenario-aware) dataflow graphs. A set of re-
alistic applications is used for this comparison: an MPEG4 video decoder [74], an
MP3 audio decoder [32], a WLAN receiver [58] and the baseband (physical layer)
processing of the Long Term Evolution (LTE) standard [55]. Table 6.1 shows for
each of the applications the number of application scenarios (#sce.), the number
of processing elements (#p.e.) in the platform to which the application is mapped,
the number of the available frequency points (π), the number of parameters in
the parametric SADF (#par) and the timing constraint of each application. The
overhead of DVFS is set to a value taken from [48, 56]. Hence, 10 ns is used as
delay of DVFS in our experiments. All experiments are performed on an Intel
core i7 (3 GHz) with 4GB of RAM running Linux.

6.5.1 Results of Off-line Approach

The complexity of both our DVFS technique and the state-space based technique
from [89] is determined by the number of scenarios. Scenarios of an application
can be clustered to form a less complex model. For instance, we clustered 9
scenarios in the MPEG4 decoder into a smaller model with 4 scenarios. Analyzing
a smaller model can be done faster than the original model; but, analysis of such
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a clustered model can deteriorate the accuracy of the analysis, in the end leading
to suboptimal frequency settings. An approach to further limit the number of
states distinguished by the state-space based technique from [89] is to quantize
the execution time of the actors; but, timing quantization can also affect the
accuracy of the model and as a result the outcome of the DVFS analysis.

Initially, we apply our technique and the technique from [89] to the original
models of the benchmark applications. Results are shown in Table 6.2. Besides
analysis times, the number of unique states identified for each of the benchmarks
are reported when applying the state-space based DVFS. As our technique is a
repetitive algorithm, the number of repetitions is reported for our technique. For
our technique, the maximum number of parameters found in any of the critical
cycles of the SADF model is also reported (ρ); the small values for ρ in our results
show that the function resolveCycle can quickly find a suitable parameter point
for critical cycles to make them fit within the throughput constraint while looking
for an energy-efficient option. For the original model of the MPEG4 decoder and
the MP3 decoder, the state-space based DVFS does not find solutions within
a reasonable time (i.e., 3 days). The number of states of an application can
drastically increase; hence, analyzing all states may not be a practical approach.
Our technique finds solutions in a fraction of a second.

To make the state-space based technique applicable to the MPEG4 decoder,
we perform scenario clustering; 9 scenarios in the original model are clustered into
4 separate scenarios. The results of applying our technique and the state-space
based technique on the clustered model of the MPEG4 decoder are also shown in
Table 6.2. For the MP3 decoder, the execution times of the actors are quantized to
limit the state space. Our technique can be applied on both the MPEG4 decoder
and MP3 decoder without any scenario clustering nor any timing quantization;
the state-based technique only works on the coarser models. The results in Table
6.2 show that our technique is also on the coarser models much faster than the
state-space based DVFS.

The memory required to store the DVFS controller devised by our technique
depends on the number of scenarios in the SADF, while for the state-space based
technique, the memory size depends on the number of discovered states. The re-
sults in Table 6.2 (the second column) show that more compact DVFS controllers
are achievable by using our technique.

We also estimate the energy consumption of an SADF running on a plat-
form with multiple processing elements. A long sequence of scenario iterations
(i.e., 200k scenario iterations in our experiments) is fed to the DVFS controller
devised by each of the two techniques. The energy consumption is calculated
per iteration. Each experiment is performed 10 times with a different seed for
the scenario sequence generator; the results reported in Table 6.2, last column,
are averages of those 10 experiments. The results show that our technique of-
fers solutions with less energy consumption compared to the technique from [89].
The reason why our technique offers lower energy consumption is because our
algorithm considers critical cycles that may run across multiple iterations when
assigning clock frequencies. In this way timing slack of one or several iterations
can be effectively exploited through all iterations of a critical cycle. As a result,
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operating frequencies of processing elements can get lowered.
Figure 6.6 gives some concrete energy results for the MPEG4 decoder. The

figure confirms the energy savings obtained by our technique for the model with
4 scenarios. It also shows, however, that a more refined model with 9 scenarios
allows a further reduction in energy consumption. Our technique scales better to
finer-grained models than the state-based technique.

