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Summary

Contrast-ultrasound dispersion imaging for prostate cancer localization

Prostate cancer is the most prevalent form of cancer in men in Western countries. Nowa-

days, due to a lack of reliable techniques for prostate cancer imaging, treatment options

are often restricted to radical treatments, which carry significant risks of permanent side

effects, such as incontinence or impotence. As a result, imaging methods could significantly

benefit prostate cancer care by enabling accurate targeting of biopsies and focal therapies.

In this context, an interesting marker for prostate cancer imaging is angiogenesis. This

complex physiological process, which is required for cancer growth beyond 1 mm, triggers a

chaotic microvascular growth that is characterized by an increase in microvascular density,

tortuosity, and extravascular leakage.

In this thesis, a novel characterization of the angiogenesis-induced changes in the mi-

crovascular architecture is proposed by assessment of dispersion. While the effects of

angiogenesis on microvascular perfusion are complex and contradictory, dispersion is mainly

determined by multipath trajectories and is directly influenced by microvascular density and

tortuosity. Dispersion assessment is pursued by modeling the transport kinetics through

the microcirculation as a convective dispersion process. This process is visualized by dy-

namic contrast-enhanced ultrasound imaging after an intravenous injection of an ultrasound-

contrast-agent bolus. Acoustic time-intensity curves are obtained at each image pixel cov-

ering the prostate and converted into indicator dilution curves representing the relative

contrast-agent concentration as function of time.

In a first approach for dispersion analysis, the measured indicator dilution curves are fit-

ted by a modified Local Density Random Walk model. This model describes the distribution

of contrast-agent transit-times by an analytical solution of the convective diffusion equation.

The proposed model modification allows estimation of a local, dispersion-related parameter

κ at each pixel covering the prostate. Subsequently, a parametric dispersion image can be

constructed by displaying the κ estimates as a color-coded value overlaid on the ultrasound
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image. The parameter-estimation accuracy is increased by a maximum-likelihood algorithm,

based on modeling the indicator dilution curve as the observed histogram of the underlying

transit-time distribution. This algorithm may be generally applicable in indicator dilution

analysis.

An alternative approach for dispersion analysis involves spatiotemporal analysis. The

similarity between indicator dilution curves is shown to be inversely related to dispersion.

Consequently, dispersion can be estimated indirectly as the similarity between the indicator

dilution curve at each pixel and those curves measured at surrounding pixels. This local as-

sessment does not require curve-fitting and can be normalized by choosing suitable similarity

measures that are insensitive to time shift, such as the coherence of amplitude spectra. A

dedicated spatial filter is proposed to prevent ultrasound speckle from affecting the spatial

similarity estimation by regularization of the speckle size. In addition, time-windowing is

adopted to select the most relevant time-segment of the indicator dilution curve for simi-

larity analysis. By providing temporal realignment, time-windowing also permits similarity

assessment by the correlation coefficient.

In a preliminary study, the obtained parametric images are compared to histology, ob-

tained from patients referred for radical prostatectomy. The spatial similarity analysis pro-

vides the highest receiver-operating-characteristic curve area (0.89) to discriminate between

healthy and cancerous tissue. In a more extensive clinical validation, based on 38 recordings

obtained from 11 patients, the utility of the parametric images for localization of prostate

cancer is compared to that of multiparametric magnetic resonance imaging. The results

show that analysis of contrast-ultrasound dispersion provides a higher sensitivity and a

slightly lower negative predictive value than multiparametric magnetic resonance imaging.

In conclusion, assessment of dispersion is a promising new alternative for detection of

angiogenesis in prostate cancer that could enable targeting of biopsies and focal therapies.

The current results motivate towards a more extensive validation. In the future, three-

dimensional ultrasound imaging may further improve the method. In addition, dispersion

imaging may be tested with different imaging modalities and in different forms of cancer.
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CHAPTER 1

Introduction

This Chapter provides a general background on prostate cancer. It is discussed how imaging techniques

could support the diagnosis and treatment of prostate cancer. In addition, an overview of modern prostate

cancer imaging techniques is provided.

1



2 Prostate anatomy and prostate cancer

1.1 Prostate anatomy and prostate cancer

The prostate is a small gland in the male reproductive system. It is positioned just below

the bladder, surrounding the urethra. A normal human prostate is typically said to be

approximately the size of a walnut. Anatomically, the prostate can be divided into several

zones [1], as shown in Fig. 1.1. The peripheral zone comprises about 70% of the prostate

gland (PZ) in young men. In about 70 to 80% cases, prostate cancer originates from this

zone [2]. The central zone (CZ) surrounds the ejaculatory ducts; the transition zone (TZ)

surrounds the urethra and grows throughout the entire life. In patients with benign pro-

static hyperplasia, excessive TZ growth is responsible for various voiding problems.

Prostate cancer is the most commonly diagnosed form of cancer in men in the Western

world. In the United States, 238,590 new cases of prostate cancer and 29,720 deaths due to

prostate cancer are expected in 2013; this accounts for 28% of all new cancer cases and for

10% of all cancer-related deaths in men [3]. In Europe, 416,700 new prostate cancer cases

and 92,200 deaths due to prostate cancer are estimated in 2012, accounting for 22.8% of

all new cancer cases and 9.5% of all cancer-related deaths in men [4].

Many men have latent forms of prostate cancer that do not lead to symptoms of disease

[5]. Prostate cancer is found during autopsy in a significant percentage of men who died

for different reasons [6]. In fact, the prevalence of prostate cancer in men aged between 70

and 80 years is estimated at 67% [7]. The reported statistics also highlight the influence

Urethra

Seminal
vesicle

Bladder

Transition zone

Central zone

Peripheral zone

Figure 1.1 Zonal anatomy of the prostate.



Introduction 3

of age on the prevalence of prostate cancer: it is widely recognized that prostate cancer is

predominantly found in men of at least 50 years old [3].

Besides age, another important factor in the management of prostate cancer is its aggres-

siveness, defined as the risk of developing metastasis. Aggressiveness (or grade) is measured

by the Gleason score, based on microscopic analysis of the level of cell differentiation in

prostate tissue samples [8]. The level of cell differentiation is categorized in patterns ranging

from 1 (well differentiated) to 5 (poorly differentiated). The Gleason score is then calcu-

lated by adding the grade of the most common pattern and the highest grade observed

in the specimen. In practice, scores up to 5 are not considered harmful; a score of 6 is

associated with a low aggressiveness. In the widely adopted D’Amico criteria, a Gleason

score of 7 is associated with an intermediate risk and a score of at least 8 with a high risk

[9]. These criteria highlight the importance of the Gleason score for determining the clinical

significance of prostate cancer, which indicates whether treatment is required. Clinically

significant cases of prostate cancer typically have a tumor volume of at least 0.5 cm3 [10].

1.2 Current prostate cancer care

In current clinical practice, the suspicion for prostate cancer is assessed by minimally in-

vasive tests, such as prostate-specific antigen (PSA) blood test, rectal examination, and

transrectal ultrasound (TRUS).

PSA is an enzyme secreted by the prostate gland. After the discovery that the PSA con-

centration in the serum of men with prostate cancer is often elevated, the PSA level has

been adopted on a large scale as a marker for prostate cancer [11]. Besides the PSA level,

additional diagnostic information can be obtained by monitoring the evolution of the PSA

level over time, e.g. by the PSA velocity or the PSA doubling time [12]. Important draw-

backs of the PSA test are, however, the high false-positive rate (about 76%) [13] and the

significant prevalence of prostate cancer among men with PSA levels below the common

threshold of 4 ng/mL [14].

During a rectal examination, the doctor palpates the prostate by slipping his finger through

the rectum. Stiff tissue areas can indicate the presence of prostate cancer. However, as

only part of the prostate can be assessed by a rectal exam, many cancers are missed [15].

Moreover, this method is subject to a significant inter-observer variability [16].

TRUS is used to inspect the prostate gland for irregularities and to assess the prostate

volume [2]. Fig. 1.2 shows an example of a TRUS image in which the anatomical structure

of the prostate can be visualized. Prostate cancer is sometimes visible on a TRUS image

as a hypoechoic region. However, TRUS cannot detect prostate cancer on a sufficiently

reliable basis [17].



4 Current prostate cancer care

PZ

TZ

Bladder

Figure 1.2 Transversal TRUS image of the prostate. The prostate contour (solid line) and the
boundary between the PZ and the TZ (dashed line) are delineated. The bladder is
visible as black region in the top of the image, behind the prostate; the urethra is also
visible as the bright shape in the middle of the prostate.

Because these three methods are not sufficiently reliable to diagnose prostate cancer by

themselves, they are currently used for patient stratification only [18]. If cancer is suspected,

the patient undergoes systematic biopsies [19]. In this invasive investigation, between 6

and 16 prostate tissue samples are harvested using a core needle. For optimal sampling of

the prostate, the samples are commonly taken based on a geometric scheme using TRUS

guidance [2]. Each biopsy carries a small risk of complications such as infection [20]. Be-

cause the cancer detection sensitivity of a single set of biopsies is not sufficiently high [21],

repeated biopsy investigations are often necessary. In fact, cancer is detected in 10-23% of

all patients undergoing repeated biopsies [22, 23].

In case of positive biopsies, if cancer remains confined to the prostate, radical treatment,

i.e., treatment of the entire prostate gland, is commonly adopted. Examples of such treat-

ments are radiotherapy, brachytherapy, or radical prostatectomy. The risk for permanent

side effects presents a significant downside to such treatments [24]. For example, one year

after radical prostatectomy, incontinence and sexual function are considered a moderate-

to-big problem by 14% and 52% of all patients, respectively [25].

In the current situation, many men undergo systematic biopsies, mainly due to the limited

specificity of the PSA test [18]. Since the introduction of PSA testing, the number of men

that are annually diagnosed with prostate cancer has risen significantly [4, 24]. However,

clinically insignificant cancers, which are of no threat to the patient, are being detected in

a sizeable proportion of these men [5]. As a result, the risks of overdiagnosis and overtreat-
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ment have become significant issues in prostate cancer care [24]. In two large randomized

trials, the potential benefits of PSA-based screening for prostate cancer did not outweigh

the drawbacks associated to subsequent treatment [13, 26]. In fact, to prevent one addi-

tional prostate-cancer death by PSA-base screening, 1410 additional men would need to be

screened and 48 additional men would have to be treated [13].

With the purpose of preventing overtreatment, active surveillance has been gaining interest

as an alternative to invasive treatment in men with low-risk prostate cancer [27, 28]. In

fact, in a randomized trial, active surveillance and radical prostatectomy resulted in similar

mortality rates [29]. However, the limited accuracy of the diagnostic tools available for

surveillance, together with patient anxiety, still pose significant issues for this strategy [28].

Focal therapy is another strategy to reduce the side effects of conventional radical treat-

ments in localized prostate cancer [30]. By targeting treatment to the cancerous region

and by leaving significant parts of the prostate unharmed, focal therapy aims to preserve

the quality of life of the patient. Cryotherapy [31] and high-intensity focused ultrasound

[32] are the most widely investigated focal treatment modalities. Additional modalities

include photodynamic therapy [33], photothermal ablation [34], focal brachytherapy [35],

focal radiation therapy [36], radiofrequency ablation [37] and irreversible electroporation

[38]. Although many techniques show promising results, localization remains an important

concern as systematic biopsies do not provide sufficient localization for a proper implemen-

tation of focal therapy [39].

1.3 The potential role of prostate cancer imaging

The current overdiagnosis and overtreatment problems in prostate cancer care result mainly

from diagnostic limitations. Imaging methods have the potential to address many of these

problems. By offering a better differentiation between clinically significant and latent can-

cers, accurate prostate cancer imaging methods may significantly improve patient stratifica-

tion. With less men undergoing biopsies, imaging methods could reduce the overdiagnosis

problem. In addition, imaging methods may mitigate the consequences of overdiagnosis

by providing accurate prostate cancer localization. Accurate image-guided biopsy targeting

may reduce the number of biopsies per patient, and, therefore, the morbidity of diagnostic

methods. Accurate prostate cancer imaging would also reduce overtreatment by enabling

efficient guidance for focal therapies. Furthermore, imaging methods could be used for

monitoring purposes in active surveillance programs and in treatment follow-up. As a re-

sult, the morbidity of prostate cancer diagnosis and treatment could be significantly reduced

by appropriate imaging methods.

This decrease in morbidity by image-guided biopsies and therapies would result from leav-
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ing healthy parts of the prostate unharmed. Because failure to diagnose or treat clinically

significant prostate cancer may have significant consequences for the patient, it is very im-

portant that the adopted imaging does not misclassify clinically significant cancer as healthy

tissue. Therefore, the negative predictive value (NPV, i.e., the percentage of all negative

observations that are correct) and the sensitivity (the percentage of all cancer cases that

are detected) are, in these applications, more important than the positive predictive value

(PPV, i.e., the percentage of positive observations that are correct) and the specificity (the

percentage of all healthy regions classified as such).

1.4 Angiogenesis as imaging marker for cancer

Many scientists have been searching for prognostic indicators for cancer that could be

assessed by minimally invasive imaging methods. In this context, the discovery of the

relationship between cancer growth and angiogenesis represented a fundamental milestone

[40]. Angiogenesis, which is a hallmark in the growth of a wide range of pathologies,

concerns the development of a dense microvascular network [41]. The newly formed blood

vessels supply oxygen and nutrients to the neoplastic tissue.

In cancer development, the role of angiogenesis is particularly crucial: without blood vessels,

tumors cannot grow beyond a critical size (in the order of a millimeter) or metastasize to

different organs [41]. Without this microvascular growth, tumors will remain in a dormant

state. Angiogenesis is a key process also in the progression of prostate cancer [42–45].

Because angiogenesis predicts the risk of metastasis [43], it is an important prognostic

indicator for prostate cancer progression.

The activation of angiogenesis in the early stages of cancer development is often referred

to as the “angiogenic switch”. This switch is controlled by the balance of pro- and anti-

angiogenic factors: angiogenesis may be activated by promotion of pro-angiogenic factors or

by inhibition of anti-angiogenic factors [46, 47]. Vascular endothelial growth factor (VEGF)

and fibroblast growth factor (FGF) are examples of pro-angiogenic factors; anti-angiogenic

factors include e.g. interferons, angiostatin, and thrombospondin-1 [46].

With the formation of new microvessels, angiogenesis induces a number of changes to the

microvascular structure. As new microvessels are formed, the microvascular density (MVD)

is increased by angiogenesis. In addition, the newly formed vessels are structurally and

functionally different from normal vessels: in comparison to normal vessels, tumors vessels

are often tortuous, irregular, and leaky, i.e., they feature a high permeability. Furthermore,

angiogenesis causes a highly disorganized microvascular structure with shunting vessels and

excessive branching [41, 48].

The structural and functional changes in the microvascular architecture may be exploited
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as a marker for angiogenesis. In histological studies, MVD quantification has already been

proven to provide a significant prognostic value for prostate cancer progression [43–45, 49–

52]. For this reason, many scientists have pursued noninvasive assessment of microvascular

features related to angiogenesis by means of quantitative imaging methods in order to

achieve reliable prostate cancer imaging [53].

1.5 Emerging techniques for prostate cancer imaging

Accurate imaging of prostate cancer has been pursued by many researchers, using several

different technologies. This section provides an overview of the adopted methods, their

principles, as well as their value in clinical practice. Computed tomography (CT) is not

discussed here, because it is not considered useful in prostate cancer detection [54].

1.5.1 Nuclear imaging

Prostate cancer features an increase in metabolism, which can be observed by a higher

uptake of glucose. By adopting a radiolabeled analogue of glucose as a tracer, nuclear

imaging can exploit this higher glucose uptake to identify cancer lesions. The tracer distri-

bution is imaged by a Gamma-camera [55], either by single-photon emission computerized

tomography (SPECT) or positron emission tomography (PET) [56]. The predominantly

adopted tracers in prostate cancer are 18F-FDG, 18F- or 11C-acetate, and 18F- or 11C-choline

[57].

Due to the limited spatial resolution and the adverse effects resulting from exposure to

ionizing radiation, PET and SPECT are not ideally suited for early prostate cancer imag-

ing. Instead, research is focused on the detection of recurrent disease and metastasis [57].

With this aim, ProstaScint R© (Cytogen Corporation, Princeton, NJ), i.e., 111In-capromab

pendetide SPECT, was also introduced [58], but its value remains controversial [59].

1.5.2 Magnetic resonance imaging

Magnetic resonance imaging (MRI) investigates the relaxation of hydrogen protons after the

application of an electromagnetic radiofrequency pulse [60]. MRI is characterized by an ex-

cellent contrast-resolution and is especially useful in soft tissues, because of the abundance

of water molecules. Various relaxation properties can be measured, such as the longitu-

dinal (T1) and transverse (T2) relaxation times. T1- and T2-weighted images provide

anatomical information. In general, T1-weighted imaging is not used for prostate cancer

imaging, whereas T2-weighted imaging is not considered sufficiently accurate for detection

of prostate cancer [53].
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Whereas conventional techniques can only assess anatomical information, functional and

metabolic information can be obtained by more advanced techniques, such as diffusion-

weighted imaging (DWI), MR spectroscopy imaging (MRSI), and dynamic contrast-enhanced

MRI (DCE-MRI) [54]. Nowadays, a combination of these techniques, referred to as multi-

parametric MRI (mpMRI), is commonly adopted. Although the value for prostate cancer

localization appears to be very promising, widely different results are reported by different

groups [61–63].

Diffusion-weighted imaging

The diffusion process of water molecules can be imaged by DWI [64]. Because water diffu-

sion is constrained by obstacles, such as membranes, differences in the apparent diffusion

coefficient represent structural differences. In particular, due to the high cellular density

in prostate cancer, the observed apparent diffusion coefficient is typically lower than in

surrounding tissues [65].

Magnetic resonance spectroscopy imaging

Similar to nuclear imaging techniques, metabolic information can be assessed by MRSI. In

this technique, the relative concentration of various chemicals is estimated from the peaks

in the measured spectral profiles [66]. Because prostate cancer typically features relatively

low citrate levels and high choline levels, the ratio between these levels is adopted to

detect prostate cancer. A high prostate cancer detection accuracy has been reported [67].

Drawbacks are the low spatial resolution (approximately 5 mm) and the long acquisition

time (about 15 minutes).

Dynamic contrast-enhanced magnetic resonance imaging

DCE-MRI involves an intravenous injection of a contrast agent. Although various types of

contrast media are available for clinical use, the most commonly adopted agents, based on

Gadolinium (Gd), shorten the T1 relaxation time [68]. Most Gd-based contrast agents are

small molecules that can traverse into the extravascular space. Blood pool agents, which

remain within the circulatory system, are also available. As shown in Fig. 1.3, DCE-MRI

enables dynamic measurement of the contrast-agent concentration, providing the opportu-

nity to estimate parameters related to blood perfusion and, in case of extravasating agents,

vascular wall permeability [69]. This information adds significant value for prostate cancer

detection [70]. Although the adopted contrast agents are generally safer than radioac-

tive tracers, Gd-based agents have been associated with an increased risk of developing

nephrogenic systemic fibrosis [71].
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Figure 1.3 DCE-MRI of the prostate obtained with 1.5 T at approximately 20 (left), 60 (middle)
and 100 (right) seconds after injection of a Gd contrast-agent bolus. The prostate is
delineated in the DCE-MR images; the lesion indicated by the arrow was confirmed
to be prostate cancer after radical prostatectomy. Courtesy of the Department of
Radiology, Academic Medical Center University of Amsterdam, The Netherlands.

1.5.3 Ultrasound imaging

By measurement of the backscatter of ultrasound waves in biological tissue, important

anatomical information can safely be assessed by ultrasound imaging [72]. Characterized

by its cost-effectiveness, bedside availability, and high spatial resolution, TRUS imaging has

been routinely adopted in the management of prostate cancer since its introduction in 1971

by Watanabe et al. [73]. Although TRUS cannot detect prostate cancer on a sufficiently

reliable basis [17], it is used for assessment of the prostate volume, inspection of the

prostate gland, and guidance of biopsies [2]. Against this background, new developments

in ultrasound imaging are ideally suited for early prostate cancer imaging.

Ultrasound tissue characterization

Tissue characterization has been proposed by computerized analysis of TRUS images, ini-

tially based on B-mode images similar to those in Fig. 1.2 [74], but later also on ra-

diofrequency signals [75]. Recently, HistoScanningTM (AMD, Waterloo, Belgium) has been

introduced in clinical practice for localizing prostate cancer as a computer-based analysis of

radiofrequency TRUS imaging data [76]. The initial promising results have, however, yet

to be confirmed in larger multicenter studies.
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Figure 1.4 TRUS elastography image of the prostate. The indicated lesion in the right peripheral
zone (i.e., in the bottom left of the image) has a high stiffness (characterized by a
blue color) and was confirmed to be prostate cancer (Gleason 7) after biopsy.

Ultrasound elastography

With ultrasound elastography, the elastic properties of soft tissues can be assessed. After

gently pushing the TRUS probe against the prostate gland, the elastic properties can be

extracted from the measured compression and decompression of tissue. Due to its increased

cellular density, prostate cancer typically features a higher stiffness than healthy tissue, as

shown in Fig. 1.4. Ultrasound elastography shows a promising value for prostate cancer

detection [77]. A major drawback of the method is its operator dependency.

Shear-wave elastography is a new technique, made possible by the development of ultrafast

ultrasound imaging [78], which enables an absolute measurement of tissue stiffness. To

this end, shear waves are generated by the transmitted ultrasound pulses. By ultrafast

ultrasound imaging, the propagation of these shear waves through tissue can be observed,

thereby allowing estimation of the Young’s modulus [79]. The initial results of this method

have been very promising [80].

Doppler ultrasound

Blood flow velocity can be estimated by ultrasound imaging based on the Doppler principle,

i.e., from the frequency shift in backscattered ultrasound waves [81]. Color Doppler ultra-

sound quantifies flow velocity and direction as the mean Doppler frequency shift. However,

this technique is not ideally suited for prostate cancer localization, partly due to its limited

sensitivity and artifacts, such as the angle dependency [82].

Power Doppler, an alternative technique based on integration of the Doppler signal power
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Figure 1.5 TRUS power Doppler image of the prostate. The strong enhancement in the right
peripheral zone (i.e., in the bottom left of the image) indicates a high suspicion for
prostate cancer, which was confirmed by biopsy.

Time = 0.0 s Time = 0.3 s Time = 5.0 s

Figure 1.6 DCE-US images of the prostate based obtained by the destruction-replenishment
principle. In all DCE-US images, the prostate is delineated. On the left, a high-
intensity burst is applied, causing microbubble disruption and strong backscattering.
Almost no UCA microbubbles are observed immediately after this burst (middle).
After 5 s, this plane of the prostate is partially reperfused (right). The indicated
enhancement in the right peripheral zone (i.e., in the bottom left of the image) was
confirmed to correspond to prostate cancer after radical prostatectomy.

[83], is more sensitive to slow flow than color Doppler. A TRUS power Doppler image is

shown in Fig. 1.5. Yet, these techniques have not proven sufficiently reliable for prostate

cancer imaging [84], mainly because of resolution limitations: Doppler ultrasound is unable

to detect flow in the smallest microvessels.

Dynamic contrast-enhanced ultrasound

Visualization of flow in the microcirculation is possible with dynamic contrast-enhanced

ultrasound (DCE-US) imaging [85]. The administered ultrasound contrast agents (UCAs)
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consist of encapsulated gas microbubbles with a size between 1 and 10 µm, i.e., similar to

red blood cells. Different from most Gd-based MRI contrast agents, extravasation is not

possible due to the microbubble size. After intravenous injection, the microbubbles remain

stable in the circulation for several minutes.

UCAs were initially used with limited success for enhancement of Doppler techniques [86].

After recognizing that the commonly adopted acoustic pressures in Doppler ultrasound dis-

rupt the UCA microbubbles, Wei et al. introduced the destruction-replenishment principle

[87]. In this principle, which was initially implemented by intermittent imaging methods

[86], tissue reperfusion is measured after disrupting all microbubbles in the imaging plane

by a high-intensity burst. By lowering the acoustic pressure, UCA microbubbles can be

imaged non-destructively. In this regime, the microbubble oscillation creates a strongly

nonlinear acoustic backscattering. A wide variety of techniques, referred to as contrast-

specific imaging techniques, have been specifically developed to isolate the nonlinear signals

backscattered by microbubbles from those backscattered by blood and tissue [88]. Examples

of such techniques are harmonic imaging, power modulation, and pulse inversion [88–90].

These techniques have enabled real-time imaging of the UCA concentration evolution over

time, either after a destructive burst or for measurement of the passage of an intravenously

injected UCA bolus through the image plane [91]. An example of DCE-US imaging of the

prostate based on the destruction-replenishment technique is shown in Fig. 1.6.

Several approaches are available to quantify perfusion by DCE-US. In the initial destruction-

replenishment model used in cardiology, replenishment was modeled as in a single compart-

ment [87]. Later, this model was improved to account for the ultrasound beam profile [92]

and for the lognormal flow distribution in a branching tree structure to represent the mi-

crovascular architecture [93]. For the bolus injection technique, classical indicator dilution

models can be adopted to describe the UCA transport process [94–96].

Quantitative analysis is typically performed based on time-intensity curves (TICs), which

measure the backscattered acoustic intensity in a region of interest (ROI) in the ultrasound

image as a function of time [97, 98]. Calibration studies indicate the acoustic intensity

to be approximately linearly related to the microbubble concentration [99]. Therefore, lin-

earization of compressed DCE-US data is necessary prior to model-based analysis [94]. In

practice, however, semi-quantitative TIC parameters based on amplitude and timing fea-

tures are often estimated [91, 100].

For localization of prostate cancer, qualitative interpretation of the observed DCE-US pat-

terns has shown a promising value [101, 102]. Important drawbacks of this method, such as

the learning curve and the inter-observer variability [103], may be overcome by quantitative

DCE-US analysis.

A new development in DCE-US imaging involves targeted microbubbles, which bind to spe-
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cific receptors that are enhanced in angiogenic blood vessels. BR55 (Bracco, Milan, Italy),

which consists of microbubbles that are functionalized with a heterodimer peptide targeted

to vascular endothelial growth factor receptor 2 (VEGFR2) [104], is the first targeted UCA

that was tested in humans [105].

1.6 Scope of this thesis

This thesis presents a new quantitative DCE-US approach that aims to detect angiogenesis,

in order to achieve reliable prostate cancer imaging. As opposed to existing methods that

aim to quantify perfusion, this approach is based on analysis of the UCA dispersion kinetics

through the prostate.

As already described in Sec. 1.4, angiogenesis results in a highly disorganized microvascular

network containing tortuous, dilated, and leaky vessels. As a result, blood flow in tumors

is chaotic and variable [41]. It is, therefore, difficult to predict the effects of angiogenesis

on perfusion: a higher microvascular density and the presence of arteriovenous shunts are

expected to increase perfusion. However, this effect can be counterbalanced by an increased

flow resistance, caused by the irregular diameter and high tortuosity of the microvessels and

the increase in interstitial pressure due to extravascular leakage [48, 106].

The main hypothesis of this thesis is that angiogenesis-induced microvascular changes are

better represented by UCA dispersion rather than perfusion kinetics. In this context, disper-

sion describes the spatiotemporal UCA spreading, which may result from several different

factors.

In the classical work of Taylor [107], the dispersion of an indicator is described in an

infinitely-long tube with a laminar flow regime, as schematically shown in Fig. 1.7. In this

tube, the transport kinetics can be described as a convective dispersion process [108, 109].

In this scenario, dispersion results from the combination of molecular diffusion, due to the

concentration gradient, and the parabolic flow profile in the tube cross-section.

Although flow in the microcirculation is generally more complex than in a relatively sim-

ple tube, the dispersion of indicator particles can be described similarly in both scenarios.

By considering the microcirculation as a distributed network, similar to a porous medium,

dispersion may also result from flow through the many different capillaries that create multi-

path trajectories in the microvascular architecture [110]. In this characterization, dispersion

is directly determined by network features, such as porosity and tortuosity [111, 112], that

can be interpreted in terms of the microvascular architecture. Porosity describes the rel-

ative amount of pores, i.e., the number of pathways for the indicator to travel across the

network. Dispersion is positively related to porosity, which can be viewed analogously to

MVD. As a result, the increased MVD in angiogenesis may increase dispersion as a result
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Figure 1.7 Schematic overview of convective dispersion of indicator particles after injection in a
slow, laminar flow regime in an infinitely-long tube. Three snapshots of the spatial
indicator distribution, obtained at different times after injection, are shown on the left;
an indicator dilution curve (IDC), showing the detected amount of indicator particles
in the highlighted cross-sectional volume as function of time, is plotted on the right.

of an increased porosity. Tortuosity describes pores not being straight, but having many

twists and turns. Although tortuosity can be defined in many ways, a common definition is

the ratio between length of a pore and the distance between the pore ends [113]. Tortuosity

is a hallmark of the irregularly-shaped microvessels that are typically observed in angiogen-

esis. Because tortuosity limits dispersion, tortuous microvessels in angiogenic structures

may yield a lower dispersion than regular capillaries. Therefore, microvascular features that

can be physically related to the presence of angiogenesis have a direct relation to the UCA

dispersion kinetics.

