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ABSTRACT: In this study, the behavior of derivative properties estimated by
equations of state, including isochoric heat capacity, isobaric heat capacity, speed of
sound, and the Joule−Thomson coefficient for pure compounds and a mixture, has
been investigated. The Schmidt−Wagner and Jacobsen−Stewart equations of state
were used for predictions of derivative properties of 10 different pure compounds
from various nonpolar hydrocarbons, nonpolar cyclic hydrocarbons, polar com-
pounds, and refrigerants. The estimations were compared to experimental data. To
evaluate the behavior of mixtures, the extended corresponding states principle (ECS)
was studied. Analytical relationships were derived for isochoric heat capacity, isobaric
heat capacity, the Joule−Thomson coefficient, and the speed of sound. The ECS
calculations were compared to the reference surface data of methane + ethane. The
ECS principle was found to generate data of high quality.

1. INTRODUCTION

Nowadays, energy is among the most important global con-
cerns. Most of the energy consumed in the world comes from
petroleum sources.1 Efficient process design and intensification
are among the various paths to alleviate such problems. However,
optimal design requires accurate knowledge of the various
thermophysical properties of the pure components involved in
the processes, and their mixtures. This includes second-order
thermodynamic derivative properties, such as heat capacities,
speeds of sound, and Joule−Thomson coefficients, as well as
the first-order properties.2,3 For example, heat capacities are
properties of high interest in any process involving the addition
or extraction of heat, and the Joule−Thomson coefficients are
essential for engineering designs such as throttling processes.
The speed of sound is commonly employed for aerodynamic
calculations.4,5 These thermodynamic properties can be
calculated by second-order differentiation of a thermodynamic
potential function with respect to the temperature and density.4

However, calculations of second derivatives are more sensitive
to errors than the first derivatives of a thermodynamic function.
First derivatives, such as phase equilibria calculations, come
to rather accurate results, whereas second derivatives of the
same thermodynamic function can lead to unreliable results
for the same compound.5 It has been pointed out that this is a
challenge for all equations of state. For example, cubic equations
of state (EoS) have proven to be rather accurate models for first
derivatives; however, they have problems with predicting some
of the singularities observed in derivative properties, for instance,

density extrema in isothermal variations of the isochoric heat
capacity, isothermal compressibility, and speed of sound.6

Hence, such equations have little predictive or extrapolative
power.5

For overcoming this inability of the cubic EoS, some
researchers have used more complicated EoS, involving more
sophisticated molecular interactions, or EoS that involve a
greater number of parameters. For example, the SAFT-family
of EoS or the cubic-plus-association (CPA) EoS are the choices
for some researchers when it comes to prediction of second
derivative properties, despite the fact that they are cumbersome
to use.2,3,5,7−9

In this study, other sophisticated EoS, namely, the Schmidt−
Wagner and the Jacobsen−Stewart (32-MBWR) EoS, were
considered as accurate models to predict second derivative
properties of pure fluids, as well as mixtures. These EoS have
larger numbers of parameters compared to the cubic EoS and
even compared to the SAFT-family of equations; however, most
importantly, they have a strong thermodynamic basis.

2. THEORY

2.1. Equations of State. In this section, the functional
structure of the investigated equations of state, namely, the
Schmidt−Wagner (SW) EoS and the Jacobsen−Stewart EoS
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(32-MBWR), will be discussed for both pure compounds and
mixtures.
2.1.1. Schmidt−Wagner EoS. In 1985, Schmidt and

Wagner10 published an equation of state for oxygen, based on
a new method of optimization. They developed their new EoS
based on four goals, as follows: (1) The equation of state should
be able to simultaneously fit all kinds of measured thermody-
namic data in order to represent all types of properties within
experimental accuracy. (2) The equation should be able to cover
the whole fluid region where data exist. (3) It should have a
simple functional form and be simple to handle. (4) Tominimize
the number of coefficients, the structure of the new equation of
state should be developed using an optimization method.
The fundamental equation obtained was expressed in the form

of the Helmholtz energy, A, with two independent variables,

density (ρ) and temperature (T). Therefore, derivative proper-
ties could be derived based on this equation of state.10 The
dimensionless Helmholz energy (Φ = A/RT) is split into a part
presenting ideal gas behavior, Φ°, and a part that takes into
account the residual fluid behavior, Φr.