We also performed some experiments for processing elements with different
numbers of the frequency points. By increasing the number of frequency points,
we provide frequencies with higher resolutions. To assess the gain of dynamic
switching, our technique is also used to find a static solution in which each pro-
cessing element runs at a fixed frequency. Applying our technique to a parametric
SADF in which one parameter (scale factor) is specified per processing element
across all scenarios determines a static solution. Figure 6.7 depicts the results
when our technique, the static approach and the technique from [89] are used to
devise a DVFS controller for the WLAN application. Increasing the number of
frequency points increases the number of states for the application which is why
the technique from [89] is not capable of finding any solutions for the cases with
more than two frequency points for the WLAN application; the analysis times are
shown in Figure 6.7(a). Energy consumption values are shown in Figure 6.7(b);
the values are normalized using the largest value. Our technique assures 10% to
41% lower energy consumption compared to the state-space based technique when
the number of frequency points increases from 2 to 10. Increasing the number of
frequency points provides more refined frequencies to save more energy. Figure
6.7(b) also shows that both DVFS techniques provide less energy consumption
compared to the static technique. The analysis time of our technique rises by
increasing the number of frequency points because this increases the number of
parameter points to be verified in our algorithm. However, the analysis time of
our technique is not too high to make the analysis infeasible. The static approach
based on our technique is fast because the number of parameters in the paramet-
ric SADF is limited to only the number of processing elements. Our algorithm
scales reasonably well because typically only a limited number of parameters are
involved in critical timing cycles.

6.5.2 Results of Online Approach

In this subsection, we evaluate the effect of the online DVFS approach when it
is combined with an off-line DVFS approach. We have used the initial frequen-
cies generated using our off-line DVFS technique (see Section 6.3) and a static
frequency assignment approach. The static frequencies are derived using our off-
line DVFS technique when fixed frequencies are used for all processing elements
across all scenarios (i.e., a single parameter representing the operating frequency
of a processing element in all scenarios). We also simulated the effect of the online
DVFS approach, explained in Section 6.4, on the total energy consumption. Table
6.3 contains the results for the MP3 decoder and the MPEG4 decoder applica-
tions. These two applications are used in our experiment since the distribution
functions for the actual execution times of the actors in both models are known
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Table 6.3: The normalized energy consumption values for our/static with on-
line/offline DVFS approach.

MP3 decoder

Our Static

offline 0.868 1.000

offline+online 0.854 0.998

MPEG4 decoder

Our Static

offline 0.596 1.000

offline+online 0.225 0.390

in the literature [32, 74]. We have used the existing distribution functions to
generate the actual execution time of each actor in the model in our run-time
simulator. The obtained energy consumption numbers are normalized using the
highest energy consumption values (i.e., energy consumption of the static design-
time DVFS technique which is an off-line approach). The results are the average
of running each experiment 50 times with different seeds for generating actual
actor execution times according to the related distribution functions.

As expected, using our design-time DVFS setting technique is beneficial on
both benchmark applications. The online approach obtains more gain in case of
the MPEG4 decoder application when compared to the MP3 decoder application.
The actual and worst-case execution time values in case of MP3 decoder are fairly
close. Hence, a design-time DVFS approach can find the suitable solution for the
MP3 decoder application. For the MPEG4 decoder, the actual and worst-case
actor execution times show larger differences, which is why adding online DVFS
leads to larger gains.

6.6 Summary

A technique is developed to synthesize a DVFS controller for SADFs to reduce the
energy consumption while meeting a throughput requirement. The SADF model
is extended to a parametric model in order to capture the processor frequencies
of the platform to which the application is mapped. The proposed technique
uses a symbolic version of a Max-Plus automaton graph analysis to identify the
critical timing cycles. Initially, the application is set to the lowest possible energy
mode. Then, the critical cycles that are violating the timing requirement are
repetitively resolved by refining the processor frequencies. Our analysis is faster
than the state of the art technique for dataflow graphs; the experiments show that
our technique furthermore constructs more compact DVFS controllers with lower
energy consumption. Moreover, an online DVFS approach is considered to further
lower the operating frequencies by exploiting the possible timing slack identified
at run-time. The online approach obtains substantial energy saving when the
actual and worst-case actor execution times show large differences.
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Conclusions and Future Work

7.1 Conclusions

Dynamic behavior is prominent in modern streaming applications. These appli-
cations usually operate in different modes, which are called scenarios, throughout
their run-time. SADF models can be used to capture the dynamic behavior of
streaming applications. An SADF uses a scenario graph, which is an SDF graph,
to model the behavior of an application operating in a specific scenario. Con-
sidering dynamism in the implementation of streaming applications can help to
efficiently utilize the processing and memory resources. In this thesis, we have de-
veloped some modeling and analysis techniques that are in line with the existing
successful strategies in developments of embedded systems (i.e., platform-based
design, model-based design and predictable design). We have assumed that the
suitable hardware platforms composed of multiple processing elements and mem-
ory units are given. Since the focus of this thesis is streaming applications, we
have considered that the input dynamic applications are given with SADF graphs.

