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Abstract

This is an extended abstract of the work published in [5].
We propose an extension of the Code O↵set Method, the ‘mother of all Secure
Sketches’, in which we hide the error correction data in a large list of random
decoy values. Secure Sketches are an important ingredient for building privacy-
preserving biometric databases. Our scheme, the “Spammed Code O↵set Method”
(SCOM), improves the level of privacy at the cost of extra storage or computa-
tional requirements.

1 Introduction

1.1 Helper Data Schemes

Helper Data Schemes (HDSs) are a security primitive that allows for reliable extrac-
tion of secret information from noisy data, e.g. biometric data or data from a physical
unclonable function (PUF). They make use of a special form of redundancy informa-
tion, ‘helper data’, to correct measurement noise. HDSs can be used to construct e.g.
privacy-preserving biometric databases.
The functionality of a generic HDS is shown in Fig. 1. There is an enrollment phase and
a reconstruction phase. The enrollment procedure Enroll takes as input a measurement
value X and optionally a random value R. The output is helper data W and secret data
S. The reconstruction procedure Rec takes the helper data W and a fresh sample X 0,
which is a noisy version of X, and produces Ŝ, which is an estimate of S. If the noise
between X and X 0 is not too large, then Ŝ = S. Furthermore, W should not reveal
too much information about the secret, ideally none at all. Secrecy of S is preserved
even if W is stored publicly. It is always assumed that attackers have access to W .
Two special types of HDS with additional properties are the fuzzy extractor and secure
sketch. A fuzzy extractor requires that the secret is uniformly distributed. For a secure
sketch, the secret is identical to the measured value, S = X, and no uniformity is
required.
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Figure 1: A generic helper data scheme.
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1.2 The Syndrome-Only Code O↵set Method

One of the first introduced helper data schemes is the Code O↵set Method (COM)[4, 2].
The COM employs a linear error correcting code to compensate for measurement noise.
Below we describe the Syndrome-Only COM: a modified version of the COM that is
more suitable for our purposes. It additionally requires the existence of an e�cient
syndrome decoder. The Enroll procedure consists of nothing more than computing a
syndrome (Syn),

W = SynX.

This construction is a secure sketch, i.e., the secret is the measurement value itself.
The X is reconstructed from W and a sample X 0 as follows:

X̂ = X 0 � SDec(W � SynX 0).

The linearity of the code ensures that, if X 0 is su�ciently close to X, then X̂ will be
equal to X.
In a biometric database, the values stored for each enrolled person would be W and
a hash of X. As long as X given W has su�cient entropy, it is infeasible to guess X
from the enrolled data.

2 Adding Fake Helper Data

Consider an attacker who tries to guess X given the helper data W . Consider a low-
entropy source X, such that the attacker’s task is di�cult but feasible. We propose to
increase the attacker’s workload by hiding the real helper in a list of fake entries. If we
store m helper data items, only one of which is real, the attacker’s average workload
increases by a factor of about m/2. (For very large values of m, the attacker is even
forced to ignore the helper data altogether.) We refer to this technique as spamming.
The technique can be applied in any HDS, as long as there exists an e�cient way to
select the true helper data given X 0. For the (syndrome only) COM, this is achieved
by employing a Low Density Parity Check (LDPC) code.
The idea of adding cha↵ data to hide information is not new [3, 1], but, whereas
previous work considered adding cha↵ points directly to the stored feature vectors, we
are the first to apply cha�ng in the helper data domain. Our data hiding technique
allows us to make more e↵ective use of the source entropy, but it comes at the cost
of increased storage requirement or computational workload. An advantage of adding
spam in the helper data domain (instead of e.g. X-space) is that it allows for a very
precise security analysis.

