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Abstract

We prove existence and uniqueness for solutions to Liouville’s equation
for Hamiltonians of bounded variation. These solutions can be interpreted
as the limit of a sequence generated by a series of smooth approximations
to the Hamiltonian. This results in a converging sequence of approxima-
tions of solutions to Liouville’s equation. As an added perk, our method
allows us to prove a generalisation of Liouville’s theorem for Hamiltonians
of bounded variation. Furthermore, we prove there exists a unique flow
solution to the Hamilton equations and show how this can be used to
construct a solution to Liouville’s equation.

Key words. partial differential equations, geometrical optics, Liouville’s equation, flow.

1 Introduction

Hamiltonian systems are encountered in mechanics and optics. The Hamiltonian
formulation of mechanics dates back to 1834 and is very well-known [1,6]. The
optical applications of Hamiltonian systems are less well-known, even though
they pre-date their mechanical cousin by some six years [5]. Recently though,
the concept of Hamiltonian optics and its phase space description has gained
popularity in the lighting industry [13].

The mechanical Hamiltonian is an example of a separable Hamiltonian. It
is given by

Hmech(t,q,p) :=
|p|2

2m
+ V (t,q), (1)

†Department of Mathematics and Computer Science, Eindhoven University of Technology
- P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands.

‡Philips Lighting.
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where q is the position vector, p is the momentum vector, m is the mass of
the particle and V is the potential. Hamiltonians of the form H(t,q,p) =
T (p) +V (t,q) are called separable, since using these in the Hamilton equations
yields a set of equations where the differential equation for q depends only on p
and time and vice versa. Hauray showed existence and uniqueness of solutions
for the mechanical Hamiltonian with force fields of bounded variation [7].

We are interested in a more general class of Hamiltonians, motivated by the
optical Hamiltonian given by

Hopt(z,q,p) := −σ
√
n2(z,q)− |p|2, (2)

where σ ∈ {−1, 0, 1} is the index of direction (forward, perpendicular to the
optical axis or backward respectively), n is the refractive index and z is the
length down the optical axis [15]. Whereas mechanics describes the motion of
particles, Hamiltonian optics describes the trajectories of rays on a hypothetical
screen perpendicular to the optical axis, i.e., a plane in R3 satisfying z =const.
In this setting, z takes the role of evolution coordinate instead of time.

Optics often deals with piecewise constant refractive index fields, such as
lenses or mirrors [2]. This leads to the Hamiltonian having discontinuous jumps,
where physical conservation laws then lead to the laws of refraction and specular
reflection. In geometrical optics, Liouville’s equation expresses the transport of
energy and one can show that light rays transport energy. It would therefore
make sense to simply define a solution to be constant along rays, which leads to
a well-posed problem [8]. However, we intend to show that such a construction
can be rigorously justified.

1.1 Outline

In §2, we start with the formulation of the problem and show that solving Li-
ouville’s equation is in some sense equivalent to solving the Hamilton equations
for any initial condition. As we are interested in using Hamiltonians of bounded
variation, we shall also give a short introduction to functions of bounded vari-
ation in §3. In §4, we prove the existence and uniqueness for solutions to Li-
ouville’s equation for Hamiltonians of bounded variation. Finally, we switch to
the slightly more general problem of finding the flow defined by the Hamilton
equations in §5. The flow, of course, supplies us with solutions to the Hamilton
initial value problem.

2 Liouville’s equation

Let Q ⊂ Rd, P ⊂ Rd and t > 0. We define phase space P as the product
space P := Q× P . Liouville’s equation described the evolution of some density
ρ : R+ ×P → R, it is a hyperbolic partial differential equation (PDE) on phase
space given by

∂ρ

∂t
+
∂h

∂p
•
∂ρ

∂q
− ∂h

∂q
•
∂ρ

∂p
= 0, (3)
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where h : R+ × P → R is the Hamiltonian, q is the position vector and p
the momentum vector. In mechanics, ρ represents the particle density in phase
space, while in geometric optics, ρ is an energy or power density. We shall write
t as the evolution coordinate, hence for geometric optics applications one needs
to transform (t→ z).

The operator ∂
∂q is the gradient operator with respect to q, thus

∂
∂q := ( ∂

∂q1
, . . . , ∂

∂qd
)T . The operator ∂

∂p is similarly defined, and the dot product
is simply the Euclidean inner product. We shall also use the nabla operator

∇ :=


∂

∂q
∂

∂p

 . (4)

Furthermore, we shall denote E to be the identity matrix in Rd×d, with which
we construct

Ω :=

(
0 E
−E 0

)
. (5)

Note that ΩT = −Ω = Ω−1, it is sometimes referred to as the symplectic matrix.
Clearly, we can then make our notation slightly more compact by realizing that

Ω∇ =


∂

∂p

− ∂

∂q

 , (6)

thus we are able to write Liouville’s equation as

∂ρ

∂t
+∇ρ •(Ω∇h) =

∂ρ

∂t
− (Ω∇ρ) •∇h = 0. (7)

Note that for any f ∈ C2
(
R2d

)
, we have

∇ • (Ω∇f) =

d∑
i=1

∂

∂qi

(
∂f

∂pi

)
− ∂

∂pi

(
∂f

∂qi

)
= 0, (8)

where ∇ • is the divergence operator on phase space. We will, in some cases,
also write y = (q,p).

