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Abstract

Cooperativity effects have been proposed to explain thelocal rheology in the dynamics of soft
jammed systems. Based on the analysis of the double welefieegy model proposed by L. Bocquet,
A. Colin & A. Ajdari (Phys. Rev. Lett. 103 036001 (2009)), we show that cooperativity effects result
ing from the non-local nature of the fluidity (inverse visitpls are intimately related to the emergence of
shear-banding configurations. This connection mateealthrough the onset of inhomogeneous compact
solutions (compactons), wherein the fluidity is confined nitd¢isupport subregions of the flow and strictly
zero elsewhere. Compactons coexistence with regions offlzadity (“non-flowing vacuum?”) is shown to
be stabilized by the presence of mechanical noise, whiamatiély shapes up the equilibrium distribution

of the fluidity field, acting as an order parameter for the floeflow transitions occurring in the material.


http://arxiv.org/abs/1507.07354v1

I. INTRODUCTION

Soft amorphous materials, including emulsions and foarnsplaly complex flow properties,
intermediate between the solid and the liquid state of m@t@]. The response of such systems
to an external shear stress is characterized by two regifoes: stressg below the yield stress
oy, they remain jammed and respond elastically, whereas wieesttess is abowey, they tend
to flow as liquids. Rheometric measurements have showntbattear stress and the shear rate

Sobey an empirical Herschel-Bulkley (HB) flow-curve:
0 =0y +AS 1)

with A the plastic viscosity and an exponent generally lower than 1, and often close t(ﬂ)@]ﬁ—
depending somehow on the surfactants uged [6]. The yielgd@mgvior makes such systems as
much interesting for applications as challenging from tinedamental point of view of out-of-
equilibrium statistical mechanic M—B]. Developing potigie theories for the deformation and
flow of amorphous materials as well as identifying the cdrs&tictural variables for these systems
remains an ongoing challenge: in the absence of a comprgbengroscopic theory, various
mesoscopic models have been vigorously pursued in thatliter Jc—lLB]. A major question in the
study of soft-glassy materials concerns the formation atspheterogeneous features: it is now

generally agreed that as soon as the flow becomes heterage@edescription of the rheological

behaviour solely in terms of the flow curve is insufficient{29]. This has been illustrated in the
experimental work of Goyost al. [@], who showed that a single flow curve is not able to account
for the flow profile of a concentrated emulsion in a microflaidhannel. That finding triggered
the need to properly bridge betwekatal and global rheology of the soft-glassy. Specifically,
Goyonet al. {ZE] introduced the concept gpatial cooperativity lengthéc, by postulating that the
fluidity, f = S/0o, defined as the ratio between shear G#ad shear stress, follows a non-local

diffusion-relaxation equation when it deviates from itékoealue
D7)+ fy(o (M) — F(M) =0. (2)

The quantityf, = fp(o (7)) is the bulk fluidity,i.e., the value of the fluidity in the absence of spatial
heterogeneities. The bulk fluidity depends upon the locasst, wheread = f (') depends upon
the position in space. Its value is equalfipwithout the effect of cooperativityét = 0). The

spatial cooperativitg. has been shown to be in the order of few times the size of tmeezitary



microstructural constituen@ﬂg g[ H 28]. The tamal equation[(R) has been justifiQ[Zl]
by using a kinetic model for the elastoplastic dynamics aiarjned material, which takes the form
of a nonlocal kinetic equation for the stress distributiandtion. Such model predicts nonlocal
equations of the forni{2), plus an equation predicting a gribgnality between the fluidity and
the rate of plastic evenfs

S
f==>or. 3)

An interesting interpretation of the diffusion equatidf (s been put forward irElZl]. Such
eqguation can indeed be seen as the minimum of the squaregrdfitee-energy” for the rate of
plastic event§

F(r) :/(w(r,o)+%2\vr|2> d (4)
where the bulk potentiab(I', o) embeds the information about the non-linear rheology, edwer
aninhomogeneity parameter £ appears as a multiplicative factor in front of the gradientrts and
may be directly related to the cooperativity lendth As pointed out in@l], the square-gradient
expression of the free-enerdyl (4) opens up a far-reachingemion toshear-banding, namely
the coexistence of multiple regions with different piecisevwconstant values of the shear rate for
a given value of the shear streg —32]. This is a commduorkeaf disordered materials, in-
cluding emulsionJES], granular matt34], soails, ro@], and metallic glassegl?;:%?]. In
the above picture, shear-banding would correspond to afidelr phase-transition scenarice.,
the spatial coexistence of two states of different fluiddy the same shear stress. This idea has
been further explored in a recent paper by Mansam. [17], who used the kinetic elastoplas-
tic description, supplemented by a phenomenological émuab take into account the coupling
between the flow and the structure: the authors show thapsitychbifurcation occurs due to a
weakening of the structure caused by the flow.