2.1 The Enrollment and Reconstruction Algorithms

We modify the enrollment procedure such that W is replaced by a list ⌦ of length m.
The list ⌦ consists of m�1 fake items and W hidden at random secret position Z. One
way to do this [5] is to generate the fake items in ⌦ according to the prob. distribution
of SynX and then store the full list. However, this blows up the storage requirements
by a factor m. We present an alternative in which ⌦ is generated ‘on the fly’ from
a seed S. We call this the ‘generative’ Spammed Code O↵set Method. The scheme
needs a one-way function f and a fast Pseudo Random Number Generator (PRNG) �
that generates uniform bit strings of same length as our code’s syndrome. By �i(S) we
denote the i-th string derived from seed S.
Enrollment

1. Measure X.
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2. Compute W = SynX.

3. Uniformly draw index Z 2 {1, . . . ,m}.

4. Uniformly draw seed S.

5. Compute mask B = W � �Z(S).

6. Compute G = f(SkBkX).

7. Store public data P = (S,B,G).

We can think of the list {B � �i(S)}i2{1,...,m} as the list ⌦ of fake helper data which
contains the real W at position Z.
For clarity, we present a simplified version of the reconstruction algorithm; see [5] for
more details. The reconstruction algorithm inspects the Hamming distance dH between
the syndrome of the measured value X 0 and the candidate helper data items and only
carries out the expensive decoding step if the Hamming distance is below a threshold ✓.
Reconstruction

1. Read P 0 = (S 0, B0, G0).

2. Measure X 0.

3. Compute M = B0 � SynX 0

4. For i = 1 to m:

(a) If dH(M, �i(S 0)) � ✓, then next i.

(b) Compute X̂ = X 0 � SDec(M � �i(S 0)).

(c) If G0 = f(S 0kB0kX̂) then return X̂.

5. If the loop is exhausted, then return failure.

Because we use a LDPC code, a small Hamming distance between X 0 and X implies
a small Hamming distance between SynX 0 and SynX. For example, a column weight
3 LDPC code ensures that every bit flip between X 0 and X causes at most three bit
flips between SynX 0 and SynX.

3 Security Analysis

We express the security properties of our scheme in terms of Shannon entropy H and
mutual information I. We start with a general theorem that holds for any method of
inserting fake helper data.

Theorem 1 Let ⌦ be the list of fake helper data in which the real helper data W are
inserted at a random position Z. Then the entropy improvement compared to the plain
COM is given by

H(X|⌦) � H(X|W ) = H(W |⌦)

= H(Z)
| {z }

entropy
gain

� H(Z|W⌦)
| {z }

collision
penalty

� I(Z;⌦)
| {z }

distribution
mismatch
penalty

. (1)
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In the first term of (1), we recognize the entropy gained from hiding the real helper data
at a random position in the list. There are also two clearly interpretable penalty terms
in (1). The ‘collision penalty’ H(Z|W⌦) increases with m. It becomes non-negligible
when ⌦ contains so many entries that it becomes likely that there exist entries with
the same value; then even knowing W and ⌦ does not fix Z.
The ‘distribution mismatch penalty’ occurs when the fake entries in ⌦ do not look
statistically the same as W ; then some information about Z can be obtained already
from inspecting ⌦.
Next, we provide two lower bounds on the entropy. These bounds follow from (1).
Theorem 2 is relevant for the case in which the fake helper data is distributed identically
to the real helper data; Theorem 3 is relevant for the generative SCOM.

Theorem 2 If the distribution of the fake helper data is identical to the distribution
of the real helper data and the index Z is drawn uniformly, then

H(X|⌦) � H(X|W ) � logm � m � 1

ln 2

X

w

(Pr[W = w])2 . (2)

If the fake entries are drawn from the same distribution as W , then the distribution
mismatch penalty vanishes. Furthermore, if W is not uniform, then this a↵ects the
probability of encountering a collision. This is reflected in the

P

w term of (2). The
summation runs over all possible helper data values. As long as W is not too wildly
non-uniform and m is not too large, the

P

w term is negligible w.r.t. logm.

Theorem 3 Let W 2 W. Let U denote a random variable uniform on W. If the fake
helper data and the index Z are drawn uniformly, then

H(X|⌦) � H(X|W ) � logm � m � 1

|W| ln 2
� (1 � 1

m
)[D(WkU) + D(UkW )], (3)

where D is the Kullback-Leibler divergence.

Here the collision penalty has a simple from since it pertains to collisions of uniform
variables. In both Theorem 2 and Theorem 3 we see that for m ⌧ |W| the improvement
in the entropy of X given the public information is approximately logm, as one would
intuitively expect.
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