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Chapter 1
Introduction

Summary

This chapter is a first introduction for the non-expert to the topics that are covered

in this thesis. A general introduction to the theoretical framework of statistical me-

chanics and soft matter physics is given. This is followed by an introduction of the

two topics to which this theoretical framework is applied, the field of protein physics,

and the ultrasonic dispersion of carbon nanotubes. We end this chapter by giving an

outline of the work presented in this thesis.

9
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1.1 Statistical Mechanics and Soft Matter
Statistical mechanics1 deals with large physical systems that are comprised of a large
number of interacting degrees of freedom and aims to find statistical averages, laws,
that govern the properties of these large and complex systems. A classic example
is the behaviour of a macroscopic volume of for example 1 liter of sufficiently dilute
gas. Such a system contains of the order of N = 1022 atoms, each having atleast
6 degrees of freedom, being the position (x, y, z) and the velocity (vx , vy, vz) of the
particle. In principle the value of these 6N parameters must be specified to define
the microscopic state of this system and the time evolution of the system can be
determined by solving 3N coupled differential equations. Unfortunately, this is a task
beyond the capabilities of any person or computer. Fortunately, the derivation of
the laws governing the macroscopic properties of such a system are not beyond the
capabilities of statistical mechanics.

By statistical mechanical methods it can be shown that the state of a macroscopic
volume of sufficiently dilute gas is fully specified by just 3 parameters, being any three
of pressure (p), volume (V ), the number of particles (N) and the temperature (T ) and
that these quantities are related to each other through the ideal gas law,

pV = NkBT , (1.1)

where kB is the Boltzmann constant, and where we note that this law was derived form
empirical observations well before it was derived by statistical mechanical methods.
Nonetheless, this law is of interest to us because it teaches us that the macroscopic
state and properties of a macroscopic volume of dilute gas must be determined by
the statistical average of the behaviour of the individual gas molecules. Furthermore,
this law is a universal law that holds for any gas that is sufficiently dilute. This is a
consequence of coarse-graining, meaning that atomistic details are unimportant for
this system and need not be included in the theory. The power of statistical mechanics
is such, that instead of having to specify the value of of the order of 1022 parameters,
the values of just 3 parameters are sufficient to specify the macroscopic state of the
system. Or perhaps more accurately, it is the very nature of systems such as an ideal
gas that allows for this greatly simplified statistical description. It is due to the work
of, among others, Ludwig Boltzmann, whose famous entropy formula is engraved in
his tombstone, see fig. 1.1, and Josiah Willard Gibbs that we are nowadays able to
use statistical mechanics to describe these complex systems.

It was Pierre-Gilles de Gennes who received the Nobel prize in physics in 1991 for
the application of statistical mechanical methods to study in particular the behaviour
of liquid crystals and polymers.3 Nowadays both topics are part of the field of soft mat-
ter research. Soft matter systems4 are called soft because they are easily deformed,
and moreover, because they are susceptible to thermal fluctuations. Examples of soft
matter systems include almost all living materials, foams (shaving cream), emulsions
(mayonnaise), granular materials (cereals) and liquid crystals (LCD televisions). In
nearly all of these systems, interactions between the degrees of freedom and the
coupling of these degrees of freedom to an external field have energies associated
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Figure 1.1: The tombstone of Ludwig Boltzmann at the Zentralfriedhof in Vienna.
Boltmann’s famous entropy formula is engraved in it.2

with them that are of the order of thermal energy. As a consequence fluctuations are
important and a statistical approach is necessary. The behaviour of these systems
is often governed by the temperature-dependent balance between energetic interac-
tions, which typically favour an ordered state, and entropy, which typically favours a
disordered state. This gives rise to a temperature-dependent degree of ordering on
the microscopic scale, which in turn determines the macroscopic equilibrium proper-
ties of the material.

Equilibrium statistical mechanics allows for the determination of the equilibrium
properties of the system. These properties are independent of time and of the initial
state of the system. Non-equilibrium statistical mechanics allows for the derivation
of the manner in which an equilibrium state is reached (or not reached) and is nec-
essarily time dependent. For example, it is possible to calculate how two immiscible
fluids phase separate, such calculations show how fast this process is, i.e., what the
typical time scale is, and how large the domains of the two coexisting phases are,
i.e., what the length scale of this process is.

Ultimately, being able to understand the equilibrium and non-equilibrium proper-
ties of soft matter systems is of significant importance from an industrial, social and
scientific point of view. Soft matter physics has made important contributions to our
understanding of a number of diseases, such as Alzheimer’s disease, type 2 diabetes
and Parkinson’s disease that are related to protein aggregation.5 Soft matter physics
is being used in food physics to develop low fat food products with a similar texture as
the non-diet product.6,7 Other examples include the development of LCD technology,
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and polymer-carbon nanotube composites8 that function as a transparent electrode
(solar cells, touchscreens).9,10 Moreover, soft matter physics is nowadays ubiqui-
tously employed to study biological systems,11 including but certainly not limited to,
proteins,12 neuron functioning, the formation of fibrillar scaffolding within the cell, and
stem cell differentiation.13

Clearly, soft matter physics is a very broad field of research, and in this thesis
two industrially relevant soft matter systems are studied by employing statistical me-
chanical methods. The non-equilibrium behaviour of both systems is studied and
we shall show that this is non-universal for both systems, implying that the observed
non-equilibrium behaviour depends strongly on the initial state of the system. In the
first system, which is a model protein dispersion, we investigate the kinetics by which
relaxation to an equilibrium state occurs after the system has been brought out of
equilibrium by a quench, i.e., a sudden change in solution conditions such as the
temperature. In the second system, in which carbon nanotubes are exposed to ultra-
sound, the applied ultrasound drives the system out of equilibrium and we investigate
the manner in which the nanotubes undergo scission, when a steady state is reached,
and especially what the non-universal kinetic aspects of this process are.

In the following, in section 1.2 an introduction to the role, the production and the
properties of proteins in living organisms is given. In section 1.3 an introduction to
the different types of interactions between proteins is given and in section 1.4 an
introduction to the phase behaviour of a large collection of proteins dispersed in an
aqueous solvent is given. In section 1.5 an introduction to the kinetic mechanisms
by which phase separation occurs is given. In section 1.6 an introduction to the field
of carbon nanotube science is given, and in section 1.7 an introduction to ultrasonic
cavitation is given. Finally, in section 1.8 the aim of the work presented in this thesis
is introduced and an outline of the remainder of this thesis is given.

1.2 What is a protein?
Proteins12,14 are large molecules that can be found and are produced by each and
every living organism. There are many different proteins, but all of them have some
task. Some proteins are responsible for the transport of chemicals in and out of a
cell, other proteins form the scaffolding that supports the structure of a cell, other
proteins “walk” over these structures to relay signals or transport molecules, there
are proteins that are responsible for muscle activity, enzymes are a class of proteins
that catalyze chemical reactions and there are proteins that facilitate the construction
of other proteins. In summary, proteins are the machinery of life.

Proteins are synthesised in every cell and the building plans for all proteins can
be found in the DNA that is present in the cell. A portion of the DNA that encodes
for a single protein is called a gene, it consists of a specific sequence of the four dif-
ferent nucleic acids that are linked in the characteristic long polymeric double helical
structure. Each cell has the machinery to translate the sequence of nucleic acids that
make up a single gene into a protein. It does so by translating each triplet of nucleic
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Figure 1.2: An illustration of the four levels of structure in a protein. See the main
text for more details.15
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acids, a codon, to a specific amino acid. All of these amino acids consist of an iden-
tical backbone and an amino acid specific residue, of which our DNA encodes for 20
different variants. During the translation of the gene, the backbones of the subse-
quent amino acids are covalently bonded by peptide bonds and the resulting chain-
like polymeric structure forms the primary structure of the protein. It is the specific
sequence of amino acids in this chain that specifies the identity of the protein.

This protein specific sequence of amino acids has remarkable properties, for most
proteins it specifies a unique three dimensional native conformation of the chain with
structure on two additional levels. These levels are the secondary structure of the
protein, which results from interactions between different parts of the backbone that
gives rise to structural motifs that are found in all proteins, most notably alpha-helical
and beta-sheet structure. The tertiary structure of the protein defines in which manner
the elements of secondary structure fold into a dense three-dimensional structure.
If multiple proteins together form a supramolecular structure, this is known as the
quaternary structure of the protein. An overview of these four levels of structure is
shown in fig. 1.2.

Interestingly, the native conformation is not at all times the equilibrium confor-
mation of the protein. The native conformation is the equilibrium conformation under
the physiological conditions at which the protein has to function. Changes in the local
environment, including changes in temperature, pH, or the presence of certain chem-
ical compounds, including large amounts of salt can destabilise the native state and
cause a non-native state to become the minimum free energy conformation, which
differs in atleast either its secondary, tertiary or quaternary structure from the native
conformation.12 A well known example of this is the amyloid fibrillation of proteins,
where after (partial) unfolding, the proteins assemble into a quaternary structure that
is rich in beta-sheet structure.5,16 In chapter 2 we give another example and show
that the dimerisation of beta-lactoglobulin leads to changes in the secondary structure
of this small water soluble globular protein and in chapters 3, 4 and 5 we study the
coupling of conformational changes in proteins to phase separation in a dispersion
of these proteins.

In summary, proteins are chain-like molecules that consist of a protein-specific
sequence of amino acids. It is the sequence of these amino acids that determines
the three-dimensional native structure of the protein and thereby its function. In the
next section, the nature of protein-protein interactions are discussed and in section
1.4 the different phases that can be formed in a protein dispersion are discussed.

1.3 Protein-Protein interactions
When a large number of globular water soluble proteins, the type of protein to which
the work in this thesis is restricted, are dissolved in an aqueous solvent, the resulting
phase behaviour of the protein dispersion is determined by the properties of the sin-
gle proteins and their interaction with themselves and the solvent. These interactions
can be regulated by the addition of salt that sets the ionic strength of the dispersion,
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and a buffer that sets the pH of the dispersion. Hence, a protein dispersion is charac-
terised by parameters such as its pH, ionic strength, the temperature and the protein
concentration. The interactions between the individual proteins are dependent on the
values of these parameters. Depending on their values and the protein concentra-
tion, the proteins in the dispersion can remain in a single liquid phase, phase separate
into two liquid phases of different composition, form a gel state, a crystalline phase
or form a variety of supramolecular aggregates. A brief introduction to each of these
phases is given in the next section.

All of these phases have a different degree of ordering on the microscopic scale.
Changes in the phase of the protein dispersion reflect changes in the interactions be-
tween the proteins themselves and the solvent as well as changes in the entropy of
the dispersion. The balance between energetic and entropic contributions to the free
energy is determined by the temperature, and typically transitions to a different phase
can be induced by changes in the temperature. Moreover, different phases typically
have different densities, hence changes in the protein concentration can cause a
phase transition. Finally, changes in the interactions between the proteins, which
include electrostatic interactions, hydrophobic interactions, and excluded-volume in-
teractions, can also cause changes in the phase of the dispersion.

The electrostatic interactions between the proteins are strongly affected by the
pH and the ionic strength of the dispersion. The pH of the dispersion determines the
probability that ionisable amino acids are charged and hence the pH regulates the
total charge on the protein. At an amino acid and protein specific pH equal to the
pKa the probability that an ionisable group is ionised is 0.5. At a low pH all amino
acids that can be positively charged are positively charged and amino acids that
can become negatively charged are neutral, however at high pH the opposite holds
true.12 This has two important consequences, firstly the composition of the chemically
heterogeneous surface of a protein varies with changes in the pH, which affects the
anisotropic, i.e., orientation-dependent, interactions between the proteins. Secondly,
the pH of the dispersion regulates the total charge present on a protein and as a
consequence the strength of the repulsive electrostatic interactions between them.
Indeed, when a protein is highly charged, it repels other proteins due to Coulombic
repulsion. However, at the isoelectric point, where the pH equals the so-called pI of
the protein, the net charge on the protein equals zero and the Coulombic repulsion
between the proteins disappears.

The electrostatic interactions between proteins can be further regulated by ma-
nipulation of the ionic strength of the dispersion. When the pH of the solution is far
from the isoelectric point and the proteins are highly charged, the Coulombic repul-
sion between the proteins can be reduced by electrostatic screening if a sufficient
amount of salt is added. Hence, in this situation the addition of salt increases the
effective strength of the attractive interactions between proteins. An important type
of interaction between proteins, which is essentially electrostatic in nature, is the hy-
drogen bond. In a hydrogen bond, a hydrogen atom which is covalently bonded to an
electronegative atom engages in an attractive dipole-dipole interaction with another
electronegative atom.
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Hydrogen bonding also gives rise to the hydrophobic interaction, which is an effec-
tive attractive interaction between non-polar parts of the chemically heterogeneous
surface of the protein. This interaction leads to the minimisation of the amount of
hydrophobic surface area of the protein that is exposed to the surrounding water
molecules. This in turn leads to an increase in the orientational entropy of the water
molecules and hence a decrease in the free energy of the dispersion. This is the
case because near a hydrophobic, non-polar surface, the orientation of the water
molecules must be such that they remain fully hydrogen bonded to the surrounding
molecules. However, hydrogen bonding to the non-polar surface is not possible and
this restricts the orientational freedom of the water molecules. Hence, non-polar parts
of the surface of a protein are hydrophobic.

Excluded-volume interactions are also entropic in nature, and these interactions
reflect changes in the amount of free volume in the dispersion that is accessible to
proteins. An increase in the free volume leads to an increase in the translational
freedom of the proteins and hence in the entropy of the dispersion. At high concen-
trations, where the free volume is limited due to the large number of proteins present,
excluded-volume effects shift the equilibrium state of the dispersion to a state where
its free volume is maximised. In other words, these effects promote, for example,
the folding of proteins to more compact conformations and the formation of aggre-
gates.17–19 This is a well known consequence of so-called macromolecular crowding
and in chapter 4 we shall see that it can cause liquid-liquid phase separation in a
protein dispersion.

In the next section the different phases that are observed in a protein dispersion
for different solution conditions are introduced.

1.4 Protein phase behaviour
The proteins in a dispersion can, depending on the solution conditions, form a num-
ber of different phases and states. These include, a homogeneous liquid phase, a
liquid-liquid phase separated phase, a gel state, or a crystalline phase.20 Further-
more, proteins can self-assemble into a variety of different supramolecular aggre-
gates. The work presented in this thesis focuses on liquid-liquid phase separation,
and in particular on the influence of changes in the conformation of the protein on the
conditions under which such phase separation occurs and finally the kinetic mecha-
nism by which a phase separated state is obtained.

A protein dispersion phase separates into two liquid phases of different compo-
sition because this decreases the overall free energy of the dispersion. This is the
case because there are often multiple conflicting contributions to the free energy that
minimise the free energy of the dispersion at different compositions of the dispersion.
For example, if the proteins are modeled as attractive hard spheres, the entropy as-
sociated with their translational freedom is maximised at low concentrations, where
there is a large free volume in the dispersion, while the reduction of free energy due to
attractive interactions is maximised at high concentrations where many proteins are
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engaged in attractive interactions with neighbouring proteins. As a consequence, the
protein dispersion will phase separate into two coexisting phases when it has a con-
centration that is neither low, nor high. These phases are in equilibrium with each
other and in one of the phases the protein concentration is low and the entropic con-
tribution to the free energy, which reflects the translational degrees of freedom of the
proteins, is optimised, while in the second phase the protein concentration is high and
the contribution to the free energy of the attractive interactions is optimised. In chap-
ters 3 and 4 we shall consider under which conditions liquid-liquid phase separation
occurs when there is a coupling to changes in the conformation of the proteins. In
the models presented in these chapters, the competition between translational free-
dom and attractive interactions as described in the above is an important factor which
underlies phase separation in the model dispersion.

Interestingly, if the solution conditions allow for liquid-liquid phase separation, the
fully phase separated state is typically not the thermodynamic equilibrium state of the
protein dispersion. For most proteins, phase separation is meta-stable with respect to
crystallisation of the proteins and in equilibrium a solid crystalline and a fluid phase of
the proteins coexist. This is a consequence of the small length scale, relative to their
own size, over which proteins interact,21,22 and hence it is general property of most
proteins. For most proteins of which the structure is known, it has been resolved by
x-ray crystallography experiments on protein crystals. Unfortunately it is not straight-
forward to crystallize proteins and it is presumed that crystallization is nucleated in
dense protein clusters formed by phase separation or aggregation.23 Hence, an un-
derstanding of how proteins crystallise is a relevant topic that is of importance for
determining the structure of proteins, however this topic is not addressed in this the-
sis.

Even if liquid-liquid phase separation is not meta-stable with respect to crystal-
lization, it is not guaranteed that the fully phase separated state is reached. If the
concentration in one of coexisting phases is high, the phase separation can become
kinetically arrested. This results in either a glass-like or gel state of the proteins. The
underlying microscopic structure of these gels varies from small spherical aggregates
to fibers, formed by the polymerisation of the proteins into these fibers, that form a
system spanning networks.24 The formation of a gel state in protein dispersions is
not addressed in this thesis.

Both aggregation and the polymerisation of proteins, for example into amyloid fib-
rils, are examples of supramolecular assembly of proteins. The precise manner in
which proteins self-assemble, presuming that they remain in their native state, de-
pends on the geometric distribution of hydrophobic and hydrophilic areas over their
chemically heterogeneous surface. For example, if the protein has two small oppos-
ing hydrophobic patches, this will lead to the polymerization of these proteins into a
fiber due to the anisotropic interactions between the proteins. With an increase in the
number of patches more complex supramolecular assemblies become available. The
precise manner in which so-called patchy colloids self-assemble has attracted signif-
icant scientific interest and numerous patchy colloid models exist.25 Self-assembly
of proteins in their non-native state is also possible. Of course the formation of amy-
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loid fibrils, in which proteins polymerise through the formation of large amounts of
interprotein beta-sheet is a well known example of this.5,16 In chapter 2 we study the
self-assembly of beta-lactoglobulin, which is a small globular protein, into a dimeric
state and show that the dimerisation of these proteins induces changes in the sec-
ondary structure of this protein.

In summary, the proteins in a dispersion can undergo phase transitions towards
a number of different phases depending on protein concentration and solution con-
ditions such as the pH and the ionic strength of the dispersion. In the next section
we briefly discuss the manner in which such phase transition occur, specifically we
focus on the kinetics by which liquid-liquid phase separation in a protein dispersion
occurs.

1.5 Kinetic processes in protein dispersions
The transition from a homogeneous liquid phase to a phase separated phase is inher-
ently a kinetic process that can be characterised by a typical time and length scale. By
which kinetic process the phase separation occurs depends on the thermodynamic
stability of the dispersion, which is determined by the local geometry of the free en-
ergy landscape. When the local free energy landscape is concave,the dispersion is
thermodynamically unstable and phase separation proceeds by spinodal decomposi-
tion. The dispersion is stable when the local free energy landscape is convex, in this
case phase separation must occur by nucleation and growth. In the first case, any
fluctuation in the local protein concentration leads to a reduction of the free energy,
while the same fluctuations lead to an increase in the free energy in the latter case.
Hence, fluctuations in a protein concentration grow spontaneously during spinodal
decomposition while these fluctuations are suppressed when phase separation must
occur by nucleation and growth.

During the initial stages of spinodal decomposition domains of a well defined size
are randomly formed, in these domains differences in the local protein concentration
grow exponentially over time at a single characteristic time scale, see fig. 1.3. The
length scale at which the demixing occurs is determined by a compromise between
two competing effects, 1) the time scale at which very large domains grow is limited
by diffusion, and 2) the growth of very small domains is suppressed because it results
in an increase in the free energy due to the large amounts of interface that is created.
In the later stages of spinodal decomposition the latter effect causes coarsening of
the domains, which means that the domains merge and grow in size until finally the
system consists of two distinct macroscopic phases that are fully separated from each
other.

The mechanism by which phase separation occurs changes when fluctuations no
longer decrease the free energy of the system and are suppressed. In this situa-
tion phase separation must occur by nucleation and growth. According to classical
nucleation theory, a nucleus of a critical size and composition equal to one of the co-
existing phases must be formed by spontaneous fluctuations in the nucleation step.
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Figure 1.3: The distribution of the two phase of a binary mixture at two different times
during spinodal decomposition. The light and dark domains are each rich in one of the
two components of the mixture respectively. These figures were obtained following
the simulation methods of Rogers et al.26

Any nucleus of a smaller size is unstable and disappears while any nucleus larger
than the critical size will grow. This critical size again results from two competing ef-
fects, 1) the favourable decrease in free energy due to the formation of the coexisting
phases, which is a bulk effect and scales with the volume of the nucleus, and 2) the
unfavourable increase in free energy due to the formation of an interface between
the nucleus and the bulk, which is a surface effect and scales with the surface area
of the nucleus.

For a small nucleus the surface effects predominate and a nucleus cannot grow,
while for a nucleus larger than the critical radius bulk effects predominate and the nu-
cleus grows spontaneously. The nucleation barrier is then the free energy required
to nucleate a nucleus of the critical size, which incidentally corresponds to the size
for which nucleation leads to a maximum increase in the free energy barrier. The
time scale at which such nucleation occurs is proportional to a Boltzmann factor of
this free energy. Hence, the nucleation time grows exponentially with an increasing
free energy barrier and can be very large if a significant nucleation barrier is involved.
Finally, once a nucleus has been formed it grows spontaneously until the system is
fully phase separated. If this growth phase is sufficiently slow relative to the nucle-
ation step, it is possible that multiple nuclii are formed, each of which grow until the
system is fully phase separated.

In chapters 3 and 5 we shall see that the concepts of spinodal decomposition and
nucleation and growth remain useful even if phase separation is coupled to changes
in the conformation of the proteins. However, an important difference with the situa-
tion where this coupling is not present, is that the protein diffusion time is no longer
the only time scale involved in non-equilibrium processes. A second time scale which
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represents the time scale at which changes in the conformation of a protein occur en-
ter in the non-equilibrium behaviour. As we shall see in chapters 3 and 5 the ratio
of the protein self-diffusion time to the conformational relaxation time of the proteins
affects the precise mechanisms by which non-equilibrium processes occur.

1.6 Carbon nanotubes
Carbon nanotubes27,28 are very thin tubes of carbon atoms, with a diameter varying
between approximately a nanometer up to tens of nanometers, and lengths varying
from several tens of nanometers up to several centimeter.29 Carbon nanotubes are
essentially a long sheet of graphene, which is a single sheet of carbon atoms, that is
rolled into a thin tube, see fig. 1.4. The thinnest nanotubes, which are single-wall car-
bon nanotubes consist of a single layer of graphene while thicker carbon nanotubes
consist of multiple concentrically ordered layers of graphene. The geometric manner
in which the graphene sheet is formed into a thin cylinder is denoted by its chirality
and the properties of a carbon nanotube are dependent on this.28

Figure 1.4: An illustration of the structure of graphene and a single wall carbon nan-
otube. Adapted with permission from “Structure and Electronic Properties of Carbon
Nanotubes” by Teri Wang Odom, Jin-Lin Huang, Philip Kim, and Charles M. Lieber,
J. Phys. Chem. B, 104:2794 (2000). Copyright (2000) American Chemical Society.

Aside from carbon nanotubes there are a number of other materials that are en-
tirely build up of carbon atoms, these materials differ in the manner in which the
carbon atoms are arranged. In amorphous carbon, carbon atoms are not bonded
in a regular lattice. Graphite consists of a large number of graphene layers stacked
on top of each other, while a diamond consists of a very large number of carbon
atoms that are bonded in a regular three dimensional lattice. An interest in differ-
ent carbon structures on the nanometer scale was incited by the discovery of the C60

buckminsterfullerene molecule, or buckyball, which is a football-shaped molecule that
consists of 60 carbon atoms, by Richard Smalley and colleagues in 1985. They were
rewarded the Nobel prize in chemistry for this discovery in 1996.30 This was followed
by the discovery of the carbon nanotube in 1991 by Sumio Iijima.31 Even though
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carbon nanotubes had been observed previously,28 it is the work of Ilijima that truly
started the field of carbon nanotube science. Finally, graphene, which is a single
sheet of carbon atoms, was first famously isolated in 2004 by Andre Geim and Kon-
stantin Novoselov who reduced the thickness of a graphite flake down to a single
layer of carbon atoms by repeated splitting of the graphite flake with adhesive tape.
They were rewarded the Nobel prize in physics in 2010 for their work on graphene.32

The reason that carbon nanotubes have attracted so much scientific interest lies in
the fact that they have remarkable properties. Depending on the chirality of the nan-
otube it is either semiconducting, where the size of the band gap also depends on the
chirality, or metallic and highly conductive. Metallic carbon nanotubes can be used to
create for example transparent electrodes,9,10 while semiconducting nanotubes have
been used to create a single molecule transistor.33 The mechanical properties of nan-
otubes are equally impressive, a tensile strength of 63 GPa has experimentally been
observed for multi-wall carbon nanotubes,34 which makes carbon nanotubes signifi-
cantly stronger than for example stainless steel and no material matches the specific
strength, which is the ratio of strength to weight, of carbon nanotubes. The high ten-
sile strength of carbon nanotubes has been used to create very strong electrically
conductive fibers of neatly aligned nanotubes,35 and polymer-nanotube composites
with excellent mechanical properties.36 Finally, the thermal conductivity of carbon
nanotubes is also high.

Unfortunately, the production and development of carbon nanotube-based mate-
rials is significantly hindered by the difficulties in processing the nanotubes. Carbon
nanotubes are extremely difficult to dissolve and as-produced nanotubes are typi-
cally a mixture of nanotubes of different chiralities meaning that a single batch of
nanotubes contains both metallic and semiconducting nanotubes. Clearly, the quality
of for example nanotube-based transparent electrodes would benefit if only conduc-
tive nanotubes are used. While suitable solvents for carbon nanotubes have been
found,37 their poor solubility remains a significant problem. As-produced single-wall
carbon nanotubes come in bundles in which the nanotubes are aligned along a com-
mon axis and held together by van der Waals interactions. Even though multi-wall
nanotubes do not form such bundles, van der Waals interactions between multi-wall
nanotubes still lead to the formation of large and insoluble networks of these nan-
otubes.

The dispersion of nanotubes and the exfoliation of bundles of nanotubes is typi-
cally achieved by either of two methods. Carbon nanotubes can be fully dissolved in
a superacid such as chlorosulphonic acid, in this acid the surface of the nanotubes
becomes protonated and highly charged, the resulting Coulombic repulsion between
the nanotubes is stronger than the van der Waals forces keeping the nanotubes in
a bundle and they are exfoliated.37 One problem with this method is that carbon
nanotubes dissolved in this manner have so far not been succesfully incorporated
in a polymer matrix to produce composite materials because the polymers are often
incompatible with the superacid. In this case, dispersion of the carbon nanotubes ei-
ther by high shear mixing or sonication in an aqueous solvent is preferable.38 In both
processes fluid flows with high shear rates are produced that are sufficiently strong
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to overcome the van der Waals forces that cause the bundling of the nanotubes. The
final stabilisation of the nanotubes in the dispersion is achieved by the addition of a
surfactant.39

In this thesis we investigate the ultrasonic dispersion of carbon nanotubes and
in particular we investigate the manner in which carbon nanotubes undergo scission
during this process. The scission of the nanotubes is often unwanted because the
quality of carbon nanotube based materials decreases with decreasing length of the
nanotubes. In the next section a brief introduction to ultrasonic cavitation, the process
responsible for the exfoliation and scission of nanotubes during sonication, is given.

1.7 Ultrasonic cavitation
Ultrasonic cavitation occurs when a sufficiently strong harmonic acoustic field is ap-
plied to a liquid.40 Small bubbles that are present within the liquid interact with the
acoustic field: the applied oscillating pressure causes the bubbles to grow and shrink
as the pressure in the fluid that surround the bubbles decreases and increases. The
precise dynamics by which the bubble responds to the applied acoustic field falls
in either of two categories, stable cavitation or transient cavitation. Small bubbles
undergo stable cavitation while larger bubbles undergo transient cavitation.

For small bubbles, the surface tension and associated Laplace pressure strongly
inhibit the growth of the bubble during the negative pressure peak of the applied
acoustic field. As a consequence, these small bubbles undergo small amplitude os-
cillations in their size. However, because the Laplace pressure varies inversely with
the radius of the bubble it fails to contain the growth of sufficiently large bubbles.
These bubbles grow explosively during the negative pressure peak of the applied
acoustic field and this is the first stage of transient, unstable, cavitation. In chapters
6 and 7 we shall see that the growth of the bubble is indeed explosive. During the
ultrasonication of carbon nanotubes, acoustic fields with a typical frequency of 20
kHz are applied, and during 25 µs long negative pressure peak bubbles with an initial
radius of 1 µm grow up to a radius of over 700 µm. This corresponds to an incredible
increase in the volume of the bubble by a factor of 343 × 106 in just 25 µs, so it is
indeed quite an explosive process.

Bubbles that are sufficiently large to undergo transient cavitation are continuously
produced by two different processes in the sonication liquid. The coalescence of
multiple bubbles can lead to the formation of a bubble that is sufficiently large to
undergo transient cavitation. However, this process is suppressed when surfactants
are present in the sonication fluid,41 as is the case during ultrasonication of carbon
nanotubes. In this case, the growth of bubbles undergoing stable cavitation occurs
primarily by rectified diffusion.42 In this process the net diffusion of gas molecules
dissolved in the liquid into the bubble causes the slow growth of the bubble over
many pressure cycles. This process continues until the bubble is sufficiently large
and it becomes unstable and transient cavitation is initiated by the explosive growth
of the bubble during the negative pressure peak of the applied acoustic field.
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In the final stage of transient cavitation, the bubble collapses violently as the ap-
plied acoustic pressure is positive and compresses it. During the collapse, the fluid
quickly moves in to fill the space previously occupied by the bubble and as the col-
lapse progresses the momentum of the fluid flow increases. At the same time, the
decreasing size of the bubble leads to an ever faster decrease in the radius of the
bubble to accommodate the inflow of fluid. The energy generated by the collapse of
the bubble is focused into an ever smaller volume. As a consequence the final stages
of the collapse of the bubble are extremely violent. During this stage the bubbles can
produce light in a process known as sonoluminescence and when the collapse of
the bubble occurs close to a surface, high speed jets are generated that damage the
surface.

It is also during the final stages of the collapse of a transiently cavitating bubble
that scission and exfoliation of nanotubes occurs. In this stage, the nanotubes are
exposed to fluid flows with extremely high shear rates that generate large forces on
the nanotube that are responsible for their scission and exfoliation. In chapters 6 and
7 we investigate the mechanics by which scission occurs.

1.8 Aim and outline of the thesis
The aim of this thesis is to gain an understanding of the non-universal aspects of the
equilibrium and the non-equilibrium behaviour of two different soft matter systems.
For both of these systems we show that within a highly coarse-grained description,
which normally leads to universality in the behaviour of the system, non-universal
aspects appear when additional degrees of freedom are included in the theory that are
usually neglected. For the first system, a model two-state protein dispersion, we study
the coupling of changes in the conformation to the phase behaviour of the proteins
and in particular how it affects and leads to non-universality in the conditions and
kinetic mechanism by which the transition from a homogeneous to a heterogeneous
phase occurs. The second system, is an ultrasonic dispersion system for carbon
nanotubes, which is permanently driven out of equilibrium by an applied acoustic
field. For this system we investigate the mechanics by which the scission of the
nanotubes occurs and in particular what the non-universal aspects of the scission
kinetics are.

In chapter 2 we investigate the dimerisation of beta-lactoglobulin, which is a small
water soluble protein that is present in cow milk, by interpreting a number of IR spec-
tra measured at different protein concentrations in terms of a two-state protein model.
In chapter 3 we present a model two-state protein dispersion in which proteins can
reversibly switch between the native and a high-energy non-native conformation and
upon transition to the non-native state the proteins can engage in attractive inter-
actions with other proteins in the non-native state. We investigate the phase be-
haviour of this model dispersion and show that under certain circumstances there is
a first-order conformational phase transition that underlies the phase separation of
the model dispersion. We show that the phase behaviour is non-universal and ar-
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gue that the kinetics by which phase separation occur is strongly dependent on the
conformation of the proteins and non-universal.

In chapter 4 we extend this model to also include changes in the effective size of
the protein upon transition to the non-native conformation. We show that this leads
to stabilisation of the native conformation of the protein at high concentrations due
to self-crowding effects. These same effects stabilise a homogeneous dispersion of
proteins in the non-native state. Furthermore we show that these two phases, at in-
termediate and high concentrations respectively, are separated by a regime of phase
separation with again an underlying first-order conformational phase transition. Fi-
nally, in section 5 we perform a linear stability analysis on the model two-state protein
dispersion and identify a number of anomalous relaxation modes. Furthermore, we
speculate on the precise kinetics by which relaxation to equilibrium occurs under a
number of different circumstances.

In chapter 6, we present an analytical model for the scission of carbon nanotubes
under tension. In particular we show that the length-dependent motion of the nan-
otubes during the collapse of the bubble should lead to non-universal scission kinetics
that depend on the tensile strength of the nanotube, the sonication conditions and the
initial length of the nanotube. In chapter 7, we further investigate the mechanics of
nanotube scission by performing Brownian dynamics simulations. These simulations
allow for investigation of the effects of bending and buckling of the nanotube. In par-
ticular we investigate the competition between scission under tension and scission
due to bending and buckling of the nanotube and show that if the nanotube is suf-
ficiently long, it can undergo multiple scissions during the interaction with a single
collapsing bubble.
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Chapter 2
The dimerisation of
beta-lactoglobulin

Summary

In this chapter we study the dimerisation of beta-lactoglobulin (BLG) type A by fitting a

two-state model to a number of IR spectra measured at protein concentrations rang-

ing from 1 mg/ml up to 200 mg/ml. We show that the concentration-dependent degree

of dimerisation can be determined from the coherent change in the IR spectrum due

to changes in secondary structure of the proteins induced by their dimerisation. This

approach allows us to determine the IR spectrum of monomeric BLG and the dimeri-

sation constant, for which we find a value of K = 193 ± 15 M−1. Furthermore, we

show that at high concentrations self-crowding effects must be included to account

for the concentration-dependent degree of dimerisation.

The contents of this chapter has been submitted for publication as: J. Stegen, J.C. Ioannou, R.H.
Tromp, A.M. Donald and P. van der Schoot, Mass-action driven conformational switching of proteins:
investigation of beta-lactoglobulin dimerisation by infrared spectroscopy.
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2.1 Introduction
In the food industry, there is strong demand for increasing the protein content of
both fluid and solid food products. Consequently, within the dairy industry there is a
practical interest in understanding the fundamental physical interactions between hy-
dration water molecules and whey proteins, which are widely used as ingredients in
foods because of their functional properties, i.e., their emulsification, gelation, thick-
ening, foaming and water-binding capacity.43,44 A fundamental problem that the food
industry faces in formulating high-protein products, is that the stability and sensory
qualities of these products irreversibly deteriorate when the protein content exceeds
a certain percentage, the precise value of which depends on the application. Pre-
sumably, the process underlying this problem is a mass-action driven stabilisation of
a dominant non-native protein conformation that self-associates to form poorly solu-
ble aggregates that lead to the deterioration of the sensory qualities of food products
with increasing protein content.

In this chapter we investigate this process by fitting a two-state model to IR spectra
of beta-lactoglobulin (BLG) Type A measured at a number of different concentrations.
This protein is not only a common ingredient of high-protein foods,45 but is also the
major whey protein of cow and goat’s milk.46 BLG is a widely studied protein; how-
ever, most research has either focused on structural transitions of BLG induced by
changes in pH,47 heat treatment,48,49 or the effects of ionic shielding with the addi-
tion of various salts.50 Moreover, many previous studies focus on aggregation while
aggregation-induced structural changes are ignored. In this chapter we investigate
aggregation by the characterisation of the induced structural changes in BLG at a
fixed pH of 3, away from the isoelectric point of BLG pI ≈ 5.3,51 at fixed ionic strength
of 1.2 M, and without any heat treatment involved.

As experiments were performed at a fixed pH of 3, we expect a concentration-
dependent equilibrium between BLG in the monomeric and dimeric state. Higher lev-
els of aggregation are extremely unlikely, the dimer-octamer equilibrium for BLG (type
A) occurs at pH 4.7 and the monomer-dimer equilibrium occurs at pH 2.5.51,52 Only
around pH 4.7 have larger oligomeric structures been reported to form, enhanced
by a decrease in temperature and a decrease in ionic strength.53 Consequently,
this model system allows us to investigate the mass-action driven dimerisation and
the corresponding changes in secondary structure. Even though the dimerisation of
BLG is not a significant contributor to the deterioration of the sensory quailities of
high-protein food products, we believe that our analysis is more widely applicable,
including to practically more relevant systems.

In the remainder of this chapter we first discuss sample preparation and details
on the performed Attenuated Total Reflectance Fourier Transform InfraRed (ATR
FTIR) spectroscopy measurements in section 2.2. In section 2.3 we show that the
monomeric IR spectrum of BLG can be determined and subsequently determine the
concentration-dependent degree of dimerisation by fitting a linear combination of the
IR spectra of monomeric and dimeric BLG to the IR spectra measured at different
concentrations. This contrasts with the conventional analysis of ATR FTIR measure-
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ments, where certain parts of the spectrum are associated with the presence of differ-
ent types of secondary structure. In our approach, the coherent change in all types of
secondary structure between two different dominant conformations, i.e., the confor-
mation in the monomeric and dimeric state of BLG, is used to quantitatively determine
the concentration-dependent equilibrium between these two conformations.

In section 2.4 we present a dimerisation model that accounts for self-crowding
effects, i.e., it explicitly takes the decrease of excluded volume upon dimerisation
into account, and we fit this to the concentration-dependent degree of dimerisation
to determine the dimerisation constant and an effective hard-sphere radius that ac-
counts for electrostatic interactions between the proteins. Furthermore, we show that
excluded-volume interactions must be taken into account because the high degree
of dimerisation at the highest concentrations for which experiments were performed
is underestimated by a model that does not account for these effects. A model that
does include self-crowding effects can explain this, for it is well known that crowding
shifts the equilibrium of any reaction towards the state with the smallest excluded
volume, i.e., for a monomer-dimer equilibrium towards the dimer.17–19 In section 2.5
we compare the obtained dimerisation constant with values previously reported in
literature and show that the obtained effective hard-sphere radius is consistent with
theoretical predictions for the value of this parameter. In section 2.6 we summarise
our finding and briefly discuss the accuracy of the performed analysis.