2.1 Solutions to Liouville’s equation

A solution to Liouville’s equation is defined in the following way.

Definition 2.1. Let I = [0, T ], a weak solution to Liouville’s equation ρ ∈
L∞(I × P) satisfies, for any ϕ ∈ C∞0 (I × P),

T∫
0

∫
P

ρ
∂ϕ

∂t
dy dt−

T∫
0

∫
P

ρ(t,y)(Ω∇ϕ(t,y)) •dh(t,y) dt = −
∫
P

ρ0(y)ϕ(0,y) dy,

(9)
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where dy = dq1 . . . dqd dp1 . . . dpd, dh(t,y) = ∇h(t,y) dy if the gradient exists
and ρ0 is the initial condition.

The motivation of the definition of the weak solution is to integrate Li-
ouville’s equation with some smooth test function ϕ, integrate by parts and
demand that this holds for any such test function. Thus, when some ρ satisfies
Liouville’s equation weakly, this is equal to saying that it satisfies Liouville’s
equation in a distributional sense, meaning almost everywhere in I × P.

Liouville’s equation is, in some sense, equivalent with the Hamilton equa-
tions, which is a set of ordinary differential equations (ODEs), given by

dq

dt
=
∂h

∂p
, (10a)

dp

dt
= −∂h

∂q
. (10b)

Subject to a set of initial conditions, we shall also refer to (10a) - (10b) as the
Hamilton initial value problem. Using the notation y = (q,p) and our previous
definitions, we can write the Hamilton equations as

dy

dt
= Ω∇h(t,y). (11)

Before we show the relation between Liouville’s equation and the Hamilton
equations, we shall first give a brief treatment of ODE theory.

General Remark.We will routinely deal with functions that have different
regularities in different variables. To simplify notation, we shall adopt the semi-
colon notation for the target space, for instance g ∈ L1(R+;Rm) is an integrable
function g : R+ → Rm. If the target space is unspecified, the default target
space is R. However, we may also have functions that map into function spaces,
such as f ∈ L1(R+;C∞(Rm)), which is to say f : R+ → C∞(Rm) integrable
and f(t) : Rm → R infinitely differentiable for fixed t ∈ R+. In that case,
we shall use f(t,x) = f(t)(x) as a shorthand notation. Thus, the statement
f ∈ L1(R+;C∞(Rm)) can be read as a compact version of the statement that
f : R+ ×Rm → R with f(t, ·) ∈ C∞(Rm) for fixed t ∈ R+ and f(·,x) ∈ L1(R+)
for fixed x ∈ Rm.

We shall first present some general and quite standard ODE theory. This is
meant as an introduction to the classical solutions of Liouville’s equation and
the Hamilton IVP. We have taken the following theorem from [3].

Theorem 2.1. Existence and uniqueness for ODEs
Let I = [0, T ] and f ∈ L1(I;W 1,∞(Rm;Rm)). Thus, f : I × Rm → Rm with
f(·,x) = f(·)(x) integrable in t for fixed x ∈ Rm and f(t, ·) = f(t)(·) Lipschitz
continuous w.r.t. x for fixed t ∈ I. Consider the IVP,

x′ = f(t,x), t ∈ I, (12a)

x(0) = x0. (12b)
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There exists a unique x : I → Rm that satisfies (12a) - (12b) almost everywhere.
Furthermore, x ∈ AC(I;Rm), which is to say x is an absolutely continuous
mapping from I to Rm.

Corollary 2.1. Existence and uniqueness for the Hamilton IVP
Let I = [0, T ] and h ∈ L1(I;C2(P)). Thus, h : I × P → R and for fixed t ∈ I
we have h(t, ·, ·) = h(t) ∈ C2(P), hence h(t) : P → R is twice continuously dif-
ferentiable. Furthermore, for fixed (q,p) ∈ P, we have h(·,q,p) = h(·)(q,p) ∈
L1(I), thus h(·,q,p) : I → R is integrable. Then, there exists a unique solution
to the Hamilton IVP.

Proof. Since h is twice continuously differentiable on phase space, we have that
Ω∇h is continuously differentiable on phase space, which implies Lipschitz con-
tinuity. The conditions of Theorem 2.1 apply, where m = 2d and hence, there
exists a unique solution to the Hamilton IVP.