We have used one of the state of the art dataflow design tools (i.e., the
SDF3 toolkit) as our target design flow platform. The mapping of an applica-
tion to an MPSoC platform is generated using the SDF3 toolkit. In Chapter
3, we have developed a multi-processor scheduler that considers the presence of
off-chip memories in the system. The proposed scheduler makes a trade-off be-
tween executing actors in a code-driven or data-driven manner to either minimize
the latency or maximize the throughput of the application. The scheduler also
considers prefetching when choosing a suitable execution order. The scheduler is
evaluated using some realistic and synthetic graphs; our results show significant
improvement over some well-known heuristics (i.e., HEFT and G-CPU).

The binding and scheduling decisions must be encoded in the model to enable
the analysis of performance properties (e.g, throughput) or resource requirements
(e.g., buffer sizes) under resource constraints (e.g., [9, 10, 54, 69, 86]). The only
generally applicable technique to model schedules in an SADF graph is to con-
vert its scenario graphs, represented by SDF graphs, to the equivalent HSDF
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graphs. This may lead to an exponential increase in the graph size and/or to
sub-optimal analysis results (e.g., overestimation in buffer sizes). In Chapter
4, we have proposed techniques to model two types of static-order schedules,
i.e., periodic schedules and periodic single appearance schedules, directly in an
S(A)DF graph. Experimentally, we show that our techniques produce more com-
pact graphs compared to the technique that relies on a conversion to an HSDF.
This results in reduced analysis times for performance properties and tighter re-
source requirements.

The timing property of a model may be altered during the different steps in a
design flow; for example, Dynamic Voltage and Frequency Scaling (DVFS) scales
the execution times. The SADF model can be parameterized by associating the
execution time of each actor in the model with a linear function of some param-
eters. In Chapter 5, we have developed a throughput calculation technique for
such parameterized SADF graphs. Our technique identifies a throughput function
for a parameterized SADF; evaluating this function for a specific parameter point
reveals the throughput value of the SADF model for that parameter point.

The SADF model can be parameterized to accommodate frequencies of the
processing elements in an MPSoC platform. Applying our parametric throughput
analysis to such a parameterized SADF identifies the critical timing cycle of the
system. The extracted critical cycle reveals which processing elements are limit-
ing the throughput; in Chapter 6, this information is utilized to assign suitable
frequencies to each scenario of an SADF graph running on an MPSoC. The out-
come of our DVFS technique is a design that minimizes the energy consumption
while guaranteeing a certain throughput requirement. Moreover, the resulting
DVFS settings are combined with an online DVFS approach to further exploit
the timing slack produced at run-time.

All in all, this thesis expands the existing design flows for streaming ap-
plications modeled with SADF graphs. The modeling and analysis techniques
proposed in this thesis are implemented within the SDF3 toolkit that is freely
available from http://www.es.ele.tue.nl/sdf3.

7.2 Recommendations for Future Research

This thesis provides initial modeling and analysis approaches towards achieving
a design flow for dynamic streaming applications. However, there are still some
opportunities in integration and optimization of the proposed techniques that
invite for future research:

• Guided partitioning, binding and buffer sizing: The throughput func-
tion identified using the parametric throughput analysis presented in Chap-
ter 5 reveals how actors of a model contribute to the critical timing cycles.
Often, allocating more buffers to a channel is a way to break such critical
cycles. Moreover, binding actors involved in the same critical cycle to dif-
ferent processing elements can also alter the critical cycle. These are some
initial handles to tackle the partitioning, binding and buffer sizing problems.

• Scalable scheduling: The hybrid prefetch-aware scheduling technique pro-

http://www.es.ele.tue.nl/sdf3
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posed in Chapter 3 considers prefetching of only one memory object during
the execution of a single actor. This assumption is made in our approach to
limit the size of the ILP formulation. An approach that can relax this issue
can further utilize the prefetching efficiency.

• Resource allocation: The allocation of a processing element type (i.e, a
micro-processor or DSP or specialized hardware etc.) to actors of a model
can be modeled using a parameterized SADF. Verifying combinations of
all different processing elements often demands large analysis time and this
makes such resource allocation infeasible in practice. The results obtained
from applying our parametric throughput analysis, presented in Chapter 5,
to the parameterized model can be used to facilitate the mentioned resource
allocation. The resource allocation can be guided by considering the effect
of using a processing element type on the critical time cycles. This way, a
better allocation may be performed with shorter analysis time.

• Actor migration: Actors running on a processing element may need to be
migrated to another processing element for different reasons such as load-
balancing, thermal management, reliability improvement, etc. The timing
overhead of migrating an actor is usually high and it may deteriorate the
achievable throughput. However, the timing slack accumulated at run-time
of an application may allow an actor migration in some intervals without
affecting the throughput. The migration process can be modeled as a sce-
nario reconfiguration. The FSM of the application should be updated to
accommodate the migration scenario. A design-time approach can study
how many iterations are required to build enough time slack for an actor
migration. Further research in this area can assess the possibility of a real-
time actor migration for streaming applications.