This thesis describes a new methodology for detection of angiogenesis by quantification of

UCA dispersion, based on modeling the UCA transport process by the convective dispersion

equation. The local density random walk (LDRW) model is an analytical solution of this

equation. This model provides a mathematical description in terms of flow velocity and

dispersion for measured indicator dilution curves (IDCs), which describe the UCA concen-

tration at a fixed measurement site as a function of time, as shown in Fig. 1.7.

The proposed method, contrast-ultrasound dispersion imaging (CUDI), involves transrec-

tal DCE-US imaging of the prostate after intravenous injection of an UCA bolus. The

obtained image sequences visualize the transport of this UCA bolus through the microcir-

culation, providing acoustic TICs at all pixels. A dedicated calibration allows these TICs to
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be interpreted as IDCs that are suitable for dispersion analysis by the LDRW model.

1.7 Outline of this thesis

In Chapter 2, a strategy for CUDI based on a modification of the LDRW model is intro-

duced. This modification involves a local boundary condition based on which the IDC can

be derived as a local, analytical solution of the convective dispersion equation. As a result, a

local parameter, κ, which is inversely related to dispersion, can be estimated by parametric

curve-fitting of acoustic TICs acquired at each image pixel. The estimated values of κ can

subsequently be displayed as a color-coded value at its associated pixel in order to construct

a parametric dispersion image [J1].

Because curve-fitting of acoustic TICs obtained at a single pixel poses a challenging prob-

lem, a new algorithm for estimation of hemodynamic parameters from IDCs is proposed in

Chapter 3. This algorithm exploits the fact that most IDC models are probability density

functions that describe the distribution of microbubble transit-times. By interpreting mea-

sured IDCs as the observed histogram of microbubble transit-times, IDC model parameters

can be estimated based on maximizing the likelihood of observing this histogram. Both an

in vitro and an in vivo validation of this algorithm are performed [J6].

Chapter 4 describes an alternative strategy for CUDI that does not require model fitting. As

opposed to different DCE-US quantification methods, this quantification strategy involves

a complete spatiotemporal analysis of UCA transport. An indirect dispersion analysis, based

on observed IDC shape variations in simulations of the convective dispersion equation, is

performed by assessment of the spatial similarity among TICs sampled at neighboring pixels.

In this first implementation, spatial similarity is computed at each pixel as the average co-

herence ρ between the TIC acquired at that pixel and the TICs acquired at the surrounding

pixels according to a specific spatial kernel [J2].

The formal rationale for a dispersion analysis based on assessment of TIC similarity is de-

scribed in Chapter 5. A monotonic relation between the dispersion-related parameter κ

and the coherence ρ between two IDCs is derived. Moreover, two methodological improve-

ments to the spatial similarity analysis are described in Chapter 5. A dedicated spatial

filter is introduced to prevent anisotropic ultrasound speckle noise from affecting the spa-

tiotemporal analysis. This spatial filter, which involves a Wiener deconvolution, is based on

measurement of the local ultrasound speckle-grain size by two-dimensional autocovariance

analysis [J4]. Another methodological improvement is provided by time windowing, which

makes the spatial similarity analysis less sensitive to noise and more specific to TIC shape

variations.

Chapter 6 describes an alternative spatial TIC similarity assessment by the correlation coef-
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ficient r in the time domain [J5]. An analytical relation between κ and r is derived for this

approach, which is made possible by proper realignment of TICs by the time-windowing

method described in Chapter 5.

In Chapter 7, the potential clinical benefits of CUDI are explored. The value of CUDI

for localization of prostate cancer is compared to that of qualitative DCE-US imaging and

to that of qualitative and semi-quantitative mpMRI [J8]. This clinical validation is based

on 38 DCE-US image sequences and mpMRI investigations obtained in 11 patients. The

results show that analysis of contrast-ultrasound dispersion provides a higher sensitivity and

a slightly lower negative predictive value than mpMRI.

Conclusions and future directions for research are discussed in Chapter 8. Most Chapters

of this thesis are based on published journal articles. In particular, Chapters 2, 3, 4, 5, and

6 are based on [J1], [J6], [J2], [J4], and [J5], respectively. Chapter 7 is in preparation as

[J8] for publication in a peer-reviewed journal.
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Abstract – Prostate cancer is the most prevalent form of cancer in western men. An accurate early

localization of prostate cancer, permitting efficient use of modern focal therapies, is currently hampered

by a lack of imaging methods. Several methods have aimed at detecting microvascular changes associated

with prostate cancer with limited success by quantitative imaging of blood perfusion. Differently, we pro-

pose contrast-ultrasound diffusion imaging, based on the hypothesis that the complexity of microvascular

changes is better reflected by diffusion than by perfusion characteristics. Quantification of local, intravas-

cular diffusion is performed after transrectal ultrasound imaging of an intravenously injected ultrasound

contrast agent bolus. Indicator dilution curves are measured with the ultrasound scanner resolution and

fitted by a modified local density random walk model, which, being a solution of the convective diffusion

equation, enables the estimation of a local, diffusion-related parameter. Diffusion parametric images ob-

tained from five datasets of four patients were compared with histology data on a pixel basis. The resulting

receiver operating characteristic (curve area = 0.91) was superior to that of any perfusion-related param-

eter proposed in the literature. Contrast-ultrasound diffusion imaging seems therefore to be a promising

method for prostate cancer localization, encouraging further research to assess the clinical reliability.

1In this journal article, and therefore also in this Chapter, the method is referred to as contrast-ultrasound
diffusion imaging. After publication of this article, we opted to use dispersion instead of diffusion, because
dispersion is a more accurate term in the present context. In addition, by adoption of the term dispersion,
confusion with diffusion-weighted MRI is avoided.
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2.1 Introduction

Prostate cancer is the most prevalent form of cancer in men in western countries. It ac-

counts for 25% and 10% of all cancer diagnoses and deaths, respectively [1, 2]. Nowadays,

a variety of focal therapies such as cryoablation, brachytherapy, and high-intensity focused

ultrasound, are available to efficiently treat early detected and localized prostate cancer

[3]. This may prevent a radical treatment as for example radical prostatectomy, with the

associated risks of the patient becoming incontinent or impotent [4]. However, the limited

reliability of the available noninvasive diagnostic methods hampers an efficient use of focal

therapies.

The main noninvasive diagnostic method, assessing the serum prostate-specific antigen

(PSA) level in blood, has a high false-positive rate (about 76%) [5]. Therefore, PSA does

not enable an efficient mass screening [5] and is only used for patient stratification prior to

biopsy investigation [6]. This invasive and painful investigation commonly involves taking

6 to 12 spatially distributed samples of the prostate with a core needle. Although the

biopsy investigation is currently the most reliable diagnostic method, it is often repeated

to achieve sufficient sensitivity [5, 6]. The limited cancer localization is another drawback.

Furthermore, a considerable fraction of all detected carcinomas will not develop into a

life-threatening disease [4]. Therefore, the risk of overdiagnosis and overtreatment, with a

related loss in quality of life, represents a major issue in current prostate cancer care [4, 5].

These problems motivate the search for better noninvasive methods for an early detection

and localization of life-threatening forms of prostate cancer. In particular, imaging methods

may reduce the number of biopsies by accurate targeting and permit an efficient application

of focal treatments.

Several imaging modalities are being evaluated for early prostate cancer detection. While

computed tomography (CT) seems unsuitable for diagnostic prostate imaging [6], cancer

detection sensitivity (on a patient basis) with magnetic resonance imaging (MRI) techniques

such as diffusion weighted imaging (73-89%), dynamic contrast-enhanced MRI (69-95%),

and magnetic resonance spectroscopy imaging (59-94%) is promising [7]. Transrectal ul-

trasound (TRUS) techniques are however equally promising, and they are more suitable

than MRI in terms of cost, time, resolution, and guidance of biopsies and focal therapies

[6, 8]. Therefore, TRUS improvements could be of great value for early prostate cancer

localization.

For imaging purposes, a key indicator for prostate cancer is angiogenesis, i.e., the for-

mation of a dense microvascular network characterized by an increased microvessel density

(MVD) [9–12]. Angiogenesis, which is required for cancer growth beyond 1 mm3, correlates

with prostate cancer aggressiveness (i.e., risks of extracapsular growth and development of

metastases) [10–12]. Therefore, imaging methods based on angiogenesis detection may
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help to identify life-threatening forms of prostate cancer at an early stage.

Hypothesizing a correlation between MVD and perfusion, i.e., blood flow per tissue vol-

ume, the use of ultrasound contrast agents (UCAs) for quantitative TRUS imaging of

microvascular perfusion has gained interest [6, 13, 14]. UCAs are dispersions of coated

gas microbubbles that backscatter acoustic energy when hit by ultrasound waves [15, 16].

Despite an improvement in biopsy targeting, contrast-enhanced TRUS methods based on

intermittent imaging and destruction-replenishment techniques have however not proven

sufficiently reliable to replace systematic biopsies [17–19].

An alternative method involves dynamic contrast-enhanced ultrasound (DCE-US) imaging

of the passage of an intravenously injected UCA bolus [6, 8, 14]. Up until now, only few

quantitative studies have been carried out. These studies quantify perfusion by extraction

of time and intensity features from the measured acoustic time-intensity curves [20–23].

However, time features do not represent the local hemodynamic characteristics since they

generally depend on the entire bolus history [24], whereas intensity features are affected by

scanner settings and nonlinear ultrasound propagation [25].

The reasons that the developments in quantitative perfusion imaging have not resulted in

reliable prostate cancer localization may be various. In addition to limitations in the flow

sensitivity, important reasons may be linked to the complex and contradictory effects of

angiogenesis on perfusion [13, 22, 26, 27]. A lack of vasomotor control and the presence of

arteriovenous shunts cause a low flow resistance [13, 27], but this can be counterbalanced

by the small microvessel diameter and an increased interstitial pressure, due to extravascu-

lar leakage [13, 27]. MVD characterization by quantification of perfusion may therefore be

unreliable.

In this paper we propose contrast-ultrasound diffusion imaging (CUDI) as an alternative

noninvasive prostate cancer localization method. CUDI is based on the hypothesis that

angiogenesis-induced changes in the microvascular architecture correlate better with diffu-

sion than with perfusion. In this context, diffusion refers to the intravascular UCA spreading

by apparent diffusion, due to concentration gradient and flow profile, and by convective

dispersion, due to multipath trajectories through the microvasculature [28–30]. The mi-

crovascular architecture of a solid tumor can be viewed as a distributed network [31], in

which flow can be modeled as flow through a porous medium [32]. Structural characteristics

of porous media determine the diffusion [29, 30]. Therefore, we hypothesize intravascular

UCA diffusion to be correlated with the microvascular structure and, therefore, with angio-

genesis.

Based on the UCA bolus injection technique, CUDI is a new method for quantification

of diffusion from time-density curves (TDCs). These curves measure the image gray level

versus time at all pixels covering the prostate. By modeling the local intravascular UCA
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transport by the local density random walk model, we provide a novel, theoretical framework

to extract a local, diffusion-related parameter from measured TDCs. CUDI was evaluated

in vivo by comparing five diffusion parametric images from four patients, obtained by TDC

fitting at each pixel, with histology data.

2.2 Methodology

2.2.1 Data acquisition

The data acquisition was performed at the AMC University Hospital (Amsterdam, The

Netherlands), after approval was granted by the local ethics committee. Written informed

consent was obtained from all patients prior to their participating in this study.

A 2.4 mL SonoVue R© (Bracco, Milan, Italy) UCA bolus was injected intravenously in the

patient arm. SonoVue R© is a dispersion of SF6 microbubbles coated by a phospholipid

shell, whose mean diameter is 2.5 µm [33]. TRUS imaging was performed using an iU22

ultrasound scanner (Philips Healthcare, Bothell, WA) equipped with a C8-4v probe. The

adopted contrast-specific imaging mode was power modulation, at a frequency of 3.5 MHz.

The effective pulse length of two cycles provided an axial resolution of 0.43 mm, while a low

mechanical index (MI) of 0.06 minimized microbubble disruption [15, 16]. The compression

was set to C38 and the gain was adjusted to prevent truncation or saturation of the 8-

bit gray level. All acquired B-mode videos were stored in DICOM (Digital Imaging and

Communications in Medicine) format, which can be directly input to the analysis software

that we implemented in MATLAB R© (The MathWorks, Natick, MA). Four B-mode frames

recorded in power modulation mode are shown in Fig. 2.1.

2.2.2 Calibration

An accurate quantification of the UCA diffusion dynamics based on TRUS B-mode video

data requires knowledge about how the measured gray level relates to the UCA concen-

tration. To this end, we investigated the relation between UCA concentration C and the

backscattered acoustic intensity I. We also studied the measurement and conversion of I

into a gray level G.

For low concentrations and MI, a linear relation between C and I has been reported [34].

We performed new measurements at the Catharina hospital (Eindhoven, The Netherlands)

to verify this relationship for the current equipment, settings, and UCA. The setup was

similar to the static calibration setup reported in [34]. The UCA dispersions were contained

in polyurethane bags that were submerged into a water-filled basin. The basin walls were

covered by acoustic absorbers to minimize the acoustic reflections from the wall. To repro-
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Figure 2.1 TRUS power modulation imaging of the prostate after intravenous injection of a UCA
bolus. The displayed frames are recorded before UCA appearance (top left), at initial
wash-in (top right), at peak concentration (bottom left), and at wash-out (bottom
right).
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Figure 2.2 In vitro measurement results. The gray error bars depict the acoustic intensity mea-
sured in a fixed ROI by their mean and standard deviation, whereas the black line
shows the linear approximation for SonoVue R© concentrations up to 1.0 mg/L.

duce the clinical conditions, the ultrasound probe was positioned about 1 cm away from the

UCA dispersion. For each concentration, three measurements were performed, from three

different SonoVue R© vials. The mean acoustic intensity was evaluated in a fixed region

of interest (ROI) of the recorded B-mode images, with QLAB (Philips Healthcare, Bothell,

WA) acoustic quantification software.
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Figure 2.3 Quantization level Q versus QLAB normalized acoustic intensity I, obtained from
single-pixel ROIs. The black line represents the fitted logarithmic compression func-
tion.

The results are shown in Fig. 2.2. For SonoVue R© concentrations up to 1.0 mg/L, C and

I are linearly related (R2 = 0.96) as

I = aCIC + I0, (2.1)

where aCI defines the sensitivity and I0 is the background intensity due to backscatter from

tissue and blood. The exact parameter values are not relevant for this study, since a linearly

related measure of C is sufficient for a complete description of the UCA diffusion dynamics.

With the injected dose, the in vivo measurements are performed within the linear calibration

range that was estimated in vitro (Fig. 2.2). In fact, by considering a simple system of

two mixing chambers representing the right and left ventricles (100 mL and 110 mL), the

concentration would not overtake 0.84% of the injected concentration (5.0 g/mL) [35].

Taking into account a blood volume fraction in the prostate of 2% [36], the concentration

in the prostate would remain below 0.84 mg/L, i.e., within the linear range.

The ultrasound transducer converts the backscattered ultrasound waves into an electrical

voltage, proportional to
√
I. After amplification and demodulation, a compression of the

signal dynamic range yields the quantization level Q = q(
√
I), and the gray mapping g(Q)

renders the displayed gray level G [37]. This mapping is displayed on the B-mode image

and can be easily extracted and compensated for. The compression function, typically a

logarithmic-like function [34, 37], is estimated by comparing QLAB acoustic quantification

results to the quantization level Q = g−1(G) in single-pixel ROIs.

The results show a linear relationship (R2 = 0.99) between log(I) and Q (Fig. 2.3). This

implies a logarithmic compression function q(
√
I) = aDR ln(I), in which aDR is determined
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by the dynamic range (DR) of the compression function as

aDR = 255 log
10
(e)

10

DR
. (2.2)

For the estimated dynamic range (45.73 dB), aDR equals 24.22. This dynamic range is

sufficiently large to enable an accurate TDC quantification [37].

Combining all relations, the function that maps UCA concentration to gray level can be

written as

G = g

(

aDR ln

(

aCI

I0
C + 1

)

+Q0

)

. (2.3)

In (2.3), the baseline Q0 = aDR ln(I0) equals the quantization level for C = 0, i.e., before

the UCA appearance in the prostate.

2.2.3 Diffusion modeling

Physical modeling of the intravascular UCA transport is required to analyze diffusion. Our

analysis is based on the local density random walk (LDRW) model [38–40]. This model

can provide a physical interpretation of the diffusion process, and it accurately fits UCA

indicator dilution curves (IDCs) [23, 34]. IDCs measure the UCA concentration in a fixed

sample volume as function of time and can thus be obtained from TDCs via (2.3). After a

general introduction to the LDRW model, the local aspects of the diffusion process by this

model are discussed.

The LDRW model characterizes the UCA transport in a straight, infinitely long tube of

constant section A, in which a carrier fluid flows with a constant velocity v, as shown

in Fig. 2.4. The model assumes a Brownian motion of microbubbles. The concentration

dynamics C(x, t) is then given by the mono-dimensional convective diffusion equation as

∂C(x, t)

∂t
=

∂

∂x

(

D
∂C(x, t)

∂x

)

− v
∂C(x, t)

∂x
, (2.4)

in which x and t represent the distance along the tube’s main axis and the time variable,

respectively. The diffusion coefficient D is assumed constant. The boundary conditions,

representing a rapid bolus injection and the UCA mass conservation, are given as

C(x, t0) =
m

A
δ(x− x0), (2.5a)

∞
∫

−∞

C(x, t) dz =
m

A
. (2.5b)
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Figure 2.4 UCA concentration dynamics by the LDRW model in an infinitely-long straight tube,
with the lower curves describing the UCA concentration profile in space for increasing
time.

In (2.5), m is the total injected UCA mass dose, and t0 and x0 are the bolus injection time

and site, respectively. The solution C(x, t) is a Normal distribution in space that translates

at the carrier velocity and has a variance that increases linearly with time, as shown in

Fig. 2.4. The LDRW formulation for the IDC C(t) is obtained by sampling C(x, t) at an

arbitrary detection site xd (xd > x0) [39–41]:

C(t) = AUC
expλ

µ

√

λµ

2π(t− t0)
exp

(

−λ
2

(

µ

t− t0
+
t− t0
µ

))

. (2.6)

The area under the curve (AUC) and the parameters µ and λ are defined as

AUC =
m

vA
, µ =

L

v
, λ =

vL

2D
, (2.7)

where L = xd−x0 is the distance between the injection and detection sites. The parameter

AUC equals the IDC integral, and µ is the mean transit time (MTT), i.e., the average time

a microbubble takes to travel the distance L [39, 41]. The parameter λ is proportional to

the Péclet number, which equals the ratio of the diffusive time L2/D and the convective

time µ [41]. In the Appendix (Sec. 2.5), we provide an analytical relation between λ and

the statistical skewness of the IDC.
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Figure 2.5 Assumed UCA concentration profile in space at t = t1, i.e., just before the bolus
passage at the detection site xd.

By its relation to D, the parameter λ is interesting for the characterization of diffusion.

However, λ also depends on the length L, which cannot be measured in our clinical appli-

cation. As a consequence, λ does not characterize diffusion locally. This would require the

definition of a local diffusion-related parameter that is independent of L.

To describe local aspects of the UCA diffusion process, we consider a short segment of the

infinitely-long tube without making assumptions about the bolus injection. The boundary

condition (2.5a) representing the bolus injection is replaced by a local boundary condition

describing the spatial UCA concentration profile at time t1, just before the bolus passage

at the detection site xd. In line with the LDRW model, we assume a Normally distributed

initial spatial concentration profile given as

C(x, t1) =
m

A
√

2πσ2

1

exp

(

−(x− x1)
2

2σ2

1

)

, (2.8)

with mean x1 = xd −∆x and variance σ2

1
= σ2(t1). By adopting the boundary condition

of (2.8) instead of (2.5a), we can obtain an analytical solution C(x, t) for t ≥ t1 if we

assume locally constant hemodynamic parameters, i.e., D(x) = D` and v(x) = v` for

x1 −∆x ≤ x ≤ xd. This interval covers the tube segment containing the bulk of the UCA

bolus at t = t1 (see Fig. 2.5). For x < x1 −∆x, D and v are not relevant and may have

any value. In particular, if D(x) = D` for x < x1 − ∆x, the bolus injection time can be

estimated as

t̃0 = t1 −
σ2

1

2D`

. (2.9)

The estimate t̃0 is a theoretical estimate that cannot be interpreted as the true injection

time, since D(x) = D` only holds for x1 −∆x ≤ x ≤ xd. However, (2.9) can be used to
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Figure 2.6 IDC shape for various values of κ with µ = 25 s.

represent the IDC as in (2.6), although with a different parametrization:

t0 = t̃0, (2.10a)

α =
m

v`A
, (2.10b)

µ = t1 − t̂0 +
xd − x1
v`

, (2.10c)

λ =
v2`
2D`

(

t1 − t̂0
)

+
v`(xd − x1)

2D`

. (2.10d)

Using the parametrization in (2.10), we define a new parameter κ, dependent on D` and

v` only:

κ =
λ

µ
=

v2`
2D`

. (2.11)

After combining (2.11) and (2.6), the IDC can be expressed as

C(t) = AUC

√

κ

2π (t− t0)
exp

(

−κ (t− t0 − µ)2

2 (t− t0)

)

. (2.12)

Being dependent on D` and v` only, κ is the local, diffusion-related parameter that we

have adopted for characterization of the microvascular structure. The parameter κ can be

interpreted as the local ratio between the diffusive time and the squared convective time.

For low values of D`, the UCA concentration profile hardly spreads while passing xd. This

leads to a symmetric IDC, characterized by high values of κ. On the other hand, high values

of D` lead to a skewed IDC, represented by small values of κ. This is shown in Fig. 2.6.
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2.2.4 Parameter estimation

Local diffusion can be estimated from measured TDCs using the modified LDRW IDC for-

malization in (2.12) and the relation between UCA concentration and gray level in (2.3).

The accuracy of the parameter estimation is determined by the temporal characteristics of

IDC noise, i.e., all signals that the model function (2.6) cannot explain. Typical ultrasound

noise sources such as speckle are less significant here: stationary noise affects only the IDC

baseline and signals from moving linear scatterers (e.g. red blood cells) are effectively sup-

pressed by contrast-specific imaging techniques [16]. IDC noise is therefore mainly related

to microbubbles and might be caused by random microbubble movement into and out of

the sample volume, represented by a pixel. Such movement produces a noise component

whose variance relates directly to the microbubble concentration, satisfying the multiplica-

tive character of IDC noise that was previously measured [34].

We evaluated the multiplicative character of IDC noise by analyzing over 50 × 103 curves

measured in vivo. Signals at frequencies above 0.5 Hz were considered as noise, because

the spectrum of (2.6) is restricted to frequencies lower than 0.5 Hz for a realistic range of

κ (0.1-1.5 s-1) and µ (10-50 s). We compared the high-frequency noise power with the low-

frequency signal magnitude using a short-time Fourier transform with a Hamming window

of 3.2 s. For IDCs in the real domain, the average correlation coefficient was 0.86 ± 0.07,

compared with 0.52 ± 0.24 for log-domain TDCs. The relatively strong correlation in the

real domain indicates multiplicative noise. Moreover, frequencies above 0.5 Hz contained

54% of the total signal power in the real domain, compared with 6% in the logarithmic

domain. For these reasons, parameter estimation is performed in the logarithmic domain

[42]. Although the logarithmic compression affects the error metrics for TDC fitting, the

effects on the estimation of λ and µ are negligible [34].

The modified LDRW TDC formalization is obtained by combining (2.12) and (2.3). After

compensating for the gray mapping, and estimating and subtracting the baseline Q0, this

expression is given as

Q(t) = aDR ln

(

AUC

√

κ

2π (t− t0)
exp

(

−κ (t− t0 − µ)2

2 (t− t0)

)

+ 1

)

. (2.13)

In (2.13), the factor aCI/I0 is included in AUC, since only a relative measure of the UCA

concentration is required.

The accuracy of the parameter estimation is improved by low-pass filtering the TDCs both in

space and time (see Fig. 2.7). The spatial filter design is based on the size of the smallest

microvascular networks for which local diffusion must be estimated. As angiogenesis is

required for cancer to grow beyond 1 mm3 [11], a reliable analysis of image regions with
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Figure 2.7 Signal conditioning and fitting of a single-pixel TDC in the logarithmic domain.

a radius as small as 0.62 mm is necessary. To maintain sufficient resolution for accurate

characterization at this scale, we adopted a Gaussian filter with σ = 0.5 mm, whose 3-dB

value is at 0.59 mm. The loss of information due to spatial filtering is limited, because the

axial scanner resolution (0.43 mm) is inferior to the B-mode pixel resolution (0.15 mm).

The nonuniform spatial TRUS statistics, generally due to a lower lateral resolution at

larger depths, are compensated by spatial filtering; after filtering, the average correlation

coefficient between neighboring pixel IDCs is independent of the scanning depth, suggesting

a uniform spatial resolution. After spatial filtering, downsampling in both spatial dimensions

by a factor three permits reducing the computation time by 89%.

Low-pass filtering may also be performed in time, given the scanning frame rate (about
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10 Hz) as compared to the maximum TDC frequency of 0.5 Hz. We adopted a finite

impulse response filter of 100 coefficients and a cut-off frequency of 0.5 Hz. A zero phase

shift is obtained by filtering in both forward and backward directions.

A well-known issue in IDC analysis is recirculation, i.e., the subsequent bolus passages

through a selected ROI that mask the last segment of the first-pass IDC tail [35, 39, 43].

In cardiovascular applications, IDC parameter estimation is often restricted to the interval

t ≤ tTr where recirculation does not occur. The truncation time tTr is commonly defined

as the time when the IDC decays to 30% of its peak value [34, 43]. An effect similar to

recirculation occurs also in the prostate, where additional UCA passages may also be due

to multiple feeding arteries [44]. The effects on measured curves are, however, less evident

than in cardiovascular applications (see Fig. 2.7). Therefore, we adopt a more specific

approach to define tTr. The IDC decay during an interval ∆t is given as

C(t+∆t)

C(t)
=

√

t

t+∆t
exp

(

−κ
2
∆t

(

1− µ2

t(t+∆t)

))

, (2.14)

where t0 = 0 is assumed without loss of generality. For large t, the IDC decays approxi-

mately exponentially, which corresponds to a linear TDC decay in the logarithmic domain.

Therefore, tTr is determined such that the linear TDC approximation has the highest R2 on

the interval between the peak time and tTr. The choice of tTr is restricted to the interval

where the IDC amplitude, in the real domain, decays to between 20% and 50% of the peak

amplitude. The influence of TDC noise on the determination of tTr is reduced by additional

low-pass filtering with cut-off frequency at 0.1 Hz.

LDRW model fitting can be performed with a linear regression algorithm as described in

[34]. However, the computational complexity of this algorithm is high as both the param-

eter t0 and the regression interval are iteratively determined. Given the large number of

TDCs (about 5 × 103 for each dataset, after downsampling), we have adopted a different

method, based on the statistical IDC moments [45]. We have extended this method by

inclusion of the estimation of t0 (see Appendix, Sec. 2.5), which makes the method non-

iterative. However, the computation of the statistical IDC moments requires the complete

first-pass IDC. For the interval t > tTr, the IDC is approximated by an exponential decay,

corresponding to the linear TDC approximation. As a final step, the obtained parameter

estimates are used as initialization to fit (2.13) to the TDC for t ≤ tTr using the Levenberg-

Marquardt iteration [46], to increase the fitting accuracy. Up to five iterations were used; a

higher number of iterations did not significantly improve the results. On a Windows-based

workstation with an Intel Core2 Duo processor running at 3.16 GHz with 3.49 GB of RAM,

one video is processed in about five minutes.

A parametric image is produced by displaying the estimates of κ for all pixels covering the
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Figure 2.8 In vivo CUDI parametric image obtained from the same data as shown in Fig. 2.1 with
histology. On the top left, the diffusion parametric image is overlaid on the ultrasound
power modulation image. The parameter κ is displayed as a color coding; uncolored
pixels are associated with fit failure. The manually selected white contour represents
the prostate boundary. The corresponding fundamental ultrasound image (bottom
left) is also shown, in which the red and green polygons represent the adopted ROIs
for cancerous and healthy tissue, respectively. Three corresponding histology slices,
all showing cancer in the right peripheral zone, are shown on the right.

prostate, as a color coding overlaid on the B-mode image, see Fig. 2.8. The parametric

image is filtered with the same Gaussian filter (σ = 0.5 mm) as the one adopted for spatial

filtering, to emphasize local diffusion at the scale where microvascular networks can be

associated with the presence of cancer.

In some cases, shadowing effects or a lack of perfusion may result in fit failure. Then, the

estimated parameters do not represent the UCA transport dynamics. If the determination

coefficient R2 of the TDC fit in the logarithmic domain is lower than 0.75, the fit is not

accepted and no color is displayed.

2.2.5 Method validation

To validate whether the diffusion-related parameter κ can be estimated independently of

the bolus history, the convective diffusion equation (2.4) was simulated by a finite difference

approximation. The adopted boundary conditions were (2.5b) and (2.8). For various σ1, a

large number of IDCs were obtained for increasing L. We analyzed the dependency of the
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diffusion-related parameters κ and λ = κµ on both L and σ1, by fitting the IDCs with the

proposed algorithm.

