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Synchronous Data Flow Scenarios1

Marc Geilen
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The Synchronous Data-Flow (SDF) model of computation by Lee and Messerschmitt has become
popular for modelling concurrent applications on a multi-processor platform. It is used to obtain
a guaranteed, predictable performance. The model is on the other hand quite restrictive in its
expressivity, making it less applicable to many modern, more dynamic applications. A common
technique to deal with dynamic behaviour is to consider different scenarios in separation. This
analysis is however, currently limited mainly to sequential applications.

In this paper, we present a new analysis approach that allows analysis of Synchronous Data-
Flow models across different scenarios of operation. The dataflow graphs corresponding to the
different scenarios can be completely different. Execution times, consumption and production
rates and the structure of the SDF may change. Our technique allows to derive or prove worst-
case performance guarantees of the resulting model and as such extends the model-driven approach
to designing predictable systems to significantly more dynamic applications and platforms. The
approach is illustrated with three MP3 and MPEG-4 related case studies.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of
Computation

1. INTRODUCTION

Design of embedded systems is becoming increasingly complex because of larger
numbers of use-cases, heterogeneous multiprocessor platforms and increasingly com-
plex and dynamic applications. In order to manage this complexity, a number of
trends emerge. Model-based design [Lee and Sangiovanni-Vincentelli 1998; Thiele
et al. 2000] strives to design platforms and applications in such a way that systems
can be designed based on simple, abstract models and such that the (automati-
cally) realised design is guaranteed to behave according to the model with a pre-
dictable performance. Platforms should be as composable as possible [Sangiovanni-
Vincentelli and Martin 2001] and the application model simple enough to allow it to
be analysed and to serve as the starting point for a synthesis trajectory. Relatively
simple and static models are used for this, such as (homogeneous) synchronous
data-flow graphs or finite state automata. Modern applications however are more
dynamic than can be captured by such models without incurring too much overesti-
mation and too pessimistic assumptions. Models used in this process often capture
aspects of both the application behaviour as well as of the platform on which the
applications are mapped and of the impact of other applications contending for the
resources and the arbitration of those resources.

1This work was partially supported by the Netherlands Ministry of Economic Affairs under the
Bisk program in the Octopus project and by the European Commission under the FP7 program
in the ICT-216224 project MNEMEE.
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Fig. 1. Scenario graphs of MPEG-4 SP decoder

A second emerging trend is scenario-based design [Yang et al. 2002; Gheorghita
et al. 2006; Mamagkakis et al. 2007]. In this approach, the dynamic behaviour of
an application is viewed upon as a collection of different behaviours (scenarios)
occurring in some arbitrary order, but each of which is by itself fairly static and
predictable in performance and resource usage and can be dealt with by traditional
methods. Some of the difficulties are moved however to predicting scenarios and
dealing with scenario transitions.

In this paper we introduce techniques to model and analyse systems, the be-
haviour of which can be captured as a collection of scenarios, each expressed by
means of a Synchronous Data-Flow graph. Every aspect of the data-flow graphs
may be different in different scenarios, such as execution times, communication
rates or graph structure. Dependencies between subsequent scenarios are captured
by tokens which are transferred from one graph to the next. We show that the
model naturally captures pipelining of subsequent scenarios. As a mathematical
basis for our techniques, we use Max-Plus algebra. It provides the mathematical
tools for systems based on synchronisation and delays.

Individual scenarios are synchronous data-flow graphs. Analysis methods for
SDFGs exist and have recently been extended [Sriram and Bhattacharyya 2000;
Ghamarian et al. 2008; Wiggers et al. 2007]. In this paper we introduce an algorithm
to analyse the transient and steady-state behaviour of an SDFG and thus enable
the analysis of the changes from one scenario into the next.

As an example, we have a closer look at an MPEG-4 Simple Profile decoder
[Theelen et al. 2006] in Figure 1 (details of the graphical notation that are not im-
portant here, are explained in Section 3). It consists of the following components. A
stream parser FD (frame detector). VLD is a variable-length decoder decompress-
ing the entropy-coded stream of macro-blocks. MC is motion compensation, RC
reconstruction of the output frame and IDCT the inverse discrete cosine transfor-
mation. Frames can be classified in different types. Primarily, there is a difference
between I-frames and P-frames. I-frames are encoded independently from previous
frames, while P-frames exploit temporal correlation between subsequent frames,
but they need a reference to a previous frame. Decoding of I and P-frames is partly
different. Among P frames however, there is still a large variation in workload.
For a QCIF size image, there can be anywhere between 0 and 99 macro blocks per
frame. Together with the frame type, this number can be used as a classification
for scenarios. For this example, the following scenarios are identified. The first one
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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is decoding of an I-frame, it does not contain any motion vectors. For such a frame,
99 macro blocks are processed by VLD and IDCT and go into the reconstructed
frame, while MC is not used. The other scenarios correspond to P-frames. In a P
frame, the new frame is constructed from blocks from the previous frame, corrected
by a motion vector, together with a number of new blocks. The various scenarios
represent different numbers of macro blocks. Scenario ‘P30’ represents the case of
0 to 30 new blocks, modelled with the worst-case situation within that scenario,
namely 30 blocks. Similarly, scenario P40 represents 31-40 blocks and so on for
P50, P60, P70, P80 and P99. The VLD and IDCT operations are performed for
every individual block and the other operations once per frame. Hence, also the
communication rates vary with the scenario (x in Figure 1, representing the Px
scenarios, for the I scenario the edge from VLD to MC does not exist). The exe-
cution times of the operations are also represented by the worst-case situation per
scenario. We would like to answer the following kind of questions. Can the graph
meet throughput and latency constraints irrespective of the order of frame scenar-
ios? Given a sequence of frame scenarios, can we make an accurate predication of
the decoding completion time? Can we do dynamic voltage and frequency scaling
based on scenario information and still guarantee to meet deadlines for this and fol-
lowing scenarios? With traditional methods for analysing SDFGs, these questions
cannot be answered, or they can only be answered with a high conservative margin
and overestimation. In this paper we show how such questions can be answered
more satisfactorily.

The rest of the paper consists of the following parts. In the next section we discuss
related work. Then we give some mathematical preliminaries of SDF and Max-Plus
algebra. Section 5 introduces an algorithm to analyse the transient behaviour of an
SDFG. Section 6 explores different types of analysis enabled by the new algorithm.
The methods are illustrated with case studies in Section 7, followed by concluding
discussion.

2. RELATED WORK

Current state-of-the-art in model-based design of embedded multiprocessor sys-
tem software and platforms exploits a spectrum of models, ranging from statically
analysable models for guaranteed performance including models of limited expres-
sivity such as SDF [Lee and Messerschmitt 1987] and finite automata to more ex-
pressive models such as Kahn Process Networks [Kahn 1974; Buck 1993; Stefanov
et al. 2004] and combinations of models [Künzli et al. 2007; Lee and Sangiovanni-
Vincentelli 1998], which are more expressive and flexible, but often not statically
analysable for hard guarantees. This paper extends that spectrum with a model
that is more dynamic and flexible than the former and thus allows for tighter esti-
mations and still provides hard guarantees in contrast with the latter.

We started from the tradition of using Synchronous Data-Flow models [Sriram
and Bhattacharyya 2000; Ghamarian et al. 2008; Wiggers et al. 2007]. Some exten-
sions of the model are in use, such as Cyclo-Static Data-Flow (CSDF, [Bilsen et al.
1996; Wiggers et al. 2007]), which can capture changes in rates or execution times
in a data-flow graph, but only changes in fixed repetitive patterns. A per-scenario
analysis allows a tighter estimate of worst-case behaviour. More expressive data-
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flow models such as Boolean Data-Flow or Dynamic Data-Flow cannot be statically
analysed [Buck 1993]. Hybrid automata-SDF models have been studied, such as
HDF [Girault et al. 1999] but only in the context of sequential schedules. It there-
fore does not consider pipelined execution and the implications of pipelined scenario
transitions as we do in this paper. The results obtained in this paper directly apply
to the HDF model of computation. [Bhattacharya and Bhattacharyya 2001] intro-
duces a parameterised data-flow model, where parameter values can be interpreted
as different scenarios. The focus of that work however is on sequential software
synthesis rather than multiprocessor implementation.

