
 

Prefix orders as a general model of dynamics

Citation for published version (APA):
Cuijpers, P. J. L. (2013). Prefix orders as a general model of dynamics. (Computer science reports; Vol. 1309).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/60890935-3565-4035-80c2-1bbba1b3c29f


Technische Universiteit Eindhoven 
 Department of Mathematics and Computer Science 
 
 
 
 
 
 

 
Prefix Orders as a General Model of Dynamics  

  
 
 
 
 
 
 
 

P.J.L. Cuijpers 
 
 

 
 
 
 
 
 
 

13/09 
 
 
 
 
 

ISSN 0926-4515 
 
All rights reserved 
editors:  prof.dr. P.M.E. De Bra 

 prof.dr.ir. J.J. van Wijk 
 
 
 
 
Reports are available at: 
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Author&level=1 and 
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1 

 
 
 
 
 

Computer Science Reports 13-09 
Eindhoven, December 2013 



Prefix Orders as a General Model of Dynamics

P.J.L. Cuijpers

December 20, 2013

Abstract

In this report we formalize and study the notion of prefix order on the
executions of general dynamical systems and use basic category theory
to show that appropriate structure preserving maps between such orders
lead to the well-known notions of bisimulation, refinement, product, and
union of behavior, without relying on a notion of ’next state’. Thus these
notions are generalized to apply to arbitrary dynamical systems, including
continuous and hybrid systems 1.

1 Introduction

When confronted with a new type of dynamical system, one of the the first
questions that arises is: ”how does this system behave?” Also, any book that
studies the dynamics of a computational system, a control system, a physical
system, a biological system, etc., starts by defining in some way ”what the
executions of such a system look like.” As an example, in automata and process
theory, executions are described as runs over a transition system [1], while in
control theory, executions are usually functions of time to some variable-space
[10]. In hybrid and cyber-physical systems theory, these two notions have been
combined by defining time as a mix of continuous and discrete steps [4].

The notion of ‘a set of executions’ appears to be crucial in the study of dy-
namical systems, and while executions are often defined as functions of time,
there is still much debate on what an appropriate notion of ‘time’ is. For this
reason, we would like to characterize the essential properties of a set of execu-
tions without considering the notion of time. Admittedly, the word ‘essential’
here is biased towards process theory, for in this paper the notion of execution
of a dynamical system is generalised in such a way that computer-science no-
tions like implementation, refinement, specification, parallel composition and
branching bisimulation are still defined in a natural way.

Using category theory as a compass, we start by formally defining our ’ob-
ject of study’ in the next section. We give axioms that characterize the idea of a
‘prefix order’ on executions, and use this idea as a basis throughout the remain-
der of the paper. In the subsequent sections, we propose different ‘structure

1This report is an elaboration of the work presented at the DCM 2013 conference in Buenos
Aires [3].

1



preserving maps’ to characterize the different notions from computer science
mentioned above. We start by considering refinements, or history preserving
maps, and show the rich mathematical structure that arises from them. Then
we descent to the substructure of future preserving refinements and show the re-
lation with branching bisimulation equivalence as we know it from concurrency
theory.

In this paper, we only develop a very basic theory of dynamics. Admittedly,
this may raise more questions than it answers, and many possible continua-
tions for research impose themselves immediately. In the concluding section,
we sketch a number of directions for future research in which we expect the
proposed generalization to be useful.

2 Prefix Orders

In [9, 5] the notion of branching bisimulation is studied on runs over a transition
system, rather than on the transition systems themselves. The authors show
that after unfolding a transition system into its set of executions, branching
bisimulation can be characterized using forward- and backward- bisimulation
relations. It was observed in [5] that the resulting definition of bisimulation
only uses the notion of ‘prefix’ on the runs, rather than requiring a notion of
‘silent-steps followed by a single observable step’. This observation becomes
important when developing a notion of bisimulation that works for arbitrary
types of execution, such as continuous execution, in which a notion of ’next
step’ does not always exist. Moreover, the subsequent sections show that just
capturing the notion of prefix order on executions in an order theoretic fashion
already gives us a very flexible general model of dynamics.

In literature, the notion of ‘prefix’ is often defined using some notion of time.
An execution is then defined as a function e : [0, t]→ X from some interval [0, t]
over time to a set X, and another execution f : [0, t′] → X is a prefix of e if
t′ ≤ t and for all τ ∈ [0, t′] it holds that e(τ) = f(τ). This notion of prefixing
leads to an order relation on executions, which on closer inspection satisfies the
following axioms.

Definition 1 (Prefix order) A prefix order 〈U,�〉 consists of a set of execu-
tions U and a prefix relation � ⊆ U× U that is:

• reflexive: ∀a∈U a � a;

• transitive: ∀a,b∈U a � b ∧ b � c ⇒ a � c;

• anti-symmetric: ∀a,b∈U a � b ∧ b � a ⇒ a = b;

• downward total: ∀a,b,c∈U (a � c ∧ b � c) ⇒ (a � b ∨ b � a);

In this definition, only downward totality is special; the other three require-
ments simply say that prefixing is a partial order. Downward totality means
that, although the future of a system may be branching from a given point of

2



execution, the past is always totally ordered. In [6], this is called the perfect
recall property of executions: at any point of execution the complete history of
the system so far is remembered. Another way of looking at it, is saying that the
set of executions behaves like a tree structure [7], except that it may be dense
(in continuous systems there is no ’next’ point of execution), there may be no
root (in some systems history is infinite), and there may be multiple trees next
to each other (for example because there are multiple initial states to consider).
Typical examples of prefix orders are, of course, total orders like the natural
numbers 〈N,≤〉 and the real numbers 〈R,≤〉. But also strings over an alphabet
A under their natural prefix order 〈A∗,�〉, and the aforementioned functions of
time.

Two important notions on a prefix order are the future and the history of
an execution.

Definition 2 (History and future) Given a prefix order 〈U,�〉 and an exe-
cution u ∈ U, the history and future of u are defined by

• history: u− , {v ∈ U | v � u};

• future: u+ , {v ∈ U | u � v}.

A map f : U→ V between two prefix orders is then

• order preserving if: ∀u,u′∈U u � u′ ⇒ f(u) � f(u′);

• history preserving if: ∀u∈U f(u−) = f(u)−;

• future preserving if: ∀u∈U f(u+) = f(u)+;

with the obvious lifting f(A) , {f(a) | a ∈ A} of f to subsets A ⊆ U.

Incidentally, the well-known idea of ‘computation trees’ as executions (see e.g.
[9, 5]) is obtained by studying only prefix orders in which each history is a
finite set, while the idea of ‘initial states’ at which a system is turned on is
captured by studying only prefix orders in which each history has a minimum.
Furthermore, one might verify that any history or future preserving function
is an order preserving backward- or forward- simulation, respectively, and vice
versa.

Lemma 1 (Order preservation) Every history preserving function f : U →
V is order preserving, and so is every future preserving function.

Proof Let f be history preserving, and let u, u′ ∈ U such that u � u′.
Then u ∈ (u′)−, and so f(u) ∈ f((u′)−). By history preservation f((u′)−) =
f(u′)−, so f(u) ∈ f(u′)−, from which we conclude f(u) � f(u′). The proof for
future preserving functions is dual to this. �

Lemma 2 (Simulation) An order preserving function f : U → V is history
preserving if and only if for every u ∈ U and v ∈ V with v � f(u) there exists a
u′ � u such that f(u′) = v. Similarly, it is future preserving if and only if for
every u ∈ U and v ∈ V with f(u) � v there exists a u � u′ such that f(u′) = v.