Whenever solutions of the Hamilton IVP are uniquely defined, we can find
a solution using the method of characteristics (MOC) [4,10]. The idea is to find
a set of curves in I × P such that the PDE reduces to a set of ODEs. Let us
define (q,p) : I → P as the solution to the Hamilton IVP and let us investigate
the total derivative of the quantity ρ?(t) := ρ(t,q(t),p(t)), i.e.,

dρ?

dt
=
∂ρ

∂t
+

dq

dt
•
∂ρ

∂q
+

dp

dt
•
∂ρ

∂p
= 0, (13)

where application of the Hamilton equations gives (3) and is therefore identically
zero. Hence, we see that along curves defined by the Hamilton equations, the
solution to Liouville’s equation is constant, i.e., ρ?(t) = const., implying

ρ (t,q(t),p(t)) = ρ0 (q(0),p(0)) , (14)

where ρ0 is the initial condition, ρ(0,q,p) = ρ0(q,p). Therefore, we call solu-
tions to the Hamilton IVP the characteristics of Liouiville’s equation. Along the
characteristics, the solution to Liouville’s equation is constant. Furthermore, if
we can find the initial point (q(0),p(0)) corresponding to a characteristic go-
ing through any given (q,p) ∈ P at t ∈ I, the solution to Liouville’s equation
is completely determined. Thus, for fixed t ∈ I, we look for a characteristic
satisfying the Hamilton equations, (10a) - (10b), and(

q(t),p(t)
)

= (q,p), (15)

which exists and is unique by Corollary 2.1. Thus (q(0),p(0)) is a one-to-one
function of the point (q,p) and t, and we can construct a solution to Liouville’s
equation by (14). However, the MOC can only be applied if the solution to
Liouville’s equation is sufficiently differentiable and the existence and uniqueness
of the Hamilton IVP is guaranteed.

However, We wish to find solutions to (3) whenever the Hamiltonian is not
smooth and classical solutions do not exist. However, we do not wish to extend
the class of Hamiltonians as far as integrable functions, since we still need some
notion of a gradient of the Hamiltonian. The proper space for the Hamiltonian
is therefore the space of functions of bounded variation.
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3 Functions of bounded variation

We shall now give the definition of functions of bounded variation and show some
basic properties. There are several intuitive properties suggested by the name,
such as no infinitely rapid oscillations and no infinitely high jump discontinuities.

Definition 3.1. Functions of bounded variation
Let U ⊂ Rm, and let the space B be defined as follows,

B =
{
ϕ ∈ C1

0 (U ;Rm)
∣∣ ‖ϕ‖L∞(U) = 1

}
. (16)

For u ∈ L1(U), we shall denote the total variation of u by

TV(u) := sup
ϕ∈B

∫
U

u∇ •ϕdx, (17)

where ∇ • is the divergence operator in Rm. Then u is said to be of bounded
variation, or equivalently u ∈ BV(U), if

u ∈ L1(U) and TV(u) <∞. (18)

Furthermore, we endow the space BV(U) with the semi-norm

‖u‖BV(U) := TV(u). (19)

We can also represent the gradient of u by a finite vector Radon measure du,
such that ∫

U

u(∇ •ϕ) dx = −
∫
U

ϕ •du(x), ∀ϕ ∈ C1
0 (U ;Rm). (20)

Remark.We can also consider functions that are locally of bounded varia-
tion, denoted BVloc(U).

Functions of bounded variation are continuous almost everywhere, their gra-
dients exist almost everywhere, but they still allow for discontinuities. A famous
example of a function of bounded variation is the Heaviside function which has
the Dirac-δ as its distributional derivative. Whenever a function has a (weak)
gradient, the total variation is simply the absolute integral of the gradient.
Hence, for any g ∈W 1,1

loc (U), we have

‖g‖BVloc(U) = ‖∇g‖L1
loc(U). (21)

Functions of bounded variation can be approximated by smooth functions, for
instance by mollification.

Definition 3.2. Mollification
Let φ ∈ C∞0 (Rm), with φ ≥ 0 and suppφ ⊂ B1(0), where B1(0) is the unit ball
in Rm. Furthermore, let φ satisfy∫

Rm

φ dx = 1. (22)
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Now define for any δ > 0 the function

φδ(x) = δ−mφ
(x

δ

)
. (23)

The mollification of u with radius of mollification δ, denotedMδu, is then given
by (

Mδu
)
(x) :=

∫
Rm

φδ(x− y)u(y) dy. (24)

The function φδ is called the mollifier with radius δ.

An example of a mollifier is the bump function, i.e.,

φ(x) =

{
exp

(
− 1

1−|x|2

)
, for |x| < 1,

0, otherwise.
(25)

A few properties of mollification are thatMδu ∈ C∞0 (Rm), and if u ∈ Lp(U)
with U ⊂ Rm, then Mδu→ u in Lp(U) as δ → 0. Furthermore, we have that

‖Mδu‖Lp(U) ≤ ‖Mδu‖Lp(Rm) ≤ ‖u‖Lp(U). (26)

Furthermore, looking at the definition of mollification, we can see that for
any f, g ∈ L1

loc(U), we have∫
Rm

fMδg dx =

∫
Rm

gMδf dx. (27)

The properties of mollification will prove very helpful. We have adapted the
following theorem from [11] (see section 9.1.2).

Theorem 3.1. Approximation of BVloc(U) functions
Let U ⊂ Rm and let u ∈ BVloc(U). Then, for any ε > 0, there exists a
uε ∈ C∞(U) such that

‖u− uε‖L1
loc(U) ≤ ε and ‖∇uε‖L1

loc(U) ≤ ‖u‖BVloc(U)
, (28)

with
lim
ε→0
‖∇uε‖L1

loc(U) = ‖u‖BVloc(U)
. (29)

If, in addition, u ∈ L1(U), then all these properties are globally valid on U .