The additional expressivity and flexibility is derived from considering scenarios
separately. State-of-the-art scenario-based analysis [Gheorghita et al. 2006; Yang
et al. 2002; Mamagkakis et al. 2007] mostly deals with sequential code and not with
parallel applications such as SDF graphs. In [Mamagkakis et al. 2007], scenarios
are applied from a system perspective on a concrete design case. Scenario based-
analysis has been applied to homogeneous data-flow graphs in [Poplavko et al. 2007]
with varying execution times per scenario. [Poplavko et al. 2007] proposes that the
number and types of scenario switches over a period to follow are embedded in a
video stream by the encoding party. It is shown that for an MPEG-4 Advanced
Video Coding scheme, this yields a much improved estimation of the worst-case
execution time at affordable overhead cost. In this paper, we generalise this analysis
in several ways. Our technique is also directly applicable to non-homogeneous
SDF graphs and we additionally allow production and consumption rates to vary
between scenarios and allow the graph structure to change. Moreover, we have
a more flexible characterisation of the transient behaviour between scenarios by
considering different combinations of a delay and period to be used as a bound
on the behaviour, giving more flexibility to prove that all deadlines will be met.
In [Poplavko et al. 2007], a tight estimate of worst-case performance is obtained
by analysing all transitions from a scenario s to a scenario t. However, when the
number of scenarios is large the amount of analysis required grows, as well as
the overhead in the data stream. In our approach it is also possible, perhaps at
the expense of less tight bounds on the worst-case execution times, to restrict the
analysis to one per scenario (as demonstrated in the case-study, where the result
turns out to be equally tight). Traditional SDF analysis often focusses on long-run
behaviour such as average throughput. When considering scenario changes between
SDF graphs however, an SDF graph executes for only a finite amount of time
and the transient behaviour is of more interest than long-run average behaviour.
[Moreira and Bekooij 2007] analyses transient behaviour of SDF graphs in order to
study strictly periodic execution of graphs and latency of graphs. The paper shows
that any valid static periodic schedule of the graph is an upper bound on the self-
timed behaviour. We use similar linear models to bound transient behaviour, but
we obtain the linear models in a different way. The paper does not study changes
between different graphs.

The origin of our model lies in the Scenario Aware Data-Flow (SADF) model of
[Theelen et al. 2006]. SADF also considers synchronous data-flow actors in different
scenarios. It models the possible order in which scenarios occur stochastically by
means of Markov models. Different scenarios may have different execution times
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 2. HSDF model of MPEG-4 AVC codec

or even execution time distributions per actor, may have different communication
rates and actors can be inactive in one or more scenarios. SADFs can be analysed
stochastically and for worst-case behaviour. Long run average throughput can be
computed, but also statistics of buffer occupancy. Exact results can in principle
be obtained by state-space exploration techniques or simulation can be used to ob-
tain approximations when the models become too large for exact analysis. Because
the analysis is not done compositionally, per scenario as in this paper, the state-
space that needs to be analysed can occasionally become prohibitively large. The
techniques in this paper apply to the class of SADFs which are strongly consistent
([Theelen et al. 2006]) and which have fixed execution times instead of distributions,
giving worst-case performance results, not using the scenario transition probabili-
ties. This subclass of SADF is comparable to the HDF model of Girault, Lee and
Lee. The analysis approach introduced in this paper is done on a per scenario
basis and therefore avoids the state-space explosion problem associated with the
monolithic analysis of the state-space of the combined scenarios.

3. PRELIMINARIES

3.1 Synchronous Data-Flow Graphs

In this paper, we study scenarios of Synchronous Data-Flow Graphs (SDFGs) [Lee
and Messerschmitt 1987; Sriram and Bhattacharyya 2000]. An SDFG is a graph
consisting of actors and channels, which model the execution of a real data-flow
application (on a real platform). Figure 2 shows an example of an SDFG. It is taken
from [Poplavko et al. 2007] and models a small part of an MPEG-4 Advanced Video
Coding decoder. Actors (circles in the figure) represent the individual computations
of an application. An actor can repeatedly fire, possibly multiple times simulta-
neously. With every firing of an actor, it consumes and produces fixed amounts
of tokens on the FIFO channels. It can only fire if sufficient tokens are available
on the channels from which it consumes. The production and consumption rates
are indicated next to the channel ends. For readability this is omitted in cases
where the rate is equal to 1. In Figure 2 all rates are equal to 1; such an SDFG is
called homogeneous, an HSDFG. Tokens thus capture dependencies between actor
firings. Such dependencies may originate from data dependencies, but also from
dependencies on shared resources. Actors do not always represent actual compu-
tations, but may also be used to model communication (actors in Figure 2 model
communication over a network-on-chip [Poplavko et al. 2007]), or synchronisation,
for instance to express more complicated schedules as we illustrate in Section 7.
For a more detailed, formal, semantics of SDF and its properties we refer to [Lee
and Messerschmitt 1987; Sriram and Bhattacharyya 2000; Ghamarian et al. 2006].

Firings of actors take time. In the SDF model, actor firings are modelled with a
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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constant execution time, which is typically an upper bound on the real execution
time of the corresponding computation of the actual application. Because the SDF
model of computation is monotone (an earlier or shorter firing of an actor cannot
lead to another actor firing occurring later), one can use worst-case execution times
in the model and get from the model an upper bound on the actual firing times and
data production times of the real application in practice. The so-called self-timed
execution is a schedule in which every actor firing takes place as soon as possible,
immediately when all required tokens are available. In this way, the self-timed
execution represents the best (tightest) bound that can be given on the timing
behaviour of the graph.

Because of the constant rates with which tokens are produced or consumed,
SDFGs are known to execute in fixed repetitive patterns, called iterations. Such
an iteration consists of a collection of actor firings that together have no net effect
on the position and numbers of tokens on channels. Moreover, they typically also
constitute a coherent collection of computations, for instance a frame in an audio or
video stream. This makes iterations the natural granularity for defining scenarios,
both from the application point of view as from the performance analysis point of
view. Note that this does not preclude that the execution of subsequent iterations
may overlap in time. In fact, this is quite common in pipelined execution. Hence,
different scenarios may be active simultaneously.

3.2 Max-Plus Algebra

We use the theory of Max-Plus algebra [Baccelli et al. 1992] as the semantical
framework to model our scenarios of SDF graphs. Two essential operations that
determine the self-timed execution of an SDFG are synchronisation and delay. Syn-
chronisation takes place when an actor waits for all of its input tokens to become
available and it fires immediately when all required tokens are present. There is a
delay between the start of the firing and the end of the firing, when all the output
tokens are produced, namely the execution time of the actor. These two elements
fit very well with the Max-Plus operators max and addition. If T is the set of tokens
required by an actor to start firing and for every τ ∈ T , tτ is the time that the
token becomes available, then the starting time of the firing of the actor is given
by: maxτ∈T tτ . Let further e be the execution time of that actor, then the output
tokens produced by that actor become available for consumption by other actors
at:

max
τ∈T

tτ + e,

which is a Max-Plus expression.
The behaviour of a data-flow graph can be characterised in a dual manner, either

by the times at which actors start their firings, or by the times at which the tokens
in channels are produced. Both ways can be derived from each other. In this
paper we focus on token production times, because the tokens capture exactly the
dependencies between iterations that are crucial to studying scenario transition
behaviour. We consider the collection of tokens that exist in their various channels
in between iterations. The production times of these tokens are collected in a vector
γ consisting of as many entries as there are tokens initially in the graph (e.g., seven
in Figure 2). After one iteration, by definition [Lee and Messerschmitt 1987], there
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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exist the same number of tokens in the same channels, but with different times at
which they are produced; γ0 becomes after an iteration of the graph γ1. We refer
to such a vector as a schedule and use γk to denote the vector of production times
of the tokens after the k-th iteration. The process of execution of an SDFG can be
captured by means of a matrix-vector multiplication in Max-Plus, this is explained
in more detail in the next section. In this algebra, addition and max operator take
the role of multiplication and addition respectively of traditional linear algebra.
The evolution of the SDF graph, characterised by the matrix G, is then governed
by the following equation.