The performance of the parameter estimation algorithm was then evaluated by fitting

40 × 103 simulated TDCs, for κ ∈ [0.1, 1] and µ ∈ [10, 50], with additive white noise

sequences. By adding these noise sequences to the TDCs, we reproduced the multiplicative

noise character in the real domain [34]. The noise level was 12 dB was lower than the signal

power, representing the noise level encountered in vivo.

A preliminary clinical validation of the method was also performed by analysis of five datasets

registered from four patients referred for radical prostatectomy at the AMC University Hos-

pital (Amsterdam, the Netherlands). After radical prostatectomy, the prostate was cut

in slices of 4-mm thickness and a pathologist marked the presence of cancer by histology

analysis based on the level of cell differentiation [47]. We selected the histology slice(s)

corresponding to the ultrasound imaging plane and compared them with the CUDI results.

Fig. 2.8 shows an example parametric diffusion image with the corresponding histology. A

quantitative comparison was performed for each dataset by selecting two ROIs containing

healthy and cancerous tissue, based on the histology. Because the histology analysis was

not specifically aimed at a high-resolution validation, we limited the ROI selection to areas

larger than 50 mm2 that did not show significant variation across subsequent slices. We

considered only the peripheral zone of the prostate [8], since about 70 to 80% of all cancers

are found in this anatomical zone [8, 14]. From the histogram of κ in each ROI, the mean

value and standard deviation of each specific class (healthy and cancerous tissue) were

used to determine the optimal tissue-classification threshold by Bayes inference [48]. This

threshold (based on all datasets) was used to derive the optimal sensitivity and specificity

for pixel classification. In addition, we evaluated the receiver operating characteristic (ROC)

curve on a pixel basis.

A comparison was performed with different IDC parameters proposed in the literature

[14, 20–23], by repeating the same tissue classification procedure. We extracted the peak

intensity (PI), the peak time (PT), the appearance time (AT, the time at which the IDC

achieves 5% of PI), the full-width at half-maximum (FWHM, the time duration while the

IDC exceeds PI/2 [22, 23]), the wash-in time (WIT, the time it takes for the IDC to rise from

5% to 95% of its peak value [23]), the area under the IDC (AUC), the MTT (the LDRW

parameter µ) and the LDRW parameter λ. The parameters PT and AT were computed with

respect to the estimated theoretical injection time t0. All parameters were extracted from

linearized fits to ensure that the comparison is not affected by differences in preprocessing.
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Table 2.1 Mean and standard deviation of IDC parameters measured in healthy and cancerous
tissue.

Parameter Healthy tissue Cancerous tissue

κ [s-1] 0.550 ± 0.249 1.054 ± 0.283

PI [a.u.] 25.0 ± 44.0 80.0 ± 74.6

PT [s] 31.3 ± 12.0 22.1 ± 7.8

AT [s] 17.7 ± 8.5 15.5 ± 5.7

FWHM [s] 18.4 ± 5.2 10.9 ± 2.9

WIT [s] 11.3 ± 3.6 7.3 ± 2.0

MTT (µ) [s] 32.4 ± 11.9 22.7 ± 7.8

AUC [a.u.] 492 ± 1038 844 ± 757

λ 20.4 ± 10.0 24.7 ± 8.3

2.3 Results

The parameters κ and λ, estimated from IDCs obtained by simulations of the convective

diffusion equation (2.4), confirmed the theoretical results of (2.10d) and (2.11) with an

estimation error below 1%. This result confirms that κ, in contrast to λ, is independent of

xd and σ1, i.e., independent of the detection site and the history of the bolus, respectively.

The parameter estimation algorithm fitted simulated TDCs with an average R2 = 0.999

and R2 = 0.990 in the logarithmic and real domains, respectively. If the complete TDC

could be used for fitting, the mean relative error for κ was 4.33%. When the IDC tail was

excluded from the fitting, as required for fitting of TDCs obtained in vivo, the mean relative

error was 10.15%.

On the obtained B-mode image sequences that were compared with histology, the algorithm

showed an average R2 = 0.95 after filtering in space and time, which was by 18% higher

than without filtering. In these data, 89% of the pixel IDC fits were considered sufficiently

accurate (R2 > 0.75 in the logarithmic domain) and 29 × 103 pixel TDC fits were included

in the comparison with histology.

In all patients, we observed that the presence of cancer was associated with higher values

of κ. For each parameter, the mean value and standard deviation in healthy and cancerous

tissue are reported in Table 2.1. We used this information to derive the sensitivity and

specificity for pixel classification, as well as the ROC curve area. For all the considered

parameters, the results are reported in Table 2.2.
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Table 2.2 Sensitivity, specificity, and ROC curve area on pixel basis of several hemodynamic
parameters extracted from fitted IDCs

Parameter Cancerous if Sensitivity [%] Specificity [%] ROC curve area

κ ≥ 0.804 s-1 81.2 84.6 0.909

PI ≥ 70.5 a.u. 56.7 84.1 0.737

PT ≤ 29.5 s 82.3 56.6 0.738

AT ≤ 18.7 s 79.8 48.4 0.659

FWHM ≤ 14.7 s 90.1 76.2 0.895

WIT ≤ 9.6 s 87.7 68.2 0.837

MTT (µ) ≤ 30.0 s 82.3 58.4 0.753

AUC ≥ 208 a.u. 77.1 43.4 0.608

λ ≥ 19.6 72.7 47.3 0.631

2.4 Discussion and Conclusions

Contrast-ultrasound diffusion imaging (CUDI) is an innovative noninvasive imaging method

for prostate cancer localization. The passage of an intravenously injected UCA bolus

through the prostate is measured by dynamic TRUS imaging. The TDCs obtained from all

pixels covering the prostate are analyzed and a parametric image, based on intravascular

diffusion, is produced.

In a preliminary clinical validation, we have compared the cancer localization accuracy of the

proposed method, CUDI, with several quantitative indicators of perfusion. More precisely,

we compared the correspondence between several methods for MVD characterization and

the level of cell differentiation, evaluated by a histology analysis.

The results show that the diffusion-related parameter κ has a ROC curve that is superior

to that of any other IDC parameter. Although the sensitivity of some other parameters is

higher, κ is the only parameter whose sensitivity and specificity both exceed 80%. While

these results are obtained on a pixel basis, the clinical diagnosis would be based on a

larger scale; currently, carcinomas are considered clinically significant if their size is at least

0.5 cm3 [47]. Lesion classification is then based on large amounts of pixels. A perfect pixel-

based sensitivity is therefore not strictly necessary. On the other hand, a high specificity is

essential to exclude healthy areas.

Although they are less specific than κ, all IDC time parameters are smaller in the cancer-

ous areas than in healthy areas. This is consistent with previous qualitative observations

[6, 14]. Perhaps, the lower specificity of the time parameters compared to κ is related to the

difficulty of interpreting these time parameters locally at the measurement site [24]. The

amplitude-related parameters PI and AUC show relatively large variations, in both healthy

and cancerous tissue. This may be due to their dependency on the amount of UCA entering
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the prostate or to nonlinear ultrasound propagation through UCA dispersions [25].

Imaging of intravascular diffusion is a new concept, based on modeling the intravascular

UCA transport by the convective diffusion equation. Whereas other researchers have taken

a bottom-up approach, by analyzing flow through individual vessels and deducing the effects

on vascular networks [49], we have pursued a top-down approach, aimed at macroscopic

modeling of the microvascular network, similarly to [31]. In fact, we characterize the mi-

crovascular network as similar to a porous medium [32], whose structural characteristics are

reflected in diffusion [30].

The parameter κ measures the ratio between diffusion and convection. High values of κ,

with a relatively low diffusion with respect to convection, seem to be associated with the

presence of cancer. This relative decrease in diffusion may be caused by an increased mi-

crovessel tortuosity. This is however the first study that investigates the effects of changes

in the microvascular architecture on intravascular diffusion; a better understanding requires

additional research.

The presented method for estimation of diffusion has the advantage that a local diffusion-

related parameter κ can be estimated independently for each pixel. This parameter depends

only on the local, hemodynamic parameters v` and D` and does not depend on the entire

dilution history between the injection and detection site. This novel approach is based on

the assumption of a Normal UCA concentration distribution in space; an assumption that

is also included in the LDRW model [38]. The width of this distribution before the bolus

passage through the detection site, given by σ1, determines the resolution by which we can

estimate κ (see Fig. 2.5). We have not been able to verify the use of this assumption in an

experimental in vitro setup. However, the spatial UCA distribution in the systemic arteries

is mainly determined by the transpulmonary circulation and can be well described by the

LDRW model [38]. Moreover, the LDRW model is reported to be the most suitable for

fitting IDCs measured in the microcirculation of animal models [23]. These results support

the validity of the LDRW model assumptions.

The proposed method focuses on the temporal characteristics of the UCA diffusion dynam-

ics. Alternative methods can be based also on spatial diffusion characteristics and will be

investigated in the future. In this study, relatively simple linear filters were used to improve

the robustness of parameter estimation. More advanced filtering methods can possibly

provide additional improvements. In this context, coherence-enhancing diffusion filtering

seems an interesting method to improve the signal quality given the anisotropy caused by

the TRUS resolution and the microvascular characteristics.

An important issue concerns the validation of CUDI, as determining the position of the

imaging plane with respect to the histology planes is difficult. In fact, the imaging plane

often crosses several histology planes. The presented validation was therefore restricted to
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patients whose histology did not show significant variation across subsequent slices. We

are currently investigating new strategies to improve the comparison between imaging and

histology. The validation could be improved by comparing CUDI results directly with the

MVD, rather than with the level of cell differentiation. This approach, requiring the use

of immunohistology [10–12], would be more accurate as CUDI aims at characterizing the

microvascular structure. An additional step in the validation may also involve the zonal

anatomy of the prostate. Here, the validation was restricted to the peripheral zone, where

the majority of cancers are found [8, 14]. As the microvascular structure varies among

different anatomical zones of the prostate, it may also be interesting to investigate the

intravascular diffusion in different zones.

In the future, three-dimensional ultrasound imaging may offer great advantages for the

proposed method. From a clinical perspective, the entire prostate could be studied with a

single UCA bolus injection. This would resolve an important current issue, i.e., the selection

of proper TRUS imaging planes such that any significant carcinoma is covered. From a

technical perspective, the UCA transport could be observed in all spatial dimensions, which

would open up new possibilities for spatio-temporal analysis of intravascular UCA diffusion.

Moreover, the in vivo validation would be simplified as imaging and histology results could

be compared more accurately.

In conclusion, also given the additional possibilities offered by three-dimensional ultrasound,

imaging of intravascular diffusion may be a promising alternative to perfusion imaging for

the localization of prostate cancer. The intravascular nature of UCA microbubbles makes

contrast-enhanced ultrasound an attractive imaging modality to assess intravascular diffu-

sion. Furthermore, the use of CUDI should not be limited to prostate cancer; the same

diffusion principles also apply to many other forms of cancer, such as breast cancer. Further

clinical studies are however required to evaluate the clinical reliability of CUDI.

2.5 Appendix: LDRW IDC moments and skewness

For a random variable y with probability density function (PDF) p(y), the moments Mi for

i ≥ 1 are given as

Mi =

∞
∫

−∞

yip(y) dy. (2.15)

For i ≥ 2, the central moments mi are given as

mi =

∞
∫

−∞

(y −M1)
ip(y) dy. (2.16)
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To interpret the LDRW IDC formalization in (2.6) as a PDF, we define C(t) = 0 for t ≤ t0

and divide C(t) by its integral
∞
∫

−∞

C(t) dt = AUC [50]. The moments Mi are then given as

Mi =
1

AUC

∞
∫

t0

tiC(t) dt. (2.17)

The LDRW IDC moments, which for t0 = 0 are denoted by Mi|t0=0
, have been derived in

[45] and [50]:

M1|t0=0
= µ

(

1 +
1

λ

)

, (2.18a)

M2|t0=0
=
(µ

λ

)2
(

λ2 + 3λ+ 3
)

, (2.18b)

Mi|t0=0
= (2i− 1)

µ

λ
Mi−1|t0=0

+ µ2 Mi−2|t0=0
for i ≥ 3. (2.18c)

In (2.18), M1|t0=0
equals the expectation of C(t). If t0 is known, the moments M1|t0=0

and M2|t0=0
can be computed from measured IDCs. Therefore, solving λ and µ from

(2.18a) and (2.18b) provides a non-iterative method to estimate these parameters [45].

In the current study, t0 is however unknown so we cannot measure Mi|t0=0
specifically. We

can only measure the momentsMi, which depend on t0. To estimate all LDRW parameters

by measuring Mi, we include t0 in the moments analysis. The first moment M1 for t0 6= 0

is by linearity of the expectation given as

M1 = M1|t0=0
+ t0 = µ

(

1 +
1

λ

)

+ t0. (2.19)

This result can also be derived by substitution of t− t0 in the integrand of (2.17). Similarly,

Mi for i > 1 can be derived. λ, µ and t0 can then be solved from the obtained equations for

M1, M2 and M3. However, this system is very complicated and has no analytical solution.

Instead, we can also measure the central moments mi and derive expressions for mi in

terms of λ, µ and t0. By substituting τ = t− t0, we observe that the central moments are

compensated for t0 by the time shift by M1 = M1|t0=0
+ t0:

mi =
1

AUC

∞
∫

0

(τ − M1|t0=0
)iC(τ + t0) dτ. (2.20)

In fact, the argument τ + t0 ensures that the resulting function C(τ + t0) is independent

of t0 (see (2.6)). Therefore, the moments of C(τ + t0) are given by (2.18). By expanding

(τ − M1|t0=0
)i, the central moments mi can be completely described in terms of Mi|t0=0

.
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In particular, m2 and m3 are given as

m2 = M2|t0=0
−
(

M1|t0=0

)2

=
(µ

λ

)2

(λ+ 2) , (2.21a)

m3 = M3|t0=0
− 3

(

M1|t0=0

) (

M2|t0=0

)

+ 2
(

M1|t0=0

)3

=
(µ

λ

)3

(3λ+ 8) . (2.21b)

λ and µ can be solved from (2.21). To obtain the solution, we compute the IDC skewness

γ1, i.e., the third standardized moment of C(t), which is a function of only λ:

γ1 =
m3

(m2)
3/2

=
3λ+ 8

(λ+ 2)3/2
. (2.22)

This result confirms the relation between λ and the IDC skewness [39, 41, 43]. Solving λ

from (2.22) provides an estimate of λ that is independent of µ and t0. Subsequently, µ can

be estimated from (2.21a) as

µ =
√
m2

λ√
λ+ 2

. (2.23)

Finally, we use (2.19) to estimate t0 from M1 as

t0 =M1 − µ

(

1 +
1

λ

)

. (2.24)

The fourth parameter AUC is given directly by the IDC integral. Since the IDC integral as

well as the moments M1, m2 and m3 can directly be computed from measured IDCs, all

LDRW IDC parameters can be estimated by (2.22), (2.23) and (2.24).

In summary, we have obtained a method to estimate all LDRW IDC parameters, including

t0. Being non-iterative, this method has low computational requirements compared to

various iterative methods.
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CHAPTER 3

Maximum-likelihood estimation for indicator dilution analysis

Based on: M. P. J. Kuenen, I. H. F. Herold, H. H. M. Korsten, J. J. M. C. H. de la Rosette, H. Wijkstra,

and M. Mischi, “Maximum-likelihood estimation for indicator dilution analysis,” IEEE Transactions on

Biomedical Engineering, in press, available at http://dx.doi.org/10.1109/TBME.2013.2290375.

Abstract – Indicator-dilution methods are widely used by many medical imaging techniques and by dye-,

lithium-, and thermo- dilution measurements. The measured indicator dilution curves are typically fitted

by a mathematical model to estimate the hemodynamic parameters of interest. This paper presents a new

maximum-likelihood algorithm for parameter estimation, where indicator dilution curves are considered as

the histogram of underlying transit-time distribution. Apart from a general description of the algorithm,

semi-analytical solutions are provided for three well-known indicator dilution models. An adaptation of the

algorithm is also introduced to cope with indicator recirculation. In simulations as well as in experimental

data obtained by dynamic contrast-enhanced ultrasound imaging, the proposed algorithm shows a superior

parameter estimation accuracy over nonlinear least-squares regression. The feasibility of the algorithm for

use in vivo is evaluated using dynamic contrast-enhanced ultrasound recordings obtained with the purpose

of prostate cancer detection. The proposed algorithm shows an improved ability (increase in receiver-

operating-characteristic curve area of up to 0.13) with respect to existing methods to differentiate between

healthy tissue and cancer.
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3.1 Introduction

The use of indicator- or tracer-dilution methods for hemodynamic quantification in clinical

applications has a long history [1]. After injection of an indicator into the bloodstream, an

indicator dilution curve (IDC) can be obtained by measurement of the indicator concentra-

tion at a desired location downstream as function of time. Hemodynamic parameters of

clinical interest can be extracted from IDCs.

Indicator-dilution methods are used in a wide variety of clinical applications. Many tech-

niques were first introduced for cardiovascular quantification, mainly for assessment of car-

diac output and blood volumes [1]. The original techniques for IDC measurement, such as

dye- and thermodilution, have the drawback of being invasive and requiring patient catheter-

ization [2, 3]. Nowadays, minimally-invasive imaging techniques, such as ultrasound [4],

magnetic resonance imaging (MRI) [5], scintigraphy [6], and computed tomography [7], are

also available. Their development has led to a wider spectrum of clinical applications, such

as detection of ischemia, e.g. in the brain and the myocardium [8, 9]. In other application

areas, such as oncology, indicator dilution methods are used for detection of angiogenesis

[5, 10, 11].

The assessment of clinically relevant hemodynamic parameters from IDCs is based on mod-

eling and analysis of the indicator transport kinetics. The first pass of an intravascular

indicator can be represented by mathematical models that describe the distribution of indi-

cator transit-times. Apart from providing a stochastic interpretation, several widely adopted

models also offer a physiological representation of the hemodynamic phenomena. In fact,

the first model proposed by Hamilton [3] describes the indicator wash-out from a single

compartment. More recent models, such as the local density random walk (LDRW) model

[12, 13], the lognormal model [14–16], and the gamma-variate model [17, 18], provide a

physiological interpretation for the complete distribution of transit-times.

In many applications, estimation of the hemodynamic parameters of interest is performed

by fitting of the IDCs to one of these models. Nonlinear least-squares (NLS) regression is

typically adopted for IDC model fitting [19], as it is well-known that, in the case of additive

white noise, this algorithm provides the maximum-likelihood estimates for the model pa-

rameters. However, IDC noise is not always well described by additive white noise [20–22].

As a result, NLS regression may not be the optimal method for IDC parameter estimation.

This paper describes an alternative algorithm based on maximum-likelihood (ML) estima-

tion. The stochastic nature of IDC models is exploited by considering the IDC as the

observed histogram of indicator transit-times. The statistical properties of this histogram

are derived. ML parameter estimation is performed by finding the parameter values that

have the highest likelihood of producing the measured transit-time histogram. Apart from

a general description of the algorithm, model-specific solutions for the LDRW, lognormal,
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and gamma-variate models are obtained. In addition, a modification of the algorithm is

proposed to cope with the common problem of indicator recirculation.

The performance of the proposed ML algorithm is compared to that of NLS regression in

simulations and in IDCs measured in vitro by dynamic contrast-enhanced ultrasound (DCE-

US) imaging. The feasibility of the algorithm in vivo is also shown based on DCE-US data

obtained from the prostate microcirculation.

3.2 Materials and Methods

3.2.1 Statistics of indicator transit-time distributions

An IDC describes the indicator concentration as a function of time at a fixed location

downstream, after injection of an indicator bolus upstream. Common models adopted to

describe these IDCs, e.g., the LDRW, lognormal, and gamma-variate models, are proba-

bility distributions p(t|θ) that represent the distribution of indicator transit-times between

the injection and the detection sites. The model-specific parameter vector θ defines the

IDC shape and, for these three models, offers a direct physiological interpretation of the

indicator transport kinetics as well [12, 15, 18].

By interpreting an IDC as a transit-time distribution p(t|θ), indicator particles are expected
to appear at the detection site at time t with probability p(t|θ). The measured transit-time

of each indicator particle provides an observation of p(t|θ).
In reality, however, the transit-times of individual particles cannot be measured. Ideally, a

measured IDC provides the amount of observed indicator particles C at N discrete-time

samples n with time step ∆t. Hence, the measured IDC C(n) is the observed histogram

of p(t|θ) based on a total of K transit-time observations. If these observations are inde-

pendent, the probability that k particles are observed at time n is given by the binomial

distribution as

P{C(n) = k} =





K

k



 p(n∆t|θ)k(1− p(n∆t|θ))K−k. (3.1)

An example of a simulated IDC based on (3.1) is shown in Fig. 3.1. The expectation and

the variance of (3.1) are given as

E{C(n)} = Kp(n∆t|θ), (3.2)

Var{C(n)} = Kp(n∆t|θ)(1− p(n∆t|θ)). (3.3)
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Figure 3.1 IDC simulation obtained as histogram of 2000 randomly LDRW-distributed transit-
times. The fits based on nonlinear least-squares (NLS) regression and maximum-
likelihood (ML) estimation are also shown.

The expectation E{C(n)} resembles the model IDC; the variance Var{C(n)} represents

the fluctuation of the amount of indicator particles and can be considered as noise for the

purpose of IDC fitting.

If the transit-time distribution is sampled by a sufficient number of time samples, such that

p(n∆t|θ) � 1, the variance approximates the expectation. As a result, the noise power

is proportional to the signal amplitude. This relation, which can also be appreciated in

Fig. 3.1, may explain the previously observed correlation between IDC amplitude and IDC

noise intensity [20], a correlation that cannot be explained by a standard additive noise

model.

The instantaneous signal-to-noise ratio (SNR) of the IDC is given as

SNR(n) =
(E{C(n)})2
Var{C(n)} = K

p(n∆t|θ)
1− p(n∆t|θ) . (3.4)

Because the SNR relates linearly to the total number of indicator particles K, K can be

used to control the SNR in IDC simulations. The SNR is also influenced by the IDC shape:

it is relatively high in narrow IDCs that have relatively high values of p(n∆t|θ) for only few
samples.

3.2.2 Maximum-likelihood estimation

Based on the indicator transit-time statistics, we propose an algorithm for ML estimation

of the parameter vector θ. Given the observed transit-times t(k) of K observed indicator

particles, we can evaluate the likelihood L(θ) of the IDC model parameters. If we assume
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independency of the transit-times of indicator particles, we have

L(θ) =
K
∏

k=1

p(t(k)|θ). (3.5)

The ML solution of the parameters θ is found by maximizing L(θ). In practice, ln (L(θ))
is often maximized, because the logarithm is a monotonic function that transforms the the

product into a more simple sum. A logarithmic transformation of (3.5) yields

ln (L(θ)) =
K
∑

k=1

ln (p(t(k)|θ)) . (3.6)

As already discussed, the individual transit-times t(k) are unknown in reality. The transit-

time histogram C(n) is obtained instead. We can rewrite (3.6) in terms of C(n) by grouping

all particles that are sampled at the same time sample n as

ln (L(θ)) =
N
∑

n=1

C(n) ln (p(n∆t|θ)) . (3.7)

In (3.7), the sum acts on the time samples n rather than on the particles k. The likelihood

function (3.7) equals the correlation between the measured IDC and the logarithm of the

adopted IDC model. By differentiation of (3.7) with respect to θ and equating it to zero,

the ML solution for θ can be obtained. This yields

∂ ln (L(θ))
∂θ

=
N
∑

n=1

C(n)
∂p(n∆t|θ)/∂θ
p(n∆t|θ) = 0. (3.8)

The obtained result can be used to find the ML estimate θ̂ML in an iterative numerical

optimization scheme.

Because p(n∆t|θ) is a probability distribution that integrates to 1, the area under the IDC

(AUC) cannot be included in the preceding analysis. After determination of the IDC shape

parameters, AUC can be estimated as the linear scale factor between the measured IDC

C(n) and the fit p(n∆t|θ̂ML) by e.g. linear regression.

For three specific IDC models, a partially analytical solution can be derived. As an example,

this derivation is provided for the LDRW model in the following section. The derivations for

the lognormal and gamma-variate models, which are similar to those for the LDRW model,

are reported in Appendix 3.6.
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Application to the local density random walk model

The LDRW model provides both a stochastic and a physiological interpretation for the

transit-time distribution. The model can be derived from a discrete one-dimensional ran-

dom walk process [23] and is also an analytical solution of the convective diffusion equation

for the one-dimensional case [12, 24]. The adopted boundary conditions represent a rapid in-

jection and indicator mass conservation. Adopting a modified parametrization θ = [µ, κ, t0]

[25], the distribution of transit-times is given as

p(t|θ) =
√

κ

2π(t− t0)
exp

(

−κ (t− t0 − µ)2

2(t− t0)

)

. (3.9)

In (3.9), µ represents the mean transit time (MTT), κ is a skewness parameter related to

the dispersion of the indicator bolus through the circulation, and t0 represents the injection

time. The LDRW model has been shown to accurately represent IDCs obtained by DCE-US

in different applications, such as for cardiovascular quantification [13, 20] and for analysis

of the microcirculation [26]. The model parameter κ has shown a promising value for

detection of abnormalities in the microcirculation that are related to cancer [25].

To derive the ML solution for the LDRW model, the model in (3.9) is differentiated with

respect to θ as

∂p(t|θ)
∂µ

= p(t|θ) · κ
(

1− µ

t− t0

)

, (3.10a)

∂p(t|θ)
∂κ

= p(t|θ) · 1
2

(

1

κ
− (t− t0 − µ)2

t− t0

)

, (3.10b)

∂p(t|θ)
∂t0

= p(t|θ) · 1
2

(

κ+
1

t− t0
− κµ2

(t− t0)2

)

. (3.10c)

We can insert (3.10) into (3.8) to obtain the equations that satisfy the ML solution for the

LDRW model as

N
∑

n=1

(

1− µ

n∆t− t0

)

C(n) = 0, (3.11a)

N
∑

n=1

(

1

κ
− (n∆t− t0) + 2µ− µ2

n∆t− t0

)

C(n) = 0, (3.11b)

N
∑

n=1

(

κ+
1

n∆t− t0
− κµ2

(n∆t− t0)2

)

C(n) = 0. (3.11c)
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In (3.11a), we have used the fact that κ is strictly positive. From (3.11a) and (3.11b) the

ML estimates for µ and κ can be obtained as

µ̂ML =

N
∑

n=1

C(n)

N
∑

n=1

C(n)

n∆t− t0

, (3.12a)

κ̂ML =













N
∑

n=1

(n∆t− t0)C(n)

N
∑

n=1

C(n)

− µ̂ML













−1

. (3.12b)

We were not able to find an analytical solution for t̂0, ML. If this parameter is already known,

its value can be inserted into (3.12) to obtain a completely analytical ML solution. If t0 is

unknown, its ML estimate can be obtained by numerically solving (3.11c) after substitution

of κ and µ by their ML solutions given in (3.12). As a result, the ML parameter estima-

tion problem is significantly less complex than conventional nonlinear regression methods,

because iterative optimization is only required for a single parameter.

Maximum likelihood and recirculation

A common issue in IDC analysis is recirculation, i.e., subsequent passages of the indicator

bolus that overlap with the tail of the first-pass IDC. As a result, only a limited part of the

tail of the transit-time distribution can be observed, as shown in Fig. 3.2.

Typically, the IDC is truncated by discarding the time segment featuring recirculation from

the analysis. Parametric curve-fitting is then applied on the truncated IDC [20]. This

approach cannot easily be applied for the proposed ML algorithm, because truncation affects

the transit-time distribution that can be observed.

After truncating the IDC at time tTr = nTr∆t, the transit-time distribution p(t|θ) is no

longer completely sampled: transit-times beyond the truncation time tTr cannot be observed.

Instead of the original distribution, the truncated transit-time distribution is observed. This

is given as

pTr(n∆t|θ, nTr) =























p(n∆t|θ)
nTr
∑

n=1

p(n∆t|θ)
n ≤ nTr

0 n > nTr

. (3.13)
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Figure 3.2 IDC obtained in vivo by DCE-US, in which the tail of the transit-time distribution
cannot be observed due to indicator recirculation. Also shown are LDRW model fits
based on nonlinear least-squares (NLS) regression and maximum likelihood (ML),
obtained after truncation of the IDC.

In (3.13), the scaling term in the denominator ensures that pTr(n∆t|θ, nTr) integrates to 1,

in order to properly define it as a probability distribution.

The log-likelihood based on the truncated transit-time distribution can be expressed similarly

to (3.7) as

ln (LTr(θ)) =

nTr
∑

n=1

C(n) ln (p(n∆t|θ))− ln

(

nTr
∑

n=1

p(n∆t|θ)
)

nTr
∑

n=1

C(n). (3.14)

The derivative of (3.14) with respect to θ is given as

∂ ln (LTr(θ))

∂θ
=

(

nTr
∑

n=1

C(n)
∂p(n∆t|θ)/∂θ
p(n∆t|θ)

)

−

nTr
∑

n=1

∂p(n∆t|θ)/∂θ

nTr
∑

n=1

p(n∆t|θ)

nTr
∑

n=1

C(n). (3.15)

The previous semi-analytical solutions for the shape parameters, as given in (3.12a) and

(3.12b), do not represent the ML solution in the case of truncation. For this reason, iterative

optimization is adopted to maximize (3.14). An example IDC model fit obtained by this

procedure is shown in Fig. 3.2. Similarly to the original algorithm, the parameter AUC is

not included in this analysis, but estimated afterward by linear regression with the fitted

IDC.
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Implementation

All proposed parameter estimation methods were implemented in MATLAB R© (The Math-

Works, Natick, MA), with the routine mle. For NLS regression, the routine lsqcurvefit

was adopted. In both cases, iterative optimization was performed with the built-in trust-

region algorithm [27].