δ τ δ τ δ τΦ = Φ + Φ( , ) ( , ) ( , )0 r
(1)

The parameters of eq 1 are defined in Table 1.
The Helmholz energy of an ideal gas is given by

ρ ρ= − −A T H T RT T( , ) ( ) TS ( , )0 0 0
(2)

If the ideal gas heat capacity, Cp
0, is known, the following

equation is obtained,

∫ ∫ρ

ρ
ρ

= + − −
−

− −
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

A T C T H RT T
C R

T
T

RT

( , ) d d

ln TS

T

T

p
T

T p0 0
0
0

0

c
0
0

0 0

(3)

where ρ0 = (P0/RT0) is a reference density. Furthermore,
arbitrary reference values for the temperature T0, pressure P0,
entropy S0

0, and enthalpy H0
0 have to be selected. The develop-

ment of the residual term of the Helmholz energy,Φr, is split into
three steps:
Step 1. The first step is the formulation of a general expression

for the equation that functions as a “bank of terms”. For methane,

Table 1. Definition of Dimensionless Variables

dimensionless variable relation

ideal Helmholtz energy
Φ = A

RT
0

id

residual Helmholtz energy
Φ = −A A

RT
r

id

dimensionless temperature
τ =

T
T

c

dimensionless density δ ρ
ρ

=
c

Figure 1. Derived thermodynamic properties for methane by the Schmidt−Wagner EoS and comparison with NIST16 data at different reduced
temperatures.
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and similar components, this residual part of the dimensionless
Helmholz energy was formulated as

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
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where

θ δ

θ τ δ

Δ = + −

= − + − β

B

A

[( 1) ] ,

(1 ) [( 1) ]
k

a2 2

2 1/2

i

(5)

and

τ δ ρ
ρ

= =
T
T

,c

c (6)

All of the other symbols represent constants that are fit to
experimental data.
Step 2. The second step, after selecting a suitable bank of

terms, is a statistical optimization to determine the most effective
equation forΦr. This will consist of the terms from eq 4 that give
the best representation of the data.
Step 3. The third step is the optimization of the parameters,

ni’s, in the obtained equation. In the optimization of the param-
eters, the following information is used: p, ρ, and T data,
isochoric heat capacities, isobaric heat capacities, second virial
coefficients, speeds of sound, enthalpies, vapor pressures, vapor
densities, and liquid densities.
Steps 2 and 3 are repeated until the best equation and the best

parameter set are found. In the literature, three types of SW
EoS are mentioned. The methane-type of SW EoS was already
discussed. The other equations of state are the oxygen-type and
the carbon dioxide-type. The differences are in the banks of
terms. For the methane-type of SW EoS, some extra terms are
included in the bank of terms to give a better fit in the critical
region.10

2.1.2. Jacobsen−Stewart (32-MBWR) EoS. The Jacobsen−
Stewart (32-MBWR) EoS11 is a modification of the Benedict−
Webb−Rubin EoS. The 32-MBWR equation consists of an
exponential term that is essentially an expanded virial equation.
This equation is capable of providing highly accurate fits of the
liquid, vapor, and supercritical regions of a fluid, as well as the
saturation boundary. The 32-MBWR equation presents pressure
(P) as a function of molar density (ρ) and temperature (T),

∑ ∑ρ ρ δ ρ= + −
= =

−P a T a T( , T) ( ) exp( ) ( )
i

i
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where δ = (ρ/ρc) and the temperature dependencies of the ai
coefficients are

=

= + + + +

= + + +

= + +

=

= +

=

= +

=

= +

= +

= +

= +

= +

= + +

a RT

a b T b T b
b
T

b
T

a b T b
b
T

b
T

a b T b
b
T

a b

a
b
T

b
T

a
b
T

a
b
T

b
T

a
b
T

a
b
T

b
T

a
b
T

b
T

a
b
T

b
T

a
b
T

b
T

a
b
T

b
T

a
b
T

b
T

b
T

1

2 1 2
0.5

3
4 5

2

3 6 7
8 9

2

4 10 11
12

5 13

6
14 15

2

7
16

8
17 18

2

9
19

2

10
20
2

21
3

11
22

2
23

4

12
24

2
25

3

13
26
2

27
4

14
28
2

29
3

15
30

2
31

3
32

4 (8)

where the coefficients of b are the adjustable parameters.11

2.1.3. General Comparisons of the 32-MBWR and SW EoS.
In general, the complexity of calculations of derivative properties
depends on the number of terms used in the EoS. The
32-MBWR EoS has a larger number of terms than the SW EoS,
but all the derivative properties can still be obtained by means
of analytic differentiation. The SW EoS usually has more
parameters than the 32-MBWR (depending on the optimization
of the functional structure). Because the thermodynamic surface

