EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Prefix orders as a general model of dynamics

Citation for published version (APA):
Cuijpers, P. J. L. (2013). Prefix orders as a general model of dynamics. (Computer science reports; Vol. 1309).
Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/60890935-3565-4035-80c2-1bbba1b3c29f

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Prefix Orders as a General Model of Dynamics

P.J.L. Cuijpers

13/09

ISSN 0926-4515

All rights reserved
editors: prof.dr. P.M.E. De Bra
prof.dr.ir. J.J. van Wijk

Reports are available at:
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S

ort=Author&Ilevel=1 and
http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S
ort=Year&Level=1

Computer Science Reports 13-09
Eindhoven, December 2013

Prefix Orders as a General Model of Dynamics

P.J.L. Cuijpers
December 20, 2013

Abstract

In this report we formalize and study the notion of prefix order on the
executions of general dynamical systems and use basic category theory
to show that appropriate structure preserving maps between such orders
lead to the well-known notions of bisimulation, refinement, product, and
union of behavior, without relying on a notion of 'next state’. Thus these
notions are generalized to apply to arbitrary dynamical systems, including
continuous and hybrid systems .

1 Introduction

When confronted with a new type of dynamical system, one of the the first
questions that arises is: "how does this system behave?” Also, any book that
studies the dynamics of a computational system, a control system, a physical
system, a biological system, etc., starts by defining in some way ”what the
executions of such a system look like.” As an example, in automata and process
theory, executions are described as runs over a transition system [1], while in
control theory, executions are usually functions of time to some variable-space
[10]. In hybrid and cyber-physical systems theory, these two notions have been
combined by defining time as a mix of continuous and discrete steps [4].

The notion of ‘a set of executions’ appears to be crucial in the study of dy-
namical systems, and while executions are often defined as functions of time,
there is still much debate on what an appropriate notion of ‘time’ is. For this
reason, we would like to characterize the essential properties of a set of execu-
tions without considering the notion of time. Admittedly, the word ‘essential’
here is biased towards process theory, for in this paper the notion of execution
of a dynamical system is generalised in such a way that computer-science no-
tions like implementation, refinement, specification, parallel composition and
branching bisimulation are still defined in a natural way.

Using category theory as a compass, we start by formally defining our ’ob-
ject of study’ in the next section. We give axioms that characterize the idea of a
‘prefix order’ on executions, and use this idea as a basis throughout the remain-
der of the paper. In the subsequent sections, we propose different ‘structure

LThis report is an elaboration of the work presented at the DCM 2013 conference in Buenos
Aires [3].

preserving maps’ to characterize the different notions from computer science
mentioned above. We start by considering refinements, or history preserving
maps, and show the rich mathematical structure that arises from them. Then
we descent to the substructure of future preserving refinements and show the re-
lation with branching bisimulation equivalence as we know it from concurrency
theory.

In this paper, we only develop a very basic theory of dynamics. Admittedly,
this may raise more questions than it answers, and many possible continua-
tions for research impose themselves immediately. In the concluding section,
we sketch a number of directions for future research in which we expect the
proposed generalization to be useful.

2 Prefix Orders

In [9, 5] the notion of branching bisimulation is studied on runs over a transition
system, rather than on the transition systems themselves. The authors show
that after unfolding a transition system into its set of executions, branching
bisimulation can be characterized using forward- and backward- bisimulation
relations. It was observed in [5] that the resulting definition of bisimulation
only uses the notion of ‘prefix’ on the runs, rather than requiring a notion of
‘silent-steps followed by a single observable step’. This observation becomes
important when developing a notion of bisimulation that works for arbitrary
types of execution, such as continuous execution, in which a notion of 'next
step’ does not always exist. Moreover, the subsequent sections show that just
capturing the notion of prefix order on executions in an order theoretic fashion
already gives us a very flexible general model of dynamics.

In literature, the notion of ‘prefix’ is often defined using some notion of time.
An execution is then defined as a function e : [0,¢] — X from some interval [0, ¢]
over time to a set X, and another execution f : [0,¢] — X is a prefiz of e if
t’ <t and for all 7 € [0,¢] it holds that e(7) = f(7). This notion of prefixing
leads to an order relation on executions, which on closer inspection satisfies the
following axioms.

Definition 1 (Prefix order) A prefix order (U, <) consists of a set of execu-
tions U and a prefix relation < C U x U that is:

reflexive: Voey a = a;
o transitive: Vopev a 2b A b=c = a=Xc¢;
o anti-symmetric: Vopeu 0 20 A bXa = a=1Vb;

o downward total: Yo pecu (@ 2c A b=<¢) = (¢ <XbV b=xa);

In this definition, only downward totality is special; the other three require-
ments simply say that prefixing is a partial order. Downward totality means
that, although the future of a system may be branching from a given point of

execution, the past is always totally ordered. In [6], this is called the perfect
recall property of executions: at any point of execution the complete history of
the system so far is remembered. Another way of looking at it, is saying that the
set of executions behaves like a tree structure [7], except that it may be dense
(in continuous systems there is no 'next’ point of execution), there may be no
root (in some systems history is infinite), and there may be multiple trees next
to each other (for example because there are multiple initial states to consider).
Typical examples of prefix orders are, of course, total orders like the natural
numbers (N, <) and the real numbers (R, <). But also strings over an alphabet
A under their natural prefix order (A*, <), and the aforementioned functions of
time.

Two important notions on a prefix order are the future and the history of
an execution.

Definition 2 (History and future) Given a prefiz order (U, =) and an exe-
cution u € U, the history and future of u are defined by

e history: u= = {v €U |v < u};
e future: ut = {v e U|u=v}.
A map f:U — V between two prefix orders is then

e order preserving if: Vywev u 3 v = f(u) X f(u);

e history preserving if: Vyeu f(u™) = f(u)~;
o future preserving if: Vuey f(ut) = f(u)™;
with the obvious lifting f(A) = {f(a) | a € A} of f to subsets A C U.

Incidentally, the well-known idea of ‘computation trees’ as executions (see e.g.
[9, 5]) is obtained by studying only prefix orders in which each history is a
finite set, while the idea of ‘initial states’ at which a system is turned on is
captured by studying only prefix orders in which each history has a minimum.
Furthermore, one might verify that any history or future preserving function
is an order preserving backward- or forward- simulation, respectively, and vice
versa.

Lemma 1 (Order preservation) FEvery history preserving function f : U —
V is order preserving, and so is every future preserving function.

Proof Let f be history preserving, and let u,u’ € U such that v < /.
Then u € (v')~, and so f(u) € f((v')”). By history preservation f((u')”) =
fw)=,s0 f(u) € f(u')~, from which we conclude f(u) =< f(u'). The proof for
future preserving functions is dual to this. X

Lemma 2 (Simulation) An order preserving function f : U — V is history
preserving if and only if for every u € U and v € V with v X f(u) there exists a
u' 2 u such that f(u') = v. Similarly, it is future preserving if and only if for
every uw € U and v € V with f(u) < v there exists a u <X u’ such that f(u') = v.

Proof Let f be history preserving with v < f(u), thenv € f(u)™ = f(u™).
So there is a v’ € u~ such that f(u') = v, and by construction u’ < u. Reversely,
suppose that f is order preserving and that the condition in the lemma holds.
Then for any u consider the sets f(u~) and f(u)~. By order preservation we
have f(u™) C f(u)~. Furthermore, for any v € f(u)~ we know v < f(u), and
so by assumption there exists a v/ < u with f(u’) = v, and more importantly,
u €u” sowv € f(u), thus f(u)” C f(u~), and therefore f(u)~ = f(u)~. The
proof for future preserving functions is again dual to this. X

3 Refinements as history preserving maps

In this section, we study the category of prefix orders with history preserving
maps as morphisms, henceforth referred to as Pfx™ . History preserving maps
reflect the property of downward totality, and as such put more emphasis pre-
serving the past than on preserving the future. Even more strongly, the next
theorem shows that the history of an execution in fact contains all information
about that execution.