In the present paper, we further elaborate on these conaegtdevelop a new scenario whereby
shear-banding is linked to the onset of compact configuratad the fluidity field (compactons),
which correspond to the local minima of a suitable free-gpdunctional associated with the
aforementioned elastoplastic description. More spedlificae start from the non-local formula-
tion due to Bocquett al. [21], whose main idea is to introduce the fluidity as the oplameter
of a corresponding free-energy. Free-energy minimizdéiads to a non-linear Helmoltz equation,
whose solutions describe spatial relaxation to a uniforokgeound fluidity, corresponding to ho-

mogeneous bulk rheology, typically in HB form. We also ingpgée dynamics of the system sub-



ject to stochastic perturbations, arguably related tom fmrmechanical noise in the system. None
of these concepts is brand new in the literature, althougtd#ep and non trivial consequences
shown in this paper definitely are. We are going to show thatctboperative effects, resulting
from the non-local nature of the fluidity, are intimatelyatgd to the emergence of shear-banding
configurations. This connection materializes through th&eb of inhomogeneous compact solu-
tions, wherein the fluidity is confined to finite-support seigions of the flow and zero elsewhere
(non-flowing vacuum). In the absence of noise, compactdasdower free-energy minima than
the homogeneous HB solution, thereby realizing metastti@ar-bands. Indeed, since the non-
flowing region is unstable, such shear-bands cannot sumvilefinitely: depending on the initial
conditions, shear-bands may or may not occur, but even wiesrdo, in the time-asymptotic limit
they surrender to homogeneous HB configurations. The jgi¢akes a drastic upturn once noise
is taken into account. Here, a new qualitative effect arisles effective free-energy, including
renormalized fluctuations, develops two local minima, esponding to a stable coexistence of
compactons and non-flowing vacua. Under such conditionspgoeent shear-banding solutions
can indeed be observed. The emerging picture is concept@lihd and appealing: compactons
represent natural carriers of shear-bands. They attaah tomimization of the free-energy func-
tional, but in the absence of noise they ultimately surretmbomogeneous configurations due to
the instability of non-flowing vacuum.

The rest of the paper is organized as follows: in Sedfibn lidescribe the basic features of the
free-energy model, specializing to the geometry of the @eutw; in Sectio Il we explore the
energy landscape of the model and we describe the compatibsal, in Sectiof IV we study the
free-energy of both the HB and compact solutions and thdtmegwelocity profiles; the stabil-
ity of HB and compact solutions, as well as the aging propsif the model, are the subject of
Sectior V. In Section VI we analyze the behaviour of the systeder stochastic perturbations
(noise). The far-reaching implications of the stochastityrbations for the geometry of the Cou-
ette flow are illustrated in Sectign VIl. Conclusions follinvSectior VIIl. Technical details for
the stability of compact solutions and the self-consistietd approximation in presence of noise

are reported in Appendices[A-B.



. MODEL EQUATIONS

We are interested in the dynamics of a soft-glassy systehimtitvo walls aty = 0 andy = L
driven with a velocity differencAU = SL at the boundaries, witBthe imposed shear. Using a HB

relation withn =1/2, we rescale the original variables according to the falh@transformations:

y Oy \ 2 o
y—>L t—><A>t a—>aY. (5)

As a consequence, the HB relatigh (1) retains a unitary iekebs
o=1+8Y2 (6)
Following Bocquett al. [H], we write equation (4) as
1 &2 5 171 5 2.5 1
_ S” _ 4 £¢5/2  Lgo 2
FIf] %;<wayay+2|vr\)r_fw JA [ om(o) P24 S92+ 28232 dy (7)

where
(0-1)

m(o) =" (8)

Equations[(I7)E(B) are the starting point of our investigas. In case of a spatially homogeneous

solution, the minimum oF [f] is given by

PO ) 9)

o

that is the HB solution. For spatially non-homogeneoustswis, upon linearizing arount}, =
m?, we get the equation