2.2 Materials and Methods
In this section we briefly describe the experiments by which the IR spectra of BLG
were obtained. These experiments were performed by John Ioannou at the University
of Cambridge. Here we give a brief overview of the manner in which these experi-
ments were performed, full details on these experiments have been published.54 In
these experiments, freeze-dried and purified BLG (BLG, Type A) from bovine milk, as
produced by NIZO food research bv (Ede, The Netherlands), was dissolved directly
in a buffer solution at pH 2.5 in 5 ml vials at varying protein concentration ranging from
1 mg/ml (∼54 µM) up to 200 mg/ml (∼0.01 M). A citrate-phosphate buffer (i.e., a McIl-
vaine buffer) was added such that the protein solutions had a final pH 3. Furthermore,
3 M sodium azide (NaN3) was added as an anti-bacterial agent.

The average secondary structure of the proteins in solution was characterised by
attenuated total reflectance Fourier transform infrared (ATR FTIR) spectroscopy. It is
a suitable and well documented technique for testing the secondary structure of many
proteins, including BLG, dissolved in H2O and D2O buffer solutions.55 In this work we
focus on the amide I region of the spectrum, 1600 - 1700 cm−1, which mainly reflects
the C=O stretching vibration of the peptide group, and which consequently gives
information on the proteins secondary structure.56 Unfortunately, due to the detection
limits of the instrumentation the lowest protein concentration at which accurate ATR
FTIR measurements are possible is ∼10 mg/ml; however, the benefit of this technique
is that there is no upper concentration limit.
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Subsequently, the 2nd derivative of the spectra was taken in order to enhance the
less obvious differences between the spectra measured at different concentrations.
The 2nd derivative of the spectra was buffer-corrected by subtracting out the buffer
signal and background noise spectrum and then, presuming proportionality of the
spectrum’s intensity to the concentration, normalised for protein concentration. A
protein concentration-normalised overlay of the 2nd derivative spectra in the amide I
region is what is shown in fig. 2.1.

Figure 2.1: The protein concentration-normalised overlay of the 2nd derivative of the
ATR FTIR spectra in the amide I region (1600 - 1700 cm−1) for a range of protein
solutions of increasing concentrations, buffered at pH 3 in a McIlvaine buffer (0.2 M
Na2HPO4 and 0.1 M Citric Acid).

In the next section we consider how the coherent change in all types of secondary
structure induced by the monomer-dimer transition can be used to determine the
concentration-dependent degree of dimerisation from the spectra shown in fig. 2.1.
In section 2.5, we show that this approach corresponds well with an approach where
changes in a single type of secondary structure are quantified by using the same
method as discussed in the next section.

2.3 Two-state analysis of IR spectra
We determine the concentration-dependent degree of dimerisation by fitting a linear
combination of the IR spectrum of monomeric and dimeric BLG to the spectra mea-
sured at a variety of BLG concentrations. In order to do this, we must first determine
what the IR spectra of monomeric and dimeric BLG are. From fig. 2.1 it is clear
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that for high concentrations the 2nd derivative of the IR spectra converges towards a
limiting spectrum, which we presume to be a good approximation of the spectrum of
dimeric BLG. Unfortunately, for low concentrations we do not see a similar conver-
gence, suggesting that even at the lowest concentrations for which measurements
were performed, the degree of dimerisation must still be significant. Due to detec-
tion limits, measurements at concentrations below 10 mg/ml by ATR FTIR are not
possible, and we cannot directly determine the spectrum of the BLG monomer from
experiment.

Fortunately, the degree of dimerisation (i.e., the number fraction of BLG proteins
that have dimerised) at the lowest concentration of 10 mg/ml that we denote as η0 can
readily be determined, and with this, the IR spectrum of monomeric BLG. As we shall
see in section 2.4, for low concentrations the degree of dimerisation must increase
linearly with concentration, while it must equal zero at a vanishing concentration.
The value of η0 is then that value for which the concentration-dependent degree of
dimerisation, which we shall determine from the IR spectra, indeed increases linearly
with concentration, while it equals zero at a vanishing concentration.

Given this value of η0, the spectrum of monomeric BLG can be written as,

SM =
(
S10 mg/ml − η0SD2

)
/ (1 − η0) , (2.1)

where S10 mg/ml is the spectrum measured at 10 mg/ml and the spectrum of the BLG
dimer equals the spectrum measured at 200 mg/ml, SD2

= S200 mg/ml. At any concen-
tration, the degree of dimerisation, η, is then determined by fitting the IR spectrum as
measured at that concentration, S, to the following equation,

S = (1 − η)SM + ηSD2
. (2.2)

In principle, the value of η, as retrieved by fitting the previous equation to a mea-
sured IR spectrum, depends on the value of η0 because SM is a function of η0. For-
tunately, the fitting procedure only has to be performed once because the degree
of dimerisation is an analytic function of η0 and the fitted value of η as determined
for, for example η0 = 0. This must be so, because eq. (2.2) is a linear combination
of S10 mg/ml and S200 mg/ml regardless of the value of η0. The fitted value of η then
changes in such way with changes in the value of η0, such that the relative weight of
S10 mg/ml and S200 mg/ml in the fitted spectrum remains identical. From this, it follows
that the fitted value of η(η0) can be written as a function of η0 and η(η0 = 0), which is
the fitted value of η for η0 = 0. This function is,

η (η0) = η0 + (1 − η0) η (η0 = 0) . (2.3)

In section 2.4 we use this equation to determine the value of η0 for which the resultant
concentration-dependent degree of dimerisation increases linearly at low concentra-
tions, while it becomes zero at vanishing concentration. However, let us first consider
an example of how eq. (2.2) can be used to determine the concentration-dependent
degree of dimerisation.
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(a) (b)

Figure 2.2: a) The dashed line shows the two-state model fit, eq. (2.2), to the ATR
FTIR spectrum measured at 30 mg/ml for wavenumber 1680.5 - 1696 cm−1 as shown
by the dots. The fit results in η = 0.76 where η0 = 0.15 and the coefficient of de-
termination of this fit is R2 = 0.99. b) For η0 = 0.15 the concentration-dependent
degree of dimerisation increases linearly at low concentrations and and equals zero
at vanishing concentration. The degree of dimerisation at different concentrations is
determined by fitting the two-state model, eq. (2.2), to the ATR FTIR spectrum mea-
sured at concentrations ranging from 10 - 200 mg/ml for wavenumber 1680.5 - 1696
cm−1.

In fig. 2.2 the result of the fitting procedure is shown, where in fig. 2.2a the de-
gree of dimerisation is determined from the part of the IR spectrum with wavenumber
1680.5 - 1696 cm−1 for a dispersion with a concentration of 30 mg/ml. From fig. 2.2a
it is clear that the two-state model fitted to the spectrum is good, with a coefficient of
determination equal to R2 = 0.99. Note that the quality of this fit is independent of the
value of η0 as it is a fit to a linear combination of the spectra measured at 10 mg/ml
and 200 mg/ml regardless of the actual value of η0. This procedure was repeated for
all other concentrations, and the resulting concentration-dependent degree of dimeri-
sation is shown in fig. 2.2b. Of all the data points shown in this figure, the point for
150 mg/ml results from the least accurate fit, with R2 = 0.83. As previously remarked,
the value of η0 must be such that the degree of dimerisation increases linearly from
a value of zero at vanishing concentration, and from fig. 2.2b it is clear that this is
indeed to good approximation the case for η0 = 0.15.

In the example given in the above, we have fitted the two-state model to a small
region of the spectrum that includes three isosbestic points. At an isosbestic point,
the measured intensity is constant because the specific extinction coefficient of the
monomer and dimer are equal. Consequently, the measured intensity at such a point
is independent of the degree of dimerisation. The 1680.5 - 1696 cm−1 interval of
the spectrum was chosen for illustrative purposes and because the fitting procedure
works well near isosbestic points. However, the two-state model can also be fitted
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to different parts of the spectrum. Alternatively, we can use the entire spectrum and
thereby determine the degree of dimerisation from the coherent change upon dimeri-
sation in all types of secondary structure. A different approach is to use parts of
the spectrum that reflect the presence of different types of secondary structure, and
finally we can use other parts of the spectrum that include a number of isosbestic
points. We consider these different options in detail in section 2.5, where we repeat
the fitting procedure as introduced in this section for other parts of the spectrum and
combine the result with a dimerisation model in which self-crowding effects are in-
cluded to determine the dimerisation constant. We present this dimerisation model
in the next section. There, we show how η0 can be determined as well as the dimeri-
sation constant of BLG.

2.4 Dimerisation model
The reversible dimerisation of BLG is given by the following chemical equation,

2 [M] ⇌ [D2] , (2.4)

where [M] is the molar concentration of monomeric BLG and [D2] the molar concen-
tration of dimeric BLG, and where the dimerisation constant reads,

K = [D2] / [M]2 . (2.5)

If we denote the total molar concentration of BLG molecules as c = 2[D2] + [M] and
the fraction of BLG molecules that is part of a dimer, i.e., the degree of dimerisation,
as η, then linearisation of eq. (2.5) around η = 0 yields,

η = 2Kc. (2.6)

This shows, as advertised in the previous section, that for low protein concentrations
the degree of dimerisation increases linearly with concentration. Note that this is a
general property of mass-action driven dimerisation processes, hence it also holds
when self-crowding effects are incorporated in the dimerisation model.

Using eq. (2.6) we can obtain the value of both K and η0 by fitting it to the linear
part of the relation between BLG concentration and the degree of dimerisation (which
is a function of η0), i.e., for concentrations up to 45 mg/ml (fig. 2.2b), as determined
from the ATR FTIR measurements using the method described in the previous sec-
tion. Whilst, in section 2.3 we focused on the 1680.5 - 1696 cm−1 part of the spectrum,
we now focus on the entire spectrum, i.e., from 1600 to 1700 cm−1 as this allows us to
determine the degree of dimerisation from the coherent change in the entire IR spec-
trum resulting from the mass-action driven shift in the monomer-dimer equilibrium.
In fig. 2.3, the result of the fitting procedure is shown. For η0 = 0.151 and K = 200
M−1 we find that the degree of dimerisation increases approximately linearly with
concentration and is zero at zero concentration.
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Figure 2.3: The degree of dimerisation as a function of protein concentration for pro-
tein concentrations up to 45 mg/ml (points) as determined by fitting the two-state
model, eq. (2.2), to the ATR FTIR spectrum for wavenumber 1600 up to 1700 cm−1.
Eq. (2.6) has been fitted (line) to these data points by varying η0 and K , the re-
sult is K = 200 M−1, η0 = 0.151 and the associated coefficient of determination is
R2 = 0.982.

Let us now consider how the degree of dimerisation as predicted by eq. (2.6)
compares to the degree of dimerisation as determined from the ATR FTIR spectra
over the entire concentration range. For this, the full non-linear relation between the
degree of dimerisation, η, protein concentration, c, and the dimerisation constant K
must be used,

η
(1 − η)2

= 2Kc. (2.7)

In fig. 2.4 the degree of dimerisation predicted by eq. (2.7) is shown as the
dashed line for the previously determined value of K = 200 M−1, whereas the degree
of dimerisation as determined from the ATR FTIR measurements is indicated by the
dots. Furthermore, the degree of dimerisation as predicted by the same equation as
obtained from a force fit to the experimentally determined degree of dimerisation at
all concentrations (K = 2953 M−1) is shown as the dot-dashed line. Clearly, eq. (2.7)
underestimates the degree of dimerisation, especially at higher concentrations, even
if it is force fitted through all of the data points. A plausible explanation for this is that
at high concentrations self-crowding is important. Indeed, at high concentrations the
amount of free volume is limited and the decrease in the total excluded volume by the
dimerisation of two BLG molecules is favourable. This effect, which is a well-known
consequence of crowding, shifts the equilibrium of the dimerisation reaction towards
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the dimer.17–19 In the following, we present a dimerisation model that takes these
effects into account. That it is indeed well worth to include these effects is shown
in fig. 2.4, where the concentration-dependent degree of dimerisation as predicted
by the model including self-crowding effects is shown by the solid line. Clearly this
is a significant improvement on the model that does not take crowding effects into
account.

eq. 2.7
eq. 2.9
eq. 2.7 (force fit)

Figure 2.4: The degree of dimerisation as a function of protein concentration for pro-
tein concentrations up to 200 mg/ml (points) determined by fitting the two-state model,
eq. (2.2), to the ATR-FTIR spectrum for wavenumber 1600 - 1700 cm−1. Eq. (2.6)
has been fitted to these data points, giving η0 = 0.151 and K = 200 M−1. The cor-
responding degree of dimerisation as predicted by eq. (2.7) is shown by the dashed
line. The result of a force fit of this equation to all of the data points, giving K = 2950
M−1, is shown by the dot-dashed line. An improved dimerisation model that takes
crowding effects into account, given by eq. (2.9), is also fitted (solid line) yielding a
ratio of the effective hard-sphere diameter (including electrostatic interactions) and
the bare hard-sphere diameter of γ = 3.29.

Let us now consider how we can set up a dimerisation model that includes excluded-
volume interactions. A sensible model free energy should include ideal solution terms
accounting for mixing and translation of monomers and dimers, plus a term reflecting
that the dimers have a lower free energy than two free monomers because of their
binding, and a term that reflects excluded-volume effects. At the level of a second
virial approximation, we obtain the following model free energy density,

ψ = ρM ln ρMvM − ρM − µρM + ρD2
ln ρD2

vD2
− ρD2

− 2µρD2
− (2.8)

ερd + BMMρ2M + 2BMD2
ρMρD2

+ BD2D2
ρ2D2

,



36 Chapter 2

where, ψ, is the grand potential per unit of volume and thermal energy (kBT ), ρM is the
number density of BLG in the monomeric form, ρD2

the number density of dimers, vM
and vD2

are interaction volume scales that we approximate by the volume of a single
solvent molecule, ε is the dimer binding free energy, µ is the chemical potential of
the proteins in solution and BMM, BMD2

, BD2D2
are the second virial coefficients for

monomer-monomer, monomer-dimer and dimer-dimer excluded-volume interactions.
For hard particles, the second virial coefficient equals half the mutually excluded-

volume of the two interacting particles. Hence, the values of the second virial coef-
ficients are readily determined if the monomer is modeled as a hard-sphere particle
with an effective diameter σ , in which electrostatic interactions and higher order virial
terms are tacitly incorporated, and the dimer as a hard spherocylinder with an effec-
tive diameter σ and length L = 2σ/3 (so its effective volume equals twice the effec-
tive volume of a monomer). The virial coefficient are then given by BMM = 2πσ3/3,
BMD2

= πσ3 and BD2D2
= 13πσ3/9.57

Under conditions of thermodynamic equilibrium ρM and ρD2
minimise the free en-

ergy density, eq. (2.8). To fix the chemical potential, we insist that the number density
of BLG proteins, ρM + 2ρD2

, is conserved. This gives,
η

(1 − η)2
= 2Kc exp

[
γ3 (4ϕ − 2ϕη/3)

]
, (2.9)

where η is the degree of dimerisation, c the molar concentration of BLG, K the dimeri-
sation constant, ϕ = cMβ/ρβ the protein volume fraction with Mβ the molar mass of
BLG and ρβ = 1440 mg/ml the mass density of BLG.58 Finally, γ = σ/σ0 is the ratio
of the effective hard-sphere diameter, σ , and the bare hard-sphere diameter σ0. In
fig. 2.4, eq. (2.9) is fitted to the concentration-dependent degree of dimerisation as
determined from the ATR FTIR measurements using the previously determined value
of K = 200 M−1, yielding a value of γ = 3.29, meaning that effective diameter of the
BLG molecule, that takes electrostatic interactions into account is 3.29 times larger
than its bare diameter.

In section 2.5 we repeat the fitting procedure described in this and the previous
section for other parts of the ATR FTIR spectrum, including fits for parts of the spec-
trum that reflect the presence of different types of secondary structure, and show
that the coherent change of the entire spectrum caused by a changing degree of
dimerisation can indeed be used to model the dimerisation process. Furthermore,
we compare the obtained dimerisation constant with values reported in literature and
compare the obtained value of γ with a theoretical prediction for this parameter.

2.5 Results
We have repeated the fitting procedure described in sections 2.3 and 2.4 for a num-
ber of different parts of the ATR FTIR spectrum. While it seems sensible to use
the entire ATR FTIR spectrum to determine the concentration-dependent degree of
dimerisation, it is equally valid to focus only on parts of the spectrum. Indeed, if the
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changes in the IR spectrum are induced by a changing degree of dimerisation, then
the changes in different parts of the spectrum all reflect the same changes in the de-
gree of dimerisation. Hence, the results of our method should be independent of the
segment of the spectrum that is used in the fitting procedure and by repeating the
fitting procedure for different parts of the spectrum one can assess the accuracy of
the method.

We have determined the concentration-dependent degree of dimerisation and the
corresponding values of η0, K and γ for parts of the IR spectrum around isosbestic
points in the wavenumber intervals 1613.5 - 1639 cm−1, 1649 - 1668 cm−1 and 1675
- 1700 cm−1, as well as around a number of specific wavenumbers that reflect the
presence of different types of secondary structure.59 Specifically, the parts of the
spectrum around 1627 cm−1 and 1684 cm−1 (anti-parallel beta-sheet),59 1666 cm−1

(beta-turn),56,59,60 1653 cm−1 (random coil)56,59,60 and 1658 cm−1 (alpha-helix)56,59,60

have been used. For each of these wavenumbers, the degree of dimerisation was
determined for a 10 cm−1 interval surrounding each of these wavenumbers. Detailed
information on each of these fits can be found in table 1, in which the fitted values of
η, eq. (2.2), to the ATR FTIR spectra are listed, and in table 2 where details of the fit
of eqs. (2.6) and (2.9) are listed. Both tables can be found at the end of this chapter.
Here, we only present the average values.

For η0, the degree of dimerisation at a BLG concentration of 10 mg/ml, we find
an average value of η0 = 0.15 ± 0.01, which was obtained by fitting eq. (2.6) to the
concentration-dependent degree of dimerisation for concentrations upto 45 mg/ml
while varying both η0 and K for all the different wavenumber intervals as listed in
the above. While we approximated the ATR FTIR spectrum of the BLG dimer as
the spectrum measured at 200 mg/ml, the spectrum of monomeric BLG has so far
remained undetermined. However, using the obtained value η0 = 0.15 and SM =(
S10 mg/ml − η0S200 mg/ml) / (1 − η0) (derived in section 2.3), the monomeric spectrum

is now determined. In fig. 2.5 both the concentration-normalised second derivative of
the ATR FTIR spectrum of momomeric (solid line) and dimeric (dashed line) of BLG
are shown.

In determining the value of η0, the dimerisation constant,K as defined by eq. (2.5),
was also determined. For this parameter we find an average value of K = 193 ±
15 M−1. Unfortunately, it is difficult to compare this value with previously reported
values because the dimerisation constant is extremely sensitive to the ionic strength
of the solution and the specific type of salt that is added.61 Under otherwise identical
experimental conditions the dimerisation constant increases by more than a factor
103 when 20 mM NaCl is replaced by 20 mM NaClO4, while a 10-fold increase in the
concentration of NaCl leads to an increase in the dimerisation constant by a factor
100.61 Moreover, the results obtained by different experimental methods differ by
almost a factor 3.51

Whilst a direct comparison with other experiments is difficult unless the experi-
mental conditions are identical, we can attempt a comparison with the result of an
experiment that was performed under similar experimental conditions. Goto et al.
found a dimerisation constant of K = 1.79 ± 0.36 · 105 M−1 by performing sedimen-
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monomer
dimer

Figure 2.5: The 2nd derivative of the ATR FTIR spectra in the amide I region (1600 -
1700 cm−1) of monomeric BLG (solid line) and dimeric BLG (dashed line).

tation equilibrium experiments over a concentration range of 0.1 - 2 mg/ml at fixed
pH of 3 and with 1 M of NaCl added.61 Their dimerisation constant is a factor 103
larger than ours, which is determined at a BLG concentrations range 10 - 45 mg/ml,
at fixed pH of 3, with 0.2 M Na2HPO4 and 0.1 M citric acid added. While it seems
difficult to reconcile this large discrepancy, it is in fact of the same order as the dif-
ference in the dimerisation constant that Goto et al. observed upon switching from
NaCl to NaClO4. Moreover, there are a number of reasons that make this difference
in dimerisation constant between the two experiments consistent.

BLG dimer formation relies on a subtle balance of hydrophobic interactions at the
interface of the two BLG molecules that form the dimer, the formation of 12 inter-
protein hydrogen bonds, and the electrostatic screening of the charges present on
the dimer interface by anion binding.61 Considering this, as well as the differences
between the two experiments we compare, we can rationalise the difference in the
reported dimerisation constant. Our experiments are performed at BLG concentra-
tions at least an order of magnitude larger, and in contrast to the experiment of Goto
et al., the anions present are multivalent. Moreover, the C6H5O−3

7 anions of citric acid
are significantly larger than the Cl− anion, and it is likely that it is simply too large to
screen charges on the interface of the dimer, whilst leaving the inter-protein hydro-
gen bonds and hydrophobic interaction between the two BLG molecules intact. This
suggests that the number of anions capable of stabilising the BLG dimer, per BLG
molecule is actually significantly smaller in our experiment than in the experiment of
Goto et al., suggesting that we should indeed find a smaller dimerisation constant.

In this context, it is important to realise that the dimerisation constant is in fact a
very sensitive parameter, as it varies exponentially with changes in the dimer binding
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free energy. The model free energy, eq. (2.8), includes a term proportional to the
dimer binding free energy, which is defined as ε (in units kBT ). In eq. (2.9), which is
derived from this free energy, this parameter is included in the dimerisation constant,
K , and ε = ln (K [H2O]), where [H2O] = 55.5 M the molar concentration of water.
From the fits to the various parts of the ATR FTIR spectrum, we retrieve an average
dimer binding free energy of ε = 9.28 ± 0.08 kBT . This energy is of the order of
thermal energy, as one would indeed expect for a reversible dimerisation process.
Moreover, this value differs less than a factor two from the dimer binding free energy
of ε = 16.1 kBT , which corresponds to K = 1.79 · 105 as measured by Goto et al..61

Finally, for the γ we find an average value of γ = 3.2 ± 0.2, which suggests that
the effective hard-sphere radius, which includes electrostatic interactions, equals ap-
proximately 3.2 times the bare hard-sphere radius. The bare hard-sphere radius of
BLG is approximately 1.7 nm, suggesting that the electrostatic interactions extent ap-
proximately 3.7 nm beyond the hard-sphere surface. Whether this is a reasonable
parameter value can be checked, as within a Debye-Huckel approximation an ana-
lytic expression for γ for charged interacting hard-spheres in an electrolyte can be
derived,62

γ =

[
1 + q2 3λBλ2D

2σ3

1 + σ/λD
(1 + σ/2λD)2

]1/3

, (2.10)

where σ = 1.7 nm, the bare hard-sphere radius of BLG, λB = 0.7 nm, the Bjerrum
length in water at room temperature, λD = 0.28 nm the Debye length in the solution
and q = 16.8 the number of charges present on the BLG monomer. We obtain q =
16.8, by presuming a linear increase in charge from q = 0 at the isoelectric point of
BLG, pI 5.3 and q = 20 at pH 2.5.61 Given these values, eq. (2.10) yields γ = 1.43,
this differs by about a factor 2 from the experimentally determined value of γ = 3.2±
0.2. Given that eq. (2.10) is a linear approximation for the electrostatic contribution
to the second virial coefficient, the difference between the two values of γ we obtain
is insignificant. Furthermore, we expect that the theoretically determined value of γ
is smaller because the experimentally determined value also incorporates the effects
of higher order virial coefficients.

2.6 Discussion
We have shown that a mass-action driven change in the conformation of BLG due to
an increasing degree of dimerisation can be quantified through ATR FTIR measure-
ments at different protein concentrations. In contrast to the conventional analysis of
ATR FTIR spectra, where different parts of the spectrum are associated with different
types of secondary structure, we showed that the coherent change in the entire IR
spectrum with increasing protein concentration can be used to determine the relative
abundance of two different protein conformations. This approach has two important
advantages, firstly, while the ATR FTIR spectrum of monomeric BLG at pH 3 cannot
be measured directly, we showed that the presented method does allow for its deter-
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mination. Secondly, it allows for the determination of the concentration-dependent
degree of dimerisation.

Because we performed experiments up to BLG concentrations of 200 mg/ml, we
were able to show that at these concentrations self-crowding effects are important,
see fig. 2.4, where the predictions of a dimerisation model including and excluding ex-
cluded volume interactions is shown. At these high concentrations, the amount of free
volume is limited and the decrease in the total excluded volume caused by dimer for-
mation leads to a decrease in free energy, hence self-crowding leads to an increased
degree of dimerisation at high concentrations. Of course it has been recognised for
a while that crowding effects can significantly influence the behaviour of proteins at
high concentrations, our results reemphasise the importance of crowding-effects.

An important question that remains in regard to this method, is how well it works.
In the previous section average values of η0, K and γ were determined by fitting
the two-state model, as introduced in section 2.3, to different parts of the ATR FTIR
spectrum. The average values for these parameters seem accurate, the standard
deviation in these parameters is less then 10% of their value. Importantly, the result
obtained by fitting to the entire ATR FTIR spectrum, 1600 -1700 cm−1 are in agreement
with these average values. This means that it is indeed valid to quantify the degree
of dimerisation by considering the coherent change in the entire IR spectrum induced
by changes in the degree of dimerisation.

A second approach to gauge the accuracy of the methodology we presented is
to consider the quality of the individual fits that have been made. In table 2.1 and
2.2, the coefficient of determination for the fits made to eqs. (2.2), (2.6) and (2.9)
are listed. Although there are some exceptions, the coefficient of determination is
generally larger than 0.9, suggesting that these fits are reasonably good. Finally,
and most importantly, the results of the analysis we presented are reasonable and
self-consistent within the presumptions that were made. In section 2.5 we showed
that the value of γ = 3.2 ± 0.2, which is the ratio of the effective hard-sphere radius,
including electrostatic interactions, to the bare hard-sphere radius, is of the same
order of magnitude as a theoretical prediction for its value. Although the value of the
dimerisation constant that we find, K = 193 ± 15 M−1, differs significantly from the
value obtained for a similar experiment, it actually only corresponds to a difference
in the binding free energy of less than a factor of two.

In conclusion, we present a new method to analyse the results of ATR FTIR mea-
surements on protein dispersions. We believe that the method is suitable for the
characterisation of the equilibrium constant of processes that involve changes in pro-
tein conformation. An advantage of our method is that it allows for determination
of the IR spectra of the dominant protein conformations involved in such processes,
allowing for insight in the structure of the protein in these different conformations.

In the next three chapters we investigate the consequences of the coupling of
changes in the conformation of proteins to their phase behaviour and specifically
focus on how this affects the conditions under which liquid-liquid phase separation
occurs. To this end we shall present a two-state model for the proteins in which the
proteins can reversibly switch between two different conformations. The results pre-
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sented in this chapter clearly support the use of the two-state protein model, for we
have shown that such a two-state model is very applicable to the results of experi-
ments on BLG proteins.

We would like to thank John Ioannou for performing the ATR FTIR spectroscopy
measurements on the beta-lactoglobulin dispersion. Furthermore, we thank Athene
Donald and Hans Tromp for discussions.
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concentration [mg/ml] 10 20 30 40 45 50 75 100 125 150 175 200

1600-1700 cm−1 η 0 0.51 0.70 0.82 0.87 0.84 0.87 1 0.95 1 0.98 1

R2 1 0.997 0.991 0.981 0.972 0.967 0.978 0.908 0.990 0.831 0.998 1

1613.5-1639 cm−1 η 0 0.46 0.67 0.76 0.80 0.78 0.86 0.94 0.93 0.98 0.98 1

R2 1 0.994 0.989 0.984 0.982 0.987 0.996 0.992 0.999 0.998 0.999 1

1649-1668 cm−1 η 0 0.49 0.70 0.82 0.86 0.84 0.86 0.99 0.94 1 0.98 1

R2 1 0.988 0.960 0.904 0.879 0.889 0.870 0.734 0.914 0.860 0.995 1

1675-1700 cm−1 η 0 0.54 0.71 0.85 0.90 0.87 0.89 1 0.96 1 0.99 1

R2 1 0.996 0.993 0.990 0.985 0.986 0.990 0.979 0.997 0.968 0.999 1

1622-1632 cm−1 η 0 0.42 0.60 0.69 0.73 0.72 0.84 0.91 0.91 0.96 0.97 1

R2 1 0.982 0.986 0.981 0.975 0.992 0.995 0.989 0.999 0.999 0.995 1

1648-1658 cm−1 η 0 0.51 0.73 0.85 0.89 0.87 0.89 1 0.96 1 0.99 1

R2 1 0.977 0.934 0.869 0.823 0.856 0.817 0.658 0.880 0.664 0.993 1

1653-1663 cm−1 η 0 0.51 0.70 0.82 0.87 0.83 0.86 0.98 0.94 1 0.98 1

R2 1 0.989 0.949 0.817 0.721 0.768 0.698 −0.524 0.719 0.444 0.987 1

1661-1671 cm−1 η 0 0.41 0.54 0.65 0.72 0.67 0.71 0.81 0.85 0.94 0.96 1

R2 1 0.995 0.978 0.948 0.960 0.954 0.926 0.907 0.955 0.957 0.996 1

1679-1689 cm−1 η 0 0.52 0.69 0.83 0.88 0.84 0.87 1 0.95 1 0.98 1

R2 1 0.998 0.993 0.971 0.940 0.962 0.967 0.814 0.972 0.625 0.994 1

Average η 0 0.49 ± 0.05 0.67 ± 0.06 0.79 ± 0.07 0.84 ± 0.07 0.81 ± 0.07 0.85 ± 0.05 0.96 ± 0.06 0.93 ± 0.03 0.99 ± 0.02 0.98 ± 0.01 1

R2 1 0.99 ± 0.01 0.98 ± 0.02 0.94 ± 0.06 0.92 ± 0.09 0.93 ± 0.07 0.92 ± 0.10 0.72 ± 0.48 0.94 ± 0.09 0.82 ± 0.20 0.99 ± 0.01 1

Table 2.1: Details of the two-state model fit to a number of different parts of the measured ATR FTIR spectra. All values
listed are obtained whilst presuming η0 = 0.

wavenumber [cm−1 ] 1600-1700 1613.5 - 1639 1649 - 1668 1675 - 1700 1622-1632 1648 - 1658 1653 - 1663 1661 - 1671 1679 -1689
R2ATR-FTIR 0.96 ± 0.05 0.992 ± 0.006 0.90 ± 0.08 0.988 ± 0.009 0.989 ± 0.008 0.85 ± 0.11 0.62 ± 0.46 0.96 ± 0.03 0.92 ± 0.12

η0 0.151 0.144 0.151 0.154 0.131 0.156 0.151 0.124 0.151
K [M−1 ] 200 188 199 206 173 206 200 166 201
ε [kBT ] 9.32 9.25 9.31 9.35 9.17 9.35 9.32 9.13 9.32
R2lin 0.982 0.981 0.982 0.982 0.982 0.983 0.981 0.984 0.983
γ 3.29 3.11 3.27 3.37 2.91 3.36 3.28 2.71 3.30

R2full 0.93 0.92 0.93 0.93 0.91 0.93 0.93 0.90 0.93

Table 2.2: Details of the fits of eq. (2.6) and eq. (2.9), to the degree of dimerisation as determined from different parts
of the IR spectrum using eq. (2.2). Values of the fit-parameters are given and the quality of the fits is indicated by the
coefficient of determination.



Chapter 3
Implications of protein
polymorphism on protein
phase behaviour

Summary

In this chapter we investigate the phase behaviour of small globular proteins and in

particular the coupling of changes in their conformation to liquid-liquid phase sep-

aration. We present a simple two-state model in which protein conformation is not

conserved and where the high-energy, non-native state is stabilised by attractive in-

teractions. The resulting phase behaviour is remarkably complex, non-universal and

exhibits re-entrance. The model calculations show a demarcation between a regime

where conformational transitioning is largely enslaved by phase separation and one

where this is not the case.

The contents of this chapter has been published as:
J. Stegen and P. van der Schoot, Soft Matter 11, 2036 (2015).
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3.1 introduction
A large body of work, theoretical and experimental, has been devoted to studying the
phase behaviour of globular proteins, reflecting the complexity and relevance of the
subject. An understanding of protein phase behaviour is relevant in the context of the
food63–66 and pharmaceutical industry,67,68 for the structural characterisation of pro-
teins,69 for understanding the behaviour of proteins within the crowded environment
of a cell,17,18 as well as for understanding numerous neurodegenerative diseases
that have been linked to the formation of amyloid fibrils.5 Furthermore, an under-
standing of protein dispersions is relevant to the design of bio-based and biomimetic
molecular materials,70 and due to its complexity it is of inherent scientific interest.

Proteins12 have a heterogeneous surface that is different for every kind of pro-
tein, which gives rise to inherently anisotropic interactions with other proteins, even if
they are globular.25,71–73 The dependence of the surface properties and the charge
distribution on the pH, and the dependence of electrostatic interactions on the ionic
strength of the solution74–77 add to the complexity.67,78 In fact, proteins are never
perfectly spherical, are in principle deformable79 and in many cases are able to form
supramolecular structures in native and non-native conformational states.16,24,80,81

All of this translates into very rich phase behavior,20 including liquid-liquid phase sep-
aration, crystallization, gelation and aggregation into a variety of different supramolec-
ular structures.16,24,80,81

The coupling of conformation to phase behaviour of peptides has received some
attention,82,83 however the consequences of possible changes in protein conforma-
tion on liquid-liquid phase separation has to our knowledge received no prior atten-
tion. Inspired by a two-state model for polymer phase behaviour,84 we theoretically
address this topic. We do so by presuming a competition between two conforma-
tional states, being the native and a single non-native state that we do not specify.
This differs from current models, which either presume the protein to remain in the
native state and macroscopic phase behaviour to be reversible,23 or presume the
native state to be non-conserved with corresponding irreversible phase and/or ag-
gregation behaviour.16 We do not make this distinction here, but rather presume
that changes in protein conformation in principle occur on a continuous scale ranging
from being negligible to the complete loss of the native structure. We postulate that
selection of the dominant non-native conformer is driven by the strength of the inter-
actions between them and that these interactions ultimately drive condensation of the
proteins. Whilst we presume protein phase behaviour to be reversible, we deduce
from our model that reversibility is in some cases exceedingly slow and should not
be observed on experimental time scales.

We presume that the change in protein conformation is the result of a change in
the local microscopic environment of the protein, that is, it does not result from the
hydrolysis of the protein into short polypeptides which is irreversible. Indeed, it is well
known that the local environment can affect protein structure and that proteins must
have some ‘conformational softness’ to perform their function within a living organ-
ism.85–87 For instance, the adsorption of a protein at an interface almost invariantly
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result in conformational changes in the protein.59,88 Also, changes in solution condi-
tions can affect the protein conformation and even protein concentration alone affects
the conformation of for example beta-lactoglobulin as we have seen in the previous
chapter.54 Here, we consider a system similar to this and let protein concentration
be the source of changes in local environment. Through mass action, an increas-
ing number of protein-protein interactions with increasing concentration, lead to an
increasing number of proteins in the non-native state.

In principle, at fixed concentration such changes in local environment can result
from a phase transition or local density fluctuations. Here, we run into a dilemma,
which must come first? Does a phase transition induce changes in protein structure
or do changes in protein structure induce a phase transition? Our work shows that
the answer depends on the degree to which the conformation of the protein changes.
For small changes in protein conformation, that we translate into a low free energy
penalty relative to the native state, the phase transition induces a change in pro-
tein conformation. However for large changes in structure, i.e., a large free energy
penalty, the new non-native conformation must typically be nucleated before a macro-
scopic phase transition (condensation) can occur. The two thermodynamic models
that we invoke produce consistent predictions, suggesting that our conclusions are
robust.

The remainder of this chapter is structured as follows. In section 3.2 we introduce
our two-state protein model in which high free energy conformers are stabilised by
attractive interactions with other high free energy conformers, and discuss its phys-
ical interpretation. In section 3.3 we show that a first-order conformational phase
transition between a dispersion state with proteins mostly in their native state and a
dispersion state with most proteins in their non-native state exists. In section 3.4 we
combine our two-state protein model with a Flory-Huggins-type free energy89,90 and
with a Carnahan-Starling-based free energy91 and discuss how phase and stability
diagrams can be constructed.

In sections 3.5 and 3.6 we present and discuss the corresponding phase and sta-
bility diagrams where we show that the phase behaviour exhibits re-entrance and is
non-universal, i.e., a law of corresponding states does not exist. Furthermore, we dis-
cuss the thermodynamic stability of the dispersion with respect to phase separation
where, based on the local curvature of the free energy surface, we distinguish be-
tween spinodal decomposition and nucleation and growth. Additionally, we consider
conformational relaxation of the proteins and show in section 3.6 that the presence
of a first-order conformational phase transition causes the thermodynamic stability to
become inherently dependent on the protein conformation.

Finally, in section 3.7, we provide an in-depth analysis of the predictions of our
models to show that even if one presumes that changes in protein conformation oc-
cur on a continuous energetic scale, one finds a clear demarcation between a regime
where the coupling between the phase behaviour and changes in protein conforma-
tion is weak, i.e., changes in protein structure are induced by a phase transition and
have a negligible impact on phase behaviour, and a regime where the coupling is
strong and the opposite holds true.
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3.2 Two-state protein model
Our two-state protein model is based on the presumption that a protein can either
be in its native state or in its non-native state, and that the protein can reversibly
switch between these two states. There is a free energy difference ε (in units of
thermal energy, kBT ) between these two states. There are steric (excluded-volume)
interactions between all proteins, and proteins that are in the non-native state can
engage in an attractive interaction with nearby proteins that are also in the non-native
state. The strength of this interaction is measured by a dimensionless, so-called
Flory parameter χ . All proteins that are in the non-native state are in an identical,
non-native state. The model is graphically summarised in fig. 3.1.

model two-state protein dispersion
non-native state

native state

DF=e
[   ] + [   ] = f
[   ] = hf
[   ] = (1-h)f

volume-fraction

steric interaction:                  ,

steric & attractive interaction (-c):

a) b)

c)

Figure 3.1: Ingredients of the two-state model. a) The native state (open circle) and
non-native state (filled circle) of the model two-state protein are separated by a free
energy difference ε (in units thermal energy). b) The overall protein volume fraction
is ϕ, the fraction of proteins in the non-native state is η. c) The nature of protein-
protein interactions depends on the conformational state of the proteins. All proteins
interact via excluded volumes and nearby pairs of protein that are in the non-native
state engage in attractive interactions of strength −χ (in units thermal energy).

The thermodynamic state of the protein dispersion depends, apart from the two
energetic parameters, on the total volume fraction of protein, ϕ, which equals the
protein number density times the volume of a protein, v0, and the number fraction η
of the proteins in the non-native state. Tacit assumption is that the volume of a protein
is equal in both states, while this must not necessarily be the case, we presume this
to be true for reasons of simplicity. In the next chapter we address the situation where
the native and non-native conformation are not of equal effective volume and show
that this strongly affects the predicted phase behaviour. So, if η is the number fraction
of proteins in the non-native state, then ηϕ is the volume fraction of the solution
occupied by proteins in the non-native state, while (1 − η)ϕ is the volume fraction
occupied by proteins in the native state. The volume fraction of solvent equals 1−ϕ.