Theorem 1 (Histories) Any prefiz order (U, <) is isomorphic to its set of
histories (U™, C) under the subset relation, where U~ = {u~ | u € U}.

Proof It is easy to verify that (U™, C) is indeed a prefix order, provided
that U is a prefix order to start with. Furthermore, every element H € U™ is a
subset of U and, by construction, contains a maximum h € H in the ordering
on U. It is also easy to verify that taking this maximum gives us a bijection
max : U~ — U that is history preserving, hence by the previous lemma is an
isomorphism. X

In itself, this already justifies the study of prefix orders and history preserv-
ing maps as a category. But further justification can be found in the observation
that a history preserving map f : U — V models how each execution of U maps
to a (more abstract) execution in V. At every point of execution in U, f tells
you exactly where the system is in V, thus showing how U is a refined version
of the behavior in V. History preserving maps are suitable to describe arbitrary
implementations of a given abstract description. As we will see later, surjec-
tive history and future preserving maps describe correct refinements, in which
all abstract behavior is reflected in the implementation. In such a setting, the
abstract behavior may be considered to be a specification. In the category of
history preserving maps, notions like parallel composition, disjoint union, prefix
closed subsets, arise naturally. The category of surjective history and future pre-
serving maps turns out to be useful for understanding the notion of branching
bisimulation equivalence on general dynamical systems.

3.1 Parallel composition

In category theory, a product of two objects is usually an object that represents
an arbitrary, or least-assuming, relation between the original two. In the cate-
gory Pfx™ | the product of two prefix orders U and V turns out to be the parallel
composition U || V, consisting of all synchronous and asynchronous interleavings
of the executions of U and V.

U; U, U U,
7y)) N v !
g . = - b —
N\ AN TN\ u O
A% \Y%
Figure 1: Product Figure 2: Co-product

Definition 3 (Product) In category theory, a product of a family of objects
{U; | ¢ € I} is an object P together with a family of morphisms {m; : P —
U | i € I} (called projections), such that for any other object S and family
{fi S = U | i€ I} there exists a unique morphism u : S — P such that
- u = f; for allt € I (i.e. there is a unique u such that the diagram in figure
1 commutes for all i and j).

It is well-known from category theory that if a product exists it is unique
upto isomorphism, which means that from now on we will often refer to it as
the product [8].

Definition 4 (Parallel composition) Given a family of prefiz orders {(U;, =<;
) | i € I'} a joint execution is a set of tuples H C [[,.; Ui, modeling a history of
concurrent points of execution (synchronous as well as interleaving), such that
IneaVier Hi = h; and ¥ gem (Yicr hi =i 9i)V (Yicr gi =i hi). (Here]| denotes
the usual Cartesian product on sets, h; denotes the i’th element in a tuple h,
and H; = {h; | h € H} lifts this to sets of tuples.)

The parallel composition of this family, is the set ||;cr U; of all joint exe-
cutions, ordered by the relation C, defined for all G,H €|l;e; U; by GC H <
G C H N VaerVgea(Vier hi =i gi) = (h € G). Together with the parallel
composition, the family {m; : (||jer U;) — U;} of canonic projections is given
by m;(H) = max(H;) for everyi € I and H €| ;e1 Uj.

Lemma 3 For all G,H €|lic; U; we find GC H & Fpeg G=1{g9g € H |
Vierg(i) = h(i)}

Proof The if-case follows from the maximum of GG, using which we obtain
an h € G, hence h € H, such that G(i) = h(i)~, so for all g € G we have

g(i) = h(7). From now on, we denote this element h by max H, since it has
the character of a maximum after projection. The only if case is proven easily
by taking h € H and g € G and observing that h(i) < g(7) for all ¢ implies
h(i) = (max G)(i) hence h € G. X

Theorem 2 The categorical product of a family of prefiz orders is its parallel
composition.

Proof First we easily verify that C is reflexive, transitive and anti-symmetric.
So the parallel composition is prefix ordered provided that C is also downward
total. Take F, G, H €||;c; U; and assume FF'C H and G C H. If F' C G then it
is easy to verify that F' C G, and similarly, for G C F we find G C F. Finally,
we obtain a contradiction when we assume F' € G and G € F. Take g € G
and f € F such that g ¢ F and f ¢ G. Combining g ¢ F and F' C G gives us
g(i) =2 f(i) for all ¢ € I, but combining f ¢ G with G C F gives us f(i) < g(4)
for all ¢+ € I. From this we conclude f(i) = ¢(i) using antisymmetry of <, and
finally the contradiction f = g while f ¢ G and g € G.

Next, we verify that the canonic projections m; are history preserving. To
see this, we use the previous lemma to observe that m;(H~) = {(maxG)(7) |
GCTHY ={g(i) | g € H} = H(i) = max(H(i))~ = m(H)".

Finally, we verify that the canonic projections indeed provide a categorical
product. For this, consider a family {f; : P — U} of history preserving maps.
We must now prove that there exists a unique map u : P — (||;er U;) such that
fi(p) = mi(u(p)) for all i € I and p € P.

As a candidate, define u(p) = {h € [[;c; Ui €| Ji=,Vier h(i) = fi(t)}, and
use the fact that all f; are history preserving to verify that this function returns
a joint execution for each p € P and is indeed history preserving itself. By
construction f;(p) = m;(u(p)).

To see that the choice of w is unique, consider any function v : P — (||;er Uj)
satisfying fi(p) = mi(v(p)) = m;(u(p)) for all p. Pick any p € P, pick h € v(p)
and consider the prefix h~ Nwv(p) C v(p). By history preservation, there ex-
ists a t < p such that v(f) = h~ No(p). Furthermore, this prefix has h as
maximum, so m;(v(t)) = h(i) = fi(t) for all i € I. By construction of u we
find h € u(), hence v(p) C u(p). Reversely, pick h € u(p) and consider the
prefix A~ Nu(p) C wu(p). By history preservation, we find ¢ < p such that
u(t) = h™ Nu(p), so m(u(t)) = h(i) = fi(t) for all ¢ € I. Hence m;(v(t)) = h(i)
for all ¢ € I, hence h € v(t). Since t =< p, we find by order preservation
v(t) C v(p), which implies v(t) C v(p). We conclude h € v(p) and finally,
u(p) C v(p). Hence u(p) = v(p) for all p € P. X

The reader should be aware that, even though the parallel composition of
prefix orders gives us the expected synchronous and asynchronous executions
of computational and other familiar dynamical systems, there are pathological
prefix orders of which the product is rather surprising. As an example, consider
the set —Q of ordinal numbers in reversed order, upto (but not including) the

first uncountable ordinal. Furthermore, consider the set —N of natural numbers
in reversed order. Obviously, both —Q and —N do not have a minimum. Fur-
thermore, it is well known from topology that any € is a (countably) compact
space (see e.g. [12, p.69 ex43.8]), so any sequence in —(2 has a limit in —€2, which
means that for any order preserving function f : —N — —Q there is a 0 € —€)
with o =< f(n) for all n € N. From this we conclude that there is no n € N with
f(n) < 0o—1. As aresult, —Q and —N cannot have a joint execution, so, rather
surprisingly, their parallel composition returns the empty set: —Q || —N = (.
How to avoid these examples is a topic of ongoing research. The answer might
be sought in fixing a common generating total order (a time-base so-to-speak)
before composing two prefix orders.

3.2 Alternative composition

Dual to the product, a co-product of two objects is usually an object that
represents an arbitrary union of the original two. It is most restricting, in
the sense that it assumes the objects to have no interaction with each other
whatsoever. In the category Pfx™ , the co-product of two prefix orders U and
V is called the alternative composition, and is simply obtained by taking the
disjoint union U WV of all executions.