In all cases, the parameter t0 was considered unknown. For all iterative optimization algo-

rithms, parameter initialization was performed as follows. The parameter t0 was initialized

at 2 s before the appearance time, which represents the time at which indicator particles

are first observed. The two shape parameters were then initialized using the semi-analytical

ML algorithm described in Sec. 3.2.2 and Appendix 3.6. Finally, AUC was initialized by

linear regression as the linear scale factor between the obtained IDC and the initialized IDC.

To prevent numerical issues, a lower bound of 0.5 was adopted for the term
∑nTr

n=1
p(n∆t|θ)

in (3.14). This lower bound implies that, after truncation, the remaining time samples cover

at least 50% of the complete area under the IDC.

3.2.3 Simulation study

A simulation study was performed to test the proposed ML algorithm. Simulated IDCs

were derived as the observed histogram of transit-times, based on random sampling of the

transit-time distribution p(t|θ) as described in Sec. 3.2.1. The adopted time step was 0.1 s.

An example of a simulated IDC is shown in Fig. 3.1. Simulations were performed with both

K = 2 × 103 and K = 5 × 103, which resulted in an SNR of 9 dB and 13 dB, respectively.

These SNR values are in line with those obtained in experimental data.

In this study, simulated IDCs were generated for three models, each using 10 different values

for the two IDC shape parameters within the following range:

• LDRW model: κ ∈ [0.1,1], µ ∈ [10,40];

• lognormal model: µ ∈ [2,3.5], σ ∈ [0.2,1];

• gamma-variate model: α ∈ [4,12], β ∈ [1,4].

The parameter range was selected to represent IDCs with mean transit times ranging be-

tween approximately 10 and 40 seconds. For each parameter combination, 25 simulated

IDCs were obtained. In total, 2500 IDCs were simulated for each model.

All simulated IDCs were fitted by the proposed ML algorithm, as well as by NLS regression.

The performance of both parameter estimation methods was evaluated by the bias and

standard deviation of the estimated parameters, relative to their true values. This choice

was motivated by the wide range of adopted parameter values. In addition, we evaluated
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Figure 3.3 Schematic overview of the in vitro set-up.

the fitting accuracy by the determination coefficient R2 and the required computation time

for all algorithms.

The same IDCs were used to evaluate the parameter estimation performance in case of

truncation. The optimal truncation time generally depends on the application. In this

study, we adopted a cut-off percentage of 30%, i.e., at tTr, the model IDC has decayed to

30% of its peak value [23].

In addition, we investigated the variation in the parameter estimates with respect to the

cut-off percentage by performing parameter estimation with cut-off percentages ranging be-

tween 20 and 40%. The relative standard deviation (expressed as a percentage of the mean)

among the parameter estimates obtained with different cut-off percentages was evaluated

to measure this variation.

3.2.4 Experimental validation

An experimental validation of the proposed algorithm was performed using DCE-US imag-

ing. An in vitro set-up was constructed at the Catharina Hospital (Eindhoven, The Nether-

lands). The set-up, which is schematically shown in Fig. 3.3, consisted of an open network

of tubes, in which flow was generated by a centrifugal pump (Medtronic 550 bio-console,

Minneapolis, MN). A 0.2 mL SonoVue R© (Bracco, Milan, Italy) ultrasound-contrast-agent

bolus was diluted in 20 mL of saline and subsequently injected into the flow network, which

was kept open to avoid recirculation. The hydrostatic pressure was stabilized at the output.

Cross-sectional ultrasound B-mode images were obtained directly before and after the tube

network with an iE33 ultrasound imaging system (Philips Healthcare, Andover, MA) and a

transesophageal X7-2t probe. Harmonic imaging was applied (2.7-5.4 MHz) at a mechanical

index of 0.2. From the obtained image sequences, linearized acoustic time-intensity curves

were obtained using acoustic quantification software QLAB (Philips Healthcare, Bothell,
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Figure 3.4 DCE-US image (top) and acoustic time-intensity curve quantification using QLAB
(bottom). In the top part, the two tubes for the inflow (left) and outflow (right) of
contrast agents are visible. The curves shown in the bottom part are sampled from
square ROIs in the top right of the image. The ROI size is indicative of the SNR;
the blue IDC, which is least noisy, is sampled from the largest ROI, whereas the noisy
teal IDC is sampled from the smallest ROI.

WA), as shown in Fig. 3.4.

To avoid the influence of the injection function on our analysis, only the outflow curves

were considered in this study. Fig. 3.4 also shows five square regions of interest (ROIs) of

different sizes (from 1.81 mm2 to 35.4 mm2) from which the acoustic time-intensity curves

were sampled. The curves in Fig. 3.4 indicate a correlation between the ROI size and the

SNR of the curve. The average SNR, obtained based on the fit with the smallest mean

squared error, ranged from 7 dB for the smallest ROI to 14 dB for the largest ROI. Because

the number of observed indicator particles K is approximately proportional to the ROI size,

this observed correlation between ROI size and SNR can be explained by (3.4).

For a direct application of indicator dilution theory on the acoustic time-intensity curves,

the relation between contrast-agent concentration and measured acoustic intensity must be

linear. For low concentrations and low mechanical index, a linear relation was established

by several researchers [20, 25, 28]. As a result, acoustic time-intensity curves may be in-

terpreted directly as IDCs.

Parameter estimation was performed by both ML and NLS using IDCs obtained from 79

experiments, which were performed with four different volumes between 356 and 890 mL
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Figure 3.5 Experimentally obtained IDC as well as LDRW model fits based on nonlinear least-
squares (NLS) regression and maximum likelihood (ML).

and at six different flow values ranging from 1 to 4 L/min. As a result, IDCs were obtained

for a wide range of parameter values, as shown in Figures 3.4 and 3.5. In a few curves, the

presence of air bubbles resulted in a few noisy samples. To prevent these from affecting the

parameter estimation, all IDCs were median filtered with order three prior to curve-fitting.

Because the true values of the parameters were not available, an indirect method was

adopted to evaluate the parameter estimation performance. Since the IDCs were sampled

from concentric ROIs (see Fig. 3.4), we expected the associated true parameter values to

be constant across the ROIs. Consequently, we considered the variation among the param-

eter estimates obtained from different ROIs as an indirect error metric. The determination

coefficient R2 was adopted to evaluate the overall quality of curve-fitting. The analysis was

performed using the complete IDC for fitting, and also after discarding the IDC tail (≤ 30%

of the peak value). Furthermore, the sensitivity of the estimated parameters with respect

to the cut-off percentage was evaluated as described in Sec. 3.2.3.

3.2.5 In vivo evaluation

The feasibility of the proposed algorithm for in vivo use was evaluated with IDCs obtained

by DCE-US imaging of the human prostate with the purpose of cancer detection. Cancer

detection has been investigated using various imaging modalities, such as DCE-US and

dynamic contrast-enhanced MRI [5, 10, 11, 29, 30], and is based on detection of microvas-

cular changes related to angiogenesis and, therefore, to cancer growth.

This study was performed at the Academic Medical Center University Hospital (Amster-

dam, The Netherlands) after approval was granted by the local ethics committee; written

informed consent was obtained from all patients prior to this study. 17 DCE-US datasets
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Figure 3.6 IDCs obtained in vivo from cancer (top) and healthy tissue (bottom). LDRW model
fits based on nonlinear least-squares (NLS) regression and maximum likelihood (ML)
are also shown, as well as the truncation time.

were obtained from 9 patients who underwent radical prostatectomy.

Data acquisition was performed using an iU22 ultrasound imaging system (Philips Health-

care, Bothell, WA) and either a C8-4v or C10-3v transrectal probe. The adopted imaging

mode was power modulation, at a frequency of 3.5 MHz and a mechanical index of 0.06.

In each DCE-US dataset, two IDCs were obtained by QLAB from square ROIs (5x5 mm).

The ROIs were selected based on the histology ground truth to represent healthy tissue and

cancer.

All obtained IDCs were fitted by the LDRW model, using both ML and NLS, as shown in

Fig. 3.6. Because the optimal truncation time is generally difficult to define in these data,

all IDCs were fitted using three truncation times, with recirculation cut-off percentages of
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30, 40, and 50%, respectively. The optimal truncation time was selected based on the

minimum mean squared error, averaged between ML and NLS, of the IDC fit. The deter-

mination coefficient R2 was adopted to measure the quality of the obtained IDC fits.

A number of features were extracted from the fitted IDCs in order to evaluate their poten-

tial to discriminate between healthy tissue and cancer. We adopted several features that

were proposed in the literature [25, 26, 31], namely, the LDRW parameter κ, the parameter

AUC, the peak intensity (PI), the full-width at half maximum (FWHM, the period during

which the IDC exceeds PI/2), the mean transit time (MTT = µ), and the wash-in time

(WIT, the time it takes for the IDC to rise from 5% to 95% of PI).

The tissue classification performance was assessed for each individual parameter using a

binary decision threshold. This threshold was shifted over the observed range of parameter

values in healthy tissue and cancer. At each threshold level, the sensitivity and specificity

for tissue classification were evaluated to derive the receiver-operating-characteristic (ROC)

curve. The area under the ROC curve was adopted to measure the tissue classification per-

formance [32]. The optimal sensitivity and specificity were determined as the point on

the ROC curve closest to ideal classification. A comparison was performed between the

parameter estimates obtained by NLS and those obtained by ML.

3.3 Results

3.3.1 Simulation study

An example of curve-fitting using both NLS and ML is shown in Fig. 3.1. No significant

difference in curve-fitting accuracy was observed between NLS and ML. For K = 2 × 103,

both algorithms fitted the complete IDC with R2 = 0.87 and the truncated IDC (cut-off

percentage 30%) with R2 = 0.80. For K = 5 × 103, these statistics were 0.94 and 0.90,

respectively.

The average computation time required to fit one IDC was evaluated on a Windows-based

workstation with an Intel Core2Duo processor running at 3.16 GHz with 3.49 GB of RAM.

The required computation time for NLS was 0.035 s. For the ML algorithm, the average

computation time was 0.032 s for estimation based on the complete IDC, as described in

Sec. 3.2.2 and the Appendix (Sec. 3.6), and 0.055 s for estimation based on the truncated

IDC, as described in Sec. 3.2.2.

For each parameter, the estimation accuracy was evaluated by the relative bias and standard

deviation with respect to the true values. Table 3.1 reports the results for a complete as

well as for a truncated IDC fitting. In general, the ML algorithm provided higher estimation

accuracy than NLS.
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Table 3.1 Accuracy (relative bias ± standard deviation [%]) of parameter estimation based on
2,500 simulated IDCs per model.

Model &
parameter

Estimation based on complete IDC
Estimation based on truncated IDC

(cut-off percentage 30%)

K = 2 × 103 K = 5 × 103 K = 2 × 103 K = 5 × 103

NLS ML NLS ML NLS ML NLS ML

LDRW
µ 1.2 ± 13.5 0.0 ± 7.5 0.9 ± 8.5 0.1 ± 4.5 2.7 ± 18.8 0.6 ± 10.6 1.8 ± 12.4 0.2 ± 7.0

κ 1.5 ± 14.3 0.1 ± 7.7 1.0 ± 9.1 0.2 ± 4.6 3.7 ± 25.8 1.0 ± 17.1 2.4 ± 16.9 0.4 ± 11.4

Lognormal
µ 0.2 ± 2.5 0.0 ± 1.5 0.1 ± 1.6 0.0 ± 1.0 0.5 ± 3.7 0.2 ± 2.6 0.2 ± 2.4 0.0 ± 1.6

σ -0.1 ± 7.7 -0.1 ± 4.0 0.0 ± 5.0 0.0 ± 2.5 0.5 ± 13.9 1.5 ± 10.2 0.1 ± 9.2 0.6 ± 6.3

Gamma-
variate

α 5.7 ± 28.8 0.6 ± 13.1 2.0 ± 16.5 0.2 ± 7.8 12.7 ± 46.7 0.8 ± 21.4 4.8 ± 25.9 0.2 ± 12.9

β 0.0 ± 13.9 0.5 ± 7.4 0.1 ± 8.9 0.2 ± 4.5 0.4 ± 21.3 2.3 ± 14.5 0.3 ± 14.2 0.9 ± 9.0

Table 3.2 Relative standard deviation [%] among parameter estimates obtained with different
recirculation cut-off percentages (20, 25, 30, 35, 40%) in 2,500 simulated IDCs per
model.

Model &
parameter

K = 2 × 103 K = 5 × 103

NLS ML NLS ML

LDRW
µ 4.7 2.7 3.1 1.7

κ 8.2 6.7 5.3 4.3

Lognormal
µ 1.1 0.9 0.7 0.5

σ 4.6 3.8 3.0 2.3

Gamma-
variate

α 12.5 6.5 7.0 3.8

β 6.5 5.1 4.2 3.1

The sensitivity of the parameter estimation with respect to the recirculation cut-off per-

centage is reported in Table 3.2. For all parameters, ML provided more consistent results

than NLS.

3.3.2 Experimental validation

Experimental IDCs were obtained from 5 ROIs in 79 available recordings. Due to the pres-

ence of artifacts in some recordings, we considered only those recordings that could be

fitted with an average determination coefficient R2 ≥ 0.9 (averaged across all ROIs, both

algorithms, and all models). Based on this criterium, the parameter estimation precision by

NLS and ML was compared using 71 recordings.

Fitting of the IDCs obtained from these recordings provided an average R2 (across all mod-

els) of 0.94 for ML, compared to 0.95 for NLS. If the IDC was truncated at a recirculation
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Table 3.3 Relative standard deviation [%] among parameter estimates obtained from various
ROIs representing the same underlying kinetic parameters in experimentally measured
IDCs from 71 recordings.

Model &
parameter

Estimation based on complete IDC
Estimation based on truncated IDC

(cut-off percentage 30%)

NLS ML NLS ML

LDRW
µ 9.0 3.7 7.8 2.9

κ 9.9 5.0 12.2 6.0

Lognormal
µ 3.7 1.6 3.4 1.3

σ 8.7 3.7 9.3 4.2

Gamma-
variate

α 14.9 6.1 11.0 4.8

β 7.9 4.0 7.1 3.9

Table 3.4 Relative standard deviation [%] among parameter estimates obtained with different
recirculation cut-off percentages (20, 25, 30, 35, 40%) in experimentally obtained
IDCs from 71 recordings.

Model &
parameter

ROI 1 (1.8 mm2) ROI 5 (35.4 mm2)

NLS ML NLS ML

LDRW
µ 7.3 2.7 6.8 2.8

κ 16.4 13.4 15.3 12.6

Lognormal
µ 3.1 1.2 3.0 1.1

σ 12.7 8.0 12.0 7.6

Gamma-
variate

α 10.4 4.9 9.3 5.5

β 8.4 5.4 7.7 5.6

cut-off percentage of 30%, the average R2 was 0.92 for both algorithms.

The precision of the estimated parameters, assessed as the relative standard deviation

among the parameter values estimated in different ROIs, is reported for all models in Ta-

ble 3.3, both for fitting the complete IDC and for truncation of the IDC at a recirculation

cut-off percentage of 30%. Similarly to the simulation results, ML showed a smaller varia-

tion in the parameter estimates than NLS for all parameters.

The sensitivity of parameter estimation to the recirculation cut-off percentage is reported

for two ROIs in Table 3.4. For all models, the ML algorithm provided a smaller variation

than NLS.
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Table 3.5 Sensitivity, specificity, and receiver-operating-characteristic (ROC) curve area for tissue
classification

Parameter

NLS ML

Sensitivity Specificity ROC Sensitivity Specificity ROC

[%] [%] curve area [%] [%] curve area

κ 76.5 52.9 0.62 76.5 82.4 0.75

AUC 58.8 82.4 0.69 58.8 82.4 0.70

PI 70.6 70.6 0.73 70.6 70.6 0.73

FWHM 82.4 70.6 0.75 82.4 76.5 0.79

MTT 64.7 64.7 0.64 64.7 64.7 0.62

WIT 52.9 76.5 0.67 52.9 82.4 0.70

3.3.3 In vivo evaluation

The IDCs obtained in vivo were estimated with an average determination coefficient

R2 = 0.92 for both algorithms. For several IDC parameters, the classification performance

obtained by ML and NLS is reported in Table 3.5.

The largest difference in classification performance between ML and NLS was found for

κ: the area under the ROC curve obtained by ML was 0.13 larger than that obtained by

NLS. For this parameter, the estimates obtained by the two algorithms were compared in

a Bland-Altman plot [33], which is shown in Fig. 3.7. The average difference between κ

estimates obtained in cancer and healthy tissue increased by 0.06 if ML was adopted instead

of NLS. The parameters AUC and PI showed a very similar classification performance for

NLS and ML.

3.4 Discussion

In all studies, the proposed algorithm provided accurately fitted IDCs. In fact, the obtained

determination coefficient R2, which is theoretically optimized by NLS, was approximately

equal for ML and NLS in all studies.

The accuracy of the estimated parameters is, however, more important than the fitting

accuracy. To this end, we assessed the bias and standard deviation. Relative statistics were

adopted to accommodate for the wide range of parameter values.

The simulation results, reported in Table 3.1, indicate superior results for ML than for NLS

for all three adopted models, both with and without truncation. No bias in the parameter

estimation was found for either method. The required computation times were similar.

Only for fitting of truncated IDCs, the ML algorithm required more computation time than

NLS, perhaps because NLS was implemented using a dedicated NLS optimization routine.
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Figure 3.7 Bland-Altman plot of the LDRW parameter κ, estimated by both NLS and ML. The
solid lines represents the average difference, the dashed lines represent 95% limits of
agreement.

In the experimental data, assessment of the parameter estimation accuracy is more compli-

cated, because the true parameter values are unknown. By assuming IDCs sampled from

different ROIs (as shown in Fig. 3.4) to satisfy the same true parameter values, we assessed

the precision among parameter estimates obtained from IDCs sampled from different ROIs.

Table 3.3 shows the parameter estimates obtained by ML to be more consistent across the

different ROIs than those obtained by NLS. This result was found for all three adopted

models, both with and without IDC truncation.

In applications where indicator recirculation is significant, the definition of the optimal IDC

truncation time, minimizing the effect of recirculation on the analysis, is complicated. For

this reason, the sensitivity of parameter estimation to the time at which the IDC is trun-

cated was also evaluated. As shown in Table 3.2, the simulation study showed that the

ML algorithm is less dependent on the truncation time than NLS. This finding was also

confirmed with our experimental data (see Table 3.4). As a result, ML is more robust with

respect to the truncation time choice than NLS.

The in vivo evaluation shows the feasibility of the ML algorithm for use in quantitative

DCE-US imaging for cancer detection. In fact, for several parameters, the classification

ability based on ML is improved with respect to that based on NLS. The classification

results of NLS and ML for the IDC amplitude parameters AUC and PI are very similar,

probably because the parameter AUC is not included in ML estimation. Because this pa-
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rameter is estimated afterward by linear regression, the optimization criterium is the same

for both algorithms.

For the proposed ML algorithm, IDCs are interpreted as the observed histogram of the

transit-time distribution. Although this paper focuses on the first pass of an intravascular

indicator, the methodology is applicable for any transit-time distribution. The proposed

approach explicitly requires transit-times of indicator particles to be independent. In fact,

this assumption follows from the classical assumption in indicator dilution theory that the

indicator is well-mixed with the carrier fluid [34]. Therefore, the independency assumption

is merely made explicit by the proposed algorithm.

In general, the log-likelihood function to be maximized, given by (3.7), equals the correla-

tion between the IDC and the logarithm of the model distribution. With the semi-analytical

ML solutions, presented for three common indicator dilution models, iterative optimization

is not required if the injection time parameter t0 is known. This may be useful in system

identification methods based on two IDCs representing the input and output of the sys-

tem, where t0 = 0 [13]. In this paper, as often in practice, t0 was considered unknown.

In this case, ML estimation requires iterative optimization for only a single parameter, t0.

The model-specific solutions are valid only if the complete IDC is available for parameter

estimation.

Indicator recirculation, a common problem in IDC analysis, is approached by truncation of

the transit-time distribution. The modified log-likelihood function, given by (3.14), con-

tains an additional term that represents the fraction of the area under the IDC that is still

observed after truncation.

In the transit-time statistics described in Sec. 3.2.1, the difference between the observed

IDC and its corresponding model curve results from the limited amount of indicator particles

K, which represents the sample size of the observed transit-time distribution. As shown

in (3.4), the SNR scales linearly with K. It is particularly low in situations where K is

relatively small, e.g., when only a small ROI can be selected to obtain the IDC. This can

be observed in Fig. 3.4.

In a previous study based on DCE-US, it was observed that the IDC noise intensity is cor-

related with the IDC itself [20]. This correlation can also be observed for the experimental

IDCs in Figures 3.4 and 3.5. This phenomenon cannot be explained by standard additive

Gaussian noise statistics. It is, however, explained by the modeled transit-time statistics;

as formulated in (3.3), the IDC noise intensity is linearly related to the IDC itself. Because

the proposed ML algorithm is based on these statistics, it is better suited to deal with this

phenomenon than standard NLS regression algorithms.

Because measurement inaccuracies are not primarily considered in this paper, the proposed

algorithm is generally applicable in a variety of applications. However, if measurement inac-
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curacies represent the dominant source of errors, the proposed algorithm may not provide

optimal results. In this situation, ML estimation should be based on the measurement

statistics rather than the transit-time statistics. For example, if the measurement errors

are well represented by additive white noise, NLS will provide the most accurate results.

For specific acquisition modalities, such as ultrasound and MRI, the statistics of acquisition

noise are well documented [21, 22]. In general, the optimal algorithm choice should be

based on the measured IDC noise statistics.

In the future, an application-specific parameter estimation method could be developed

that optimally deals with both acquisition noise and transit-time statistics. Alternatively,

parameter estimation can be optimized with respect to the primary sources of variability.

3.5 Conclusion

A maximum-likelihood algorithm is presented for estimation of hemodynamic parameters

from indicator dilution curves. This algorithm is based on the transit-time statistics of

indicator particles. Semi-analytical solutions are provided for three commonly adopted

IDC models and the algorithm is extended to deal with the typical problem of indicator

recirculation. A performance evaluation in simulations as well as in experimental data

obtained by DCE-US shows superior results of the proposed algorithm over nonlinear least-

squares regression. In addition, the feasibility of the algorithm is shown with in vivo data.

3.6 Appendix: Maximum-likelihood algorithm for log-

normal and gamma-variate models

This appendix reports the ML algorithm for the lognormal and gamma-variate models. Only

the main results are provided; the methodology is identical to that described in Sec. 3.2.2.

Similar to the obtained results for the LDRW model, the solutions provided here are the

ML solutions only if the complete IDC is available.

3.6.1 Lognormal model

The lognormal model describes the distribution of indicator transit-times as function of the

parameters θ = [µ, σ, t0] as

p(t|θ) = 1√
2πσ(t− t0)

exp

(

(ln(t− t0)− µ)2

2σ2

)

. (3.16)
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The derivative of p(t|θ) with respect to θ is given as

∂p(t|θ)
∂µ

= p(t|θ) · ln(t− t0)− µ

σ2
, (3.17a)

∂p(t|θ)
∂σ

= p(t|θ) · µ
2 − σ2 − 2µ ln(t− t0) + (ln(t− t0))

2

σ3
, (3.17b)

∂p(t|θ)
∂t0

= p(t|θ) · ln(t− t0)− µ+ σ2

σ2(t− t0)
. (3.17c)

Similarly to (3.12a) and (3.12b), the ML solution for the shape parameters µ and σ can be

written as function of the sampled IDC C(n) and t0 as

µ̂ML =

N
∑

n=1

ln(n∆t− t0)C(n)

N
∑

n=1

C(n)

, (3.18a)

σ̂ML =













N
∑

n=1

(ln(n∆t− t0))
2C(n)

N
∑

n=1

C(n)

− µ̂2

ML













1

2

. (3.18b)

3.6.2 Gamma-variate model

The indicator transit-time distribution can also be described as a gamma-variate with pa-

rameters θ = [α, β, t0] as

p(t|θ) = 1

βαΓ(α)
(t− t0)

α−1 exp

(

−t− t0
β

)

. (3.19)

The derivative of (3.19) with respect to θ is

∂p(t|θ)
∂α

= p(t|θ) · (ln(t− t0)− ln(β)− ψ(α)) , (3.20a)

∂p(t|θ)
∂β

= p(t|θ) · t− t0 − αβ

β2
, (3.20b)

∂p(t|θ)
∂t0

= p(t|θ) ·
(

1− α

t− t0
+

1

β

)

. (3.20c)

In (3.20a), ψ(α) = d(ln Γ(α))/dα is the polygamma function of order 1. Similarly to the

lognormal and LDRW models, the ML solution for the shape parameters α and β can be
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derived from (3.20b) and (3.20c) in semi-analytical fashion as

β̂ML =

N
∑

n=1

(n∆t− t0)C(n)

N
∑

n=1

C(n)

−

N
∑

n=1

C(n)

N
∑

n=1

C(n)

n∆t− t0

, (3.21a)

α̂ML =

N
∑

n=1

(n∆t− t0)C(n)

β̂ML

N
∑

n=1

C(n)

. (3.21b)
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CHAPTER 4

Dispersion assessment by spatiotemporal coherence analysis

Based on: M. Mischi, M. P. J. Kuenen, and H. Wijkstra, “Angiogenesis imaging by spatiotemporal analysis

of ultrasound-contrast-agent dispersion kinetics,” IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, vol. 59, no. 4, pp. 621–629, c© IEEE, 2012.

Abstract – The key role of angiogenesis in cancer growth has motivated extensive research aiming at

noninvasive cancer detection by blood perfusion imaging. However, the results are still limited and the

diagnosis of major forms of cancer, such as prostate cancer, are currently based on systematic biopsies.

The difficulty in the detection of angiogenesis partly resides in a complex relationship between angiogenesis

and perfusion. This may be overcome by analysis of the dispersion kinetics of ultrasound contrast agents.

Being determined by multi-path trajectories through the microvasculature, dispersion permits a better

characterization of the microvascular architecture and, therefore, more accurate detection of angiogenesis.

In this paper, a novel dispersion analysis method is proposed for prostate cancer localization. An ultrasound-

contrast-agent bolus is injected intravenously. Spatiotemporal analysis of the concentration evolution

measured at different pixels in the prostate is used to assess the local dispersion kinetics of the injected

agent. In particular, based on simulations of the convective diffusion equation, the similarity between

the concentration evolutions at neighbor pixels is the adopted dispersion measure. Six measurements in

patients, compared with the histology, provided a receiver-operating-characteristic curve integral equal to

0.87. This result was superior to that obtained by the previous approaches reported in the literature.
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4.1 Introduction

Angiogenesis plays a fundamental role in the development of several pathologies. It con-

sists of the formation of a dense network of microvessels, which can support the growth of

neoplastic tissue. Therefore, the function of angiogenesis in cancer growth is particularly

relevant [1, 2]. The assessment of the relationship between cancer growth and angiogenesis

has opened new frontiers towards the definition of reliable markers for cancer aggressiveness,

i.e., the risk of progression through metastases [3]. The formation of neovascular networks

seems in fact an important indicator of cancer aggressiveness [3, 4], and characterization

of these networks by the assessment of the microvascular density (MVD) has been reported

by several authors to be highly correlated with cancer prognosis [5, 6].

Angiogenesis is a complex physiological process that can be observed at multiple levels. At

the cellular level it is characterized by those expressions, such as the vascular endothelial

growth factor, whose triggering action is not yet completely understood [3]. At the tissue

level, angiogenesis is the formation of a dense network of microvessels, characterized by

small diameters and high tortuosity and permeability (leaky walls) [5]. At the organ level,

variations in organ size and shape can be observed as the result of neoplasia (abnormal

growth of tissue). In addition, variations in perfusion dynamics and tissue stiffness can be

observed as the result of angiogenesis and other mutations occurring at the cellular level

[7, 8].

In the effort to develop an imaging technique that could detect angiogenesis and, therefore,

aggressive cancer, several methods have been proposed that aim at the assessment of tissue

perfusion. These methods comprise mainly the use of dynamic contrast-enhanced magnetic

resonance imaging (DCE-MRI), Doppler ultrasonography, and dynamic contrast-enhanced

ultrasonography (DCE-US) imaging [9–12]. Compared to MRI, the use of ultrasonography

is more practical, being particularly suitable for biopsy guidance and intraoperative use.