We are now in a position to construct our free energy. Let N denote the total
number of proteins in the dispersion. The total number of proteins in the non-native
state must then be equal to Nη, while the total number of proteins in the native state
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is N (1 − η). In the mean-field approximation the distribution of native and non-native
states over theN proteins is independent, allowing us to directly write down the Gibb-
sian entropy due to the increased number of microscopic states available to the dis-
persion. The corresponding entropic contribution to the dimensionless free energy
density is,

fentr = ηϕ ln η + (1 − η)ϕ ln 1 − η, (3.1)

where fentr is scaled to the volume of a single protein, v0, and in units of thermal
energy, kBT . The enthalpic contribution to the free energy, we calculate next.

Having Nη proteins in the non-native state comes at a free energy cost of Nηε,
which corresponds to an increase of the dimensionless free energy density of ηϕε.
The free energy cost of having proteins in the non-native state can be compensated
for by attractive interactions between them of strength −χ . From mean-field argu-
ments it follows that the dimensionless free energy density associated with these
interactions is −χ (ηϕ)2 /2, because the probability that two proteins that are in the
non-native state and in range of each others attractive potential is proportional to
(ηϕ)2, while the factor of 1/2 corrects for double counting. Combining the two ener-
getic contributions we obtain the following dimensionless free energy density,

fenth = εηϕ − χ
2
(ηϕ)2 . (3.2)

The total contribution to the dimensionless free energy density of our two-state protein
model is now given by,

f2s = fentr + fenth. (3.3)

In summary, the state of the protein dispersion is characterised by two order pa-
rameters, ϕ and η, while the external conditions and the protein properties determine
the values of the two energetic parameters, χ and ε.1 Because we lack a micro-
scopic model for the latter two, we cannot predict how these respond to changes in
say temperature and other solution conditions including ionic strength and acidity.
Hence, we treat χ and ε as phenomenological parameters, also to keep the theory
as general as possible. Although the phase behaviour predicted by our model is a
function of χ and ε alone and not of the underlying microscopic model relating these
parameters to solution conditions, these parameters are in principle amenable to ex-
perimental determination as a function of solution conditions.74,77 For our purpose,
it is important to realise that ε presumably increases with increasing departure from
the native conformation and that χ , which drives macroscopic phase separation, is
temperature dependent.

1Note that χ and ε are strictly speaking not enthalpies but free energies because they contain informa-
tion about the solvent and protein degrees of freedom that have been glossed over in our coarse-grained
model.
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3.3 A first-order conformational phase transition
The equilibrium state of the protein dispersion is given by its minimum free energy
state, hence the equilibrium fraction of proteins that are in the non-native state, ηeq,
follows by setting the partial derivative of the free energy, f2s as given by eqs. (3.1),
(3.2) and (3.3), with respect to η, ∂ηf2s ≡ ∂f2s/∂η = 0, giving,

ηeq
1 − ηeq

= exp (χϕηeq − ε) . (3.4)

Note that we need not include contributions from steric interactions between the pro-
teins for we presume them to have equal volume in both conformational states. An
important consequence of the functional form of eq. (3.4) is that it, as we shall see,
leads to non-universal phase behaviour, that is, there is no law of corresponding
states.2

We read of from eq. (3.4) that the non-native state can only be stabilised by
attractive interactions between proteins in the non-native state, because ε > 0 is a
free energy penalty. For attractive interactions χ > 0, stabilisation of the non-native
state is only effective at sufficiently high concentrations, ϕ. This can be rationalised
by realising that entropy favours a dispersion state with an equal number of proteins
in each conformation, but that the free energy cost associated with the non-native
state favours as few proteins as possible in that state, while attractive interactions
between proteins in the non-native state favours proteins to be in the non-native state.
The competition between the latter two render the value of ηeq strongly concentration
dependent.

It is instructive to consider the actual shape of the curves given by eq. (3.4) for
small and large values of the energetic parameters, χ and ε. The dependence of
the equilibrium fraction of proteins that are in the non-native state, ηeq, on the protein
concentration, ϕ, is shown in fig. 3.2 for the two representative cases with χ = 3.5
and ε = 1 (fig. 3.2a) and χ = 10 and ε = 3 (fig. 3.2c) respectively. In the figure the
solid line indicates a local free energy minimum (∂ηηf2s > 0) at fixed value of ϕ while
the dashed line indicates a local maximum (∂ηηf2s < 0). This is illustrated by figs
3.2b and 3.2d, which show the dimensionless free energy density on the ηeq-curve
as shown in figs. 3.2a and 3.2c respectively. We present this dimensionless free
energy in the next section and we only show the free energy for illustrative purposes
here.

Fig. 3.2 shows that the dependence of ηeq on ϕ is fundamentally different for small
and large values of χ and ε. For small values of the energetic parameters the fraction
of proteins in the non-native state, ηeq, increases monotonically with concentration,
ϕ. However, for large values of these parameters we obtain a van der Waals-like
loop, indicative of thermodynamic instability. It is the presence of this thermodynamic
instability that leads to the strong coupling of conformational changes within the pro-
teins and the macroscopic phase behaviour that we eluded to in the introduction and
explore in considerable detail in sections 3.6 and 3.7.

2This equation itself cannot be rewritten as a universal equation in terms of reduced variables.
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Figure 3.2: The equilibrium fraction of proteins in the non-native state, ηeq and the
dimensionless free energy at η = ηeq as a function of ϕ. We introduce the dimen-
sionless free energy, f2sFH defined in eq. (3.7), that is shown in these graphs in the
next section and only show the free energy for illustrative purposes. a,b) For attrac-
tive interactions of strength χ = 3.5 kBT and a free energy penalty of ε = 1 kBT
associated with the non-native state. c,d) For χ = 10 and ε = 3, solid lines represent
stable equilibria while the dashed line represents unstable equilibria, both at fixed
concentration, i.e., we suppress phase separation. The location of the first-order
conformational phase transition is shown.

The thermodynamic instability occurs when both energetic parameters have val-
ues larger than thermal energy, kBT , for under these circumstances a dispersion with
approximately equal amounts of proteins in the native and the non-native state is no
longer entropically stabilised. The equilibrium state of the dispersion is then either
one where nearly all proteins are in the native state or one where nearly all protein
are in the non-native state. These two equilibrium states are separated by a first-
order conformational phase transition at constant concentration as indicated in fig.
3.2c. Of course, we must realise that we cannot keep the local concentration fixed
and as it turns out this phase transition is intimately coupled to macroscopic phase
separation, that for now we have suppressed.

Of the dispersion states separated by the van der Waals-like loop, at any con-
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centration one of the two states is a meta-stable state and one is the equilibrium
state, and the first-order conformational phase transition occurs when both disper-
sion states have equal free energy density. This is illustrated in fig. 3.2d where we
show the dimensionless free energy density at η = ηeq (shown in fig. 3.2c) as a func-
tion of protein concentration for χ = 10 and ε = 3. Not suprisingly, it shows a similiar
van der Waals-like loop, confirming that we are dealing with a first-order transition.

The presence of this van der Waals-like loop has an important kinetic conse-
quence. Presuming model-C-like kinetics,92 and having suppressed possible phase
separation, the average protein conformation, η, will at all times spontaneously relax
towards a value where the free energy is at a (local) minimum for the given concen-
tration. While in the absence of the van der Waals-like loop conformational relaxation
at a given concentration is always towards a unique dispersion state, this no longer
holds true when the van der Waals-like loop is present. Here, the unstable part of the
loop, i.e., the part that corresponds to a local maximum in the free energy, is a barrier
separating dispersion states that relax towards a dispersion of mostly native and a
dispersion of proteins mostly in their non-native state respectively. In section 3.6,
we shall see that this has important consequences for the thermodynamic stability of
the dispersion with respect to phase separation of these two states is not necessarily
equal.

The first-order conformational phase transition between dispersion states exists
only for χ ≥ 4 and ε ≥ 2, and in fact this demarcates the regimes of weak and strong
coupling. In section 3.6 we show how this phase transition couples to macroscopic
phase separation. But before that, we need to formulate the contribution to the free
energy that take into account volume-exclusion between the proteins. For this pur-
pose we rely on a simplistic lattice fluid model89,90 as well as on the more accurate
Carnahan-Starling equation of state.91

3.4 Solution model
The simplest model that one can write down for volume exclusion and mixing in a
binary fluid is the Flory-Huggins model.89,90 However, this presumes protein and sol-
vent molecules to be roughly equally sized. Obviously this is not the case for a protein
solution. On the other hand, water is a structured fluid implying that plausibly one can
model water on the level of clusters.93 A somewhat more sophisticated treatment is
based on the Carnahan-Starling equation of state for a hard-sphere fluid,91 which we
also consider. As we shall see, both predict qualitatively identical phase behaviour,
showing that our results are robust.

At the level of a Flory-Huggins-type lattice fluid model, we have the following con-
tribution to the free energy resulting from mixing and volume exclusions,89,90

fFH = ϕ lnϕ + (1 − ϕ) ln 1 − ϕ, (3.5)

where f is the dimensionless free energy density, scaled to the volume of a single
protein, v0, and in units of thermal energy, kBT and ϕ is the protein volume fraction.
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Within the Carnahan-Starling treatment,91 this free energy density reads,

fCS = ϕ
[
lnϕ − 1 +

ϕ (4 − 3ϕ)
(1 − ϕ)2

]
. (3.6)

We can now combine the latter two free energy densities with that of our two-state
model, (3.3). This gives the total dimensionless free energy density of the model
protein solution for the two models,

f2sFH = fFH + f2s, and f2sCS = fCS + f2s. (3.7)

From these free energy densities we can calculate the binodals and spinodals, and
hence construct phase and stability diagrams. In our case, the binodal describes
coexistence between protein-rich and protein-poor phases whilst the spinodal de-
marcates the limit of thermodynamic stability of a homogeneous dispersion.

The former can be calculated by setting temperature, osmotic pressure and the
chemical potential of the proteins equal in both coexisting phases. Equal temperature
implies equal χ and ε in both phases, equal chemical potential of the proteins in the
two phases implies equal value of µ = ∂ϕf , and ∂ηf = 0 for both phases.3 Finally,
equal osmotic pressures implies equal value of f−ϕµ. The resulting set of equations
must be solved numerically as a function of χ and ε to determine the composition of
the coexisting phases.

The spinodal lines are given by lines of inflection on the free energy surface.
Such lines are obtained by setting the determinant of the Hessian equal to zero, so
∂ϕϕf∂ηηf −

(
∂ϕηf

)2
= 0, which can be solved analytically. The inflection lines are a

complex set of lines in the ϕ−η plane and are shown for both free energy equations,
eq. (3.7), as dotted lines in fig. 3.3, in the area enclosed by these lines the dispersion
is thermodynamically unstable against macroscopic phase separation. In fig. 3.3,
we again compare typical cases of weak and strong coupling and superimpose the
spinodal region over the equilibrium value of the fraction of proteins in the non-native
state, ηeq, as a function of the concentration, ϕ for both free energy equations. From
fig. 3.3 it is clear that there are some differences between the results obtained from
the two different free energies. However, in the remainder of this chapter we shall see
that these differences are only quantitative while the corresponding phase behaviour
is qualitatively identical.

We find that in the strong-coupling regime, where the van der Waals-like loop
is observed, the unstable part of the loop is at all times located within the spinodal
region. This shows, as advertised, that the first-order conformational phase transition
and macroscopic phase separation are intimately coupled. This becomes even more
apparent if we consider the binodal points, which are indicated in the same figure
as squares and are separated by the underlying conformational phase transition in
the strong-coupling regime. The local maximum in the free energy, indicated by the
dashed line, is presumably a barrier that effectively separates the coexisting phases

3Note that η is a non-conserved order parameter and hence its chemical potential must be zero.
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Figure 3.3: a) ηeq as a function of ϕ for χ = 6 and ε = 1.5 (solid and dashed line, see
fig. 3.2 for details), coexisting states (squares) and the thermodynamically unstable
region (shaded) enclosed by spinodal lines (dotted line). The intersection of the spin-
odal line and the ηeq curve (dot) is defined as the “equilibrium” spinodal points for the
Flory-Huggins-type free energy. b) The same plot for χ = 6 and ε = 1.5 and for the
Carnahan-Starling-based free energy. c) The same plot for χ = 10, ε = 3 and for the
Flory-Huggins-type free energy d) The same plot for χ = 10 and ε = 3 and for the
Carnahan-Starling-based free energy.

and might give rise to nucleation phenomena inside of the spinodal region depending
on the initial conformational state of the proteins.

If we instantaneously prepare our system in a non-equilibrium state in the spin-
odal region, then the subsequent manner in which the protein dispersion relaxes
should depend on the average conformation of the proteins prior to the quench, the
free energy landscape and on the ratio, rt , of the time scale at which conformational
changes of a protein can take place and the self-diffusion time of the proteins. The
latter follows from an analysis of the non-equilibrium behaviour in terms of a set of
model-C-type kinetic equations.92 While a complete analysis of the non-equilibrium
behaviour is outside of the scope of this chapter, borrowing notions from kinetic the-
ory does allow us to analyse certain aspects of it and pinpoint in the phase diagram
what kind of kinetics predominates: nucleation and growth, spinodal decomposition



Implications of protein polymorphism on protein phase behaviour 53

or a combination of both. For our system, this turns out to be highly complex, non-
universal and dependent on ϕ, η, χ and ε. In chapter 5 we investigate this in more
detail and present a stability analysis of the Caranahan-Starling-based free energy.

For this, it makes sense to consider two limiting cases for rt . In the first, rt → ∞,
and the proteins are conformationally frozen, that is, η does not change on the diffu-
sional time scale. The dispersion is effectively a three component dispersion, which
perhaps is less interesting. In the second, more interesting case where rt → 0, relax-
ation of the protein conformation is instantaneous on the time scale of diffusion. In
this situation, the states available to the protein dispersion are in effect restricted to
states where η ≡ ηeq and the stability of the dispersion is determined by the “equilib-
rium” spinodal points which are defined as the intersection of the spinodal lines and
the ηeq curve and are shown as dots in fig. 3.3.

Presuming the limit of rt → 0 to hold we are now able to indicate various kinetic
regimes in phase diagrams. This we do in the next two sections, where we demon-
strate that for both thermodynamic solution models an identical demarcation between
regimes of weak and strong coupling between conformational changes and macro-
scopic phase separation exists. In section 3.7 we briefly discuss how a finite non-zero
value of rt affects the results that we present in the next two sections and show that
this does not invalidate these results.

3.5 Phase diagrams for the weak-coupling regime
In this section, we present phase and stability diagrams by taking ε = 0 and ε = 2, i.e.,
focus on the weak-coupling regime first that applies if ε ≤ 2. We project the result-
ing phase and stability diagrams onto the ϕ-χ plane and retrieve Flory-Huggins-like
phase behaviour,89,90 where changes in protein conformation are induced by macro-
scopic phase separation. Striking differences, however, are the loss of universality
and the emergence of re-entrance in the phase behaviour. These differences dis-
appear in the hypothetical limit ε → −∞ where in our model the native state has
vanishing probability.

The phase and stability diagram for the Flory-Huggins-based model for ε = 0 is
shown in fig. 3.4a, and that for ε = 2 in fig. 3.4b. Those for the Carnahan-Starling-
based model and the same values of ε in figs. 3.4c and 3.4d. The binodal is rep-
resented by the solid line, where coexisting states are joined by horizontal tie lines.
The collection of “equilibrium” spinodal points, as defined in the previous section, is
represented by the dotted line. Each of the diagrams consists of three regions. As
is the case for the standard Flory-Huggins diagram, in region I the equilibrium state
of the dispersion is a homogeneous state, in region II macroscopic phase separation
occurs by nucleation and growth, while in region III it occurs by spinodal decomposi-
tion. Versions of these phase diagram in which the η direction is included are shown
in fig. 3.5

By invoking the previously defined limit of rt → ∞, in which conformational changes
of the protein occur instantaneously on the time scale of the self-diffusion of the pro-
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Figure 3.4: Phase and stability diagrams for our two-state protein model as a func-
tion of the interaction parameter χ and protein volume fraction ϕ. a) Results from
Flory-Huggins-based model for free energy difference between native and non-native
states of ε = 0 (units of thermal energy). b) Flory-Huggins-based model for ε = 2.
c) Carnahan-Starling-based model for ε = 0. d) Carnahan-Starling-based model for
ε = 2. The binodal is depicted as a solid line, the spinodal is given by the dotted line.
In region I the equilibrium state is homogeneous, in region II phase separation oc-
curs by nucleation and growth, in region III by spinodal decomposition. 3D versions
of these phase diagrams, including the η-direction, can be found in fig. 3.5.

teins, we can address an important question: How does the average conformation
of the proteins, as expressed in the value of η for a given concentration ϕ, affect the
pathway towards thermodynamic equilibrium and why do we consider the coupling to
be weak for ε ≤ 2? To answer this question, we consider the relaxation of a protein
solution as a function of the concentration, ϕ, and the protein conformation, η, for
the specific case of an interaction strength χ = 6 and a free energy penalty on the
non-native state ε = 1.5, and refer to figs. 3.6a and 3.6b (Flory-Huggins-type free
energy) and for χ = 20 and ε = 1.5, and refer to figs. 3.6c and 3.6d (Carnahan-
Starling-based free energy). This case is representative of the behaviour in the weak
coupling regime. Furthermore, the differences between the results for the two dif-
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Figure 3.5: a-d) The phase diagrams for the same free energy equations and same
values of ε as shown in figs. 3.4a-3.4d. The binodal is shown as the black solid line,
the “equilibrium” spinodal as the solid grey line.

ferent free energies are again quantitative. For χ = 6 the Carnahan-Starling-based
model predicts no phase separation to occur, hence χ = 20 is chosen because for
this value phase separation does occur. While the location of the binodal and spin-
odal points is not equal for the two free energies, the corresponding phase behaviour
is qualitatively identical as we shall show next.

In figs. 3.6a and 3.6c, the equilibrium fraction of proteins in the non-native state,
ηeq, is given as a function of protein concentration, ϕ, for the two different free energy
equations. The dots represent the “equilibrium” spinodal points and the squares co-
existing states. Also drawn are the regions in the ϕ-η plane, where the equilibrium
state of the dispersion is a homogeneous dispersion (region I) and where macro-
scopic phase separation occurs by nucleation and growth (region II) and by spinodal
decomposition (region III). The boundaries between these regions are given by verti-
cal lines, so at fixed concentration, through the binodal and the “equilibrium” spinodal
points. This indeed shows that the predicted kinetic mechanism by which phase sep-
aration occurs is independent of the average protein conformation, η. This must be
so because of our presumption that conformational relaxation of the proteins occurs
instantaneously on the diffusion time scale. In other words, any solution state first
relaxes to η ≡ ηeq at fixed concentration before diffusion can cause local changes in
concentration and hence the kinetic mechanism by which phase separation occurs
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Figure 3.6: a) Equilibrium fraction of proteins in the non-native state, ηeq, as a function
of ϕ for χ = 6 and ε = 1.5 (solid line), showing “equilibrium” spinodal points (dots) and
binodal points (squares), calculated from the Flory-Huggins-based model. Regions
I, II and III are defined as in fig. 3.4. b) Dimensionless Flory-Huggins-based free
energy density along the ηeq curve, as shown in fig. 3.6a, including the indicated
binodal and “equilibrium” spinodal points. c) The same type of plot as in fig. 3.6a
but for χ = 20 and ε = 1.5 and for the Carnahan-Starling-based free energy. d) The
same type of plot as in fig. 3.6b but now for fig. 3.6c.

is independent of protein conformation, η.
Effectively, the states available to the dispersion are restricted to states where

η ≡ ηeq, and as a consequence a local change in concentration, ϕ, induces a cor-
responding change in η, such that the corresponding state lies on the ηeq curve.
Hence, changes in protein conformation are enslaved by changes in local concentra-
tion. For these reasons, we consider the coupling between conformational changes
and macroscopic phase behaviour weak. We shall see that this does not hold true
for ε > 2, where the coupling is strong.

Before discussing the strong-coupling regime, we consider how the phase and
stability diagram changes when ε increases from 0 to 2. For both thermodynamic
models (Flory-Huggins and Carnahan-Starling) the critical point shifts to larger con-
centrations with increasing value of ε. The reason for this is simple, the increasing
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conformational free energy cost of the transition to the non-native state must be com-
pensated for by an increasing number of contacts between proteins in the non-native
state. Interestingly, the phase behaviour exhibits (double) re-entrance for ε = 2. As
indicated by arrows in figs. 3.4b and 3.4d, within a limited concentration range, a
continuous change in temperature and hence in χ causes the equilibrium state to
shift from homogeneous to phase separated, to homogeneous and back to phase
separated again. Re-entrace occurs approximately only for ε > 1.8 for the Flory-
Huggins-based model and for ε > 1.65 for the Carnahan-Starling-based model.

For ε = 2, the critical point lies for both solution models at the (admittedly un-
physical) volume fraction of ϕ = 1 and turns out to represent a multi-critical point. At
that point, the critical point of liquid-liquid phase separation coincides with the criti-
cal point of an Ising-like conformational demixing transition. The latter gives rise to
spatial domains characterised by different average conformation of the proteins at
a fixed volume fraction of ϕ = 1. This is to be expected, because the free energy
density for ϕ = 1 reduces to that of a mean-field Ising model. Note that at the critical
point, for ε = 2 the binodal has the shape of a cusp. Interestingly, as we shall see in
the next section, for ε > 2 the second order Ising-like transition turns into a first-order
transition and there is no longer a real critical point for liquid-liquid phase separation.
Finally we note that the diagrams shown in figs. 3.4a-3.4d cannot be rescaled by the
critical concentration and χ value to obtain a universal phase diagram, that is, the
phase behaviour is non-universal and there is no law of corresponding states.

3.6 Phase diagrams for the strong-coupling regime
The cross-over to strong coupling occurs at ε = 2 and coincides with the presence of
the multi-critical point at ϕ = 1 and χ = 4: it is the convolution of the critical point of
liquid-liquid phase separation and that associated with the Ising-like conformational
demixing at ϕ = 1 as discussed in the previous section. The latter transition also
corresponds to the first appearance of the first-order conformational phase transition
and the associated van der Waals-like loop discussed in section 3.3. It is the presence
of the van der Waals-like loop, in particular the unstable part of it, that gives rise to
the strong-coupling regime. In the limit of rt → 0, in which conformational relaxation
of the protein occurs instantaneously as discussed in section 3.4, this part of the loop
is a barrier separating non-equilibrium dispersion states that instantaneously relax
towards a dispersion state on either the lower or upper stable part of the loop. As
we shall see, the kinetic mechanism by which phase separation subsequently occurs
depends onto which of the two branches the system initially relaxes.

In fig. 3.7a the phase and stability diagram for the Flory-Huggins-based free en-
ergy is shown for ε = 3. In it, the diagram is projected onto the ϕ-χ plane. The
corresponding diagram for the Carnahan-Starling-based free energy is shown in fig.
3.7b. In these figures, the blue line represents the binodal and coexisting states are
joined by horizontal tie lines, the green dotted line indicates the spinodal, while the
region in between the red lines, which are situated mostly underneath the spinodal,
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demarcate the region where the van der Waals-like loop is observed. No fewer than
a total of 13 regions, instead of just 3 for ε ≤ 2, have been identified in the diagram. In
fig. 3.7a three of these regions (XI - XIII) are situated between the spinodal line and
the upper boundary of the region where the first-order conformational phase transi-
tion exists. These regions are small in the diagram, and hence for clarity their location
is shown schematically at the bottom of the phase diagram. In fig. 3.7b the same is
done for regions III, XII and XIII. The background colours indicate the type of phase
behaviour observed in each of the regions. In fig. 3.8 3D versions of these phase
diagrams are shown in which the η-direction is included, here the binodal is shown
as a black line and the “equilibrium” spinodal as a grey line. In this figure the Ising-
like coexistence at ϕ = 1 between phases of proteins in which the average protein
conformation is different is clearly visible as the binodals nor the spinodals meet in a
single point at ϕ = 1.
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Figure 3.7: The phase and stability diagram for ε = 3 for a) the Flory-Huggins-based
free energy and b) for the Carnahan-Starling-based free energy. The thick blue line
represents the binodal, coexisting states are joined by horizontal tie-lines, the green
dotted line represents the spinodal and the area enclosed by the red lines indicates
the region where the van der Waals-like loop is present. Thirteen regions, each with
distinct phase behaviour, as discussed below, are indicated. A 3D version of the
diagrams is shown in fig. 3.8.

Before we address the phase behaviour in each of these regions, a few general
remarks are in order. Firstly, the diagram as shown in fig. 3.7 is a good representation
of the phase behaviour for ε ≥ 2 of both solution models. Hence in the following
discussion we focus entirely on the behaviour of the Flory-Huggins-based model for
ε = 3. Before we discuss the phase behaviour in the strong coupling regime it is worth
repeating that it is the unstable part of the van der Waals-like loop that separates non-
equilibrium dispersion states that instantaneously relax towards either the lower (a) or
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(a) (b)

Figure 3.8: a,b) The phase diagrams for the same free energy equations and same
values of ε as shown in fig. 3.7. The binodal is represented by the black line and the
“equilibrium” spinodal by the gray line

upper (b) stable part of the loop that is responsible for the complexity of the diagram.
This becomes evident by taking ϕ-η slices out of the phase and stability diagram and
including the ηeq curve for χ = 5.95 (fig. 3.9) and χ = 10 (fig. 3.10), both for ε = 3.
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Figure 3.9: a) Mapping of phase behaviour in ϕ-η space for χ = 5.95 and ε = 3.0 for
the Flory-Huggins-based free energy, showing the ηeq curve, “equilibrium” spinodal
point (dot). Regions I, II and III are situated in the corresponding regions in fig. 3.7,
the behaviour in each of these regions is discussed below. b) The dimensionless
Flory-Huggins-based free energy density along the ηeq curve for χ = 5.95 and ε = 3.0.

All regions shown in fig. 3.9a are part of regions I-III in fig. 3.7. Just as in the
weak coupling regime, boundaries between these regions are at fixed value of ϕ,
i.e., independent of η. Unlike in the weak coupling regime, there is an additional
subdivision of regions II and III into two parts, which are separated by the unstable
part of the van der Waals-like loop.

In region I, the dispersion is homogeneous and the equilibrium dispersion state is
independent of the initial (non-equilibrium) value of η. In principle, the same holds true
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for regions II and III, however, here the presence of the van der Waals-like loop leads
to the existence of meta-stable dispersion states that are located on the upper stable
part of the loop. This becomes clear from fig. 3.9b in which we show the free energy
as a function of ϕ. In region II.b these meta-stable states are thermodynamically
stable against density fluctuations, while in region III.b these meta-stable states are
thermodynamically unstable because the “equilibrium” spinodal has been crossed. If
the activated relaxation towards the equilibrium state on the lower stable branch is
sufficiently slow, one might expect to observe a spinodal decomposition-like process
to occur on the upper branch in this region. This is suprising as there are no co-
existing phases and the equilibrium state is a homogeneous dispersion with most
proteins in their native state. The behaviour of the model dispersion in regions VII
and XIII is similar to that in respectively regions II and III and hence we do not address
it explicitly. Note that a summary of the phase and stability behaviour in each of the
thirteen regions can be found in table 3.1.
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II
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Figure 3.10: a) Mapping of phase behaviour in ϕ-η space for χ = 10.0 and ε = 3.0 for
the Flory-Huggins-based free energy, showing the ηeq curve, “equilibrium” spinodal
points (dots) and binodal points (squares). The regions as indicated are situated
in the corresponding regions in fig. 3.7, the behaviour in each of these regions is
discussed below. b) The dimensionless free energy density along the ηeq curve for
χ = 10.0 and ε = 3.0.

Focusing now on the case χ = 10 and ε = 3, phase separation is possible and
the exact phase behaviour of the dispersion depends on both ϕ and η. This is shown
in fig. 3.10a, in which a total of 7 different regions are shown. As before, in regions
I and X the equilibrium state of the dispersion is homogeneous and independent of
the initial value of η, see fig. 3.10b. In regions IV and IX phase separation must
occur by nucleation and growth and in region VIII by spinodal decomposition. In
regions V and XI the kinetic pathway by which phase separation occurs depends on
the initial average protein conformation, η. In region V.a phase separation proceeds
by nucleation and growth and by spinodal decomposition in region V.b. The behaviour
in regions VI and XII is similar to that in regions V and XI with phase separation by
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nucleation and growth or spinodal decomposition depending on the initial average
protein conformation. A summary of the phase and stability behaviour in each of the
thirteen regions can be found in table 3.1.

Region a) Lower part of loop b) Upper part of loop
I Homogeneous Homogeneous
II Homogeneous Meta-stable
III Homogeneous Meta-stable & spinodal decomposition
IV Phase separation by nucleation and growth Not present
V Phase separation by nucleation and growth Phase separation by spinodal decomposition
VI Phase separation by nucleation and growth Phase separation by nucleation and growth
VII Meta-stable Homogeneous
VIII Not present Phase separation by spinodal decomposition
IX Not present Phase separation by nucleation and growth
X Not present Homogeneous
XI Phase separation by spinodal decomposition Phase separation by spinodal decomposition
XII Phase separation by spinodal decomposition Phase separation by nucleation and growth
XIII Meta-stable and spinodal decomposition Homogeneous

Table 3.1: Overview of phase and stability behaviour in regions I-XIII as shown in
figs. 3.7, 3.9 and 3.10. The lower part of the loop refers to the stable portion of the
ηeq curve below the unstable part of the van der Waals-like loop while the upper part
refers to part of the loop above it, see fig. 3.2. Note that in region I the van der
Waals-like loop in the ηeq curve does not exist.

An interesting feature of the phase behaviour of our model proteins in the strong-
coupling regime is that, if initially most proteins are in their native state, the concen-
tration interval where phase separation occurs by spinodal decomposition is small.
In fact, the only region where this occurs are regions XI.a and XII.a. It arguably does
not happen in region VIII because here spinodal decomposition must be preceded by
relaxation of nearly all proteins to their non-native state, which plausibly does not oc-
cur instantaneously. The concentration interval over which we expect to see spinodal
decomposition, ∆ϕs, is plotted as a function of χ and ε for both the Flory-Huggins and
Carnahan-Starling-based free energy in fig. 3.11. In that figure, and also in fig. 3.7,
we see that for sufficiently small values of χ the regions XI and XII are not present
at all, and phase separation must always be nucleated in a dispersion of proteins in
their native state.

In conclusion, in the strong coupling regime phase separation in a dispersion of
mostly native proteins must almost always occur by nucleation and growth. It must
be remarked that this conclusion follows from a somewhat limited kinetic analysis that
is based on the presumed limit of instantaneous conformational relaxation, rt → 0.
In spite of this, it is clear that the unstable part of the van der Waals-like loop poses
a barrier that effectively demands the model dispersion to phase separate through
nucleation and growth at least if most proteins are initially in their native state.
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(a) (b)

Figure 3.11: Size of the concentration interval, ∆ϕs, for which phase separation oc-
curs by spinodal decomposition if the proteins are initially in their native state as a
function of χ and ε (as defined in fig. 3.1). For a) the Flory-Huggins-based and b)
the Carnahan-Starling-based free energy. Note that in the non-shaded region phase
separation never occurs by spinodal decomposition.

3.7 Discussion

We presented a theoretical study into the effects of the coupling of conformational
changes and protein phase behaviour. In our model, native state proteins can re-
versibly switch to a high-energy non-native (e.g., unfolded) state. Both conformers
interact through volume exclusion, whilst proteins in the non-native state also attract
each other. For simplicity we assumed that both conformers are of equal shape and
volume. The model allows us to study the phase behaviour as a function of the energy
difference between the native and non-native state and the strength of the interaction
between proteins in their non-native state.

Our results show that there are two regimes, a regime of weak and one of strong
coupling, which are demarcated by a free energy difference of 2 kBT between the two
conformers. In the first regime, so for small free energy differences, the coupling be-
tween conformational changes and phase behaviour is weak. The phase behaviour
is reminiscent of classical phase separation between solvent and solute. However,
there are important differences: 1) the phase behaviour is non-universal, 2) under
the right conditions the dispersion exhibits double re-entrance, and 3) changes in
concentration induce changes in protein conformation.

The strong coupling regime manifests itself in three clear ways: 1) the classi-
cal critical point for phase separation disappears, 2) there is a conformational phase
separation in the solvent-free (dry) system, 3) the emergence of unusual meta-stable
dispersion states. This leads to a plethora of kinetic regimes, a total of 13 for both
models investigated. These regimes reflect differences in the kinetic pathway to-
wards a phase separated dispersion, depending on the average protein conformation
prior to phase separation. For example, for a given concentration, phase separation
can occur by nucleation and growth if most proteins are initially in their native state,
while it occurs by spinodal decomposition if this is not the case.

Significantly, it turns out that phase separation in a dispersion of native proteins
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must almost always proceed by nucleation and growth. In that case, phase separa-
tion must be initiated by a coherent change in the conformation of proteins. Protein
conformation is no longer enslaved to concentration and hence mass transport. One
of our most unusual findings is that there are regimes in which there is a kinetic path-
way between homogeneous dispersion states that, according to our interpretation of
the model, must involve temporary phase separation.

In current protein literature, modeling of phase separation in solution ignores
possible changes in conformation,71–73,75,77 while the modeling of aggregation into
supramolecular assemblies, including amyloid fibrils, hinges on changes in confor-
mation.16,24,80,81 We argue that the demarcation between weak and strong coupling
of phase behaviour and conformational changes as predicted by our model is reminis-
cent of this distinction. We realise that our model does not allow for any amyloid-like
structure to appear. Furthermore, because we employ equilibrium theory any irre-
versible binding or conformational changes is ignored, so this conclusion is tentative.

Our analysis of the thermodynamic stability and kinetic pathways towards equilib-
rium relies on the presumed limit of rt → 0. This means that conformational changes
occur instantaneously on the self-diffusion time scale of the proteins. This assump-
tion is probably not always realistic, yet it simplifies the kinetic analysis. If the limit
of rt → 0 does not hold, the kinetics by which phase separation occur depends at
all times on the initial protein conformation. The simple subdivision in phase separa-
tion by spinodal decomposition or by nucleation and growth no longer holds. A more
subtle processes is possible, where at first phase separation must occur by nucle-
ation and growth, but where, before a nucleation event has occurred, conformational
relaxation forces the dispersion into a thermodynamically unstable state and phase
separation proceeds by spinodal decomposition. We study this and similar kinetic
processes in chapter 5 from the perspective of dynamic density functional theory.

The consequences of these more complicated kinetic pathways towards a fully
phase separated dispersion leave our conclusions intact. In the weak coupling regime,
conformational relaxation is, at a given concentration, always towards the same av-
erage protein conformation. However, in the strong coupling regime we have seen
that, depending on the initial average conformation, the dispersion relaxes toward ei-
ther of two different dispersion states. Because the thermodynamic stability of these
two states is not necessarily equal, this presents a fundamentally different coupling
between conformation and phase behaviour. Hence, the demarcation between the
weak and strong coupling regimes holds beyond the presumed limit of rt → 0.

Much of the interesting behaviour predicted by our models occurs at very high
concentration, where the protein might crystallize. It would be interesting to see how
the phase behaviour predicted by our model couples to crystallization. We have
invoked a simple van der Waals-solid model,94 which led to unphysical results. As
there are no attractive interactions between proteins in the native state within our
model, phase separation leads to a dense phase of attractively interacting proteins
in their non-native state. Phase separation is then always thermodynamically more
favourable than crystallization of non-interacting native proteins. Clearly, more work
is required to couple our model to a crystallization model.
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Finally, a few remarks must be made on the similarities and differences between
the Flory-Huggins-type and Carnahan-Starling-type free energies. Although the phase
and stability diagrams appear to be distinctly different in shape for both models, the
underlying structure is identical and hence both models support the existence of a
demarcation between a weak and strong coupling regime. The main cause for the
difference in shape of the diagrams is that in the Carnahan-Starling-type model the
free energy more strongly increases with protein concentration, leading to the forma-
tion of a less dense dispersion of proteins in the non-native state by phase separation.

In the next chapter we extend the model presented in this chapter to also include
changes in the size of the protein upon transitioning to the non-native state and show
that this significantly affects the predicted phase behaviour. However, we also show
that the key results presented in this chapter, being the demarcation between regimes
of weak-coupling and strong-coupling, remain valid even if the native and non-native
conformation are not of equal size.



Chapter 4
Self-crowding induced phase
separation

Summary

In this chapter the effects of changes in volume exclusion on protein conformation

and solution phase behaviour is studied. Our model two-state proteins can reversibly

switch between a native and an excited non-native state. The proteins interact by

excluded volumes regardless of conformation, upon transition to the non-native state

the effective radius of the protein increases. Proteins in the non-native state interact

attractively with other proteins in the non-native state. For high concentrations the

native state is stabilised by volume exclusion, while for intermediate concentrations

phase separation is suppressed and a dispersion of proteins mostly in their non-native

state is stabilised. Concurrent with these effects is the presence of two first-order

transitions at fixed concentration and two separate regimes of phase separation of

which the latter is induced by self-crowding effects.

The contents of this chapter has been submitted for publication as: J. Stegen and P. van der Schoot,
Self-crowding induced phase separation in protein dispersions.
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4.1 Introduction
Protein phase behaviour is often modeled by presuming that the proteins are struc-
tureless and undeformable spherical particles. However, proteins do have an internal
structure and it is well known that this structure may respond to changes in the local
environment. This includes changes in physico-chemical conditions,12 assembly and
complexation,61,95–97 and even non-bonded interactions between the proteins at el-
evated concentrations.98 The response of the structure of a protein to such changes
can induce changes in its effective volume that includes the tightly bound hydra-
tion water and the interactions between the proteins. This implies that in crowded
environments, where the free volume is limited due to presence of a high concen-
tration of macromolecules such as is the case in the cell,99,100 interactions between
proteins may be different from that in a dilute solution.17,101–104 Crowding tends to
increase, e.g., protein complexation rates, and shifts the equilibrium towards more
compact conformations and to assembled states because it increases the free vol-
ume of the solution.17 Hence, crowding stabilises compact (native) protein conforma-
tions.98,105–107 On the other hand, diffusion-limited associative reactions slow down
due to a decrease in diffusivity.