EPoyf —f+f=0 (10)

which directly maps intd{2) with a squared cooperativityth&2 = 22 /mdiverging at the yield
stress (ar — 1, m — 0) ]. Let us remark that the value of= (0 — 1)/0%?2 in the above
equations is consistent with the definition of the fluidity- S/o. In a Couette flow, assuming as
usual that the stress is constant in space, we can obtairsa@iombetween the imposed shear and

the space-averaged fluidity
1
Sza/fwmy (11)
0



. ENERGY LANDSCAPE AT IMPOSED STRESS: HERSCHEL-BULKLEY VS COMPACT
SOLUTIONS

Let us start with the analysis of the energy landscape ingies at an imposed constant stress
0. We want to specialize our analysis to those situations evtiex “order parameteif’ is positive
definite. The first request can be ensured if wefsetg? and use the corresponding free-energy
functional, directly obtained froni{7) with the substitnif = ¢?:

1 1
Flo) = /0 L(@,d,p)dy =2 /0 [—%m(a)qﬂ%<p4\<pl+£2¢2(0y<0)2 dy. (12)

Note that the ternf>/2 has been rewritten ag*|@| to guaranteé [¢] > 0 in the limit ¢ — oo

We then look for the local extrema of the free-energy fun@id12). The variational equation

oF

56 — 0 gives:

282920y + 2E%(3,9)% +m(0) @ — ¢*|g|=0. (13)

Equation [(IB) exhibits solutions with constant order pa&mn @, = m), i.e., the bulk HB solu-
tions. However, alscompact solutions are possible

(14)

®wy) y<vyoy>wi
@(y) =

ey Yo<y<wn

with non zero values of the order parameter only in some cetrgud-domain, sagyo, y1], and
zero elsewhere (see the top panel of Figudre 1 for a sketclhelaboveg(y) =0 is a “vacuum”
field, corresponding to a zero-fluidity (non-flowing) staféhe structure of the compact solution
in the region where the order parameges different from zeroi.e., the functiong: (y) (hereafter

namedcompacton), can be further characterized by taking one quadraturguditson [1B)

mo) 4, 1

2 2 _ g 5
030 =E-— o'+ o (15)

whereE is a positive constant and where, for the sake of simpligieyassume > 0. By increas-

ing @ from zero to larger values, and for sufficiently small valoég [56]

_ 1\5
E <Ew(o) = 2—10(079 (16)

the r.h.s. of[(Ib) first becomes zero for a value of the ordearpater denoted witlp = ¢ < m.

Then, we can look for a solution of (IL5) localized in the im8r]yo,y1], with @(y) = ® and



y = (Yo+Y1)/2. Based on the structure of the exact solution
dw — Y—Yo

/\/E w4+ wS v é

we obtain the characteristic size of the regign— yo|= 2l¢, where the order parameter is different

(17)

from zero

o= & / dy i (18)

w4 + £ L,U5
It is easy to check that forclose toyo, i.e., for smaII(p, we have

1/4
@~ (;) (y—yo)Y/? (19)

implying thatdy @ diverges as Ay —yo)¥? at smallp. Importantly, equatior(13) is well defined
even at the singular points since all the divergences candgellt is also important to highlight
that the characteristic size of the compact redioh (18esqgaloportionally t&, hence no compact
solution can be achieved without cooperativity. Since cachgolutions do not overlap, superpo-
sitions of compactons still correspond to local extremaheffree-energy. This implies that the
energy in equatior (15) takes the form of a piece-wise cahgtaction, which attains distinct

non-zero values in different compactons and is zero elsewvhe

IV. FLOW PROFILES AT IMPOSED SHEAR: LINKING COMPACTONS TO SH EAR-BANDS

As discussed in the previous section, the energy landschperosystem is characterized
by various stationary solutions corresponding to both hgeneous (HB solution) and non-
homogeneous (compact) solutions. Now, we study the cayrebpg free-energy of those so-
lutions and the resulting velocity profiles. To that purpesego back to the geometry of the
Couette flow at imposed shear and consider for simplicitycdse of a compact solution with a
compacton adiacent to the upper wall of the channel with tbpgrty g=(y) >0 forlc <y <1
anddyp = 0 aty = 1 (see bottom panel of Figuré 2). This choice of boundary itimm$ makes
it easy to discuss the case of compact solutions close todhedaries, although it differs from
the usual choice of Dirichelet boundary conditions, whenea parameter representing the wall
fluidity [1 [l @] is introduced. In the Couette flow with impmssheal, the overall free-energy of

both the compact and HB solutions depends on the shasaifollows: given the stress, the full
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FIG. 1: Properties of compact solutiogs (I14). Top panel: a sketch of a compact solution obtained from
equation [(IB): the order parametgris non zero only in some compact sub-domgig yi] where the
profile is identified with the compacto@: (red dashed). The compactgr has a maximunp(y) = (E
iny= (Yo+Y1)/2. Outside the compact sub-domain the order parameternsiédéy zero (blue dashed-
dotted). Bottom panel: the average fluidity associated thihcompactorn, i.e., fol @(y) dy, for different

values of the imposed stressin the free-energy[(12). The average fluidity is reported &sation of

the constant of integratioB (see equatiori (15)) below its maximum allowed vaiyg o) = 2—10(%2/12)5 (see
equation[(1b) and text for details). Notice that the avefagdity is made dimensionless with respect to the
inhomogeneity parametérof the free-energy (12). In the inset we report the half widthf the compacton

calculated according to equatidn18), again for differerties of the imposed stress



non linear solution of equation{1L3) must be found for a vaikn(o) = (o —1)/a*/? consistent
with
1
o [ Pyay=s (20)