3



Proof Let f be history preserving with v � f(u), then v ∈ f(u)− = f(u−).
So there is a u′ ∈ u− such that f(u′) = v, and by construction u′ � u. Reversely,
suppose that f is order preserving and that the condition in the lemma holds.
Then for any u consider the sets f(u−) and f(u)−. By order preservation we
have f(u−) ⊆ f(u)−. Furthermore, for any v ∈ f(u)− we know v � f(u), and
so by assumption there exists a u′ � u with f(u′) = v, and more importantly,
u′ ∈ u− so v ∈ f(u−), thus f(u)− ⊆ f(u−), and therefore f(u)− = f(u)−. The
proof for future preserving functions is again dual to this. �

3 Refinements as history preserving maps

In this section, we study the category of prefix orders with history preserving
maps as morphisms, henceforth referred to as Pfx− . History preserving maps
reflect the property of downward totality, and as such put more emphasis pre-
serving the past than on preserving the future. Even more strongly, the next
theorem shows that the history of an execution in fact contains all information
about that execution.

Theorem 1 (Histories) Any prefix order 〈U,�〉 is isomorphic to its set of
histories 〈U−,⊆〉 under the subset relation, where U− = {u− | u ∈ U}.

Proof It is easy to verify that 〈U−,⊆〉 is indeed a prefix order, provided
that U is a prefix order to start with. Furthermore, every element H ∈ U− is a
subset of U and, by construction, contains a maximum h ∈ H in the ordering
on U. It is also easy to verify that taking this maximum gives us a bijection
max : U− → U that is history preserving, hence by the previous lemma is an
isomorphism. �

In itself, this already justifies the study of prefix orders and history preserv-
ing maps as a category. But further justification can be found in the observation
that a history preserving map f : U→ V models how each execution of U maps
to a (more abstract) execution in V. At every point of execution in U, f tells
you exactly where the system is in V, thus showing how U is a refined version
of the behavior in V. History preserving maps are suitable to describe arbitrary
implementations of a given abstract description. As we will see later, surjec-
tive history and future preserving maps describe correct refinements, in which
all abstract behavior is reflected in the implementation. In such a setting, the
abstract behavior may be considered to be a specification. In the category of
history preserving maps, notions like parallel composition, disjoint union, prefix
closed subsets, arise naturally. The category of surjective history and future pre-
serving maps turns out to be useful for understanding the notion of branching
bisimulation equivalence on general dynamical systems.

4



3.1 Parallel composition

In category theory, a product of two objects is usually an object that represents
an arbitrary, or least-assuming, relation between the original two. In the cate-
gory Pfx− , the product of two prefix orders U and V turns out to be the parallel
composition U ‖ V, consisting of all synchronous and asynchronous interleavings
of the executions of U and V.

Ui . . . Uj

P
πj-

� π
i

V

u
6 f j

-

�
f
i

Figure 1: Product

Ui . . . Uj

P �
ιjιi-

V

u
?�

f j

f
i

-

Figure 2: Co-product

Definition 3 (Product) In category theory, a product of a family of objects
{Ui | i ∈ I} is an object P together with a family of morphisms {πi : P →
U | i ∈ I} (called projections), such that for any other object S and family
{fi : S → U | i ∈ I} there exists a unique morphism u : S → P such that
πi · u = fi for all i ∈ I (i.e. there is a unique u such that the diagram in figure
1 commutes for all i and j).

It is well-known from category theory that if a product exists it is unique
upto isomorphism, which means that from now on we will often refer to it as
the product [8].

Definition 4 (Parallel composition) Given a family of prefix orders {〈Ui,�i
〉 | i ∈ I} a joint execution is a set of tuples H ⊆

∏
i∈I Ui, modeling a history of

concurrent points of execution (synchronous as well as interleaving), such that
∃h∈H∀i∈I Hi = h−i and ∀h,g∈H (∀i∈I hi �i gi)∨(∀i∈I gi �i hi). (Here

∏
denotes

the usual Cartesian product on sets, hi denotes the i’th element in a tuple h,
and Hi = {hi | h ∈ H} lifts this to sets of tuples.)

The parallel composition of this family, is the set ‖i∈I Ui of all joint exe-
cutions, ordered by the relation v, defined for all G,H ∈‖i∈I Ui by G v H ⇔
G ⊆ H ∧ ∀h∈H∀g∈G(∀i∈I hi �i gi) ⇒ (h ∈ G). Together with the parallel
composition, the family {πi : (‖j∈I Uj) → Ui} of canonic projections is given
by πi(H) = max(Hi) for every i ∈ I and H ∈‖j∈I Uj.

Lemma 3 For all G,H ∈‖i∈I Ui we find G v H ⇔ ∃h∈H G = {g ∈ H |
∀i∈I g(i) � h(i)}

Proof The if-case follows from the maximum of G, using which we obtain
an h ∈ G, hence h ∈ H, such that G(i) = h(i)−, so for all g ∈ G we have

5



g(i) � h(i). From now on, we denote this element h by maxH, since it has
the character of a maximum after projection. The only if case is proven easily
by taking h ∈ H and g ∈ G and observing that h(i) � g(i) for all i implies
h(i) � (maxG)(i) hence h ∈ G. �

Theorem 2 The categorical product of a family of prefix orders is its parallel
composition.

Proof First we easily verify thatv is reflexive, transitive and anti-symmetric.
So the parallel composition is prefix ordered provided that v is also downward
total. Take F,G,H ∈‖i∈I Ui and assume F v H and G v H. If F ⊆ G then it
is easy to verify that F v G, and similarly, for G ⊆ F we find G v F . Finally,
we obtain a contradiction when we assume F 6⊆ G and G 6⊆ F . Take g ∈ G
and f ∈ F such that g 6∈ F and f 6∈ G. Combining g 6∈ F and F v G gives us
g(i) � f(i) for all i ∈ I, but combining f 6∈ G with G v F gives us f(i) � g(i)
for all i ∈ I. From this we conclude f(i) = g(i) using antisymmetry of �, and
finally the contradiction f = g while f 6∈ G and g ∈ G.

Next, we verify that the canonic projections πi are history preserving. To
see this, we use the previous lemma to observe that πi(H

−) = {(maxG)(i) |
G v H} = {g(i) | g ∈ H} = H(i) = max(H(i))− = πi(H)−.

Finally, we verify that the canonic projections indeed provide a categorical
product. For this, consider a family {fi : P → Ui} of history preserving maps.
We must now prove that there exists a unique map u : P→ (‖j∈I Uj) such that
fi(p) = πi(u(p)) for all i ∈ I and p ∈ P.

As a candidate, define u(p) = {h ∈
∏
i∈I Ui ∈| ∃t�p∀i∈I h(i) = fi(t)}, and

use the fact that all fi are history preserving to verify that this function returns
a joint execution for each p ∈ P and is indeed history preserving itself. By
construction fi(p) = πi(u(p)).