Definition 5 (Co-product) In category theory, a co-product of a family of
objects {U; | i € I} is an object P together with a family of morphisms {¢; :
U—P|i€ I} (called insertions), such that for any other object S and family
{fi : U = S| i€ I} there exists a unique morphism u : P — S such that
w-t; = f; for alli € I (i.e. there is a unique u such that the diagram in figure
2 commutes for all i and j).

Definition 6 (Alternative composition) Given a family {(U;,<;) | i € I}
of prefix orders, the alternative composition or disjoint union is the disjoint
union on sets: \;c; Ui = {(i,u) |i € I N u € U;}. This set is ordered by the
relation C, defined by (i,u) C (j,v) & i=j A u =< v, and equipped with a
family {¢; : U; = .., U;} of canonic insertions given by t;(u) = (i,u) for all
1 €1 and u € U;.

i

Theorem 3 The categorical co-product of a family of prefix orders is its alter-
native composition.

Proof To verify that #;,; U; is prefix ordered and that its canonic in-
sertions are history preserving is trivial. Furthermore, if we consider a family
{fi : U; — P} of history preserving maps, it is straightforward to verify that
u(i,r;) = fi(x;) defines a unique history preserving map u : |§;c; Ui — P such
that u(e;(x;)) = fi(z;) for all ¢ € I and x; € U;. Therefore, the disjoint union
is a categorical co-product. X

3.3 Subobjects

In category theory, the notion of monomorphism is often used to model that
one object is a subobject of another. In the category Pfx™ subobjects turn
out to be isomorphic to the prefix-closed subsets of a prefix order. We show
this by proving that every prefix-closed subset has a natural monomorphism
associated with it, and that every source of a monomorphism is isomorphic to
a prefix-closed subset.

g, f I f
T rU——V T3 V << U
h h
Figure 3: Monomorphism Figure 4: Epimorphism

Definition 7 (Monomorphism) In category theory, a morphism f : U — V
is called a monomorphism, denoted with a hooked arrow, and is a witness for U
being a subobject of V, if for every two morphisms g, h : T — U in that category
we have f-g= f-h = g = h. Le. the diagram in figure 8 only commutes
when g = h.

Definition 8 (Prefix-closed subset) Given a prefir order {{U,=<} a subset
X C U is prefix-closed if for all x € X we find z~ C X.

Theorem 4 A history preserving map is a monomorphism if and only if it is
an injection.

Proof From set theory we know that any injective function is a monomor-
phism, and that monomorphisms carry over to subcategories. So any injective
history preserving map is a monomorphism.

For the reverse direction, assume that f is a monomorphism, and pick
x,y € X such that f(x) = f(y). Firstly, if z < y, then take Z = y~, take
h(t) =t for all t € T, and take g(t) =t for ¢ < « while g(t) = « for x <¢. By
construction foh = fog, so by monicity h = g, and therefore x = y. From this
we conclude that if f(x) = f(y), then z and y are not related by <. Secondly,
now that we have established that any « and v for which f(u) = f(v) are un-
related, we construct the set T = {(u,v) |[u <z A v <y A f(u) = f(v)},
order it by (u,v) C (uv/,v") & u < v A v </, and construct two func-
tions h,g : T — U defined as h(u,v) = uw and g(u,v) = v. We verify that
(T,C) is indeed a prefix order as follows. That it is a partial order is trivial,
but that it is downward total is not. For this, consider (u,v) C (u”,v") and
(u',v") C (u”,v") while (u,v) and (u,v") are unrelated. This leaves us with
two possibilities, namely v < v’ and v/ < v, or v/ < v and v < v/. But we
also know that f(u) = f(v) and f(u') = f(v'), so by order preservation either
Fu) 2 f) = F(@0') = F(w) = Fu) or Fu!) = fu) = f(v) = F() = f(u)

from which we conclude f(u) = f(v') and similarly f(v) = f(v'). We use
the first observation to conclude v = «' and v = v, thus (u,v) = (u,v),
contradicting the assumption that (u,v) and (u’,v") were unrelated. Finally, by
construction the functions g and h are history preserving and satisfy gof = hof,
so g = h and in particular © = h(z,y) = g(z,y) = y, from which we conclude
that f is an injection. X

Accidentally, the reader may also verify that (in contrast to the category of
partial orders) monomorphisms are exactly the embeddings, i.e. those functions
f satisfying « <y < f(z) 2 f(y) for all and y. Next, we show that
subobjects are exactly the prefix-closed subsets.

Theorem 5 Fvery morphism f : U — V selects a prefiz-closed subset f(U) =
{f(u) | ue U}

Proof This follows directly from lemma 2. X

Theorem 6 Given a prefiz-closed subset, U C V, the natural injection ¢ : U —
V defined by t(u) = u is a monomorphism.

Proof Trivial. X

Theorem 7 Given monomorphisms f : U — V and g : W — V such that
f(U) = g(W), there exists an isomorphism h : U — W such that go h = f.

Proof As g and f are injections and f(U) = ¢g(W), we find for every
u € U a unique w € W such f(u) = g(w). Picking h(u) = w it is straight-
forward to verify that this function is a bijection by construction, and history
preserving because f and g are history preserving, hence it is an isomorphism. X

3.4 Quotients

The dual of a monomorphism is an epimorphism. Epimorphisms are often used
to model that one object is a quotient of another. In the category Pfx™ quotients
turn out to be isomorphic to the equivalence classes of a particular kind of
backward bisimulation relations, which we will call order contracting backward
bisimulation equivalences.

Definition 9 (Epimorphism) In category theory, a morphism f: U — V is
called an epimorphism, denoted with a double arrow, and is a witness for V
being a quotient of U, if for every two morphisms g, h : V — T in that category
we findg-f=h-f = g=h. Le. the diagram in figure 4 only commutes
when g = h.

Definition 10 (Order contracting backward bisimulation equivalence)
Given a prefiz order U, a relation ~ C U x U is a backward bisimulation if:

o Vypwevtt~v At 2u = Jyecp v 2v A w ~0; and

o Vypweutt~v AV v = Fpep v Su AU~
Furthermore, a relation is an equivalence if:

o Vycu u ~ u; and

® Vyveu U~V =0~ u; and

® VuvweU U~V A U~w=u~w.

Given an equivalence ~, we write [ul.. = {v € U | u ~ v} for the equivalence
class of u € U.
An equivalence relation is order contracting if

® VuvwacU UV A v~w A w2z A T~u =u~0.

Theorem 8 A history preserving map is an epimorphism if and only if it is a
surjection.

Proof Assume that f is a surjective morphism and take g,h : V — T
with g # h, then there exists a v € V with g(v) # h(v). Surjection gives us a
u € U with f(u) = v so g(f(u)) # h(f(u)), from which we conclude that f is
an epimorphism.

Reversely, assume that f is an epimorphism but not surjective. We show this
leads to a contradiction by picking any v € V for which there is no v € U
with f(u) = v. Observe that lemma 2 now ensures that there is also no u € U
with f(u) € v™, since every history of v+ goes through v. (This is a crucial
observation. In comparison, in the category Pfx ™ surjection is not a necessary
condition for an epimorphism and also in the category of partial orders it is
not.) If v is minimal we construct g,h : V — {a, b}, with a and b unordered,
by defining g(w) = a for all w € V while h(w) = a for any w # v and h(v) = b.
It is easily verified that g and A are history preserving, and by construction
g+ f =g-h, which contradicts the assumption that f is an epimorphism. Simi-
larly, if v is not minimal we construct g, h : V — {0, 1} by defining g(w) = 0 for
all w € V while h(w) = 0 for any w € v and h(w) =1 for w € vT. Again it is
easily verified that ¢ is history preserving. To see that h is history preserving
we observe that h(w™) = {0} = 0~ for any w ¢ v*. Furthermore, if w € v
then we use the fact that v is not minimal to find a w’ < v with (by antisym-
metry) w’ € vt to conclude h(w™) = {0,1} = 17 = h(w)~. By construction
we get g - f = g+ h, which once more contradicts the assumption that f is an
epimorphism. X

Theorem 9 FEvery morphism f : U — V defines an order contracting backward
bisimulation equivalence on U given by u ~y v’ < f(u) = f(v).