γk+1 = Gγk

We introduce some notation related to Max-Plus algebra. Max-Plus algebra
defines the operations of the maximum of numbers and addition over the set IR ∪
{−∞}, the real numbers extended with −∞. For readability, we use the standard
notation for the max and addition operations instead of the ⊕ and ⊗ notation often
used in Max-Plus literature. For scalars x and y, x · y (with shorthand xy) denotes
ordinary multiplication, not the Max-Plus ⊗ operator. The max and + operators
are defined as usual with the additional convention that −∞ is the zero-element of
addition, −∞+ x = x +−∞ = −∞ and the unit element of max, max(−∞, x) =
max(x,−∞) = x. Max-Plus is a linear algebra: x + max(y, z) = max(x + y, x + z).
The algebra is extended to a linear algebra of matrices and vectors. Unless stated
otherwise, vectors are column vectors. To save space we sometimes write a row
vector using transposition (aT ) to turn it into a column vector. In this paper we
only use Max-Plus matrix-vector multiplication and never the traditional matrix-
vector multiplication. For a matrix M and vector x, we use Mx to denote this
Max-Plus matrix multiplication. If a = [ai] and b = [bi] with ai, bi ∈ IR∪{−∞} are
vectors of size k, then we write a ¹ b to denote that for every 1 ≤ i ≤ k, ai ≤ bi.
With a a vector and c a scalar, we use c+a or a+ c to denote a vector with entries
identical to the entries of a with c added to each of them: c + a = a + c = [ai + c].
We use 0 to denote a vector with all zero-valued entries. The size of 0 is clear from
the context. We use max(a, b) (resp. min(a, b)), defined as [max(ai, bi)] (resp.
[min(ai, bi)]) as a max (resp. min) operator on vectors and a + b (resp. a − b),
defined as [ai + bi] (resp. [ai− bi]) as addition (resp. subtraction) of vectors. (Just
like in traditional algebra subtraction is defined as addition of the additive inverse.)
||a|| denotes a vector norm, defined as: ||a|| = maxi ai. It is a vector norm in Max-
Plus algebra, because (i) ||a|| = −∞ iff ai = −∞ for all i; (ii) ||c + a|| = c + ||a||;
(iii) ||max(a, b)|| ≤ max(||a||, ||b||). For a vector a with ||a|| > −∞, we use anorm

to denote a−||a||, the normalised vector a, so that ||anorm|| = 0. An inner product
is defined as follows: (a, b) := maxi ai + bi. If matrix M = [mj ] (i.e., has column
vectors mj) then Mx := maxj(mj + x) and MT x := [(mj , x)]. It is easy to
verify that matrix multiplication is linear: M(max(x, y)) = max(Mx,My) and
M(c + x) = c + Mx. If M = [mj ] and N = [nj ] are equally sized matrices with k
columns, then M ¹ N denotes that for all 1 ≤ j ≤ k, mj ¹ nj .

4. MODELLING SDF WITH MAX-PLUS

In this section we discuss how Max-Plus linear algebra can be used to model the
behaviour of an SDFG. In particular, we give an alternative operational semantics

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



8 ·
to the traditional one (see e.g. [Ghamarian et al. 2006]). The main advantage of this
semantic model is that individual iterations of the graph can be easily separated,
despite the fact that they may overlap in time when they are executed in a pipelined
fashion. This is an important advantage when dealing with scenarios, because they
are associated with iterations of the graphs and can be pipelined. In this framework
they can be easily handled individually.

In the classical operational semantics of SDF [Ghamarian et al. 2006], the global
evolution of the state of the SDFG is modelled by a labelled transition system.
Every state in this transition system represents the graph’s condition at a particular
point in time. In contrast, in the Max-Plus semantics we focus on determining the
appropriate time-stamps for every token produced and consumed in the graph. We
group those tokens together that belong to the same iteration of the graph instead
of those tokens that are alive at the same point in time.

4.1 Example

We illustrate this using the graph of Figure 3. The repetition vector of the graph is
[1; 2; 2; 1]T , meaning that one iteration of the graphs consists of one firing of actors
A and D each and two firings of actors B and C each. The self-timed execution of
this graph is illustrated in Figure 4. Time is depicted on the horizontal axis and
the actors vertically. Grey boxes represent the firings of the actors, labelled by the
actor name, the number of the iteration and for actors B and C the number of
the firing within that iteration. The small circles denote the initial tokens and the
tokens produced at the end of every iteration.

If we assume that, initially, all tokens have a time-stamp of 0 (are available,
starting from time 0), then, actor A fires at time 0. The firing takes 2 units of
time and A produces 2 tokens to actor B, 2 tokens to actor C and 1 token on its
self-edge, each with a time-stamp of 2. Actors B and C depend on these tokens and
can now start at time 2. In fact, two firings of C can start simultaneously at time
2, but only one firing of B, because it has a self-edge with one token only. B takes
4 units of time and ends its firing at time 6. This produces a token labelled with
time-stamp 6 on its self-edge and on the edge to actor D. A second firing of B is
started consuming the token from the self edge and the token received earlier from
A. Meanwhile at time 8, the two firings of C end and the second firing of B ends at
10. D gets two tokens from actor B, time-stamped 6 and 10 respectively and two
tokens from C, both time-stamped 8. Hence, the firing of D starts at 10 and ends
at 12. This completes one iteration. The tokens are back on their original positions
and the time-stamps are 2 for t1, 10 for t2, 0 for t3 and 12 for t4. These are the
tokens labelled ‘1’ in Figure 4. We use these time-stamps to represent the ‘state’ of
the graph after one iteration. Note the difference with the states in the traditional
operational semantics [Ghamarian et al. 2006] which represent a global state of the
graph at a distinguished point in time (a vertical cut in the graph of Figure 4). In
such a state however, typically different iterations are active simultaneously.

We represent the time-stamps of the four initial tokens with a vector using the or-
der [t1; t2; t3; t4]T as indicated in Figure 3. The initial vector is γ0 = [0; 0; 0; 0]T .
After one iteration this becomes γ1 = [2; 10; 0; 12]T , after two iterations γ2 =
[4; 18; 12; 20]T and so on: γ3 = [14; 26; 20; 28]T and γ4 = [22; 34; 28; 36]T . γ4

is equal to γ3, except that all time-stamps have been shifted by 8 time units. From
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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this fact it is easy to see that all subsequent iterations will produce again similar
vectors, each time shifted by 8 time units; the graph executes with a period of 8 or
a throughput of 1/8.

In order to derive a Max-Plus equation for the graph behaviour, we study this
model of execution symbolically. We show that at any point in time, the time-
stamp of a token can be expressed symbolically, as a formula, a Max-Plus linear
combination, as t = maxi ti +gi for suitable constants gi, where the ti are the time-
stamps of the initial tokens. This can be written in the form of a Max-Plus vector
inner-product (g, t) for a corresponding vector g = [g1, g2, g3, g4]T and with t =
[t1, t2, t3, t4]T . We refer to such an equation as a symbolic time-stamp and symbolic
time-stamps will be represented by the vector g. As an example we consider again
the execution of the SDFG of Figure 3, this time with symbolic time-stamps. Time-
stamp t1 corresponds to the symbolic time-stamp vector [0; −∞; −∞; −∞]T ,
t2 corresponds to the vector [−∞; 0; −∞; −∞]T , t3 to [−∞; −∞; 0; −∞]T

and finally t4 to [−∞; − ∞; − ∞; 0]T . We start by firing actor A consuming
two tokens, one from the self edge and one from the edge from actor D, labelled
with [0; −∞; −∞; −∞]T and [−∞; −∞; 0; −∞]T respectively. The tokens
produced by A carry the symbolic time-stamp:

max([0; −∞; −∞; −∞]T , [−∞; −∞; 0; −∞]T ) + 2 = [2; −∞; 2; −∞]T

which corresponds to the expression max t1 + 2, t3 + 2. The subsequent firing of
actor B with a duration of 4 consumes one of these tokens as well as an initial token
on its self-edge labelled with [−∞; 0; −∞; −∞]T . B produces output tokens
labelled as:

max([2; −∞; 2; −∞]T , [−∞; 0; −∞; −∞]T ) + 4 = [6; 4; 6; −∞]T

If we continue the symbolic execution till the completion of the iteration, we
obtain four new tokens t′1, t′2, t′3 and t′4 with respectively the symbolic time-stamps
[2; −∞; 2; −∞]T , [10; 8; 10; −∞]T , [−∞; −∞; −∞; 0]T and [12; 10; 12; −
∞]T . If we collect the symbolic time stamps of these new tokens into a new vector
[t′1; t′2; t′3; t′4]

T , we obtain the following Max-Plus matrix equation:



t′1
t′2
t′3
t′4


 =




2 −∞ 2 −∞
10 8 10 −∞
−∞ −∞ −∞ 0
12 10 12 −∞







t1
t2
t3
t4




In short:

t
′ = Gt.

In this way, the behaviour of any SDFG F can be characterised by a correspond-
ing Max-Plus matrix GF . This matrix can be computed by means of a symbolic
execution of one iteration of the graph as illustrated for the example. Algorithm 1
gives a sketch of an algorithm to compute the matrix for an SDFG. The notation
and definitions of SDF graph are left somewhat implicit, because they will not be
needed for the remainder of the paper.