To see that the choice of u is unique, consider any function v : P→ (‖j∈I Uj)
satisfying fi(p) = πi(v(p)) = πi(u(p)) for all p. Pick any p ∈ P, pick h ∈ v(p)
and consider the prefix h− ∩ v(p) v v(p). By history preservation, there ex-
ists a t � p such that v(t) = h− ∩ v(p). Furthermore, this prefix has h as
maximum, so πi(v(t)) = h(i) = fi(t) for all i ∈ I. By construction of u we
find h ∈ u(p), hence v(p) ⊆ u(p). Reversely, pick h ∈ u(p) and consider the
prefix h− ∩ u(p) v u(p). By history preservation, we find t � p such that
u(t) = h− ∩ u(p), so πi(u(t)) = h(i) = fi(t) for all i ∈ I. Hence πi(v(t)) = h(i)
for all i ∈ I, hence h ∈ v(t). Since t � p, we find by order preservation
v(t) v v(p), which implies v(t) ⊆ v(p). We conclude h ∈ v(p) and finally,
u(p) ⊆ v(p). Hence u(p) = v(p) for all p ∈ P. �

The reader should be aware that, even though the parallel composition of
prefix orders gives us the expected synchronous and asynchronous executions
of computational and other familiar dynamical systems, there are pathological
prefix orders of which the product is rather surprising. As an example, consider
the set −Ω of ordinal numbers in reversed order, upto (but not including) the

6



first uncountable ordinal. Furthermore, consider the set −N of natural numbers
in reversed order. Obviously, both −Ω and −N do not have a minimum. Fur-
thermore, it is well known from topology that any Ω is a (countably) compact
space (see e.g. [12, p.69 ex43.8]), so any sequence in −Ω has a limit in −Ω, which
means that for any order preserving function f : −N → −Ω there is a o ∈ −Ω
with o � f(n) for all n ∈ N. From this we conclude that there is no n ∈ N with
f(n) � o− 1. As a result, −Ω and −N cannot have a joint execution, so, rather
surprisingly, their parallel composition returns the empty set: −Ω ‖ −N = ∅.
How to avoid these examples is a topic of ongoing research. The answer might
be sought in fixing a common generating total order (a time-base so-to-speak)
before composing two prefix orders.

3.2 Alternative composition

Dual to the product, a co-product of two objects is usually an object that
represents an arbitrary union of the original two. It is most restricting, in
the sense that it assumes the objects to have no interaction with each other
whatsoever. In the category Pfx− , the co-product of two prefix orders U and
V is called the alternative composition, and is simply obtained by taking the
disjoint union U ] V of all executions.

Definition 5 (Co-product) In category theory, a co-product of a family of
objects {Ui | i ∈ I} is an object P together with a family of morphisms {ιi :
U → P | i ∈ I} (called insertions), such that for any other object S and family
{fi : U → S | i ∈ I} there exists a unique morphism u : P → S such that
u · ιi = fi for all i ∈ I (i.e. there is a unique u such that the diagram in figure
2 commutes for all i and j).

Definition 6 (Alternative composition) Given a family {〈Ui,�i〉 | i ∈ I}
of prefix orders, the alternative composition or disjoint union is the disjoint
union on sets:

⊎
i∈I Ui = {(i, u) | i ∈ I ∧ u ∈ Ui}. This set is ordered by the

relation v, defined by (i, u) v (j, v) ⇔ i = j ∧ u � v, and equipped with a
family {ιi : Ui →

⊎
j∈I Uj} of canonic insertions given by ιi(u) = (i, u) for all

i ∈ I and u ∈ Ui.

Theorem 3 The categorical co-product of a family of prefix orders is its alter-
native composition.

Proof To verify that
⊎
i∈I Ui is prefix ordered and that its canonic in-

sertions are history preserving is trivial. Furthermore, if we consider a family
{fi : Ui → P} of history preserving maps, it is straightforward to verify that
u(i, xi) = fi(xi) defines a unique history preserving map u :

⊎
i∈I Ui → P such

that u(ιi(xi)) = fi(xi) for all i ∈ I and xi ∈ Ui. Therefore, the disjoint union
is a categorical co-product. �

7



3.3 Subobjects

In category theory, the notion of monomorphism is often used to model that
one object is a subobject of another. In the category Pfx− subobjects turn
out to be isomorphic to the prefix-closed subsets of a prefix order. We show
this by proving that every prefix-closed subset has a natural monomorphism
associated with it, and that every source of a monomorphism is isomorphic to
a prefix-closed subset.

T
g-

h
- U ⊂

f- V

Figure 3: Monomorphism

T �
g

�
h

V ��
f

U

Figure 4: Epimorphism

Definition 7 (Monomorphism) In category theory, a morphism f : U → V
is called a monomorphism, denoted with a hooked arrow, and is a witness for U
being a subobject of V, if for every two morphisms g, h : T→ U in that category
we have f · g = f · h ⇒ g = h. I.e. the diagram in figure 3 only commutes
when g = h.

Definition 8 (Prefix-closed subset) Given a prefix order {〈U,�} a subset
X ⊆ U is prefix-closed if for all x ∈ X we find x− ⊆ X.

Theorem 4 A history preserving map is a monomorphism if and only if it is
an injection.

Proof From set theory we know that any injective function is a monomor-
phism, and that monomorphisms carry over to subcategories. So any injective
history preserving map is a monomorphism.

For the reverse direction, assume that f is a monomorphism, and pick
x, y ∈ X such that f(x) = f(y). Firstly, if x � y, then take Z = y−, take
h(t) = t for all t ∈ T, and take g(t) = t for t � x while g(t) = x for x � t. By
construction f ◦h = f ◦ g, so by monicity h = g, and therefore x = y. From this
we conclude that if f(x) = f(y), then x and y are not related by �. Secondly,
now that we have established that any u and v for which f(u) = f(v) are un-
related, we construct the set T = {(u, v) | u ≤ x ∧ v ≤ y ∧ f(u) = f(v)},
order it by (u, v) v (u′, v′) ⇔ u ≤ u′ ∧ v ≤ v′, and construct two func-
tions h, g : T → U defined as h(u, v) = u and g(u, v) = v. We verify that
〈T,v〉 is indeed a prefix order as follows. That it is a partial order is trivial,
but that it is downward total is not. For this, consider (u, v) v (u′′, v′′) and
(u′, v′) v (u′′, v′′) while (u, v) and (u′, v′) are unrelated. This leaves us with
two possibilities, namely u � u′ and v′ � v, or u′ � u and v � v′. But we
also know that f(u) = f(v) and f(u′) = f(v′), so by order preservation either
f(u) � f(u′) = f(v′) � f(v) = f(u) or f(u′) � f(u) = f(v) � f(v′) = f(u′)

8



from which we conclude f(u) = f(u′) and similarly f(v) = f(v′). We use
the first observation to conclude u = u′ and v = v′, thus (u, v) = (u′, v′),
contradicting the assumption that (u, v) and (u′, v′) were unrelated. Finally, by
construction the functions g and h are history preserving and satisfy g◦f = h◦f ,
so g = h and in particular x = h(x, y) = g(x, y) = y, from which we conclude
that f is an injection. �

Accidentally, the reader may also verify that (in contrast to the category of
partial orders) monomorphisms are exactly the embeddings, i.e. those functions
f satisfying x � y ⇔ f(x) � f(y) for all x and y. Next, we show that
subobjects are exactly the prefix-closed subsets.

Theorem 5 Every morphism f : U → V selects a prefix-closed subset f(U) =
{f(u) | u ∈ U}.

Proof This follows directly from lemma 2. �

Theorem 6 Given a prefix-closed subset, U ⊆ V, the natural injection ι : U→
V defined by ι(u) = u is a monomorphism.

Proof Trivial. �

Theorem 7 Given monomorphisms f : U → V and g : W → V such that
f(U) = g(W), there exists an isomorphism h : U→W such that g ◦ h = f .

Proof As g and f are injections and f(U) = g(W), we find for every
u ∈ U a unique w ∈ W such f(u) = g(w). Picking h(u) = w it is straight-
forward to verify that this function is a bijection by construction, and history
preserving because f and g are history preserving, hence it is an isomorphism. �

3.4 Quotients

The dual of a monomorphism is an epimorphism. Epimorphisms are often used
to model that one object is a quotient of another. In the category Pfx− quotients
turn out to be isomorphic to the equivalence classes of a particular kind of
backward bisimulation relations, which we will call order contracting backward
bisimulation equivalences.