DCE-US is especially interesting due to the nature of the adopted contrast agents and

the nature of the detection process. Ultrasound contrast agents (UCAs) are micro-sized

bubbles (microbubbles) of gas encapsulated in a biocompatible shell [13]. Due to their

size, comparable with red blood cells, they can flow in the microvasculature while stay-

ing in the vascular pool. As a result, different from most MRI contrast agents, UCAs do

not extravasate in the interstitial space and are therefore more suitable for hemodynamic

quantification. The size of UCA microbubbles is much smaller than the resolution of an

ultrasound scanner, which, depending on the adopted ultrasound frequency, is usually of the

order of a millimeter. DCE-US imaging is in fact based on a backscatter process [14], which

permits registering signals coming from scales (micron) that are smaller than the imaging

scale (millimeter). This is a key feature in order to perform ultrasound characterization of

the microvasculature.
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Several methods have been proposed for imaging angiogenesis by DCE-US. A number of

methods are based on the destruction-replenishment technique during UCA infusion, first

introduced in cardiology by Wei et al. [15]. Although the original technique provides a

measure of perfusion by using a single compartment model, alternative models have been

proposed later to account for the measurement effects introduced by the ultrasound beam

profile [16] and for interpreting the replenishment curve as due to a network of bifurcating

vessels rather than a single compartment [17]. Assuming a Normal distribution of flow

through the vessels, the UCA transit times through the vascular network was therefore

represented by a lognormal probability density function, providing a measure of relative

dispersion of flow through the vascular network [18]. Although more realistic than a sin-

gle compartment model, a bifurcation tree does not represent the fundamental features of

cancer angiogenesis, which is characterized by a chaotic vascular architecture comprising

arteriovenous shunts and a higher degree of vascular tortuosity [11, 12, 19, 20]. Moreover,

the model parameters depend on the history of bifurcations, lacking the ability to provide

local assessments.

A number of methods for the measurement of perfusion have also been introduced that are

based on the estimation of specific features of indicator dilution curves measured after an

intravenous peripheral UCA bolus injection [19, 21]. Once again, all the proposed methods

invariably estimate blood perfusion as an indicator for the presence of angiogenesis. How-

ever, several opposing factors influence perfusion in cancerous tissue. Low flow resistance

results from a lack of vasomotor control and an increase in arteriovenous shunts, but this

can be counterbalanced by an interstitial pressure increase due to extravascular leakage and

by the small diameter and high degree of tortuosity of neovessels [11, 12, 19, 20]. As a

result, in many applications, perfusion measurements have not led to reliable diagnostic

results. In addition, the obtained measurements are always influenced by the bolus history

between the UCA injection and detection sites, and a local quantification cannot be pro-

vided.

This paper focuses on a very relevant and diagnostically challenging form of cancer: prostate

cancer. In the United States, prostate cancer currently accounts for 28% and 11% of all

cancer diagnoses and deaths in men, respectively [22]. Similar to other forms of cancer,

angiogenesis is an important indicator of prostate cancer aggressiveness [3–6]. However,

current prostate cancer diagnosis still requires one or more sessions of systematic (i.e., ge-

ometrically distributed) biopsies [23, 24], and no imaging method has so far proven to be

sufficiently reliable to replace this invasive procedure.

We have recently proposed a new method for the local detection of angiogenic microvas-

culature changes by modeling the intravascular dispersion kinetics of UCAs as a convective

dispersion process [25, 26]. Modeling of UCA dispersion kinetics permits inferring the “invis-
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ible” microvascular architecture for the achievement of accurate diagnostic results. Similar

to previous approaches, this method is based on the analysis of acoustic time-intensity

curves (TICs) in the time domain. In fact, for the low concentrations of UCA that are

obtained in the prostate, the backscattered acoustic intensity is linearly correlated with the

UCA concentration, and it is adopted as an indirect, linear measure of it [26, 27]. Achiev-

ing local measurements that are independent of the bolus dilution history requires making

assumptions on the dilution kinetics in the spatial domain; in particular, we assumed the

distribution of the UCA bolus in space to be well represented by a Gaussian probability

density function.

Different from previous approaches, in this paper we present a method for the local as-

sessment of UCA dispersion that is based on spatiotemporal analysis. Including spatial

information in the analysis facilitates the estimation of local parameters representing the

UCA dispersion kinetics. The assumptions on the UCA spatial distribution that are required

for local measurements by the sole analysis in time domain can in fact be removed.

Simulations of the convective diffusion equation suggest the degree of similarity between

neighbor TICs to be highly correlated with the degree of dispersion. Several quantitative

measures of similarity are reported in the literature, especially aiming at the assessment

of the connectivity between electroencephalographic biopotentials [28]. Due to the narrow

bandwidth of TIC signals, we have focused on similarity measures in the frequency domain,

facilitating the analysis of the relevant frequency components. This approach also enables

distinguishing between signal amplitude and phase, with the phase being influenced by the

UCA appearance time. In particular, the spectral coherence between neighbor curves is the

adopted similarity measure.

A preliminary validation of the method was carried out with six measurements in five patients

referred for a radical prostatectomy at the Academic Medical Center (AMC), University Hos-

pital of Amsterdam, the Netherlands. The generated dispersion maps were validated by

comparison with the histology results, considered as the ground truth. This validation was

also extended to all the previous methods reported in the literature that are based on a

UCA bolus injection.

4.2 Methodology

4.2.1 Dispersion modeling

Ultrasound imaging of one plane through the prostate is performed after an UCA intravenous

injection. The evolution over time of the UCA concentration is analyzed at each pixel in the

echographic video. The basis of the method we proposed in [25] and [26] consists of the
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interpretation of the UCA concentration evolution as the result of a convective dispersion

process [29, 30]. This process can be modeled by the convective diffusion equation, which

describes the concentration-time evolution C(x, t) at position x as

∂C(x, t)

∂t
= ∇ · [D∇C(x, t)− vC(x, t)] , (4.1)

withD and v being the UCA diffusion coefficient and the UCA velocity, respectively [29, 30].

In (4.1), the diffusion coefficient D is assumed to be isotropic. Therefore, a distinction

between flow (v) and diffusion (D) is introduced in (4.1).

The local density random walk (LDRW) model [27, 29], which is a solution of the mono-

dimensional convective diffusion equation with constant diffusion D and velocity v, is re-

ported to produce accurate fits of TICs measured in cancerous tissue [31]. A fundamental

parameter in the convective diffusion equation is the diffusion coefficient D, indicating the

rate of diffusion of the injected agent. Although the diffusion coefficient is typically used

to characterize Brownian motion, the same coefficient, better referred to as apparent diffu-

sion [32], can also be used to characterize the dispersion process through a microvascular

network [33]. The main factors influencing apparent diffusion relate to the transit-time dis-

tribution of UCA moving through multi-path trajectories determined by the microvascular

architecture. Therefore, from now on, we refer to apparent diffusion as dispersion.

In our previous work, we have shown that a solution of the convective diffusion equation

under simple boundary conditions provides a parameter representing the local ratio between

convection and dispersion [25, 26]. Only a Gaussian spatial distribution of the UCA con-

centration prior to entering the measurement site (pixel) is assumed. This condition is

necessary to derive a dispersion-related parameter that is local, even if the TIC analysis

is limited to the time domain. In fact, the obtained parametric solution of the convective

diffusion equation is a function of time t only, and is given as

C(t) = AUC

√

κ

2π (t− t0)
exp

(

−κ (t− t0 − µ)2

2 (t− t0)

)

. (4.2)

In (4.2), the TIC, C(t), is a function of the theoretical injection time t0, the area under

the IDC (AUC), the mean transit time µ of the UCA bolus from the injection to the

detection site, and the parameter κ, representing the local ratio between dispersive time

and squared convective time. In fact, κ = v2/2D. The scale parameter AUC represents

the ratio between injected UCA dose and blood flow. In our measurements, it also includes

the (linear) calibration coefficient mapping UCA concentration into backscattered acoustic

intensity. By fitting the model in (4.2) to UCA TICs measured at each pixel, we can

therefore generate a map of κ, i.e., a map of a dispersion-related parameter. The parameter
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Figure 4.1 Influence of dispersion on the similarity of TICs measured at different spatial position
x.

κ is determined by the microvascular architecture and is different from the level of flow or

perfusion, estimated by all methods reported in the literature [19, 21, 31].

The model in (4.2) represents only the first pass of the injected UCA bolus. As a result,

the measured TICs can only be fit prior to the arrival of subsequent passes of the injected

bolus due e.g. to recirculation. This issue poses the problem of finding the optimal fitting

interval, increasing the complexity of the fitting algorithm [26].

4.2.2 Spatiotemporal analysis

While the approach presented in [25] and [26] reduces to fitting TICs in the time domain,

in this paper a different approach is proposed that exploits also the available spatial infor-

mation by introducing a full spatiotemporal analysis. This approach originates from the

observation that the shape similarity between neighbor TICs is influenced by the local de-

gree of dispersion. Fig. 4.1 shows this phenomenon by a finite difference simulation of

(4.1) in one spatial dimension, represented by the x-axis. With a fixed carrier velocity

v = 0.1 cm/s, two TICs are derived at two different distances x = 2 cm (solid line) and

x = 4 cm (dashed line) from the UCA injection site for two different diffusion coefficients

D = 0.01 cm2/s (left plot) and D = 0.05 cm2/s (right plot). The values for the velocity

and diffusion coefficient are realistic; they are chosen according to the typical blood velocity

through microvessels (of the order of a millimeter per second) and the values estimated for

the parameter κ in the prostate microcirculation [26].

A measure of the similarity between neighbor TICs can therefore be an indirect indicator of

local dispersion without strict assumptions dictated by the adopted models and boundary

conditions regulating the temporal evolution of the UCA concentration. The entire TICs

can be used for the estimation of similarity without any restriction to the first pass of the

injected UCA bolus. Moreover, the implementation of the proposed spatiotemporal anal-
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ysis, based on similarity estimation, does not require TIC fitting, reducing signal-quality

requirements and computational complexity.

Several measures of similarity can be adopted. A vast literature is in fact available, especially

for the determination of connectivity between electroencephalographic biopotentials [28].

As the main scope of this paper is showing the feasibility of similarity mapping for prostate

cancer localization, standard similarity measures are considered. The most common mea-

sure of similarity is the correlation coefficient. However, this is influenced by differences in

UCA appearance time, causing TIC relative delays, and is therefore unsuitable for pure TIC

shape comparison.

A more suitable similarity measure is represented by the spectral coherence, here indicated

by the symbol ρ and calculated as the correlation coefficient of the amplitude of the TIC

frequency spectra. Use of the TIC spectral coherence permits focusing on the amplitude

spectra while neglecting phase information related to UCA appearance times. In addition,

the frequency bandwidth representing the UCA-concentration evolution can be easily ex-

tracted, improving the signal-to-noise ratio (SNR) of the analyzed signals. The spectral

coherence, ρ, is therefore the adopted similarity measure. Given the frequency amplitude

spectra Sm(ω) and Sn(ω) of two TICs Cm(t) and Cn(t), respectively, the spectral coherence

ρ(Sm, Sn) is derived as

ρ(Sm, Sn) =

ωmax
∫

ωmin

[(

Sm(ω)− S̄m

) (

Sn(ω)− S̄n

)]

dω

√

ωmax
∫

ωmin

[

Sm(ω)− S̄m

]2

dω
ωmax
∫

ωmin

[

Sn(ω)− S̄n

]2

dω

, (4.3)

with S̄ representing the mean value of S(ω) over the selected frequency interval [ωmin, ωmax].

Since the TIC bandwidth in the prostate is limited to frequencies up to 0.5 Hz [25], frequen-

cies above 0.5 Hz are discarded and ωmax = π rad/s. The DC component, typically affected

by the scanner setting, is also discarded. As a result, the frequency ωmin equals 2πfs/N ,

with fs and N indicating the imaging frame rate (usually 10 Hz, depending on the image

depth) and the number of TIC samples (about 1000 for typical 100 s TICs), respectively.

For each pixel, the TIC spectrum is compared to the spectra of the neighbor pixels. A

spatial kernel determines which pixels are used for comparison. The kernel design accounts

for the resolution of the scanner and the scale of the microvascular network to be imaged.

The resolution of ultrasound images is anisotropic and is typically higher in the axial (lon-

gitudinal) direction. Dedicated in vitro experiments were performed in order to determine

the scanner resolution in the adopted imaging mode. UCA microbubbles have diameters

that are much smaller than the scanner resolution; therefore, ultrasound images of UCA

dilutions provide an opportunity for determining point spread function and resolution of
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Figure 4.2 The upper left figure (a) shows an ultrasound scan of an in vitro UCA dilution.
Figure (b), in the upper right, shows the result of local autocorrelation analysis by a
15 x 15 pixel kernel. For visualization purposes, only a zoom of the area marked in
the ultrasound scan in (a) is shown. The lower figures show the resulting maps of
axial (c) and lateral (d) resolution estimated by autocorrelation analysis.

the ultrasound imaging system. Low UCA concentrations were imaged and the scanner

resolution was estimated on the basis of local autocorrelation analysis as described in [34].

The resulting ultrasound images were therefore decomposed in squared windows of 15 x 15

pixels, and the image autocorrelation function was calculated for each of these windows.

According to [34], the system resolution can be estimated as the half width of the auto-

correlation function at 50% of the peak amplitude. With the adopted scanner (Sec. 4.2.3)

and selected imaging depth, suitable for prostate imaging, each pixel covers a surface of

about 150 x 150 µm2, smaller than the ultrasound system resolution.
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Figure 4.3 Adopted kernel for spatial similarity analysis.

Fig. 4.2 shows an example of image recorded in vitro (Fig. 4.2a), the result of the local

autocorrelation analysis (Fig. 4.2b), and two maps, (Fig. 4.2c) and (Fig. 4.2d), represent-

ing the estimated lateral and axial resolution, respectively. These two resolution maps are

based on the lateral and axial half width of the autocorrelation function at 50% of the peak

amplitude. As expected, the far-field lateral resolution showed the lowest value, equal to

0.7 mm at a distance of 5 cm from the probe. This is the largest distance that we have

encountered in transrectal prostate imaging. The resolution estimated in the axial direction

was of the order of 0.3 mm, independently of the image depth. This value is in agreement

with the theoretical axial resolution for the short pulses at 3.5 MHz adopted in the selected

imaging mode (Sec. 4.2.3).

Given the estimated resolution, a Gaussian filter with standard deviation equal to 0.25 mm

is adopted to improve the SNR of measured TICs while maintaining sufficient resolution for

angiogenesis imaging. The applied low-pass Gaussian prefiltering provides also a reduction

in relative resolution anisotropy and depth dependency. The resulting resolution, of the

order of 1 mm in the lateral direction, also permits downsampling the image at 2 samples

per millimeter. Given the original pixel size of 150 µm, a final resolution of 2 samples per

millimeter corresponds to a factor three reduction in the number of processed pixels.

Angiogenesis is required for tumors to grow beyond 2-3 mm in diameter [1, 35]. There-

fore, in order to detect early angiogenic processes, a resolution of at least 3 mm should

be achieved. Based on the obtained image resolution (1 mm) and that necessary for early

angiogenesis imaging (2-3 mm), the proposed kernel, shown in Fig. 4.3, is ring shaped, with

inner and outer radii equal to 1 mm and 2.5 mm, respectively. A ring shape is adopted in

order to obtain a coherence estimate that is independent of the blood perfusion direction.

Coherence analysis is then performed as follows. First, the TIC amplitude spectrum is com-
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Figure 4.5 Prostate dispersion map based on κ

analysis.

Figure 4.6 Histology slice with marked carcinoma, indicated also by three arrows, corresponding
to the dispersion map of Figures 4.4 and 4.5.

puted for all the kernel pixels. Then the spectrum corresponding to the specified frequency

range is extracted. Finally, the correlation coefficient is computed between the spectrum

at the central pixel and the spectra at each pixel within the ring. These coefficients are

averaged to obtain a single measure of local coherence. This procedure is repeated for

all pixels covering the prostate in order to produce and display a dispersion map based on

local spectral coherence. Fig. 4.4 shows an example of dispersion map. The corresponding

dispersion map, based on the estimation of the parameter κ, is shown in Fig. 4.5.

4.2.3 Data acquisition

Data acquisition was performed at the AMC, University Hospital of Amsterdam (the Nether-

lands). An intravenous peripheral injection of a 2.4 mL SonoVue R© (Bracco, Milan, Italy)

bolus was performed. SonoVue R© is a dispersion of SF6 microbubbles with an average

diameter of 3 µm encapsulated in a monolayer phospholipid shell [36]. The bolus passage

through the prostate was recorded by transrectal ultrasound imaging with an iU22 ultra-

sound scanner (Philips Healthcare, Bothell, WA) equipped with a transrectal probe C8-4v.

Exploiting the nonlinear behavior of UCA microbubble oscillations, several contrast-specific
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imaging modes are nowadays available that permit enhancing the sensitivity to contrast

agents while suppressing signals coming from tissue, which behaves more linearly [37].

These imaging modes are essential for UCA quantification in tissue. In this study, we used

a power modulation pulse scheme at 3.5 MHz and mechanical index equal to 0.06, to avoid

bubble destruction. The dynamic range was set to 45 dB, considered sufficient for accurate

TIC measurements [38].

The acquired ultrasound image sequences were stored in DICOM (Digital Imaging and

Communications in Medicine) format. The analysis of these files was implemented in

MATLAB R© (The MathWorks, Natick, MA).

Dedicated measurements, similar to those reported in [26] and [27], were carried out in

order to determine the relation between UCA concentration and backscattered acoustic in-

tensity. Different dilutions of SonoVue R©, ranging between 0 and 0.5 mL/L, were imaged

with the same equipment and the same setting adopted for the measurements in patients.

The software QLAB (Philips Healthcare, Bothell, WA) was used in order to have a reference

relative to the acoustic intensity backscattered by UCA dilutions. The results confirmed

an approximately linear relation (correlation coefficient r = 0.98) for SonoVue R© concen-

trations up to 0.2 mL/L. This concentration range covers that encountered in prostate

measurements [26]. For higher concentrations, attenuation effects become dominant and a

linear approximation does no longer hold. The relation between measured acoustic inten-

sity and stored DICOM gray levels could also be estimated by the same measurements. To

this end, gray-level data and QLAB data were compared at corresponding image locations.

Therefore, the relation between SonoVue R© concentration and received acoustic intensity,

as well as the compression function applied by the scanner on the received signals, could

be estimated and used for signal linearization. For a proper use of the indicator dilution

theory [27], data linearization was applied prior to the coherence analysis.

4.2.4 Validation

The method was validated by comparing the imaging results with the histology results

in six datasets obtained from five patients with prostate cancer who underwent a radical

prostatectomy. After cutting the prostate in slices of 4-mm thickness, a pathologist marked

the presence of prostate cancer [39]. Fig. 4.6 shows the histology results corresponding

to Figures 4.4 and 4.5. Prostate cancer is associated to a decrease in cell differentiation,

which is graded by the Gleason score [40].

All the marked histology slices were scanned to generate digital images of the histology re-

sults. For each prostate, one single slice was selected that was the closest to the ultrasound

imaging plane, and the results were compared. The selected slice was linearly deformed in

order to match the prostate contour according to the ultrasound image.



84 Methodology

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

200

400

600

800

Value of parameter coherence

P
ix

e
l 
c
o

u
n

t

a) Histogram of parameter coherence

 

 

Healthy tissue

Cancerous tissue

Optimal threshold

5 10 15 20
0

200

400

600

800

Value of parameter WIT [s]

P
ix

e
l 
c
o

u
n

t

b) Histogram of parameter WIT

 

 

Healthy tissue

Cancerous tissue

Optimal threshold

Figure 4.7 Histograms for healthy and cancerous tissue of coherence (a) and wash-in time (b)
on the full dataset.

Two regions of interest (ROIs) larger than 0.5 cm2, representing healthy and cancerous

tissue, were then determined on the basis of the histology results and applied on the ul-

trasound dispersion maps. Only large regions of cancerous and healthy tissue, extending

through multiple histology slices, were considered. This way, the validation results were not

sensitive to unavoidable mismatches between ultrasound imaging planes and corresponding

histology slices.

Each class, representing healthy and cancerous tissue, included about 12 × 103 pixels,

comprising the complete dataset of 6 measurements. For each set of pixels, mean and

variance of the estimated coherence was calculated. As shown in Fig. 4.7, although the

class distributions of some parameters, such as the coherence parameter, were Gaussian

(correlation coefficient larger than 0.8), other parameters, such as the wash-in time, did

not present Gaussian distributions (correlation coefficient smaller than 0.2). Therefore, for

a correct comparison of the evaluated parameters, no assumption was made on the distri-

bution within each class. The classification threshold between healthy and cancerous tissue

was therefore determined as the point on the receiver operating characteristic (ROC) curve

that was the closest to the optimal classification corner (upper-left corner) [41].

Based on the determined classification threshold, each selected pixel was classified, and

the method sensitivity and specificity was derived. The full ROC curve was also derived

and evaluated. For comparison, the same validation procedure was also performed for the

dispersion parameter κ and for all the perfusion-related parameters proposed in the litera-

ture that are estimated by TIC analysis following a UCA bolus injection [19, 21, 31]. The

classification performance by perfusion-related parameters was improved by LDRW model

fitting prior to the estimation. To this end, the same fitting procedure proposed in [26]

was adopted. Major perfusion-related parameters, such as AUC, mean transit time (MTT),

peak time (PT), and peak intensity (PI) can directly be derived from the LDRW fit pa-

rameters [42, 43]. The estimation of other perfusion parameters, such as the wash-in time
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Table 4.1 Class mean ± standard deviation for different parameters

Parameter Healthy Cancerous

ρ 0.58 ± 0.11 0.76 ± 0.12

κ [s-1] 0.64 ± 0.27 1.04 ± 0.29

AUC [a.u.] 364 ± 443 968 ± 1205

PI [a.u.] 23.8 ± 35.6 83.2 ± 75.6

PT [s] 30.8 ± 11.6 22.6 ± 8.0

AT [s] 17.8 ± 7.9 13.7 ± 5.7

FWHM [s] 17.2 ± 5.6 11.2 ± 3.7

WIT [s] 10.9 ± 3.6 7.4 ± 2.3

MTT [s] 22.8 ± 5.1 17.0 ± 4.1

(WIT, i.e., the time period between contrast appearance and TIC peak), appearance time

(AT), and TIC full-width at half maximum (FWHM) can easily be derived from the fitted

curve.

4.3 Results

The presence of cancer produced an increase in coherence. In the four analyzed prostates,

an average coherence of 0.76 ± 0.12 and 0.58 ± 0.11 was estimated in ROIs representing

cancerous and healthy tissue, respectively. The computation time by coherence imaging

was about 99% lower than by the methods requiring TIC fitting.

Table 4.1 reports for the entire dataset the mean and standard deviations of the two classes

by all the parameters considered for classification, comprising the dispersion parameters κ

and ρ, as well as the TIC PI, PT, AUC, FWHM, and WIT, and the contrast AT and MTT

(µ+ t0) [19, 21, 26, 31]. For all these parameters, the classification performance in terms

of sensitivity, specificity, and ROC curve area is reported in Table 4.2.

4.4 Discussion and conclusion

In order to overcome the limitations of perfusion imaging for prostate cancer localization,

we have recently proposed the analysis of the dispersion kinetics of an UCA bolus as a

better option to infer the underlying microvascular architecture and localize cancer angio-

genesis [25, 26]. Our preliminary validation was promising, showing an agreement with the

histology results that was superior to previous perfusion-based methods. This method is

however limited to the independent analysis of multiple TICs in the time domain. In this

paper, we demonstrate that by full spatiotemporal analysis of the UCA kinetics we can
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Table 4.2 Classification performance on pixel basis

Parameter Cancerous if Sensitivity [%] Specificity [%] ROC curve area

ρ ≥ 0.69 77.3 86.6 0.87

κ ≥ 0.84 s-1 78.5 79.5 0.84

AUC ≥ 338 a.u. 78.0 70.2 0.79

PI ≥ 28.2 a.u. 77.7 78.1 0.84

PT ≤ 28.1 s 74.3 54.5 0.70

AT ≤ 17.7 s 72.7 48.5 0.65

FWHM ≤ 13.0 s 79.5 71.8 0.82

WIT ≤ 8.87 s 79.7 65.0 0.78

MTT ≤ 19.7 s 79.0 75.4 0.82

further improve the classification performance of the method while reducing by 99% the

computational complexity, as no model fitting is required.

Based on the observation that dispersion is inversely correlated with similarity between TICs

measured at different positions, spatiotemporal analysis is implemented as the estimation

of the spectral coherence between neighbor TICs. Since only local, relative TIC shape vari-

ations affect the estimated coherence, the effect of attenuation and non-linear distortion of

propagating ultrasound waves on the estimated coherence map is negligible as compared to

other TIC parameters that are based on absolute measurements of acoustic intensity, such

as PI or AUC. The proposed method was validated by comparison with the histology results

after radical prostatectomy. To this end, six measurements in five patients were performed.

This validation showed an improved agreement with the histology results as compared to

our previous method for dispersion analysis as well as to the methods proposed in the litera-

ture that are based on perfusion imaging. In addition, no TIC fitting is required, increasing

the method robustness and decreasing its complexity.

The results confirm the presence of angiogenesis to correlate with a drop in UCA dispersion

[26]. This might be due to the high tortuosity of cancer neovessels [11, 12, 19, 20], which

limits the dispersion distance, proportional to
√
Dt [44], by confining the bolus for longer

time [45]. In our future work, the link between dispersion and microvascular architecture

will be investigated and determined more accurately by the realization of dedicated in vitro

phantoms [46]. In addition, the anisotropic resolution of ultrasound images could be fully

regularized by use of anisotropic low-pass prefiltering prior to the analysis.

Only a preliminary validation was carried out. An extended validation is necessary to confirm

the obtained promising results. Moreover, additional similarity measures that are alternative

to the spatial coherence could also be investigated.

The validation procedure should be improved by use of image registration methods that

provide an accurate match between parametric ultrasound images and histology results.
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Unfortunately, while a number of methods have been proposed for validation of MRI tech-

niques [47], no such methods are available for ultrasound imaging. This is due to the limits

imposed by two-dimensional imaging as well as to the poor detection of natural landmarks

supporting a correct registration. In the future, if three-dimensional transrectal ultrasound

imaging becomes available, new opportunities would open up for better modeling as well

as for better validation by accurate image registration.

An additional issue relates to the choice for the ground truth. With the aim of angiogenesis

quantification, the ground truth might be better represented by microvascular quantitative

indexes, such as the MVD [5, 6], rather than by the degree of cell differentiation assessed

in standard histology by the Gleason score [40].
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CHAPTER 5

Spatiotemporal coherence analysis: rationale and improvements

Based on: M. P. J. Kuenen, T. A. Saidov, H. Wijkstra, and M. Mischi, “Contrast-Ultrasound Dispersion

Imaging for Prostate Cancer Localization by Improved Spatiotemporal Similarity Analysis,” Ultrasound in

Medicine & Biology, vol. 39, no. 9, pp. 1631–1641, c© Elsevier, 2013.

Abstract – Angiogenesis plays a major role in prostate cancer growth. Despite extensive research on

blood perfusion imaging aimed at angiogenesis detection, the diagnosis of prostate cancer still requires

systematic biopsies. This may be due to the complex relationship between angiogenesis and microvascular

perfusion. Analysis of ultrasound-contrast-agent dispersion kinetics, determined by multipath trajectories in

the microcirculation, may provide a better characterization of the microvascular architecture. We propose

the physical rationale for dispersion estimation by an existing spatiotemporal similarity analysis. After an

intravenous ultrasound-contrast-agent bolus injection, dispersion is estimated by coherence analysis among

time-intensity curves measured at neighbor pixels. The method accuracy is increased by time-domain

windowing and anisotropic spatial filtering for speckle regularization. The results in twelve patient datasets

showed a superior agreement with histology (receiver-operating-characteristic curve area of 0.88) than

those obtained by reported perfusion and dispersion analyses, providing a valuable contribution to prostate

cancer localization.
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5.1 Introduction

Prostate cancer is the most common form of cancer in men in the United States, repre-

senting 29% and 9% of all cancer diagnoses and deaths, respectively [1]. Treatment often

involves a radical prostatectomy, carrying the risk of severe permanent side effects like in-

continence and impotence [2]. This risk could be reduced by focal therapies [3], but their

use is complicated by diagnostic limitations. In fact, diagnosis requires systematic biopsies,

in which the prostate is uniformly sampled up to over 16 times by a core needle. Imaging

methods could significantly improve the current situation by enabling better patient strati-

fication, biopsy targeting, and focal therapy guidance, but are not yet available.

Angiogenesis is a key prognostic indicator for prostate cancer imaging, especially due to its

correlation with cancer aggressiveness and the risk of developing metastasis [4, 5]. This

biochemical process leads to the formation of a dense microvascular network to support the

growth of prostate cancer beyond 1 mm3 [5]. Differences in the microvascular architecture

are characterized by an increased microvascular density as well as a higher tortuosity and

permeability of the vessel wall [6].

Detection of angiogenesis by assessment of tissue perfusion has been proposed using tech-

niques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), Doppler

ultrasound imaging, and dynamic contrast-enhanced ultrasound (DCE-US) imaging [7–9].

Given its use in biopsy guidance and its real-time availability at the bedside, ultrasound

offers a practical and cost-effective alternative to MRI for prostate imaging.

DCE-US is especially interesting because of its ability to obtain flow information from within

the smallest microvessels. The adopted ultrasound contrast agents (UCAs) are coated gas

microbubbles. Since their size is comparable to that of red blood cells, these microbubbles

can flow into the smallest vessels while remaining in the vascular pool [10]. Ultrasound

waves induce nonlinear bubble oscillations that are exploited by contrast-specific imaging

techniques to suppress the signal backscattered from tissue [11].