Table 2. Compounds, from Different Classes of Families,
Investigated in This Study

type of compound compound

nonpolar hydrocarbons methane
ethane
propane
i-butane
n-butane

nonpolar cyclic hydrocarbons cyclohexane
refrigerants R152a (1,1-difluoroethane)

sulphurhexafluoride
polar compounds methanol

water
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is given as the free Helmholtz energy as a function of density
and temperature, more complex differentiations have to be
conducted to obtain the derivative properties. The derivative
properties are, however, still obtained by means of analytic
differentiation.
2.2. Derivation of Derivative Properties for Pure

Compounds. If the thermodynamic surface is given as a
function of temperature and density, the basic relations giving the
derivatives of the Helmholtz free energy in a dimensionless form
are as follows, with the dimensionless variables being defined in
Table 1.

τ
Φ = Φ

τ
δ

⎛
⎝⎜

⎞
⎠⎟

d
d

r
r

(9.1)

τ
Φ = Φ

ττ
δ

⎛
⎝⎜

⎞
⎠⎟

d
d

r
2 r

2
(9.2)

On the basis of the Helmholtz energy, different derivative
properties such as isochoric heat capacity, Cv; isobaric heat
capacity, Cp; speed of sound, w; and Joule−Thomson coefficient,
μ, can be derived, and the final equations for the Schmidt−
Wagner EoS are as follows.

δ τ
τ= − Φ + Φττ ττ

C
R

( , )
( )v 2 0 r

(10.1)

δ τ δ τ δ δτ
δ δ

= +
+ Φ − Φ
+ Φ + Φ

δ δτ

δ δδ

C

R
C
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( , ) ( , ) (1 )
1 2

p v
r r 2

r 2 r
(10.2)

δ τ δ δ
δ δτ

τ
= + Φ + Φ −

+ Φ − Φ
Φ + Φδ δδ

δ δτ

ττ ττ

w
RT
( , )

1 2
(1 )

( )

2
r 2 r

r r 2

2 0 r

(10.3)

μ δ τ ρ
δ δ δτ

δ δτ τ δ δ

=
− Φ + Φ + Φ

+ Φ − Φ − Φ + Φ + Φ + Φ
δ δδ δτ

δ δτ ττ ττ δ δδ

R( , )

( )
(1 ) ( )(1 2 )

r 2 r r

r r 2 2 0 r r 2 r

(10.4)

Equations 10 are the derived thermodynamic properties as a
function of dimensionless Helmholtz energy. If the thermody-
namic surface is given in pressure as a function of density and
temperature, such as the 32-MBWR EoS, the basic thermody-
namic relations are as follows.

∫ρ
ρ
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∂

ρ

ρ

⎡

⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥⎥C T C

T P
T

( , ) dv v
0

0 2

2

2
(11.1)

ρ ρ
ρ ρ

= + ∂
∂

∂
∂ρ

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟C T C T

T P
T

P
( , ) ( , )p v

T
2

2

(11.2)

ρ
ρ

= ∂
∂

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥w T

C

C
P

M
( , )

10p

v T

2
6

r (11.3)

μ ρ
ρ ρ ρ

=
∂ ∂
∂ ∂

−ρ⎡
⎣⎢

⎤
⎦⎥T

C

T P T

P
( , )

1 ( / )

( / )
1

p T
2

(11.4)

Figure 2. Derived thermodynamic properties for ethane by the 32MBWR EoS and comparison with NIST16 data at different reduced temperatures.
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The residual properties can be derived via a straight-
forward procedure. Values of residual heat capacity are useful
to determine, as they can, for example, reveal deviations in the
isochoric heat capacity. The advantage of comparing the residual
heat capacities is that the dependence on the ideal heat capacity is
removed. The residual heat capacity is given by eq 12,

∫ ρ
ρ= −

ρ

ρ

⎛
⎝⎜

⎞
⎠⎟

C
R R

T P
T

1 d
d

dv
r

0

2

2

2

(12)

To study the isobaric heat capacity, without the influence of
the isochoric heat capacity, the following relation is used,

ρ ρ

−
= −

ρ

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
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C C
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T

R
P
T

Pd
d

d
d

1p v

T

r r

2

2

(13)

This property has the advantage that the deviations in Cv and
the ideal isobaric heat capacity are not influencing the com-
parison. To study the total isobaric heat capacity, the residual
isobaric heat capacity is included. Note that this quantity is not
dependent on the ideal isobaric heat capacity.