Definition 9 (Epimorphism) In category theory, a morphism f : U → V is
called an epimorphism, denoted with a double arrow, and is a witness for V
being a quotient of U, if for every two morphisms g, h : V→ T in that category
we find g · f = h · f ⇒ g = h. I.e. the diagram in figure 4 only commutes
when g = h.

9



Definition 10 (Order contracting backward bisimulation equivalence)
Given a prefix order U, a relation ∼ ⊆ U× U is a backward bisimulation if:

• ∀u,v,u′∈U u ∼ v ∧ u′ � u ⇒ ∃v′∈U v′ � v ∧ u′ ∼ v′; and

• ∀u,v,v′∈U u ∼ v ∧ v′ � v ⇒ ∃u′∈U u′ � u ∧ u′ ∼ v′.

Furthermore, a relation is an equivalence if:

• ∀u∈U u ∼ u; and

• ∀u,v∈U u ∼ v ⇒ v ∼ u; and

• ∀u,v,w∈U u ∼ v ∧ v ∼ w ⇒ u ∼ w.

Given an equivalence ∼, we write [u]∼ = {v ∈ U | u ∼ v} for the equivalence
class of u ∈ U.
An equivalence relation is order contracting if

• ∀u,v,w,x∈U u � v ∧ v ∼ w ∧ w � x ∧ x ∼ u ⇒ u ∼ v.

Theorem 8 A history preserving map is an epimorphism if and only if it is a
surjection.

Proof Assume that f is a surjective morphism and take g, h : V → T
with g 6= h, then there exists a v ∈ V with g(v) 6= h(v). Surjection gives us a
u ∈ U with f(u) = v so g(f(u)) 6= h(f(u)), from which we conclude that f is
an epimorphism.
Reversely, assume that f is an epimorphism but not surjective. We show this
leads to a contradiction by picking any v ∈ V for which there is no u ∈ U
with f(u) = v. Observe that lemma 2 now ensures that there is also no u ∈ U
with f(u) ∈ v+, since every history of v+ goes through v. (This is a crucial
observation. In comparison, in the category Pfx+ surjection is not a necessary
condition for an epimorphism and also in the category of partial orders it is
not.) If v is minimal we construct g, h : V → {a, b}, with a and b unordered,
by defining g(w) = a for all w ∈ V while h(w) = a for any w 6= v and h(v) = b.
It is easily verified that g and h are history preserving, and by construction
g · f = g · h, which contradicts the assumption that f is an epimorphism. Simi-
larly, if v is not minimal we construct g, h : V→ {0, 1} by defining g(w) = 0 for
all w ∈ V while h(w) = 0 for any w 6∈ v+ and h(w) = 1 for w ∈ v+. Again it is
easily verified that g is history preserving. To see that h is history preserving
we observe that h(w−) = {0} = 0− for any w 6∈ v+. Furthermore, if w ∈ v+
then we use the fact that v is not minimal to find a w′ ≺ v with (by antisym-
metry) w′ 6∈ v+ to conclude h(w−) = {0, 1} = 1− = h(w)−. By construction
we get g · f = g · h, which once more contradicts the assumption that f is an
epimorphism. �

Theorem 9 Every morphism f : U→ V defines an order contracting backward
bisimulation equivalence on U given by u ∼f u′ ⇔ f(u) = f(u′).

10



Proof It is easy to see that ∼f is an equivalence, and that it is a back-
ward bisimulation follows straightforwardly from lemma 2. Finally, assume
u ∼f u′ � u′′ ∼f u′′′ � u, then by order preservation f(u) = f(u′) � f(u′′) =
f(u′′′) � f(u), and by anti-symmetry, f(u) = f(u′′), so u ∼f u′′. Therefore ∼f
is order contracting. �

Theorem 10 Given an order contracting backward bisimulation equivalence ∼
on U, the projection [ ]∼ : U→ U/ ∼ of executions onto their equivalence classes
is an epimorphism.

Proof Let U/ ∼ denote the set of equivalence classes of∼, and letv denote
the ordering on equivalence classes defined by [u]∼ v [u′]∼ iff ∃w,w′∈Uu ∼ w �
w′ ∼ u′. We will prove that v is a prefix order, and that the projection [ ] is an
epimorphism.

Firstly, observe that u ∼ u � u ∼ u, so [u]∼ v [u]∼, so v is reflexive.
Secondly, assume [u]∼ v [u′]∼ and [u′]∼ v [u′′]∼, then there exist w,w′, w′′, w′′′

such that u ∼ w � w′ ∼ u′ ∼ w′′ � w′′′ ∼ u′′. By transitivity and backward
bisimulation of ∼ we find a v′ such that u ∼ v′ and v′ � w′′ � w′′′, so u ∼
v′ � w′′′ ∼ u′′, from which we conclude that [u]∼ v [u′′]∼, hence v is transitive.
Thirdly, assume [u]∼ v [u′]∼ and [u′]∼ v [u]∼, then there exist w,w′, w′′, w′′′

such that u ∼ w � w′ ∼ u′ ∼ w′′ � w′′′ ∼ u. By transitivity and backward
bisimulation we find a v′ and v′′ such that u ∼ v′ � u′ ∼ v′′ � u, and by order
contraction we find u ∼ u′, hence [u]∼ = [u′]∼, hence v is anti-symmetric.
Fourthly, assume [u]∼ v [u′]∼ and [u′′]∼ v [u]∼, then there exist w,w′, w′′, w′′′

such that u ∼ w � w′ ∼ u′ and u′′ ∼ w′′ � w′′′ ∼ u′. Using backward
bisimulation we find v′ and v′′ such that u ∼ v′ � u′ and u′′ ∼ v′′ � u′. Using
downward totality we derive v′ � v′′ or v′′ � v′. Hence u ∼ v′ � v′′ ∼ u′′ or
u′′ ∼ v′′ � v′ ∼ u, from which we conclude [u]∼ v [u′′]∼ or [u′′]∼ v [u]∼, from
which we conclude that v is downward total.

Finally, the projection [ ] is surjective by construction. Also by construction,
if u � u′ then [u]∼ v [u′]∼, so it is order preserving. Finally, if [u]∼ v [u′]∼ then
there exists w,w′ such that u ∼ w � w′ ∼ u′, and by backward bisimulation of
∼ we find an element v such that u ∼ v � u′, so there exists a v � u′ such that
[v]∼ = [u]∼, and by lemma 2, the projection is history preserving. From this we
conclude that it is an epimorphism. �

Theorem 11 Given epimorphisms f : U → V and g : U → W such that
∼f = ∼g, there exists an isomorphism h : V→W such that h ◦ f = g.

Proof Consider the epimorphism f : U → V, and let U/ ∼f denote the
set of equivalence classes of ∼f . Next, verify that U/ ∼f is prefix ordered if
we define [u]∼f

v [u′]∼f
iff ∃w,w′∈Uu ∼f w � w′ ∼f u′. Furthermore, since

the elements of each equivalence class coincide on f , we can lift this map to
f ′ : U/ ∼f→ V by stating f ′([u]) = f(u). This map is an injection by con-
struction and a history preserving surjection because f is an epimorphism. In

11



Pfx− every bijective morphism is an isomorphism, and so is f . Finally, since
∼f=∼g, combining the isomorphisms f ′ : U/ ∼f→ V and g′ : U/ ∼g→ W
gives us an isomorphism g′ ◦ (f ′)−1 : V → W which by construction satisfies:
g′ ◦ (f ′)−1 ◦ f = g′ ◦ (f ′)−1 ◦ f ′ ◦ [ ] = g′ ◦ [ ] = g. �

3.5 Small limits and co-limits

Given that we no know how to construct arbitrary products, co-products, sub-
objects and quotients, we can continue to construct any limit or co-limit of a
commuting diagram as the subobject of a parallel composition, or the equiv-
alence classes of an alternative composition, respectively. This very general
construction will be of interest to those familiar with category theory, but not
so much to those interested in dynamical systems. Therefore, we just pose the
claim here and leave the details to the interested reader. Note that further-on
we use the limit construction to create push-outs and pull-backs when we discuss
the notion of branching bisimulation between prefix orders.