• Time-constrained DVFS using game theory: A game theory-based
technique to synthesize a controller for SADFs is presented in [86]. The
authors of [86] optimize throughput by exploring different possible schedules.
The controller resulting from [86] is optimized for a single design metric (i.e.,
only throughput). The same game-based approach can be adapted to reduce
the energy consumption. Extending the game theory-based technique of [86]
to consider two design metrics is a relevant, but challenging problem which
requires further research.

• Simultaneous design: Different steps are involved in a design-flow such
as partition, binding, scheduling, buffer sizing and other optimizations; the
order with which these steps are applied affects the quality of the final
design. Sometimes it is desirable to perform multiple steps simultaneously
for a better design; however this can increase the complexity of the problem.
For example, performing the DVFS optimization suggested in Chapter 6 at
the same time that schedules are being formed can give a chance to find a
better solution. Simultaneous design can be an interesting yet challenging
topic for the future research.
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Acronyms and abbreviations

CCR communication-to-computation ratio
DAG directed acyclic graph
DMA direct memory access
DSE design space exploration
DSM decision state modeling
DSP digital signal processing
DVFS dynamic voltage and frequency scaling
FPGA field-programmable gate array
FSM finite state machine
GCD greatest common divisor
G-CPU greedy CPU
GPS global positioning system
HEFT heterogeneous earliest finish time
HSDF homogeneous synchronous dataflow
IDC international data corporation
IDCT inverse discrete cosine transform
ILP integer linear programming
IP intellectual property
IQ inverse quantization
Lfp list schedule uses forward priorities
LMA left-most actor
Lrp list schedule uses reverse priorities
LS looped schedule
LTE long term evolution
MC motion compensation
MCM maximum cycle mean
MCR maximum cycle ratio
MoC model-of-computation
MPAG Max-Plus automaton graph
MPEG motion pictures experts group
MPSoC multi-processor system-on-chip
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NRE non-recurring engineering
PSOS periodic static-order schedule
QCIF quarter common intermediate format
RMA right-most actor
SADF scenario-aware dataflow
SAS single appearance schedule
SASM single appearance schedule modeling
SDF synchronous dataflow
VLD variable length decoding
VLSI very large scale integration
WCET worst-case execution time
WLAN wireless LAN

Symbols and Notations

Chapter 2

a actor
c channel
port port
A set of actors
C set of channels
Ports set of ports
In set of input ports
Out set of output ports
Rate(p) rate of port p
InC(a) set of all channels connected to input ports of actor a
OutC(a) set of all channels connected to output ports of actor a
γ repetition vector
ωi an SDF state
ω0(c) number of initial tokens on channel c
σ an SDF execution
φ a scenario of an SADF graph
Φ set of all scenarios in an SADF graph
Prgs the progress value of a scenario
FSM the FSM of an SADF
q an FSM state
Q set of all states in an FSM
Q0 set of all potential starting states in an FSM
T set of all possible state transitions in an FSM
L state-labeling function of an FSM
M the characteristic max-plus matrix of an SDF
θ token timestamp
gf grouping factor
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Chapter 3

pt processing tile in a platform graph
pe processing element of a processing tile
[mc of pti] the code memory size of the processing tile pti (in bytes)
[md of pti] the data memory size of the processing tile pti (in bytes)
H the read/write latency of the remote memory (in cycles)
η(a) the processing tile to which the actor a is mapped
κ(a) the code size of the actor a (in bytes)
τ(a) the execution time of the actor a (in cycles)
ψ(a) the function identifier of the actor a
ε(c) the communication delay of transferring a data object via

channel c (in cycles)
ϑ(c) the size of a token (in bytes) getting transferred via c
χi start time of the actor ai
LAT latency
πij receives 1 when actor aj scheduled immediately after actor

ai; otherwise, receives 0
IT initialization time
WD write data
RD read data
RC read code
II iteration interval
CSL code space limitation
DSL data space limitation
CPA code prefetched amount
DPA data prefetched amount
TL temporal limitation
DTL data temporal limitation

Chapter 4

Ω set of all decision states
∆j set of the opponent actors of a decision state ωj
µ normalization factor

Chapter 5

p parameter
P set containing all parameters
I an interval to which parameter pi ∈ P belongs
ν a parameter point
e a throughput expression



134 Glossary

Chapter 6

SFS scale factor set
Period period or the inverse of the throughput
f frequency
ρ the number of parameters found in a critical cycle
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