ρ ρ
= + −

ρ
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⎝

⎞
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To compare the Joule−Thomson coefficient with eq 11.4, the
dependence on the isobaric heat capacity is discarded, yielding
the following expression:

μ ρ
ρ

= −ρ

ρ( )
( )

C
T

1p

P
T

P

T

d
d

d
d (15)

The experimentally based values of Cv
r/R for comparison with

those estimated by EoS can be obtained as

= −
C
R

C
R

C
R

v v v
r ig

(16)

− =C C Rp v
ig ig

(17)

Values of Cp
ig/R were calculated for the compounds based on the

following correlation:12

= + + + +
C

R
a a T a T a T a Tp

ig

0 1 2
2

3
3

4
4

(18)

2.3. Calculation of Derivative Properties for Mixtures.
2.3.1. Extended Corresponding States Procedure. To calculate
the derivative properties for mixtures, the extended correspond-
ing states (ECS) procedure is chosen.13−15 This procedure
allows an accurate calculation of all thermodynamic properties
provided that there are accurate pure component surfaces

Figure 3. Derived thermodynamic properties for propane by the 32MBWR EoS and comparison with NIST16 data at different reduced temperatures.
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available. The extended corresponding states method is based on
the following relationships:14

ρ ρ=z T z h T f( , ) ( , / )i i i i0 ,0 ,0 (19)

ρ ρ=a T a h T f( , ) ( , / )i i i i0 ,0 ,0 (20)

The subscripts denote the reference fluid (0) and target fluid
(i). Z and a are the compressibility factor and the dimensionless
residual Helmholtz free energy, respectively, and are defined by

= −z Z 1 (21)

= −
a

A A
RT

id

(22)

f i,0 and hi,0 are transformation parameters, defined by

θ ρ=f T T T( / ) ( , )i
i i i

,0 c c
0

r r (23)

ρ ρ ϕ ρ=h T( / ) ( , )i
i i i

,0 c
0

c r r (24)

where Tc and ρc are the critical temperature and critical molar
density of the fluids, respectively. Tr

i and ρr
i are defined as

=T
T
T

i
i

ir
c (25)

ρ ρ
ρ

=i
i

ir
c (26)

The functionsϕ(Tr, ρr) and θ(Tr, ρr) are shape factors. Given a
state point defined by ρ and T, plus the transformation variables,
f i,0 and hi,0, eqs 19 and 20 define an exact transformation from
one pure fluid surface to another; then, the pressure Pi transfers
to ( f i,0/hi,0)P0. The shape factors ϕ(Tr, ρr) and θ(Tr, ρr) can be
approximated in a number of ways, but if the equation of state
is known for both the reference fluid (0) and the target fluid (i),
the exact calculation of hi,0 and f i,0 is possible for each state point.
This eliminates the need to approximate ϕ(Tr, ρr) and θ(Tr, ρr).
In this study, the transformation parameters f i,0 and hi,0 were
calculated in an exact manner for every state point. The extension
of this procedure to mixtures is accomplished by the following
mixing rules,13

ε=f f f( )ij i j ii jj, ,0 ,0
1/2

(27)

η= +⎜ ⎟
⎛
⎝

⎞
⎠h h h

1
2

1
2ij i j ii jj, ,0

1/3
,0

1/3
3

(28)

∑ ∑=h x x hx
i j

i j ij,0 ,0
(29)

∑ ∑=f h x x f hx x
i j

i j ij ij,0 ,0 ,0 ,0
(30)

where xi and xj are the mole fractions of the pure components
and ηij and εij are binary interaction parameters. The previously
defined parameters hi,0 and f i,0 become hii,0 and f ii,0, respectively.