Several DCE-US methods have been proposed for angiogenesis detection by assessment of

tissue perfusion [12, 13]. Typically, quantification is performed by extracting amplitude and

time features from time-intensity curves (TICs), which measure the backscattered acoustic

intensity in a selected region of interest (ROI) in the ultrasound image as a function of time.

When obtained by the destruction-replenishment technique [14], TICs reflect reperfusion

after disruption of microbubbles in the image plane [15–17]. Alternatively, the bolus in-

jection technique produces TICs that characterize the passage of an intravenously injected

UCA bolus through the image plane [18–20].

In general, perfusion quantification has however not resulted in reliable angiogenesis de-

tection. One reason for this may be difficult interpretation of TIC features in terms of

local perfusion [21]. While amplitude-related features are strongly affected by nonlinear
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attenuation and scanner settings [22], timing features generally depend on the history of

the bolus transport from the injection to the detection site. Another reason for the limited

results may be the complicated influence of angiogenesis on microvascular perfusion. While

the presence of arteriovenous shunts and a higher microvascular density are expected to

increase perfusion, these effects can be countered by an increased interstitial pressure, due

to leakage, and the small diameter and high tortuosity of the newly formed microvessels

[19, 23, 24].

Contrast-ultrasound dispersion imaging (CUDI) is an alternative method for detection of

the angiogenesis-induced effects on the microvascular architecture [25, 26]. CUDI is based

on modeling the intravascular UCA transport kinetics as a convective dispersion process.

The distribution of transit times is characterized by the local UCA dispersion kinetics result-

ing from microvascular architectural features such as density, tortuosity and arteriovenous

shunting. A dispersion-related parameter, κ, can be estimated by curve fitting of pixel TICs

obtained by the bolus injection technique [25].

Recently, an indirect dispersion analysis was proposed by estimation of the spatial similarity

among neighbor TICs using coherence analysis [26]. This approach is unique in the sense

that it exploits the spatial information. Different from existing methods because, the esti-

mation is inherently local and normalized. Moreover, TIC fitting and isolation of the bolus

first pass are not required, resulting in increased robustness of the estimation.

Inspired by the spatiotemporal analysis proposed by [26], this paper proposes a new math-

ematical framework explaining the physical link between dispersion and spatial similarity.

Based on a better understanding of the underlying physical processes, a number of method-

ological improvements are also proposed in this paper with the aim of improving the relia-

bility and classification performance of the method. In particular, we propose a dedicated

spatial filter to prevent local differences in speckle properties from affecting the similarity

analysis. Additionally, TIC time windowing is incorporated to make the similarity analysis

more specific to TIC shape variations.

A preliminary validation of CUDI was performed with 12 recordings in 8 patients that un-

derwent radical prostatectomy at the Academic Medical Center (AMC) University Hospital,

Amsterdam, The Netherlands. The histology results were used as ground truth to evaluate

the cancer localization performance of the dispersion maps estimated by CUDI. The results

were compared with those obtained by estimation of different TIC parameters described in

the literature.
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Figure 5.1 DCE-US imaging of the prostate measured at different times after intravenous UCA
bolus injection: (a) just after UCA appearance; (b) at peak intensity; (c) during UCA
wash-out.

5.2 Materials and Methods

5.2.1 Data acquisition and calibration

Acquisition of the DCE-US imaging data was performed at the AMC University Hospital in

Amsterdam, The Netherlands, after the study was approved by the local ethical committee.

All patients that participated in this study signed an informed consent.

After intravenous injection of a 2.4 mL SonoVue R© (Bracco, Milan, Italy) UCA bolus,

DCE-US imaging of the prostate was performed with an iU22 ultrasound imaging system

(Philips Healthcare, Bothell, WA) and either a C8-4v (6 recordings in 5 patients) or a C10-

3v (6 recordings in 3 patients) transrectal probe. Power modulation imaging was adopted

at 3.5 MHz and a low mechanical index (0.06) was used to prevent microbubble disruption.

The dynamic-range setting was set to C38 for the C8-4v probe and was increased to C50 for

the C10-3v probe because of an increased contrast sensitivity. In all recordings, the focus

was placed in the far field and the postprocessing gain was adjusted to prevent truncation

or saturation of the image color level. All acquired B-mode imaging data was stored in

DICOM (Digital Imaging and Communications in Medicine) format. Fig. 5.1 shows typical

frames observed in the course of DCE-US imaging after UCA bolus injection.

For quantitative analysis of DCE-US TICs, an accurate interpretation of the image color

level in terms of UCA concentration is necessary. Previously performed in vitro mea-

surements have confirmed a linear relationship between UCA concentration and acoustic

intensity [25, 27]. The acoustic intensity is linearized by reverting the dynamic-range com-

pression and color mapping implemented by the scanner. Based on measurements using

QLAB acoustic quantification software (Philips Healthcare, Bothell, WA), we estimated a

logarithmic compression function [25]. The color mapping, displayed on the B-mode image,

is extracted and compensated for by inverting the luminance mapping. Although an abso-
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lute TIC quantification is not possible, the proposed TIC similarity analysis only requires a

relative measure of the UCA concentration.

5.2.2 Spatiotemporal dispersion modeling and similarity

The transport of UCA microbubbles through the microcirculation can be represented by a

convective dispersion process [28, 29] as

∂C(x, t)

∂t
= ∇ · [D∇C(x, t)− vC(x, t)] . (5.1)

In (5.1), C(x, t) represents the UCA concentration at position x and time t. The parameters

v and D represent the convection velocity and the UCA diffusion coefficient, respectively.

The diffusion coefficient D is assumed to be isotropic, by which it fundamentally differs

from the flow v. Although the diffusion coefficient D generally describes Brownian motion,

this coefficient can also be interpreted as apparent diffusion [30] in order to characterize the

dispersion process through the multipath trajectories across a microvascular network [31].

Apparent diffusion then reflects the distribution of UCA transit times that results from the

microvascular architecture. As a result, we may refer to apparent diffusion as dispersion.

The local density random walk (LDRW) model is a solution of (5.1) in one dimension

(|x| = x) for constant parameters and boundary conditions that represent UCA mass

conservation and a fast bolus injection [28]. A modified local solution for the concentration

as function of time was given by [25] as

C(t) = AUC

√

κ

2π (t− t0)
exp

(

−κ (t− t0 − µ)2

2 (t− t0)

)

, (5.2)

where the local hemodynamic parameters κ and µ are given as

κ =
v2

2D
µ =

x0
v
. (5.3)

The mean transit time µ represents the time that the UCA bolus travels from the injection

to the detection site. The parameter κ represents the local ratio between the dispersive

time and the squared convective time. The area under the IDC (AUC) is a scale factor

determined by the UCA dose and the blood flow. The purely theoretical parameters t0 and

x0 represent the injection time and distance from the injection site, respectively.

Fitting the model in (5.2) to TICs obtained at all pixels results in a map of local estimates

of the dispersion-related parameter κ that relates to the local microvascular architecture.

Its relation with dispersion distinguishes κ from other proposed TIC parameters that are

mainly based on perfusion [18–20].
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Figure 5.2 Parametric relation between coherence ρ(Sm, Sn) and κ for µm = 25 s and µn = 20 s.
The κ parameters are related as κn = κm +∆κ. For similar values of κ (i.e., small
∆κ), the coherence ρ(Sm, Sn) is relatively high. For a fixed ∆κ, the coherence
increases as κ increases.

Recently, a full spatiotemporal analysis was proposed based on assessment of spatial TIC

similarity by coherence analysis [26]. This inherently local and normalized analysis provided

promising results for angiogenesis detection.

In this paper, we derive the physical rationale for the spatial similarity analysis that was

initially proposed in [26]. To derive the relation between dispersion and coherence, we

consider two TICs Cm(t) and Cn(t) represented by the modified LDRW model as in (5.2).

The coherence between two TICs can then be expressed in terms of the shape parameters

(κm, µm) and (κn, µn). The scale factor AUC does not influence the normalized similarity

analysis and we may disregard t0, because the coherence is insensitive to phase shift.

The spectral TIC coherence is computed as the normalized correlation coefficient between

two TIC magnitude spectra Sm(ω) and Sn(ω). The magnitude spectrum S(ω) of a LDRW

TIC is derived as the absolute value of the Fourier transform of C(t) and is given as

S(ω) = AUC

√

2

π

√
κeκµ

4
√
4ω2 + κ2

exp

(

−µ
√

κ

2

√

κ+
√
4ω2 + κ2

)

. (5.4)

A solution for the coherence ρ(Sm, Sn) can be found by numerical computation of the

normalized correlation coefficient of (5.4) for various shape parameters κ and µ.

For values of the parameters µ and κ typically observed in vivo, ρ(Sm, Sn) is shown in

Fig. 5.2. As expected, the coherence decreases as the difference between κm and κn grows.
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Figure 5.3 Estimation of the axial and lateral speckle-grain size by local two-dimensional autoco-
variance analysis on DCE-US images of a UCA suspension in a beaker (a). From the
averaged result obtained from 200 ultrasound images, contours at the half maximum
level are obtained (b, zoomed in on the marked area of (a)).

More importantly, the curves in Fig. 5.2 also demonstrate the presence of a monotonic

relationship between ρ and the average of κm and κn. From this result, we conclude that

coherence can be used as an indirect estimator of the dispersion-related parameter κ.

5.2.3 Speckle analysis and regularization

A reliable analysis of similarity among neighbor TICs requires taking the spatial resolution

of the ultrasound imaging system into consideration. The axial (longitudinal) and lateral

resolution are generally not equal and the lateral resolution deteriorates as the imaging

depth increases [32]. As a result, the speckle-grain size is anisotropic and depth-dependent,

which could affect the TIC similarity analysis. To prevent this, we propose in this paper to

regularize the speckle-grain size by spatial filtering.

Commonly used ultrasound image filters improve the visual image quality using nonlinear

(e.g. median filtering [33]) or adaptive techniques [32, 34, 35]. While adaptive filtering

may lead to undesired effects in the subsequent analysis, most nonlinear filters are based

on first-order noise statistics and not designed for speckle regularization.

To design a spatial filter for speckle regularization, we consider the ultrasound images as

spatially uncorrelated images (white noise) that are low-pass filtered by a Gaussian kernel

H(σax, σlat). The parameters σax and σlat, which measure the axial and lateral speckle-grain

size, respectively, were estimated based on in vitro experiments, which were described in

[26].
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Figure 5.4 Estimation of the local axial and lateral speckle-grain size components a and b fitting
an ellipse to a local contour obtained by two-dimensional autocovariance analysis as
shown in Fig. 5.3.

For these experiments, DCE-US images were recorded from static UCA dispersions using

the same settings that were used in vivo. An example is shown in Fig. 5.3a. These images

feature fully developed speckle, because microbubbles are much smaller than the imaging

wavelength and usually present in large numbers per resolution cell. In such images, the

speckle-grain size can be estimated as the full-width at half maximum (FWHM) of the

normalized two-dimensional autocovariance function. In fact, the spatial resolution of the

ultrasound imaging system is characterized by such analysis [32, 36]. This analysis was

performed for 200 DCE-US images in local image regions spanning 15 x 15 pixels (with a

pixel dimension of about 0.15 mm), as shown in Fig. 5.3b. Also shown are contour points

obtained at the half maximum level.

By least-squares fitting of an ellipse oriented along the axial and lateral axes to these con-

tour points, we estimated the local axial and lateral speckle-grain size parameters a and b.

This is shown in Fig. 5.4.

The parameters a and b are shown as a function of the imaging depth in Fig. 5.5. As ex-

pected, the estimated axial speckle-grain size a is independent of the depth. The obtained

constant value (0.47 mm) closely resembles the theoretical value derived from the transmit-

ted pulse length (0.43 mm). The estimated lateral speckle-grain size b increases with the

imaging depth. This observation is in line with a loss in lateral resolution at larger depths,

resulting from the combined effect of increased beam width and decreased line density.

The model parameters σax and σlat are determined directly from a and b. A constant value

was adopted for σax, and a linearly increasing function of the imaging depth d was adopted

for σlat, because the parameter b is accurately approximated (R2 = 0.95) by such linear
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Figure 5.5 Axial and lateral speckle-grain size a and b as a function of depth, along with a
constant approximation for the axial component a and a linear approximation for the
lateral component b.

function, as shown in Fig. 5.5. The exact values of σax and σlat are obtained by determining

those values that reproduce the results of Fig. 5.5 in simulations. An optimal approximation

was found for σax = 0.156 mm and σlat = 0.142 + 0.0054 d mm.

The spatial filter design aims at reducing the anisotropy and the depth dependency of the

speckle-grain size. To this end, we have adopted a Wiener deconvolution of H(σax, σlat) [37],

which theoretically reduces the speckle-grain size up to the pixel dimension. Such reduction,

however, leads to a lower SNR and is in fact not necessary for the spatial similarity analysis.

The SNR loss is controlled by adding a low-pass filter that is designed to replace H(σax, σlat)

with a known isotropic and homogeneous filter. We adopted an isotropic Gaussian filter

Hd(σd) such that the achieved speckle-grain size will be completely determined by σd.

The complete speckle regularization filter Hreg is derived in the frequency domain as

Hreg(σd) =
Hd(σd)H

∗(σax, σlat)

|H(σax, σlat)|2 + NSR
. (5.5)

The parameter NSR = 1/SNR controls the stability of the Wiener deconvolution. Since

too high NSR values can affect the speckle regularization, we selected NSR = 10-3 as an

optimal trade-off by experimental testing. To enable TIC similarity analysis at the order of

a millimeter, we adopted σd = 0.25 mm. This value results in limited smoothing in areas

close to the ultrasound probe and some image sharpening at larger depths, which can be

seen by comparing Fig. 5.3a and Fig. 5.6a. After filtering, the axial and lateral speckle-grain

sizes in the static ultrasound images are comparable and nearly constant with respect to d.
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a) Filtered ultrasound image
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Figure 5.6 Results of speckle regularization filtering, showing a DCE-US image of a UCA sus-
pension in a beaker after filtering (a) and the obtained axial and lateral speckle-grain
size a and b as a function of depth (b).

This is shown in Fig. 5.6b.

To investigate how the proposed spatial filter influences the similarity analysis, we compared

the results of the TIC similarity analysis with those obtained by using standard Gaussian

filtering, as adopted by [26]. In particular, we evaluated the influence of filtering on coher-

ence as function of the imaging depth. All parametric images obtained for ρ were analyzed

by dividing all pixel values into 10 subgroups, each covering a range of 0.5 cm. In each

subgroup, we evaluated the mean and standard deviation of the difference between the

similarity obtained by both filters.

5.2.4 Windowing for similarity analysis

Before applying the spatial TIC similarity analysis, a window, i.e., time segment, is first

selected for each TIC. The purpose of windowing is to make the analysis more specific

to TIC shape variations by capturing the period representing the UCA bolus passage. In

addition, windowing adds standardization to the method.

The adopted time window has a length of 35 s and starts at the TIC appearance time, tapp,

that is, the first time microbubbles are present locally. At each pixel, tapp is estimated as

the first time at which the log-compressed TIC achieves 10% of its peak value, as shown

in Fig. 5.7.

The robustness of appearance time detection is improved by median filtering of each TIC

in time. The blocksize is equivalent to five seconds in order to remove noise spikes, due to

e.g. microbubbles from a previous UCA injection. Remaining errors are further reduced by
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Figure 5.7 Wash-in and wash-out kinetics and time-window selection in a TIC observed in vivo.

two-dimensional spatial median filtering of the detected appearance time with a blocksize

of 5 x 5 pixels.

Because optimizing the time-domain window is not straightforward, we determined the

optimal window by comparing the cancer detection performance for various window lengths

and starting times, relative to the appearance time. To investigate the overall effect of

windowing on the similarity analysis, we also compared the coherence results to those

obtained in [26], i.e., without windowing. The results of both comparisons are reported in

the Results section.

5.2.5 Spatial TIC similarity analysis

After spatial filtering, time windowing, and data linearization, a local spatial TIC similarity

analysis is performed for all pixels covering the prostate. At each pixel, the average coher-

ence is computed between the local TIC and all TICs in a ring-shaped kernel that contains

surrounding pixels at distances between 1.0 and 2.5 mm [26]. By choosing an isotropic

kernel, we exploit the isotropic nature of the dispersive process with respect to the convec-

tive process in (5.1), such that the analysis becomes independent of any possible dominant

perfusion direction. The kernel dimensions are based on the obtained speckle-grain size

(4σd = 1.0 mm) and the scale at which early angiogenesis occurs [5], respectively.

Prior to the analysis, the prostate boundary is determined by a manual ROI selection. By

displaying the coherence at each pixel as a color-code value overlaid on the ultrasound

image, we obtain a parametric dispersion image. As a postprocessing step, this image is
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Figure 5.8 Parametric dispersion images of the prostate based on coherence analysis as described
in this paper (ρ, a), the dispersion-related TIC parameter κ (b) [25], and coherence
analysis as described by [26] (ρprev, c). The corresponding histology slice (d) with
carcinoma marked in red is also shown.

filtered with a Gaussian kernel (σ = 0.5 mm). Because only tumors larger than 1 mm3

require angiogenesis for growth [5], details at smaller scales are removed. A parametric dis-

persion image based on coherence is shown in Fig. 5.8a. For comparison, the corresponding

parametric images based on the dispersion-related parameter κ and coherence ρprev obtained

by the methodology of [26] are shown in Figures 5.8b and 5.8c, respectively.

Because the pixel size (about 0.15 mm) is smaller than the parameter σd that characterizes

the speckle-grain size, spatial downsampling can be adopted to reduce the computation

time. To prevent spatial aliasing, downsampling is constrained by a maximum pixel size

2σd = 0.5 mm. In most datasets, this results in a downsampling factor of three. The

complete analysis is implemented in MATLAB R© (The MathWorks, Natick, MA). On a

64-bits Windows 7 workstation with an Intel R© Core2Duo processor running at 3.16 GHz

with 8 GB of RAM, processing of one DCE-US dataset (usually containing about 1000

frames) takes about four minutes, of which about 50% is required for spatial filtering.

5.2.6 Preliminary clinical validation

To evaluate the cancer localization potential of the proposed analysis, the imaging results

were compared with histology results for 12 datasets recorded from 8 patients that under-

went radical prostatectomy at the AMC Unversity Hospital, Amsterdam, The Netherlands.



Spatiotemporal coherence analysis: rationale and improvements 103

After radical prostatectomy, the prostate was fixed and divided into slices with a thickness

of 4 mm. In each slice, the presence of cancer was evaluated by a pathologist as described

by [38]. In Fig. 5.8d, the histology section corresponding to the parametric dispersion im-

ages of Figures 5.8a-c is shown.

Based on the histology results, we selected two regions of interest (ROIs) of about 0.5 cm2

in each parametric dispersion image to represent healthy and cancerous tissue. Because

clinically significant tumors have a volume of at least 0.5 cm3 [38], we only considered

relatively large regions of either cancerous or healthy tissue in the peripheral zone of the

prostate that extended through several histology slices. By this procedure, the validation

results are less sensitive to any mismatches between the ultrasound plane and the histology

slices. The ROIs of all patients were combined to create two datasets, representing healthy

and cancerous tissue, containing a total of about 60 × 103 pixels.

With these data, a statistical analysis was performed to evaluate the pixel classification

ability of CUDI. From the datasets representing cancerous and healthy tissue, histograms

of coherence were computed for each tissue class and the receiver operating characteristic

(ROC) curve was derived based on the histology ground truth [39]. The optimal classifica-

tion threshold was then obtained by finding the point on the ROC curve with the smallest

Euclidian distance to the optimum, representing 100% sensitivity and specificity. With this

threshold, we determined the optimal sensitivity and specificity for pixel classification.

Using this statistical analysis, we compared the performance for the coherence ρ with that

obtained by the coherence ρprev as described by [26], by the local, dispersion-related LDRW

parameter κ [25] and by a number of perfusion-related parameters proposed in the liter-

ature [18–20]. These included AUC, mean transit time (MTT), peak time (PT), peak

intensity (PI), wash-in time (WIT, i.e., the time period between UCA appearance and peak

intensity), appearance time (AT), and FWHM of the TIC.

5.3 Results

5.3.1 Effects of spatial filtering and windowing

The influence of the speckle regularization filter on the similarity analysis was evaluated

by comparing the obtained coherence ρ with that obtained by Mischi et al. [26], i.e.,

after standard Gaussian filtering with σ = 0.25 mm. We observed an average decrease

in coherence when the speckle regularization filter was applied, as compared the use of

standard Gaussian filtering. This decrease was generally stronger for larger depths, as

shown in Fig. 5.9.

The effect of time windowing on the coherence analysis is also shown in Fig. 5.9. For
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Figure 5.9 Effect of speckle regularization and time windowing on the obtained coherence level as
a function of depth, based on all parametric dispersion images. The mean coherence
decrease resulting from speckle regularization (black), time windowing (white) and
both techniques (gray) are shown as function of depth, with respect to the coherence
level ρprev obtained with Gaussian filtering (σ = 0.25 mm) and without time windowing
[26]. Errorbars represent the standard deviation.

Table 5.1 Area under ROC curve for pixel classification obtained by coherence analysis for various
window lengths and starting times with respect to the local TIC appearance time tapp.

Window length [s]
Window starting time [s]

tapp tapp− 2 tapp− 5 tapp− 10

30 0.875 0.861 0.830 0.783

35 0.880 0.869 0.855 0.792

40 0.874 0.864 0.851 0.808

45 0.862 0.856 0.853 0.816

50 0.855 0.853 0.847 0.819

60 0.840 0.840 0.839 0.823

all imaging depths, we observed an average decrease in ρ when the time window was

incorporated into the analysis.

The combined effect of spatial filtering and time windowing is also shown in Fig. 5.9. In

addition, it can be observed by comparing Figures 5.8a and 5.8c. The analysis result of

Fig. 5.8c was obtained using the methodology of [26], i.e., without time windowing and by

spatial filtering with a Gaussian kernel (σ = 0.25 mm) instead of speckle regularization.

The effect of different windowing settings on the achieved pixel classification performance is
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Table 5.2 Classification performance of different TIC parameters on a pixel basis.

Parameter Sensitivity [%] Specificity [%] ROC curve area

ρ 78.1 81.6 0.88

ρprev 67.2 79.1 0.82

κ 66.6 68.7 0.70

AUC 44.0 70.9 0.61

PI 43.7 79.2 0.65

PT 53.0 79.6 0.70

AT 52.8 64.4 0.60

FWHM 74.4 70.7 0.76

WIT 66.7 65.0 0.72

MTT 53.2 82.1 0.70

reported in Table 5.1. The average area under the ROC curve achieved by the coherence ρ

is reported for several window lengths and starting times. Optimal classification (ROC curve

area of 0.880) was achieved with a 35-s window starting at the TIC appearance time tapp.

In comparison, the obtained ROC curve area was 0.818 if windowing was not performed,

i.e., if the entire TIC was used for coherence analysis.

5.3.2 Preliminary clinical validation

In all patient datasets, we observed an increased coherence in the presence of cancer.

The mean coherence ρ measured in ROIs representing cancerous and healthy tissue was

0.78 ± 0.13 and 0.56 ± 0.14, respectively. Table 5.2 lists the optimal classification thresh-

old, sensitivity, specificity and ROC curve area for all parameters. In addition, the ROC

curves are shown in Fig. 5.10.

5.4 Discussion

The current diagnostic limitations that hamper prostate cancer care could be overcome

by reliable angiogenesis detection, but the associated microvascular changes are complex

and difficult to detect by imaging of perfusion. Recently, we have proposed an alternative

characterization of the microvascular architecture based on analysis of the UCA dispersion

kinetics. Dispersion estimation was performed either by curve-fitting of TICs [25] or by

analysis of the spatial TIC similarity [26].

This paper focuses on the analysis of spatial TIC similarity, since it offers several advan-

tages with respect to most methods that perform TIC parameter estimation in the time

domain. A fundamental advantage is the analysis of UCA kinetics in both space and time.
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Figure 5.10 Receiver-operating-characteristic curves for pixel classification for the coherence ρ,
the coherence ρprev as described by [26], the dispersion-related TIC parameter κ, and
several perfusion-related TIC parameters. On each curve, a marker is placed at the
point representing optimal sensitivity and specificity.

In fact, whereas most TIC parameters are influenced by the entire path from UCA injection

to the detection site, the spatial similarity analysis provides a local assessment. By using

normalized similarity measures, the analysis is also inherently normalized and, therefore,

more robust to distortions, such as nonlinear attenuation, than TIC amplitude features. In

addition, curve-fitting and isolation of the bolus first pass are not required.

In this work, we present the physical rationale for a dispersion analysis by assessment of

spatial TIC similarity. To derive the relation between dispersion and TIC similarity, we

have considered two TICs represented by the LDRW model. TIC similarity, as given by the

coherence ρ, is investigated as a function of the dispersion-related LDRW model parameter

κ. By confirming that higher values of κ lead to a higher coherence, the results shown in

Fig. 5.2 provide the formal basis for the characterization of dispersion by assessment of TIC

similarity. The coherence levels measured in vivo are generally lower than those in Fig. 5.2.

This is likely due to the limited SNR of TICs measured in vivo. The similarity analysis could

be extended by the use of alternative similarity measures in a future study.

The results of the preliminary validation are in agreement with the obtained monotonic
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relationship between κ and ρ, since both parameters show an increase in cancer tissue

relative to healthy tissue. This can also be observed by comparing Figures 5.8a and 5.8b.

This increase in κ and ρ is in line with our previous finding of a lower dispersion, relative

to convection, in the presence of angiogenesis. The lower dispersion might be caused by

a higher tortuosity of the newly formed microvessels [23, 24]. In future work, the relation

between dispersion and microvascular architecture will be studied in more detail by in vitro

phantom studies.

In this paper, we also describe two methodological improvements that are designed to make

the spatial similarity analysis more specific to TIC shape variations. By incorporating spa-

tial filtering for speckle regularization and TIC time windowing, the spatial TIC similarity

analysis provides a better estimation of contrast-agent dispersion.

The analysis of spatial similarity in ultrasound images is generally affected by ultrasound

speckle noise. We have addressed this issue by prefiltering the DCE-US images with a

dedicated speckle regularization filter. As an alternative to filtering, the dimensions of the

spatial similarity kernel could have been locally adapted to the local speckle parameters a

and b to reduce the sensitivity to the local speckle characteristics. This approach would

however lead to an anisotropic kernel, which is less suited for a similarity analysis that

focuses on isotropic dispersion rather than anisotropic convection.

The spatial filter design methodology, which is based on local estimation of the speckle-grain

size, is also applicable for different transducers. It is, however, not optimized for spatial res-

olution enhancement, which is typically performed by deconvolution in the radiofrequency

domain [40]. By balancing between sharpening and smoothing, the adopted filter is achieves

an approximately constant and isotropic speckle-grain size that is sufficiently small for the

subsequent similarity analysis. Filtering also increases the SNR, although the improvement

is not homogeneous; it is larger in areas where more smoothing is performed, i.e., close to

the probe.

The results shown in Fig. 5.9 indicate that the speckle regularization filter has only a

limited influence on the coherence estimation. A significant part of the decrease is due

to the lower filter order: the effective axial filter order was decreased from 0.25 mm to
√

σ2
d
− σ2

ax
= 0.195 mm. The lateral speckle-grain size reduction causes an additional co-

herence decrease as the depth increases.

Spatial filtering does not have a significant impact on the tissue classification results. This

is mainly because the validation was limited to peripheral zone of the prostate, where the

majority of cancer is found [7]. This zone is very close to the probe, i.e., where the effect

of filtering on coherence is small.

TIC time windowing is applied to make the analysis more specific to the underlying hemo-

dynamic parameters that govern the UCA kinetics. By isolating relevant TIC segments,
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the sensitivity of the similarity analysis to TIC noise is decreased. As a result, windowing

enables a better estimation of TIC shape variations, and therefore, dispersion. Because

optimization of the window settings is not straightforward, we adopted those settings that

optimized the pixel classification performance. The main effect of time windowing, ex-

plaining most differences between Figures 5.8a and 5.8c, is a reduction in the coherence

level in image regions where a high level was not caused by similarity of the underlying

hemodynamics.

Overall, spatial filtering and TIC time windowing result in a lower average coherence ρ

compared to ρprev in both tissue types, as shown in Fig. 5.9. In a preliminary validation, the

area under the ROC curve for the pixel classification was increased from 0.82 to 0.88. This

improvement was almost exclusively the result of TIC time windowing.

The preliminary validation was limited to the peripheral zone of the prostate. Given its

fundamentally local nature, the proposed spatial similarity analysis might perhaps also be

useful for analysis of other anatomical zones of the prostate, such as the transition zone,

that have different microvascular characteristics.

In the future, the clinical validation could be extended and the use of dedicated image

registration methods could reduce the positional discrepancy between ultrasound and his-

tology slices. In this regard, significant improvements could possibly also be provided by

three-dimensional DCE-US imaging, which would also enable new alternatives for modeling

and analysis of the UCA kinetics.

A more accurate validation may also comprise the use of immunohistology. With such a

validation, dispersion can possibly be compared directly with the microvascular character-

istics, rather than the level of cell differentiation measured by the Gleason score in regular

histology analysis [41].