Definition 11 (Diagram) Given a category D with a set of objects (i.e. a so-
called small category), a diagram in Pfx− is a functor F : D →Pfx− that maps
the objects of D to prefix orders and the morphisms of D to history preserving
maps, such that F (f ◦ g) = F (f) ◦ F (g) for all morphisms in D.

Definition 12 (Diagram limits) Given a diagram F : D →Pfx− its limit
limF−−−→ is a prefix order with morphisms πd : limF−−−→→ F (d) for each object d ∈ D,

such that F (f) ◦ πd = πe for any morphism f : d → e in D, and furthermore,
for any prefix order V with morphisms π′d that satisfy this condition there is a
unique u : V→ U such that πd ◦ u = π′d for all d ∈ D.

Theorem 12 (Small limit theorem) Given a diagram F : D →Pfx− its limit
is given by the largest prefix-closed subset L ⊆‖d∈D F (d) such that H ∈ L ⇔
∀(f :d→e)∈D∀GvH F (f)(πF (d)(G)) = πF (e)(G).

Definition 13 (Diagram co-limits) Given a diagram F : D →Pfx− its co-
limit limF←−−− is a prefix order with morphisms ιd : F (d) → limF←−−− for each object

d ∈ D, such that ιe ◦ F (f) = ιd for any morphism f : d → e in D, and
furthermore, for any prefix order V with morphisms ι′d that satisfy this condition
there is a unique u : U→ V such that ι′d = u · ιd for all d ∈ D.

Theorem 13 (Small co-limit theorem) Given a diagram F : D →Pfx− its
co-limit is given by the smallest order contracting equivalence ∼ on

⊎
d∈D F (d)

such that ∀(f :d→e)∈D∀x∈F (d) ιF (e)(F (f)(x)) ∼ ιF (d)(x).

4 Bisimulation through history and future pre-
serving surjections

In this section, the previously mentioned result of [9, 5], capturing branching
bisimulation using futures and histories, is generalized to prefix orders. How-

12



ever, in contrast to [9, 5], we do not use a relational definition of branching
bisimulation here, but a more categorical definition using spans (as proposed by
[13]) and an alternative one using co-spans.

We first establish the fact that both these alternative definitions capture the
original notion of bisimulation on labeled transition systems. Next, we will show
that the definition using spans does in general not lead to an equivalence on
prefix orders, while the definition using co-spans does. Furthermore, the defi-
nition using co-spans turns out to be a congruence for the parallel composition
and alternative composition.

4.1 Bisimulation on labeled transition systems

Definition 14 (Labeled transition system) A labeled transition system is
a tuple 〈X,A, i,→〉, consisting of a set of states X, a set of observables A, an
initial state i ∈ A, and a transition relation →⊆ X × (A ∪ {τ}) × X with the

unobservable τ 6∈ A. Given a ∈ A ∪ {τ} I write x
a→ x′ for (x, a, x′) ∈→ and

x0
a
� xn+1 whenever there exists a sequence x0 . . . xn+1 such that xi

τ→ xi+1

for every i < n and xn
a→ xn+1.

Definition 15 (Run) A run over a labeled transition system 〈X,A, i,→〉 is a

sequence ρ ∈ ((A ∪ {τ})×X)∗ such that, if ρ is not empty, it holds that i
ρ1(0)→

ρ2(0) and ρ2(n)
ρ1(n+1)→ ρ2(n+ 1) for all n+ 1 ∈ dom(ρ). The set of all runs is

denoted R(→), is prefix ordered in the usual way, and is observed by a function
πA∗ : R(→) → A∗ defined recursively as πA∗(ε) = ε, πA∗(ρ · τ) = πA∗(ρ), and
πA∗(ρ · a) = πA∗(ρ) · a, for a ∈ A.

Definition 16 (Branching Bisimulation) Two labeled transition systems
〈X,A, i,→1〉 and 〈Y,A, j,→2〉 are branching bisimilar if there exists a relation
R ⊆ X × Y such that iR j and

• if xRy, and x
a→1 x′, then either a = τ and x′Ry, or there exist y′, y′′

such that y
τ
�2 y

′ and y′
a→2 y

′′ and xRy′ and x′Ry′′;

• if xRy, and y
a→2 y′, then either a = τ and xRy′, or there exist x′, x′′

such that x
τ
�1 x

′ and x′
a→1 x

′′ and x′Ry and x′′Ry′.

Theorem 14 Two labeled transition systems 〈X,A, i,→1〉 and 〈Y,A, j,→2〉 are
branching bisimilar if and only if there exists a prefix order 〈U,�〉 and a span
(f, g) of history and future preserving (surjective) maps f : U→ Runs(→1) and
g : U→ Runs(→2) such that πA∗(g(u)) = πA∗(f(u)) for every u ∈ U.

Proof To check one direction, assume a span of future and history pre-
serving surjections f : U → Runs(→1) and g : U → Runs(→2) such that
πA∗(g(u)) = πA∗(f(u)) for every u ∈ U. Then create the relation

xRy iff ∃u∈U πX(u) = x ∧ πY (u) = y,

13



where πX(u) denotes the mapping of the joint execution u to the current state
in 〈X,A, i,→1〉, and similarly for πY (u).

We now continue to prove that this is in fact a branching bisimulation re-
lation between 〈X,A, i,→1〉 and 〈Y,A, j,→2〉. To see this, note that history
preservation forces the minimum of U to map onto the empty strings over X
and Y , respectively, thus witnessing iRj.

Next, consider x, x′ ∈ X and y ∈ Y such that x
a→ x′ and xRy. By

construction, there exists a u ∈ U such that πX(u) = x and πY (u) = y, so
from u we can derive a run f(u) over X leading to x, and we can lengthen
this execution with an a-step to x′. Future preservation of f then gives us a
u � u′ such that f(u′) ends in x′ and πA∗(u

′) = πA∗(u) · a in case a 6= τ
and πA∗(u

′) = πA∗(u) otherwise. Furthermore observe that there are no points
in between f(u) and f(u′). From this, order preservation of g gives us a run
g(u) upto y and a run g(u′) to some further point y′′′ at which a has been

observed. Thus we know there exist y′ and y′′ such that y
τ
�2 y′, y′

a→2 y′′

and y′′
τ
�2 y′′′ (possibly y′ = y′′ if a = τ). By history preservation of g we

can then find uy′ and uy′′ such that g(uy′) gives the run upto y′ and g(uy′′)
gives the run upto y′′, and u � uy′ � uy′′ � u′. By order preservation, we find
f(u) � f(uy′) � f(uy′′) � f(u′), and because observations πA∗ are preserved
and there are no points between f(u) and f(u′) we find f(u) = f(uy′) and
f(uy′′) = f(u′) hence xRy′ and x′Ry′′. The proof is symmetric when starting

from a transition y
a→ y′.

To check the other direction, assume that there exists a bisimulation relation
R ⊆ X × Y between 〈X,A, i,→1〉 and 〈Y,A, j,→2〉. We can now use the
categorical product discussed further-on in this paper to create the parallel
composition of runs Runs(→1) ‖ Runs(→2), and from it select the subobject
that agrees on the bisimulation relation: U = {H ∈ Runs(→1) ‖ Runs(→2) |
∀H′vH πX(H ′)RπY (H ′)}.