10

Proof It is easy to see that ~y is an equivalence, and that it is a back-
ward bisimulation follows straightforwardly from lemma 2. Finally, assume
u~yu 2 u’ ~pu” < u, then by order preservation f(u) = f(u') = f(u”) =
f(W") < f(u), and by anti-symmetry, f(u) = f(u”), so u ~; «’. Therefore ~
is order contracting. X

Theorem 10 Given an order contracting backward bisimulation equivalence ~
on U, the projection []~ : U — U/ ~ of executions onto their equivalence classes
s an epimorphism.

Proof Let U/ ~ denote the set of equivalence classes of ~, and let C denote
the ordering on equivalence classes defined by [u]. C [u/]~ iff Fy wevu ~ w =
w’ ~ u'. We will prove that C is a prefix order, and that the projection [] is an
epimorphism.

Firstly, observe that u ~ v = u ~ w, so [u]. C [u]., so C is reflexive.
Secondly, assume [u]~ C [u']~ and [u']~ C [u”]~, then there exist w, w’, w", w"”
such that u ~ w <X w' ~ v ~ w”’ X w" ~ v’. By transitivity and backward
bisimulation of ~ we find a v’ such that v ~ v/ and v < w"’ <X w"”, so u ~
v 2 w” ~u” from which we conclude that [u]. C [u”]., hence C is transitive.
Thirdly, assume [u]~ C [v/]~ and [u]~ C [u]~, then there exist w,w’, w”, w""
such that u ~ w X W' ~ v ~ w” X w” ~ u. By transitivity and backward
bisimulation we find a v" and v” such that u ~ v < v/ ~ v” < u, and by order
contraction we find u ~ u’, hence [u]. = [u']., hence C is anti-symmetric.
Fourthly, assume [u]. C [u/]~ and [u”]~ E [u]~, then there exist w,w’, w", w"”
such that u ~ w X w' ~ v and v’ ~ w’ <X w” ~ u/. Using backward
bisimulation we find v" and v” such that u ~ v' < v’ and v” ~ v"” < «’. Using
downward totality we derive v’ < v” or v < v'. Hence u ~ v’ < v” ~ v or
u” ~v" v ~ u, from which we conclude [u]. C [u"]< or [u”]< C [u]~, from
which we conclude that C is downward total.

Finally, the projection [] is surjective by construction. Also by construction,
if u < o' then [u]~ C [u/]~, so it is order preserving. Finally, if [u]. C [u]~ then
there exists w, w’ such that u ~ w < w’ ~ v/, and by backward bisimulation of
~ we find an element v such that u ~ v < u/, so there exists a v < «’ such that
[v]~ = [u]~, and by lemma 2, the projection is history preserving. From this we
conclude that it is an epimorphism. X

Theorem 11 Given epimorphisms f : U — V and g : U — W such that
~ = ~g, there exists an isomorphism h : V — W such that ho f = g.

Proof Consider the epimorphism f : U — V, and let U/ ~; denote the
set of equivalence classes of ~;. Next, verify that U/ ~ is prefix ordered if
we define [u]., C [u]~, iff 3y wevu ~p w 2w ~p u'. Furthermore, since
the elements of each equivalence class coincide on f, we can lift this map to
f' U/ ~;— V by stating f'([u]) = f(v). This map is an injection by con-
struction and a history preserving surjection because f is an epimorphism. In

11

Pfx™ every bijective morphism is an isomorphism, and so is f. Finally, since
~¢=nrvg, combining the isomorphisms f’ : U/ ~;— V and ¢’ : U/ ~;— W
gives us an isomorphism ¢’ o (f')~! : V — W which by construction satisfies:
go(f)tof=go(f)tofoll=g0ol]=g X

3.5 Small limits and co-limits

Given that we no know how to construct arbitrary products, co-products, sub-
objects and quotients, we can continue to construct any limit or co-limit of a
commuting diagram as the subobject of a parallel composition, or the equiv-
alence classes of an alternative composition, respectively. This very general
construction will be of interest to those familiar with category theory, but not
so much to those interested in dynamical systems. Therefore, we just pose the
claim here and leave the details to the interested reader. Note that further-on
we use the limit construction to create push-outs and pull-backs when we discuss
the notion of branching bisimulation between prefix orders.

Definition 11 (Diagram) Given a category D with a set of objects (i.e. a so-
called small category), a diagram in Pfx~ is a functor F : D —Pfx~ that maps
the objects of D to prefix orders and the morphisms of D to history preserving
maps, such that F(f og) = F(f)o F(g) for all morphisms in D.

Definition 12 (Diagram limits) Given a diagram F : D —Pfx™ its limit
lim F is a prefiz order with morphisms 7Td.2 lim F — F(d) for each object d € D,
such that F(f) o mg = me for any morphism f : d — e in D, and furthermore,
for any prefix order V with morphisms 7/, that satisfy this condition there is a
unique u : V — U such that mqg o uw = 7/; for all d € D.

Theorem 12 (Small limit theorem) Given a diagram F' : D —Pfx™ its limit
is given by the largest prefiz-closed subset L Cllqep F(d) such that H € L <

Y(f:a—eyepVoca F(f)(mp@(G)) = Tpe (G).

Definition 13 (Diagram co-limits) Given a diagram F : D —Pfx™ its co-
limit Ym F' is a prefiz order with morphisms vq : F(d) — Um F for each object
d € D, such that to o F(f) = tq for any morphism f : d — e in D, and

furthermore, for any prefix order V with morphisms i, that satisfy this condition
there is a unique v : U — 'V such that /) = u - 14 for all d € D.

Theorem 13 (Small co-limit theorem) Given a diagram F : D —Pfx™ its
co-limit is given by the smallest order contracting equivalence ~ on | .p F(d)
such that ¥ (f.a-se)eDpVaer(d) Lr(e) (F'(f)(@)) ~ tra)(2)-

4 Bisimulation through history and future pre-
serving surjections

In this section, the previously mentioned result of [9, 5], capturing branching
bisimulation using futures and histories, is generalized to prefix orders. How-

12

ever, in contrast to [9, 5], we do not use a relational definition of branching
bisimulation here, but a more categorical definition using spans (as proposed by
[13]) and an alternative one using co-spans.

We first establish the fact that both these alternative definitions capture the
original notion of bisimulation on labeled transition systems. Next, we will show
that the definition using spans does in general not lead to an equivalence on
prefix orders, while the definition using co-spans does. Furthermore, the defi-
nition using co-spans turns out to be a congruence for the parallel composition
and alternative composition.

4.1 Bisimulation on labeled transition systems

Definition 14 (Labeled transition system) A labeled transition system is
a tuple (X, A,i,—), consisting of a set of states X, a set of observables A, an
initial state i € A, and a transition relation -C X x (AU {7}) x X with the
unobservable T ¢ A. Given a € AU {r} I write x % ' for (z,a,2') €= and

a . T
Ty — Tp4+1 whenever there exists a sequence xg . ..Tnp41 Such that x; — x4
. a,
for everyi <mn and , = Tpi1-

Definition 15 (Run) A run over a labeled transition system (X, A,i,—) is a

sequence p € ((AU{T}) x X)* such that, if p is not empty, it holds that i PLQ)

p2(0) and pa(n) prindD) p2(n+1) for alln+1 € dom(p). The set of all runs is

denoted R(—), is prefiz ordered in the usual way, and is observed by a function
T R(—=) = A* defined recursively as ma~(e) = €, ma=(p-7) = wa+(p), and
74 (p-a) = 7a-(p) - a, for a € A.