5.5 Conclusions

Characterization of ultrasound-contrast-agent dispersion by analysis of the similarity among

neighbor time-intensity curves shows promising preliminary results for prostate cancer lo-

calization. In this work, we investigated the relation between dispersion and TIC similarity

by analysis of the coherence ρ between LDRW TICs. The resulting positive correlation

between the dispersion-related TIC parameter κ and TIC similarity was confirmed in the

preliminary validation. Dedicated spatial filtering and TIC time windowing are proposed to

increase the robustness of the similarity analysis, by making it less sensitive to anisotropic

ultrasound speckle and TIC noise, respectively.
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CHAPTER 6

Spatiotemporal correlation analysis for dispersion assessment

Based on: M. P. J. Kuenen, T. A. Saidov, H. Wijkstra, and M. Mischi, “Spatiotemporal correlation of

ultrasound-contrast-agent dilution curves for angiogenesis localization by dispersion imaging,” IEEE Trans-

actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 60, no. 12, pp. 2665–2669, c© IEEE,

2013.

Abstract – The major role of angiogenesis in cancer development has driven many researchers to inves-

tigate the prospects of noninvasive cancer imaging based on assessment of microvascular perfusion. The

limited results so far may be caused by the complex and contradictory effects of angiogenesis on perfu-

sion. Alternatively, assessment of ultrasound-contrast-agent dispersion kinetics, resulting from features

such as density and tortuosity, has shown a promising potential to characterize angiogenic effects on the

microvascular structure. This method, referred to as contrast-ultrasound dispersion imaging (CUDI), is

based on contrast-enhanced ultrasound imaging after an intravenous contrast-agent bolus injection. In

this paper, we propose a new spatiotemporal correlation analysis to perform CUDI. We provide the ratio-

nale for indirect estimation of local dispersion by deriving the analytical relation between dispersion and

the correlation coefficient among neighboring time-intensity curves obtained at each pixel. This robust

analysis is inherently normalized and does not require curve-fitting. In a preliminary validation of the

method for localization of prostate cancer, the results of this analysis show superior cancer localization

performance (receiver-operating-characteristic curve area of 0.89) than those of previously reported CUDI

implementations and perfusion estimation methods.

111



112 Introduction

6.1 Introduction

Angiogenesis is a complex physiological process involved in the development of various

pathologies. Angiogenesis supports the growth of neoplastic tissue by forming a dense

microvascular network. Particularly relevant is its fundamental role in cancer growth [1].

The microvascular structure resulting from angiogenesis is characterized by a high density

of small-diameter vessels with a high tortuosity and permeability, producing extravascular

leakage [2]. In histological studies, the assessment of microvascular density (MVD) has

been reported to correlate with cancer prognosis [2].

Angiogenesis imaging with the objective of cancer detection has been pursued in many

studies [3]. In this context, dynamic contrast-enhanced ultrasound (DCE-US) is an attrac-

tive imaging modality because of its ability to measure signals backscattered from within

the smallest vessels [4]. The adopted ultrasound contrast agents (UCAs) are coated gas

microbubbles. The strongly nonlinear interaction between ultrasound waves and microbub-

bles can be exploited to suppress the mostly linear backscattering from tissue [5]. The

obtained contrast-specific imaging techniques enable dynamic measurement of the passage

of an intravenously injected UCA bolus through the image plane. Alternatively, with the

destruction-replenishment technique, reperfusion can be measured after disrupting all mi-

crobubbles in the imaging plane with a high-intensity burst [6, 7].

Several researchers have reported the assessment of microvascular perfusion by DCE-US

imaging for detection of angiogenesis [8–10]. Perfusion is typically estimated from time-

intensity curves (TICs) that measure the backscattered acoustic intensity in a region of

interest (ROI) in the ultrasound image as a function of time.

Up until now, quantitative DCE-US imaging of perfusion has however not led to reliable

cancer detection. This may be due to the difficulty in the interpretation of local microvas-

cular perfusion from the estimated parameters [11]. Nonlinear attenuation and scanner

settings may affect TIC amplitude features; timing parameters generally depend on the

entire history of the bolus transport and are, therefore, difficult to interpret locally. A more

fundamental issue concerns the complex effects of angiogenic microvascular changes on

perfusion: although an increased MVD may lead to increased perfusion, this increase can

be counteracted by the increased interstitial pressure and vessel tortuosity [12].

Contrast-ultrasound dispersion imaging (CUDI) has been proposed as an alternative char-

acterization of the microvascular changes caused by angiogenesis [13]. CUDI models the

UCA transport kinetics as a convective dispersion process, in which UCA dispersion results

directly from structural features, such as density and tortuosity. In the original method,

dispersion was estimated by parametric curve-fitting of TICs obtained at each pixel after

an intravenous UCA bolus injection [13].

A more recent, spatiotemporal dispersion analysis involved the assessment of the similarity
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among TICs measured at neighboring pixels by coherence analysis in the frequency domain

[14]. Different from existing quantification methods, this spatial similarity analysis inher-

ently provides a local and normalized assessment. Moreover, it does not require curve-fitting

and isolation of the first passage of the UCA bolus.

This paper builds upon the spatiotemporal analysis described in [14]. Alternative to the

previous coherence analysis, TIC similarity is estimated in the time domain by the TIC

correlation coefficient. The physical rationale for this spatiotemporal correlation analysis is

provided by an analytical relation between dispersion and the correlation coefficient between

TICs.

The proposed method was validated by evaluating its performance for prostate cancer

localization. Prostate cancer is the most common form of cancer in western men [15].

The diagnosis is currently based on systematic biopsies, as the development of diagnostic

imaging methods for prostate cancer has proven highly challenging [16]. In the present

validation, parametric dispersion images obtained from 12 DCE-US datasets of 8 patients

were compared with histology, obtained after radical prostatectomy. A statistical analysis

was performed to compare the cancer localization ability of different implementations of

CUDI with that of previously reported perfusion analysis methods.

6.2 Materials and Methods

6.2.1 Dispersion and TIC correlation

The theoretical basis for analysis of UCA dispersion kinetics is provided by modeling the

UCA transport through the microcirculation as a convective dispersion process [17, 18], as

∂C(x, t)

∂t
= ∇ · [D(x)∇C(x, t)− v(x)C(x, t)] . (6.1)

The UCA concentration dynamics C(x, t) is represented in (6.1) in space x and time t, as

function of the convection velocity v(x) and the UCA dispersion coefficient D(x).

The modified local density random walk (LDRW) model is a solution of the one-dimensional

case of (6.1) for locally constant parameters [13]. The UCA concentration C(t) at a fixed

detection site downstream after an intravenous UCA bolus injection is modeled as a function

of time as

C(t) = AUC

√

κ

2π (t− t0)
exp

(

−κ (t− t0 − µ)2

2 (t− t0)

)

. (6.2)
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The shape of C(t) is governed by the local, dispersion-related skewness parameter κ =

v2/2D and the mean transit time µ. The parameters AUC and t0 represent the area under

C(t) and the theoretical injection time, respectively.

Similarly to common perfusion analysis techniques [8], dispersion analysis can be performed

by parametric curve-fitting of (6.2) to TICs measured at each pixel [13].

As an alternative to these time-domain analysis techniques, we recently suggested a com-

plete spatiotemporal analysis [14], in which dispersion is estimated indirectly as the spatial

similarity among neighboring TICs. The similarity between TICs was estimated by their

coherence, which was calculated as the normalized correlation coefficient between TIC am-

plitude spectra. This similarity measure is insensitive to arrival time differences and can

be effectively targeted to the relatively small frequency range that is most relevant in TIC

analysis.

In this paper, we propose the correlation coefficient r in the time domain as an alternative

TIC similarity measure to the coherence ρ. Suitable alignment based on the UCA appear-

ance time is provided together with dedicated TIC windowing (see Sec. 6.2.2). As a result,

the subsequent similarity analysis is not affected by arrival time differences. Moreover, as

opposed to coherence, the correlation coefficient includes TIC phase components that also

contribute to the TIC shape, and, therefore, to the assessment of dispersion.

To enable a dispersion analysis by assessment of spatial TIC correlation, we have investi-

gated the correlation coefficient r(Cm, Cn) between two TICs Cm(t) and Cn(t) represented

as in (6.2). The subscripts m and n refer to two close locations at which the TICs are

sampled. Because of TIC alignment, t0 = 0 is adopted for both Cm(t) and Cn(t). An

analytical solution for r(Cm, Cn) is given as

r(Cm, Cn) =

∞
∫

0

[

(Cm(t)− C̄m)(Cn(t)− C̄n)
]

dt

√

∞
∫

0

[

Cm(t)− C̄m

]2

dt
∞
∫

0

[

Cn(t)− C̄n

]2

dt

(6.3)

=
K0

(√
κm + κn

√

κmµ2
m + κnµ2

n

)

√

K0(2κmµm)K0(2κnµn)
. (6.4)

In (6.3), C̄ is the mean value of C(t) over the time-interval [0,∞]. In (6.4), the function

K0(·) represents the modified Bessel function of the second kind.

As expected, the resulting analytical relation depends only on the shape parameters κ and

µ. It is independent of α due to normalization. For values of κ and µ typically observed

in vivo [13], the correlation coefficient r is plotted in Fig. 6.1. These plots demonstrate

that r increases as the difference between κm and κn decreases. More importantly, these
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Figure 6.1 Correlation function r(Cm, Cn) as a function of κm and κn for µm = µn = 20 s.

plots also show a monotonic increase in r as both κm and κn increase. As a result, the

correlation coefficient r between two TICs can be interpreted as an indirect estimate of the

dispersion-related parameter κ. This result provides the formal basis for a spatiotemporal

dispersion analysis by assessment of the correlation coefficient among TICs.

6.2.2 Spatiotemporal correlation analysis

A spatiotemporal analysis is performed by local estimation of the TIC correlation coefficient.

Prior to this analysis, spatial filtering and TIC windowing are performed to increase the

robustness of the correlation analysis.

In the observed DCE-US images, the spatial speckle characteristics are anisotropic and

depth-dependent [14]. To prevent speckle from affecting the TIC correlation analysis, the

speckle size is regularized to about 0.8 mm by dedicated spatial filtering [19].

The robustness of the analysis is increased by windowing, i.e., selection of the most relevant

TIC time segment [19]. Windowing provides temporal TIC alignment and increases the

sensitivity of the proposed correlation analysis to TIC shape variations, by removing TIC

noise outside the adopted window. The adopted window starts at the local TIC appearance

time, which is defined as the first time at which the TIC achieves 10% of its peak level.

Detection of the TIC appearance time is made robust by median filtering in time (on TICs

with a blocksize of 5 s) and in space (on the detected appearance times with a blocksize

of 5 x 5 pixels). Based on optimization of the pixel classification results, we adopted a

window length of 40 s. Given the typical frame rate of 10 Hz, this length is equivalent to

about 400 samples.
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Figure 6.2 Parametric dispersion images with histology based on correlation r (a) and coherence
ρ (b).

Figure 6.3 The histology slice with carcinoma marked in red, corresponding to the parametric
dispersion images of Fig. 6.2.

At each pixel, the TIC correlation r is estimated by a local spatial TIC correlation analysis.

Using direct calculation of (6.3), r is evaluated as the average correlation coefficient between

the local pixel TIC and the surrounding pixel TICs in a ring-shaped kernel [14]. The inner

radius of 1.0 mm is based on the speckle size obtained after filtering [19]; the outer radius

of 2.5 mm is based on the scale of angiogenic networks. After computation, r is displayed

as a color-coded value at each pixel, overlaid on the DCE-US image, as shown in Fig. 6.2a.

The adopted color scale is based on the average observed range of r. For comparison, the

same approach was applied to estimate the coherence ρ [14]. For ρ, the optimal results

were achieved using a window length of 35 s. In Fig. 6.2b, the parametric dispersion image

based on coherence corresponding to Fig. 6.2a is shown.

6.2.3 Data acquisition and validation

Acquisition of the data was performed at the Academic Medical Center University Hospital

(Amsterdam, The Netherlands). After written informed consent was obtained, a 2.4 mL

SonoVue R© (Bracco, Milan, Italy) UCA bolus was injected intravenously. DCE-US imaging

of the prostate was performed with an iU22 ultrasound imaging system (Philips Healthcare,

Bothell, WA) and either a C8-4v (6 recordings in 5 patients) or C10-3v (6 recordings in 3
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patients) probe. Power modulation imaging was performed at a frequency of 3.5 MHz and

a mechanical index of 0.06.

The acquired B-mode image sequences were linearized by reverting the color mapping and

the estimated logarithmic compression function [13]. Based on the linear relationship be-

tween microbubble concentration and acoustic intensity for low concentrations [13], the

analysis was performed using the linearized acoustic intensity.

To validate the performance of the obtained parametric images for prostate cancer lo-

calization, they were compared with histology, obtained after radical prostatectomy. The

histology slice corresponding to the parametric dispersion images of Fig. 6.2 is shown in

Fig. 6.3.

In each dataset, two ROIs of at least 0.5 cm2 were selected based on the histology ground

truth to represent healthy tissue and cancer. In total, the validation dataset contained

about 60 × 103 pixels. Based on the histograms of r for both tissue classes, the receiver

operating characteristic (ROC) curve was evaluated. The optimal sensitivity and specificity

for pixel classification were determined as the point on the ROC curve closest to ideal clas-

sification.

The classification performance of the correlation r was compared to that of the coherence

ρ, the dispersion-related TIC parameter κ, and several perfusion-related TIC parameters.

These included the area under the curve (AUC), peak intensity (PI), peak time (PT), ap-

pearance time (AT), full-width at half maximum (FWHM), wash-in time (WIT) and mean

transit time (MTT) [9, 10]. The parameter κ and the perfusion parameters were estimated

by LDRW model fitting of pixel TICs. Spatial (Gaussian kernel, σ = 0.5 cm) and tempo-

ral (100-taps low-pass filter, cut-off frequency of 0.5 Hz) filtering were performed prior to

fitting [13].

6.3 Results

An increased spatial TIC similarity was observed in the presence of cancer by both param-

eters r and ρ. The average correlation coefficient r was 0.18 ± 0.09 in healthy tissue and

0.39 ± 0.15 in cancer. For the coherence ρ, these values were 0.56 ± 0.14 and 0.78 ± 0.13,

respectively. For all parameters, the optimal sensitivity, specificity, and area under the ROC

curve are reported in Table 6.1. The spatial similarity parameters r and ρ provided the

highest area under the ROC curve.
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Table 6.1 Classification statistics

Parameter Sensitivity [%] Specificity [%] ROC curve area

r 77.3 86.0 0.89

ρ 78.1 81.6 0.88

κ 66.6 68.7 0.70

AUC 44.0 70.9 0.61

PI 43.7 79.2 0.65

PT 53.0 79.6 0.70

AT 52.8 64.4 0.60

FWHM 74.4 70.7 0.76

WIT 66.7 65.0 0.72

MTT 53.2 82.1 0.70

6.4 Discussion and Conclusions

In this paper, we propose an implementation of contrast-ultrasound dispersion imaging

based on spatial TIC correlation analysis. By deriving the analytical relation between the

TIC correlation coefficient r and the dispersion-related TIC parameter κ, the formal basis

for dispersion estimation by spatial TIC correlation analysis is provided.

The high tissue classification accuracy for correlation r and coherence ρ is probably due to

the robust nature of the spatial TIC similarity analysis. Because the analysis is performed

by direct calculation of (6.3), it is inherently normalized and provides a local assessment.

Therefore, it may be relatively robust to nonlinear artifacts resulting from e.g. nonlinear

attenuation and microbubble gas diffusion phenomena, which affect the acoustic microbub-

ble behaviour [11, 20]: if all TICs within the kernel, i.e., within 0.5 cm2, will be similarly

affected, the effect on the TIC similarity estimate will be relatively limited compared to

that on fitted TIC parameters.

Tissue motion, although negligible in the observed data, may also affect the reliability of

TIC quantification. Motion artifacts, which affect all TICs, may significantly hamper the

accuracy of TIC fitting. In the proposed analysis, motion artifacts may cause a positive

bias resulting from the similarity of TIC motion artifacts.

An alternative TIC correlation assessment could be obtained by computation of (6.4) after

estimation of κ and µ. This approach would require curve fitting and isolation of the bolus

first pass. Moreover, high-frequency fluctuations, which would be considered noise in the

context of TIC fitting, may in fact represent local transport of microbubbles. This infor-

mation could be highly relevant for the proposed spatiotemporal analysis.

Overall, the observed values of the correlation r are lower than those of the coherence ρ.

This can be explained by the fact that r, as opposed to ρ, is influenced by high-frequency
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TIC components, which have a lower spatial similarity. Given the limited bandwidth of

coherence analysis between 0 and 0.5 Hz, ρ is based on about 18 samples. In comparison,

r is based on about 400 samples, possibly explaining the slight classification improvement

by r as compared to ρ. This improvement may also be due to inclusion of TIC phase

information, which also contributes to the TIC shape, into the similarity estimation.

In the future, the proposed method may be evaluated and further improved in experimental

phantom studies [21]. Up until now, however, the development of microvascular phantoms,

in which angiogenesis-related features such as density and tortuosity can be controlled,

remains highly challenging.

In conclusion, localization of cancer by analysis of the spatial TIC correlation coefficient pro-

vides encouraging results. The validation should however be extended in future work.
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CHAPTER 7

Prostate cancer localization by CUDI and mpMRI

In preparation for submission as: M. Smeenge, M. Kuenen, M. Mischi, M. Engelbrecht, C. Lavini,

M. van Santen, A. Postema, T. de Reijke, M. P. Laguna Pes, J. de la Rosette, and H. Wijkstra, “Detec-

tion and localization of prostate cancer: Additional value of quantification in Dynamic Contrast-Enhanced

Ultrasound and Multiparametric MRI.”

Abstract – The aim was to assess the additional value of semi-quantitative analysis of dynamic contrast-

enhanced ultrasound (DCE-US) and dynamic contrast-enhanced MRI (DCE-MRI) when used together with

qualitative image interpretation for the localization of prostate cancer in the same patients, using radical

prostatectomy specimens as reference standard. 11 consecutive patients underwent both DCE-US and

multiparametric MRI (mpMRI) before radical prostatectomy. Per patient, 2-4 DCE-US image planes were

recorded. Every image plane was divided into 4 quadrants, resulting in 152 regions of interest (ROIs).

For each imaging modality, a qualitative interpretation was performed first, followed by a combined inter-

pretation of qualitative and semi-quantitative parameters. Prostate cancer suspicion was scored for each

ROI and correlated with histopathology. Using a stringent assessment (all tumors), DCE-US showed a

statistically significant increase between qualitative and combined analysis for sensitivity, 46% vs. 58%

(p = 0.04), and a significant decrease in specificity, 75% vs. 64% (p = 0.02). For mpMRI a significant

increase was seen between qualitative and combined analysis for sensitivity 31% vs. 47% (p = 0.01),

the difference in specificity, 94% vs. 85% (p = 0.10), was not significant. Using a clinical assessment

(tumors larger than 0.5 cm3), DCE-US showed an increase between qualitative and combined analysis for

sensitivity, 73% vs. 86%, and a decrease in specificity, 89% vs. 82%. For mpMRI an increase was seen

between qualitative and combined analysis for sensitivity 56% vs. 81%, and a decrease in specificity, 97%

vs. 92%. In conclusion, in both DCE-US and mpMRI, semi-quantitative interpretation is a useful addition

to qualitative interpretation for the detection and localization of prostate cancer. For both modalities, a

statistically significant increase in sensitivity and a decrease in specificity (significant only for DCE-US)

were seen.
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7.1 Introduction

In developed countries, prostate cancer is the most common neoplasm in men, accounting

for one in four new cancer cases. In the US, the incidence rate is 165 per 100.000 males

and in the UK, the incidence rate is 105 per 100.000 males [1, 2]. Advanced, high-grade

prostate cancer is likely to be detected using the currently available diagnostic tools like

prostate-specific antigen (PSA) testing, digital rectal examination and transrectal ultra-

sonography (TRUS). However, at this time detection may be to late to perform a curative

treatment. When diagnosed being organ confined and in early stage, the chances of curing

prostate cancer are higher and comorbidity after treatment is lower.

Unfortunately, PSA, rectal examination, and TRUS perform poorly in detecting organ con-

fined, early stage prostate cancer [3]. Therefore, when suspicion of prostate cancer arises,

systematic prostate biopsies are taken in every patient, with associated discomfort and

comorbidity [4, 5]. Reliable imaging that can properly visualize prostate cancer is greatly

needed for comorbidity reduction and improvement of screening, diagnosis, and treatment.

Nowadays, multiparametric magnetic resonance imaging (mpMRI) and dynamic contrast-

enhanced ultrasound (DCE-US) are two promising image modalities for prostate cancer

visualization [6–14].

Malignant growth induces angiogenesis and neovascularization, which is expected to result

in a difference in blood flow and perfusion between benign and malignant tissue [15, 16].

The diagnostic accuracy in prostate cancer detection may possibly increase when these dif-

ferences could be visualized, for example with DCE-US or dynamic contrast-enhanced MRI

(DCE-MRI) [12, 17].

Recently, we conducted a study comparing DCE-US and mpMRI with histology after radical

prostatectomy for the localization of prostate cancer, demonstrating that under the same

conditions, DCE-US and mpMRI are comparable in detection and localization of prostate

cancer. Correlation of lesions larger than 0.5 cm3 resulted in a sensitivity of 59% with a

specificity of 91% for DCE-US and a sensitivity of 65% with a specificity of 91% for mpMRI.

In this study, imaging was assessed by subjective, qualitative interpretation, which is known

to have a high inter- and intraobserver variability and a steep learning curve [7].

To allow an objective analysis of hemodynamic differences and reduce user dependency,

different quantification methods, based on the extraction of functional parameters, have

been investigated. Recent publications show promising results using semi-quantitative and

pharmacokinetic model parameters in both DCE-US and mpMRI for discrimination between

malignant and benign prostate tissue [18–28]. In these publications, quantification is based

on comparing contrast hemodynamic parameters in regions of interest (ROIs) with known

malignant and benign tissue. However, it would be very interesting to evaluate the benefit

of these quantitative models in clinical practice. In this regard, mpMRI is one step ahead
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Figure 7.1 Flow diagram presenting selection criteria for inclusion.

of DCE-US and studies on localization of prostate cancer using dynamic contrast-enhanced

MRI (DCE-MRI) have already shown the potential additional value of quantitative analysis

using hemodynamic parameters [27, 29, 30].

In this study we investigated the additional value of semi-quantitative analysis of DCE-US

and mpMRI when used together with qualitative interpretation in the same patients for the

localization of prostate cancer.

7.2 Materials and Methods

Between January 2012 and July 2013, 11 consecutive patients with biopsy proven prostate

cancer, scheduled for radical prostatectomy in the AMC (Academic Medical Center, Ams-

terdam, The Netherlands) were included in this study. The inclusion diagram is presented

in Fig. 7.1 and the patient characteristics are presented in Table 7.1.

The DCE-US study was approved by the institutional review board and the mpMRI in-

vestigations were performed on clinical basis before undergoing radical prostatectomy. All

patients signed an informed consent, allowing use of their DCE-US, mpMRI and histological

data for comparison.

All examiners (DCE-US, mpMRI and pathology) received scoring sheets on which the

prostate was divided in 5 transverse planes. Every plane was subdivided in 4 quadrants
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Table 7.1 Patient characteristics.

Number of patients included 11

Mean age (range) [years] 62 (55-69)

Mean PSA (range) [ng/mL] 7.6 (3.2-12.6)

Clinical T-stage

cT1 6

cT2 4

cT3 1

Pathological
T-stage

pT2a 1

pT2b 0

pT2c 3

pT3a 6

pT3b 1

Pathological
Gleason score
frequency

6 4

7 4

8 1

9 2

or ROIs, resulting in a total of 20 ROIs per prostate, and a total of 220 ROIs. However, for

logistical reasons, between 2 and 4 planes were visualized per patient by DCE-US. A total

of 38 imaging planes were obtained in these 11 patients. Every image plane was divided in 4

ROIs, resulting in 152 ROIs used for analysis. This division in planes and ROIs was derived

from a study on standardized interpretation and reporting of mpMRI results by Dickinson et

al. [31]. The examiners were asked to delineate areas suspect for prostate cancer presence

and score the likelihood of tumor presence for each ROI on a 5 point Likert-scale [31, 32]

to obtain clear and standardized reporting.

The DCE-US investigations were performed using a Philips iU22 ultrasound system (Philips

Healthcare, Bothell, WA) with a C10-3v transrectal endfiring probe. Every plane was visu-

alized in the contrast-specific imaging mode and a low mechanical index of 0.06 was used to

minimize contrast microbubble destruction. After intravenous injection of a contrast-agent

bolus (SonoVue R©, Bracco, Milan, Italy), DCE-US imaging was performed for 120 seconds

to record the in-and outflow. A DCE-US image, obtained at approximately the time of

peak enhancement, is shown in Fig. 7.2b.

Qualitative interpretation of DCE-US images was done by a trained US examiner with 200-

300 imaging sessions of experience in performing and reading prostate DCE-US imaging.

The examiner was blinded for all clinical and histological patient data. The US examiner

then combined qualitative DCE-US reading with semi-quantitative interpretation.

For DCE-US semi-quantification, three parameters, based on the spreading (dispersion)
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of the contrast agent bolus within the microvascular architecture, were adopted for quan-

titative interpretation. Structural differences in the microvascular architecture, caused by

angiogenesis and, therefore, correlated to aggressive prostate cancer, are believed to be well-

characterized by dispersion [15]. The analysis is based on recorded time-intensity curves

(TICs) obtained at every DCE-US image pixel. The parameter kappa [18] measures the TIC

skewness, which can be interpreted as the ratio between the wash-in and wash-out slopes.

The parameters coherence and correlation [23, 24, 28] measure the local similarity among

TICs measured at neighboring DCE-US image pixels. All dispersion-related parameters were

evaluated using parametric maps, as for example shown in Fig. 7.2c.

The mpMRI investigations were performed at 1.5 T (AVANTO, Siemens Healthcare, Er-

lagen, Germany) with an endorectal coil following European Society of Urogenital Radi-

ology (ESUR) guidelines [14]. The image protocol consisted of T2-weighted turbospin-

echo sequences, diffusion-weighted imaging (DWI), and DCE-MRI, as shown in Fig. 7.2d-f.

DWI was performed using B-values of 0, 100 and 800. Apparent diffusion coefficient

(ADC) maps were automatically calculated afterwards. DCE-MRI images were acquired

in the transverse plane after an intravenous bolus injection of 0.1 mmol of MRI contrast

medium (Gadovist R©, Bayer AG, Leverkusen, Germany) per kilogram of body weight. A

three-dimensional volume covering the entire prostate with identical positioning as the T2-

weighted sequence was acquired every 2.5 seconds during 210 seconds.

Qualitative interpretation of mpMRI images was performed by an uro-radiologist with ex-

perience between 200 and 300 prostate mpMRI interpretations. He was blinded for all

clinical and histological patient data. Qualitative mpMRI reading was then combined with

semi-quantitative interpretation of the DCE-MRI images by the same uro-radiologist.

For semi-quantitative DCE-MRI analysis, the TIC-derived parameters, maximal (peak) en-

hancement, time-to-peak, slope (wash-in) and curve shape [19, 29, 33] were used and

visualized by parametric maps. For example, Fig. 7.2g shows the result of semi-quantitative

DCE-MRI analysis based on peak enhancement.

For histopathological analysis the prostate specimen was formalin-fixed, dissected in 4-mm-

thick transversal slices, paraffin-embedded and stained with haematoxylin/eosin. Tumor

location, stage and Gleason score were determined by a pathologist in training and sub-

sequently revised by an experienced uro-pathologist. Both were blinded for DCE-US and

mpMRI results. Cancer lesions were delineated on the slides and transferred to photographs

of the original transverse slices and on the pathology-scoring sheet, as for example shown

in Fig. 7.3.

Due to prostate deformation after radical prostatectomy and plane mismatch caused by

angle differences in slicing and imaging plane, correlation between imaging and histology is

challenging. First, a “one-to-one” comparison was performed in which imaging ROI scores
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Figure 7.2 DCE-US (a-c) and mpMRI (d-g) imaging of the prostate. For ultrasound, a fun-
damental TRUS image (a), a DCE-US image obtained approximately during peak
enhancement (b), and a quantitative DCE-US parametric dispersion map (c), based
on correlation analysis [28], are shown. The mpMRI images show the results of T2-
weighted imaging (d), the apparent diffusion coefficient (ADC) map (e), DCE-MRI at
approximately the time of peak enhancement (f), and semi-quantitative DCE-MRI (g)
based on peak enhancement [33]. In images (b-g), a suspicious lesion is observed in
the left peripheral zone (i.e., in the bottom right of the images), which was confirmed
by histology analysis after radical prostatectomy (see Fig. 7.3).