Because there is a straightforward translation from a concrete Max-Plus matrix
to a corresponding homogeneous SDFG, this algorithm also provides an alternative
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translation from an SDFG to an HSDFG. In the traditional translation of [Sriram
and Bhattacharyya 2000], the resulting HSDF has a separate actor for every indi-
vidual actor firing in an iteration of the original graph and the firing time of those
corresponding actors exactly coincide. Therefore, the size of the resulting HSDFG
for the traditional translation [Sriram and Bhattacharyya 2000] equals the sum of
the entries on the repetition vector of the graph. If we use a translation from the
corresponding Max-Plus matrix to an HSDFG, the translation results in a graph
with a number of actors that grows in the worst case with the square of the number
of initial tokens in the graph (but can be much smaller if the matrix is sparse).
For some graphs (in particular graphs with few initial tokens) this may result in a
much smaller HSDFG. This is possible because the equivalence relation maintained
between the original graph and its HSDF conversion is slightly weaker than for the
traditional translation. There are no corresponding actor firings as in the transla-
tion of [Sriram and Bhattacharyya 2000], but the initial tokens after every iteration
of the graph are produced with exactly the same time-stamps and hence the graph
has, for instance, the same throughput. Details of the translation algorithm can be
found in [Geilen 2009].

4.2 Max-Plus model of self-timed execution

The matrix equation relates the time-stamps of the tokens before and after one iter-
ation under self-timed execution. Therefore, the self-timed evolution of an SDFG,
starting from initial tokens with time stamps γ0 is entirely captured by the sequence

{γk | k ≥ 0} = {Gkγ0 | k ≥ 0}.
It is known [Baccelli et al. 1992] that the sequence Gkγ0 ultimately becomes pe-
riodic for proper (connected, self-timed bounded [Ghamarian et al. 2006]) graphs.
I.e., there exist m,n ∈ IN such that for every k ≥ m, Gk+nγ0 = Gkγ0 + nλ,
where λ is the maximum cycle mean (MCM) of the equivalent homogeneous SDFG
[Sriram and Bhattacharyya 2000; Ghamarian et al. 2006].

Algorithm 2 implements an exploration of the behaviour of the graph in a re-
cursive algorithm. MinPeriod(G, γ = 0, k = 0, S = ∅) takes as arguments a
matrix G of the SDFG, an initial schedule γ (with default value zero vector 0),
a number k, the number of iterations already explored (default 0) and a set S of
normalised vectors already observed in the exploration (initially ∅). The algorithm
explores subsequent iterations of the graph until the periodic phase of the execution
is detected (condition line 2). It then returns the MCM λ and the first vector in
the periodic phase (line 3), else it continues exploration recursively (line 5). The
algorithm is initially called with only the matrix G, MinPeriod(G).

Note that although we focus on production times of tokens, (models of) actor
firing times can be derived from (the models of) the production times of the tokens.
For a given actor a, we can find a matrix Aa such that Aaγk is a vector containing
all the firing times of actor a in iteration k.

One of the essential properties of SDFGs is that their temporal behaviour is
monotonic:

γa ¹ γb ⇒ Gγa ¹ Gγb

Suppose γa represents the real moments at which the tokens become available and
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 3. Example SDFG

Fig. 4. Self-timed execution of the example SDFG

γb is an upper bound we manage to establish, then the equation gives us an upper
bound on the production times of the new generation of tokens, by assuming γb were
the actual production times. In fact, this is also true for the entries in the matrix
G, i.e. for the actor execution times, (constant) upper bounds are used instead of
the real (varying) execution times. Such bounds are obtained for instance by means
of worst-case execution time analysis.

Ga ¹ Gb ⇒ Gaγ ¹ Gbγ

Moreover, a bound can be established on this difference:

||Gγb −Gγa|| ≤ ||γb − γa||
respectively

||Gaγ −Gbγ|| ≤ ||Ga −Gb||
which shows that the difference does not further increase.

4.3 Spectral Analysis

In the tradition of linear system theory, to study this evolution γk = Gkγ0 in the
long run, spectral analysis of the matrix G is used. Spectral analysis deals with the
study of the eigenvalue equation, which is in Max-Plus terms:

Gγ = λ + γ.

For any combination of λ and γ with ||γ|| > −∞ that satisfy this equation, λ is
called the eigenvalue and γ the corresponding eigenvector. It is known [Baccelli
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Fig. 5. Alap execution of the example SDFG

Algorithm 1 Compute Max-Plus matrix of an SDFG
1: ComputeMatrix(F )
2: /* T associates symbolic time-stamp ik to initial token tk */
3: T ← {

(tk, ik) | tk ∈ InitialTokens
}

4: σ ← SeqSchedule(F ) /* determine a sequential schedule of an iteration */
5: for j = 1 to Length(σ) do
6: Actor a ← σ[j] /* a the j’th actor in the schedule */
7: Fire a consuming tokens U ⊆ T
8: produce output tokens with time-stamp gp ← max {g(t) | t ∈ U}+ E(a)
9: add new tokens to T

10: end for
11: G ← [g(t)] for all t ∈ InitialTokens

Algorithm 2 Algorithm to compute minimal period (throughput) of an SDFG and
schedule in the periodic phase
1: MinPeriod(G, γ = 0, k = 0, S = ∅)
2: if (γs,m) ∈ S with γs

norm = γnorm then
3: return (||γ − γs||/(k −m), γ)
4: else
5: return MinPeriod(G,Gγ, k + 1, S ∪ {(γ, k)})
6: end if

et al. 1992; Ghamarian et al. 2006] that any connected and self-timed bounded
SDFG has a corresponding matrix with a unique eigenvalue . If γ is an eigenvector,
then so is c+γ for any c. The eigenvalue is identical to the MCM of the equivalent
homogeneous SDFG [Karp and Miller 1966; Sriram and Bhattacharyya 2000], and
thus indicates the maximum achievable throughput (1/λ) of the graph. We observed
that for the graph of Figure 3, γ4 = Gγ3 = γ3 + 8. This shows that γ3 (and thus
also γ4) is an eigenvector of G with eigenvalue 8. In normalised form they are equal
to [−14; − 2; − 8; 0].

When a graph executes a prolonged time in a self-timed way within one scenario,
the behaviour converges to steady state behaviour. The graph then executes at its
maximal throughput and in a periodic way. It is known that this periodic behaviour
may span multiple iterations [Baccelli et al. 1992], but the length of the period is
exactly one iteration when the vector γ is an eigenvector of the matrix G (and in
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Algorithm 3 Compute eigenvector and eigenvalue
1: SpectralAnalysis(G)
2: (λ, γp)← MinPeriod (G)
3: γ ← γp, γS ← γp

4: repeat
5: γS ← max(γS ,γ)
6: γ ← Gγ − λ
7: until γ = γp

8: return (γS − ||γS ||, λ)

that case, the duration of the period is the eigenvalue of the matrix). Computing
eigenvector and eigenvalue is called spectral analysis in linear system theory. For
SDFGs it can be done with Algorithm 3, which is based on the following proposition.

Proposition 4.1. Let G be a Max-Plus matrix of an SDFG with eigenvalue λ.
Let {γk | 1 ≤ k ≤ n} be the periodic phase in the self-timed execution of the graph,
i.e., γk+1 = Gγk and Gγn = γ1 + nλ. Then γS, defined as

γS = max
1≤k≤n

(γk − kλ)

is an eigenvector of G.

Proof. (Following [Heidergott et al. 2006], Theorem 4.1.) We show that γS

satisfies the eigenvalue equation with eigenvalue λ, using the fact that matrix mul-
tiplication is linear and that because of the periodicity, γn+1 = γ1 + nλ.

GγS = G(max1≤k≤n γk − kλ)
= max1≤k≤n G(γk − kλ)
= max1≤k≤n(Gγk)− kλ
= max1≤k≤n γk+1 − kλ
= λ + max1≤k≤n γk+1 − (k + 1)λ
= λ + max1≤k≤n γk − kλ
= λ + γS

It follows from the proposition that an eigenvector can be computed by taking the
maximum over all vectors encountered in the periodic phase of the self-timed exe-
cution shifted by a corresponding factor kλ. The algorithm invokes the throughput
calculation algorithm of Algorithm 2, which returns the MCM (minimum period,
eigenvalue, the reciprocal of the throughput) of the graph, as well as the first vec-
tor in the periodic phase of the execution. The algorithm then executes through
the periodic phase once, while maintaining the max over all vectors encountered
in γS . This is an eigenvector according to Proposition 4.1. It is returned by the
algorithm (normalised), together with the eigenvalue obtained from the invocation
of Algorithm 2.

Alternative to Algorithm 3, traditional Max-Plus spectral analysis algorithms
can be used [Cochet-Terransson et al. 1999; Dasdan et al. 1999], but the algorithm
presented here can work directly on the SDF graph. Note further that we assume
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that time stamps in schedules can be arbitrary real numbers. In real world systems
often, actors can only be scheduled on discrete (integer) moments in time. The
existence of an eigenvector depends on this assumption. However, it is easy to
show [Chao and Sha 1995] that a periodic schedule with approximately the same
performance can be obtained by rounding the schedule or an optimal schedule by
unfolding the graph.