Definition 16 (Branching Bisimulation) Two labeled transition systems
(X,A,i,—1) and (Y, A, j,—2) are branching bisimilar if there exists a relation
R C X XY such that iR j and

o if tRy, and x %, ', then either a = 7 and 'Ry, or there exist y,y"
such that y - y andy %oy and xRy and ©'Ry";
o if tRy, and y 5 v, then either a = 7 and xRy, or there exist «’,z"
T

such that x —1 ' and ' =, 2 and 'Ry and "Ry’ .

Theorem 14 Tuwo labeled transition systems (X, A,i,—1) and (Y, A, j, —2) are
branching bisimilar if and only if there exists a prefix order (U, <) and a span
(f, g) of history and future preserving (surjective) maps f : U — Runs(—1) and
g : U — Runs(—2) such that wa+(g(u)) = wa+(f(u)) for every u € U.

Proof To check one direction, assume a span of future and history pre-
serving surjections f : U — Runs(—;) and g : U — Runs(—2) such that
max(g(u)) = ma=(f(u)) for every u € U. Then create the relation

2Ry iff ey mx(u) =2 A 7y (u) =y,

13

where 7x (u) denotes the mapping of the joint execution u to the current state
in (X, A,i,—1), and similarly for 7y (u).

We now continue to prove that this is in fact a branching bisimulation re-
lation between (X, A,i,—1) and (Y, A, j,—2). To see this, note that history
preservation forces the minimum of U to map onto the empty strings over X
and Y, respectively, thus witnessing ¢Rj.

Next, consider x,2/ € X and y € Y such that + 5 2’ and 2Ry. By
construction, there exists a u € U such that 7x(u) = = and 7y (u) = vy, so
from u we can derive a run f(u) over X leading to z, and we can lengthen
this execution with an a-step to z’. Future preservation of f then gives us a
u =< u' such that f(u') ends in 2’ and mg+(u') = wa«(u) - @ in case a # 7
and ma«(u') = ma~(u) otherwise. Furthermore observe that there are no points
in between f(u) and f(u'). From this, order preservation of g gives us a run
g(u) upto y and a run g(u') to some further point y” at which a has been
observed. Thus we know there exist ¢’ and y” such that y Log vy oy
and y” - y"" (possibly vy = ¢y if a = 7). By history preservation of g we
can then find u, and w,~ such that g(u,) gives the run upto y’ and g(u,~)
gives the run upto y”, and v < u,s < u,» < u'. By order preservation, we find
flu) 2 fluy) = fluyr) < f(u'), and because observations w4« are preserved
and there are no points between f(u) and f(u') we find f(u) = f(u,) and
f(uyr) = f(v') hence Ry’ and 2'Ry”. The proof is symmetric when starting
from a transition y — 3.

To check the other direction, assume that there exists a bisimulation relation
R C X xY between (X, A,i,—1) and (Y, A, j,—2). We can now use the
categorical product discussed further-on in this paper to create the parallel
composition of runs Runs(—;) || Runs(—2), and from it select the subobject
that agrees on the bisimulation relation: U = {H € Runs(—1) || Runs(—2) |
VH’EH Wx(H/) RTry(H/)}.

This set is by construction prefix-closed, and using the canonical projections
of the product, it maps to Runs(—1) and Runs(—32) in the obvious history
preserving way.

In general these maps may not be surjective. However, in the particular case
of runs products can be proven to have surjective and future preserving canoni-
cal projections. We leave this to the reader to verify. Given that the projections
of the product are surjective and future preserving, it is straightforward to use
the definition of branching bisimulation to show that the projections from the
subobject U satisfy the conditions of lemma 2, and hence are future preserving
as well. Finally, because all initial states are mapped to, future preservation
implies surjection for those maps as well. X

In the previous section, we argued that history preserving maps model re-
finements of a specification. As a consequence, the above theorem may be inter-
preted as: two specifications are branching bisimilar if and only if they have a
common refinement. In other words, branching bisimulation is a way to define
that two specifications are ‘consistent’ with each other. But there is a second

14

alternative to defining bisimulation, which is by saying that two implementa-
tions are branching bisimilar if and only if they have a common specification.
That coincides with the following theorem.

Theorem 15 Two labeled transition systems (X, A,i,—1) and (Y, A, j, —2) are
branching bisimilar if and only if there exists a prefiz order (U, =), a co-span
(f,9) of history and future preserving (surjective) maps f : Runs(—1) — U and
g : Runs(—2) — U, and a function wa~ : U — A*, such that wa-(x) = wa«(f(x))
and wax(y) = wa+(g(y)), for allz € X andy €Y.

Proof To check one direction, assume a co-span of future and history
preserving surjections f : Runs(—1) — U and g : Runs(—2) — U as in the
theorem and create the relation:

.TRy iff 3T€Rul1s(—>1),7"’€Runs(—>2) X (T) =z A WY(T/) =Y A f(r) = g(T’).

We now continue to prove that this is in fact a branching bisimulation rela-
tion between (X, A,i,—1) and (Y, A, j, —2). For this, consider the empty run
e over X. We have mx(e) = 4, and we know that f(e) is a minimal element of
U. Furthermore, since g is surjective, there is a run over Y that maps to this
minimal element, and by history preservation, this run is minimal, hence it is
the empty run. So f(e) = g(¢) and mx =i and 7y = j, hence iRj.

Next, consider x,2/ € X and y € Y such that + - 2’ and zRy. By
construction of R we find that z is reachable by some run r and y is reachable
by some run ' such that f(r) = g(r’). Furthermore, we can extend r with an
a-step to &', thus forming a run ro with r < rg and w4« (r9) = ma=(r)-a. Observe
that there are no points between r and rg, and by order preservation of f we find
g(r") = f(r) X f(ro). Furthermore, by history preservation we find that there
are no points between f(r) and f(rg) either (since there are no points between r
and 7o that could map to these). Then, by future preservation of g there exists

a run r; that extends 7’ and observes a at a state y”’. Deconstructing this run
gives us ¥y, y” with y g v,y 5oy and y” g y"" (possibly y' = y" if
a =7). Let ry, 7y be the runs upto these intermediate points respectively, then
order preservation of g, the fact that there are no points between g(r) and g(r1),
and preservation of the observation gives us g(r) = g(ry/) and g(ry) = g(r1),
and so 2Ry’ and 2’Ry"”. The proof when starting from a transition y — 3’ is
symmetric to this.

To check the other direction, assume that there exists a bisimulation relation
R C X XY between (X, A,i,—1) and (Y, A, j, —2). We now just construct the
quotient transition system (R, A, (¢,), —1,2). The runs of the original transi-
tion systems map to the runs of this quotient system in a natural way, which
upon closer inspection (using the properties of branching bisimulation relations)
turn out to be history and future preserving surjections. X

4.2 Bisimulation through spans versus co-spans

Comparing the proof-sketches of the two theorems in the previous section, one
may notice that the first relies on the notion of categorical product, while the

15

second one does not. Furthermore, we have previously seen that some products
of general prefix orders behave unexpectedly. Indeed, while the idea of using a
span or co-span of maps to define bisimulation coincides for labeled transition
systems, there are differences when we apply them to prefix orders in general.
Next, we show that on prefix orders the definition using co-spans is to be
preferred over the definition using spans, mainly because the latter does not
yield an equivalence in general. To see why this is so, we first have to define the
general notion of bisimulation using spans and co-spans more precisely.