It is clear that gaining an understanding of how crowding couples to protein phase
behaviour and the conformational stability of the protein is important scientifically.
Moreover, industrial applications in food64 and pharmaceutics68 involve dense pro-
tein formulations, which are difficult to process and exhibit unwanted phenomena
like syneresis, i.e., the explusion of water. That crowding, including self-crowding,
is important and that the study of proteins in dilute solutions is not necessarily help-
ful in understanding the physical properties of such systems is well recognised.108

Indeed, in an increasing number of experiments, crowding agents are added or the
experiments are carried out in living cells to address crowding-related effects, e.g.,
in complexation and folding.19

While our understanding of how crowding induces phase separation in multi-
component systems is relatively advanced,109–111 it is to our knowledge not known
how self-crowding affects protein phase behaviour in the liquid phase. Here, we
study theoretically how volume-exclusion between a single type of model protein in-
fluences the switching between two conformational states, native and non-native,
and through that the interactions between the proteins. We show that if these two
conformational states have different effective volumes, even if this difference is very
small, it profoundly affects the phase behaviour. We find that with increasing con-
centration, following liquid-liquid phase separation in which in the dense phase the
non-native state is more prevalent, a second phase separation occurs in which the
native state becomes more stable again.

The model that we make use of is an extension to a two-state protein model that
we studied in the previous chapter. In the extended model we presume there is
a thermodynamic equilibrium between a native and an excited (high-energy) non-
native conformation of the protein that we both presume to be spherical but to have
different hard-core radii. All model proteins interact with each other sterically, while
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the proteins in the non-native state also attract each other. Key parameters in the
model are κ, the ratio of the hard-core diameters of the two conformers, ε, the free
energy difference between the excited non-native state and the native state of the
protein, and χ , a free energy that characterises the strength of the attractive interac-
tions between proteins in the non-native state. Hence, we calculate phase diagrams
of our model protein solution as a function of these three parameters and as a func-
tion of protein concentration, and find that these are exquisitely sensitive to the value
of κ. This suggests that one can not treat proteins as simple nanocolloids.

In the remainder of this chapter, we present our model free energy in section
4.2 and use this to determine the equilibrium phase behaviour in sections 4.3 and
4.4. In section 4.3, we investigate how the equilibrium fraction of proteins in the
non-native state depends on the concentration and on the three model parameters,
and show that there are two first-order conformational phase transitions. This leads
to a total of 5 qualitatively different relationships between protein concentration and
conformation. In section 4.4, we determine the corresponding phase diagrams and
show how both first-order conformational phase transitions are coupled to liquid-liquid
phase separation. Furthermore, we show that a distinction between two qualitatively
different types of phase diagram can be made. An aspect of theoretical interest is
that in our model protein volume fraction is a non-conserved order parameter. Finally,
in section 4.5 we summarise and discuss the results.

4.2 Free energy model

Our model dispersion consists of an implicit solvent and two types of spherical particle
1 and 2, with diameters d1 and d2 ≥ d1. Particles 1 and 2 represent the two different
states of our protein and can reversibly interconvert where a free energy penalty
ε ≥ 0 is assigned to particle 2 (the non-native state). Both types of particle interact
via hard-core volume exclusion, whereas particles in state 2 also attract each other
via some unspecified interaction potential.

We construct a free energy for this model system by combining the free energy of
a bidisperse hard-sphere fluid that we derive from the polydisperse Boublik-Mansoori-
Carnahan-Starling-Leland (BMCSL) equation of state,112,113 a van der Waals-like
term that accounts for attractive interactions between the non-native species, a term
describing the interconversion between the two states.

The BMCSL equation of state can be integrated isothermally over the volume to
obtain the corresponding Helmholtz free energy. If we define the dimensionless free
energy density as f = v1βF/V , where v1 is the volume of a single protein that is in
its native state, 1/β = kBT is the thermal energy and V is the system volume, then
the BMCSL contribution to the free energy reads,



68 Chapter 4

fHS =(1 − η)ϕ ln (1 − η)ϕ +
ηϕ
κ3 ln ηϕκ3 − (1 − η)ϕ − ηϕ

κ3 + (4.1)

ϕ
(
1 +

1 − κ3
κ3 η

)
×

[
3 (1 − y1 − y2 − y3/3)

2 (1 − ϕ)2
+

3y2 + 2y3
1 − ϕ −

3 (1 − y1 + y2 + y3)
2

+ (y3 − 1) ln (1 − ϕ)
]

where ϕ is the total protein volume fraction and η is the fraction of the volume of
protein that corresponds to proteins in the non-native state. The terms y1, y2 and y3
are defined as

y1 = η (1 − η) (1 − κ)2 (1 + κ)
κ3 + (1 − κ3) η , (4.2)

y2 = η (1 − η) (1 − κ)2 (κ + (1 − κ) η)
κ3 + (1 − κ3) η , (4.3)

y3 =
(κ + (1 − κ) η)3

κ3 + (1 − κ3) η , (4.4)

where κ = d2/d1 with d2 the effective diameter of the protein when it is in the non-
native state and d1 the effective diameter of the protein when it is in its native state. In
this work we presume the native conformation to be the more compact conformation,
that is, κ ≥ 1.

Again, for simplicity, we presume that only particles of type 2 attract each other.
Within a mean-field van der Waals-type of approximation,114 we account for this in a
dimensionless free energy density contribution of the form,

f vdW = − χ
2κ3 (ηϕ)

2, (4.5)

where χ describes the attractive part of the interaction between particles of type 2
and is given in units of thermal energy (kBT ). As we presume particle type 2 to be a
high energy non-native state of the proteins, we add a free energy of the form,

fConf =
ηϕ
κ3 ε, (4.6)

where κ enters because of our normalisation of the free energy density.
The total dimensionless free energy density of the model two-state protein dis-

persion is now,
f = fHS + fvdW + fConf, (4.7)

where fHS is given by eq. (4.2), fvdW by eq. (4.5) and fConf by eq. (4.6). Note that
for κ = 1, we retrieve the dimensionless free energy density for a monodisperse
Carnahan-Starling-based model as presented in the previous chapter, eq. (3.7).91
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Because proteins can reversibly switch between conformations of different effec-
tive volumes, neither the overall protein volume fraction, ϕ, nor the fraction of the
protein volume in the non-native state, η, are conserved quantities. While the quan-
tity η may seem unusual, it is directly related to the number fraction of proteins in the
non-native state, ηN, via the relation,

ηN = η/
(
κ3 +

(
1 − κ3

)
η
)
. (4.8)

We realise that this parameter offers a more intuitive description of the conformational
state of the proteins, however the parameter η enters our hard-sphere free energy
directly from the BMCSL equation of state.

While the overall protein volume fraction, ϕ, might seem a natural concentration
scale, in our case it is a little unusual because it is non-conserved. The overall number
density of proteins is a conserved quantity and it is possible to introduce a dimension-
less concentration that is proportional to this quantity and that is also conserved. A
natural dimensionless concentration that does that is the volume fraction the proteins
would occupy if all proteins were in the native state,

ϕNa = ϕ
(
1 +

1 − κ3
κ3 η

)
. (4.9)

Importantly, experimentally it is readily determined because it is a direct measure for
the amount of proteins dissolved.

In summary, we have put forward a dimensionless free energy density for our
model protein dispersion. Solution conditions and protein properties are reflected in
the parameters χ , ε and κ, while the thermodynamic state of the dispersion is given
by ϕ or ϕNa and η or ηN. In the next section, section 4.3, we determine the equilibrium
fraction of proteins in the non-native state as a function of concentration, and show
that volume exclusion stabilizes the native state at high concentrations.

4.3 Stabilization of the native state at high concentra-
tions

The equilibrium fraction of proteins in the non-native state minimises the free energy
for a given amount of dissolved protein, ϕNa. Hence, we set

(
∂f
∂ηN

)

ϕNa,χ,ε,κ
= 0. (4.10)

We solve the resulting implicit equation numerically and determine whether they are
free energy minima or maxima. As we shall see, the local maximum values are phys-
ically relevant, because they correspond to a free energy barrier between different
(meta-)stable dispersion states with different fractions of proteins in the non-native
state at fixed concentration. Furthermore, we will show that these local maxima can
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be crossed by two different first-order conformational phase transitions at fixed con-
centrations, giving rise to no fewer than 5 qualitatively different relations between
equilibrium protein conformation and protein concentration. The loci of liquid-liquid
phase separation we determine by equating chemical potentials and pressures in
the coexisting phases. These can be calculated from our free energy, eq. (4.7),
where the chemical potential is proportional to ∂ϕNaf and the osmotic pressure to
−f + ϕNa∂ϕNaf . In this section we focus first on how the equilibrium number fraction
of proteins in the non-native state, ηeq

N , varies with protein concentration, ϕNa. In the
following section we will discuss phase diagrams in more detail.

To set the stage, let us first consider qualitatively how the equilibrium value of
ηN, ηeq

N , depends on the protein concentration, ϕNa, and the other three model pa-
rameters, χ , ε and κ. This dependence essentially involves four different competing
effects. The first three effects also hold for a system in which both conformations are
of equal size, κ = 1, and are, 1) entropy, which favours equal amounts of proteins
in both conformations, 2) attractive interactions of strength χ between proteins in the
non-native state, which favour as many proteins in the non-native state as possible,
and 3) the free energy penalty associated with the non-native state, ε (≥ 0), which
favours as few proteins as possible in the non-native state. The competition between
the latter two effects is strongly concentration dependent. The size difference be-
tween the two conformations introduces a fourth competing effect: 4) self-crowding
(excluded-volume) effects that favour as few proteins as possible in the non-native
state. This becomes more important with increasing protein concentration when the
system runs out of free volume.

To illustrate how self-crowding influences how ηeq
N varies with ϕNa, we set χ = 6

and ε = 0, both in units kBT . We focus on the case where the effective diameter
of the protein increases by a mere 5 percent upon transitioning to the non-native
state, so κ = 1.05 and compare this with the case where κ = 1 and self-crowding
is absent. Fig. 4.1a shows that without self-crowding, ηeq

N increases monotonically
with concentration. Fig. 4.1b on the other hand shows that with self-crowding this
is no longer the case: self-crowding suppresses the non-native state at high enough
concentration. As a result of this the dependence of ηeq

N on concentration exhibits
a maximum. Notice that the area shaded in gray in fig. 4.1b corresponds to actual
volume fractions larger than unity, which of course is unphysical.

If we increase the strength of the attractive interaction between proteins in the
non-native state from χ = 6 to 12 and 40, this leads to a qualitatively different be-
haviour. Fig. 4.2a shows that for χ = 12 the relation between conformation and
concentration exhibits a van der Waals-like loop, signifying a first-order conforma-
tional phase transition. The dashed line in fig. 4.2a corresponds to a local maximum
in the free energy that separates a local (meta-stable) and a global minimum (stable)
free energy dispersion state for a fixed value of ϕNa.

Indicated in the figure (with a double-pointed arrow) is where the conformational
transition would occur if there were no macroscopic phase separation. This happens
at equal free energies provided the concentration is fixed. In fact, in section 4.4, we
show that this conformational transformation is intimately linked to the transition from
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(a) (b)

Figure 4.1: The equilibrium fraction of proteins in the non-native state, ηeq
N , as a func-

tion of protein concentration, ϕNa. The strength of the attractive interactions between
the non-native proteins is χ = 6.0 kBT and the free energy penalty associated with
the non-native state is ε = 0. a) Both conformers are of equal size, κ = 1. b) The
non-native conformer is 5 percent larger than the native conformer, κ = 1.05. The
shaded area indicates unphysical dispersion states where the protein volume fraction
exceeds 1.

a homogeneous dispersion to a liquid-liquid phase separated dispersion in which the
concentrations and conformational states are not equal. The conditions for which we
have coexisting phases are indicated in the figure by black dots.

The conformational phase transition that occurs is a result of the competition be-
tween self-crowding effects and the attractive interactions between proteins in their
non-native state, which respectively favour a state with most proteins in their native
and non-native state. With an increase of the strength of the attractive interactions
between the proteins in the non-native state, the non-native conformation remains
thermodynamically stabilised up to a higher concentration when crowding effects take
over as is shown in fig 4.2b.

When the free energy difference between the native and non-native state is in-
creased to a non-zero value this increases the thermodynamic stability of the native
conformation even when proteins in the non-native state strongly attract each other.
Fig. 4.3a shows that for χ = 15, ε = 3 and κ = 1.05, the native conformation is ther-
modynamically stable for all concentrations. The effect of self-crowding becomes
clear if we compare this to the situation where both conformations are of equal size
and self-crowding plays no role, fig. 4.3b. In this case the non-native conformation
is thermodynamically stabilised at high concentrations.

In fig. 4.3b a second type of van der Waals-like loop presents itself, different from
the one shown in fig. 4.2. Associated with it is another first-order conformational
phase transition that results from the competition between the tendency of proteins
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(a) (b)

Figure 4.2: The equilibrium fraction of proteins in the non-native state, ηeq
N , as a

function of protein concentration, ϕNa and a size difference of 5 per cent, κ = 1.05
and zero free energy difference between the two , for a) χ = 12 and b) χ = 40.
In both figures the solid line corresponds to a (local) minimum while the dashed line
corresponds to a maximum in the free energy. The concentration at which a first-order
conformational phase transition would occur in a homogeneous solution is indicated
by a double-pointed arrow. In reality, the solution phase separates and coexisting
phases are indicated by the black and grey dots. See also the caption of fig. 4.1 for
further details.

to remain in their native state due to the increase in conformational free energy, ε, and
the tendency of proteins to switch to the non-native state and lower the free energy
through attractive interactions of strength χ .

Let us now consider how the relation between protein concentration and confor-
mation changes, as we slowly increase the value of κ from 1 upto 1.05 while the other
two model parameters remain fixed at χ = 15 and ε = 3. In doing this, we investigate
how precisely the concentration dependence of ηeq

N changes from the one shown in
fig 4.3b to the one shown in fig. 4.3a.

If the effective diameter of the non-native state of the protein increases by just 0.01
percent upto κ = 1.0001, then a second first-order conformational phase transition
appears at high concentration as is shown in fig. 4.4a. This transition has the same
physical origin as the one shown in fig. 4.2, where self-crowding causes the larger
non-native state to become unfavourable at high volume fractions. With increasing κ,
self-crowding effects become significant at a lower protein concentration, and the van
der Waals-like loop at high concentrations ϕNa shifts to lower concentrations. This
continues until κ ≈ 1.0002, when the lower boundary of both loops meet in a single
point as is shown in fig. 4.4b.

A further increase in κ leads to a change in the structure of the free energy land-
scape, where both van der Waals-like loops merge separating a regime of (meta-
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(a) (b)

Figure 4.3: The equilibrium fraction of proteins in the non-native state, ηeq
N , as a

function of the protein concentration, ϕNa. Refer to the caption of fig. 4.2 for further
details. For attractive interactions of strength χ = 15 and a free energy penalty of
ε = 3. a) Size difference κ = 1.05. b) No size difference, κ = 1. The van der Waals-
like loop that is shown has a different physical origin from the one shown in fig. 4.2b,
see the main text.

(a) (b)

Figure 4.4: The equilibrium fraction of proteins in the non-native state, ηeq
N , as a

function of protein concentration, ϕNa for attractive interactions of strength χ = 15
and a free energy penalty of ε = 3. Refer to fig. 4.2 for further details. For a size
difference a) κ = 1.0001 and b) κ = 1.0002.

)stable dispersion states with proteins mostly in their native state from a regime of
(meta-)stable dispersion states with proteins mostly in their native state. See fig. 4.5.
The dispersion state with most proteins in the non-native state is only stable in be-
tween the two first-order conformational phase transitions. Even though the structure
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appears to be quite different, the two first-order conformational phase transitions that
we previously discussed still exist and the behaviour remains qualitatively the same.

Increasing κ further enhances self-crowding effects and causes the non-native
state to be increasingly unfavourable and the concentration range over which it is
stabilised decreases. This situations remains unchanged upto a critical value of κ
at which the two first-order conformational phase transitions merge at a single value
of ϕNa. In the next two sections we shall see that this corresponds to the “critical
point” of two liquid-liquid phase separation transitions. For a further increase in κ,
all of the dispersion states with proteins mostly in their non-native state on the upper
ηeq

N curve become meta-stable states, i.e., they have a higher free energy than the
corresponding states at lower values of ηN. Increasing κ upto κ = 1.05 causes these
meta-stable states to disappear altogether and the situation as shown in fig. 4.3a is
retrieved.

Figure 4.5: The equilibrium fraction of proteins in the non-native state, ηeq
N , as a

function of protein concentration, ϕNa for χ = 15, ε = 3 and κ = 1.005. See fig.
4.2 for further details.

We have now covered all qualitatively different relationships between protein con-
centration and equilibrium conformation. The found dependence is the result of four
different competing effects as discussed at the beginning of this section. In the next
section we investigate in more detail under which circumstances phase separation
can occur and if it occurs, what the composition of the coexisting phases is. There
we shall see that the two types of van der Waals-like loop that we discovered in this
section are intimately linked with two consecutive phase separations of the model dis-
persion with increasing concentration. In effect, we find re-entrant phase behaviour
as we demonstrate in the next section.
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4.4 Self-crowding induced phase separation
Phase separation occurs if the solution has a concentration in between the concen-
trations of two coexisting phases, as determined by the physico-chemical conditions
of the solution. Under conditions of thermodynamic equilibrium temperatures are
equal, the chemical potential of the proteins are equal and the osmotic pressure is
equal. For the system at hand equal temperatures implies that χ and ε must be equal
in the two phases. In the previous section we identified how to obtain the chemical
potential and osmotic pressure from our free energy. The concentration and the av-
erage conformation of the protein in each of the two coexisting phases we determine
numerically as a function of χ , ε and κ. In this section we show that two qualitatively
different types of phase diagram present themselves.

We have determined the composition of coexisting phases for a variety of the
model parameter values. We present these as phase diagrams, where the concen-
tration, ϕNa, in each of the two coexisting phases is shown as a function of χ for a
fixed value of ε and κ. By projecting the phase diagram onto the ϕNa-χ plane we
do not explicitly consider the ηN direction. However, to get an impression of how
the fraction of proteins in the non-native state varies across the phase diagram, we
present cuts at fixed χ .

For a given value of κ, the two different types of phase diagrams that we find, are
separated by a κ-dependent critical value of ε that we have not studied in depth. Let
us first consider the class of phase diagrams for values of ε below this critical value.
The phase diagram for κ = 1.05 and ε = 1.15 is representative of this class and
is shown in fig. 4.6a. The phase diagram shows two distinct regimes where phase
separation occurs, the first is denoted by a solid curve, the second is denoted by a
dashed line. For both binodal curves, the coexisting phases are joint by horizontal tie
lines at constant χ . Note that phases on the solid curve do not coexist with phases
on the dashed curve.

In the low-concentration regime phase separation results in a dilute phase of pro-
teins in their native state and a dense phase of proteins in their non-native state. This
is illustrated in fig. 4.6b showing the equilibrium fraction of proteins in the non-native
state for χ = 20 and where these two coexisting states are indicated by grey dots.
Here, phase separation occurs because it is favourable to have a dilute phase of pro-
teins in the native state and a dense phase of proteins mostly in their non-native state
where attractive interactions compensate the free energy penalty for the transition to
the non-native state.

In the high-concentration regime phase separation results in a relatively dilute
phase of proteins mostly in their non-native state and a denser phase where proteins
are mostly in their native state. This is indicated by the black dots in fig. 4.6b, which
show the average conformational state in the coexisting phases. At high densities
where a large fraction of the proteins are in the non-native, expanded state, the sys-
tem runs out of free volume. To accomodate that, proteins will forgo their attractive
interactions in favor of an increase in translational entropy by reverting to the smaller
native state. Hence, phase separation is induced by self-crowding effects that can-
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(a) (b)

Figure 4.6: a) Phase diagram for κ = 1.05 and ε = 1.15 showing two binodals. The
solid curve denotes the protein concentration of coexisting phases that are joint by
horizontal tie lines at constant χ . At higher protein concentrations there is a second
regime where phase separation occurs, the dashed line also denotes the protein
volume-fraction of coexisting states which are joint by horizontal tie-lines at constant
χ . b) ηeq

N as a function of ϕNa for κ = 1.05, ε = 1.15 and χ = 20 showing the two
sets of two coexisting phases as grey and black dots respectively. The first-order
conformational phase transition is indicated by the double-headed black arrow.

not be observed for κ = 1. Note that in this high-density regime, phase separation
appears to be coupled to the underlying first-order conformational phase transition
that we discussed in section 4.3 and as is shown in fig. 3.7b.

By labeling a phase as dilute relative to another phase, we mean that ϕNa is
smaller in that phase, i.e., the number density of proteins is lower in the dilute phase.
However, this does not mean that volume fraction in the dilute phase is smaller than
that in the coexisting dense phase. This is indeed the case for the situation as
shown in fig. 4.6b, while the phase with proteins mostly in their non-native state has
ϕNa = 0.57 and the phase with proteins mostly in their native state has ϕNa = 0.63,
the protein volume fraction in the first phase is ϕ = 0.66 and in the latter phase it is
ϕ = 0.63.

Fig. 4.6 shows two more important characteristics of the phase behaviour of
the model two-state protein dispersion. Firstly, fig. 4.6b shows that for values of
ϕNa intermediate to the two regimes of phase separation, the non-native state is the
more stable one. Secondly, the second regime of phase separation, indicated by the
dashed binodal in fig. 4.6a, exhibits re-entrance, meaning that a continuous changes
in temperature, and hence in χ ,1 leads to the transition from a homogeneous to a
phase-separated and again to a homogeneous equilibrium state.

1χ is a free energy scaled to thermal energy, kBT . Presuming that it contains a non-zero enthalpic
contribution the value of χ must be temperature-dependent.
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In fig. 4.7 we show the phase diagram for κ = 1.25 and ε = 2.17, which is
representative of the second class of phase diagrams as advertised above. Fig.
4.7a shows the phase diagram as a function of the protein concentration, ϕNa, which
is a conserved quantity and fig. 4.7b that as a function of the protein volume fraction,
ϕ, which is a non-conserved quantity. Again there are two concentration regimes
where phase separation occurs, indicated by the solid and the dashed binodals, and
coexisting phases are joint by horizontal tie lines at constant χ . For the first regime
of phase separation, for the low-concentration branch the proteins are mostly in the
native state while for the high-concentration branch the proteins are mostly in the
non-native state. For the second regime, the opposite holds true.

As is evident from fig 4.7a, the two regimes of phase separation at low and high
densities seem to merge at the lowest value of χ , in this case χ ≈ 20. However, when
expressed in terms of ϕ instead of ϕNa, it transpires that the situation is more complex
because the volume fractions of the coexisting phases do not merge into something
that resembles a critical point. Hence, what appears to be a critical point in fig. 4.7a
is not: the fraction of proteins in the non-native state remains different upon approach
of the “critical point” where the concentrations become equal. This means that the
phase gaps of both first-order phase transitions do not exhibit a critical end point.
The transition remains first-order because it is connected to the first appearance of
the first-order conformational transition described in the previous section. This is in
contrast to the first class of phase diagrams discussed in the above, where the phase
gap does end in an actual critical point.

At the “critical point” in fig. 4.7a both regimes of phase separation have one of
the two coexisting phase where most proteins are in the native state and one where
most proteins are in the non-native state. Interestingly, at the “critical point” the two
regimes of phase separation can no longer be distinguished from each other, for the
two coexisting phases in each of those two regimes are identical. As a consequence,
for both regimes the protein volume fraction, ϕ, of the two coexisting phases is dif-
ferent at the “critical point”. the volume fraction , if the phase diagram is shown as
a function of protein volume fraction, ϕ, as in fig. 4.7b, the “critical point” splits into
two points at different protein volume fractions. In each of these points one of each
of the branches of the binodal meet with one branch of the branches of the binodal
of the other regime of phase separation meets, i.e., a solid and dashed line meet in
these points, see fig. 4.7b.

In the second class of phase diagrams, both liquid-liquid phase separations turn
out to be coupled to underlying first-order conformational phase transitions of the
proteins themselves. This is how the second class of phase diagrams appears to set
themselves apart from the first class, where only the high-density phase separation is
coupled to this underlying conformational phase transition. We illustrate this in fig. 4.8
where the composition of the coexisting phases of both regimes of phase separation
and the location of the underlying first-order conformational phase transitions are
shown for χ = 23 and χ = 30.

Let us now briefly return to the phase diagrams shown in fig. 4.7b and focus on the
region just above and in between the two “critical points”. From this figure, we might
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(a) (b)

Figure 4.7: a) Phase diagram for κ = 1.25 and ε = 2.17 showing two binodals. The
solid curve denotes the protein concentration of coexisting phases that are joint by
horizontal tie lines at constant χ . At higher protein concentrations there is a second
regime where phase separation occurs, the dashed line also denotes the protein
concentration of coexisting states which are joint by horizontal tie-lines at constant χ .
b) The same phase diagram, but now shown as a function of protein volume-fraction,
ϕ. Coexisting states are joint by horizontal tie-lines, however because ϕ is not a
conserved order parameter interpretation of this phase diagram is difficult.

(a) (b)

Figure 4.8: a) ηeq
N as a function of ϕNa for κ = 1.25, ε = 2.17 and χ = 23 showing the

two sets of two coexisting states as grey and black dots respectively. The first-order
conformational phase transition is indicated by the double-headed black arrow b) The
same type of graph, but for κ = 1.25, ε = 2.17 and χ = 30.

conclude that for these protein volume fractions both regimes of phase separation
are accessible as the protein volume fraction is intermediate to the protein volume
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fractions of the coexisting phases of both regimes of phase separation. However, this
interpretation is incorrect, protein volume fraction is a non-conserved quantity and the
two regimes of phase separation occur at different protein concentrations that do not
overlap, see fig. 4.7a. Protein concentration, ϕNa, is a conserved order quantity and
hence, it must be conserved during phase separation. As a consequence, the phase
diagram as shown in fig. 4.7a must be used to determine if phase separation can
occur, and if it occurs what the composition of the two coexisting phases are and not
the one shown in fig. 4.7b.

For other values of ε and κ the phase diagram is qualitatively similar to either
the phase diagram as shown in fig. 4.6a or fig. 4.7a and hence, in the above a
comprehensive qualitative discussion of the model’s phase behaviour was given. In
the next section we provide a discussion of the results that we have presented.

4.5 Discussion
In this chapter we present a model for protein liquid-liquid phase separation in which
protein conformation is not conserved and where there is an equilibrium between an
inert native conformation and an excited, expanded non-native conformation, which
is not only larger in size but also interacts attractively with proteins with the same
conformation. Our calculations show that volume exclusion stabilizes the native state
at high protein concentrations due to self-crowding (free-volume) effects. We find that
there are two different first-order conformational phase transitions at fixed protein
concentration. These first-order conformational phase transitions are coupled to two
different regimes of liquid-liquid phase separation, where the regime at higher protein
concentration is induced by self-crowding. Interestingly, the underlying physics of
the phase separations and the first-order conformational phase transitions, hidden
behind the associated liquid-liquid phase separation, is identical.

In our theory we see two clear effects that are caused by self-crowding, which
itself is caused by the larger volume of the non-native conformation that reduces the
free volume of the solution. These effects are the stabilisation of the native state at
high protein concentration and the presence of a second regime of phase separation
at high protein concentrations. This is superficially different from the effects of more
conventional cases of macromolecular crowding where crowding agents are added
to a protein solution leading to either phase separation or aggregation depending on
the specific interaction between the proteins. Here too, a decrease in free volume
drives these processes.17,109 The crucial difference of course is that in our case free
volume is primarily linked with the volume the particles themselves take up whereas
in the more conventional case it is linked to mutual excluded volume of groups of
particles.

An obvious question is how the predictions of the model compare with experi-
mental observations on liquid-liquid phase separation in protein dispersions. To our
knowledge, protein dispersions only display one regime of phase separation, rather
than the two predicted by our model.75,78 A possible reason for this is that the second
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regime of phase separation occurs at protein concentrations where the solution gels
or crystallizes.22 Neither of these effects are included in our model as we focus on
the consequences of self crowding on liquid-liquid phase separation. However, we
expect similar effects to be relevant to crystallization especially since the structure of
crystals is largely determined by excluded-volume effects.114

One interesting feature of the model is that protein volume fraction is a non-
conserved quantity, which, as we have seen, leads to unusual phase behaviour. A
consequence of this that we so far have not addressed relates to the nature of the
spinodal, i.e., the limit of stability of a homogeneous dispersion. The stability is deter-
mined by the local curvature of the free energy and the spinodal coincides with points
where, for a multi-order parameter system, the determinant of the Hessian vanishes.
However, for our model, the location of inflection points in the free energy landscape
depends on the choice of order parameters, that is, ϕNa and ηN or ϕ and η. The
question is then, too the inflection points for which set of these parameters does the
spinodal correspond? To answer this question, we must realise that from a thermo-
dynamic point of view, the spinodal must correspond to the point where fluctuations
in the number density of proteins in the native and proteins in the non-native state
become unstable. Using this as as starting point we find that the spinodal is given by
inflection points in the free energy landscape in ϕ-η representation.

A consequence of this is, is that in general the spinodal and binodal do not meet
in the critical point. In previous work, we showed that this also holds true for the
situation where both conformations are of equal volume and are separated by a suf-
ficiently large difference in free energy. This also holds true for the model presented
here, however, because in the model presented here there are two first-order confor-
mational phase transitions, rather than just one as for the model presented in chapter
3 (κ = 1), the interdependence between protein conformation, number-density and
the stability of the dispersion is highly non-universal and complex and hence beyond
the scope of this chapter.

In summary, we have shown that changes in effective protein volume induced
by switching between the native and a non-native state strongly affect the phase
behaviour. The corresponding self-crowding effects lead to stabilization of the native
state at high protein concentrations and cause the appearance of a regime of phase
separation at high concentration.



Chapter 5
Anomalous kinetic processes
in a model two-state protein
dispersion

Summary

In this chapter we investigate the non-equilibrium behaviour of the model two-state

protein dispersion introduced in chapter 3. We perform a linear stability analysis on a

set of model-C-like kinetic equations using a square-gradient free energy functional.

The stability analysis suggests that initially relaxation occurs by either of three dif-

ferent modes. These modes are, 1) a classic spinodal decomposition mode, 2) a

mode in which the protein conformation relaxes towards equilibrium over the entire

system simultaneously and 3) a mode that involves the scale-free phase separation

of the model dispersion in such a manner that the local concentration of proteins

in the non-native state is conserved. Based on these three modes we discuss the

relaxation from a number of different non-equilibrium states towards equilibrium.

81
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5.1 Introduction
In this chapter we investigate the kinetic consequences of the coupling of changes
in protein conformation to the phase separation of a protein dispersion. To this end,
we investigate the non-equilibrium processes that can occur in a model two-state
protein dispersion in which proteins can reversibly switch between their native and
a single non-native conformation. Whilst in a model mixture of solvent and proteins
with fixed conformation phase separation proceeds either by spinodal decomposition
or by nucleation and growth, the kinetics are more complex when there is a coupling
to changes in the conformation of the protein. In this situation, non-equilibrium pro-
cesses can involve changes both in local protein concentration and conformation.
Nonetheless, both the concept of spinodal decomposition and nucleation and growth
remain useful in the analysis of the non-equilibrium processes in the model disper-
sion.

Before we address the non-equilibrium behaviour of the model two-state pro-
tein dispersion, which we introduced in chapter 3, we briefly repeat the properties
of the model and review the most important aspects of the equilibrium behaviour.
The model proteins can reversibly switch between their native and a high-energy
non-native conformation, where the transition to the non-native state involves a free
energy penalty of ε (in units of thermal energy, kBT ) per protein. The model proteins
are presumed to be of equal size and shape and interact through excluded volumes
regardless of their conformation. Proteins in the non-native state can engage in at-
tractive interactions of strength χ (in units kBT ) with other nearby proteins that are
also in the non-native conformation. The state of the model dispersion is specified by
the protein volume fraction, ϕ, and the number fraction of proteins in the non-native
state, η. The equilibrium behaviour of this model exhibits a demarcation between a
regime of weak coupling and a regime of strong coupling between changes in confor-
mation and phase separation, where the coupling becomes strong due to the pres-
ence of an underlying first-order conformational phase transition. We briefly address
the difference between these two regimes in more detail in sections 5.5 and 5.6 and
refer the reader to chapter 3 for a detailed discussion.

The coupling of phase separation to protein conformation has two immediate con-
sequences for the non-equilibrium behaviour. Firstly, the protein self-diffusion time is
no longer the only time scale involved, as non-equilibrium processes are in our case
also dependent on the time scale at which conformational changes in the protein can
occur. Secondly, the non-equilibrium behaviour is no longer exclusively restricted
to the transition between homogeneous and heterogeneous dispersion states, pro-
cesses that only involve changes in the average conformation of the proteins are
also possible in our model dispersion. We investigate such relaxation modes for the
weak-coupling regime in detail in section 5.5 where we show that such processes
can involve temporary phase separation. In section 5.6 we investigate the kinetics
by which phase separation occurs in the strong-coupling regime where the coexisting
phases are separated by an underlying first-order conformational phase transition.

To analyse the non-equilibrium behaviour we introduce in section 5.2 a pair of
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model-C-type kinetic equations for the protein concentration and the protein con-
formation,92 as well as a free energy functional that incorporates both non-local and
local contributions to the free energy. The non-local contribution consists of a square-
gradient term115 while the local free energy is based on a combination of mean-field
arguments and the Carnahan-Starling equation of state.91

In sections 5.3 and 5.4 we perform a linear stability analysis on the kinetic equa-
tions and determine the different eigenmodes by which the relaxation from a non-
equilibrium state initially proceeds. In sections 5.5 and 5.6 we use the linear stability
analysis to investigate the stability and relaxation modes for the weak-coupling and
the strong-coupling regime respectively. In section 5.7 we discuss the results that we
present in this chapter.

5.2 Model
We model the non-equilibrium behaviour of the two-state protein dispersion by pre-
suming model-C-type kinetics.92 The free energy of the dispersion is modeled by
a free energy functional that includes local and non-local contributions. The local
free energy includes a contribution that reflects the properties of the model two-state
proteins, and a Carnahan-Starling based contribution91 to take excluded-volume ef-
fects into account. For the non-local contribution we use a single square-gradient
term115 to penalize gradients in the concentration of non-native proteins. We omit
the square-gradient terms involving proteins in the native state both for simplicity and
because the interfacial stiffness of a Carnahan-Starling hard-sphere fluid is negative
and hence unphysical.116

Introduction of the dimensionless time, τ = Γt, where Γ−1 is a measure for the
time scale at which the conformation of the proteins change, and the dimensionless
distance x⃗ = r⃗/

√
k , where

√
k is a measure of the interfacial “stiffness” between dif-

ferent phases in the dispersion, allows for a reduced non-dimensional representation
of the kinetic equations. Within this representation the kinetic equation for the local
protein volume fraction, ϕ, which is a conserved quantity reads,92

∂τϕ = α∇⃗x ·
(
ϕ∇⃗xµ

)
+ ζ, (5.1)

where α = D/Γk is the ratio of the conformational relaxation time to the protein
self-diffusion time, with D the protein self-diffusion constant, µ = δϕF is the chemi-
cal potential of the proteins in units of thermal energy (kBT ), given by the functional
derivative of the free energy density functional F with respect ϕ. The final term, ζ
is a Gaussian white-noise term with zero mean and covariance ⟨ζ (x⃗, τ) ζ (x⃗ ′, τ ′)⟩ =

2αϕ∇⃗2
xδ (τ − τ ′) δ (x⃗ − x⃗ ′). The time evolution of the local average protein conforma-

tion, η, which is a non-conserved quantity is given by,92

∂τη = −δηF + θ, (5.2)
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where δηF is the functional derivative of the free energy density functional, F , with re-
spect to η and θ is again a Gaussian white-noise term with zero mean and covariance
⟨θ (x⃗, τ)θ (x⃗ ′, τ ′)⟩ = 2δ (τ − τ ′) δ (x⃗ − x⃗ ′).

The dimensionless free energy density functional, in units of thermal energy is
given by

F [ϕ (x⃗, τ) , η (x⃗, τ)] =
∫
dx⃗

(
f + 1

2

(
∇⃗xϕη

)2
)
, (5.3)

where f is the local dimensionless free energy density,

f = ηϕ ln ηϕ + (1 − η)ϕ ln (1 − η)ϕ − ϕ +
ϕ2 (4 − 3ϕ)
(1 − ϕ)2

+ εηϕ − χ
2
(ηϕ)2 , (5.4)

where χ is a measure for the strength of the attractive interactions between proteins
in the non-native state and ε is the free energy difference between the native and
non-native conformation of the protein. Both free energy parameters are in units of
thermal energy.

In summary, in reduced representation the model consists of two order param-
eters, ϕ, which denotes the protein volume fraction and η, the number fraction of
proteins in the non-native state. Solution conditions and protein properties are re-
flected in the value of two free energy parameters, being χ , which is a measure of
the strength of attractive interactions between proteins in the non-native state, and ε,
which denotes the free energy difference between the non-native and native confor-
mation of the protein. The final model parameter, α, is the ratio of the conformational
relaxation time of the protein to the protein self-diffusion time. In the remainder of this
chapter we report on the results of a linear stability analysis for this model, where we
show that a number of anomalous relaxation modes exist.

5.3 Linear stability analysis
To gauge the stability of different compositions of the model dispersion, we perform
a linear stability analysis. From the results of this analysis we determine under which
circumstances the dispersion is thermodynamically unstable and what the initial typ-
ical time and length scales are at which the instabilities grow. The results show that
there are three different relaxation modes, one of which is the usual spinodal de-
composition,115 one of which involves global relaxation of protein conformation and
one of which involves a length-scale free relaxation of both protein concentration
and conformation where the local concentration of proteins in the non-native state is
conserved.

The relaxation modes can be determined by first dropping the Gaussian white
noise terms from eqs. (5.1) and (5.2). After subsequent linearisation in ϕ and η
around the initial values (ϕ0, η0) and Fourier transformation, the resulting set of equa-
tions can be written as a simple matrix equation of which the resulting two eigen-
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modes, m⃗±, and two eigenvalues, λ±, can be determined,

λ± =
A+D

2
±

√
(A−D)2 + 4BC

2
, (5.5)

m⃗± =



A−D
2C ±

√
(A−D)2 + 4BC

2C , 1



 , (5.6)

where A, B, C and D are given by,

A = −αξ2
(
ϕ0fϕϕ + ϕ0η20ξ2

)
, (5.7)

B = −αξ2
(
ϕ0fϕη + ϕ2

0η0ξ2
)
, (5.8)

C = −
(
fϕη + η0ϕ0ξ2

)
, (5.9)

D = −
(
fηη + ϕ2

0ξ2
)
, (5.10)

where ξ is the absolute value of ξ⃗, which is the dimensionless momentum transfer
(wave vector) conjugate to the dimensionless positional degree of freedom, x⃗ and
fij denotes the derivative of the local free energy, eq. (5.4), with respect to i, j and
where i, j are either ϕ or η. The initial response to any fluctuation or perturbation,
(∆ϕ(ξ),∆η(ξ)) of momentum transfer 2πξ−1 can be decomposed into the two eigen-
modes m⃗±(ξ) = (∆ϕ±(ξ),∆η±(ξ)). These eigenmodes grow exponentially over time
if λ± (ξ) > 0 and decay exponentially over time if λ± (ξ) < 0. Note that this result only
holds true for |ξ⃗| , 0 and immediately after occurrence of the fluctuation or application
of the perturbation.