Remark.Using (21), we should note that we can rewrite (29) as

lim
ε→0
‖uε − u‖BVloc(U)

= 0. (30)

In other words, uε → u in BVloc(U).
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Proof. 1. The properties in (28) follow directly from the properties of mollifi-
cation. Since Mδu→ u in L1

loc(Ω), for every ε > 0 we can choose a δ > 0 such
that

‖Mδu− u‖L1
loc(Ω) ≤ ε.

We then define uε :=Mδu.
2. Let us evaluate ‖∇uε‖L1

loc(U), where the identity (21) yields

‖∇uε‖L1
loc(U) = ‖uε‖BVloc(U) = sup

ϕ∈B

∫
U

∇ •ϕMδudx.

Now, since mollification and differentiation are linear, we have due to (27) the
following equality,

‖∇uε‖L1
loc(U) = sup

ϕ∈B

∫
U

∇ •(Mδϕ)udx, (∗)

where we do not need to extend the integral over the entire space Rm due to
the compact support of ϕ. Now, for any ψ ∈ C1

0 (U ;Rm), we can find a φ ∈ B
so that ψ = ‖ψ‖L∞(U)φ, from which it follows that

sup
ψ∈C1

0 (U ;Rm)

∫
U

u∇ •ψ dx = ‖ψ‖L∞(U)‖u‖BVloc(U).

If we apply this to (∗), we find

‖∇uε‖L1
loc(U) = ‖Mδϕ‖L∞(U)‖u‖BVloc(U) ≤ ‖u‖BVloc(U),

by (26).
3. Finally, by the fact thatMδϕ→ ϕ in L∞(U) as δ → 0, we find (29).

Lemma 3.1. Integral Mean Value Theorem for functions in BVloc

Let U ⊂ Rm be open and let u ∈ BVloc(U). Then, for almost every y ∈ U , there
exists a U∗ ⊂ U with |U∗| > 0 such that

u(y) =
1

|U∗|

∫
U∗

udx. (31)

Proof. Let uε ∈ C∞(U) be the approximation to u from Theorem 3.1. Fix
y ∈ U . Due to the Integral Mean Value Theorem, there exists a U∗ with
|U∗| > 0 such that

uε(y) =
1

|U∗|

∫
U∗

uε dx.

Let us now define

ū :=
1

|U∗|

∫
U∗

udx.
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We take the absolute value of the difference and see that

|uε(y)− ū| = 1

|U∗|

∣∣∣ ∫
U∗

uε − udx
∣∣∣ ≤ 1

|U∗|

∫
U∗

|uε − u|dx =
1

|U∗|
‖uε − u‖L1(U∗).

Since U∗ ⊂ U , we have

|uε(y)− ū| ≤ 1

|U∗|
‖uε − u‖L1

loc(U) ≤
ε

|U∗|
.

We apply Theorem 3.1 to see that uε → u in L1
loc(U), meaning uε(y) → u(y)

for almost every y ∈ U . Hence, letting ε→ 0 completes the proof.

Corollary 3.1. Let I = [0, T ] and u ∈ L1(I;BVloc(U)), then for almost every
t ∈ I there exists a U∗(t) ⊂ U such that u satisfies

u(t,y) =
1

|U∗(t)|

∫
U∗(t)

u(t,x) dx, (32)

for almost every t ∈ I and almost every y ∈ U . Furthermore, t 7→ 1
|U∗(t)| is in

L∞(I).

Proof. Fix t ∈ I and apply Lemma 3.1, so that we obtain (32). Note that y ∈ U
is fixed. Observe now that the left-hand side of (32) is in L1(I) while the right-
hand side is also in L1(I). Thus, for the equality to hold for almost every t ∈ I,
we must have that t 7→ 1

|U∗(t)| is in L∞(I).

Remark.The conclusion that t 7→ 1
|U∗(t)| is in L∞(I) is equivalent with

stating that |U∗(t)| > 0 for almost every t ∈ I.

4 Existence and uniqueness of solutions to Li-
ouville’s equation

With the definition of bounded variation and Lemma 3.1 in place, we are in a
position to reinterpret the definition of weak solutions to Liouville’s equation.
In fact, looking back at Definition 2.1 and (9) in particular, we see that we
only need to allow for measure-valued gradients of the Hamiltonian. Or, more
precisely, we allow the Hamiltonian to be of bounded variation. However, before
we prove existence and uniqueness of solutions to Liouville’s equation, we will
need Liouville’s Theorem, which is an application of Liouville’s formula [9].

Theorem 4.1. Liouville’s Theorem
Let I = [0, T ] and h ∈ L1(I;C2(P)), then the flow generated by the Hamilton
equations preserves volume. More specifically, let J be the Jacobian determinant
of the mapping y(0) 7→ y(t),

J(t) := det

(
∂y(t)

∂y(0)

)
, (33)
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then J(t) = 1 for almost every t ∈ I.