Figure 4. Derived thermodynamic properties for i-butane by the 32MBWR EoS and comparison with NIST16 data at different reduced temperatures.
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The only adjustable parameters are the binary interaction
parameters ηij and εi.

13,14

2.3.2. Derivation of Derivative Properties Using the ECS
Procedure. Starting with the dimensionless Helmholtz energy,
the thermodynamic properties can be derived using basic
thermodynamic relationships. Equations 31−37 require only
first derivatives of the Helmholtz energy a.

=a ai 0 (31)

= + +ρ ρz H z F u(1 )i 0 0 (32)

= − −u F u H z(1 )i T T0 0 (33)

= − −s s F u H zi T T0 0 0 (34)

= + − + −ρ ρh h F F u H H z( ) ( )i T T0 0 0 (35)

Figure 5. Derived thermodynamic properties for n-butane by the 32MBWR EoS and comparison with NIST16 data at different reduced temperatures.

Figure 6. Derived thermodynamic properties for cyclohexane by the Schmidt−Wagner EoS and comparison with NIST16 data at different reduced
temperatures.
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= + +ρ ρg g H z F ui 0 0 0 (36)

φ = + +g u F z Hln i n n0 0 0i i (37)

All energies are defined as

= −
x

X X
RT

id

(38)

where X = a, u, h, or g. The entropy is defined as

= −
s

S S
R

id

(39)

The thermodynamic properties denoted with a subscript 0 are
properties derived from the reference surface using basic
thermodynamic relationships. The factors Hx and Fx (where x
= T, ρ, or ni) contain the derivatives of the transformation
parameters hi,0 and f i,0. Their definitions are
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According to eq 19, the compressibility factors for the
reference and the target fluid must be equal. As a result, eq 32
imposes a constraint,

= −ρ ρz H u F0 0 (46)

To calculate the thermodynamic properties mentioned above,
the factors Hx and Fx (x = T, ρ, ni) must be known. The
derivatives of H are given by Ely,14

κ κ
κ γ

=
−

− + −ρH
u

u z
[( ) ]

[( 1) ( 1) ]
i o 0

0 0 0 0 (47)

γ γ γ
κ γ

=
− − − −
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[( ) ( 1)( )]

[( 1) ( 1) ]T
i i0 0 0 0
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Figure 7. Derived thermodynamic properties for R152a by the 32MBWR EoS and comparison with NIST16 data at different reduced temperatures.
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κ ρ
ρ

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟P

P

T (50)

Making use of eqs 33 and 46 allows for the calculation of the F
factors. If the aim is to calculate the thermodynamic properties
for a mixture, mixing rules are utilized to calculate the mixture

factors Hx and Fx. These mixing rules are derived from eqs

27−30,

∑ ∑=
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d
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d
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i j
i j
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(51)

Figure 9. Derived thermodynamic properties for methanol by the Schmidt−Wagner EoS and comparison with NIST16 data at different reduced
temperatures.

Figure 8. Derived thermodynamic properties for sulphurhexafluoride by the Schmidt−Wagner EoS and comparison with NIST16 data at different
reduced temperatures.
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The calculation of caloric properties is more complicated. De-
tailed equations of the calculations are provided in the Supporting
Information.

3. INVESTIGATED COMPOUNDS

In this study, 10 different compounds were selected in a way to
encompass different classes of compounds, including nonpolar
hydrocarbons, nonpolar cyclic hydrocarbons, refrigerants, and
polar compounds. The selected compounds and the literature
references presenting the experimental properties investigated in
this study are given in Table 2.

4. RESULTS AND DISCUSSION

4.1. Pure Compounds.On the basis of the equations of state
discussed in sections 2.1.1 and 2.1.2, the derived thermodynamic
properties were calculated for each compound based on the
suitable equation of state. The results of these calculations for
isochoric heat capacities, isobaric heat capacities, the Joule−
Thomson coefficients, and the speeds of sound are compared
with literature values for various hydrocarbons in Figures 1−10
for reduced temperatures up to 1.5. In the case of Cv

r, because no
direct data are available, the so-called “experimental” Cv

r/R values
were calculated according to eqs 16−18. Because the correlations
for Cp

r/R have different errors for the different compounds, these
“experimental” Cv

r/R values are not exact in Figures 1−10 and are
thus not quite suitable for comparing results. For some of the
compounds, the deviations of the models from the reference
Cv
r/R can be the result of this shortcoming.
As seen in Figures 1−5, the thermophysical properties of

alkanes, from methane to butane (both isobutane and normal
butane), were predicted with little deviation from the literature
data due to the nonpolar nature of these components. Cv

r/R, is,
however, an exception as mentioned above. The Schmidt−
Wagner EoS was used to model cyclohexane, as a representative
of nonpolar cyclic hydrocarbons. Good predictions were
obtained as shown in Figure 6. Among the refrigerants, R152a
was predicted by the 32MBWREoS and sulphurhexafluoride was
predicted by the Schmidt−Wagner EoS, as shown in Figures 7