The result of the stability analysis is the following: a dispersion of composition
ϕ0, η0 is stable in regards to any small fluctuation or perturbation if λ±(ξ) ≤ 0 for
all ξ > 0. If λ±(ξ) > 0 for any ξ, the dispersion is thermodynamically unstable.
The typical length scale at which the instability grows is 2πξ−1

max and the difference in
protein concentration and conformation between the domains grows exponentially at
a time scale λ±(ξmax)−1. Here, ξmax denotes the value of ξ for which λ±(ξ) is at a
maximum.

As previously mentioned, this results strictly only holds for ξ , 0. This is so, be-
cause for ξ = 0 the linearised kinetic equation for the protein conformation involves a
term −fηδ (ξ), which renders the associated differential equation inhomogeneous for
ξ = 0 and prehibits one to write the set of kinetic equations as a matrix equation, with
the associated eigenmodes and eigenvalues as given by eqs. (5.5), (5.6) and (5.7).
Only for ξ , 0 and δ (ξ , 0) = 0 this term drops out and the homogeneous kinetic
equations of which we determined the corresponding eigenmodes and eigenvalues
are retrieved.

Let us now consider the case where perturbations and fluctuations are of wave-
length ξ = 0, i.e., those of infinite length scale. For a conserved order parameter
perturbations and fluctuations with ξ = 0 do not grow or decay as they involve trans-
port over an infinite length scale, which is infinitely slow. In agreement with this we
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find that any eigenmode, m⃗±(ξ = 0) = (∆ϕ±(0),∆η±(0)), with ∆ϕ±(0) , 0 has an
eigenvalue λ±(0) ≤ 0. However, an eigenmode (0, 1) can have a non-zero eigen-
value as the mode does not involve mass transport, meaning that global relaxation
of protein conformation can occur.

From the linear stability analysis, and without the presumption ξ , 0, we find that
this mode has the following time evolution,

δη(τ) =
(
δη0 + fη/fηη

)
exp

[
−fηητ

]
− fη/fηη. (5.11)

From this equation, it follows that any dispersion state with fηη < 0 is unstable, result-
ing in a system-wide relaxation of η (ξ = 0). Note, however, that this is the result of
a linear stability analysis. An analysis of the full non-linear kinetic equations should
reveal that any dispersion state, except for those where the free energy is at a mini-
mum with respect to η at the fixed initial concentration, must be unstable with respect
to fluctuations in η. The average protein conformation, η, is a non-conserved quantity
and hence the average protein conformation, η, should always spontaneously relax
to a value corresponding to a (local) minimum in the free energy.

5.4 Eigenmodes
In the previous section we performed a linear stability analysis and determined the
eigenmodes and corresponding eigenvalues by which the model two-state dispersion
initially reacts to small perturbations and fluctuations. There, we briefly mentioned
that a distinction between three different eigenmodes by which instabilities grow can
be made, these modes are: classic spinodal decomposition, a mode that involves the
scale-free relaxation of both protein concentration and conformation while the local
concentration of proteins in the non-native state is conserved and finally a mode that
involves the global relaxation of protein conformation. Here we derive mathematically
under which circumstances, i.e., for which values of the model parameters, these
modes are active. In the next two sections we consider explicitly when these modes
are active as a function of ϕ and η for several different values of χ , ε and α. There, we
shall see that the activity of these modes is restricted to the areas that we previously
identified as being thermodynamically unstable in chapter 3.

The system is unstable for conditions under which there is a positive maximum
eigenvalue of the mobility matrix, λ±(ξ = ξmax). In that case, the instability grows
at a time scale proportional to 2πξmax

−1 and an associated length scale, 2πξmax
−1,

predominates in the initial stages of spinodal decomposition. Interestingly, for the
local free energy as given by eq. (5.4), λ−(ξ) is negative for all values of the model
parameters and the three different relaxation modes are found at different values of
ξ for λ+(ξ). In the following, we discuss under which conditions each of these three
modes is active.

The first of the three modes that we discuss involves the global relaxation of pro-
tein conformation. By substitution of ξ = 0 in eqs. (5.5) and (5.6), we find that for
ξ = 0 and fηη < 0, λ+(ξ = 0) = −fηη is positive. Furthermore we find that the
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corresponding eigenmode is m⃗+ = (0, 1), and hence it involves changes in protein
conformation only and does not involve mass transport. Or, in short if fηη < 0,

λ+(ξ = 0) = −fηη,
m⃗+(ξ = 0) = (0, 1). (5.12)

The value of λ+(ξ = 0) is independent of α, the ratio of the conformational relaxation
time to the protein self-diffusion time. This is indeed what one expects, because
the mode only involves relaxation of protein conformation and the unit of time, τ,
is normalised by the protein conformational relaxation time. The relaxation process
predicted by eq. (5.12) is in agreement with the predictions of eq. (5.11).

An example of the situation where the λ+(ξ = 0) is the dominant mode is shown in
fig. 5.1, where the value of λ+(ξ) is plotted. It shows that λ has a maximum for ξ = 0
and that λ+(ξ) remains positive up to approximately ξ = 2.24. Note, that for ξ > 0
the modes become increasingly slower with decreasing length scale (increasing ξ)
and that these modes are hence not dominant.

Figure 5.1: The eigenvalue λ+ as a function of ξ for ϕ0 = 0.8, η0 = 0.5, χ = 10, ε = 1
and α = 1. It has a maximum of λ+(0) = 3.2 for ξ = 0 where the corresponding
eigenvector is m⃗+ = (0, 1), implying that the average protein conformation relaxes
globally at a time scale proportional to λ+(0)−1.

Next we consider the other extreme, i.e., eigenmodes with a positive maximum
at a vanishingly small length scale, which corresponds to the limit ξ → ∞. Usually,
such modes also yield an eigenvalue of 0, because fluctuations at a vanishingly small
length scale generate infinite gradients which lead to a diverging contribution of the
square-gradient term to the free energy functional of the system, eq. (5.3). Moreover,
fluctuations at very large values of ξ, and hence at very small length scales, become
meaningless when these lengths approach the dimensions of a single protein. Inter-
estingly, the linear stability analysis predicts that under certain circumstances λ+ has
a positive value in the limit ξ → ∞ and that it retains this value over a large range in
ξ, suggesting that relaxation is equally fast at all these length scales.
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As we shall see, such a mode can exist within our model because it does not
lead to a divergence of the non-local contribution to the free energy functional, eq.
(5.3). Furthermore, our theory only implicitly takes the size of the protein into account,
hence the model is blind to the minimum length scale at which any fluctuation can
occur.

An example of the situation where this mode is dominant is shown in fig. 5.2,
where the value of λ+(ξ) is plotted. The existence of this mode can be shown by
taking the limit limξ→∞ λ+(ξ) and limξ→∞ m⃗+(ξ) and applying l’Hôpital’s rule. The
resulting eigenvalue and eigenmode are,

λ+(ξ → ∞) =
(
2ηϕfϕη − ϕ2fϕϕ − η2fηη

)
/η2,

m⃗+(ξ → ∞) = (−ϕ, η)/
√
ϕ2 + η2. (5.13)

Note that the eigenvalue and eigenmode are again independent of α. This is to be
expected because the limit ξ → ∞ corresponds to fluctuations over infinitely small
length scales. At infinitisimal length scales, mass transport occurs instantaneously
and hence the protein self-diffusion time scale is irrelevant. The time scale at which
this mode operates is then the time scale to which we scaled the dimensionless time
τ, i.e., the time scale at which conformational relaxation occurs.

Figure 5.2: The eigenvalue λ+ as a function of ξ for ϕ0 = 0.04, η0 = 0.5, χ = 10, ε = 3
and α = 1. It has a maximum of λ+ = 0.068 for ξ → ∞ where the corresponding
eigenvector is m⃗+ = (−0.079, 0.997). A detailed explanation of the non-equilibrium
behaviour corresponding to this eigenmode is given in the main text.

We mentioned that the non-local square-gradient contribution to the free energy
should prohibit a non-zero value of λ+(∞) because any such mode generates infinite
gradients. The reason as to why we do find a non-zero value of λ+(∞) lies in the
definition of the free energy functional, eq. (5.3), and the eigenmode, eq. (5.13). If
the eigenmode m⃗+ (∞) is plotted as a vector field as a function of ϕ0, η0, i.e., the initial
protein concentration and conformation, then the corresponding field lines are such
that along them, the concentration of proteins in the non-native state is conserved.
Indeed, these field lines are given by ∂η/∂ϕ = −η/ϕ and integration by separation



Anomalous kinetic processes in a model two-state protein dispersion 89

of variables shows that ηϕ is a conserved quantity on these field lines. Hence the
eigenmode is a mode under which the local concentration of proteins in the non-
native state is conserved. As a consequence, this mode does not produce a gradient
in the concentration of proteins in the non-native state and because the free energy
functional, eq. (5.3), only involves a square-gradient term that penalises a gradient
in the concentration of proteins in the non-native state, this mode can occur.

Note that we only include this single square-gradient term in our free energy
functional because the interfacial stiffness of a Carnahan-Starling hard-sphere fluid
is negative and thus unphysical.116 Furthermore, it reduces parameter space and
thereby simplifies the analysis of the model system which already displays highly
non-universal behaviour. Nonetheless, one could easily argue that this mode is an
artifact of our model. While this makes it perhaps less relevant from a practical point
of view, it remains interesting from a theoretical perspective.

The final mode is a spinodal decomposition mode where λ+(ξ) has a well defined
maximum at a finite, non-zero value of ξ = ξmax. Unfortunately, we cannot analytically
determine the position and value of this maximum because finding the roots of the
derivative of λ+(ξ) with respect to ξ involves solving a seventh order polynomial in
ξ, which must be solved by numerical means. However, it is possible to derive an
analytic criterion that must hold for a possible spinodal mode to exist. Indeed, the
second derivative ∂ξξλ+(ξ) must at the least be positive at ξ = 0 to produce a positive
maximum. This holds true when,

ϕ + αf2ϕη/fηη < 0, fηη < 0

fϕϕfηη < f2ϕη, fηη > 0. (5.14)

Because λ+(0) ≥ 0 this indeed guarantees the existence of a positive maximum
value of λ+(ξ) that is necessarily larger than λ+(0). However, when the inequalities
in both eq. (5.13) and eq. (5.14) hold, it is possible that the maximum value of λ+(ξ)
is obtained in the limit of ξ → ∞, see fig. 5.2. Whether this is indeed the case can
be checked by determining the sign of the first derivative, ∂ξλ+(ξ) at some large, but
finite value of ξ. If this derivative is negative then λ+(ξ) has a positive maximum at
some finite value of ξ. A situation where all of this is the case is shown in fig. 5.3.

A few additional remarks are in order. Firstly, we have not determined the values
of ξmax , λ+(ξmax) and m⃗+(ξmax) as a function of the remaining model parameters. In
principle the values of these parameters depends on the value of α, meaning that the
manner in which an instability grows is not only determined by the local free energy
landscape, but is also determined by the different time scales at which changes in ϕ
and η occur. Secondly, the boundary of the region where the second inequality of eq.
(5.14) holds (fηη > 0 and fϕϕfηη < f2ϕη), is given by inflection lines in the free energy
surface. These are given by points where the determinant of the Hessian equals
zero. Note that this inequality holds at all times provided fϕϕ < 0 because fηη > 0 and
f2ϕη ≥ 0. This is not surprising, because fϕϕ < 0 implies that the local free energy is
concave in the ϕ-direction, and this is the classic criterion for spinodal decomposition
to occur in for example a binary mixture.
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Figure 5.3: The eigenvalue λ+ as a function of ξ for ϕ0 = 0.5, η0 = 0.7, χ = 10,
ε = 3 and α = 1. It has a maximum of λ+ = 0.192 for ξmax = 0.176 where the
corresponding eigenvector is m⃗+ = (0.025, 0.999). A detailed explanation of the non-
equilibrium behaviour corresponding to this eigenmode is given in the main text.

Previously we mentioned that λ−(ξ) is negative at all times for the Carnahan-
Starling based local free energy, eq. (5.4). This does not necessarily hold for other
local free energies. So, let us in a more general case consider when λ−(ξ) has
a well defined maximum at a finite non-zero value of ξ. Because λ−(0) ≤ 0 and
λ−(∞) → −∞ a positive maximum can exist when ∂ξξλ−(ξ) is positive for ξ = 0.
This is the case when

fηη < 0 and fϕϕfηη > f2ϕη. (5.15)

if eq. (5.15) holds, λ−(0) = 0 also applies, so a positive maximum must indeed exist
under these conditions. Note that for the inequality in eq. (5.15) to hold, fϕϕ < 0
is a necessary condition. This implies that the local free energy is convex in the
ϕ-direction. This is opposite to the criterion for spinodal decomposition to occur
in a binary mixture, which might explain why this mode is never observed for our
Carnahan-Starling-based model free energy.

In the next sections, sections 5.5 and 5.6, we shall take a more practical approach
and consider the phase behaviour for ε = 1 and ε = 3, which are representative of
the weak-coupling and strong-coupling regime respectively, as introduced in chapter
3. For these values of ε we investigate for which dispersion compositions ϕ0, η0 the
different modes are active.

5.5 Phase and stability behaviour in the weak-coupling
regime

We have established the theoretical framework that is required to analyse the stability
and non-equilibrium behaviour of the model dispersion. In this section, we discuss
the equilibrium phase and stability behaviour, and the expected non-equilibrium be-
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haviour for the situation ε ≤ 2. In section 5.6 we perform a similar analysis for the
situation ε > 2. We discuss the situations for ε ≤ 2 and ε > 2 separately for ε = 2 de-
marcates the regimes of so-called weak coupling and strong coupling between phase
separation and conformational changes. In chapter 3 we addressed the equilibrium
properties of both regimes in detail and speculated on the relevant kinetic regimes,
in this section and in section 5.6 we briefly review these.

We now turn to the phase and stability diagram for ε = 1, which is representative
of the weak-coupling regime and shown in fig. 5.4.

Figure 5.4: The phase and stability diagram for ε = 1 (the free energy difference
between the native and non-native state of the protein, in units of kBT ) for the dimen-
sionless local free energy density as given by eq. (5.4). The binodal is shown by
the solid line and coexisting states are joint by horizontal tie lines at constant value
of χ (the strength of attractive interactions between proteins in the non-native state,
in units of kBT ), while the dashed line depicts the “equilibrium” spinodal. In the main
text we discuss this concept in more detail.

The phase diagram as shown in fig. 5.4 superficially appears to be conventional.
It should however be noted that this diagram is a projection onto the ϕ-χ plane, that
is, the average protein conformation, η, of the coexisting phases is not shown. Sec-
ondly, it should be noted that we defined an “equilibrium” spinodal that is slightly
different from the conventional spinodal. This somewhat unconventional definition
is a consequence of the coupling of protein concentration and conformation in the
model system. We can investigate both of these aspects by considering the phase
and stability behaviour as a function of ϕ and η for fixed value of χ and ε. For ε = 1
we do so for χ = 10, fig. 5.5a, and for χ = 25, fig. 5.5b.

A detailed explanation of the graphs in fig. 5.5 can be found in the caption of the
figure. As previously mentioned, fig. 5.5 provides additional insight into the nature
of the coexisting phases and “equilibrium” spinodal points as shown in the phase
diagram for ε = 1, fig. 5.4. The phase diagram, fig. 5.4, indicates that χ = 10 lies
below the critical point and in accordance with this, the graph in fig. 5.5a contains no
binodal or “equilibrium” spinodal points. For χ = 25 we are above the critical point and
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Figure 5.5: Summary of the equilibrium and stability behaviour of the model protein
dispersion as a function of protein volume fraction, ϕ, and average protein conforma-
tion, η, for a free energy difference between the native and non-native state of ε = 1
kBT and we set α = 0.05 meaning that the self-diffusion time of the proteins is 20
times larger than their conformational relaxation time. In both figures the solid red
line indicates the concentration-dependent equilibrium fraction of proteins in the non-
native state. In the coloured regions the dispersion is thermodynamically unstable, in
the region shaded in purple the λ+ (0) mode is the dominant mode, while in the region
shaded in orange the λ+ (ξmax) spinodal mode is dominant. a) Results for attractive
interactions between proteins in the non-native state of strength χ = 10 kBT , and b)
for attractive interactions between proteins in the non-native state of strength χ = 25
kBT . In this figure the coexisting phases are indicated by blue dots while the green
points indicate the “equilibrium” spinodal dots.

in fig. 5.5b the coexisting phases are indicated by blue dots while the “equilibrium”
spinodal points are indicated by green dots. The binodal points indicate that a phase
with slightly more than half of the proteins in the native state coexists with a denser
phase with almost all proteins in the non-native state. It turns out that for the model
local free energy as given by eq. (5.4) coexistence is always between a relatively
dilute phase of proteins mostly in the native state and a denser phase of proteins
mostly in their non-native state. The definition of the “equilibrium” spinodal points is
clarified by the same figure: the “equilibrium” spinodal points bound the concentration
regime where the dispersion is thermodynamically unstable if η ≡ ηeq, where ηeq is
the equilibrium fraction of proteins in the non-native state at the given concentration,
which is indicated by the red line in the graphs in fig. 5.5.

The regions where the eigenmodes are active are shaded. In the region shaded in
purple the λ+ (0) mode is dominant and in the region shaded in orange the λ+ (ξmax)
spinodal mode is dominant. With increasing value of α the size of the region where
the λ+ (0) mode is dominant decreases. This follows from eq. (5.14) (fηη < 0) and can
be understood because for small α the rate of a process that involves both protein
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diffusion and conformational changes, i.e., the λ+ (ξmax) mode, is limited by protein
self-diffusion and hence slower than a process that only involves changes in protein
conformation, i.e., the λ+ (0) mode.

Indicated in fig. 5.5 are three non-equilibrium states for which relaxation to equi-
librium occurs by different kinetic mechanisms. For the weak-coupling regime we
restrict our kinetic analysis to this and we shall address the kinetics by which phase
separation occurs in the next section. There we address the strong-coupling regime,
for which we expect the kinetics of phase separation to be more interesting due to the
underlying first-order conformational phase transition. Let us now briefly discuss the
expected non-equilibrium behaviour that should be observed during relaxation from
the three different non-equilibrium states shown in fig 5.5.

For non-equilibrium state I, ϕ0 = 0.15, η0 = 0.75, we find from the linear stability
analysis that none of the modes discussed in the previous section are active and that
the protein conformation should relax across the system toward equilibrium according
to eq. (5.11). For this non-equilibrium state we find fη = 0.146 and fηη = 0.575, and
eq. (5.11) indicates that while fluctuations in η do not grow over time. However, the
initial value η0 = 0.75 is not stable because for τ → ∞ we find δη (τ) = −fη/fηη , 0.
While this limiting solution does not result in relaxation to the equilibrium value of η,
we do expect that η, should spontaneously relax towards a value corresponding to a
(local) minimum in the free energy. The reason is that it is a non-conserved quantity
and nothing prevents this from happening. In this case, non-linear effects that are
not included in eq. (5.11) must clearly be included to determine the kinetics by which
full relaxation to equilibrium occurs.

The expected behaviour for state II,ϕ0 = 0.6, η0 = 0.45, is different. Here the spin-
odal mode is the dominant relaxation mode, eq. (5.14), and λ+ (ξmax = 0.18) = 1.178
while m⃗+ = (0.003, 0.999), see fig. 5.3 for an example of the corresponding depen-
dence of λ+ on ξ for the spinodal mode. This suggests that initially the dispersion
phase separates into domains of a typical size 2π/ξ−1

max in which small differences in
protein concentration and conformation are established. The results of the stability
analysis suggest that this process should continue until the fraction of proteins in the
non-native state, η, in both phases is such that these dispersion state are no longer
located in the region that is shaded orange in fig. 5.5. From this point onward, the
fraction of proteins in the non-native state should increase according to the full non-
linear kinetic equation. Interestingly, the stability analysis suggests that at this point
there is no driving force that leads to the spontaneous disappearance of the phase
separated domains formed in the previous stage of the relaxation process because
fluctuations are suppressed (λ± < 0). This suggests that the homogeneous equilib-
rium phase is either reached by a process described by effects captured only in the
full non-linear kinetic equations, possibly related to the presence of an interface be-
tween the two phases, or by the gradual brake down of these domains by fluctuations
near the interface.

The mechanism by which relaxation from state III, ϕ0 = 0.9, η0 = 0.05 occurs,
should be a combination of the behaviour observed for state I and II. Initially relaxation
of the average protein conformation, η, towards equilibrium must occur according to
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eq. (5.11) because λ± < 0 and subsequently by effects only included in the full non-
linear kinetic equations. This continues until η has a value where the region shaded
in orange in fig. 5.5a is briefly entered. Here λ+ (ξ) has a positive value for non-
zero values of ξ, suggesting that the dispersion should phase separate in a manner
similar to the one as discussed for the expected non-equilibrium behaviour from state
II in the above. It should be noted that the actual difference between the regions
shaded in orange and purple is in this case small. The difference is the position of
the maximum in λ+ (ξ) which is at ξ = 0 for the region shaded in purple while it
is at a non-zero value of ξ for the region shaded in orange. For example, for non-
equilibrium state II, λ+ (ξmax = 0.18) = 1.178 and m⃗+ (ξmax = 0.18) = (0.003, 0.999)
while λ+ (ξ = 0) = 1.176 and m⃗+ (ξ = 0) = (0, 1) implying that both eigenmodes are
almost identical and equally fast.

Non-equilibrium states that should display qualitatively identical relaxation mech-
anisms as the three mechanisms discussed in the above can also be found in the
phase and stability diagram in fig. 5.5b. In addition to these modes, there are non-
equilibrium states that relax towards a heterogeneous, phase-separated equilibrium
state. We postpone a discussion of the kinetics by which phase separation occurs
to the next section, where phase separation is coupled to an underlying first-order
conformational phase transition.

5.6 Phase and stability behaviour in the strong-coupling
regime

Having considered a number of different aspects of the non-equilibrium behaviour in
the weak-coupling regime, we now turn to the strong-coupling regime. In fig. 5.6 the
phase diagram for ε = 3, which is representative of the strong-coupling regime, is
shown. As before, the solid line indicates the binodal and the dashed line indicates
the “equilibrium” spinodal. Further details can be found in chapter 3 where this phase
diagram is discussed in detail.

Here, we specifically focus on the results of the linear stability analysis for ε = 3
and χ = 6, see fig. 5.7a, and ε = 3 and χ = 10, see fig. 5.7b. This allows us to
investigate two important features of the phase diagram in fig. 5.6. Firstly, it allows
us to investigate the nature of the “critical point” at χ = 6 and ϕ = 1 where the two
binodals appear to meet. Secondly, it allows us to clarify the non-standard definition
of the “equilibrium” spinodal lines. From fig. 5.7a, it is clear that the binodals do in
fact not meet in a single point at ϕ = 1 for χ = 6 because the two coexisting phases,
indicated by blue dots, differ in the fraction of proteins that are in the non-native state.
As discussed in chapter 3 this corresponds to an Ising-like demixing of the confor-
mations at fixed concentration ϕ = 1. From figs. 5.7a and 5.7b, the nature of the
spinodals also becomes clear, for they relate to the stability of the dispersion states
on either the lower or upper part of the ηeq curve where the free energy is at a (local)
minimum with respect to η, these are the curves indicated by the solid red line, which
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Figure 5.6: The phase and stability diagram for a free energy difference between the
native and non-native state of the protein of ε = 3 kBT . See fig. 5.4 for further details.
For ϕ = 1 an Ising-like conformational demixing is predicted, see chapter 3, fig. 3.8b.

are separated by the dashed red line that demarcates a local maximum in the free
energy. Both of these features are a consequence of the first-order conformational
phase transition that underlies the phase separation of the dispersion. Just as in the
previous section, we have indicated a number of non-equilibrium dispersion states
for which we expect interesting kinetic processes during the relaxation towards equi-
librium in fig. 5.7. In the following we discuss the expected behaviour for each of
these states.

Non-equilibrium state IV, with ϕ0 = 0.04 and η0 = 0.50, is located in the region
shaded in light blue. Here the λ+ (∞) = 0.08 mode is dominant and m⃗+ (∞) =
(−0.08, 0.99), see eq. (5.13) and fig. 5.2, suggesting that initially the local protein
conformation changes the most while smaller differences in protein concentration are
also established. While λ+ (0) = 0, the eigenvalue quickly increases up to λ+ = 0.079
at ξ = 10, indicating that the initial stage of phase separation is approximately equally
fast at all length scales larger than ξ−1 = 1/10. The corresponding pattern of phase
separating domains should be fractal in nature, where the scale invariance breaks
down at length scales above 2πξ−1 = 1/10 and below the size of a single protein.
Note that the final equilibrium state is a homogeneous phase with ηeq = 0.045. After
the initial stages of phase separation as described in the above, relaxation should
continue towards the equilibrium state in the same manner as described for non-
equilibrium state II in the previous section, see also fig. 5.5a.

Non-equilibrium states V, with ϕ0 = 0.96 and η0 = 0.82, and VI, with ϕ0 = 0.96
and η0 = 0.74, are of interest because these dispersion states should initially relax
towards the homogeneous meta-stable dispersion state at η = 0.90, away from the
local maximum, because this is the direction in which the free energy of the disper-
sion decreases, see fig. 5.7a. For state V the kinetics by which this occurs should
be similar to the kinetics by which relaxation occurs from state I as discussed in the
previous section, see fig. 5.5a, while for state VI the kinetics should be similar to the
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Figure 5.7: Summary of the equilibrium and stability behaviour of the model protein
dispersion as a function of protein volume fraction, ϕ, and average protein confor-
mation, η, for a free energy difference between the native and non-native state of
ε = 3 kBT . We set α = 0.05 meaning that the self-diffusion time of the proteins is
20 times larger than their conformational relaxation time. In both figures the solid
red line indicates a (local) minimum in the free energy at fixed concentration while
the dashed red line indicates a maximum. Coexisting phases are indicated by blue
dots while the green dots indicate the “equilibrium” spinodal points. In the coloured
regions the dispersion is thermodynamically unstable, in the region shaded in purple
the λ+ (0) mode is the dominant mode, in the region shaded in light blue the λ+ (∞)
mode is dominant, while in the region shaded in orange the λ+ (ξmax) spinodal mode
is dominant. a) Results for attractive interactions between proteins in the non-native
state of strength χ = 6 kBT and b) for attractive interactions of strength χ = 10 kBT .

relaxation kinetics as described for state II, see fig. 5.5a. After having reached the
meta-stable dispersion state at η = 0.90, of which the free energy is 0.96 kBT larger
than the actual equilibrium state at η = 0.07, the final relaxation to the homogeneous
equilibrium state should occur by an activated process because the free energy bar-
rier of 0.47 kBT at η = 0.57 must be crossed to reach this phase.

Non-equilbrium states VII, with ϕ0 = 1 and η0 = 0.65, and VIII, with ϕ0 = 1 and
η0 = 0.15 are of interest because for ϕ = 1, χ = 6 and ε = 3 there is an Ising-
like coexistence between a phase of proteins mostly in their native state, η = 0.07,
and a phase with most proteins in their non-native state, η = 0.93, as indicated by
the blue binodal points in fig. 5.7a. The coexisting phases have equal free energy
and are separated by a free energy barrier of 0.12 kBT at η = 0.5 relative to the
two coexisting phases. Hence, thermal fluctuations are sufficient to allow access to
both coexisting phases. However, while both coexisting phases are easily reached
by thermal fluctuations, it is questionable whether this small free energy barrier is
sufficient to allow for the observation of conformational phase separation at fixed
concentration ϕ = 1 because neither of these phases are very stable with respect to
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thermal fluctuations. Finally, we note that state VII and VIII differ in stability and in the
direction of the initial relaxation process, which for state VII is towards the coexisting
phase with η = 0.93 and for state VIII towards η = 0.07. Hence, the maximum in the
free energy, as indicated by the dashed red line in fig. 5.7a separates regions where
the number of proteins in the non-native state initially increase and decrease.

The final three non-equilibrium states, IX, with ϕ0 = 0.6 and η0 = 0.3, X, with
ϕ0 = 0.6 and η0 = 0.70, and XI, with ϕ0 = 0.6 and η0 = 0.85, are all at a con-
centration intermediate to the two coexisting phases with (ϕ = 595, η = 0.070) and
(ϕ = 0.605, η = 0.934), which are indicated by blue points in fig. 5.7b. Hence, the
equilibrium phase of all three phases is an identically phase separated state because
the protein concentration in states IX-XI is equal. However, the kinetics by which
phase separation occurs should be different for the three states. Non-equilibrium
states IX and X are both thermodynamically unstable and phase separation should
initially proceed by spinodal decomposition, for state IX the λ+ (0) is the dominant
mode while for state X the λ+ (ξmax) mode is dominant. In sections 5.4 and 5.5 we
discussed these modes in some detail.

For state IX relaxation is initially towards the local minimum in the free energy
at η = 0.07 while for X it is towards the local minimum at η = 0.91, which is in both
cases “away” from the second coexisting phase. The question is now by which kinetic
mechanism the fully phase separated state is reached. Without numerical evaluation
of the full non-linear kinetic equations, this is not easy to answer. However, we can
consider three different plausible mechanisms:

1) It is possible that states IX and X initially relax towards a homogeneous meta-
stable state with an average protein conformation, η = ηeq, much like the relaxation
of state II as discussed in the previous section. If this indeed happens the final phase
separation must be a nucleated processes just like phase separation from state XI
must be a nucleated process, where the nucleation step involves both changes in the
local protein concentration and conformation.

2) If during the initial stages of spinodal composition one of the phases gets suffi-
ciently close to the local maximum, which separates the final two coexisting phases
(indicated by the dashed red line), it is possible that thermal fluctuations “push” some
of the phase separating domains of over this barrier. This would allow this domain to
relax towards the second coexisting phase, which could subsequently grow until the
system is fully phase separated. This last step is essentially a nucleation step that
must occur during the spontaneous spinodal decomposition of the dispersion.

3) If one of the phases that is formed during the initial spinodal decomposition
reaches either of the points where the dashed and solid red line meet (the green
spinodal points are on top of these points in fig. 5.7b), then at this point there is
no longer a free energy barrier preventing this phase from relaxing to the second
coexisting phase and the system should spontaneously fully phase separate.

Presumably, which and if phase separation occurs by any of these 3 mechanisms
depends strongly on the parameter α, which sets the difference in the time scale at
which differences in protein concentration and conformation are established. How-
ever, numerical evaluation of the full kinetic equations are clearly needed to under-
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stand in which manner phase separation occurs when the coexisting phases are
separated by a first-order conformational phase transition.

5.7 Discussion
We have studied the kinetics by which relaxation to equilibrium occurs in a model
two-state protein dispersion. In our model dispersion, proteins can switch between
a native and a high-energy non-native state, which can be stabilised by attractive
interactions with other proteins that are also in the non-native state. Because a kinetic
process typically involve both changes in protein concentration and conformation,
both the time scale at which changes in protein concenctration, i.e., the protein self-
diffusion time and the time scale at which the conformation of a protein changes are
important in determining the actual kinetics by which these processes occur.

Our analysis is based on linear stability analysis of a set of model-C kinetic equa-
tions92 that we applied to a free energy functional that includes a non-local square
gradient term115 that penalises gradients in the concentration of proteins in the non-
native state. Furthermore, the free energy functional includes a local free energy
based on a model two-state protein and the Carnahan-Starling equation of state for
a hard-sphere fluid.91 The phase behaviour of this free energy is discussed in detail
in chapter 3.

The analysis shows that the kinetics by which non-equilibrium states relax towards
a thermodynamic equilibrium phase is highly non-universal and strongly dependent
on the protein concentration, the protein conformation, as well as the other three
model parameters. Moreover, the kinetics by which equilibrium states are reached
can differ significantly and widely between different non-equilibrium states. Nonethe-
less, there are a number of common factors underlying the different kinetic processes
that can occur in the model dispersion.

Firstly, in any state that is thermodynamically unstable, the instability grows initially
by any of three different relaxation modes, which we obtained from a linear stability
analysis. These three modes are, 1) the global relaxation of protein conformation,
2) a spinodal mode where phase separation involving changes in both concentration
and conformation occurs at a well defined length scale and 3) a scale-free relax-
ation of both protein concentration and conformation in a manner in which the local
concentration of proteins in the non-native state is conserved.

Presumably this last mode is an artifact of our model because the free energy
functional, eq. (5.3), only incorporates a square-gradient term penalising the forma-
tion of gradients in the concentration of proteins in the non-native state. The spinodal
mode where phase separation initially occurs at a distinct length scale is by and
large conventional. In an experiment this mode would be indistinguishable from a
standard spinodal decomposition process that does not involve changes in protein
conformation, unless one actually “measures” the conformation of the proteins in the
dispersion. Finally the mode, which involves the global relaxation of proteins is ex-
perimentally observed when proteins reversible denature and renature.117
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There are a number of other common features between the different kinetic pro-
cesses. Because the average conformation of the proteins, η, is a non-conserved
quantity, it at all times spontaneously relaxes towards a value η ≡ ηeq such that
the free energy is at a (local) minimum. As we have seen, this can involve tempo-
rary phase separation in the system. Furthermore, in the strong-coupling regime the
presence of two minima in the free energy separated by a maximum at fixed concen-
tration causes non-equilibrium states with values of η above and below this maximum
to initially relax towards different dispersion states. Finally, all of the kinetic processes
(or parts of it) typically still resemble either spinodal decomposition or nucleation and
growth, even if these processes also involve changes in the conformation of the pro-
teins.

Perhaps most interesting is the kinetics by which phase separation occurs in our
model dispersion in the strong-coupling regime. Here, the underlying first-order con-
formational phase transition greatly complicates the kinetic process by which phase
separation occurs. While we speculate on a number of kinetic processes by which the
system fully phase separates, a real understanding of these processes must involve
numerical evaluation of the full non-linear kinetic equations in which thermal fluctua-
tions are taken into account because the underlying first-order conformational phase
transition can impose a nucleation step even if phase separation initially proceeds by
spinodal decomposition.

In summary, phase separation and relaxation processes in our model two-state
protein dispersion, in which the proteins can reversibly switch between different con-
formations, are highly non-universal even if these processes strongly resemble clas-
sical spinodal decomposition or nucleation and growth.
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Chapter 6
Scission mechanics of carbon
nanotubes by analytic theory

Summary

In this chapter we present a theoretical study of the mechanics of carbon nanotube

scission under sonicaton, based on the accepted view that it is caused by strong

gradients in the fluid velocity near a transiently collapsing bubble. We calculate the

length-dependent scission rate by taking the actual movement of the nanotube dur-

ing the collapse of a bubble into account, allowing for the prediction of the temporal

evolution of the length distribution of the nanotubes. We show that the dependence

of the scission rate on the sonication settings and the nanotube properties results

in non-universal, experiment-dependent scission kinetics potentially explaining the

variety in experimentally observed scission kinetics.

The contents of this chapter has been published as:
J. Stegen, J. Chem. Phys. 140, 244908 (2014).
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6.1 Introduction
Carbon nanotube-based polymer composites8,27,28 are promising new materials in
which carbon nanotubes are, for example, used to create transparent conductive
layers.9,10 Dispersions of exfoliated nanotubes are required for the production of
these so-called latex based nanotube composites.8 Such dispersions can be ob-
tained by means of sonication,39,118–123 however, sonication also induces scission
of nanotubes. Scission is unwanted because the quality of nanotube composites
strongly depends on nanotube length.124 Hence, the subject of nanotube scission
under sonication has received some attention in literature.38,125–134 There has how-
ever been little theoretical work on the scission mechanics of carbon nanotubes under
sonication.126,127,130,133,134 In fact, no attempt to describe exfoliation and scission si-
multaneously has been made. Such a description is highly relevant for it would, in
principle, allow for the determination of optimal sonication settings. Pertinent ques-
tions that arise in this context include: How can a maximum degree of exfoliation and
a minimum of nanotube scission under sonication be achieved? How can sonica-
tion be used to control the length distribution of a nanotube dispersion? This chapter
provides a first step towards answering these questions.

During sonication an acoustic field is applied to a liquid and the resulting interac-
tion between small bubbles in it and the acoustic field is known as acoustic cavita-
tion.40–42,135–138 In the process of acoustic cavitation, oscillations of the acoustic pres-
sure cause the growth of microbubbles due to rectified diffusion.42 These become
unstable above a critical bubble radius.136,138,139 The instability leads to the explosive
growth of the bubble up to some maximum radius139 and ends in the violent transient
collapse of the bubble.40 The violent nature of transient cavitation has been used to
cut a wide variety of macromolecules, including carbon nanotubes. Much attention
has been devoted to the disentanglement and scission of polymers.140,141 The degra-
dation of DNA142 and the fragmentation of other fiber-like structures such as protein
fibrils143 has been studied. All of these macromolecules have a high aspect-ratio,
which makes them sensitive to the strong gradients in fluid velocity that accompany
the transient collapse of a bubble. The exact scission mechanism will however de-
pend on the atomic structure of the macromolecule. Relevant in this regard is the work
by Yu et al. who have studied the mechanics of scission under tension for single and
multi-wall carbon nanotubes as well as that of single-wall nanotube ropes.34,144 They
observed that scission occurs in the outer tubes as, in their experiments, forces are
primarily exerted on these tubes. We expect that similar scission mechanisms are
at play during sonication. Here too, forces are primarily exerted on the outer tubes
by the fluid flow, potentially leading to layer-by-layer scission of multi-wall nanotubes
and to exfoliation of nanotube bundles.