Theorem 4.2. Existence and uniqueness for Liouville’s equation
Let I = [0, T ] and let h ∈ L1(I; BVloc(P)) and let ρ0 ∈ L∞(P), then there exists
a unique solution to Liouville’s equation with ρ ∈ L∞(I × P). Furthermore,
let {hε}ε>0 ⊂ L1(I;C∞(P)) be a sequence of smooth approximations such that
hε → h in L1(I; BVloc(P)). Let ρε be the solution to Liouville’s equation with
Hamiltonian hε. Then, in fact, ρε → ρ in L∞(I × P).

Proof. 1. For fixed ε > 0, hε satisfies the conditions of Liouville’s Theorem,
therefore we have ∫

P

(ρε(t))
r

dy =

∫
P

(ρ0)
r

dy,

for any r ∈ R, since the transformation y(0) 7→ y(t) has unit Jacobian determi-
nant by Liouville’s Theorem 4.1. We take the 1

r th power on both sides and let
r →∞ to find

‖ρε(t)‖L∞(P) = ‖ρ0‖L∞(P),

which holds for almost all t ∈ I, allowing us to take the supremum, yielding

‖ρε‖L∞(I×P) = ‖ρ0‖L∞(P). (∗)

Note that this equality does not depend on ε.
2. Let us define F : L∞(I ×P)× L1(I; BVloc(P))×C∞0 (I ×P)→ R, given

by

F [ρ, h, ϕ] :=

T∫
0

∫
P

ρ
∂ϕ

∂t
dy dt−

T∫
0

∫
P

ρ(Ω∇ϕ) •dhdt+

∫
P

ρ0ϕ(0) dy, (∗∗)

where dy = dq1 . . . dqd dp1 . . . dpd and dh = ∇hdy, wherever ∇h exists. Clearly,
the relation F [ρ, h, ϕ] = 0 for all ϕ ∈ C∞0 (I × P) defines a weak solution to
Liouville’s equation, so that for every pair (ρε, hε), we have

F [ρε, hε, ϕ] = 0,

for all ϕ ∈ C∞0 (I ×P), since ρε satisfies Liouville’s equation in a classical sense
with hε as the Hamiltonian. Furthermore, we can estimate

F [ρ, h, ϕ] ≤‖ρ‖L∞(I×P)

∥∥∥∥∂ϕ∂t
∥∥∥∥
L1(I×P)

+ ‖ρ‖L∞(I×P)

T∫
0

‖∇ϕ(t)‖L∞(P) ‖h(t)‖BVloc(P) dt,

+ ‖ρ0‖L∞(P)‖ϕ(0)‖L1(P),
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where the adjective ‘loc’ in the total variation of h comes from the compact
support of ϕ. Applying Hölder’s inequality to the time integral finally gives us,

F [ρ, h, ϕ] ≤‖ρ‖L∞(I×P)

∥∥∥∥∂ϕ∂t
∥∥∥∥
L1(I×P)

+ ‖ρ‖L∞(I×P) ‖∇ϕ(t)‖L∞(I×P) ‖h‖L1(I;BVloc(P)),

+ ‖ρ0‖L∞(P)‖ϕ(0)‖L1(P),

which shows us that F is well defined and bounded. Furthermore, by choosing
(ρ, h) = (ρε, hε), we see that (∗) gives us

F [ρε, hε, ϕ] ≤‖ρ0‖L∞(P)

∥∥∥∥∂ϕ∂t
∥∥∥∥
L1(I×P)

+ ‖ρ0‖L∞(P) ‖∇ϕ‖L∞(I×P) ‖h‖L1(I;BVloc(P))

+ ‖ρ0‖L∞(P)‖ϕ(0)‖L1(P),

which is uniformly bounded in ε.
3. Now, F [ρε, hε, ϕ] is uniformly bounded for every ϕ ∈ C∞0 (I×P) with the

bound depending only on ϕ. Hence, there exists a subsequence such that the
pair (ρεk , hεk)k≥1 converges weakly in L∞(I ×P)× L1(I; BVloc(P)). However,
by construction we have that hε → h ∈ L1(I; BVloc(P)). Thus, we find that
there exists a subsequence {ρεk}k≥1 which converges weakly in L∞(I ×P) and
let us call the limit ρ ∈ L∞(I × P ). In view of (∗) holding for any ε > 0,
we furthermore assert that for each k ≥ 1 fixed, we have that ρεk satisfies (∗).
Letting k →∞, we find that the weak limit ρ also satisfies (∗).

4. Suppose there are two such limits to this smoothing and limiting pro-
cedure, ρ̃1 and ρ̃2, for the same initial conditions. Hence, both ρ̃1 and ρ̃2

are the limits of a sequence of solutions generated by the sequence {hε}ε>0 ⊂
L1(I;C∞(P)). Next, we subtract the two solutions such that ρ̃1− ρ̃2 has initial
condition identically zero. We apply (∗) and we see that

‖ρ̃1 − ρ̃2‖L∞(I×P) = 0,

hence ρ̃1 = ρ̃2 almost everywhere on I × P. We conclude that this limiting
procedure provides us with a unique candidate solution to Liouville’s equation.