This set is by construction prefix-closed, and using the canonical projections
of the product, it maps to Runs(→1) and Runs(→2) in the obvious history
preserving way.

In general these maps may not be surjective. However, in the particular case
of runs products can be proven to have surjective and future preserving canoni-
cal projections. We leave this to the reader to verify. Given that the projections
of the product are surjective and future preserving, it is straightforward to use
the definition of branching bisimulation to show that the projections from the
subobject U satisfy the conditions of lemma 2, and hence are future preserving
as well. Finally, because all initial states are mapped to, future preservation
implies surjection for those maps as well. �

In the previous section, we argued that history preserving maps model re-
finements of a specification. As a consequence, the above theorem may be inter-
preted as: two specifications are branching bisimilar if and only if they have a
common refinement. In other words, branching bisimulation is a way to define
that two specifications are ‘consistent’ with each other. But there is a second

14



alternative to defining bisimulation, which is by saying that two implementa-
tions are branching bisimilar if and only if they have a common specification.
That coincides with the following theorem.

Theorem 15 Two labeled transition systems 〈X,A, i,→1〉 and 〈Y,A, j,→2〉 are
branching bisimilar if and only if there exists a prefix order 〈U,�〉, a co-span
(f, g) of history and future preserving (surjective) maps f : Runs(→1)→ U and
g : Runs(→2)→ U, and a function πA∗ : U→ A∗, such that πA∗(x) = πA∗(f(x))
and πA∗(y) = πA∗(g(y)), for all x ∈ X and y ∈ Y .

Proof To check one direction, assume a co-span of future and history
preserving surjections f : Runs(→1) → U and g : Runs(→2) → U as in the
theorem and create the relation:
xRy iff ∃r∈Runs(→1),r′∈Runs(→2) πX(r) = x ∧ πY (r′) = y ∧ f(r) = g(r′).

We now continue to prove that this is in fact a branching bisimulation rela-
tion between 〈X,A, i,→1〉 and 〈Y,A, j,→2〉. For this, consider the empty run
ε over X. We have πX(ε) = i, and we know that f(ε) is a minimal element of
U. Furthermore, since g is surjective, there is a run over Y that maps to this
minimal element, and by history preservation, this run is minimal, hence it is
the empty run. So f(ε) = g(ε) and πX = i and πY = j, hence iRj.

Next, consider x, x′ ∈ X and y ∈ Y such that x
a→ x′ and xRy. By

construction of R we find that x is reachable by some run r and y is reachable
by some run r′ such that f(r) = g(r′). Furthermore, we can extend r with an
a-step to x′, thus forming a run r0 with r ≺ r0 and πA∗(r0) = πA∗(r)·a. Observe
that there are no points between r and r0, and by order preservation of f we find
g(r′) = f(r) � f(r0). Furthermore, by history preservation we find that there
are no points between f(r) and f(r0) either (since there are no points between r
and r0 that could map to these). Then, by future preservation of g there exists
a run r1 that extends r′ and observes a at a state y′′′. Deconstructing this run

gives us y′, y′′ with y
τ
�2 y′, y′

a→2 y′′ and y′′
τ
�2 y′′′ (possibly y′ = y′′ if

a = τ). Let ry′ , ry′′ be the runs upto these intermediate points respectively, then
order preservation of g, the fact that there are no points between g(r) and g(r1),
and preservation of the observation gives us g(r) = g(ry′) and g(ry′′) = g(r1),

and so xRy′ and x′Ry′′. The proof when starting from a transition y
a→ y′ is

symmetric to this.
To check the other direction, assume that there exists a bisimulation relation

R ⊆ X × Y between 〈X,A, i,→1〉 and 〈Y,A, j,→2〉. We now just construct the
quotient transition system 〈R, A, (i, j),→1,2〉. The runs of the original transi-
tion systems map to the runs of this quotient system in a natural way, which
upon closer inspection (using the properties of branching bisimulation relations)
turn out to be history and future preserving surjections. �

4.2 Bisimulation through spans versus co-spans

Comparing the proof-sketches of the two theorems in the previous section, one
may notice that the first relies on the notion of categorical product, while the

15



second one does not. Furthermore, we have previously seen that some products
of general prefix orders behave unexpectedly. Indeed, while the idea of using a
span or co-span of maps to define bisimulation coincides for labeled transition
systems, there are differences when we apply them to prefix orders in general.

Next, we show that on prefix orders the definition using co-spans is to be
preferred over the definition using spans, mainly because the latter does not
yield an equivalence in general. To see why this is so, we first have to define the
general notion of bisimulation using spans and co-spans more precisely.

Definition 17 A labeled prefix order 〈U,�, A, α〉 is a prefix order 〈U,�〉 to-
gether with a labeling function α : U→ A.

Definition 18 Two labeled prefix orders 〈U,�, A, α〉 and 〈V,�, A, β〉 are span
bisimilar, denoted α -s β, if there exists a prefix order 〈W,�〉 and future and
history preserving surjections u : W→ U and v : W→ V such that α◦u = β ◦v.

Definition 19 Two labeled prefix orders 〈U,�, A, α〉 and 〈V,�, A, β〉 are co-
span bisimilar, denoted α -c β, if there exists a third labeled prefix order 〈W,�
, A, γ〉 and future and history preserving surjections u : U→W and v : V→W
such that γ ◦ u = α and γ ◦ v = β.

To see why span bisimilarity is not an equivalence, we only need to label the
prefix orders −Ω and −N using a constant labeling α(ω) = 1 for all ω ∈ −Ω and
β(n) = 1 for all n ∈ −N. Recall from section 3.1 that the product of −Ω and −N
is the empty set, so the only span u : W→ −Ω and v : W→ −N that can exist
between the two (even without considering the labeling) has W = ∅. Obviously,
this span is not surjective, hence −Ω and −N are not bisimilar (−Ω 6-s −N). But
on the other hand, it is easy to verify that −Ω labeled as above is bisimilar to
the singleton prefix order labeled by 1, and −N is also bisimilar to 1 (witnessed
by the span of the identity and the only possible function from each of the prefix
orders to 1). From this we conclude that span bisimilarity -s is not transitive,
hence not an equivalence.

In the remainder of this section, we will focus on co-span bisimilarity, and
show that it is an equivalence and a congruence for parallel composition and
alternative composition.
Theorem 16 (Equivalence) The relation -c on labeled prefix orders is an
equivalence.

Proof That co-span bisimilarity is symmetric is trivial. To see that -c

is reflexive one only has to realize that the identity is a history and future pre-
serving surjection. To see that -c is transitive, assume labeled prefix orders
α : U1 → A, β : U2 → A and γ : U3 → A such that α -c β and β -c γ. Then
by definition there exist labeled prefix orders µ : X12 → A and ν : X23 → A
and future and history preserving surjections f : U1 → X12, g : U2 → X12,
h : U2 → X23, and i : U3 → X23, such that the solid arrows in the the diagram
in figure 5 commute. If we then determine the limit (also called pushout) of
the maps g and h in this diagram, we obtain the prefix order Y with maps

16



A

A

-

Y
κ6

A

�

A

-

X12

µ6
j-

A

-
�

X23

ν6
�k

A

�

U1

α6
f
--

U2

β6
h
--

��
g

U3

γ6
��
i

Figure 5: Co-span bisimulation is transitive. Unlabeled arrows represent iden-
tities.

j : X12 → Y and k : X23 → Y. Furthermore, Y is generated from an order
contracting backward bisimulation ∼ on X12 ] X23, and because g and h are
surjections every y ∈ Y represents an equivalence class in both X12 and X23, and
the maps i and j are surjective. All the elements in these equivalence classes
map to the same point in A, hence we obtain a labeling κ : Y→ A for which the
diagram commutes. Finally, pick x ∈ X12 and y ∈ Y such that j(x) v y. This
means that there exists x′, x′′ ∈ X12 such that x ∼ x′ � x′′ ∼ y. Backtracking
these points along g gives us u, u′, u′′ ∈ U such that g(u) = g(u′) and u′ � u′′.
Furthermore, because g is future preserving, we find u′′′ such that u � u′′′ and
g(u′′′) = g(u′′). By order preservation, this gives us x � g(u′′′) and using the
commuting diagram we find g(u′′′) ∼ u′′ ∼ y, so j(g(u′′′)) = y, from which we
conclude that j is future preserving. In a similar vein k is future preserving,
and so are f ◦ j and k ◦ i, thus witnessing α -c γ. �

Next, we lift the notion of parallel composition and alternative composition
to labeled prefix orders.