The mechanics of nanotube scission under sonication is determined by the in-
teraction between the flow set up in the fluid following the transient collapse of a
bubble and a nanotube. Following the model for polymer scission under sonication,
as proposed by Kuijpers et al.,140 Hennrich et al. attributed the scission of carbon
nanotubes to the high strain rate of the fluid flow resulting from the transient collapse
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of the bubble. Strong viscous drag forces exerted by the fluid on the nanotube, which
they presume to be radially aligned in the flow field, are responsible for scission of the
nanotube in their model. In particular, they demonstrated that the total drag force ex-
erted by the fluid on the nanotube is proportional to the square of the nanotube length,
and realised that this implies a terminal nanotube length below which scission can no
longer occur.126 This idea was reformulated by Ahir et al. in a simple model that gives
a mathematical expression for the minimum nanotube length that can be reached by
sonication for a given maximum strain rate experienced by the nanotube.127 Lucas
et al. realised that the scission rate of nanotubes should be length-dependent and
is related to the probability that a nanotube is close to a cavitating bubble. Because
a longer nanotube sweeps out a larger volume it is more likely to be close to a cav-
itating bubble and should thus break more easily. Their experimental results show
a power law dependence of the average nanotube length on the amount of supplied
acoustic energy.130 A power law decay of the average length has been reported
by other groups as well, albeit that the reported value of the exponent seems to be
non-universal.122,126,130,132 A very similar result was obtained for the exfoliation of
nanotube bundles under sonication,122,123 indeed suggesting that perhaps the same
mechanism is responsible for scission and exfoliation.

Although the mechanism by which scission is thought to occur, that is, under
tension, is well established, there has been some discussion on the role of buckling-
mediated scission of nanotubes. Simulations by Chew et al. suggest that nanotubes
enter the bubble during explosive growth and are expelled from the bubble due to
their inertia in the final stages of collapse. After expulsion from the bubble into the
liquid, the tangentially oriented nanotubes buckle and break due to overbending.133

Pagani et al. argue that the mechanism proposed by Chew et al. is relevant only to
a tiny fraction of carbon nanotubes for most nanotubes never get sufficiently close to
the bubble to be absorbed into it.134 Their simulations show that the scission mech-
anism is length-dependent, long nanotubes are expected to buckle and break while
short nanotubes orient radially and break under tension, where the crossover-length
between the two mechanisms is determined by the bending stiffness of the nanotube.
Furthermore, they realised that there is a critical distance between bubble and nan-
otube at the start of bubble collapse beyond which no scission occurs: beyond this
critical distance the fluid strain rate around the nanotube does not become sufficiently
high. Finally, and importantly, Pagani et al. show that the two proposed mechanisms
lead to different exponents for the power law describing the average nanotube length
as a function of time, thus potentially explaining the non-uniformity of experimental
results.134

Here we expand on earlier work126,127,130,133,134 and primarily investigate the me-
chanics of nanotube scission under tension in detail, by taking nanotube motion dur-
ing bubble collapse explicitly into account. In doing so, we find that the kinetics of
scission under tension are non-universal, potentially providing an alternative to the
mechanism proposed by Pagani et al.134 as responsible for the variety in experi-
mentally determined scission kinetics that are reported in literature. In our model, we
approximate a carbon nanotube as a rigid, inexstensible rod. We characterise the
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process of transient cavitation by two length scales, being the typical bubble radius
before and after explosive growth. We model the collapse of a bubble using the empty
cavity approximation,145 because, unlike the Rayleigh-Plesset equation40 it gives a
universal analytical relation between the bubble radius and the velocity of the bubble
wall, which allows for the derivation of a universal equation giving the stress exerted
on a nanotube by the fluid as a function of bubble radius. Furthermore, we make plau-
sible that it is a reasonable approximation for the mathematically more complicated
but more realistic Rayleigh-Plesset equation.40 To describe the interaction between
the fluid and the nanotube we invoke first-order slender-body theory,146,147 and by
assuming Stokesian dynamics, we derive the equations of motion for the temporal
evolution of the translation and rotation of the nanotube. Using these equations of
motion we investigate the scission mechanics for radially aligned nanotubes by taking
the actual motion of nanotubes during bubble collapse explicitly into account.

By taking nanotube motion into account, we derive a length-dependent scission
rate that is determined by the critical initial distance between nanotube and bubble
below which scission occurs. We find that the scission rate depends on nanotube
properties, such as their length and tensile strength, as well as on the sonication
conditions. For nanotubes significantly longer than the terminal length, the scission
rate scales with L2, in agreement with earlier work.126,134 However, when approach-
ing the terminal nanotube length, deviations from this scaling law arise. This gives
rise to non-universal scission kinetics, where the mean nanotube length scales as
t−α with α ≤ 0.5 a non-universal exponent. This is in agreement with experimental
results where exponents varying between 0.22 and 0.5 have been reported,126,130 but
contrasts with earlier work where scission of radially aligned nanotubes under ten-
sion was thought to result in universal scission kinetics.126,127,129,130 We furthermore
find that the minimum scission length, the nanotube length below which no scission
can occur, scales as σ1/1.16

T when nanotube motion is taken into account instead of
the previously predicted σ1/2

T ,126,127,129,130 where σT is the tensile strength of the nan-
otube. The terminal length, the shortest nanotube segments that can be produced by
sonication, follows an identical scaling relation with tensile strength for it is equal to
approximately half the minimum scission length. Finally, we briefly discuss the impli-
cations of our model for the competition between scission under tension and buckling
mediated scission as proposed by Pagani et al.134 and we make plausible that the
mechanism responsible for scission can provide an explanation for the exfoliation of
carbon nanotube bundles.

The remainder of this chapter is organised as follows, in section 6.2 we discuss
the model that we invoke to describe a bubble undergoing transient cavitation. In
section 6.3 we present our description of a nanotube and the interaction it has with
a cavitating bubble. In section 6.4 we combine the models of section 6.2 and 6.3 to
determine the motion of and the forces exerted on a radially oriented nanotube during
bubble collapse. Subsequently, in section 6.5 we investigate the implications of the
results from section 6.4 for scission kinetics. The chapter concludes with a discussion
in section 6.6, where we propose a scission-mediated exfoliation mechanism.
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6.2 Bubble dynamics
Any attempt to describe the mechanics of carbon nanotube scission under sonica-
tion requires three key ingredients: 1) a model describing fluid motion during transient
cavitation, 2) a model for a carbon nanotube and 3) a model for the interaction be-
tween the nanotube and the fluid. In this section we discuss the first ingredient and
give a brief and simple overview of the process of transient cavitation. We discuss
relevant length scales and show how the assumption of incompressibility in com-
bination with Rayleigh’s model for the collapse of an empty cavity145 provides a full
description of the fluid flow following the transient collapse of a bubble. It is explained
why we use the empty cavity approximation rather than the more accurate and more
frequently used Rayleigh-Plesset equation.40 We shall be using the results of this
section in section 6.4, where we study the mechanics of scission under tension for
radially aligned nanotubes. Before that, in section 6.3, we discuss our model of a
nanotube and the interaction between a nanotube and a fluid flow.

During sonication an acoustic field is applied to a liquid, causing oscillations in
the size of small bubbles present within the liquid. This is known as stable cavita-
tion.40,135 Due to rectified diffusion,42 i.e., the net diffusion of dissolved gas into an
oscillating bubble, these small bubbles slowly grow over many pressure cycles up to
a critical radius, the so-called Blake threshold, for a discussion of which we refer to
the literature.136,138,139 This threshold is determined by the amplitude of the applied
acoustic field and the surface tension of the bubble surface. It separates stable and
transient cavitation, the latter being initiated when the surface tension can no longer
contain the growth of the bubble during the negative pressure peak or the rarefaction
phase of the applied acoustic field. The bubble then undergoes explosive growth
and, assuming it grows sufficiently much, it undergoes transient collapse during the
next positive pressure peak of the acoustic field.139 The maximum bubble radius is
reached when growth eventually slows down as the rarefaction phase ends and the
acoustic pressure becomes positive.139 Collapse of the bubble is now initiated by the
still increasing acoustic pressure.40 A schematic overview of the various stages of a
bubble in an acoustic field is shown in fig. 6.1. The bubble sizes as shown for the
various stages are not drawn to scale.

To model transient cavitation, we consider a single spherical bubble within an
incompressible liquid medium. To the liquid, a harmonic acoustic field, p (t), with
frequency ω and amplitude pa is applied,

p (t) = −pa sinωt, (6.1)

where pa =
√
2Pacρc/Ason is the acoustic pressure amplitude with ρ the mass den-

sity and c the speed of sound in the liquid, while Pac is the power of the applied acous-
tic field and Ason is a typical surface area through which the acoustic field passes. We
approximate Ason by the surface area of the sonicator horn, which should be seen as
a lower estimate for Ason. Using typical sonication conditions,1 that is, a power of 40

1We define a typical sonication experiment as sonication at 40 W and a frequency of 20 kHz where the
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Figure 6.1: Overview of bubble dynamics, a) For bubbles with a radius R(t) smaller
than the Blake threshold, RB, small amplitude oscillations in bubble radius, indicated
schematically by double-pointed arrows, are induced by the acoustic field. The bub-
ble slowly grows over many pressure cycles through rectified diffusion.42 b) The
bubble radius exceeds the Blake threshold and grows explosively so long as the
pressure within the fluid is smaller than that in the bubble, ∆p < 0. At the end of
explosive growth the bubble has a maximum radius, Rmax , given by eq. (6.3). c) The
pressure difference between fluid and bubble becomes positive, ∆p > 0, and the
bubble collapses violently as described by eqs. (6.4) and (6.5). Note that the bubble
sizes shown for the various stages are not to scale.

W, a frequency of 20 kHz and a sonicator horn of 15 mm diameter, we find a typical
acoustic pressure amplitude of pa = 8.2 ·105 Pa for sonication in water under ambient
conditions.

We can now turn to the following question: How does the size of a bubble prior
to undergoing explosive growth compare to the mean size of a nanotube for a typical
sonication experiment? We find by calculation of the Blake threshold,136,138,139 that
bubbles with a radius larger than 0.1 µm grow explosively while at higher sonication
power this radius is even smaller. Hence, in most practical situations the length of a
nanotube, which we assume to be of the order of a micron, exceeds the radius of a
bubble undergoing stable cavitation by at least a factor 5.

This leads us to the following question: how large is a bubble after it has reached
the Blake threshold and undergone explosive growth? To answer this question, it
seems reasonable to presume that growth of the bubble occurs when the pressure
in the surrounding liquid is lowered by the applied acoustic field to a value below
the pressure within the bubble. If we follow Apfel,139 then the average bubble-wall
velocity during this period must be vg =

√
4 (pa − p0) /9ρ, where 2 (pa − p0) /3 is the

average pressure difference between the interior of the bubble and the surrounding
liquid during this period and p0 is the ambient pressure in the liquid in the absence

sonicator horn has a diameter of 15 mm. Sonication takes place in water under ambient conditions. In the
typical sonication experiment single wall nanotubes with a tensile strength of 30 GPa, a diameter of 1.3
nm and a wall thickness of 0.3 nm are sonicated.
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of an applied acoustic field. This average velocity follows from Rayleigh’s model for
the collapse of an empty cavity which we will discuss shortly.145 If we multiply this
average velocity with the time that the interior bubble pressure, which we assume to
be zero, exceeds the pressure in the surrounding liquid, that is, the time for which
p (t) + p0 < 0 where p (t) is given by eq. (6.1), we obtain a first approximation for
the maximum bubble radius. The time for which p (t)+p0 < 0 holds is approximately
equal to tg = 2

√
2 (1 − p0/pa)/ω.139 If we multiply this period of time with the average

velocity of the bubble wall during this period, we obtain a first approximation for the
maximum bubble radius,

R1 =
4

3ω (pa − p0)

√
2

paρ
. (6.2)

Note that we neglected the radius the bubble has prior to undergoing explosive growth
and assume R1 to be equal to the amount by which the bubble radius increases.
This is reasonable because the bubble radius typically grows by several orders of
magnitude during explosive growth.

This approximation may be improved upon by taking into account that the bub-
ble remains to grow even after the pressure in the surrounding liquid exceeds the
pressure in the bubble. In this period the accumulated kinetic energy of the fluid flow
is dissipated as pressure-volume work. By accounting for this Apfel obtained the
following equation for the maximum bubble radius after explosive growth,139

Rmax =
4

3ω (pa − p0)

√
2

paρ

[
1 +

2 (pa − p0)
3p0

]1/3

, (6.3)

where the last factor of the equation is the correction to our first approximation. Eq.
(6.3) allows us to estimate the maximum bubble radius after explosive growth for a
typical sonication experiment, which turns out to be of the order of 0.7 mm. The actual
maximum bubble radius is somewhat smaller than this, because viscous effects were
neglected in the derivation of eq. (6.3). Interestingly, this implies that the correction
factor included in eq. (6.3), which is typically of the order of unity, is not necessarily
an improvement on eq. (6.2). Nonetheless, bubbles are, at the end of explosive
growth, typically at least a factor 100 or more larger than the typical length of a carbon
nanotube, which we again assume to be of the order of a micron.

After the bubble has reached a maximum radius, the acoustic pressure is positive
and the final stage of transient cavitation is initiated, being the violent collapse of the
bubble. It is during this stage of transient cavitation that nanotube scission occurs as
the fluid flow subjects the nanotube to a high stress. We are interested in obtaining an
expression for the fluid velocity as a function of time and distance from the center of
the collapsing bubble. The radial dependence of the fluid velocity is fully determined
if the bubble is assumed to remain spherical at all times and if the fluid is assumed
to be incompressible. We presume both these assumptions to hold. Let the bubble
radius be denoted as R = R(t), the velocity of the bubble wall as Ṙ = Ṙ(t) and
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the fluid velocity at a distance r from the center of the bubble as v⃗(r, t). The radial
dependence of the fluid velocity as a function of the radius of the bubble and the
velocity of the bubble wall is then,

v⃗ (r, t) = R2 (t) Ṙ (t)
r2 êr , (6.4)

where êr is the radial unit vector.
Eq. (6.4) requires as input a model for the bubble radius as function of time.

Even though the Rayleigh-Plesset equation40 is a better and more frequently used
model, we use the empty cavity approximation as proposed by Rayleigh145 to model
this, for it leads to a universal and mathematically tractable description of transient
cavitation, which is easily applied. As we will see in section 6.4 and 6.5, it allows us
to quantify the interaction between a nanotube and a collapsing bubble in terms of
a few dimensionless numbers. Rayleigh derived the empty cavity approximation by
modeling the bubble as an empty cavity that is filled up by fluid during its collapse,
and by assuming that the energy released by pressure-volume work during collapse
is converted into the kinetic energy of the fluid moving in to fill the cavity. This allowed
him to derive a simple equation describing the transient collapse of a bubble. It takes
the following dimensionless form,

dx
dτ = −

√
1 − x3
x3 , (6.5)

where x = R (t) /Rmax is the dimensionless bubble radius and τ = t/tc the dimension-
less time with tc =

√
3ρRmax2/2p a measure for the lifetime of the collapsing bubble,

p is the (static) pressure difference between the inside and outside of the bubble and
ρ is, as before, the fluid mass density. In the derivation of eq. (6.5) a static pressure
difference between the bubble and the surrounding liquid, p, is assumed, in reality it is
not static and the value of p must be approximated. We approximate p by the sum of
the ambient pressure and the root-mean-square acoustic pressure, p = pa/

√
2+p0.

For given sonication conditions, eqs. (6.3), (6.4) and (6.5) fully describe the fluid flow
during the collapse of a bubble.

The question arises whether the description of transient cavitation as given by
these equations is a good description. How do the results from eqs. (6.3), (6.4)
and (6.5) compare to results of the more advanced Rayleigh-Plesset equation?40

This equation is not reproduced here, but unlike eq. (6.5) it does include inertial
and viscous effects as well as a time-dependent acoustic pressure. This question
is in part answered by fig. 6.2, which shows the bubble radius and fluid strain rate
at the surface of the bubble as a function of time during bubble collapse for a typical
sonication experiment as determined by the empty cavity approximation (dashed blue
line), the Rayleigh-Plesset equation (solid red line) as well as for the empty cavity
approximation with length and time scales matched to the solution of the Rayleigh-
Plesset equation (dotted blue line). The solution of the empty cavity approximation
was obtained by numerically solving eq. (6.5) where Rmax is determined by eq. (6.3)
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Figure 6.2: The bubble radius and strain rate at the bubble surface, ε̇ = Ṙ (t) /R (t),
as a function of time during the transient collapse of a bubble for a typical sonication
experiment. Dashed blue lines represent the solution as obtained from the empty
cavity approximation while the solid red line represents the solution obtained from
the Rayleigh-Plesset equation. The solution of the empty cavity approximation, with
length and time scales matched to the solution of the Rayleight-Plesset equation, is
represented by the dotted blue line. Note that it is virtually identical to the solution of
the Rayleigh-Plesset equation.

and the average pressure difference between bubble and the surrounding liquid, p,
is approximated as pa/

√
2 + p0. The Rayleigh-Plesset equation was solved for a

full acoustic cycle, as given by eq. (6.1), using the methodology of Pagani et al.,134

and by using an initial bubble radius of 0.1 µm, which equals the Blake radius for the
given sonication conditions, only the collapse phase is shown here. From fig. 6.2 it
is clear that solutions of the empty cavity approximation (dashed blue line) and the
Rayleigh-Plesset equation (solid red line) do not match quantitatively even though
the shapes of the curves are virtually identical. This is not so much the result of the
poor quality of the empty cavity approximation but rather a result of a poor choice for
the corresponding length and time scale, Rmax and tc.

How good is the empty cavity approximation if we rescale it to have it match time
and length scales with the results from the Rayleigh-Plesset equation? In this case
the agreement is excellent, the solution of the rescaled empty cavity approximation
(dotted blue line) and the Rayleigh-Plesset equation (solid red line) are virtually iden-
tical. For typical sonication settings, the relative error in bubble radius and strain rate
as given by the rescaled empty cavity approximation and as compared to the solu-
tion obtained from the Rayleigh-Plesset equation is less than 4 percent at all times.
In an identical manner we compared the solution of the Rayleigh-Plesset equation
and the rescaled empty cavity approximation for all combinations of acoustic powers
of Pac = 10 W, 40 W and 160 W, acoustic frequencies of 10, 20 and 40 kHz and initial
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bubble radii of 0.1 RB, 1 RB and 10 RB. In doing so, we find the following, when a
bubble has an initial radius of 0.1 RB it undergoes stable cavitation as surface ten-
sion prevents the explosive growth of the bubble. For bubbles with an initial size of
1 RB and 10 RB we observe transient cavitation, in agreement with the definition of
the Blake threshold. Here, we observe that the quality of the rescaled empty cavity
approximation decreases with increasing acoustic power and increasing initial bub-
ble radius, the relative error in bubble radius and strain rate reaches a maximum of
approximately 35 and 45 percent respectively for an acoustic power of 160 W and
an initial bubble radius of 10 RB, while its quality appears to be independent of the
acoustic frequency.

Note that even for a maximum relative error of 35 percent in the bubble radius
and 45 percent in the strain rate, the disagreement is only quantitative. By matching
the length and time scales of the empty cavity approximation to the solution of the
Rayleigh-Plesset equation we assure that begin and end points of both curves are
identical. Furthermore, an expansion of both the Rayleigh-Plesset equation and the
empty cavity approximation yield identical behaviour for the initial stages of bubble
collapse. In conclusion, the empty cavity approximation is typically very good but our
approximation of the associated typical length and time scale of the transient collapse
is poor. Fortunately, we can improve upon this poor approximation by determining
the correct length and time scales directly from the solution of the Rayleigh-Plesset
equation and use these values as input for the rescaled empty cavity approxima-
tion. Note that in the derivation of both the Rayleigh-Plesset equation and Rayleigh’s
model for the collapse of an empty cavity the fluid is presumed to be incompressible.
As it is the assumption of incompressibility that leads to the strong gradient in the
fluid velocity, which is responsible for nanotube scission, we feel confident in using
Rayleigh’s model for the collapse of an empty cavity because it captures the essential
physics of the process.

Having described the process of transient cavitation, we can now investigate the
interaction between a nanotube and the fluid flow generated by a bubble undergoing
transient cavitation.

6.3 Fluid-Nanotube interaction
The motion of, and the forces exerted on a carbon nanotube near a transiently cavitat-
ing bubble are determined by the interaction between that nanotube and the fluid flow
following the transiently cavitating bubble. We focus attention on defect-free carbon
nanotubes with lengths well below their persistence length, determined to be in ex-
cess of 26 µm,148,149 and model them as rigid rod-like particles with diameter d, length
L and uniform tensile strength σT . Hence, in treating the nanotubes as rigid rod-like
particles, we neglect any elastic bending and stretching of the nanotubes due to ther-
mal fluctuations or the fluid flow. This is a reasonable approximation when studying
the scission of radially aligned nanotubes under tension, because any bending of the
nanotube is suppressed by the fluid flow. However, it does fail in the initial stages
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of bubble collapse, when a nanotube relaxes from a tangential orientation into either
a stretched radially aligned or a highly bent conformation that can potentially lead
to subsequent scission under tension or buckling-mediated scission respectively.134

We return to this issue in our discussion, section 6.6.
We model the carbon nanotube as a rigid rod-like particle and invoke first-order

slender-body theory to model the viscous drag forces exerted on the nanotube by the
fluid flow, just as in previous work on nanotube scission under sonication.126,129,130,134

Slender-body theory146,147 describes the viscous drag forces exerted on an elongated
particle in a Stokes flow. Stokes flows are characterized by a small Reynolds number,
Re ≪ 1,2 implying that viscous effects are dominant over inertial effects. In our
case, the Reynolds number is for most of the time typically small if we assume the
typical length scale of interaction between the fluid flow and a nanotube to be the
nanotube diameter. Intuitively this choice of length scale makes sense, because the
fluid flow is ‘perturbed’ by the radially aligned nanotube over a length equal to its
diameter. However, in the final stages of collapse of the bubble the relative fluid
velocity at the tips of the nanotube becomes very large. Indeed, a simple scaling
analysis shows that the Reynolds number must reach a maximum of the order of
unity near the nanotube tips at the moment of scission3 but is smaller than that in
the central part of the nanotube and prior to the moment of scission. Even though
the assumption of small Reynolds numbers does not quite hold at all times, it does
hold for the majority of time and justifies our use of slender-body theory to model the
fluid-nanotube interaction.

Before applying slender-body theory, we need to consider the geometry of the in-
teraction between the bubble and the nanotube. Due to the presumed radial symme-
try of bubble collapse and because the nanotube and the center of the bubble are al-
ways in a single plane, the fluid-nanotube interaction is reduced to a two-dimensional
problem. The corresponding geometry is shown in fig. 6.3, where êx is the direction
perpendicular to the bubble surface while êy is a direction tangential to the bubble
surface. Although rotational motion of the nanotube around êx and out of the x − y
plane is possible, we need not explicitly consider it. The reason is that the radial
distance between any segment of the nanotube and the center of the bubble is in-
variant under any such rotation, that is, the geometry of the problem does not change
as a result of this rotational motion. Furthermore, rotation around êx affects neither
translational nor rotational motion in the x − y plane, as we show below.

Within first-order slender-body theory,146,147 the viscous drag force per unit length
exerted by the fluid flow on the nanotube, f⃗ , can be decomposed into a component

2The Reynolds number is defined as Re = ρvL/µ, where ρ is the mass density of the liquid, v the mean
relative velocity of the fluid relative to the object, L is the characteristic length of the object and µ is the
dynamic viscosity of the fluid.

3If we assume a linear flow profile and equate the stress on the nanotube to the tensile strength, σT of
the nanotube we find σT = πµε̇L2/2A. The maximum relative fluid velocity occurs at the nanotube tips and
is given by vmax = ε̇L/2 = σTA/πµL. Using this as the characteristic velocity and the nanotube diameter
as the characteristic length-scale we find a maximum Reynolds number of the order of 1 for the fluid flow
around around the nanotube.
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Figure 6.3: The spatial geometry of the nanotube bubble interaction. The bubble has
radius R(t), the center of the nanotube of length L is at a distance rcm from the center
of the bubble and at an angle ϕ from a radial orientation. The contour distance away
from the center of mass of the nanotube is given by l. Two coordinate systems are
shown: êx , êy denote respectively the direction perpendicular and the direction tan-
gential to the bubble surface. Coordinate system ê⊥, ê defines the directions parallel
and perpendicular to the main axis of the nanotube.

parallel, f, and perpendicular, f⊥, to the main axis of the nanotube,

f = 2πµv,rel, f⊥ = 4πµ v⊥,rel, (6.6)

where µ is the dynamic viscosity of the liquid, v,rel is the relative fluid velocity parallel
to the axis of the nanotube, while v⊥,rel is the relative fluid velocity perpendicular to
the axis of the nanotube. These velocities are relative ones, that is, relative to the
translational and rotational motion of the nanotube. Here we neglect a logarithmic
dependence of these forces on the aspect ratio of the nanotube, which is of the order
of unity for experimentally relevant nanotube lengths.126 The relative fluid velocity is
given by,

v⃗rel = v⃗ (r) − v⃗cnt − ϕ̇lê⊥, (6.7)

where v⃗ (r) is the local fluid velocity at a radial distance r from the center of the bubble
as given by eqs. (6.4) and (6.5), v⃗cnt is the translational velocity of the nanotube,
ϕ̇ denotes the angular velocity of the nanotube around its center of mass, l is the
contour distance away from the center of mass of the nanotube and ê⊥ is a unit
vector perpendicular to the main axis of the nanotube, all as shown in fig. 6.3.

As mentioned, the fluid flow along the nanotube is presumed to be characterised
by a small Reynolds number. For small Reynolds numbers, viscous effects predom-
inate over inertial effects, implying an overdamped limit in which inertial effects relax
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very fast relative to the time scale of nanotube motion. As a consequence the total
force,

∑
F⃗ , and torque,

∑
τ⃗, exerted by the fluid on the nanotube must equal zero on

this time scale. This leads to a set of equations of motion that are independent of the
actual fluid viscosity. This is the case because the total force and torque exerted on
the nanotube equals zero and only forces of a viscous origin, eq. (6.6), are exerted
on the nanotube and these are all proportional to fluid viscosity.

Given a local fluid velocity, v⃗ (l), along the nanotube, where l ∈ [−L/2,+L/2]
denotes the contour distance away from its center, inertialess motion implies zero
net force,

∑
F⃗ =

+L/2∫

−L/2

f⃗ (l)dl = 0, (6.8)

and zero net torque,
∑

τ⃗ =

+L/2∫

−L/2

lê × f⃗ (l)dl = 0, (6.9)

where ê is a unit vector along the axis of the nanotube. Substitution of eqs. (6.6) and
(6.7) into eqs. (6.8) and (6.9) yields the equations of motion for the nanotube,

v⃗cnt =
1

L

+L/2∫

−L/2

v⃗ (l)dl, (6.10)

and,

ϕ̇ =
12

L3

+L/2∫

−L/2

lv⊥ (l)dl, (6.11)

where v⊥(l) is the component of the local fluid velocity which is perpendicular to the
main axis of the nanotube. See fig. 6.3. Note that the equations of motion, eqs. (6.10)
and (6.11), for a rod-like particle in a Stokes flow have been derived previously.147

These equations of motion are instantaneously decoupled, that is, the instantaneous
rotational velocity, ϕ̇, and translational velocity, v⃗cnt , are independent of each other
as is evident from eqs. (6.10) and (6.11). This is so because rotational motion around
the center of mass of the nanotube produces a local drag force proportional to −ϕ̇l of
which the integral along the nanotube is always zero, while the net torque resulting
from any translational motion is always zero for the local torque due to translational
motion is again anti-symmetric in l. Note that this decoupling only holds instanta-
neously, translational motion does depend on the orientation of the nanotube and
rotational motion depends on the position of the nanotube.

Above we reduced the interaction between a nanotube and a bubble to a two-
dimensional problem. We claimed to be able to do this because translational and
rotational motion within the plane spanned by the nanotube and the center of the
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bubble, i.e., the x − y plane as defined in fig. 6.3, is independent of any rotational
motion out of the x − y plane. We are now able to understand this. Indeed, the net
drag force resulting from any rotational motion is zero and does not affect translational
motion. Rotational motion in the x−y plane, as given by ϕ̇, is not affected by rotational
motion out of this plane for the torque resulting from such motion is perpendicular to
the torque responsible for rotational motion in the x − y plane.

With the equations of motion as given by eqs. (6.10) and (6.11) combined with
eqs. (6.4) and (6.5), which describe the fluid flow during bubble collapse, we are able
to investigate the interaction between a nanotube and the fluid flow during various
stages of transient cavitation. In the next section we evaluate the motion of and forces
exerted on a radially aligned nanotube during the transient collapse of a bubble.

6.4 Mechanics for a radially aligned nanotube during
bubble collapse

Let us assume that the nanotube has a fully stretched and perfect radial conformation
throughout the process of bubble collapse, with angle ϕ = 0 as fig. 6.3. In assuming
this, we neglect the relaxation of a nanotube from an unstable tangential orientation,
ϕ = π/2 in fig. 6.3, in the initial stages of bubble collapse, which has been shown
to occur by Pagani et al.134 We return to this assumption and discuss the initial
relaxation from a tangential orientation briefly in the discussion, section 6.6.

Let the nanotube have length L and let its tip closest to the bubble be at a initial
distance r0 from the center of a bubble with radius Rmax that has just undergone
explosive growth and is about to collapse. During bubble collapse the nanotube will
be dragged along by the fluid and the distance between the center of the bubble and
the nanotube will decrease. We denote the distance between the tip of nanotube
closest to the bubble and the center of the bubble as rcnt(t) where rcnt(t = 0) = r0.
See fig. 6.4.

Assuming incompressibility of the fluid and a spherically symmetric fluid flow, im-
plicit in eq. (6.4), and substituting r⃗(l) = (rcnt + L/2 + l) êx , we can calculate the
velocity of the nanotube straightforwardly from eq. (6.10) to give,

v⃗cnt =
R2Ṙ

rcnt (rcnt + L) êx , (6.12)

where we note that R , Ṙ , rcnt and vcnt are functions of time and that vcnt is the time
derivative of the tip position, rcnt , so vcnt = ṙcnt . Integrating eq. (6.12) over time
by separation of variables, gives the nanotube position as a function of time. After
rescaling all distances to Rmax , as given by eq. (6.3) or as obtained from a numerical
solution of the full Raleigh-Plesset equation, see our earlier discussion in section 6.2,
the dimensionless nanotube position y (t) ≡ rcnt (t) /Rmax obeys,

y3 − y30 +
3

2
L̃

(
y2 − y20

)
= x3 − x30 , (6.13)
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Figure 6.4: The geometry of the interaction between a radially oriented nanotube
and the fluid flow following the transient collapse of a bubble with radius R (t). The
distance between the tip of the nanotube, of length L, closest to the bubble and the
center of the bubble is denoted by rcnt(t). The directions as given by êx and êy
and the parameter l are as defined in fig. 6.3. Above the nanotube the direction and
magnitude of the actual fluid velocity v (r), eqs. (6.4) and (6.5), the nanotube velocity,
eq. (6.12), and the relative fluid velocity along the nanotube, eq. (6.7), are shown.

where x = R (t) /Rmax is the dimensionless bubble radius that we calculate from eq.
(6.5), x0 = 1 for it is the value of x at the start of bubble collapse, y0 = r0/Rmax
is the dimensionless distance between the center of the bubble and the tip of the
nanotube closest to the bubble at the start of bubble collapse and L̃ = L/Rmax is the
dimensionless nanotube length.

By way of illustration we have plotted in fig. 6.5 the motion of nanotubes of length
L̃ = 0.05 (dashed, red) and L̃ = 0.2 (dot-dashed) for two different initial distances y0 =
1 and y0 = 1.15 as obtained from eq. (6.13). The values used for L̃ are unrealistically
large but serve to highlight the dependence of nanotube motion on length and initial
position. The dimensionless bubble radius, given by eq. (6.5), is depicted by the
solid line. Note that for L̃ → 0 and y0 = 1 the motion of nanotube equals the motion
of the bubble wall. From fig. 6.5 it is clear that nanotubes cannot keep up with the
wall of the collapsing bubble and that the nanotubes slow down as their length and/or
initial distance from the bubble increases. This is easily understood from eq. (6.10)
that equates the nanotube velocity to the average of the local fluid velocity along the
nanotube. Because the local fluid velocity decreases with distance as r−2, nanotubes
become slower with increasing initial distance from the bubble and with increasing
length.

Having established where the nanotube is relative to the bubble from the moment
it starts to collapse, we are now able to evualuate the maximum stress it is subjected
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Figure 6.5: The position of the tip of a nanotube scaled to Rmax as a function of
dimensionless time, τ, during bubble collapse. The dimensionless bubble radius x,
eq. (6.5), is indicated by the solid line. Nanotube motion as given by eq. (6.13) is
shown for L̃ = 0.05 (dashed) and L̃ = 0.2 (dot-dashed) for an initial distance of y0 = 1
and y0 = 1.15.

to by the surrounding fluid as it is dragged along by the fluid during the collapse of
the bubble. During bubble collapse the nanotube’s velocity equals the average local
fluid velocity along the nanotube because this ensures that the net force exerted on
the nanotube equals zero. This is a consequence of inertialess motion that we used
to derive the translational equation of motion, eq. (6.10) and eq. (6.13). Although the
net drag force experienced by the nanotube vanishes, viscous friction does exert a
large stress on the nanotube. The relative fluid velocity along the part of the nanotube
closest to the bubble is directed radially inward while that furthest away is directed
outward. See fig. 6.4. The stress exerted by the fluid is at a maximum at the point
on the nanotube where the local fluid velocity, eq. (6.4), is equal to the nanotube
velocity, eq. (6.12), and the relative fluid velocity is zero. Equating eqs. (6.4) and
(6.12), we find that the relative fluid velocity is zero and the stress on the nanotube
maximal at a distance r∗(t) from the center of the bubble,

r∗ (t) =
√
rcnt (t) (rcnt (t) + L). (6.14)

Note that r∗ is time-dependent as we are following the nanotube as it is dragged
along by the fluid flow following the collapsing bubble. In section 6.5 we show r∗

corresponds to a point on the nanotube that is close to center of mass of the nanotube.
The maximum stress on the nanotube, i.e., that at r∗, where the relative fluid

velocity equals zero, is given by the difference of the forces exerted by the fluid on
the segment of the nanotube where the relative fluid velocity is directed radially inward
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and the segment where it is directed radially outward, divided by A, the cross sectional
area of the nanotube. The force exerted on each of these two segments is equal in
magnitude but opposite in direction, again, ensuring that the motion of the nanotube
is inertialess. The magnitude of this force is then given by the absolute value of the
integral of eq. (6.6) along one of these two segments, where v⃗rel is given by eqs. (6.7)
and (6.12). In dimensionless form we find for the maximum stress on the nanotube
at r∗,

σ̃∗ =
√
x − x4



 1
√y − 1√

y+ L̃




2

, (6.15)

where σ̃∗ = σ∗/σ0 is the dimensionless stress with σ0 the characteristic stress scale
as determined by experimental settings,

σ0 =
4πµRmax

A

√
2p
3ρ , (6.16)

where µ is the dynamic viscosity of the liquid, Rmax the bubble radius just before the
start of the collapse of the bubble, A is the cross sectional area of the nanotube, p is
the (static) pressure difference between the interior of the bubble and the surround-
ing liquid and ρ is the mass density of the liquid. Both y and σ̃∗ are functions of x, L̃
and y0, so time enters implicitly. However, unlike eq. (6.13), which is independent
of the time-dependence of x (t), eq. (6.15) only holds for x (t) as calculated from
Rayleigh’s model for the collapse of an empty cavity, eq. (6.5). Note that eq. (6.14)
was derived previously by Ahir et al.,127 who also derived an equation for the maxi-
mum stress on the nanotube. Their expression for the maximum stress exerted on
the nanotube differs from our eq. (6.15) because we explicitly model the fluid ve-
locity using Rayleigh’s model for the collapse of an empty cavity and explicitly take
nanotube motion into account through eq. (6.13).

Given the values of L̃ and y0, nanotube motion is given as a function of x by eq.
(6.13). Substitution of this into eq. (6.15) yields the stress at r∗(t) as a function of x(t).
At some value of x the stress at r∗ will be at a maximum, denote this value as x = xmax .
Substitution of xmax into eq. (6.15) yields the maximum stress, σ̃max∗ , experienced by
the nanotube during bubble collapse as a function of its dimensionless length and
initial distance to the center of the bubble,

σ̃max∗

(
L̃, y0

)
= max

[
σ̃∗

(
x; L̃, y0

)
, 0 < x < 1

]
. (6.17)

We have not been able to obtain an analytic expression for σ̃max∗ , so we determine it
numerically. In fig. 6.6, σ̃max∗ is shown as a function of L̃ and y0, the relation between
the three parameters contains important information regarding the scission mechan-
ics. A line over the surface at y0 = 1 gives the dimensionless minimum nanotube
length for which scission can occur as a function of dimensionless tensile strength,
while lines at constant σ̃max∗ give the dimensionless maximum initial distance between
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the nanotube and the bubble for which scission can occur as a function of dimension-
less nanotube length. The scission rate is related to this maximum initial distance.

Figure 6.6: The maximum dimensionless stress exerted on a nanotube during bub-
ble collapse, σ̃max∗ , as a function of the dimensionless nanotube length, L̃, and the
dimensionless distance, y0, between the nanotube and the center of the bubble at
the time of the start of the bubble collapse.

In summary, we have shown that the motion of a stretched and radially aligned
nanotube during bubble collapse is determined by its length and initial distance away
from the center of the bubble. As the fluid strain rate around the nanotube depends on
the nanotube’s position, the maximum stress experienced by a nanotube is determind
by, again, its length and initial position as well as the sonication conditions through
the characteristic stress scale σ0. In the next section we show how the minimum
scission length and the scission rate can be determined from fig. 6.6.

6.5 Implications for scission kinetics
In the previous section the motion of a radially oriented nanotube and the forces
exerted on it during bubble collapse were calculated. The analysis resulted in fig.
6.6, which gives the maximum stress exerted on the nanotube as a function of its
length and of its initial distance away from the center of the bubble at the time of
the start of the bubble collapse. From this figure it is clear that the maximum stress
experienced by a nanotube increases with decreasing initial distance to the center of
the bubble.

A nanotube of a given length then experiences a maximum stress when it starts
out as close as possible to the surface of the bubble. The smallest initial distance
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between nanotube and bubble center allowed for in the model is y0 = 1. Given L̃,
the maximum dimensionless tensile strength, σ̃T , of a nanotube of that length that
will still break under sonication is given by σ̃T = σ̃max∗

(
L̃, y0 = 1

)
, of which the value

can be obtained by numerically solving eq. (6.17). The shortest nanotube segments
produced by sonication, the so-called terminal length, then depends on sonication
conditions and the tensile strength of the nanotube. As we show below, scission oc-
curs very close to the center of the nanotube, so the dimensionless terminal length is
in good approximation equal to L̃min/2, where L̃min is the dimensionless minimum scis-
sion length. The relation between the minimum scission length and tensile strength,
as numerically determined from eq. (6.17), can be fitted to a power law. The resulting
power law in dimensionless form is,

L̃min ≈ 7.04σ̃1/1.16
T , (6.18)

where σ̃T = σT /σ0 is the dimensionless tensile strength of the nanotube, with σ0 as
given by eq. (6.16). The power law is an excellent fit, as is shown in fig. 6.7. The
relative error of the power law to the numerically determined values is smaller than 5
percent over 7 orders of magnitude in L̃.