5. Let ρ1 and ρ2 satisfy Liouville’s equation for the same Hamiltonian h ∈
L1(I; BVloc(P)) and the same initial conditions. Define ρ := ρ1 − ρ2 and let
ρδ := Mδρ be mollified, thus ρδ is a smooth approximation of ρ. Note that
both ρ and ρδ satisfy Liouville’s equation almost everywhere in I × P for zero
initial condition. Fix some s ∈ I and we investigate

0 =

s∫
0

∫
P

ρ
∂ϕ

∂t
dy dt−

s∫
0

∫
P

ρ(Ω∇ϕ) •dh(t,y) dt, ∀ϕ ∈ C∞0 (I × P).

11



Next, we pick ϕ =Mδψ, with ψ ∈ C∞0 (I ×P). The properties of mollification,
in particular (27), give us that

0 =

s∫
0

∫
P

ρδ
∂ψ

∂t
dy dt−

s∫
0

∫
P

ρδ(Ω∇ψ) •dh(t,y) dt,

which holds for all ψ ∈ C∞0 (I × P). Integrating by parts, we obtain∫
P

ρδ(s)ψ(s) dx =

s∫
0

∫
P

ψ
∂ρδ
∂t

dy dt+

s∫
0

∫
P

ψ (Ω∇ρδ) •dh(t,y) dt,

which also holds for all ψ ∈ C∞0 (I × P). Next, we note that ρδ is a weak
solution to Liouville’s equation with zero initial condition. Therefore it satisfies
Liouville’s equation almost everywhere in I × P, giving us∫

P

ρδ(s)ψ(s) dx = 0, ∀ψ ∈ C∞0 (I × P),

where s ∈ I is also arbitrary. We move the mollifier back to ψ, leaving us with∫
P

ρ(s)ϕ(s) dx = 0, ∀s ∈ I, ϕ ∈ C∞0 (I × P),

which tells us that ρ = ρ1−ρ2 is identically zero almost everywhere on I×P.

Theorem 4.2 gives us existence and uniqueness of solutions to Liouville’s
equation for Hamiltonians in L1(I; BVloc(P)). Furthermore, this solution can
be constructed as the limit of a sequence generated by Liouville’s equation for
closer and closer smooth approximations to the Hamiltonian. This has a further
interesting consequence which we show in the following Corollary.

Corollary 4.1. A generalization of Liouville’s Theorem
Let I = [0, T ] and let h ∈ L1(I; BVloc(P)), then the flow generated by the
Hamilton equations preserves volume in phase space P. In other words, let J be
the Jacobi matrix defined in (33), then instead of having J = 1 for almost every
t ∈ I, we now have J = 1 almost everywhere in I × P.

Proof. Let the sequence {ρε}ε≥0 be the sequence of which the existence is as-
serted in Theorem 4.2. Applying Liouville’s Theorem 4.1, we find∫

P

ρε(t,y) dy =

∫
P

ρ0(y) dy, ∀t ∈ I,

where dy = dq1 dq2 . . . dqd dp1 dp2 . . . dpd is the volume element in phase space.
Observe that the left-hand side depends on ε whereas the right-hand side does
not. Thus, we let ε→ 0 and we deduce the same equality for the limit ρ. Finally,
since this holds for all initial conditions ρ0 ∈ L∞(P), we find that J = 1 almost
everywhere in I × P.
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Remark.The conclusion of a volume-preserving flow can also be expressed
as the Hamilton equations generating a weakly divergence free velocity field. Let
us take a test function ϕ ∈ L1(I;C2

0 (P)), yielding∫
P

∇ϕ •
(
Ω dh(x)

)
= −

∫
P

(Ω∇ϕ) •dh(x) =

∫
P

∇ • (Ω∇ϕ)hdx = 0, (34)

by (8), holding almost everywhere in I. Hence, the velocity field generated by
the Hamilton equations is weakly divergence free, provided we allow for twice
continuously differentiable test functions.

One important thing to note about Corollary 4.1 is that it does not prove
that Hamiltonian evolution is symplectic. A symplectic transformation does
preserve volume on phase space, but not every volume preserving transformation
is symplectic. We can, for instance, have a given volume broken up into two
unconnected volumes, such as occurs due to a refractive surface in geometric
optics. One part of the volume may be refracted while the other can be reflected.
In such a case, the flow may be locally symplectic [12], as either reflection or
refraction by itself defines a symplectic transformation.

5 Existence of solutions to the Hamilton IVP

Now that we have existence and uniqueness for Liouville’s equation, we can
ask if this carries over to the Hamilton IVP. In the case of twice continuously
differentiable Hamiltonians, the answer is clearly yes. However, when classical
solutions do not exist, the answer is less straightforward. However, by using
the concept of an almost everywhere flow, we are able to resolve the matter
with a positive answer. We shall first examine the existence of solutions to the
Hamilton IVP.

Lemma 5.1. Let I = [0, T ], U ⊂ Rm, g ∈ L1
(
I;U

)
and u ∈ L1

(
I; BVloc(U)

)
.