Figure 10. Derived thermodynamic properties for water by the Schmidt−Wagner EoS and comparison with NIST16 data at different reduced
temperatures.
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and 8, respectively. While R152a was predicted very well,
sulphurhexafluoride exhibited large deviations from the data. For
the hydrogen-bonding compounds of methanol and water, the
Schmidt−Wagner EoS was used with rather accurate predictive
capability up to reduced temperatures of 1.1 for methanol and 1.5
for water, as shown in Figures 9 and 10, respectively.
In almost all of the compounds investigated, the velocity of

sound showed the most accurate EoS-predicted results com-
pared to the other derivative physical properties (Figures 1−10).
The velocity of sound has an ascending trend in all of the cases
with respect to reduced density. Isochoric heat capacity, isobaric
heat capacity, and the Joule−Thomson coefficient all show
maxima in the investigated density range, with the Joule−
Thomson coefficient of water being an exception.
4.2. Evaluation of the Accuracies of the ECS Calcu-

lations.To further investigate the derivative properties obtained
from models, the ECS theory was also extended to analytically
predict the derivative properties of mixtures. The advantage
of the ECS procedure is the high accuracy of the predictions and
the ability to predict the properties for an infinite number of
mixtures. The results from ECS calculations are compared to
properties derived from a constant-composition reference
surface given by McCarty.13 The mixture considered is methane
+ ethane, with a molar fraction of methane equal to 0.685. The
critical density of the mixture is 8.82 mol·L−1. All calculations

are carried out for a temperature of 330 K. The accuracy of the
ECS calculations can be observed using Figure 11. In all of the
graphs of Figure 11, deviations of the ECS theory from the
reference surface have been shown for the derivative properties
considered, with the deviations being defined as

Δ =
− ×X X

X
( ) 100reference test

reference (55)

where X is the derivative property of concern. The interaction
parameters are set to 1.0. The properties from the constant-
composition reference surface are also compared in Figure 11 to
those given by the principle of congruence, which states that, for
nonpolar, approximately spherical molecules, the properties for
the mixture are the molar fraction-weighted sum of the pure
component properties at the same density and temperature.
For the isochoric heat capacity, seen in Figure 11a, the

predictions given by the principle of congruence are generally
better than those by ECS calculations. This could be a result of an
unsatisfactory reference equation of state, as well as of the
inadequacy of the ECS theory. Figure 11b is basically a similar
comparison as the one given in Figure 11a, but the ideal heat
capacity has been subtracted to give a comparison of the residual
heat capacities. It is evident that deviations in the residual
isochoric heat capacities are large. In Figure 11c, a comparison

Figure 11. Deviations between the ECS theory and the principle of congruence from the reference surface for calculation of isochoric heat capacity, Cv
(a); residual isochoric heat capacity, Cv

r·R−1 (b); isobaric heat capacity, Cp (c); residual isobaric heat capacity, Cp
r ·R−1 (d); speed of sound, w (e); and

Joule−Thomson coefficient, μ (f) for the mixture of (x) methane + (1 − x) ethane (x = 0.685) at the temperature of 330 K.
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between isobaric heat capacities is presented. The principle of
congruence gives huge deviations in the critical region. The ECS
calculations give deviations less than 5% in the whole range
of densities. The residual isobaric heat capacities, presented
in Figure 11d, indicate that the predicted total isobaric heat
capacity calculated with the ECS procedure resulted in deviations
of less than 5% in the whole density range. The deviations of the
principle of congruence are much larger than ECS predictions,
but close to the critical point, they reach up to almost 20%.
The deviations in the speed of sound are given in Figure 11e.
The predictions given by the ECS calculations have devia-
tions of less than 5 % in the whole reduced density range up
to 2, above which the pure component surfaces used in the
ECS calculation are probably not accurate. For the Joule−
Thomson coefficient (Figure 11f), again the ECS predictions
prove to be superior to the calculations using the principle of
congruence.
For a further investigation of the ECS procedure, themeasured