Definition 20 (Labeled compositions) Given two labeled prefix orders α :
U→ A, β : V→ B we define their parallel composition α ‖ β : U ‖W→ A×B
by (α × β)(H) = (α(π1(H)), β(π2(H))) for all H ∈ U ‖ V, and we define their
alternative composition α ] β : U ] V→ A ]B by (α ] β)(x) = α(x) for x ∈ U
and (α ] β)(x) = β(x) for x ∈ V.

It is easy to verify that α ‖ β and β ‖ α are isomorphic, hence bisimilar,
and so are α] β and β ]α. But more importantly, bisimulation using co-spans
turns out to be a congruence for these operators.

Theorem 17 (Congruence) Given three labeled prefix orders α : U → A,
β : V → A and γ : W → B such that α -c β, we find α ‖ γ -c β × γ and
α ] γ -c β ] γ.

Proof From the fact that α -c β we can construct κ : X→ A and future
and history preserving surjections f : U→ X and g : U→ X such that κ◦f = α

17



and κ ◦ g = β. Now we construct κ ‖ γ and define f ′ : U ‖ W → X ‖ W
and g′ : V ‖ W → X ‖ W by f ′(H) = {(f(u), w) | (u,w) ∈ H} and g′(H) =
{(g(v), w) | (v, w) ∈ H}. It is straightforward to verify that f ′ and g′ are history
and future preserving surjections, thus witnessing α ‖ γ -c β ‖ γ. Dually, we
define construct κ] γ and define f ′′ : U]W→ X]W and g′′ : V]W→ X]W
by f ′′(t) = f(t) if t ∈ U and f ′′(t) = t if t ∈ W, and g′′(t) = g(t) if t ∈ V and
g′′(t) = t if t ∈ W. Also for f ′′ and g′′ it is straightforward to verify that they
are history and future preserving surjections, witnessing α ] γ -c β ] γ. �

5 Discussion and concluding remarks

We have shown that dynamical systems can be modeled as a set of executions
under their natural prefix ordering, and that history preserving maps represent
the refinement of a specification, thus allowing refinements between various
types of dynamics in one unified framework. Furthermore, if refinements are
complete in the sense that all and only specified behavior is refined, then the
corresponding maps are surjective and future preserving.

One of the next steps, is to deal with structured operational semantics in
a categorical fashion. Is it possible to create maps from any operation defined
using structured operational semantics to the components it depends on? In
general, the composition of two systems does not lead to a refinement, so there
will not simply be a history preserving map. For example, the system X

⊎
Y

does not have natural maps back to X and Y. However, there are natural partial
history preserving maps from X

⊎
Y to X and Y. From the point of view of X,

the composition X
⊎
Y is a combination of refinement and specification. The

newly specified part is therefore undefined in the map to X, while the refinement
is mapped in a history preserving way. For the study of operational semantics
in a category theoretic way, I therefore expect that partial history preserving
maps may be helpful. A first exploration of using partial history preserving
maps can be found in [2].

Another possible step, is to add more structure to the notion of prefix or-
der, thus becoming less general but more applicable. Prefix orders really only
model the dynamical properties of a system. If one would like to study timing,
continuity, energy, or other properties, an observation map (like the one used in
section 4.2) is needed. Incidentally, the map used in section 4 is itself a history
preserving map, but other types of maps are conceivable as well. For example,
if π : U → Q and π : V → Q map the executions of two systems to some (par-
tially ordered) quantity Q, one could define that U is an over-approximation of
V if there is a history and future preserving surjection f : U → V such that
π(f(u)) ≤ π(u) for every u ∈ U. Furthermore, the idea of prefixing is intimately
coupled with the notion of concatenation, since prefixing is also often defined
as: x � z iff ∃y x · y = z. It seems therefore reasonable to also study which
semigroups 〈U, ·〉 admit a natural prefix order. Finally, one could also study
probabilistic systems by imposing a measure on the anti-chains of the prefix
order, or one could study continuous systems by making using of the natural in-

18



terval topology on prefix orders, and consider continuous maps between a prefix
order and some physical variable.

When the observations on a prefix order change, the notion of bisimulation
should change with it. Luckily, the definition of bisimulation through co-spans
is very flexible in this respect. What is a bit disturbing, is that the defini-
tion through spans does not yield an equivalence. This may upset the general
consensus in process algebra that any implementation can also be seen as a
specification and vice versa. In the field of coalgebra, it was already known
that there are alternative definitions of (strong) bisimulation that do not al-
ways coincide outside the domain of labeled transition systems (see e.g. [11]).
Part of the added value of this paper is that we can now also do it for branch-
ing bisimulation, and part of the value is that the interpretation of morphisms
as refinements gives us an explanation in ‘natural language’ of why the differ-
ence is there. If we consider specifications that have a common implementation
this does not yield an equivalence, because transitivity only occurs when three
equivalent systems also share a single common implementation. If we consider
implementations that have a common specification we do obtain an equivalence,
because two common implementations turn out to always allow a third, even
more abstract, implementation.

In conclusion, adding observations in order to study different types of dy-
namical systems is reminiscent of the definition of executions as functions of
time. Looking back, perhaps we did not succeed in eliminating the notion of
time from our modeling paradigm after all. In stead, we did perhaps succeed
in capturing, in an order theoretic way, the notion of a dynamical system as a
function of branching time.

Acknowledgements go to Harsh Beohar, Erik de Vink and Ruurd Kuiper
for their continuing and much appreciated support, and to MEALS for the
opportunity to travel to Buenos Aires.

References

[1] J.C.M. Baeten, T. Basten & M.A. Reniers (2010): Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge Tracts in Theo-
retical Computer Science, Cambridge University Press.

[2] P.J.L. Cuijpers (2013): The categorical limit of a sequence of dy-
namical systems. In: EXPRESS/SOS 2013, EPTCS 120, pp. 78–92,
doi:10.4204/EPTCS.120.7.

[3] P.J.L. Cuijpers (2013): Prefix Orders as a General Model of Dynamics. In:
DCM 2013, Pre-proceedings of the 9th international workshop on develop-
ments in computational models (DCM 2013)., pp. 25–29.

[4] J.M. Davoren & P. Tabuada (2007): On Simulations and Bisimulations of
General Flow Systems. In Alberto Bemporad, Antonio Bicchi & Giorgio
Buttazzo, editors: Hybrid Systems: Computation and Control, Lecture

19



Notes in Computer Science 4416, Springer Berlin Heidelberg, pp. 145–158,
doi:10.1007/978-3-540-71493-4 14.

[5] R.J. van Glabbeek (2001): Current Trends in Theoretical Computer Sci-
ence; Entering the 21st Century, chapter What is Branching Time Seman-
tics and Why to Use It?, pp. 469–479. World Scientific.