Thus, u : I → BVloc(U) integrable, while for fixed t ∈ I, u(t) : U → R with
bounded variation. Or, in other words, we have that for fixed x ∈ U , u(·,x) is
integrable and for fixed t ∈ I, u(t, ·) is of bounded variation. Let {uε}ε>0 be the
smooth approximations from Theorem 3.1 and let

fε(t) :=

t∫
0

∇uε
(
s,g(s)

)
ds, (35)

then fε → f in BV(I;U)∩L∞(I;U). Furthermore, we have the following bound∥∥f∥∥
BV(I;U)

+
∥∥f∥∥

L∞(I;U)
≤ C‖u‖L1(I;BVloc(U)), (36)

where C > 0 does not depend on g.
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Proof. 1. We apply the Integral Mean Value Theorem to (35) to find that

fε(t) =

t∫
0

1

|U∗(s)|

∫
U∗(s)

∇uε(s,x) dxds,

where U∗(s) ⊂ U such that g(s) ∈ U∗(s) for almost every s ∈ I. The argument
can be broken down into four steps. First, we fix some s ∈ [0, t]. Second, we
define y := g(s), which is then also a fixed element in U . Third, we apply the
Integral Mean Value Theorem to ∇uε for y, this is allowed since uε is infinitely
differentiable. Finally, the fourth step is conclude that this must hold for all
s ∈ [0, t]. Hence, we have

f ′ε(t) =
1

|U∗(t)|

∫
U∗(t)

∇uε(t,x) dx, (∗)

where we have for every ε > 0 that fε ∈ W 1,1(I;U). This follows from the fact
that s 7→ |U∗(s)| ∈ L∞(I) according to Lemma 3.1, while the spatial integral
of ∇uε is integrable in time. Thus, the product is an integrable function and
therefore we find that f ′ε is integrable.

2. We compute the total variation of fε using (21), yielding

‖fε‖BV(I;U) =

T∫
0

|f ′ε(s)|ds,

where B is defined in Definition 3.1. We now use (∗) to find that

‖fε‖BV(I;U) ≤
T∫

0

1

|U∗(s)|

∫
U∗(s)

∣∣∇uε(s,x)
∣∣dxds ≤ C‖u‖L1(I;BVloc(U)), (∗∗)

where C > 0 may depend on g. However, Corollary 3.1 holds for any s ∈ I and
any x ∈ U , thus there exists a δ > 0 such that |U∗(s)| ≥ δ for all s ∈ I and all
x ∈ U , regardless of g. Therefore, we define C := 1

δ and see that the bound (∗∗)
is independent of g. Note also that the right-hand side of (∗∗) does not depend
on ε, allowing us to take the limit ε→ 0, from which we see that f ∈ BV(I;U).

3. From (∗), we can furthermore find

∣∣fε(t)∣∣ ≤ C t∫
0

‖∇uε(s)‖L1
loc(U) ds,

where C = 1
δ again. Applying the bound from Theorem 3.1, we obtain∣∣fε(t)∣∣ ≤ C‖u‖L1(I;BVloc(U)),

which is independent of time, allowing us to take the supremum, giving us that
fε ∈ L∞(I;U). We note furthermore that the bound is uniform in ε, therefore
also f ∈ L∞(I;U). Choosing C = 2

δ in (36) completes the proof.
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Remark. Abusing notation slightly, we can write for f from Lemma 5.1,

f(t) :=

t∫
0

∇u(s,g(s)) ds, (37)

which shows that such integrals are, if not technically correct, bounded and there-
fore well defined.

Corollary 5.1. Existence of solutions to the Hamilton IVP
Let I = [0, T ] and h ∈ L1(I; BVloc(P)), then there exists a solution to the
Hamilton IVP y ∈ BV(I;P) ∩ L∞(I;P), which satisfies the integral equation

y(t) = y0 +

t∫
0

Ω∇h
(
s,y(s)

)
ds, (38)

where y0 ∈ P is the initial condition.

Proof. 1. Let us define the Picard iterations

yk+1(t) = y0 +

t∫
0

Ω∇h
(
s,yk(s)

)
ds, k ≥ 1, (∗)

and y0(t) := y0 for all t ∈ I. By Lemma 5.1, these integrals are well defined for
every k ≥ 1 and, in fact, yk ∈ BV(I;P) ∩ L∞(I;P) for all k ≥ 1.

2. Lemma 5.1 also asserts that
{
yk
}
k≥1

is a uniformly bounded sequence.

Therefore, there exists a subsequence
{
ykl
}
l≥1

which converges in BV(I;P) ∩
L∞(I;P). By construction, the limit, which we denote by y, satisfies (38) and
thus satisfies the Hamilton IVP for almost every t ∈ I.

Now that we have shown existence of solutions to the Hamilton IVP, we
are in a position to show the existence and uniqueness of a flow generated by
the Hamiltonian velocity field. We shall first recall the definition of a flow,
afterwards showing the existence and uniqueness of such a flow.