Definition 17 A labeled prefix order (U, X, A,) is a prefix order (U, =) to-
gether with a labeling function o : U — A.

Definition 18 Two labeled prefiz orders (U, =<, A, a) and (V, =<, A,) are span
bisimilar, denoted o 24 8, if there exists a prefix order (W, =) and future and
history preserving surjections u : W — U and v : W — V such that aou = fowv.

Definition 19 Two labeled prefiz orders (U, <, A,a) and (V,=, A,) are co-
span bisimilar, denoted « <. 3, if there exists a third labeled prefiz order (W, <
, A,) and future and history preserving surjections u: U — W and v:V - W
such that you =« and yov = .

To see why span bisimilarity is not an equivalence, we only need to label the
prefix orders —(2 and —N using a constant labeling a(w) = 1 for all w € —Q and
B(n) =1 for all n € —N. Recall from section 3.1 that the product of —Q and —N
is the empty set, so the only span uv: W — —Q and v : W — —N that can exist
between the two (even without considering the labeling) has W = (). Obviously,
this span is not surjective, hence —{2 and —N are not bisimilar (-2 ¢, —N). But
on the other hand, it is easy to verify that —() labeled as above is bisimilar to
the singleton prefix order labeled by 1, and —N is also bisimilar to 1 (witnessed
by the span of the identity and the only possible function from each of the prefix
orders to 1). From this we conclude that span bisimilarity £, is not transitive,
hence not an equivalence.

In the remainder of this section, we will focus on co-span bisimilarity, and
show that it is an equivalence and a congruence for parallel composition and
alternative composition.

Theorem 16 (Equivalence) The relation <. on labeled prefix orders is an
equivalence.

Proof That co-span bisimilarity is symmetric is trivial. To see that <.
is reflexive one only has to realize that the identity is a history and future pre-
serving surjection. To see that <. is transitive, assume labeled prefix orders
a:U; — A, B:Uy - Aand v: U3z — A such that a 2, 8 and 8 £, v. Then
by definition there exist labeled prefix orders p : X1 — A and v : Xo3 — A
and future and history preserving surjections f : U; — Xjao, g : Uy — X9,
h : Uy — Xog, and ¢ : U3 — Xog, such that the solid arrows in the the diagram
in figure 5 commute. If we then determine the limit (also called pushout) of
the maps g and h in this diagram, we obtain the prefix order Y with maps

16

< A4
’ N
, K ~

VAL ALN

A Xy Xo3 A
ELONIEZ NI
Uy U,y Us

Figure 5: Co-span bisimulation is transitive. Unlabeled arrows represent iden-
tities.

j:Xj2 = Y and k : Xo3 — Y. Furthermore, Y is generated from an order
contracting backward bisimulation ~ on Xj5 W Xo3, and because g and h are
surjections every y € Y represents an equivalence class in both X5 and X3, and
the maps ¢ and j are surjective. All the elements in these equivalence classes
map to the same point in A, hence we obtain a labeling x : Y — A for which the
diagram commutes. Finally, pick € Xj2 and y € Y such that j(z) C y. This
means that there exists 2/, 2” € X5 such that z ~ 2’ < 2" ~ y. Backtracking
these points along g gives us u, v, u” € U such that g(u) = g(u') and v’ < u”.
Furthermore, because g is future preserving, we find u”’ such that v < u"’ and
g(u"") = g(u”). By order preservation, this gives us < g(u”’) and using the
commuting diagram we find g(u”’) ~ u” ~ y, so j(g(u"")) = y, from which we
conclude that j is future preserving. In a similar vein k is future preserving,
and so are f o j and k o ¢, thus witnessing a <, 7. X

Next, we lift the notion of parallel composition and alternative composition
to labeled prefix orders.

Definition 20 (Labeled compositions) Given two labeled prefiz orders « :
U— A, B:V — B we define their parallel composition o || f:U || W — A x B
by (a x B)(H) = (am1(H)), B(w2(H))) for all H € U ||V, and we define their
alternative composition a W :UWV — AW B by (aW B)(z) = a(z) forx €U
and (a W B)(z) = () forz e V.

It is easy to verify that « || 8 and B || « are isomorphic, hence bisimilar,
and so are a W § and S W a. But more importantly, bisimulation using co-spans
turns out to be a congruence for these operators.

Theorem 17 (Congruence) Given three labeled prefix orders a : U — A,
B:V = Aandy: W — B such that « 2. 8, we find a || v €. 8 X v and
adye. fWy.

Proof From the fact that « . 8 we can construct x : X — A and future
and history preserving surjections f : U — X and ¢ : U — X such that ko f = «

17

and ko g = . Now we construct « || v and define f/ : U || W —» X | W
and g' : V | W — X [| W by f'(H) = {(f(u),w) | (u,w) € H} and ¢'(H) =
{(g(v),w) | (v,w) € H}. Tt is straightforward to verify that f’ and ¢’ are history
and future preserving surjections, thus witnessing « || v 2. § || 7. Dually, we
define construct x W~ and define f” : UWW — X¥W and ¢’ : VUEW — X W
by f"(t) = f(t)ift € Uand f’(t) =¢tif t € W, and ¢"(¢t) = g(¢t) if t € V and
g'(t) =tift € W. Also for f” and ¢” it is straightforward to verify that they
are history and future preserving surjections, witnessing a Wy <. S W . X

5 Discussion and concluding remarks

We have shown that dynamical systems can be modeled as a set of executions
under their natural prefix ordering, and that history preserving maps represent
the refinement of a specification, thus allowing refinements between various
types of dynamics in one unified framework. Furthermore, if refinements are
complete in the sense that all and only specified behavior is refined, then the
corresponding maps are surjective and future preserving.

One of the next steps, is to deal with structured operational semantics in
a categorical fashion. Is it possible to create maps from any operation defined
using structured operational semantics to the components it depends on? In
general, the composition of two systems does not lead to a refinement, so there
will not simply be a history preserving map. For example, the system X4 Y
does not have natural maps back to X and Y. However, there are natural partial
history preserving maps from X§Y to X and Y. From the point of view of X,
the composition X|HY is a combination of refinement and specification. The
newly specified part is therefore undefined in the map to X, while the refinement
is mapped in a history preserving way. For the study of operational semantics
in a category theoretic way, I therefore expect that partial history preserving
maps may be helpful. A first exploration of using partial history preserving
maps can be found in [2].

Another possible step, is to add more structure to the notion of prefix or-
der, thus becoming less general but more applicable. Prefix orders really only
model the dynamical properties of a system. If one would like to study timing,
continuity, energy, or other properties, an observation map (like the one used in
section 4.2) is needed. Incidentally, the map used in section 4 is itself a history
preserving map, but other types of maps are conceivable as well. For example,
ifr:U— @ and 7 :V — @ map the executions of two systems to some (par-
tially ordered) quantity @, one could define that U is an over-approzimation of
V if there is a history and future preserving surjection f : U — V such that
7w(f(u)) < w(u) for every u € U. Furthermore, the idea of prefizing is intimately
coupled with the notion of concatenation, since prefixing is also often defined
as: x X z iff 3, v -y = z. It seems therefore reasonable to also study which
semigroups (U, -) admit a natural prefix order. Finally, one could also study
probabilistic systems by imposing a measure on the anti-chains of the prefix
order, or one could study continuous systems by making using of the natural in-

18

terval topology on prefix orders, and consider continuous maps between a prefix
order and some physical variable.