An eigenvector is a vector which repeats itself with every iteration under as-
soon-as-possible (asap, self-timed) scheduling. There is a similar schedule which
is periodic under as-late-as-possible (alap) scheduling. Alap scheduling of an SDF
graph can be mimicked by reversing all dependency edges of the graph and consid-
ering an asap scheduling of the resulting graph, as if it were evolving backwards in
time. In terms of Max-Plus, the alap schedule γL of a matrix is the inverse −γ′

of the eigenvector γ′ of the transposed matrix GT . For example, for the graph of
Figure 3, the asap eigenvector equals [−14; −2; −8; 0]T and the alap eigenvector
equals [−8; − 6; − 8; 0]T . If we align asap schedule γS and alap schedule γL,
by adding a suitable scalar, such that ||γS − γL|| = 0, then γS(i) = γL(i) exactly
for the tokens on the critical path of execution. For the example this becomes
γL = [−4; − 2; − 4; 4]T . The token on the self-edge of actor B is critical, which
explains that the minimum period of the graph is 8, two firings of B are required,
each taking 4 units of time. γL − γS = [10; 0; 4; 4]T , showing the slack in the
firing of the other actors. In general, γL(j)−γS(j) is the amount of slack for token
j. Figure 5 show the alap execution of the graph of Figure 3. The firings of actor
B are on the critical path and have been kept at the same position. Other actors
are fired as late as possible to enable these firings to take place. The alap tokens
are positioned right before they are consumed.

A schedule bounded by the alap schedule can be executed within a period of the
eigenvalue as proved in the following proposition.

Proposition 4.2. Let G be a Max-Plus matrix of an SDFG. Let −γL be an
eigenvector of GT (the periodic alap schedule) with corresponding eigenvalue λ (also
the eigenvalue of G), then GγL ¹ γL + λ.

Proof. It is easy to show that GT and G have the same eigenvalue. Let G =
[gkm]. From GT (−γL) = λ − γL it follows that for all m, maxk gkm − γL(k) =
λ− γL(m). This implies that for all m and k, gkm + γL(m) ≤ λ + γL(k). For all
k, maxm gkm + γL(m) ≤ λ + γL(k). Since the left-hand side equals (GγL)(k), we
have that for all k, (GγL)(k) ≤ λ + γL(k) and thus that GγL ¹ λ + γL.

A straightforward corollary of this proposition and monotonicity of Max-Plus and
SDF behaviour is that

γ ¹ γL ⇒ Gγ ¹ γL + λ

end hence by repeating this property

γ ¹ γL ⇒ Gkγ ¹ γL + kλ

5. ANALYSING SCENARIOS

In this paper, we consider scenario changes to modify the graph and hence the
matrix G in between iterations and therefore the analysis is not focussed on the
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Fig. 6. Different linear upper bounds

long-run average behaviour of the graph (only), but on transient behaviour between
scenarios. In this case, the final γk of one scenario provides the initial conditions for
the execution of the next. We model a Scenario Aware Data Flow graph (Σ, {Gs |
s ∈ Σ}) as a set Σ of all scenarios and corresponding SDF graphs modelled by
matrices Gs.

For instance, for the MPEG-4 Simple Profile decoder of Figure 1 different scenar-
ios correspond to different numbers of macro blocks and different execution times
for I or P frames. Every individual scenario is captured by a specific SDF graph,
where x in the graph is replaced by a concrete rate and the execution times of the
actors have a concrete value.

5.1 A Model of Transient Behaviour

To be able to effectively reason about the execution of the graphs in different scenar-
ios we need a simple model of transient behaviour. We characterise the behaviour of
an SDF graph, i.e., the sequence of vectors γk, by a linear upper bound. (Note that
it is straightforward to also include other tokens produced and consumed during
the iterations, or actor firings if these are important for performance requirements.)
We look for a vector τ and a scalar number π such that the following is valid for
the iterations (k) of interest.

γk ¹ τ + k · π (1)

This linear upper bound, which we denote by the pair (τ , π), consists of two com-
ponents,an initial delay vector τ , and a period π, which determines the guaranteed
throughput (1/π).

Such bounds are illustrated in Figure 6. The figure shows a sequence of vectors
γk along the horizontal axis. The vectors consist of two elements, represented by
the vertical pairs of open en closed circles giving their value on the vertical axis.
The two pairs of lines with identical slope (one solid line, one open line per pair)
both constitute upper bounds. πi corresponds to the slope of the lines and τ i is the
vector of intersections with the vertical axis. The figure illustrates that different
linear upper bounds (for instance (τ 1, π1) and (τ 2, π2)) can be models of the same
execution sequence, short delay (smaller τ ) can be traded for short period (smaller
π). We prefer linear upper bounds (τ , π) that are tight, i.e., such that there exists
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no other linear upper bound model (τ ′, π′) for the set of vectors such that both
τ ′ ¹ τ and π′ ≤ π (i.e., they are Pareto optimal).

The linear upper bound model is comparable to linear arrival curves in Network
Calculus [Boudec and Thiran 2003] or Real-Time Calculus [Thiele et al. 2000] or
latency-rate curves [Stiliadis and Varma 1998]. As such, these models of SDF
behaviour can also be suitable interfaces to analysis techniques based on these
models.

5.2 Analysing Delay and Period

In order to use the linear upper bound (delay-period) model to analyse the perfor-
mance of applications, we need an algorithm to determine the delay-period model(s)
for any given SDFG. For instance, we might like to compute for a given desired
period π (the throughput requirement) of the graph and an initial condition γ0,
the minimal delay τ such that (τ , π) is a tight model of the behaviour of the graph
starting from specific initial conditions γ0. In this case, we assume that the desired
throughput and hence the period π are fixed and given. We give a more general
algorithm later on, but first discuss a method how we can compute such a model.
We start from the basic Max-Plus based state-space exploration method used in
Algorithm 2 [Ghamarian et al. 2006]. This method computes the vectors γk one by
one by means of executing the SDFG model. The execution proceeds until a recur-
rent state is detected, i.e., if for the latest γk, there is some n < k and constant λ
such that γk = γn +(k−n)λ. In that case, λ is the eigenvalue of G (the minimum
period the graph can support) and the rest of the vectors will proceed periodically
according to the recursive equation

γk+m = γn+m + (k − n)λ.

Because of the periodicity, further exploration is not necessary.
We adapt the Max-Plus throughput analysis method as follows. During the

exploration we maintain the smallest vector τ such that (τ , π) is a tight model for
all schedules up to k. For k = 0, the initial model (τ , π) has τ = γ0. For every
following k, we maintain the guarantee that γk ¹ τ + k · π or γk − k · π ¹ τby
adapting τ accordingly. The algorithm thus proceeds as follows:

{
τ 0 = γ0

τ k = max(τ k−1,γk − k · π)

Once the execution is periodic and the desired period π is achievable by the graph
in the long run (π ≤ λ), then also the delay vector τ k will not change anymore
(proved below) and the analysis can terminate. (τ k, π) is the required tight model.
If λ > π, then the graph does not have any model with such period π. The following
proposition proves that after the first recurrent state, the delay vector does not need
to be increased anymore.

Proposition 5.1. If γl is a recurrent state in the state-space exploration and
γk ¹ τ + kπ for all k < l and π ≥ λ, then γm ¹ τ + mπ for all m ∈ IN.

Proof. It is true for m < l by the assumption. For m ≥ l, there is some k < m
such that γm = γk +(m−k)λ ¹ γk +(m−k)π ¹ τ +kπ +(m−k)π = τ +mπ.
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We see in Section 6 that in the context of reconfigurations from one scenario to
another, we may want to enforce a particular schedule as a reference and compute
a single delay relative to that schedule. Let γ∗ be that schedule and let our goal
be to find the smallest delay τ such that for all k

γk ¹ τ + γ∗ + k · π
Note that τ in this case is not a vector but a constant scalar. To find it, we can
generalise the earlier problem to look for the smallest delay vector τ such that for
all k

γk ¹ τ + γ∗ + k · π (2)

This is a generalisation of both problems. The delay we are looking for in the latter
problem equals: τ = ||τ || and it reduces to the former problem by taking γ∗ = 0.