Definition 5.1. (Almost Everywhere) Flow
Let I = [0, T ] and U ⊂ Rm, a function Φ : I × U → U is called a flow if it
satisfies the following two properties,

Φ0x = x, (39a)

ΦtΦsx = Φs+tx, (39b)

where Φtx := Φ(t,x). Furthermore, a flow is said to be an almost everywhere
flow if these conditions hold in a distributional sense, meaning for almost every
t, s ∈ I and almost every x ∈ U .
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Theorem 5.1. Flow representation
Let I = [0, T ], PT := I ×P and h ∈ L1(I; BVloc(P)), then there exists a unique
flow Φ : I ×PT → PT , such that the solution to Liouville’s equation is given by

ρ
(
Φt(0,y)

)
= ρ0(y), (40)

in a distributional sense. Furthermore, Φ is the unique flow solution to the
Hamilton equations.

Proof. 1. Let us denote x = (t,y) and let us define F ∈ BVloc(PT ), up to a
constant, by

dF (x) :=

(
dt

Ω dh(x)

)
, (41)

where dh(x) = ∇h(t,y) dy, wherever the gradient exists. Fix x0 = (t0,y0), we
now look for a flow solution Φ : I × PT → PT which satisfies

d

dt
Φtx0 =

(
1

Ω∇h(Φtx0)

)
, (42)

in a distributional sense. Abusing notation slightly, we have that Φtx0 satisfies

Φtx0 = x0 +

t∫
0

�F (Φsx0) ds, (∗)

where we have defined

� :=

(
∂
∂t
∇

)
,

which is the gradient operator in PT . By Corollary 5.1, there exists a Φ that
satisfies (∗).

2. Choosing x0 = (0,y0), we can represent the solution to Liouville’s equa-
tion as

ρ(Φtx0) = ρ(x0) = ρ0(y0), (∗∗)

which becomes evident if we differentiate with respect to time. Adopting the
operator �, we find

d

dt
ρ(Φtx0) = �ρ(Φtx0) •

(
d

dt
Φtx0

)
=
∂ρ

∂t
+∇ρ •(Ω∇h) = 0,

where Liouville’s equation is to be evaluated at x = Φtx0, and holds in a
distributional sense. Hence, (∗∗) also holds in a distributional sense, meaning
for almost every y0 ∈ P and almost every t ∈ I. However, since ρ is the unique
solution to Liouville’s equation for a given ρ0 ∈ L∞(P), we see that Φ is uniquely
defined by (∗∗) almost everywhere.

3. Pick x0 = Φsx in (∗∗), applying (∗∗) several times yields

ρ(ΦtΦsx) = ρ(Φsx) = ρ(x) = ρ(Φs+tx),
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which must hold in a distributional sense and furthermore for all possible initial
conditions ρ0 ∈ L∞(P), from which we find that

ΦtΦsx = Φs+tx,

which also holds in a distributional sense. Together with the initial condition
Φ0x = x from (∗), we conclude that Φ is indeed an almost everywhere flow.

We can interpret Theorem 5.1 as a generalisation of the MOC. In fact, it
shows us that if we can find the flow Φ, the solution to Liouville’s equation
is given by (40). By Corollary 5.1, the characteristics can also be found by a
limiting procedure much like the solutions to Liouville’s equation. Thus, also
the construction by the MOC converges in some sense to a limit.

If we happen to know the flow, we can also extract the characteristics which
then satisfy a Hamilton IVP. For almost every y0 ∈ P, we can define y : I → P
by (

t,y(t)
)

= Φt(0,y0), (43)

which is a solution to the Hamilton IVP for initial condition y0. Note however
that, since Φ is an almost everywhere flow, there is a null-set of initial conditions
where uniqueness is not guaranteed. In geometrical optics, such a null-set is
easily found by considering light rays incident on a refracting plane under the
critical angle. Such rays will refract to run parallel to and along the refracting
surface. Hence, every point along the ray is an intersection point of the ray and
the plane, thereby losing uniqueness.

Interpreting Theorem 5.1 as a generalisation of the MOC, and invoking (43),
it follows that for almost every t ∈ I and almost every y0 ∈ P, we have

ρ
(
t,y(t)

)
= ρ0(y0). (44)

Let us say that at some τ ∈ I, which we assume to be a regular point, the
characteristic y encounters a discontinuity in h. We then have that

ρ
(
τ+,y(τ+)

)
= ρ
(
τ−,y(τ−)

)
, (45)

where the pluses and minuses are the one-sided limits. Thus, by Theorem 5.1,
we have justified the construction of solutions to Liouville’s equation by use
of discontinuous characteristics. In another work [14], we have developed a
numerical solver for Liouville’s equation based on (45).

6 Conclusion

We have shown existence and uniqueness for solutions to Liouville’s equation
for Hamiltonians with bounded variation. Furthermore, we can interpret these
solutions as the limit of a sequence of solutions generated by smooth Hamilto-
nians. We have also shown that this implies an almost everywhere flow solution
to the Hamilton equations. Thus, as the name suggests, there is a null-set of
initial conditions which does not yield a unique solution to the Hamilton IVP.
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As a bonus, we were also able to give a generalisation of the MOC and show
that Hamiltonian flow on phase space is volume preserving even for Hamiltoni-
ans with bounded variation. In another work, we have applied this generalisation
of the MOC to develop a novel scheme for the numerical resolution of Liouville’s
equation.
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