[6] J.Y. Halpern & K.R. O’Neill (2008): Secrecy in Multiagent Systems. ACM
Trans. Inf. Syst. Secur. 12, pp. 5:1–5:47, doi:10.1145/1410234.1410239.

[7] K. Kunen (1988): Set Theory: An Introduction to Independence Proofs,
third edition. Studies In Logic and the Foundations of Mathematics 102,
Elsevier Science B.V.

[8] S. MacLane (1971): Categories for the Working Mathematician. Springer-
Verlag.

[9] R. Nicola, U. Montanari & F. Vaandrager (1990): Back and forth
bisimulations. In J.C.M. Baeten & J.W. Klop, editors: CONCUR
’90 Theories of Concurrency: Unification and Extension, Lecture Notes
in Computer Science 458, Springer Berlin Heidelberg, pp. 152–165,
doi:10.1007/BFb0039058.

[10] J.W. Polderman & J.C. Willems (1998): Introduction to Mathematical Sys-
tems Theory: A Behavioural Approach. Texts in Applied Mathematics 26,
Springer-Verlag.

[11] S. Staton (2009): Relating Coalgebraic Notions of Bisimulation. In A. Kurz,
M. Lenisa & A. Tarlecki, editors: Algebra and Coalgebra in Computer Sci-
ence, Lecture Notes in Computer Science 5728, Springer Berlin Heidelberg,
pp. 191–205, doi:10.1007/978-3-642-03741-2 14.

[12] L.A. Steen & J.A. Seebach (1970): Counterexamples in topology.

[13] G. Winskel & M. Nielsen (1995): Handbook of logic in com-
puter science (vol. 4). chapter Models for concurrency, Ox-
ford University Press, Oxford, UK, pp. 1–148. Available at
http://portal.acm.org/citation.cfm?id=218623.218630.

20



Science Reports Department of Mathematics and Computer Science 
 Technische Universiteit Eindhoven 
 
If you want to receive reports, send an email to: wsinsan@tue.nl  (we cannot guarantee the availability of the 
requested reports). 
 
 
In this series appeared (from 2009): 
 
 
 
09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees 
 Peter Massuthe, Natalia Sidorova and 
 Jan Martijn van der Werf 
 
09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior 
 M.G.P. Pustjens, B.A.G. Senders, 
 P.J.A. van Tilburg, P. Verduin 
 
09/03 Maarten G. Meulen, Frank P.M. Stappers  Breadth-Bounded Model Checking 
 and Tim A.C. Willemse 
 
09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols 
 Mousavi 
 
09/05 Michael Franssen Placeholder Calculus for First-Order logic 
 
09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability, 
 Nicola Zannone and Sandro Etalle and autOnomy 
 
09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow 
 Nick Russell, Philipp Liegl and 
 Hannes Werthner 
 
09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems 
 and Johan J. Lukkien 
 
09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver 
 Yaroslav S. Usenko 
 
09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey 
 
09/11 Bas Ploeger Analysis of ACS using mCRL2 
 
09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra 
 and Jan Friso Groote and Modal Logic 
 
09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements 
 MohammadReza Mousavi and 
 Michel A. Reniers 
 
09/14 Maja Pešić,  Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and 
 Wil M.P. van der Aalst Improving Performance 
 
09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium 
 Emil Sekerinski, Editors 
 
09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed 
  Systems 
 
09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems 
 
09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes 
 Geert-Jan Houben, Jan Paredaens, 
 Philippe Thiran 
 
 
10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report 
 MohammadReza Mousavi 
 
10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations 
  of the Electrologica X8. A case study 

mailto:wsinsan@tue.nl


10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements 
 Ingolfsdottir, MohammadReza 
 Mousavi and Michel A. Reniers 
 
10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems 
 MohammadReza Mousavi, Neda Noroozi 
 
10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without 
 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited 
 
10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences 
 
10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model 
 
10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols 
 MohammadReza Mousavi 
 
10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus 
 Michel Reniers 
 
10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical  
 Reinder J. Bril, Johan J. Lukkien Scheduling 
 
10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language  
  Engineering (SLE) 
 
10/12 Pre-Proceedings 3rd International Software Language Engineering Conference 
 
10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning 
 Mykola Pechenizkiy 
 
10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem 
 A.A.H. Osaiweran 
 
10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management 
 Sandro Etalle 
 
10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity 
 M.R. Mousavi and M. A. Reniers 
 
10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes 
 and M.R. Mousavi 
 
10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms 
 M.A. Reniers 
 
10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems 
 
 
11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -  
 and Jan Martijn van der Werf Weak termination preserved! 
 
11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of 
 and L.J.P. Engelen Model Verification  
 
11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of  
  Crypto-Based Security Protocols 
 
11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software 
 J.H. Wesselius  
 
11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic  
  process operator 
 
11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence 
 
11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes 
 S. Weber 
 
11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination 
 van Osch and Jan Martijn van der Werf 
 
11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication  
 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol 



11/10 Neda Noroozi, Ramtin Khosravi,  Synchronizing Asynchronous Conformance Testing 
 MohammadReza Mousavi  
 and Tim A.C. Willemse 
 
11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2 
 
11/12 Muhammad Atif, MohammadReza  Formal Verification of Unreliable Failure Detectors in Partially 
 Mousavi and Ammar Osaiweran Synchronous Systems 
 
11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit  
 J.H. Wesselius under the control of formal methods 
 
11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit 
 J.H. Wesselius Using Formal Methods 
 
11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad 
 and Mark van den Brand 
 
11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software 
 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies 
 
11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions 
 And M.G.J. van den Brand 
 
11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2 
 J.F. Groote and S. Weber 
 
 
12/01 S. Cranen Model checking the FlexRay startup phase 
 
12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in  
  the Process Algebra for Hybrid Systems ACP 
   
12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources 
 J.J. Lukkien and N.W. Fisher 
 
12/04 Ammar Osaiweran, Tom Fransen,  Experience Report on Designing and Developing Control Components 
 Jan Friso Groote and Bart van Rijnsoever using Formal Methods 
 
12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games 
 Tim A.C. Willemse 
 
12/06 A.P. van der Meer CIF MSOS type system 
 
12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets 
 
12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for 
  Model-Driven Development 
 
12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems 
 R.J. Bril, J.J. Lukkien and T. Nolte - extended version – 
 
12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates  
 Johan J. Lukkien and data compression 
 
12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins 
 Mark van den Brand 
 
12/12 Jeroen J.A. Keiren and  Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2 
 Martijn D. Klabbers  
 
12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry 
 Mathijs Schuts,  Jozef Hooman  
 and Bart van Rijnsoever 
 
12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice 
 and Jozef Hooman 
 
 
13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems 
 and T.A.C. Willemse 
 
13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing 
 and Tim A.C. Willemse 



13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets 
 
13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms 
 A. Liotta and J.J. Lukkien 
 
13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures 
 J.J. Lukkien (WAmIi) 
 
13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably  
 Harold Weffers and Bharat Bhargava Secure Software 
 
13/07 R.H. Mak Resource-aware Life Cycle Models for Service-oriented Applications  
  managed by a Component Framework 
 
13/08 Mark van den Brand and Jan Friso Groote Software Engineering: Redundancy is Key 
 
13/09 P.J.L. Cuijpers Prefix Orders as a General Model of Dynamics 


	TITEL.PG13-09
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 13-09

	Blanco
	Tech-Report of DCM paper
	Blanco
	PUBL.LS4csr 2009 tm