Before we give an algorithm, we generalise the problem a bit more. As discussed
in the beginning of this section, the delay-period model of actor firings may allow
for solutions consisting of different (tight) combinations of delay τ and period π.
We find all combinations that provide a model and know all combinations that are
tight. To do this, we observe the following. Instead of interpreting the upper bound
equation (2) as an equation with constant τ and π and variables γk and k, we can
also reverse the roles in an execution of the graph. Every observed point k, γk in the
exploration of the state space limits the combinations of τ and π that are models
by equation (2). In addition to that, once the periodic phase of the behaviour is
reached, its eigenvalue is known and the periodic extension is captured by a lower
bound of λ on π representing the minimal period or maximal achievable throughput.
It follows from Proposition 5.1 that all equations up to that point are sufficient to
guarantee that their solutions are models of the entire, infinite execution.

Note that the set of equations thus obtained consist of half spaces in a space
consisting of one of the entries of τ and the period π. There are no constraints
among τ entries directly. The total set of admissible combinations is given by
the intersection of these half-spaces and the tight models are exactly the so-called
Pareto frontier of this set.

The equations for the vectors of Figure 6 are illustrated in Figure 7. Concrete
delay-period models are constrained such that the solid lines lie in the dark grey
area and the open lines are in the are consisting of the light and the dark grey
areas. The two lines drawn in the figure illustrate an example model. In this case
the (unique) tight model having the minimal possible period. All tight models
touch on the dashed lines at some point of the graph.

We introduce one final generalisation and then provide the algorithm. Since our
goal may sometimes be only to provide a bound on the final iteration in an interval
of iterations in a particular scenario, supposing we know how long the interval
lasts, we may want to suppress enforcing the upper bound inside the interval or
beyond the end of that interval. In order to be able to do this, we provide an
additional parameter m to the algorithm, indicating that we only want to enforce
the constraint starting from iteration m. In particular m is often equal to 1, because
we know that we will execute at least one iteration. The algorithm to compute the
bounds is given in Algorithm 4.

The algorithm is initially called as follows: Bounds(G,γ∗,m,γ0). G is the
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Algorithm 4 Compute delay-period trade-off
1: Bounds(G, γ∗,m, γ, k = 0, S = ∅)
2: if there is (γs, l) ∈ S with γs

norm = γnorm then
3: return {π ≥ ||γ − γs||/(k − l)}
4: else
5: S ← S ∪ {(γ, k)}
6: γ′ ← Gγ
7: if k < m then
8: return Bounds(G, γ∗,m, γ′, k + 1, S)
9: else

10: DPE ← {τi + k · π ≥ γ(i)− γ∗(i) | 1 ≤ i ≤ size(γ)}
11: return DPE ∪ Bounds(G, γ∗,m, γ′, k + 1, S)
12: end if
13: end if t

12345
6
γ γ γ γ γ

π≥λ
γ γ

Fig. 7. Linear upper bound equations

SDFG. γ∗ is the reference schedule. γ0 is the initial condition from which the
graph starts. From iteration m, the bound is enforced. The algorithm returns a set
of inequalities, the solutions of which are the upper bound models (τ , π) and the
Pareto points are tight ones.

In the algorithm, S is a set of schedules observed so far and is used to detect a
recurrent state (they can be efficiently found in S), at which point the analysis can
end (line 3) with the final equation on the minimum period (maximum throughput)
of the graph. In every step the algorithm stores the current schedule (line 5), com-
putes the next schedule by executing one iteration (line 6), starting from iteration
m, enforces the constraints and continues with a recursive call (lines 7-12). The
new equations are added in line 10. Note that as many equations are added as
there are entries in the vectors. τi refers to entry i of the delay vector τ . Every
equation is a constraint involving one of the entries of τ and the period π. With
linear programming techniques, redundant equations can be removed if necessary
and the desired solutions can be found.
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6. EXECUTION TIME ANALYSIS

In this section we show how the steady-state spectral analysis and the transient
analysis of the previous section can be combined to a method for analysing SDF
scenarios.

6.1 Proving Bounds on Scenarios

The monotonicity property of SDFG execution enables an assume-guarantee style
reasoning for proving upper bounds on the production times of output: if we have
an upper bound γ on the times when the initial tokens for an iteration become
available, then Gγ is guaranteed to be an upper bound on the times when the
new tokens are made available after that iteration. This bound is in turn used as
the starting assumption for the next iteration and so on and so forth. For longer
sequences of iterations in the same scenario, we look for a schedule that can be used
as an invariant schedule throughout the interval. An eigenvector of the scenario
graph is of course the obvious candidate for such an invariant. In conjunction with
the results obtained from Algorithm 4, this gives us a powerful and flexible tool to
establish bounds on worst-case behaviour of SDF scenarios. We illustrate this by
several case studies in Section 7.

Besides the analysis of intervals of iterations in a particular scenario, we also
need to analyse the transitions from one scenario interval to another. We can do
this analysis for any specific combination of scenarios. Analysis of the first scenario
interval provides us with a bound on the completion of the last iteration in that
scenario. We can use Algorithm 4 to analyse how the second scenario interval
behaves when started from this bound.

A disadvantage of the approach explained above, can be that any combination
of two scenarios has to be analysed individually. In case there are many scenarios,
this may be a problem. A more efficient approach to analysis of SDF scenarios is to
establish a single reference schedule, γ∗, which is used as an invariant in-between
scenario intervals. Then, for each scenario s ∈ Σ, we can establish a duration
τs such that if we assume all tokens are available at γ∗, we can guarantee that
the new tokens are produced no later than τs + γ∗. In the same way, if we have a
desired period πs for this scenario, we can determine a tight τs such that the results
of k iterations are produced no later than τs + k · πs + γ∗ This way, we obtain a
simple model for estimating the performance of these SDF scenarios, namely we can
simply add τs for each interval executed in scenario s and the number of iterations
in that interval times the period. The experiments in the next section show that
this approach is often sufficient.

6.2 Optimal Reference Schedule

The approach introduced above raises the question of how to determine the invari-
ant schedule. The smaller the entries in the reference vector are chosen, the more
difficult it becomes to establish it at the end of an interval. A higher value on the
other hand makes the starting condition of the interval less favourable. Both could
lead to extra delay. Which schedule is optimal may even depend on the frequency
of occurrence of specific scenarios, by favouring scenario transitions that occur fre-
quently. Although determining the optimal reference schedule is a difficult problem
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in general, which requires further study, the case studies in the next section show
that a good schedule is often relatively easy to find in practical cases. We have
used the following heuristic. Firstly, rather than normalising all eigenvectors to
have a norm of 0, we align them on the critical tokens (if the same tokens are
critical in different scenarios). We use alap schedules of scenarios, because the late
production times potentially allow for shorter initial delay, while at the same time,
being alap, they are still soon enough to make the same deadlines in the long run,
the eigenvector of the scenario. Since we want to guarantee that we make the alap
deadline, regardless of the next scenario, we use as a reference schedule:

γ∗ = min
s∈Σ

γL
s

In this selection of reference schedules no additional penalty in scenario switches
are encountered in the case studies.

We can generalise the notion of an eigenvector of a single scenario to a set of
scenarios as follows. Let γS∗ be the smallest fixed-point of the equation:

γS∗ = max
s∈Σ

Gsγ
S∗ − λs

(Note that for a single scenario, this equation reduces to the asap eigenvalue equa-
tion.) This fixed-point can be shown to exist, because of the monotonicity of the
Max-Plus operations, if we include ∞ as a least upper bound of IR. It is unique up
to addition of a constant (uniform shifts in time).

Proposition 6.1. If ||γS∗|| < ∞, then for every scenario s ∈ Σ, (γS∗, λs) is a
delay-period model of execution of Gs starting from γS∗

Proof. If follows directly from the definition of γS∗ that Gsγ
S∗ ¹ γS∗ + λs

and thus by repeating the argument Gk
sγS∗ ¹ γS∗ + kλs.

It is a sufficient condition, but not necessary. It follows from the proposition that
if the fixed-point exists, then with this schedule as a reference schedule, there are
no (positive) delays involved with the transition from one scenario to another. It is
only a useful reference schedule if it has a norm smaller than ∞. A similar result
can be proved for the alap fixed-point schedule. For the case studies in the next
section, γS∗ and the alap fixed-point coincide.

7. CASE STUDIES

The Max-Plus based exploration of Algorithm 2, Algorithm 4 computing the trade-
offs in SDF transient behaviour and the spectral analysis in Algorithm 3 have
been implemented as an extension of the publicly available SDF3 tool set [Stuijk
et al. 2006] and have been used in the case studies presented in this section. It is
known that although state-space exploration can take a long time in the worst-case
[Ghamarian et al. 2006; Stuijk et al. 2006], it is mostly well-behaved in practical
cases. Run-times for the analyses used for the case studies in this paper are all well
below one second.