isobaric heat capacities are compared to the ECS predictions, also
for a binary system. Figures 12 and 13 show the estimations,

together with the experimental data of methane + propane, taken
from Yesavage17 at two different pressures and two concen-
trations. At a methane molar concentration of 0.23, the
experimental mixture critical pressure, temperature, and density
were measured to be 6.21 MPa, 353.40 K, and 5.560 mol·L−1,
respectively, and for a methane molar concentration of 0.49, the

mixture critical properties were 8.50 MPa, 325.17 K, and
7.105 mol·L−1, respectively.
In Figure 12, plotted for a pressure of 6.89 MPa, the isobaric

heat capacities obtained with the ECS procedure by setting all
interaction parameters equal to 1 are quite satisfactory, away
from the critical region. There is, however, significant error near
the critical point. An effort has been made to correct the
deviations by optimizing the interaction parameter. With the
optimized value of εi,j = 0.975 (eq 27), better representations of
the data below the critical point were obtained. The deviations
above the critical point, however, were not eliminated. Such
errors may be due to the failure of the pure component surfaces
to give a good representation of the derived properties in the
immediate vicinity of the critical point.
Similar results are found for this system at a higher pressure of

10.34 MPa (Figure 13), since here too it is not possible to reach
an accurate representation of the data close to the critical
temperature, even by adjusting the interaction parameter εij. To
obtain a reasonable representation, the interaction parameter was
optimized to 0.95.

5. CONCLUSIONS

In this study, the behavior of the isochoric heat capacity, isobaric
heat capacity, speed of sound, and Joule−Thomson coefficient
for pure compounds andmixtures were investigated based on the
32-MBWR and SW equations of state. The accuracy of these two
models were found to be comparable in predicting the above-
mentioned derivative properties. The SW EoS is better in
representing the derivative properties in the critical region;
however, it is more complex than the 32-MBWR. The 32-MBWR
is a more popular EoS in the literature (with respect to SW EoS),
perhaps because of its more straightforward equations and
programming. This is, of course, a great advantage when writing a
computer code for the calculation of derivative properties. If
more accurate representations of derivative properties are
required in the critical region, then the SW EoS is the better
choice. The 32-MBWR EoS is recommended for derivative
property predictions of nonpolar hydrocarbons, whereas the SW
EoS seems to be the more suitable choice for the nonpolar cyclic
hydrocarbons and the polar compounds investigated in this
study.
In addition, to compare the ECS procedure and the principle

of congruence for mixtures of components, the mixture of
methane + propane has been investigated and the isochoric heat
capacities, residual isochoric heat capacities, isobaric heat
capacities, residual isobaric heat capacities, speeds of sound,
and Joule−Thomson coefficients were calculated by these two
different methods. It was shown that the ECS procedure is more
accurate compared to the principle of congruence for this system.
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■ NOMENCLATURE
A Helmholtz energy (J/mol)
a dimensionless residual Helmholtz energy
b co-volume in cubic equations of state (L mol−1)
Cp isobaric heat capacity (J·K−1·mol−1)
Cp
r residual isobaric heat capacity (J·K−1·mol−1)

Cv isochoric heat capacity (J·K−1·mol−1)
Cv
r residual isochoric heat capacity (J·K−1·mol−1)

h transformation parameter (ECS)
f transformation parameter (ECS)
Mr molar mass (g mol−1)
P pressure (MPa)
R gas constant (J·K−1·mol−1)
S entropy (J·K−1·mol−1)
T absolute temperature (K)
xi mole fraction of component i
Z compressibility factor
U residual compressibility factor (J·mol−1)
w speed of sound (m·s−1)
Greek
ω Pitzers acentric factor
ρr reduced density
ρ density (mol·L−1)
μ Joule−Thomson coefficient (K·MPa−1)
θ shape factor (ECS)
ϕ shape factor (ECS)
εij binary interaction parameter (ECS)
ηij binary interaction parameter (ECS)
ϕi fugacity
Indices
r reduces properties
c critical properties
id ideal gas state
i target fluid
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