When the observations on a prefix order change, the notion of bisimulation
should change with it. Luckily, the definition of bisimulation through co-spans
is very flexible in this respect. What is a bit disturbing, is that the defini-
tion through spans does not yield an equivalence. This may upset the general
consensus in process algebra that any implementation can also be seen as a
specification and vice versa. In the field of coalgebra, it was already known
that there are alternative definitions of (strong) bisimulation that do not al-
ways coincide outside the domain of labeled transition systems (see e.g. [11]).
Part of the added value of this paper is that we can now also do it for branch-
ing bisimulation, and part of the value is that the interpretation of morphisms
as refinements gives us an explanation in ‘natural language’ of why the differ-
ence is there. If we consider specifications that have a common implementation
this does not yield an equivalence, because transitivity only occurs when three
equivalent systems also share a single common implementation. If we consider
implementations that have a common specification we do obtain an equivalence,
because two common implementations turn out to always allow a third, even
more abstract, implementation.

In conclusion, adding observations in order to study different types of dy-
namical systems is reminiscent of the definition of executions as functions of
time. Looking back, perhaps we did not succeed in eliminating the notion of
time from our modeling paradigm after all. In stead, we did perhaps succeed
in capturing, in an order theoretic way, the notion of a dynamical system as a
function of branching time.

Acknowledgements go to Harsh Beohar, Erik de Vink and Ruurd Kuiper
for their continuing and much appreciated support, and to MEALS for the
opportunity to travel to Buenos Aires.

References

[1] J.C.M. Baeten, T. Basten & M.A. Reniers (2010): Process Algebra: Equa-
tional Theories of Communicating Processes. Cambridge Tracts in Theo-
retical Computer Science, Cambridge University Press.

[2] P.J.L. Cuijpers (2013): The categorical limit of a sequence of dy-
namical systems. In: EXPRESS/SOS 2013, EPTCS 120, pp. 78-92,
doi:10.4204/EPTCS.120.7.

[3] P.J.L. Cuijpers (2013): Prefix Orders as a General Model of Dynamics. In:
DCM 2013, Pre-proceedings of the 9th international workshop on develop-
ments in computational models (DCM 2013)., pp. 25-29.

[4] J.M. Davoren & P. Tabuada (2007): On Simulations and Bisimulations of
General Flow Systems. In Alberto Bemporad, Antonio Bicchi & Giorgio
Buttazzo, editors: Hybrid Systems: Computation and Control, Lecture

19

Notes in Computer Science 4416, Springer Berlin Heidelberg, pp. 145-158,
do0i:10.1007/978-3-540-71493-4_14.

R.J. van Glabbeek (2001): Current Trends in Theoretical Computer Sci-
ence; Entering the 21st Century, chapter What is Branching Time Seman-
tics and Why to Use It?, pp. 469-479. World Scientific.

J.Y. Halpern & K.R. O’Neill (2008): Secrecy in Multiagent Systems. ACM
Trans. Inf. Syst. Secur. 12, pp. 5:1-5:47, d0i:10.1145/1410234.1410239.

K. Kunen (1988): Set Theory: An Introduction to Independence Proofs,
third edition. Studies In Logic and the Foundations of Mathematics 102,
Elsevier Science B.V.

S. MacLane (1971): Categories for the Working Mathematician. Springer-
Verlag.

R. Nicola, U. Montanari & F. Vaandrager (1990): Back and forth
bisimulations. In J.C.M. Baeten & J.W. Klop, editors: CONCUR
90 Theories of Concurrency: Unification and Extension, Lecture Notes
in Computer Science 458, Springer Berlin Heidelberg, pp. 152-165,
doi:10.1007/BFb0039058.

J.W. Polderman & J.C. Willems (1998): Introduction to Mathematical Sys-
tems Theory: A Behavioural Approach. Texts in Applied Mathematics 26,
Springer-Verlag.

S. Staton (2009): Relating Coalgebraic Notions of Bisimulation. In A. Kurz,
M. Lenisa & A. Tarlecki, editors: Algebra and Coalgebra in Computer Sci-
ence, Lecture Notes in Computer Science 5728, Springer Berlin Heidelberg,
pp- 191-205, doi:10.1007/978-3-642-03741-2_14.

L.A. Steen & J.A. Seebach (1970): Counterezamples in topology.

G. Winskel & M. Nielsen (1995): Handbook of logic in com-
puter science (vol. 4). chapter Models for concurrency, Ox-
ford University Press, Oxford, UK, pp. 1-148. Available at
http://portal.acm.org/citation.cfm?id=218623.218630.

20

Science Reports

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the
requested reports).

In this series appeared (from 2009):

09/01

09/02

09/03

09/04

09/05

09/06

09/07

09/08

09/09

09/10

09/11

09/12

09/13

09/14

09/15

09/16

09/17

09/18

10/01

10/02

Wil M.P. van der Aalst, Kees M. van Hee,

Peter Massuthe, Natalia Sidorova and
Jan Martijn van der Werf

P.J.l. Cuijpers, F.A.J. Koenders,
M.G.P. Pustjens, B.A.G. Senders,
P.J.A. van Tilburg, P. Verduin

Maarten G. Meulen, Frank P.M. Stappers

and Tim A.C. Willemse

Muhammad Atif and MohammadReza
Mousavi

Michael Franssen

Daniel Trivellato, Fred Spiessens,
Nicola Zannone and Sandro Etalle

Marco Zapletal, Wil M.P. van der Aalst,
Nick Russell, Philipp Liegl and
Hannes Werthner

Mike Holenderski, Reinder J. Bril
and Johan J. Lukkien

Dragan Bo$nacki, Aad Mathijssen and
Yaroslav S. Usenko

Ugur Keskin
Bas Ploeger

Wolfgang Boehmer, Christoph Brandt
and Jan Friso Groote

Luca Aceto, Anna Ingolfsdottir,
MohammadReza Mousavi and
Michel A. Reniers

Maja Pesi¢, Dragan Bosnacki and
Wil M.P. van der Aalst

MohammadReza Mousavi and
Emil Sekerinski, Editors

Muhammad Atif

Jeroen Keiren and Tim A.C. Willemse
Kees van Hee, Jan Hidders,

Geert-Jan Houben, Jan Paredaens,
Philippe Thiran

Ammar Osaiweran, Marcel Boosten,
MohammadReza Mousavi

F.E.J. Kruseman Aretz

Compositional Service Trees

Queue merge: a Binary Operator for Modeling Queueing Behavior

Breadth-Bounded Model Checking

Formal Specification and Analysis of Accelerated Heartbeat Protocols

Placeholder Calculus for First-Order logic

POLIPO: Policies & OntoLogies for the Interoperability, Portability,
and autOnomy

Pattern-based Analysis of Windows Workflow

Swift mode changes in memory constrained real-time systems

Behavioural analysis of an I2C Linux Driver

In-Vehicle Communication Networks: A Literature Survey
Analysis of ACS using mCRL2

Evaluation of a Business Continuity Plan using Process Algebra
and Modal Logic

A Rule Format for Unit Elements

Enacting Declarative Languages using LTL: Avoiding Errors and
Improving Performance

Proceedings of Formal Methods 2009 Doctoral Symposium

Formal Analysis of Consensus Protocols in Asynchronous Distributed
Systems

Bisimulation Minimisations for Boolean Equation Systems

On-the-fly Auditing of Business Processes

Analytical Software Design: Introduction and Industrial Experience Report

Design and correctness proof of an emulation of the floating-point operations
of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03

10/04

10/05

10/06

10/07

10/08

10/09

10/10

10/11

10/12

10/13

10/14

10/15

10/16

10/17

10/18

10/19

11/01

11/02

11/03

11/04

11/05

11/06

11/07

11/08

11/09

Luca Aceto, Matteo Cimini, Anna
Ingolfsdottir, MohammadReza
Mousavi and Michel A. Reniers