7.1 MPEG-4 AVC Object Shape Decoder

We first consider a graph in which only execution times change per scenario and
try to establish an estimate of the completion time of a given number of iterations
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Table I. Execution times MPEG-4 AVC

scenario s1 s2 s3

ηs 1.858 ms 4.788 ms 6.055 ms
ϕs 0.980 ms 0.980 ms 0.980 ms
βs 3.816 ms 3.816 ms 3.816 ms

Table II. Steady states of the MPEG-4 AVC decoder

scenario s1 s2 s3

eigenvalue 3.816 ms 5.768 ms 7.035 ms

eigenvector -10.468 ms -7.632 ms -7.632 ms
-7.632 ms -9.584 ms -10.851 ms
-3.816 ms -3.816 ms -3.816 ms
-3.816 ms -3.816 ms -3.816 ms
-3.816 ms -5.768 ms -7.035 ms
0.000 ms 0.000 ms 0.000 ms
0.000 ms 0.000 ms 0.000 ms

τs 0.000 ms 0.000 ms 0.000 ms
τ0
s 6.654 ms 7.632 ms 7.632 ms

using information about the number of iterations in various scenarios. We illustrate
this by redoing the analysis of [Poplavko et al. 2007] with our techniques. The
graph of Figure 2 represents the behaviour of the performance-critical part of an
MPEG-4 AVC decoder mapped onto an SoC platform (see [Poplavko et al. 2007]
for the details). The graph captures the processing of three different types of
image blocks together with the pre-fetching of the required data from a memory
across a network-on-chip. An HSDF model is derived in [Poplavko et al. 2007] and
subsequently simplified and shown to be equivalent to the graph of Figure 2. The
actor execution times ϕs and βs are constant (independent of the scenarios) and ηs

varies for the three scenarios s1, s2 and s3, as shown in Table I.
It is shown in [Poplavko et al. 2007] how scenario information embedded in the

video stream meta data can enable a tight estimation of the frame decoding com-
pletion time. Scenarios are based on types of blocks. The number of iterations
(individual block decoding) is provided as well as information about the number
of transitions from a particular scenario to another. Hence, implicitly also the
number of intervals in which a particular scenario remains active. [Poplavko et al.
2007] shows how a bound on the frame completion time can be given as a linear
combination of these parameters.

Table II shows the steady state behaviour of the individual scenarios. The eigen-
values show at what rate iterations can be performed in each scenario. The eigen-
vectors show the relative production times of the tokens in the steady state within
one iteration. The vectors are normalised, so that the maximum entry is 0. The
order is according to the numbering of the initial tokens in Figure 2. Note that
the range of time stamps spans more than the repetition period of the iterations,
indicating the pipelined execution of the iterations.

In the example, a frame consists of 60 macro blocks, 60 iterations of the graph
in different scenarios. We use γ0 to denote the initial state which is assumed to be
the zero vector γ0 = 0, i.e., all initial tokens are assumed to be present at time 0
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Fig. 8. Bound on scenario intervals

(all buffers empty, resources free). The completion time of the frame is given by
the highest entry in the last vector γ60, this is ||γ60||.

The execution can be viewed as a sequence of intervals during which only blocks
of a specific scenario are processed.

We have to set a target period and a reference schedule for each scenario to
apply the approach of Section 6.1. Because we want to establish a tight bound
on the frame completion time and we don’t know the length of the intervals, we
choose the shortest period which can be sustained during an interval of arbitrary
length, namely the eigenvalue of the corresponding scenario. We further choose a
reference schedule which serves as an invariant in-between iterations. We pick the
alap schedule of the execution of the graph. The alap schedule, in this case, is
identical for all three scenarios and equals:

γ∗ = [−7.632ms; − 7.632ms; − 3.816ms; − 3.816ms;
−3.816ms; 0.000ms; 0.000ms]T

The fact that this vector is identical for each scenario simplifies the analysis, because
we do not need to investigate specific scenario transitions separately and count the
number of transitions from one scenario to another.

Let all iterations m in interval [k k +N) be executed in scenario s. Assume that
γk ¹ Tk + γ∗ at the beginning of the interval. We try to find a bound on the end
of the interval, i.e. Tk+N such that γk+N ¹ Tk+N + γ∗.

Bounds(Gs, γ
∗, 1, γ∗) gives us a value of τs such that during and after the

interval (k ≤ m ≤ k + N)

γm ¹ Tk + τs + (m− k) · λs + γ∗

For the end of the interval we can thus derive that

γk+N ¹ Tk + τs + N · λs + γ∗

In other words, if the start of the interval is characterised by Tk +γ∗, then the end
of the interval is characterised by Tk+N + γ∗ = Tk + τs + N · λs + γ∗.

Thus, for every interval we have an initial penalty of τs and further the length N
of the interval times the eigenvalue λs of the graph of scenario s. The eigenvalues
and the values of τs are shown in Table II. Note that the initial ‘penalties’ are in
fact zero for this graph, though they need not be in general and they may even be
negative.

The first iteration does not start from γ∗, but starts from the initial state γ0 = 0.
With Algorithm 4, we determine the initial delay τ0

s for scenario s, also shown in
Table II. In case it is not known which is the initial scenario, we can take the
maximum of the three.
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Table III. Eigenvalues (maximum cycle means) of the MPEG-4 SP application in various scenarios

scenario I P99 P80 P70 P60 P50 P40 P30
eigenvalue 3960 3960 3200 2800 2400 2000 1600 1200

The overall estimate of execution time is as follows. We add up: (i) the number
of iterations in a scenario times the eigenvalue of that scenario, (ii) the number of
intervals times the transition delay (0 ms for all scenarios in this example), (iii) the
initial delay for the first iteration. Note that because the vectors are normalised (the
maximum value is zero), there is no need to account for the production times in the
final vector. As a result, the following formula computes a guaranteed completion
time (with Js the total number of iterations executed in scenario s and Ks the
number of intervals of scenario s).

T =
∑

s∈Σ Jsλs +
∑

s∈Σ Ksτs + maxs∈Σ τ0
s

= 12 · 3.816 + 46 · 5.768 + 2 · 7.035 + 0.000 + 7.632
= 332.8ms

The approach is illustrated in Figure 8. For simplicity it only shows three intervals
with in total 10 iterations. First 5 iterations in scenario s1, then 3 in s3 and finally
2 in s2. Time is depicted horizontally and the seven tokens in the vectors vertically.
The entries of the vectors are connected by lines to visualise them. The bold
lines in-between the intervals represent the alap schedule used as a reference. The
individual shapes per iteration visualise the following. Their left edge is the smallest
alap schedule that fits to the previous schedule and the right edge represent the
schedule according to which the new tokens are produced after one iteration. As
mentioned above, in this application, iterations repeat at a rate according to the
eigenvalue of the scenario and there is no additional delay at the beginning of the
interval.

In [Poplavko et al. 2007] the maximum execution times of the actors are re-
estimated for every frame and the frame completion is estimated based on these
data. For this the relevant behaviour of the graph is computed as a function of
these execution times. Because existing tools for analysing SDFGs parametrically
are limited [Ghamarian et al. 2008], this is done by hand in [Poplavko et al. 2007]. A
similar approach is possible in our framework, but also then proofs need to be given
by hand instead of tools. The method in [Poplavko et al. 2007] is only presented
for homogeneous data-flow graphs and between scenarios, only the execution times
of actors can vary. In the following examples we show that with our technique we
can also analyse scenarios of arbitrary SDFGs.

7.2 MPEG-4 SP Decoder

The graph of Figure 1 shows the scenario graphs of an MPEG-4 Simple Profile
decoder. In the I-frame scenario, x equals 99 and the motion compensation task
(MC) is not used. The P-frame scenario is further split into sub scenarios depending
on the number of macro blocks to decode.

Table III shows the eigenvalues of the graph for each of the scenarios and Figure
9 shows the asap and alap eigenvectors. They are depicted as lines which show
horizontally the entries of the vector corresponding to the 9 initial tokens and

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.



24 ·

-15000

-10000

-5000

0

5000

10000

15000

1 2 3 4 5 6 7 8 9

I asap

P99 asap

P80 asap

P70 asap

P60 asap

P50 asap

P40 asap

P30 asap

I alap

P99 alap

P80 alap

P70 alap

P60 alap

P50 alap

P40 alap

P30 alap

Fig. 9. Scheduling MPEG-4 decoder

vertically the values of the entries. The alap vectors are normalised to the smallest
vector above the asap eigenvector. Figure 9 shows that token 5 is critical as it has
the smallest distance between alap consumption and asap production schedules. It
indicates that the VLD task in the graph (token 5 is a token on a self edge of this
actor) is the critical factor. It shows that in particular on the longer scenarios (with
a lot of macro blocks), this gives larger amounts of slack to the other tasks. The
bold line is the alap reference schedule as explained in Section 6, which coincides
with the alap schedule for the P30 scenario.