Figure 6.7: The dimensionless minimum scission length, L̃min, as a function of the
dimensionless tensile strength, σ̃T . The dots represent numerical solutions of σ̃T =

σ̃max∗

(
L̃min, y0 = 1

)
. The dashed curve represents the power law as given by eq.

(6.18).

Eq. (6.18) shows a stronger dependence of the terminal length on tensile strength
than the previously predicted scaling of Lmin ∝ σ1/2

T , which was obtained by ne-
glecting nanotube motion and assuming a constant fluid strain rate along the nan-
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otube.38,126,127,129,130 In this approximation, the average relative fluid velocity along
the nanotube scales with L and the total length over which viscous drag forces are
exerted scales with L resulting in an L2 scaling for the stress exerted on the nan-
otube. The stronger dependence obtained from our calculations results from the
dependence of the maximum fluid strain rate along the nanotube on the length of
the nanotube. As is illustrated in fig. 6.5, the velocity of a nanotube decreases with
increasing length. Longer nanotubes are not dragged along as easily as short ones
during bubble collapse and their distance to the center of the bubble remains larger.
Because the strain rate of the fluid flow scales with the reciprocal distance cubed,
longer nanotubes experience smaller fluid strain rates. This results in a smaller in-
crease in the maximum stress exerted on a nanotube with increasing nanotube length
and thus a stronger increase of terminal length with increasing tensile strength.

When the dimensionless initial distance between a nanotube of length Lmin and
bubble increases beyond y0 = 1, the maximum stress exerted on the nanotube de-
creases as is evident from fig. 6.6. An increase in nanotube length is required if
the stress exerted on the nanotube is to exceed the tensile strength of the nanotube.
As a result, there is a critical, length-dependent, maximum initial distance from the
center of the bubble, rmax (L), beyond which scission can not occur for nanotubes
of length less than L.134 For nanotubes of tensile strength σT , scission occurs when
σmax∗ ≥ σT . The dimensionless maximum initial distance for which scission of a nan-
otube of dimensionless tensile strength σ̃T occurs, ymax , can be read off from fig. 6.6
by taking the intersection of the horizontal plane of constant σ̃T = σ̃max∗ and the plot-
ted surface. In fig. 6.8 the dimensionless critical initial distance, ymax is shown as a
function of dimensionless nanotube length for various values of σ̃T , as obtained by
numerically solving σ̃max∗

(
L̃, ymax

)
= σ̃T for ymax as a function of L̃. For nanotubes

significantly longer than the minimum length a clear power law with slope 2/3 is ob-
tained for all values of σ̃T . This is to be expected because when the nanotube starts
out at a sufficiently large distance from the bubble it will not be dragged to region of
high fluid strain rate during bubble collapse, and the strain rate of the fluid flow, ε̇, as
experienced by the nanotube becomes independent of nanotube length and scales
with distance as ε̇ ∝ r−3. The stress experienced by the nanotube scales as ε̇L2, so
the critical distance must scale as rmax ∝ L2/3.

For very short nanotubes the strain rate must be significantly larger than the strain
rate experienced by long nanotubes if scission is to occur. Such an increase in the
strain rate occurs for short nanotubes that are close to the surface of the bubble at
the point in time when bubble collapse commences. During bubble collapse these
short nanotubes are easily dragged along by the fluid flow to distances typically less
than 0.1Rmax from the center of the bubble. This results in a significant increase in
the experienced strain rate because the strain rate scales with distance as r−3. If
we consider a slightly longer nanotube, scission occurs at a lower strain rate of the
fluid. However, the maximum strain rate experienced by a nanotube decreases with
increasing nanotube length for longer nanotubes are not dragged along as easily. As
a result, the allowed increase in the initial distance between nanotube and bubble
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Figure 6.8: The dimensionless maximum initial distance, ymax for scission to occur
as a function of dimensionless nanotube length L̃ for various values of dimensionless
tensile strength, σ̃T . Dots show the minimum nanotube length for scission to occur.
Dashed lines indicate a power law with exponent 2/3.

cannot increase as strongly as it would if the maximum strain rate of the fluid flow
experienced by the nanotube is independent of the nanotube length. The critical dis-
tance remains close to ymax = 1 for a large range of nanotube lengths as shown in
fig. 6.8 and deviates from a power law with slope 2/3 as the maximum strain rate
experienced by a nanotube becomes dependent on nanotube length. As we shall
shortly see, this has an important consequence, the previously predicted L2 scission
rate126,134 breaks down near the terminal length, causing the scission kinetics to be-
come non-universal.

Let us now consider how we can derive the scission rate of nanotubes in solution
from these findings. If scission occurs when a nanotube of length L starts out at a
distance less or equal to rmax (L) away from the center of a bubble, then the scis-
sion rate, k (L), of a nanotube of length L must be proportional to the probability that
a nanotube is found within a distance rmax (L) of the center of a bubble at the mo-
ment the bubble starts to collapse. Assuming a homogeneous spatial distribution of
nanotubes, this probability is proportional to the ‘scission volume’ enclosed between
spheres of radius Rmax and rmax (L). We surmise that the scission rate must then
obey,

k(L) ∝
(
rmax (L)3 − R3

max

)
, (6.19)

where the proportionality constant is equal to the number of transiently collapsing
bubbles per unit time per unit volume and the scission rate, k (L), gives the fraction of
nanotubes of length L that undergo scission per unit time. Note that Pagani et al. used



124 Chapter 6

similar arguments to derive a scission rate.134 Let us now focus on the implications
for scission kinetics. In fig. 6.9, the dimensionless scission rate, k̃

(
L̃
)

∝ k
(
L̃
)
R3
max ,

is plotted as a function of dimensionless nanotube length for the same values of σ̃T as
presented in fig. 6.8. Here, we have set the dimensionless proportionality constant
equal to unity. We can do this, because using its actual value merely shifts the curves
upward or downward in the double logarithmic plot.
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Figure 6.9: The dimensionless scission rate, k̃
(
L̃
)

as a function of dimensionless
nanotube length L̃ for the same values of dimensionless tensile strength σ̃T as pre-
sented in fig. 6.8. The dashed lines correspond to a power law with exponent 2.

Fig. 6.9 shows that the previously derived L2 scission rate126,134 breaks down for
lengths within an order of magnitude above the minimum scission length while this
power law still holds for sufficiently long nanotubes. This is indeed what we expect,
because from fig. 6.8 we know that nanotube motion only affects the scission me-
chanics for sufficiently short nanotubes and hence that, the L2 power law, derived
by neglecting nanotube motion must hold for sufficiently long nanotubes. The break
down of the universal L2 power law scission rate for the last three or four scissions
before the nanotube reaches a length below the minimum scission length has an im-
portant consequence, a non-power law scission rate will yield non-universal scission
kinetics. In the discussion, section 6.6, we will see that this can potentially explain
the non-universal scission kinetics as reported in literature.122,126,130,132

The scission rate, as shown in fig. 6.9, goes to zero at the minimum scission
length within our approximation for the minimum scission length is obtained when
ymax = 1, and hence rmax (Lmin) = Rmax . The assumption of a homogeneous nan-
otube distribution is however tenuous, because nanotubes tend to be concentrated
near the surface of the bubble during explosive growth. This happens to be the case,
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because the nanotubes are slower than the expanding bubble for the same reasons
as why the nanotubes cannot keep up with the bubble during bubble collapse. By
taking this effect into account, one would arrive at a non-zero scission rate for nan-
otubes of a length equal to the minimum scission length, Lmin. However, we choose
not to take this into account as it does not qualititatively change the predicted scission
rate, while it would require us to model nanotube motion during the explosive growth
of the bubble.4

Fig. 6.9 shows that the nanotube properties and the experimental settings de-
termine the length-dependent scission rate through the parameters Rmax and σ0 pre-
dicted by eqs. (6.3) and (6.16) respectively. Although that for nanotube lengths far
larger than Lmin, we do obtain a universal power law with exponent 2, the behaviour
at lengths close to Lmin is non-universal. Here scission only occurs because the nan-
otube is dragged along by the fluid to regions with high strain rate. Transport of the
nanotube over a significant length is only possible if the nanotube is short compared
to the bubble radius. The smaller L̃min, the larger the length range over which trans-
port is significant and the larger the region over which deviations from the universal
power law are observed.

It is clear now that scission occurs only if the nanotube is sufficiently long and if
it is sufficiently close to a bubble. To determine the time-evolution of the nanotube
length distribution we need to know at which point on the nanotube scission will occur.
In section 6.4 we saw that if the nanotube is at a distance of a bubble, the stress on
the nanotube is at a maximum on the point on the nanotube that is at a distance r∗

from the center of the bubble, where r∗ is given by eq. (6.14). It is insightful to define
a relative scission position, rcnt from the center

r∗
rel (t) =

r∗ (t) − rcnt (t)
L , (6.20)

where we note that the position of the nanotube is time-dependent as it is dragged
along by the fluid during bubble collapse, and as a consequence of that, the position
of maximum stress, r∗, is also time-dependent. The relative scission position is 0.5
if scission occurs at the center of mass of the nanotube, it is 0 for scission at the tip
closest to the bubble (l = −L/2) and 1 for scission at the far end of the nanotube
(l = L/2).

To plot the relative scission position, r∗
rel, we solve eq. (6.17) numerically as a

function of L̃ and y0 to determine the bubble radius, xmax at which the stress exerted
on the nanotube is at a maximum. Substitution of xmax into eq. (6.13) produces the
corresponding value of rcnt , which, after substitution into eq. (6.20) gives the relative
scission position. This we plot in fig. 6.10 as a function of L̃ and y0.

4We checked this by modelling nanotube motion during explosive growth of the bubble by calculating
the motion of a nanotube with an orientation tangential to the bubble surface. The result allows us to
calculate the distance away from the center of the bubble at the start of explosive growth, di, for which
the nanotube will be at a distance rmax from the center of the bubble at the end of explosive growth. We
calculate the scission rate by assuming it is proportional to d3i . The resulting scission rate has a non-zero
value at the the minimum scission length, Lmin, but is qualitatively identical to the scission rate as derived
by neglecting nanotube motion during explosive growth of the bubble.
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Figure 6.10: Contour plot of the relative scission position, r∗
rel, as a function of dimen-

sionless nanotube length, L̃, and dimensionless initial distance between nanotube
and bubble at the start of the collapse of the bubble, y0.

Note that, a nanotube with a higher tensile strength will not break for these values
of L̃ and y0, while scission of a nanotube with a lower tensile strength will occur
at an earlier moment and thus at a larger value of rcnt . From eq. (6.20) follows
that, the relative scission position, r∗

rel, increases with rcnt up to a value of 0.5 for
L/rcnt → 0. So, any nanotube with a tensile strength smaller than σmax∗

(
L̃, y0

)
will

undergo scission at a point closer to its center than indicated in fig. 6.10. As, for a
typical sonication experiment, we have L̃ = 1.5 · 10−3 corresponding to a nanotube
of a length of approximately 1 µm, scission indeed occurs very close to the center of
the nanotube.

6.6 Discussion
In the preceding two sections the mechanics of nanotube scission under tension has
been investigated. Key results of the analysis are, 1) an expression for the terminal
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length, i.e., the length of the shortest nanotube segments that can be reached by
means of sonication, 2) the derivation of a non-universal length-dependent scission
rate which provides an explanation alternative to the one of Pagani et al.134 for the
experimentally observed non-universal scission kinetics, and 3) the determination of
the scisson position. We showed that the motion of a nanotube during the collapse
of a bubble leads to non-universal scission kinetics and affects the scaling of the
terminal length with the tensile strength of the nanotube.

Let us first discuss the key assumption underlying our findings, being that nan-
otubes are oriented radially during bubble collapse. Simulations by Pagani et al.134

indicate that a nanotube relaxes in the initial stages of bubble collapse from an un-
stable tangential orientation to either a stretched radial conformation through rotation
or to a highly bent conformation after buckling. They showed that relaxation by re-
orientation is favoured by short nanotubes while longer ones bend and buckle. They
argued that this is what one would expect, because the time scales at which relax-
ation by reorientation and by bending and subsequent buckling occurs, scale differ-
ently with the length of the nanotube. Indeed, reorientation of the nanotube requires
the breaking of symmetry through rotational diffusion, for a perfectly straight and tan-
gentially oriented nanotube in a perfectly radial fluid flow experiences a net torque
of zero. While rotational diffusion slows down with increasing nanotube length and
hence the probability of relaxation by reorientation, the propensity to buckle increases
with length. This suggests that our model only holds for sufficiently short nanotubes.

We argue that this is not necessarily always the case. Indeed, neglected in the
analysis by Pagani et al. is, firstly, the potential presence of defects in the nanotube
structure, making them not quite straight and resulting in a break of symmetry. Sec-
ondly, fluctuations in the fluid flow, caused for example by other nearby bubbles, can
cause a break in the spherical symmetry of the fluid flow. Both of these effects pro-
mote the relaxation of longer nanotubes into a stretched radial conformation through a
break of symmetry as longer nanotubes arguably contain more defects and are more
prone to interact with asymmetries in the fluid flow because they interact with a larger
volume of the fluid. Note also that the time scale of both relaxation mechanisms is of
the same order of magnitude, as the assumption of Stokesian dynamics ensures that
it is the fluid flow that dictates the time scale of any type of motion. Because of this,
we argue that short nanotubes reorient into a radial orientation and scission of these
nanotubes is well described by our model, and that for long nanotubes both scission
under tension and scission due to overbending can occur. The predominant mecha-
nism is determined by the lack or presence and degree of symmetry breaking during
bubble collapse, meaning that an understanding of both scission under tension and
scission due to overbending is important for nanotubes of all lengths.

While an analysis of the competition between the two scission mechanisms is
beyond the scope of this paper and most likely beyond the scope of analytical the-
ory, it is tempting to speculate about combined breaking scenarios. For instance,
even if the nanotube relaxes into a perfectly symmetric and highly bent conformation
after buckling, there must still be a competition within the same nanotube between
scission due to overbending and scission under tension. The scission under ten-
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sion mechanism operates on the two highly bent halves of the nanotube, which are
aligned nearly radially and thus under high tension. Scission under tension in one of
these halves would now result in a segment of a length of a quarter and a segment
of three quarters of the length of the nanotube prior to scission. This is of course no
more than qualitative reasoning and in the next chapter we shall see that a nanotube
which is significantly bent in a number of places will undergo scission under tension
if the tensile strength is sufficiently small.

We return now to the question how the minimum scission length predicted by our
theory and given by eq. (6.18) differs from earlier work. Firstly, because we take
the previously neglected motion of a nanotube during bubble collapse explicitly into
account, we find an exponent of 1/1.16 that differs from the value of 1/2 predicted
earlier.126,127,129,130 Secondly, we explicitly relate the minimum scission length to
the sonication settings and the tensile strength of the nanotube. Interestingly, the
minimum scission length scales with the radius of a bubble just prior to it start to
collapse as Lmin ∝ Rmax0.14. This weak dependence of the minimum scission length
on Rmax suggests that there is indeed a well-defined terminal length, which equals
approximately half the minimum scission length, even if there is some spread in the
size of the transiently collapsing bubbles.

It is however doubtful whether the terminal length is observed in experiments.130

Experiments show a power law relation between the average length of nanotubes
and the time for which they have been sonicated,122,126,130,132 suggesting that the
terminal length has not been reached in these experiments. Indeed, when a signif-
icant number of the nanotubes have a length close to the minimum scission length,
one would expect the number of nanotubes with a length above the minimum scis-
sion length to decrease exponentially over time. This is because scission of these
nanotubes is essentially a first-order ‘reaction’ in which the nanotubes go from being
able to undergo scission to being unable to undergo scission, for after scission the
resulting segments have a length below the minimum scission length. Intuitively one
would expect the power law relating average length to time to break down if the num-
ber of the nanotubes available to undergo scission starts to decrease exponentially.
This discrepancy is possibly resolved by our work, which shows the scission rate
to decrease by several orders of magnitude when the length of the nanotubes ap-
proaches the minimum scission length, see fig. 6.9. This suggests that experimental
time scales might indeed be too short to observe the terminal length.

The experimentally observed power law relation between the average nanotube
length and sonication time122,126,130,132 has been reproduced by a simple kinetic
model for a power law scission rate.130,134 In this kinetic model the length-dependent
scission rate is assumed to obey a simple power law, k (L) ∝ L1/α , meaning that there
is no terminal length below which scission stops in this kinetic model. By treating the
scission of nanotubes as a first-order reaction, and by assuming an initially monodis-
perse length-distribution and finally by imposing conservation of carbon nanotube
mass, one can derive that the average length must scale with sonication time as
⟨L⟩ ∝ t−α . This, in light of our discussion so far, is a remarkable result. By assuming
that there is no terminal length the experimentally observed power law decrease of
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the average length over time is reproduced, which, again, suggests that the terminal
length is not reached on experimental time scales.

We can use the same simple kinetic model to compare the results of our model
with experimental results. Let us first consider the situation where all nanotubes have
a length well above the minimum scission length. Here, our model predicts that the
scission rate is a power law with exponent α−1 = 2 and the kinetic model predicts the
power law relating average length and sonication time to have an exponent of α =
0.5, in agreement with some experimental results.126 However, an experimentally
determined value of α = 0.22 has also been reported,130 which corresponds to a
slow down of the scission kinetics as compared to the situation where α = 0.5.

This is potentially explained by our model, which predicts the scission kinetics
to slow down significantly near the minimum scission length, as compared to the
situation where the scission rate is an L2 power law, for here our model predicts the
scission rate to deviate from a pure power law with exponent α−1 = 2. This deviation
from a power law is significant in terms of scission kinetics. For a power law, the
scission kinetics must be identical at all length scales while this is not necessarily true
for a non-power law scission rate. This suggests that the scission kinetics depends
on how many of the nanotubes are sufficiently close to the terminal length to have
their scission governed by the non-power law region of the scission rate as predicted
by our model. Interestingly, our model predicts that deviations from an 0.5 power law
occur when close to the terminal length, this is in contradiction with the work by Pagani
et al.134 who predict that the scission rate of long nanotube that buckle and break
deviates from an 0.5 power law and follows an 0.25 power law. Unfortunately, the
current kinetic model is too simple to come to a sensible comparison of our model with
experimental results. The kinetic model only allows for the analysis of a simple power
law scission rate and does not take the existence of a terminal length into account
and hence is not suited to the analysis of the results of our model. Although our model
certainly predicts the scission kinetics to be slower than an 0.5 power law when close
to the terminal length, we believe that a more thorough study of the scission kinetics,
using a more advanced kinetic model, is required to see if our model can reproduce
the experimentally observed exponent of 0.22. This, we intend to pursue in the near
future.

We end this paper with a discussion of the connection between sonication and
exfoliation, where we recall that scission is an unwanted by-effect of sonication. Any
attempt to optimise the sonication process requires an understanding of both the me-
chanics and kinetics of exfoliation and scission. The exfoliation of single-wall carbon
nanotubes bundles has been attributed to the diffusion of surfactant molecules into
nanotube bundles after cracks are formed in these bundles by means of sonication.
When a surfactant layer has formed between a nanotube and the bundle it is part of,
this nanotube is separated from the bundle.118,119 Here, we would like to propose a
different mechanism. If nanotube bundles orient into a radial orientation during bub-
ble collapse, just as individual nanotubes do, scission of a nanotube in the outer layer
of the bundle can occur when the stress exerted by the fluid flow exceeds the ten-
sile strength of the nanotube. After scission has occured, the fluid exerts large drag
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forces on each of the resulting nanotube halves. If these drag forces exceed the
binding force between bundle and nanotube segment, the nanotube segments slide
off the bundle and are separated from the bundle. In this scenario exfoliation relies
on nanotube scission as is illustrated schematically in fig. 6.11. If this process is in-

a) Scission in outerlayer b) Subsequent exfoliation
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Figure 6.11: The exfoliation of a nanotube rope by scission of individual nanotubes
in the outer layer. Nanotube ropes will be dragged along by the fluid flow following
the transient collapse of a bubble just like a single nanotube. Strong gradient in the
fluid velocity results in a large stress exerted on the nanotubes on the outer layer of
the rope, possibly causing scission of these nanotube. After scission the two result-
ing segments will be ‘pulled of’ the bundle if the drag force exerted by the fluid flow
exceeds the binding force between the nanotube segment and the bundle.

deed responsible for the exfoliation of nanotube bundles, then the sonication process
can be optimised. The sonication power should be just sufficient to cause scission of
nanotube in the outer layer of the bundle, while it should be insufficient to cause the
scission of the resulting nanotube segments that have a length approximately equal
to half the length of the nanotubes in the bundle. Here, a more thorough analysis is
required that we will pursue in the near future.

In conclusion, we have shown that scission of nanotubes under tension during
bubble collapse does not result in universal scission kinetics. This can potentially
explain the variety in the experimentally observed scission kinetics and is in contrast
with previous work on scission under tension in which scission under tension was
thought to result in universal kinetics. Given the length-dependent scission rate, eq.
(6.19), the lengths of the segments resulting from scission, eq. (6.20), and the ter-
minal scission length, eq. (6.18), the scission kinetics and the time-evolution of the
length distribution are fully determined, allowing, in principle for controlled manip-
ulation of the length distribution. Finally, if exfoliation is indeed scission-mediated,
knowledge of both scission and exfoliation kinetics will allow for optimisation of the
sonication process.



Chapter 7
Scission mechanics of carbon
nanotubes by Brownian
dynamics simulations

Summary

In this chapter we investigate the mechanics of carbon nanotube scission under son-

ication by means of Brownian dynamics simulations.134 In the simulations the nan-

otubes are modeled as a bead-rod chain, while the fluid flow around a transiently

cavitating bubble is described by the Rayleigh-Plesset equation. Scission of a nan-

otube can occur under tension or by bending and subsequent buckling, allowing for

the simulation of multiple scissions of a nanotube during a single collapse phase of

the bubble. The results of the simulation show that multiple scissions indeed occur in

long nanotubes. Moreover, our results suggest that the scission mechanics depend

on a rich interplay between the tensile strength, the persistence length, the length of

the nanotube and the maximum curvature the nanotube can sustain without breaking.

131
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7.1 Introduction
In the previous chapter we studied the mechanics of carbon nanotube scission un-
der tension by an analytic model. While this approach allowed for the derivation of
a number of analytical equations describing the motion and stresses on a nanotube,
it did not include rotational motion of the nanotube nor scission caused by bending
and buckling. In this chapter we study the interaction of a single nanotube with a sin-
gle bubble undergoing transient cavitation by Brownian dynamics simulations. This
approach does allow us to investigate the effects of bending and the rotation of the
nanotube. That bending and subsequent scission by buckling are potentially an im-
portant scission mechanism is not a new idea. In fact, nanotubes with a highly bent
conformation after sonication have been observed experimentally,150 and a number
of explanations for this have been offered. These include: 1) the trapping of a nan-
otube inside a collapsing bubble where in the final stages the interface of the bubble
imposes a large compressive load on the nanotube causing buckling and scission,150

2) the expulsion of a nanotube from a bubble in the final stages of the collapse in an
orientation tangential to the bubble surface, where the fluid flow imposes a large
compressive load causing the buckling-mediated scission of the nanotube133 and 3)
a length-dependent competition of rotation to a radial orientation and scission under
tension, and of the bending and buckling-induced scission of a nanotube, where scis-
sion by both mechanisms takes place in the fluid near a collapsing bubble.134 Impor-
tantly, only the third mechanism does not rely on the nanotube getting (temporarily)
trapped inside the bubble. As a consequence, this mechanism is not restricted to the
negligibly small number of nanotubes that get sufficiently close to a cavitating bubble
to get trapped into it. Rather, it affects a significantly larger number of nanotubes
that are sufficiently close to the bubble to be exposed to some critical fluid strain rate
above which buckling-mediated scission occurs.134

The work presented in this chapter is an extension to the work in which the length-
dependent competition between scission under tension and buckling-mediated scis-
sion was proposed.134 The Brownian dynamics simulation employed in that study is
extended in this chapter to allow for the explicit scission of the nanotubes. An impor-
tant advantage of this approach, that was already recognised in the previous work,151

is that it allows for simulation of the motion of the nanotube fragments resulting from
scission. If these fragments are exposed to stresses or degrees of bending that cause
scission of these fragments themselves, scission occurs in our simulation. Hence, by
allowing for explicit scission we can determine whether a nanotube will break more
than once during the collapse of a single bubble.

We shall show that if the nanotube is sufficiently long this can indeed occur. This
has important consequences for the scission kinetics, which are traditionally modeled
by presuming that a single interaction between a nanotube and a collapsing bubble
leads to a single scission of the nanotube at the most.126,127,130,133,134 Moreover, we
show and argue that the exact scission mechanics are determined by a rich interplay
between 1) the length of the nanotube and its persistence length, determining the
number of places in which it can buckle, and 2) the length of the nanotube and its
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tensile strength, dictating the minimum scission length for scission under tension,
discussed in chapter 6, and hence the number of places in which it can break under
tension, and 3) the length of segments that are free from significant bending relative to
the minimum scission length for scission under tension, which determines if scission
under tension can occur.

Before we can address this interplay between these properties of the nanotubes in
detail, we must first discuss the simulation method. In section 7.2 we discuss the sim-
ulation of the dynamics of a bubble undergoing transient cavitation and the fluid flow
generated by this. In contrast to the approach taken in the previous chapter, where
the bubble dynamics are modeled by the (rescaled) empty cavity approximation,145

we here use the full Rayleigh-Plesset equation40 because it allows us to include the
explosive growth phase of transient cavitation in the simulation and because it is more
accurate. In section 7.3 we briefly discuss the Brownian dynamics simulation of the
carbon nanotube, which is modeled by a bead-rod model,152–154 and we discuss the
criteria for which a nanotube undergoes scission and the implementation of explicit
scission in the simulation. Finally, in section 7.4 we present the results of the simu-
lations and in section 7.5 we discuss the implications of these results for the scission
mechanics and kinetics.

7.2 Bubble dynamics & Rayleigh-Plesset equation
The method by which the bubble dynamics are simulated was previously developed
and the implementation in the simulations we perform has remained unchanged.134,151

In this section, we give a brief overview of the implementation of the bubble dynamics
and how the Rayleigh-Plesset equation is solved in the simulation. Here, we use the
Rayleigh-Plesset equation40 to model the bubble dynamics rather than the (rescaled)
empty cavity approximation,145 as introduced in chapter 6.2, because it allows for the
simulation of the growth phase of the bubble. Moreover, the simulation is inherently
numerical, so unlike for the work presented in chapter 6, it is not crucial to have an
analytical relation between the bubble radius and the rate at which the bubble radius
changes. Because of this, it is preferable to use the more accurate and physically
more realistic Rayleigh-Plesset equation that unlike the empty cavity approximation
does take viscous effects, a time-dependent acoustic field, surface tension and iner-
tial effects into account.

The Rayleigh-Plesset equation is given by

ρ
(
RR̈ +

3

2
Ṙ2

)
+

2σ
R + 4µ ṘR + p0 − p(t) − pbubble = 0, (7.1)

where R = R(t) is the bubble radius, Ṙ(t) the velocity of the bubble wall, R̈(t) the
acceleration of the bubble wall, ρ = 103 kg/m3 the mass density, σ = 40.1 mNm−1 its
surface tension, µ = 10−3 Pa s its viscosity and p0 = 101 kPa the ambient pressure
in the sonication liquid. These values correspond to the properties of water under
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ambient conditions, where a concentration of sodium dodecyl sulfate equal to the
critical micelle concentration is added.134 A surfactant such as sodium dodecyl sulfate
is typically added in sonication experiments because it stabilises exfoliated carbon
nanotubes and prevents them from rebundling.39

Eq. (7.1) involves two time dependent pressures, the first is the applied acoustic
pressure,

p(t) = pa sin (ωt) , (7.2)

where pa is the acoustic pressure amplitude, introduced in chapter 6.2, and ω, the
frequency of the applied acoustic field. The pressure inside the bubble, pbubble, de-
pends on the bubble radius and hence on time and is the sum of the vapour pressure
in the bubble, pV = 1750 Pa, and the gas pressure of other molecules present in the
bubble, pgas.134,151 In the simulation a distinction between two regimes with different
relations between pbubble and the radius of the bubble, R is made.134,151 In the first
regime, during bubble growth and the initial stages of collapse, the dynamics is pre-
sumed to be quasistatic and isothermal and the vapour pressure remains constant
as water molecules freely interchange between the vapour and the liquid phase, and

pgas = p0gas (Ri/R)
3κ , (7.3)

where p0gas = p0−pV+2σ/Ri is the equilibrium gas pressure inside the bubble prior to
explosive growth, Ri is the initial bubble radius at that moment and κ = Cp/Cv = 1.4
is the ratio of the isobaric to the isochoric heat capacity of an ideal diatomic gas (air
mostly consists of diatomic molecules). In the final stages of bubble collapse eq. (7.3)
no longer holds, the collapse is then so fast and violent that the process can no longer
be presumed to be isothermal and quasistatic. Instead, the process is presumed to
be adiabatic and there is no longer a free exchange of solvent molecules between
the vapour and liquid phase, and

pbubble = 2pV (Rcrit/R)3κ , (7.4)

where Rcrit is a critical radius that separates the regimes where the gas pressure is
presumed to follow either eq. (7.3) and (7.4). This critical radius is reached when the
gas pressure given by eq. (7.3) equals the vapour pressure inside the bubble.

The Rayleigh-Plesset equation, eq. (7.1), is solved by a fourth order Runge-Kutta
method in the simulation.134 In our simulations we presume, just as in previous sim-
ulations,134 an acoustic pressure amplitude of 1.5 MPa and an acoustic frequency of
20 kHz, while the initial bubble radius is presumed to be equal to 1 µm, which is larger
than the critical Blake radius required for the explosive growth of the bubble.136,138,139

The resulting relation between time, the acoustic pressure and the bubble radius is
shown in fig. 7.1.

The solution of the Rayleigh-Plesset equation for the parameter values previously
listed and shown in fig. 7.1 has several interesting features. Firstly, it shows that bub-
ble remains to grow even after the acoustic pressure in the liquid becomes positive
and hence larger than the pressure inside the bubble. In chapter 6.2 this effect was
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Figure 7.1: a) The applied acoustic pressure, p(t), as a function of time. b) The solu-
tion of the Rayleigh-Plesset equation, eq. (7.1), for the radius of a bubble undergoing
transient cavitation as a function of time for an applied acoustic field as shown in fig.
7.1a. The values of the various parameters in the Rayleigh-Plesset equation used to
solve it are given in the main text.

taken into account in the calculations of the maximum radius the bubble attains at the
end of its explosive growth.139 In the final phase of bubble growth, the kinetic energy
of the fluid flow that is generated by the expanding bubble is slowly dissipated by
pressure-volume work.139 Secondly, fig. 7.1 shows that the collapse of the bubble is
insufficiently fast to have finished before the rarefaction phase of the applied acoustic
field starts, i.e., in the final stages of collapse the applied acoustic pressure is nega-
tive. For a larger acoustic pressure amplitude, the bubble can grow to such a large
size that it cannot manage to collapse within a single acoustic cycle and only partially
collapses. This is then followed by another growth phase and finally ends by the full
collapse of the bubble once the acoustic pressure becomes positive again.134 We do
not consider this type of bubble dynamics in the work presented in this chapter.

In the next section we discuss the implementation of a Brownian dynamics sim-
ulation of a carbon nanotube near a bubble undergoing transient cavitation. In this
simulation, the bubble dynamics is presumed to follow those shown in fig. 7.1. The
corresponding fluid flow is obtained by presuming incompressibility of the fluid and
spherical symmetry of the bubble. In chapter 6.2 we showed that in this case the
local fluid velocity, v (r, t) at a distance r from the center of the bubble is given by

v⃗ (r, t) = Ṙ(t)R2(t)
r2 êr , (7.5)

where êr is a radial unit vector and the origin of the coordinate system corresponds
to the center of the bubble. In the Brownian dynamics simulation this fluid flow is
incorporated as an “external field” that exerts a force proportional to the fluid viscosity
on the nanotube. Hence, it is not perturbed by the presence of the nanotube.
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7.3 Brownian dynamics of a bead-rod chain
In the Brownian dynamics simulation, the carbon nanotube is modeled as a bead-
rod chain of N beads and N − 1 inextensible rods linking the beads.134 Stokesian
dynamics are presumed in the simulation, meaning that inertial effects can be ne-
glected. We discussed this presumption in detail in chapter 6.3. As a consequence,
the total force on each of the i = 1...N beads equals zero,

F⃗ potential
i + F⃗Brownian

i + F⃗ drag
i + F⃗metric

i + F⃗ constraint
i = 0, (7.6)

where F⃗ potential
i are forces caused by the bending of the nanotube,152–154 F⃗Brownian

i
is a random force on the bead caused by thermal fluctuations,152 F⃗ drag

i are viscous
drag forces on the bead that are proportional to the relative fluid velocity along the
bead,152,153 F⃗metric

i are pseudo forces that must be included to retain the theoretical
equilibrium conformation distribution of the chain152,154 and finally F⃗ constraint

i are the
forces on the bead resulting from the tension in the extensible rods connected to the
bead.152

The potential forces, F⃗ potential
i , caused by the bending of the nanotube are calcu-

lated from the discrete worm-like chain model and are proportional to the bending
stiffness of the nanotube which is LpkBT , where Lp is the persistence length of the
nanotube and kBT is the thermal energy.154 The initial conformation of the nanotube
prior to the explosive growth of the bubble is sampled from the equilibrium conforma-
tion distribution of a discrete worm-like chain and the center of mass of the nanotube
is placed at a distance di from the center of the bubble.134,153

The viscous drag forces, F⃗ drag
i , are, just as in the analytical scission model, pre-

sented in chapter 6.3, calculated by application of first-order slender body theory.146,147

In this approximation the viscous drag forces are proportional to the relative fluid ve-
locity along the nanotube. The proportionality constant is itself proportional to the
fluid viscosity and it is anisotropic due to hydrodynamic screening of the fluid flow
along the (local) main axis of the nanotube. The component perpendicular to the
main axis is twice as large as the component parallel to the main axis. In contrast
to the work presented in the previous chapter a correction term that is proportional
to the logarithm of the aspect ratio of the nanotube is included in the proportionality
constants.126,146,147,151

By solving eq. (7.6) for i = 1..N one finds the instantaneous velocity of each of
the N beads. Due to the presumed Stokesian dynamics, these velocities are such
that the viscous drag force resulting from the motion of each of the beads is such
that it is equal but opposite to the sum of all other forces acting on the bead. These
forces include but are not restricted to the viscous drag force imposed by the local
fluid velocity at the position of the bead generated by the cavitating bubble, as well
as a force resulting from the tension in the inextensible rods connecting the sub-
sequent beads such that the length of the nanotube remains constant. Given the
instantaneous velocities of all the beads calculated in this manner, the “new” position
and conformation of the nanotube can be calculated by integration over a single time
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step and hence the time-dependent motion of a carbon nanotube near a cavitating
bubble can be calculated.

By considering the conformation of the nanotube at each time step as well as
the tension in each of the rods, we check if scission of the nanotube occurs at that
point in time. In our simulations, scission under tension occurs if the tension in a
rod exceeds the breaking strength of the nanotube, while scission due to bending
and buckling occurs when the local radius of curvature of the nanotube falls below
a critical value.134,151 In previous simulations,134,151 scission under tension occurred
when the fluid strain rate at the center of mass of the nanotube exceeded a critical
length-dependent value. This method has two important drawbacks. Firstly, in reality,
scission only occurs at this critical strain rate when the nanotube is radially oriented
relative to the bubble surface and fully stretched, clearly this is not always true in the
simulations due to the bending of the nanotube. Secondly, the exact scission position
remains unknown. Both of these issues are resolved when the tension in each of the
rods is compared to the breaking strength of the nanotube at each time step to check
for scission.

If at any time the tension in any of the rods exceeds the breaking strength of the
nanotube, or if the local radius of curvature at any of the beads falls below the critical
radius of curvature, the nanotube breaks at precisely that point. The simulation has
been adapted to explicitly take this into account. If either of the scission criteria is met,
the simulation is interrupted and continued for the two separate nanotube fragments
that are formed by scission. That is, if a nanotube of N beads breaks at bead k
then the simulation is continued for one bead-rod chain of k beads and one bead-rod
chain of N − k + 1 beads as to assure that the total length the nanotube fragments
is conserved. The initial position of these fragments is identical to the position of
them just prior to scission. Note that these fragments do not interact in any way in
the remainder of the simulation. In the next section we use this simulation method to
investigate under which circumstances multiple scissions can occur during a single
collapse phase of the bubble and how changes in persistence length, tensile strength
and the critical radius of curvature affect the scission mechanics.

7.4 Results
In this section we investigate the scission mechanics of carbon nanotubes by the
Brownian dynamics simulation introduced in the previous two sections. While in pre-
vious work134,151 it was shown that there is a length-dependent competition between
scission by bending and by buckling, it was not possible to study the explicit scission
and hence, the possibility of multiple scissions in a single nanotube during a single
collapse of a bubble. Here, we address two different types of scission scenarios: 1) a
long (model) nanotube with a “small” persistence length and a “high” tensile strength,
e.g., a single-wall nanotube, for which we expect multiple scissions to occur due to
bending and subsequent buckling and 2) a long (model) nanotube with a “large” per-
sistence length and a “low” tensile strength for which we expect multiple scissions to
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occur under tension.
For the first set of simulations we use parameter values representative of a single-

wall carbon nanotube. The tensile strength of the model nanotube is set to σT = 37
GPa,134,144,155 which corresponds to a FB = 20 nN breaking force for a nanotube
with 1.2 nm diameter. The persistence length is set equal to Lp = 30 µm, which
corresponds to the lower boundary of values reported in literature for the persistence
length of a single-wall carbon nanotubes.148,149 For the critical radius of curvature
below which scission occurs we use ξc = 40 nm, which is the same value as used in
previous simulations.134 In the final section of this chapter, the discussion, we discuss
this scission criterion in some detail.