Figure 7.3 Histology slice corresponding to the DCE-US and mpMRI images shown in Fig. 7.2.

were compared with the single corresponding pathology ROI (Fig. 7.4, solid arrow). In this

approach, no correction is provided for possible plane and angle mismatches. Therefore, a

second, “neighboring-included” analysis, was performed in which the imaging ROI was not

only compared to the corresponding pathology ROI, but also to the same ROI in directly

adjacent pathology slices, as shown in Fig. 7.4 by the dashed arrows. We believe this anal-

ysis, based on similar correlations by Turkbey et al. and Isebaert et al. [12, 13], is more
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Figure 7.4 Correlation of histopathology and imaging. The tumor is located in the lower-right
quadrant of the base/mid plane (black area). On imaging however, the tumor is
seen one plane lower, in the mid plane. The solid arrow depicts the “one-to-one”
correlation, in this case “false positive.” In the “neighboring-included” correlation,
the quadrant is also compared with the same quadrant one plane above and below
(solid and dashed arrows). Since one plane above contains tumor, it is scored “true
positive.”

robust to possible deformation and misalignment in planes.

The reference standard, based on histopathological analysis, was determined twice per

ROI. For the first analysis, using a stringent method, all ROIs containing any amount of

prostate cancer were marked positive. In a second, clinical analysis all prostate cancer

lesions smaller than 0.5 cm3 were excluded when tumor was missed in the correspond-

ing imaging ROI. Measurement of the tumor volume was performed using the formula

length × height × width × 0.52. The rationale for the clinical approach is that small

lesions represent little clinical significance [34, 35]. Only planes in which both DCE-US
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Table 7.2 Decision matrix tables for all analyses for Likert-scale level 3, 4, and 5.

Histopathology

“One-to-one” “Neighboring-included”

Stringent Clinical Stringent Clinical

+ - + - + - + -

DCE-US

Qualitative
+ 33 20 33 20 43 10 43 10

- 39 60 20 79 25 74 16 83

Qualitative and
semi-quantitative

+ 42 29 42 29 55 16 55 16

- 30 51 12 69 18 63 9 72

mpMRI

Qualitative
+ 22 5 22 5 24 3 24 3

- 50 75 25 100 30 95 19 106

Qualitative and
semi-quantitative

+ 34 12 34 12 38 8 38 8

- 38 68 13 93 18 88 9 97

and mpMRI imaging was performed were included for analysis. Depending on the number

of planes visualized with DCE-US, 8-16 ROIs were analyzed per prostate. Decision matrix

tables were constructed for each analysis of DCE-US and mpMRI, and sensitivity, speci-

ficity, positive predictive value (PPV) and negative predictive value (NPV) were calculated.

Simultaneous comparison of sensitivity and specificity between the different DCE-US and

mpMRI methods was performed using matched sample tables and the extended McNemar’s

test [36]. The test is only usable for the stringent “one-to-one” correlation since the clinical

and neighboring analyses have no fixed amount of tumor-positive results for both DCE-US

and mpMRI, qualitative and semi-quantitative analyses.

7.3 Results

Prostate cancer was confirmed in all 11 patients by histopathological examination. Of the

152 ROIs, 72 contained tumor.

The radiologist assessed image quality for every mpMRI session on a 3-point scale, good,

moderate and poor. 9 of the 11 recordings were reported as good, and two were reported

as moderate image quality. For DCE-US, all recordings were reported as good quality.

Table 2 presents the decision matrix tables for Likert-scale level 3, 4 and 5 suspicions for

all four assessments and Table 3 shows the sensitivity, specificity, PPV and NPV.

For qualitative interpretation alone, stringently assessed using the “one-to-one” correlation,

a sensitivity of 46% and a specificity of 75% were seen for DCE-US. For mpMRI, these
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Table 7.3 Sensitivity, specificity, PPV and NPV values, expressed as probability, for all analyses
for Likert-scale level 3, 4, and 5. Numbers in parentheses represent the 95% confidence
intervals.

“One-to-one” “Neighboring-included”

Stringent Clinical Stringent Clinical

DCE-US

Qualitative

Sensitivity 0.46 (0.35-0.57) 0.62 (0.49-0.74) 0.63 (0.51-0.74) 0.73 (0.60-0.83)

Specificity 0.75 (0.65-0.83) 0.80 (0.71-0.87) 0.88 (0.79-0.93) 0.89 (0.81-0.94)

PPV 0.62 (0.49-0.74) 0.62 (0.49-0.74) 0.81 (0.69-0.89) 0.81 (0.69-0.89)

NPV 0.61 (0.51-0.70) 0.80 (0.71-0.87) 0.75 (0.65-0.82) 0.84 (0.75-0.90)

Qualitative
and semi-
quantitative

Sensitivity 0.58 (0.47-0.69) 0.78 (0.65-0.87) 0.75 (0.64-0.84) 0.86 (0.75-0.92)

Specificity 0.64 (0.53-0.73) 0.70 (0.61-0.79) 0.80 (0.70-0.87) 0.82 (0.72-0.88)

PPV 0.59 (0.48-0.70) 0.59 (0.48-0.70) 0.77 (0.66-0.86) 0.77 (0.66-0.86)

NPV 0.63 (0.52-0.73) 0.85 (0.76-0.91) 0.78 (0.68-0.85) 0.89 (0.80-0.94)

mpMRI

Qualitative

Sensitivity 0.31 (0.21-0.42) 0.47 (0.33-0.60) 0.44 (0.32-0.58) 0.56 (0.41-0.70)

Specificity 0.94 (0.86-0.97) 0.95 (0.89-0.98) 0.97 (0.91-0.99) 0.97 (0.92-0.99)

PPV 0.81 (0.63-0.92) 0.81 (0.63-0.92) 0.89 (0.72-0.96) 0.89 (0.72-0.96)

NPV 0.60 (0.51-0.68) 0.80 (0.72-0.86) 0.76 (0.68-0.83) 0.85 (0.77-0.90)

Qualitative
and semi-
quantitative

Sensitivity 0.47 (0.36-0.59) 0.72 (0.58-0.83) 0.68 (0.55-0.79) 0.81 (0.67-0.90)

Specificity 0.85 (0.76-0.91) 0.89 (0.81-0.93) 0.92 (0.84-0.96) 0.92 (0.86-0.96)

PPV 0.74 (0.60-0.84) 0.74 (0.60-0.84) 0.83 (0.69-0.90) 0.83 (0.69-0.91)

NPV 0.64 (0.55-0.73) 0.88 (0.80-0.93) 0.83 (0.75-0.89) 0.92 (0.85-0.95)

statistics were 31% and 94%, respectively. Combined interpretation, stringently assessed

using the “one-to-one” correlation, resulted in a sensitivity and a specificity of 58% and

64% for DCE-US, respectively, and 47% and 85% for mpMRI, respectively. For DCE-US,

further analysis showed a statistically significant increase between qualitative and combined

analysis for sensitivity, 46% vs. 58% (p = 0.04), and a significant decrease in specificity,

75% vs. 64% (p = 0.02). For mpMRI, a significant increase was seen between qualitative

and combined analysis for sensitivity 31% vs. 47% (p = 0.01). The difference in specificity,

94% vs. 85%, was not significant (p = 0.10). When comparing combined qualitative and

semi-quantitative analysis of DCE-US and mpMRI, a significant difference was seen for

specificity, 63% vs. 85% (p < 0.01), in favor of the mpMRI analyses. The difference in

sensitivity, 59% vs. 47%, was not significant (p = 0.12).

Looking at the clinical, “neighboring-included” assessment, sensitivity and specificity rose

for all interpretations when compared to the stringent “one-to-one” assessment. For qual-

itative interpretation, a sensitivity of 73% and a specificity of 89% were seen for DCE-US.

These statistics were 56% and 97%, respectively, for mpMRI. Using the combined interpre-

tation, a sensitivity and a specificity of 86% and 82% were seen for DCE-US, respectively,

and 81% and 92% for mpMRI, respectively.
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7.4 Discussion

In this study, the additional value of semi-quantitative analysis over qualitative analysis in

DCE-US and mpMRI was evaluated in the detection and localization of prostate cancer in

the same patients with radical prostatectomy as reference standard.

The results demonstrate that for both DCE-US and mpMRI, semi-quantitative interpre-

tation is a useful addition to qualitative interpretation. A statistically significant increase

in sensitivity was seen for both imaging modalities. The specificity decreased significantly

(p = 0.02) for the DCE-US analysis only; for mpMRI, this decrease was not significant

(p = 0.10). Although no statistical analysis was performed on the clinically assessed,

“neighboring-included” results, these numbers show an even higher increase in sensitivity

and lower decrease in specificity when qualitative interpretation only, and combined inter-

pretations are compared.

In all analyses, the absolute increase in sensitivity was higher than the decrease in speci-

ficity. Not missing tumors is most important when considering these imaging modalities as

future screening tools for prostate cancer and, therefore, the increase in sensitivity is more

important than the decrease in specificity. Moreover, the NPV increases for both modalities

when semi-quantitative analysis was added to the qualitative analysis.

At the moment, most quantitative DCE-US methods are based on assessment of perfusion.

These methods assume a causal relation between angiogenic microvascular changes and

microvascular perfusion [21, 22, 37, 38]. However, angiogenesis has complex and possibly

opposing effects on perfusion [18, 21]. Kuenen et al. introduced an alternative quantifica-

tion method based on the diffusion or dispersion of contrast agents in the microcirculation.

In preliminary studies, three different approaches for dispersion assessment were compared

on a pixel basis to histology data, obtained after radical prostatectomy. All dispersion

parameters provided a superior area under the receiver-operating-characteristic curve for

tissue classification than perfusion-related parameters [23, 24, 28].

Since a large amount of results were generated using a 1-5 point Likert-scale, only a selec-

tion is presented. The results of suspicion levels 3, 4 and 5 were considered to be the most

important since, in our opinion, not missing tumors is more important than an increased

specificity. Therefore, suspicion level 3 was labeled as possibly tumor and analyzed as “pos-

itive” on imaging together with level 4 and 5 suspicion. Suspicion level scores of 1 and 2

were considered as (highly) likely not malignant and therefore analyzed as “negative.”

A limitation in this study was the small, single-center patient group used for the analyses.

Another limitation is the interpretation by a single observer per imaging modality. However,

all DCE-US and mpMRI analyses were performed in the same patient group. All patients

were known to have prostate cancer, which could have influenced scoring by the examiners.

A limitation for transrectal DCE-US was that visualization could only be performed in one
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2D-plane for 120 seconds per contrast bolus injection. For every additional plane, a new

bolus injection had to be administered. In practice, 2 to 4 planes were visualized per im-

age session. The tumor might be located in between visualized planes, and consequently

missed. A solution to this problem is 3D/4D imaging, enabling whole prostate quantifica-

tion analysis after one single bolus injection.

The correlation of DCE-US and mpMRI images with histology is challenging in many ways.

One challenge is the mismatch between DCE-US, mpMRI, and pathology planes, which all

are acquired at different angles. Due to endfiring probe usage, DCE-US planes fan out

from the posterior side of the prostate. Histopathology planes, however, fan out from the

anterior side of the prostate due to urethra stretching and fixation during workup. mpMRI

planes are all in transverse plane. Using the “neighboring-included” correlation, adapted

from Turkbey et al. and Isebaert et al., we aimed to compensate for this plane mismatch by

including the adjacent histology planes to the comparison with imaging [12, 13]. However,

this could result in a more favorable picture than the actual situation. If multiple tumors are

present in one prostate, an imaging ROI that was falsely scored positive might be marked

“true-positive” due to presence of a second tumor in the neighboring ROI in one of the

adjacent planes.

For the clinical approach, the gold standard, being the number of tumor-positive ROIs in

histology, was dynamic, due to visibility of tumors smaller than 0.5 cm3 on imaging. Since

some tumors smaller than 0.5 cm3 are correctly seen on imaging, it would not be correct in

our opinion to score the corresponding ROIs as “false positive.” Therefore, for the clinical

analyses, tumors smaller than 0.5 cm3 were scored negative only when on imaging the cor-

responding ROI was scored negative. As a result, the clinical interpretation is only applied

to the negatively scored ROIs, shifting score from “false positive” to “true negative” while

maintaining the same “true positive” scores.

An attempt to solve histology and imaging correlation problems has been described by

Turkbey et al. [30]. After surgical removal, the prostate was fixed in a specific 3D mold

based on the MRI prostate contours, before sectioning into slices for histopathological ex-

amination using the exact same planes as acquired on the transversal MRI images. This

method solves mentioned plane angulation difficulties. However, correlation with multiple

imaging methods, such as US and MRI in this study, will be very difficult since all imaging

has to be acquired in the exact same planes.

Another solution for the mismatch between imaging and histology would involve the use

of 3D models. Using reconstructions of the imaging and histology into overlapping 3D

prostate models, cross-reference of suspicious lesions and histology slices in exact the same

ROI is possible. However, 3D reconstruction is difficult due to prostate deformation by

ultrasound probe, endorectal-coil usage, surgical removal and pathological preparation.
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During the last decade, single-modality MRI interpretation changed to multi-modality (mul-

tiparametric) interpretation, combining the best of anatomical and functional imaging.

Nowadays, anatomical and functional imaging of the prostate, using different US modali-

ties like greyscale, Doppler, (shear-wave) elastography and DCE-US, is possible. However,

literature on multiparametric US (mpUS) interpretation is scarce [39]. If the change from

single modality US to mpUS is made, this could potentially further improve detection and

localization of prostate cancer.

Many studies have been evaluating semi-quantitative and pharmacokinetic model parame-

ters in both DCE-US and mpMRI for discrimination between known malignant and benign

prostate regions [18–28]. This comparison is vital in identifying the most suitable parame-

ters for discriminating malignant from benign tissue. However, testing of these parameters

in the clinical workflow is essential to demonstrate their value for prostate cancer detection

and localization. This has only been evaluated by a few mpMRI studies, showing the poten-

tial additional value of quantitative analysis using hemodynamic parameters [27, 29, 30].

We show that semi-quantitative analysis can improve prostate cancer detection and local-

ization, for both DCE-US and mpMRI, when used together with qualitative interpretation.

However, in our experience (semi-)quantitative analyses have to undergo further develop-

ment before use without qualitative interpretations is useful.

7.5 Conclusion

In both DCE-US and mpMRI, semi-quantitative interpretation is a useful addition to qual-

itative interpretation for the detection and localization of prostate cancer. A significant

increase in sensitivity was seen for both imaging modalities, specificity decreases signifi-

cantly for the DCE-US analysis only.
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CHAPTER 8

Discussion and future prospects

In this Chapter, the results of this thesis are discussed, focusing both on the technical and on the clinical

aspects of the developed methods. Potential future developments in this field are also discussed.
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Nowadays, efficient care for prostate cancer, the most common form of cancer in Western

men [1, 2], is hampered by diagnostic limitations. In the current situation, many men

undergo systematic biopsies. This invasive and potentially painful procedure is often un-

necessary in retrospect [3, 4]. Moreover, because accurate cancer localization is currently

not feasible, treatment choices are often limited to radical treatments, such as a radical

prostatectomy, that carry significant risks of permanent side effects, such as impotence and

incontinence [5].

In this thesis, contrast-ultrasound dispersion imaging (CUDI) is proposed as a novel quanti-

tative imaging method to overcome the diagnostic limitations in prostate cancer care. This

method aims at detecting angiogenesis, in an effort to localize aggressive cases of prostate

cancer. Because the method is based on transrectal ultrasound (TRUS), it can potentially

be adopted at an early stage and it can possibly be applicable for accurate targeting of

biopsies and therapies.

Characterization of the ultrasound-contrast-agent (UCA) dispersion kinetics in the micro-

circulation is proposed to infer the underlying microvascular structure. To this end, the mi-

crovascular architecture is considered as a distributed network, similar to a porous medium.

Using this characterization, typical features observed in angiogenic microvascular struc-

tures, such as an increased microvascular density (MVD) and tortuosity, can be interpreted

in terms of the dispersion kinetics.

In all our studies, the presence of prostate cancer was associated with a relative decrease in

dispersion. More precisely, the observed ratio between perfusion and dispersion was higher

in cancer than in healthy tissue. This relative decrease in dispersion may perhaps result

from an increase in the microvessel tortuosity, which limits the dispersion distance in the

microvascular network. Alternatively, arteriovenous shunts may cause a relative increase in

perfusion with respect to dispersion. The precise effects of angiogenesis on the prostate

microcirculation were, however, not directly evaluated in the current work. It is recom-

mended that the effects of angiogenesis on UCA dispersion are investigated in more detail

in the future. For instance, a future validation could involve immunohistological analysis of

prostate cancer tissue, which would provide evidence regarding the microvascular architec-

ture. In this context, animal models could also play an important role. Preliminary results

of an ongoing animal study suggest angiogenic microvascular growth to be correlated with

dispersion [6]. In addition, dedicated in vitro experiments could be helpful for validation

of the effects of structural changes on UCA dispersion as observed by dynamic contrast-

enhanced (DCE-US) imaging [7, 8]. By measuring UCA dispersion in various microvascular

phantoms with known differences in characteristics, such as porosity or tortuosity, changes

in UCA dispersion could be better correlated with microvascular changes.

A calibration study was performed to enable analysis of the UCA transport kinetics by
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quantitative DCE-US imaging. In general, DCE-US image artifacts, which may for instance

result from nonlinear attenuation and microbubble disruption, may affect the reliability of

quantitative analysis [9–12]. As shown in Chapter 2, these artifacts are mitigated by using

low UCA concentrations and a low mechanical index (MI): within these constraints, the

observed backscattered acoustic intensity is approximately linearly related to the UCA con-

centration. Taking into account also the postprocessing implemented on the ultrasound

imaging system, the DCE-US image intensity can be interpreted in terms of the relative

UCA concentration after data linearization. As a result, time-intensity curves (TICs) ob-

tained by DCE-US imaging can be converted into indicator dilution curves (IDCs) that are

suitable for quantitative analysis of the UCA transport kinetics.

In the first dispersion analysis method, described in Chapter 2, IDCs obtained at all DCE-

US image pixels are analyzed individually. The local density random walk (LDRW) model,

which is an analytical solution of the convective dispersion equation, is adopted to describe

the first passage of an intravenously injected bolus through the prostate microcirculation.

A model modification is proposed to describe local UCA dispersion. The modification in-

volves a local boundary condition, in which the local spatial distribution of the UCA bolus is

approximated by a Normal distribution. As a result of this modification, a local, dispersion-

related parameter, κ, can be estimated by IDC curve-fitting. More precisely, κ represents

the local ratio between the squared convection velocity and the UCA dispersion coefficient.

By parametric curve-fitting of IDCs obtained at all DCE-US image pixels covering the

prostate, a parametric dispersion image based on κ can be obtained. A practical limitation

of the method concerns recirculation, i.e., subsequent passages of the UCA bolus through

the prostate. The effects of UCA recirculation are not described by the LDRW model,

as it only describes the first bolus passage. To prevent these effects from influencing the

dispersion analysis, the IDC time segment featuring recirculation effects is identified and

discarded from the analysis. The initial prostate cancer localization results obtained by κ

were superior to those obtained by semi-quantitative parameters based on IDC amplitude

and time features.

The generally low signal-to-noise ratio (SNR) in DCE-US image sequences poses another

challenge to the quantitative analysis from IDCs obtained at spatial scales close to the

pixel resolution. In order to deal with the multiplicative noise encountered in IDC analysis,

a dedicated parameter estimation algorithm is proposed in Chapter 3. This algorithm is

generally applicable in indicator dilution analysis for all models, such as the LDRW model,

that can be interpreted as the distribution of transit-times. The algorithm is based on the

interpretation of an IDC as the observed histogram of microbubble transit-times. Parame-

ter estimation is then performed by maximizing the likelihood of observing this histogram,

which can be solved partially analytically for several IDC models. A dedicated adaptation of



138

this algorithm is developed to deal with recirculation. The parameter estimation precision

of this algorithm was superior to that obtained by standard nonlinear least-squares (NLS)

methods, both in simulations and in experimental data.

An alternative method for dispersion quantification is described in Chapters 4, 5, and 6. In

this method, which circumvents many of the methodological limitations of the first method,

a complete spatiotemporal analysis is proposed. The spatial similarity among IDCs obtained

at neighboring pixels is considered as an indirect estimate for dispersion. This approach is

not restricted to the first passage of the bolus and is, therefore, less sensitive to artifacts

due to recirculation. Furthermore, contrary to commonly adopted semi-quantitative TIC

parameters based on amplitude and time features, the analysis of spatial similarity is inher-

ently local and normalized.

In a first implementation of this method, described in Chapter 4, the spectral coherence ρ is

adopted as a measure of IDC similarity. The resulting coherence analysis is independent of

UCA appearance time differences as the IDC phase information is discarded. At each pixel,

the average coherence is evaluated between the local pixel IDC and all surrounding IDCs

defined by a spatial kernel. An isotropic kernel, independent of the blood flow direction,

is adopted. The kernel size is based on the size of angiogenic microvascular structures.

Furthermore, IDCs at directly neighboring pixels, which would provide a high similarity

due to limitations in the spatial ultrasound image resolution, are excluded from the kernel.

The resulting kernel has a ring shape and contains all pixels at distances between 1.0 and

2.5 mm.

In Chapter 5, the relation between dispersion and coherence is evaluated in more detail. To

this end, the coherence between two IDCs represented by the LDRW model is investigated.

By showing that ρ is monotonically related to the average parameter κ, the formal rationale

for the spatial IDC coherence analysis is provided. In this chapter, several methodological

improvements are also described. A dedicated spatial filter, based on Wiener deconvolution,

is proposed for regularization of the anisotropic DCE-US speckle-grain size. By applying

this filter, the spatial similarity analysis is made insensitive to the intrinsic anisotropy in

DCE-US images. Additionally, the similarity analysis is restricted to the most informative

IDC time segment by time-windowing. As a result, IDC noise outside this segment can no

longer affect the similarity analysis.

The introduction of time-windowing provides temporal realignment, such that differences

in the IDC appearance times are compensated. As a result, a wider range of similarity

measures become available for the proposed spatiotemporal analysis. In Chapter 6, the

IDC correlation coefficient r is proposed as an alternative to the coherence for spatial IDC

similarity analysis. To this end, an analytical relation between κ and r is derived. In the

future, the use of alternative similarity measures could be investigated. For instance, non-
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linear measures based on the concept of information entropy, such as mutual information,

could be considered.

Overall, the best cancer localization results were obtained with the spatial similarity analysis.

This may be due to a number of reasons. A major factor could be the fact that the spatial

information is explicitly included in the spatial IDC similarity analysis. This information is

not exploited by the curve-fitting analysis or by conventional semi-quantitative approaches.

In addition, the spatial similarity analysis is less sensitive to UCA recirculation than the

curve-fitting analysis and it does not require curve-fitting. Furthermore, no assumptions

are required for the spatial similarity analysis in order to provide a local assessment. The

similarity analysis is also inherently normalized, facilitating the comparison of different para-

metric images.

To determine the clinical value of CUDI, the method is compared to multiparametric mag-

netic resonance imaging (mpMRI) in the clinical validation described in Chapter 7. Although

limited in its sample size, this is the first study in which the clinical utility of quantitative

DCE-US and mpMRI for prostate cancer localization is compared. For DCE-US, addition

of the quantification results by CUDI to the qualitative interpretation provided a significant

increase in sensitivity. The associated decrease in specificity was lower than the increase in

sensitivity in all comparisons. As compared to mpMRI, CUDI provided a higher sensitivity

and a slightly lower negative predictive value (NPV). These results establish the value of

CUDI for prostate cancer localization. More importantly, the value of CUDI is placed in

the context of several previously reported studies that were performed for mpMRI [13–15].

In subgroups of patients, mpMRI and CUDI may be combined to exploit both the high

specificity of mpMRI and the high sensitivity of CUDI.

The comparison between CUDI and histology is hampered by mismatches between the DCE-

US and histology planes. For this reason, the technical validation in Chapters 2 through

6 is restricted to large prostate cancers that were found across several histology planes.

The clinical validation described in Chapter 7 includes a less stringent comparison between

DCE-US and histology planes. In future research, more advanced methods are required to

increase the accuracy of the validation procedure. To this end, a dedicated registration

algorithm has been developed [16].

A limitation of the current CUDI implementation resides in the need for an expert to

interpret the obtained parametric images. A dedicated classification method for lesion

characterization would significantly simplify the adoption of CUDI into clinical practice. An

advanced classifier could, for instance, be based on different CUDI implementations and

also on patient characteristics, such as age and prostate-specific antigen (PSA) level.

In the future, a more extensive clinical validation is necessary before CUDI can be adopted

in clinical practice. To this end, a multi-center study has been initiated. Fig. 8.1 shows an
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Figure 8.1 CUDI result obtained at the Jeroen Bosch Hospital (’s-Hertogenbosch, The Nether-
lands) with an UltraView 800 imaging system (BK Medical, Herlev, Denmark). A
fundamental ultrasound image (a) is shown, as well as the corresponding CUDI image
(b), based on spatiotemporal correlation analysis as described in Chapter 6. Also
shown is the corresponding histology slice (c), obtained after radical prostatectomy.

example of a CUDI parametric image with histology, obtained at the Jeroen Bosch Hospital

in ’s-Hertogenbosch, The Netherlands, with an UltraView 800 imaging system (BK Medi-

cal, Herlev, Denmark). In this multi-center study, the parametric images obtained by CUDI

are compared to the corresponding histology, obtained after radical prostatectomy. The

sensitivity and specificity for cancer localization can be evaluated on a larger scale.

A more prospective evaluation of CUDI is necessary to determine the clinical benefit. The

main potential of prostate imaging methods, such as CUDI, is a significant reduction in the

morbidity of diagnostic and therapeutic methods. Diagnostic improvements could involve

better patient stratification and image-guided biopsies. To determine the additional value

of CUDI in these applications, patients referred for radical prostatectomy do not represent

the ideal study population. All of these patients are already known to have prostate cancer.

In diagnostic applications, however, CUDI would also be performed in healthy men. A more

suitable patient population could, for instance, be based on patients scheduled for system-

atic biopsies. The results obtained by CUDI may be compared with the pathology results

obtained from the systematic biopsies. If CUDI would provide a sufficiently high NPV for

cancer detection in this patient population, the method may be useful for additional patient

stratification prior to biopsies. In addition, the diagnostic yield of CUDI-targeted biopsies
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Figure 8.2 Prostate images obtained before (a-c) and approximately four weeks after focal irre-
versible electroporation (d-f). On the left (a,d), fundamental ultrasound images are
shown. The middle images (b,e) are DCE-US images obtained at approximately the
time of peak enhancement. On the right (c,f), CUDI images based on spatiotemporal
correlation analysis as described in Chapter 6 are shown. Whereas conventional TRUS
imaging does not show any effect of this treatment, the DCE-US image clearly shows
a lack of UCA microbubbles that is likely indicative of necrosis. On the CUDI image,
the observed correlation coefficient is approximately zero.

could be evaluated. Efficient biopsy targeting by CUDI would benefit from a direct imple-

mentation of the methodology on the ultrasound imaging system, which would make CUDI

available in quasi-real-time.

Imaging methods, such as CUDI, could also open up alternative treatment options, such

as focal therapy [17], which are currently not feasible due to diagnostic limitations [18].

For example, the value of CUDI for monitoring focal therapies, such as cryotherapy, high-

intensity focused ultrasound, or irreversible electroporation [19–21], could be investigated.

In a pilot study, the effects of irreversible electroporation therapy on the prostate have been

evaluated by CUDI, as shown in Fig. 8.2.

In the future, the introduction of three-dimensional DCE-US imaging may offer great ad-

vantages to CUDI. One of the major clinical limitations of the current method, i.e., the

image plane selection, would be resolved. Moreover, the entire prostate could be studied

with only a single bolus injection. This would speed up data acquisition protocols. Coupled

with dedicated registration methods, three-dimensional CUDI could improve targeting of

biopsies and therapies. On the technical side, three-dimensional dispersion analysis methods

could be developed by extending the existing spatial similarity analysis to three dimensions.

Additionally, three-dimensional DCE-US imaging would open up new possibilities for three-

dimensional analysis of UCA dispersion.
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The optimal clinical use of CUDI may involve a combination with alternative TRUS-based

imaging methods, such as elastography [22, 23]. By shear-wave elastograhpy (SWE), the

tissue stiffness can be quantified objectively and noninvasively [24]. Similar to mpMRI, a

combination of different physical quantities, such as dispersion and elasticity, may increase

the diagnostic reliability for prostate cancer localization. Since TRUS is routinely used for

prostate volume measurement and for systematic biopsy guidance, multiparametric ultra-

sound is better suited for prostate cancer localization than mpMRI if the diagnostic results

are comparable.

Another interesting development, which is expected to play an important role in this con-

text, concerns the introduction of targeted microbubbles for DCE-US imaging [25]. These

microbubbles are attracted to specific receptors that are typically observed in angiogene-

sis. As a result, some of the microbubbles will attach to these receptors and stop flowing

through the vascular architecture, which can be detected by available DCE-US imaging

techniques. In this field, ongoing research is focused on increasing the binding efficiency

using the acoustic radiation force [26] and on investigating the acoustic behavior of bound

microbubbles, potentially leading to specialized pulse schemes for detection of bound mi-

crobubbles [27].

In conclusion, contrast-ultrasound dispersion imaging is proposed and developed using sev-

eral different implementations. The promising results obtained for prostate cancer localiza-

tion motivate towards a more extensive validation. Future applications of CUDI could po-

tentially involve patient stratification, biopsy targeting, focal therapy guidance and therapy

monitoring. Furthermore, three-dimensional CUDI could be developed and the use of CUDI

in different imaging modalities and different forms of cancer could be evaluated.
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