We have verified using Algorithm 4 that with this alap reference schedule γ∗, all
transition delays are 0, γk ¹ 0 + γ∗ + kλs for every scenario s and k ≥ 0. With
this result and with additional information about the number of occurrences of the
scenarios (known or estimated) a bound or estimate on the completion time for
decoding a number of frames can be computed. Alternatively, it follows straight-
forwardly from this analysis that a strictly periodic decoding of 1 frame for every
3960 time units (the largest of the eigenvalues among the scenarios) is guaranteed
to be achieved, because for every scenario s

γ ¹ γ∗ ⇒ Gsγ ¹ γ∗ + 3960

and thus if γ0 ¹ γ∗, then for every k ≥ 0, γk ¹ γ∗ + k · 3960.
This example shows that the method can deal with changing consumption /

production rates and number of firings of an actor per iteration, including 0, i.e.
not being used at all in that iteration. The next case-study even has entirely
different structures of the SDF graph in different scenarios.

7.3 MP3 Decoder

Figure 10 shows the structure of an MPEG-I Layer III (MP3) decoder [Shlien 1994].
After decoding the entropy coded bitstream in the Huffman decoder, encoded audio
data is obtained in frames of 26ms of audio. Each frame is again separated in
individual ‘granules’. There are different ways a granule can be encoded. For each
channel, left or right, the data can either be split in a large number (96) of small
sub bands (short blocks) or a smaller number (32) of larger sub bands (long blocks).
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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Fig. 10. Structure of an MP3 decoder

Fig. 11. Mapped MP3 decoder, short scenario

A mixed mode is also possible, in which the spectrum is divided into 2 long and 90
short blocks. In mixed mode, both channels, left and right are encoded in mixed
mode. For the other modes the channels can each have their own mode. This gives
a set of five scenarios in total, denoted as Σ = {s-s, l-l, l-s, s-l, m}. In [Gheorghita
et al. 2006], it is shown that the encoding modes are good candidates for scenarios of
the decoding process on a single processor system. Here we study an (hypothetical)
multiprocessor implementation. We assume that the Huffman decoding up to the
Joint Stereo Decoding tasks are performed on one processor, the left channel tasks
on a second processor and the right channel tasks on a third. One of the processors
also takes care of writing back the decoded audio into a playout buffer. Which one
depends on the scenario. The Reorder tasks are only executed for short blocks,
while the Alias Reduction tasks are only executed on long blocks. This is the main
reason why an SDF model of the application, not exploiting scenarios leads to a
too pessimistic assessment of the worst-case performance of the application.

We have made separate SDF models of the decoding modes, shown in Figures 11
(s-s), 12 (l-l) and 13 (m) for short blocks, long blocks, and mixed mode respectively.
There are two more scenarios (s-l) and (s-l) which are not shown separately, but
combine decoding long and short blocks for different channels, similar to the graphs
in Figures 11 and 12.

The SDF models capture the MP3 decoding tasks, but also the input bit stream
and the playout of decoded audio with additional Feed and Playout actors. One
iteration of each of the graphs corresponds to the decoding of one frame of audio.
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Fig. 12. MP3 decoder, long block scenario

Fig. 13. MP3 decoder, mixed block scenario

Note that there are no data-dependencies between subsequent frames. The only de-
pendencies between frames in this model arise from the fact that they are decoded
by the same processor. The tokens in the models that carry dependencies from
one iteration to the next are labelled ‘A’ up to ‘E’ in each of the models. Tokens
‘B’, ‘C’ and ‘D’ each represent availability of one of the three processors. ‘A’ and
‘E’ model the periodic feed of data to the decoder and playout of decoded audio.
Besides the actors modelling the decoding tasks, some actors have been added to
capture the processor mapping and scheduling. Dashed dependencies and Sync
actors, with execution time 0, are added to model the processor schedule. They
enforce a particular order in which actors are executed sequentially on their pro-
cessor. For example, in the mixed-mode scenario of Figure 13, in the left channel,
one can check that the schedule consists of two times the sequence Alias—IMDCT
L—Freq.Inv. followed by 90 iterations of the sequence IMDCT S—Freq.Inv. fol-
lowed by one execution of Synth. This whole sequence is executed twice (for two
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.
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granules). This last firing completes the iteration and returns the token ‘C’. This
carries over the processor dependency to the next iteration, i.e., the processor can
only start on the next frame after completing the current. The other tokens do not
carry dependencies between iterations and are only used to express the sequence
constraints of the processor mapping. For the transient analysis they can be set to
−∞ so as to not constrain the firing times.

The MP3 decoder has been profiled [Gheorghita et al. 2006] on an ARM7 [ARM
] processor and we use these worst-case cycle requirements for each of the actors on
their respective processors. With this information, we can perform spectral analysis
on each of the individual scenarios, giving us the minimum number of processor
cycles per period in an execution in that scenario (the eigenvalue) as well as the
corresponding schedule (the eigenvector). The results show that the slowest of the
scenarios are the scenarios involving short block s-s, s-l and l-s, with an upper
bound of 5.829 MCycles per iteration. For the sake of this example, we assume
that we configure the processors to run at a speed of 5.829 MCycles per iteration,
which corresponds to 26 ms frames.

Although we know that each of the individual scenarios can run at this speed if
all iterations are of that same scenario, we still need to demonstrate that this is also
sufficient when facing arbitrary orders of scenarios. To do this, we need a suitable
reference schedule and prove using Algorithm 4 that the model is able to switch
from one scenario to the next without additional switching delays. We use again
the alap firing times in maximum throughput executions of each of the scenario
SDFs and call it γ∗, it is the bold line in Figure 14.

Different from the previous case studies we now use delay-period models, not nec-
essarily with the minimal period of the eigenvalue, but instead with a fixed period
of the 5.829 MCycles which are available per frame. With this reference schedule as
an initial condition and this given period, we have analysed the transition penalties,
i.e. the initial delay with γ∗ as a starting condition as well as the reference schedule.
The results show that for each of the scenarios, this penalty is in fact 0. The same
analysis with as initial vector the zero vector 0 shows, for each scenario, an initial
delay of τ0 = 9.456 MCycles, so that it is proved that no matter what sequence of
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scenarios are encountered,

γk ¹ τ0 + k · π + γ∗

This proves that the MP3 decoder can indeed meet all deadlines and produces a
new frame every 26 ms, whatever sequence of scenarios may occur. As a comparison
we have made a single SDF model that represents the worst-case over all scenarios,
but it has a minimum period of 9.28 MCycles, which shows that the scenario based
analysis allows for proving tighter worst-case execution bounds. Based on the static
SDF model one would be forced to run the processor a a higher speed to be sure
to meet all real-time constraints.

Figure 14 shows that particularly token B which corresponds to processor 1 has
quite a bit of slack (distance between asap and alap schedules). The analysis
provides more useful information. The alap schedule provides deadlines for the
individual processors to guarantee that the graph meets the final deadline of the
playout. This deadline per processor can be used for instance by a scheduler to
schedule other tasks of other applications on the processor, or to use voltage and
frequency scaling techniques to reduce power consumption. As long as the scheduler
guarantees that this processor completes its own tasks according to this schedule,
the system as a whole will produce all output in time.

8. DISCUSSION AND CONCLUSION

We have introduced novel techniques for worst-case performance analysis of data-
flow applications on embedded multiprocessor platforms. The approach builds upon
model-based design and scenario-based analysis concepts and captures such systems
by scenarios, each characterised by its own Synchronous Data-Flow graph. It is
shown how combining analysis of steady-state behaviour of scenarios and transient
behaviour of scenario changes can provide guarantees on the worst-case perfor-
mance.

The worst-case performance guarantees can be further exploited in various ways.
They allow for optimising the platform, i.e. finding the minimum amount of re-
sources to satisfy performance requirements. They can be integrated into design-
space exploration and application mapping techniques. They can be used for run-
time resource management and optimisation, using the fact that SDFGs can often
conveniently model resource allocation [Sriram and Bhattacharyya 2000].

If there are reconfigurations which cannot take place in a pipelined fashion, such
as global reconfiguration or resource reallocation, then techniques from this paper
can be used to assess the time it takes to complete all ongoing iterations and after
reconfiguration restart the new ones.

In future work we intend to explore the opportunities for exploiting the analysis
results. We want to extend the (automated) scenario classification methods and
on-line scenario exploitation methods developed for sequential software [Gheorghita
et al. 2006] to a multiprocessing context. We further want to explore the possibilities
of more accurate analysis techniques in between the monolithic approach of SADF
and the more conservative compositional approach of this paper.
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