Simulations were performed for a total of 40 nanotubes of a 4 µm length. The
center of mass of each of these nanotubes is at a distance of di = 50 µm from the
center of the bubble just prior to its explosive growth. We choose this value for the
initial distance because it is sufficiently small to allow for the scission of the nanotube.
The initial conformation of each of these nanotubes is randomly sampled from the
discrete worm-like chain model. The results show that all of these nanotubes undergo
scission at least once, while some nanotubes undergo scission up to six times, where
scission always occurs due to buckling and the associated high degree of bending,
i.e., the local radius of curvature falls below 40 nm. In fig. 7.2 the conformation of
a) a nanotube at the moment at which the first of a total of six scissions occurs, b)
the same nanotube at the moment of the fourth scission and c) at the moment of the
sixth and final scission is shown.
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Figure 7.2: The conformation of a 4 µm long nanotube at three different moments
in time. Different fragments are indicated by different colours. The origin of the co-
ordinate system is at the center of the bubble and the unit of length is a micron. a)
the conformation of the nanotube at the moment of the first of a total of six scissions,
b) at the moment of the fourth scission, and c) at the moment of the sixth and final
scission.
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In fig. 7.3 the conformations of two identical nanotubes of 4 µm that undergo scis-
sion just once by bending and subsequent buckling during the collapse of the bubble
are shown. Note that the initial conditions for these two nanotubes are identical to the
one of which the scission is shown in fig. 7.2. From figs. 7.2 and 7.3 it is clear that
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Figure 7.3: a,b) The conformations of two 4 µm long nanotubes at the moment of
the first and only scission it undergoes. Different fragments are indicated by different
colours. The origin of the coordinate system is at the center of the bubble and the
unit of length is a micron.

a nanotube can attain significantly varying conformations during the collapse of the
bubble even if the simulation settings are identical. These differences are created
during the initial stages of collapse. Here the nanotube is aligned tangential to the
bubble surface and fully stretched and thermal fluctuations determine where and in
how many places this symmetry is broken and hence where the nanotube buckles
under the compressive forces exerted on it by the fluid flow.134,151

Another important finding from this simulation is that nanotubes of a length of 4
µm that start out at a distance of 50 µm from the center of a bubble never break under
tension (0 out of 40 did break under tension). Out of the 40 nanotubes simulated, the
maximum tension reached is 12 nN, which is below the 20 nN breaking strength of
the nanotube. This can be understood using results from the previous chapter, and
specifically by eq. (6.18) for the minimum length for which scission under tension can
occur. By applying this equation to the simulation conditions, we find that the mini-
mum scission length is 1.6 µm for a fully stretched nanotube. Note that this minimum
length is valid only for nanotubes that are very close to the bubble and is larger for
nanotubes that start out at a larger distance from the bubble.

From fig. 7.2 it is clear that the buckling and bending of the nanotube leads to
segments that are free from significant bending, aligned approximately radially, that
are shorter than 1.6 µm. While the conformation of the nanotubes in fig. 7.3 are
close to 1.6 µm, the total stress to which they are exposed is simply insufficient to
cause their scission. The persistence length of 30 µm is insufficient for any nanotube
segment of sufficient length to undergo scission under tension to be formed during
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the collapse of the bubble. Or put differently, the tensile strength of the nanotube
is too large for the segments that are formed during the buckling of the nanotube to
undergo scission under tension.

However, scission under tension becomes the dominant scission mechanism when
the persistence length of the model nanotubes is increased while their breaking strength
is decreased. We have performed simulations for 40 nanotubes of again a length of
4 µm for this scenario by decreasing the breaking strength to 2 nN, by increasing the
persistence length up to Lp = 500 µm and by decreasing the initial distance between
the bubble and the nanotube to 20 µm. The simulations show that these nanotubes
always break atleast once under tension and up to a maximum of three times, while
scission due to bending and buckling never occurs for these nanotubes. Of course
we realise that these values might not be very realistic for single wall nanotubes,
however these value might be representative of other types of fibers and they allow
us to explore different scenarios by which scission occurs.

In fig. 7.4 the conformation of a nanotube that undergoes scission a total of three
times is shown at the moment of each of these three scissions. This figure shows
that even though the persistence length is increased from 30 µm (figs. 7.2 and 7.3)
up to 500 µm, the nanotube still bends and buckles, in this case in two places. All
three of the segments that are aligned more or less radially and which are free from
bending undergo scission under tension near the middle of each of these segments.
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Figure 7.4: The conformation of a 4 µm long nanotube at three different moments in
time. Different fragments are indicated by different colours. The origin of the coordi-
nate system is at the center of the bubble and the unit of length is a micron. a) The
conformation of the nanotube at the moment of the first of a total of three scissions,
b) at the moment of the second scission, and c) at the moment of the third and final
scission.

In fig. 7.5 the conformation at the moment of scission of two nanotubes that un-
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dergo scission only once is shown. These nanotubes have buckled and are bent
in three places, rather than just two as in fig. 7.4. As a consequence only one of
the radially oriented segments which is free of bending is sufficiently long to undergo
scission under tension.
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Figure 7.5: a,b) The conformations of two 4 µm long nanotube at the moment of
the first and only scission it undergoes during the collapse of a bubble. Different
segments are indicated by different colours. The origin of the coordinate system is
at the center of the bubble and the unit of length is a micron.

Clearly, the results shown in figs. 7.4 and 7.5 are opposite to the results as shown
in figs. 7.2 and 7.3. In the scenario just discussed the nanotubes have a “large” per-
sistence length and a “low” tensile strength and these nanotubes break under tension
before any part of the nanotube undergoes scission due to bending and buckling. Pre-
sumably this is the case because for scission due to bending and buckling to occur
the segments of the nanotube on either side of the highly bent part of the nanotube
must be sufficiently long to be able to enforce a sufficiently high degree of bending
for scission to occur. This suggests that there is also a minimum length of the nan-
otube segments that are free from bending, and which surround a highly bent part
of the nanotube, for scission under bending to occur. Presumably, in this case this
minimum length for which scission under bending and buckling can occur is larger
than the minimum length for which scission under tension can occur. As a conse-
quence, scission under tension occurs before scission due to buckling and bending
can occur and the resulting segments of the nanotube surrounding highly bent parts
of the nanotube are too short to force the local curvature in these points below the
critical radius of curvature for which scission occurs.

We restrict our simulations to these two “types” of nanotube (or more generally,
types of fiber), i.e., nanotubes with a “large” persistence length but “low” tensile
strength and nanotubes for which the opposite holds true. In the next section we
discuss the results that were presented in this section and specifically address how
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the explicit scission of the nanotubes in the simulation, previously not included in the
simulations, affect the conclusions and results that were obtained from these simu-
lations.134,151

7.5 Discussion
We have reported on results of Brownian dynamics simulations for the scission of
carbon nanotubes near a transiently cavitating bubble. While this simulation was
previously developed,134,151 we extended it by allowing for explicit and multiple scis-
sions within a single nanotube during the collapse of a single bubble. An important
presumption in the simulations is that nanotubes undergo scission when the local
radius of curvature falls below 40 nm. For thin single wall nanotubes this radius
might actually be as small as 15 nm.134 Moreover, both experiments and simula-
tions suggest that the buckling of a nanotube does not necessarily always lead to its
scission.28,156–158 Experiments even show that multi-wall nanotubes can repeatedly
buckle without any permanent deformation being formed.158 Note that the nanotubes
in these experiments are not subjected to the violent fluid flow generated by a collaps-
ing bubble, it is well possible that the combination of buckling and the viscous drag
forces exerted by the fluid flow does result in buckling-mediated scission. A possi-
ble mechanism for this is the previously proposed “atomic sheet-fracture” scission
mechanism for single-wall nanotubes.133

The key result from the previous simulations is that long nanotubes break by bend-
ing and buckling while shorter nanotubes break under tension after reorientation to a
fully stretched and radial alignment.134,151 Our results show that the reality is slightly
more complex and involves multiple competing length scales. Moreover, our results
show that long nanotubes will break in multiple places during the collapse of a sin-
gle bubble, contrasting with all previous models for carbon nanotube scission under
sonication in which it is presumed that scission occurs at the most once during the
collapse of a single bubble.126,127,130,133,134

The results from our simulations suggest that there are three key length scales
involved in the scission of carbon nanotubes under sonication. These are: 1) The
length of the segments of the nanotube that are free of significant bending and ap-
proximately radially oriented in the final stages of the collapse, presumably deter-
mined by the persistence length of the nanotube. The ratio of this length scale to
the length of the nanotube determines the number of places in which the nanotube
bends and buckles. See chapter 6, 2) The minimum length of a radially oriented and
relatively straight segment of the nanotube for which it can undergo scission under
tension, as determined by the tensile strength relative to the maximum strain rate
of the fluid flow to which the nanotube is subjected. 3) The minimum length of the
segments surrounding a highly bent part of the nanotube for which the local radius
curvature can be forced below the critical radius of curvature for scission to occur.
Presumably this length is set by a combination of this critical radius of curvature, the
persistence length of the nanotube and the maximum strain rate of the fluid flow to
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which it is subjected.
These three length scales compete. If the minimum length for scission under ten-

sion to occur is larger than the length of the segments remaining free from significant
bending then no scission under tension can occur. If the minimum length for scis-
sion due to bending and buckling to occur is smaller than the length of the segments
that remain free of bending then buckling-mediated scission occurs. This situation
is shown in figs. 7.2 and 7.3. Presumably, if the critical radius of curvature for scis-
sion due to bending and buckling to occur is decreased, the associated minimum
length for buckling-mediated scission increases and if the critical radius of curvature
is decreased sufficiently, this length becomes larger than the length of the nanotube
segments that are free from bending, and no scission of the nanotube can occur.

This suggests that it is not so much the length of the nanotube itself that dictates
the scission mechanism but rather that it is the length of the segments that remain free
from significant bending, which given the length of the nanotube is directly propor-
tional to the number of points at which the nanotube bends and buckles, that dictates
the scission mechanism. If the length of these segments is larger than the length for
scission under tension and for scission due to bending and buckling to occur, then
scission by both mechanisms is possible. However, if the minimum length for scis-
sion under tension is significantly smaller than the minimum length for scission due
to bending and buckling, then the nanotube will break under tension and the resulting
fragments will be too short for scission due to bending and buckling to occur. This
situation is shown in figs. 7.4 and 7.5.

On the other hand, if the minimum scission length for scission due to bending and
buckling to occur is smaller than the minimum length for scission under tension, then
it is presumably possible that the nanotube first breaks due to bending and buckling
after which the resulting fragments, which are still sufficiently long to allow for scission
under tension, undergo scission under tension. Clearly, the competition between the
three length scales is complex and allows for a wide variety of scission mechanisms.

An important conclusion from this discussion is that unless both the minimum scis-
sion length for scission under tension and the minimum length for buckling-mediated
scission are of similar magnitude, one of these scission mechanisms will predomi-
nate. For actual single wall carbon nanotubes, this indeed appears to be the case
because simulations for a 4 µm long nanotube only show scission due to bending and
buckling to occur, see figs. 7.2 and 7.3. This supports the previously proposed dis-
tinction of short nanotubes undergoing scission under tension and longer nanotubes
undergoing scission due to bending and buckling.134 Here, it should be noted that the
length of relatively short nanotubes that reorient into a fully stretched radially aligned
conformation is presumably longer than the length of the segments that remain free
from significant bending in longer nanotubes that bend and buckle because their re-
orientation suppresses buckling. Hence, these nanotubes can be sufficiently long to
undergo scission under tension even if longer nanotubes that buckle cannot.

We realise that the previous discussion is speculative and that it would bene-
fit from additional simulations for nanotubes of different lengths. We plan to per-
form these simulations and in particular aim to use the results to statistically describe
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the length-dependent probability that nanotubes undergo scission once, twice, even
more often or not at all. Given these probabilities the time evolution of the nanotube
length distribution can be simulated, which allows for comparison with experiments
in which the decrease of the average nanotube length during sonication has been
measured.122,126,130,132 This makes a detailed investigation of the competition be-
tween scission under tension and buckling-mediated scission possible. Moreover,
it allows for an investigation of the effects of multiple scissions in a long nanotube
during its interaction with a single collapsing bubble. In principle, having multiple
scissions within a single nanotube should significantly speed up the decrease of the
average nanotube length relative to the situation where scission occurs at the most
once.

While the number of times a nanotube undergoes scission varies discretely, this
should presumably not give rise to discontinuous changes in the scission kinetics,
i.e., in the time-dependent decrease of the average length, which experiments have
shown to be non-universal.122,126,130,132 Rather, our results show that the number
of times a 4 µm long nanotube undergoes scission varies and should be described
statistically. Presumably, the resulting probability distribution varies continuously with
length.

In summary, simulations of the scission of carbon nanotubes under sonication by
Brownian dynamics simulations is a powerful tool to investigate the mechanics by
which scission occurs. Our results suggest that depending on the properties of the
nanotube or the fibre the mechanics can differ significantly and that long nanotubes
can undergo scission in multiple places.

We would like to thank Matteo Pasquali for discussions and for making available
the code of the Brownian dynamics simulation that was used to obtain the results
presented in this chapter.
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8.1 Aim of the thesis
The aim of the work presented in this thesis is to uncover the non-universal aspects
of the equilibrium and non-equilibrium behaviour of two different soft matter systems
that appear when additional degrees of freedom, which are often neglected in mod-
els for these systems, are incorporated in the theory at a highly coarse-grained level.
The first system is a model two-state protein dispersion in which the proteins can re-
versibly switch between two different conformations. For this system we have investi-
gated the non-universal conditions under which phase separation occurs in the model
dispersion and the manner by which the associated transition from a homogeneous to
a heterogeneous phase separated state proceeds. To this end we presented a model
two-state protein dispersion in which the proteins can reversibly switch between their
native and a high-energy non-native state. The effective volumes of these two states
are not necessarily equal. We investigated both the equilibrium and non-equilibrium
properties of this model system. Furthermore we have shown that a two-state pro-
tein model is an excellent method to interpret the results of infrared spectroscopy
measurements on an actual protein dispersion.

In the second system carbon nanotubes are dispersed in a liquid by ultrasound.
The applied acoustic field leads to ultrasonic cavitation that allows for the dispersion
and exfoliation of carbon nanotubes. For this system we investigated the mechan-
ics by which scission occurs and in particular the aspects of the scission mechanics
that give rise to non-universality in the scission kinetics. To this end, we developed
an analytical model for the scission of nanotubes under tension, the results of this
model suggest that the length-dependent motion of the nanotubes near a cavitat-
ing bubble lead to non-universal scission kinetics. Brownian dynamics simulations
were performed to investigate the competition between scission under tension and
buckling-mediated scission of the nanotubes. The results show that the precise scis-
sion mechanism depends on the properties of the nanotube and that sufficiently long
nanotubes will undergo scission multiple times during their interaction with a single
collapsing bubble.

In the following sections we review and discuss the most important results and
conclusions from the work presented in this thesis. In section 8.2 we do so for the
work related to the study of the consequences of the coupling of changes in protein
conformation to their phase behaviour, while in section 8.4 we do so for the work on
the mechanics of carbon nanotube scission under sonication. In sections 8.3 and 8.5
we give an outlook and suggestions for future work on each of the two topics.

8.2 The coupling of conformational in proteins to their
phase behaviour

In the first part of this thesis we studied the coupling of changes in the conformation of
a protein to the phase behaviour of the protein dispersion. In the following we briefly
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discuss and list the most important results of the work presented in chapters 2, 3, 4
and 5.

In chapter 2 we presented a two-state method to interpret measurements by at-
tenuated total reflectance Fourier transform infrared (ATR FTIR) spectroscopy on
beta-lactoglobulin (BLG). Under the conditions at which the measurements were per-
formed, there is an equilibrium between the monomeric and dimeric state of this pro-
tein and the degree of dimerisation increases with increasing concentration due to
mass action effects. The most important results and conclusions from the work pre-
sented in this chapter are:

• The IR spectra can be interpreted as a linear combination of the spectra of
monomeric and dimeric BLG, allowing for determination of the degree of dimeri-
sation at the protein concentration for which the measurement is performed.

• By repeating this procedure for measurements at different protein concentra-
tions the concentration-dependent degree of dimerisation can be determined.

• A dimerisation model can be fitted to this experimentally determined relation be-
tween the protein concentration and the degree of dimerisation. Self-crowding
effects, which relate to changes in the total free volume caused by the dimeri-
sation of BLG, must be included in the dimerisation model if it is to successfully
account for the degree of dimerisation at the highest concentrations for which
experiments were performed.

• The dimerisation model which includes self-crowding effects gives a prediction
for the effective hard-sphere radius of the protein which includes electrostatic
interactions.

• The presented method is more widely applicable and can be used to quantita-
tively study the concentration-dependent equilibrium of any process in a protein
dispersion that involves changes in the secondary structure of the protein.

In chapter 3 we presented a model two-state protein dispersion in which the pro-
teins can reversibly switch between their native and a high-energy non-native state in
which the model proteins can engage in an attractive interaction with other proteins
that are also in the non-native state. For this model we studied the conditions under
which phase separation occurs and based on the local curvature of the free energy
landscape we determined the thermodynamic stability of the model dispersion. The
most important results from this work are:

• The model shows a demarcation between a regime of weak-coupling and a
regime of strong-coupling between changes in the conformation of the protein
and the phase behaviour of the protein dispersion. We have argued that this
demarcation is reminiscent of the distinction between the modeling of liquid-
liquid phase separation in which proteins are presumed to remain in their native
state and the modeling of amyloid fibrillation which hinges on changes in the
conformation of proteins.
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• In the weak-coupling regime the native and the non-native state of the protein
are separated by a free energy difference of less than 2 kBT and changes in
the conformation of the proteins are induced by changes in the local protein
concentration.

• In the strong-coupling regime the native and non-native conformation of the
protein are separated by a free energy difference of more than 2 kBT and there
is a first-order conformational phase transition that underlies phase separation
in the protein dispersion. This results in a strong coupling between the protein
conformation and the phase behaviour. The kinetics by which phase separation
occur become inherently dependent on the conformation of the protein and the
underlying first-order conformational phase transition can give rise to nucleation
phenomena even if the dispersion is thermodynamically unstable.

• At a fixed protein concentration of ϕ = 1, the model system reduces to a mean-
field Ising model system, which has a critical point at a free energy difference
of 2 kBT between the two conformations and for attractive interactions between
the non-native proteins of strength 4 kBT . This critical point coincides with both
the critical point of liquid-liquid phase separation for the case where the two
conformations are separated by 2 kBT , and the first appearance of the first-
order conformational phase transition.

• In the strong-coupling regime there is no longer a real critical point for liquid-
liquid phase separation. Instead, the regime in which liquid-liquid phase sepa-
ration occurs terminates in an Ising-like coexistence of phases with a different
average protein conformation at fixed concentration ϕ = 1.

• The phase behaviour of the model dispersion is non-universal, no law of corre-
sponding states has been found.

• For ε > 1.65, the phase behaviour of the model dispersion becomes re-entrant,
meaning that a continuous change in temperature leads to the transition from a
homogeneous state, to a phase separated state, back to a homogeneous state
and finally back to a phase separated state again.

• All of these conclusions hold true for both a Flory-Huggins-based model free
energy and a Carnahan-Starling-based model free energy.

In chapter 4 we extended the model that was first presented in chapter 3 to include
differences in the effective volume between the two conformations. In this work we
presumed that upon transition to the non-native state, the effective volume of the
protein increases. The reversible switching between these two conformations allows
for the regulation of the free volume in the dispersion. The regulation of the amount of
free volume in the dispersion is in direct competition with the tendency of the proteins
to switch to their non-native state of non-minimum volume in which they can engage
in attractive interactions with other proteins in the same state. The most important
results from this work are:
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• Self-crowding effects significantly affect the predicted phase behaviour even if
the difference in the effective volume between the two conformations is small.

• At high protein concentrations self-crowding effects stabilise a homogeneous
phase of proteins in their native conformation.

• At intermediate concentrations a homogeneous phase of proteins in the non-
native state is stabilised.

• The equilibrium phase at an intermediate concentration and the equilibrium
phase at a high concentration as described in the above are separated by a
first-order conformational phase transition. At lower concentrations a second
first-order conformational phase transition can occur. This latter transition is
also observed in the model dispersion where both conformations are of equal
size.

• Both first-order conformational phase transitions are associated with a regime
of phase separation. Hence, when the conformations are not of equal size there
are two distinct concentration intervals within which phase separation of the pro-
tein dispersion occurs. The regime of phase separation at high concentrations
is caused by self-crowding effects.

• The phase diagram of the model protein dispersion falls in either of two cate-
gories depending on the free energy difference and size difference between the
two conformations of the protein. In the first category both regimes of phase
separation end in separate critical points. In the latter category this does not
hold true and both regimes of phase separation end in a joint non-standard
“critical point” at which the two regimes of phase separation can no longer be
distinguished and there is a coexistence between two phases of different aver-
age protein conformation at an equal protein number density.

• The model system is of theoretical interest because protein concentration is no
longer a conserved order parameter.

In chapter 5 the kinetics by which phase separation occur in the model protein
dispersion, first introduced in chapter 3, were investigated. To this end, a set of
model-C-like kinetic equations and a square-gradient-based free energy functional
were presented. We performed a stability analysis on these equations and uncovered
three distinct modes by which instabilities in the model dispersion grow. The most
important results from this work are:

• The kinetics of phase separation involve changes in both the local protein con-
centration and conformation in this model. Changes in concentration occur at a
time scale proportional to the protein diffusion time, while changes in the protein
conformation occur at a time scale proportional to the conformational relaxation
time of the protein.
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• The kinetics by which non-equilibrium processes occur are a function of both
the local geometry of the free energy landscape and the relative magnitudes of
these two time scales.

• A linear stability analysis reveals three distinct modes by which instabilities in
the dispersion can grow, being, 1) the global relaxation of the protein confor-
mation while the protein concentration remains unchanged, 2) a spinodal mode
where differences in both the local protein concentration and conformation are
established at a well defined length scale, and 3) the scale-free relaxation of
both protein concentration and conformation in a manner in which the local
concentration of proteins in the non-native state is conserved. Presumably this
last mode is an artifact of our model.

• The dominant mode by which an instability grows depends strongly, and pre-
sumably in a non-universal manner, on the initial average conformation of the
proteins.

• In both the weak-coupling and strong-coupling regime the relaxation from a
homogeneous non-equilibrium state to a homogeneous equilibrium state can
involve temporary phase separation in the protein dispersion.

• In the strong-coupling regime the underlying first-order conformational phase
transition greatly complicates the kinetics by which phase separation occurs
and evaluation of the full non-linear kinetic equations is necessary to obtain a
more thorough understanding of this process.

In the next section we give a brief overview of areas where additional research is
required and areas where this is possible.

8.3 Outlook (part I)
In this section we give a point-by-point overview of future research that is required
to strengthen the work presented in this thesis and give suggestions for areas in
which interesting new research can be performed based on the work presented in
this thesis. However, before this we give some general remarks on the research on
the phase behaviour of protein dispersions.

Theoretical investigations of the phase behaviour of proteins have focused on
various properties of the protein. The most important of these are the anisotropic in-
teractions between proteins that result from their chemically heterogeneous surface,
which is covered by theoretical work on patchy colloids. A second important prop-
erty of proteins is that they interact over a length scale that is small relative to their
own size, by now it is well established that this leads to meta-stability of liquid-liquid
phase separation with respect to crystallization of the proteins. Finally, some work
has focused on the “softness” of the proteins and how it influences their crystalliza-
tion. Importantly, in the theoretical modeling on all of these aspects of the proteins
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phase behaviour, the proteins are presumed to remain in their native state. In con-
trast to this is the theoretical work on the aggregation of proteins in their non-native
state, for example in amyloid fibrils, in which changes in the conformation of the pro-
teins are explicitly considered. As we have previously argued, there is no reason to
exclude the possibility of reversible changes in the conformation of proteins from the
modeling of their phase behaviour.

The work presented in this thesis is a first step to theoretically investigate the
consequences of the coupling of changes in the conformation of proteins to their
phase behaviour. However, we focused on liquid-liquid phase separation only. To
obtain an understanding of the effects of conformational changes in a protein on the
full phase behaviour exhibited by a protein disperision, our model must be extended
to also include a model for a transition to a crystalline phase and a gel state. This
will facilitate the comparison with actual experiments, and show which aspects of the
liquid-liquid phase separation in the model two-state protein dispersion are hidden
behind the transition to a gel state and a crystalline phase.

In a next step, the two-state free energy model could be refined by the introduction
of a more realistic protein-protein interaction potential. Presumably this is especially
important in the development of a model for crystallisation for which it is already
known that the small interaction length of the proteins relative to their size results in
the meta stability of liquid-liquid phase separation with respect to crystallization. In a
final step, our model in which the conformation of proteins is not conserved can be
coupled to a patchy colloid model, allowing for changes in the anisotropic interactions
between the proteins due to changes in the conformation of the protein.

The development of these ever more sophisticated models for the phase be-
haviour of proteins should be accompanied by experimental validation of the predic-
tions made by these models. Of especial importance for the work presented in this
thesis is that conformation of proteins is monitored in experiments in which this is not
standard practice at the moment, e.g., experiments on liquid-liquid phase separation.
The final aim of all of this, is of course to obtain an as complete as possible theoretical
framework that describes the phase behaviour of proteins. This framework should be
helpful in interpreting the results of experiments on protein phase behaviour and iden-
tify and understand problems that occur in the development of practical applications
that involve the handling and manipulation of protein dispersions.

Besides a more general outlook on the research of protein phase behaviour, we
next give a number of topics and areas that are directly related to the results pre-
sented in this thesis for which additional research is required. These are,

• The two-state method by which the concentration-dependent degree of dimeri-
sation was determined from the infrared spectra of beta-lactoglobulin proteins
in chapter 2 needs validation by a direct comparison of the predicted dimerisa-
tion constant to the dimerisation constant as determined by other, more estab-
lished, experimental techniques. Due to the extreme sensitivity of the dimerisa-
tion constant on the solution conditions, this requires experiments by different
experimental methods to be performed on identical protein solutions.
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• The theoretical investigation of the model two-state protein dispersion as pre-
sented in chapters 3, 4 and 5 would also benefit from a direct comparison with
experiments on the phase behaviour of protein dispersions. Such experiments
must include a method to experimentally determine and monitor the conforma-
tion of the proteins as a function of the solution conditions even and especially
for experiments for which such measurements are usually not performed. Fur-
thermore it is important to realise that some of the effects that are predicted by
our model are subtle and difficult to observe, for example it is not straightfor-
ward to experimentally observe a heterogeneous distribution of proteins in the
native and non-native state when the protein concentration is identical in both
phases.

• The nature of the “critical point” in the strong-coupling regime is as of yet not
fully understood, at this critical point the composition of the coexisting phases
is not identical and presumably this affects the critical behaviour at this “critical
point”. Additional research to understand the properties of this type of “critical
point” would be very interesting.

• The Ising-like conformational demixing at a protein concentration ϕ = 1 as
observed in the model dispersion when both conformation are of equal size
appears to “develop” into a fluid-fluid coexistence at unequal concentrations
ϕ < 1 for the situation where the effective volumes of the two conformations
are not equal. For a more thorough understanding of this process additional
research is required.

• In this thesis the coupling of conformational changes to liquid-liquid phase sep-
aration was studied. To understand the coupling to the full phase behaviour
of a protein dispersion, models must be developed that also include crystalline
phases and gel states.

• To understand the kinetics by which phase separation occurs in the model two-
state protein dispersion numerical evaluation of the full non-linear kinetic equa-
tions is required. The comparision of these results to actual experimental results
is again necessary to bridge the gap between theory and the actual behaviour
of protein dispersions.

• A particular problem with the model that was presented in chapters 3 and 4 is
that it implicitly presumes changes in the local protein concentration and confor-
mation to occur on a similar time scale. While we discussed the situation where
conformational changes are fast as compared to changes in the local protein
concentration in detail in chapter 3, we have not addressed the situation where
changes in the conformation occur at a larger time scale than changes in local
protein concentration. Additional work to uncover the consequences of a large
discrepancy between these two time scales is both relevant and important.
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8.4 The scission and exfoliation of carbon nanotubes
under sonication

In the second part of this thesis, we studied the mechanics by which scission of
nanotubes under sonication occurs. In the following we briefly list and discuss the
most important results of the work presented in chapters 6 and 7.

In chapter 6 we presented an analytical model for the scission of carbon nan-
otubes during sonication. In the model it was presumed that the nanotubes are fully
stretched and aligned radially in the fluid flow generated by a collapsing bubble. In
the model we explicitly included the length-dependent motion of the nanotubes and
calculated under which conditions scission of the nanotubes occurs. The most im-
portant results and conclusions from the work presented in this chapter are:

• The empty cavity approximation is a very good approximation to solutions of
the full Rayleigh-Plesset equation, which offers a more realistic mathematical
description of ultrasonic cavitation, if the length and time scale associated with
the empty cavity approximation are rescaled to match those of the solution ob-
tained for the full Rayleigh-Plesset equation.

• The length-dependent motion of nanotubes is an important factor in determin-
ing the scission mechanics and kinetics of the nanotubes. Short nanotubes
are dragged along more easily by the fluid flow and are as a consequence ex-
posed to a fluid flow with a higher shear rate than to which longer nanotubes
are exposed.

• This leads to a different scaling relation between the tensile strength and the ter-
minal length of the nanotube fragments that can be obtained by sonication than
previously thought. The terminal length of the nanotubes that can be reached
by sonication scales with the tensile strength to a power 1/1.16 instead of to a
power 1/2.

• The length-dependent motion of the nanotubes leads to a breakdown of the
power-law dependence of the scission rate on the nanotube length for the sit-
uation where the nanotube length is close to the terminal length that can be
reached by sonication. This should result in non-universal scission kinetics that
depend on the initial length distribution of the nanotubes and on the sonication
settings.

• The model allows for calculation of the position on the nanotube at which scis-
sion will occur. Typically this is near the center of the nanotube. The length of
the resulting fragments is approximately equal to half the length the nanotube
had prior to undergoing scission.

• By combining the length-dependent scission rate and the prediction for the point
on the nanotube at which scission occurs, a full description of the scission pro-
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cess is obtained that fully dictates the kinetics by which scission occurs during
sonication.

• It is plausible that exfoliation of nanotubes under sonication occurs by a scission-
mediated process.

In chapter 7 we presented the results of Brownian dynamics simulations on the
scission of carbon nanotubes under sonication. In the simulations the nanotubes
can undergo scission either under tension or by a buckling-mediated process. Fur-
thermore, in the simulations the nanotubes can undergo scission in multiple places
during their interaction with a single collapsing bubble. The most important results
and conclusions from the work presented in this chapter are:

• The precise mechanics by which scission occurs, being either scission under
tension or scission by bending and subsequent buckling, is determined by the
interplay of a number of length scales that depend on the tensile strength of
the nanotube, the persistence length of the nanotube, the maximum degree of
bending the nanotube can withstand without breaking, and finally the sonication
settings.

• In general, a fiber with a large persistence length and low tensile strength will
undergo scission under tension, while a fiber with a small persistence length
and high tensile strength will undergo scission due to bending and subsequent
buckling.

• Sufficiently long nanotubes can undergo multiple scissions during their interac-
tion with a single collapsing bubble. This has not been considered in any of the
previous model for the scission mechanics and kinetics of carbon nanotubes
under sonication. Presumably this affects the scission kinetics.

8.5 Outlook (part II)
Experiments on the kinetics by which scission of nanotubes occur under sonication
have revealed that these kinetics are non-universal. There has been some theo-
retical effort to understand the origin of this non-universality. In this thesis two new
mechanisms that can lead to non-universality were uncovered. These are, the length-
dependent motion of nanotubes of a length close to their terminal length, which leads
to a non-power law scission rate with corresponding non-universal scission mechan-
ics. Secondly, we have shown that depending on the length of the nanotube and
the properties of the nanotube, a nanotube can undergo more than a single scission
during the interaction with a single collapsing bubble. Presumably the scission kinet-
ics depend on the number of scissions the nanotubes undergo per interaction with a
collapsing bubble, which suggests that this could give rise to non-universal aspects.

Furthermore, in work by Pagani et al. it was suggested that scission under ten-
sion and buckling-mediated scission gives rise to different scission rates. Changes
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in the dominant scission mode then lead to non-universal scission kinetics. More-
over, in work that is currently in progress, we have seen that even a simple power
law scission rate, which has previously been presumed to result in universal scission
kinetics, does in reality not result in universal scission kinetics. In summary, there
is currently a multitude of possible explanations for the observed non-universal scis-
sion kinetics and a careful analysis of the kinetics corresponding to each of these
explanations is required to understand which of these explanations modes are im-
portant and dominant in determining the non-universal scission kinetics as observed
by experiment.

At the same time, research on the sonication of carbon nanotubes should focus
on the actual practical problem at hand. That is, how does sonication lead to the
exfoliation of nanotubes, and how can the highest degree of exfoliation be obtained
at a minimum degree of scission? If exfoliation of nanotubes indeed occurs by a
scission-mediated process as proposed in chapter 7, is it possible to have sonica-
tion settings that do allow for scission-mediated exfoliation while the sonication is
sufficiently mild to prevent further scission of the resulting nanotube fragments? A
second practically relevant question is whether sonication can be used to manipu-
late the length-distribution of exfoliated nanotubes in a controlled manner. In order
to answer both of these questions there are three areas in which more research is
required, these are, 1) the bubble dynamics, 2) the scission kinetics and 3) the exfo-
liation mechanics. We discuss each of these three points in the following,

• Can a mapping of the time and length scales associated with the solution of the
full Rayleigh-Plesset equation for different solution conditions be made? If this
is the case, the rescaled empty cavity approximation can be applied without
having to solve the full Rayleigh-Plesset equation for each set of sonication
settings. This would greatly increase the usability of the rescaled empty cavity
approximation.

• What are the consequences of more complicated bubble dynamics for the me-
chanics of nanotube scission? For example, what happens if two bubbles are
sufficiently nearby to both affect a single nanotube or possibly even each other?
What are the consequences of an asymmetrical bubble collapse?

• What is the spatial distribution of transiently cavitating bubbles in an actual son-
ication device? Does the shape of this distribution affect the scission kinetics?

• Does a very high degree of bending of a nanotube under sonication lead to
the scission of the nanotube? If yes, what is the precise mechanism by which
scission occurs at the atomic length scale?

• What are the precise scission kinetics corresponding to the different models
that have been proposed to explain the non-universality as observed in exper-
iments? Are there models that fail to reproduce the experimentally observed
scission kinetics?
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• Is there a terminal scission length? While all theories for the scission of nan-
otubes indicate that a terminal length should exist, it has not been observed
experimentally.

• Is the proposed mechanism of scission-mediated exfoliation realistic? This
question can be answered both by development of an analytical model simi-
lar to the one presented in chapter 6, as well as by the Brownian dynamics
simulations as introduced in chapter 7 if nanotube-nanotube interactions are
included in these simulations.
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Summary

Non universality and kinetics in soft matter systems: phase separation of pro-
teins and sonication of carbon nanotubes

Soft matter systems are often modelled at a highly coarse-grained level. For example,
globular proteins can be modelled as attractive hard-sphere particles and carbon nan-
otubes as rigid rod-like particles. In both instances, aside from the geometric prop-
erties, the underlying atomic structure is glossed over in the highly coarse-grained
description. The corresponding macroscopic properties of such model systems are
often highly universal. In this thesis, it is shown that the inclusion of additional de-
grees of freedom beyond the standard translational and rotational degrees of freedom
can lead to non universality in the equilibrium and non-equilibrium behaviour of the
model systems, even if these additional degrees of freedom are incorporated at a
highly coarse-grained level.

In the first part of this thesis, the liquid-liquid phase separation of a type of model
globular proteins that can reversibly interconvert between a native and a non-native
conformation is studied. The effective volume, the conformational free energy, and
the interactions between the model proteins are presumed to change upon transi-
tion to the non-native state. The conditions under which the model two-state protein
dispersion phase separates is highly non-universal, exhibits re-entrance and strongly
depends on the difference in the effective volumes of the two conformations. Depend-
ing on the solution conditions and properties of the model proteins, there is either a
weak or strong coupling of the phase behaviour to the conformation of the proteins.
The strong coupling results from a first-order conformational phase transition that un-
derlies the liquid- liquid phase separation transition. When the two conformations are
not of equal size, the resulting self-crowding effects can give rise to a second first-
order conformational phase transition, with an associated second regime of liquid-
liquid phase separation.

The model dispersion initially relaxes from non-equilibrium states by any of three
different modes. In the first mode, fluctuations in protein concentration and confor-
mation spontaneously grow at a well-defined length and time scale. In the second
mode, global relaxation of the conformation of the proteins occurs while the local
protein concentration remains. The third mode involves the scale- free relaxation
of both protein conformation and concentration in a manner that conserves the lo-
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cal concentration of proteins in the non-native state. The conditions for which the
model dispersion relaxes towards equilibrium by any of these three modes depend
in a non-universal manner on protein concentration, conformation and the solution
conditions.

These results suggest that proteins cannot be modelled as simple colloidal parti-
cles with no internal structure. Proteins do have an internal structure and the predic-
tions by our model indicate that the coupling of changes in the conformation of the
proteins to their liquid-liquid phase separation profoundly affect the phase behaviour,
especially when the difference between the native and non-native state is significant.

Finally, it is shown that changes in the conformation of proteins resulting from
a reversible reaction can be measured and can be used to quantify the equilibrium
constant of this reaction. Specifically, it is shown that the dimerisation constant of
beta-lactoglobulin can be determined by the interpretation of a number of IR spectra
measured at a variety of protein concentrations in terms of a two-state model.

In the second part of this thesis, the scission of carbon nanotubes under sonication
is studied. In particular, the efforts focus on explaining the non- universal scission
kinetics as observed in experiments. While it is well established that scission of the
nanotubes occurs during the transient collapse of small bubbles, the precise scission
mechanism remains debated and a full understanding of the non-universal aspects
of it remains to be obtained.

Previously, it has been shown that nanotubes near a collapsing bubble are sub-
jected to high stresses that can lead to their scission. This model is extended by
taking the motion of nanotubes during the collapse of the bubble into account. The
motion of the nanotubes depends on their length; short nanotubes are “fast” while
long nanotubes are “slow” relative to the receding surface of the collapsing bubble.
Because of this, short nanotubes are transported to areas closer to the centre of the
bubble where they are subjected to fluid flows with a higher shear rate than longer
nanotubes. This length- dependence of the maximum shear rate to which nanotubes
are subjected during sonication leads to non-universal scission kinetics.

To account for the bending and possible buckling-mediated scission of the carbon
nanotubes, Brownian dynamics simulations are performed. While the simulation was
previously developed, it was extended to allow for multiple scissions of the nanotubes
during its interaction with a single collapsing bubble. The results of the simulations
suggest that, depending on the properties of the nanotube, scission either occurs
under tension or by bending and subsequent buckling. Furthermore, the simulations
show that long nanotubes undergo multiple scissions during their interaction with a
single collapsing bubble. The occurrence of multiple scissions in long nanotubes
should strongly affect the scission kinetics.

In summary, it is shown that differences in the length of the nanotube give rise
to non-universal scission kinetics, both because the maximum strain rate of the fluid
flow to which the nanotubes are subjected depends on their length and also because
sufficiently long nanotubes will undergo multiple scissions during their interactions
with a single collapsing bubble.
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