Hamid Reza Asaadi, Ramtin Khosravi,
MohammadReza Mousavi, Neda Noroozi

Reinder J. Bril, Ugur Keskin,
Moris Behnam, Thomas Nolte

Zvezdan Proti¢
C.G.U. Okwudire and R.J. Bril

Muhammed Atif, Sjoerd Cranen,
MohammadReza Mousavi

Sjoerd Cranen, Jan Friso Groote,
Michel Reniers

Mike Holenderski, Wim Cools
Reinder J. Bril, Johan J. Lukkien

Eric van Wyk and Steffen Zschaler

Pre-Proceedings

Faisal Kamiran, Toon Calders and
Mykola Pechenizkiy

J.F. Groote, T.W.D.M. Kouters and
A.A.H. Osaiweran

Daniel Trivellato, Nicola Zannone and
Sandro Etalle

L. Aceto, M. Cimini, A.Ingolfsdottir,
M.R. Mousavi and M. A. Reniers

L. Aceto, A. Birgisson, A. Ingolfsdottir,
and M.R. Mousavi

P.D. Mosses, M.R. Mousavi and
M.A. Reniers

Harsh Beohar and Pieter Cuijpers
Kees M. van Hee, Natalia Sidorova
and Jan Martijn van der Werf

M.F. van Amstel, M.G.J. van den Brand
and L.J.P. Engelen

H.R. Mahrooghi and M.R. Mousavi
J.F. Groote, A.A.H. Osaiweran and
J.H. Wesselius

Jan Friso Groote and Jan Lanik

P.J.L. Cuijpers

F.P.M. Stappers, M.A. Reniers and
S. Weber

Debjyoti Bera, Kees M. van Hee, Michiel
van Osch and Jan Martijn van der Werf

Tseesuren Batsuuri, Reinder J. Bril and
Johan Lukkien

On Rule Formats for Zero and Unit Elements

Towards Model-Based Testing of Electronic Funds Transfer Systems
Schedulability analysis of synchronization protocols based on overrun without
payback for hierarchical scheduling frameworks revisited

Locally unique labeling of model elements for state-based model differences
Converting existing analysis to the EDP resource model

Reconstruction and verification of group membership protocols
A linear translation from LTL to the first-order modal p-calculus
Extending an Open-source Real-time Operating System with Hierarchical

Scheduling

1% Doctoral Symposium of the International Conference on Software Language
Engineering (SLE)

3" International Software Language Engineering Conference

Discrimination Aware Decision Tree Learning

Specification Guidelines to avoid the State Space Explosion Problem

GEM: a Distributed Goal Evaluation Algorithm for Trust Management

Rule Formats for Distributivity

Decompositional Reasoning about the History of Parallel Processes

Robustness os Behavioral Equivalence on Open Terms

Desynchronisability of (partial) closed loop systems

Refinement of Synchronizable Places with Multi-workflow Nets -
Weak termination preserved!

Using a DSL and Fine-grained Model Transformations to Explore the boundaries of

Model Verification

Reconciling Operational and Epistemic Approaches to the Formal Analysis of
Crypto-Based Security Protocols

Benefits of Applying Formal Methods to Industrial Control Software
Semantics, bisimulation and congruence results for a general stochastic
process operator

Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

Transforming SOS Specifications to Linear Processes

A Component Framework where Port Compatibility Implies Weak Termination

Model, analysis, and improvements for inter-vehicle communication
using one-hop periodic broadcasting based on the 802.11p protocol

11/10

11/11

11/12

11/13

11/14

11/15

11/16

11/17

11/18

12/01

12/02

12/03

12/04

12/05

12/06

12/07

12/08

12/09

12/10

12/11

12/12

12/13

12/14

13/01

13/02

Neda Noroozi, Ramtin Khosravi,
MohammadReza Mousavi

and Tim A.C. Willemse

Jeroen J.A. Keiren and Michel A. Reniers

Muhammad Atif, MohammadReza
Mousavi and Ammar Osaiweran

J.F. Groote, A.A.H. Osaiweran and
J.H. Wesselius

J.F. Groote, A.A.H. Osaiweran and
J.H. Wesselius

John Businge, Alexander Serebrenik
and Mark van den Brand

J.F. Groote, A.A.H. Osaiweran,
M.T.W. Schuts and J.H. Wesselius

M.F. van Amstel, A. Serebrenik
And M.G.J. van den Brand

F.P.M. Stappers, M.A. Reniers,

J.F. Groote and S. Weber

S. Cranen

U. Khadim and P.J.L. Cuijpers

M.M.H.P. van den Heuvel, P.J.L. Cuijpers,
J.J. Lukkien and N.W. Fisher

Ammar Osaiweran, Tom Fransen,
Jan Friso Groote and Bart van Rijnsoever

Sjoerd Cranen, Jeroen J.A. Keiren and
Tim A.C. Willemse

A.P. van der Meer

Dirk Fahland and Robert Priifer

Luc Engelen and Anton Wijs

M.M.H.P. van den Heuvel, M. Behnam,
R.J. Bril, J.J. Lukkien and T. Nolte

Milosh Stolikj, Pieter J. L. Cuijpers and
Johan J. Lukkien

John Businge, Alexander Serebrenik and
Mark van den Brand

Jeroen J.A. Keiren and
Martijn D. Klabbers

Ammar Osaiweran, Jan Friso Groote,
Mathijs Schuts, Jozef Hooman
and Bart van Rijnsoever

Ammar Osaiweran, Mathijs Schuts,

and Jozef Hooman

S. Cranen, M.W. Gazda, J.W. Wesselink
and T.A.C. Willemse

Neda Noroozi, Mohammad Reza Mousavi
and Tim A.C. Willemse

Synchronizing Asynchronous Conformance Testing

Type checking mCRL2

Formal Verification of Unreliable Failure Detectors in Partially
Synchronous Systems

Experience report on developing the Front-end Client unit
under the control of formal methods

Ananlyzing a Controller of a Power Distribution Unit
Using Formal Methods

Eclipse API Usage: The Good and The Bad
Investigating the Effects of Designing Control Software
using Push and Poll Strategies

Visualizing Traceability in Model Transformation Compositions

Dogfooding the Structural Operational Semantics of mMCRL2

Model checking the FlexRay startup phase

Appendix C / G of the paper: Repairing Time-Determinism in
the Process Algebra for Hybrid Systems ACP

Revised budget allocations for fixed-priority-scheduled periodic resources
Experience Report on Designing and Developing Control Components
using Formal Methods

A cure for stuttering parity games

CIF MSOS type system
Data and Abstraction for Scenario-Based Modeling with Petri Nets

Checking Property Preservation of Refining Transformations for
Model-Driven Development

Opaque analysis for resource-sharing components in hierarchical real-time systems
- extended version —

Efficient reprogramming of sensor networks using incremental updates
and data compression
Survival of Eclipse Third-party Plug-ins

Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2

Evaluating the Effect of Formal Techniques in Industry

Incorporating Formal Techniques into Industrial Practice

Abstraction in Parameterised Boolean Equation Systems

Decomposability in Formal Conformance Testing

13/03

13/04

13/05

13/06

13/07

13/08

13/09

D. Bera, K.M. van Hee and N. Sidorova

A. Kota Gopalakrishna, T. Ozcelebi,
A. Liotta and J.J. Lukkien

T. Ozcelebi, A. Weffers-Albu and
J.J. Lukkien

Lotfi ben Othmane, Pelin Angin,
Harold Weffers and Bharat Bhargava

R.H. Mak

Mark van den Brand and Jan Friso Groote

P.J.L. Cuijpers

Discrete Timed Petri nets

Relevance as a Metric for Evaluating Machine Learning Algorithms
Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures
(WAmIi)

Extending the Agile Development Process to Develop Acceptably
Secure Software

Resource-aware Life Cycle Models for Service-oriented Applications
managed by a Component Framework

Software Engineering: Redundancy is Key

Prefix Orders as a General Model of Dynamics

	TITEL.PG13-09
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 13-09

	Blanco
	Tech-Report of DCM paper
	Blanco
	PUBL.LS4csr 2009 tm