For the HB solution, corresponding o= @, = m, the constrain{{20) imposes= S/n¥ so that

the HB relation[(B) impliesn(o(S)) = % and the corresponding free-energy is given by
1 9P
Fue(S) = T10(1+ S/2)52° (21)

The free-energy for the compact solution is different. @itee sheafS the free-energy is not
uniquely determined, as multiple choicesmandE are compatible with the constraifit {20). This
makes the free-energy dependent on bmtAndS: once these two parameters are fixed, we are
able to determine the appropridien (15) that makes possible to derive te that satisfies the
constraint[(Z2D). For a given stress this obviously leads to a largéy at increasings, i.e., the
size of the compacton is increased to verify the constr@} (see the bottom panel of Figure
). In the top panel of Figuild 2 we show the free-endfgy(S) of the HB solution and the free-
energy of the compact solutidi(S, o) as a function of the she& For the compact solution, we
choose two different values of the stregss 1.4 ando = 1.5. We see that the cases with compact
solutions show a free-energy smaller than the HB value upddtiaal shearS;; which is stress

dependent
Fe(S0) <Fue(S) S<Si(0). (22)

In correspondence &, the size of the compact region becomes of the order of thenghzize.
Compact solutions ity imply that the shear, according to the definition of the flyidi = ¢,

is different from zero only in a compact region. This suggebl itself, an intriguing link to
shear-banding, since it permits coexistence of (compact) flowing and nowifig states within
the same spatial flow configuration. This can be evinced ftmbbttom panel of Figuid 2, where
we analyze a situation with imposed sh&at 0.1 and stresg = 1.5.

Central to this free-energetic picture is the impositiothef global constrainE (20), which is key to
tip the free-energy balance in favor of compact solutionswgHB solutionsi (0, S) < Fys(S),

in the proper range of the sheras reported in Figufe 2. We wish to observe that, had we iBthbos
the stresgr, we would have obtained

(o) =2 [ |- gm(0)6 + g ol0l+ £ 0,02 | oy > Fua(o) 23)



meaning that the compact solutignhas larger free-energy than the HB solution. In other words,

by imposing the stress instead of the shear, the HB solutardwalways show up.

V. STABILITY OF COMPACT SOLUTIONS: TIME DYNAMICS AND AGING

The connection between shear-bandings and the compatibssli. is extremely appealing,
but we hasten to remark important features about the dtabflthe shear-banding solutions thus

obtained. To this aim, we resort to the very simple equation
o= —— (24)

to define a time-evolution of the order parameter that is isterst with the attainment of local
extrema of the free-energy functional in the long-time. Bepphisticated formulations of the
dynamics may eventually be considered.

As a matter of fact, much of the insight conveyed by Fidgurer2alao be gained by analyzing the
scaling properties of the model. In particular, equatidmaation (24) are invariant upon the scale

transformation:
y =A%y 90— APp & 5 AP/2Hag ¢ 5 A7t m— APm. (25)
By using [25) we determine the scaling properties of the-éneergy as
A (26)

The choicea= 0 andb = 1, corresponding to a linear velocity profile with incregsamplitude
m and no shape change, implies a free-energy that scalesa8ngA®. The choicea = 1 and

b = 0 corresponds to compact solutions, namely increasing$ibe shear-band with no increase
in amplitudem, and deliverg= ~ AcA. Note that both constanfsyg andA; are negative, so that
the minimum corresponds to the larger absolute value. lyjnahder the assumption th&tis
sufficiently small,.e., o ~ 1, equation[{20) deliverS4g ~ A2 fora= 0 andb =1 andS ~ A for

a= 1 andb = 0. Based on the above scaling relations, we obtain:
Fig ~ AngS”? (27)
Fe~AS. (28)

The result is that, up to a critical vall®= Sy = (Ac/A4s)%3, one has, < Fyg, so that the

compactons are favored with respect to the homogeneougjuoations. Scaling law$ (R 7)-(28)

10



Flol

FIG. 2: Top panel: we show the global free-eneFgy] (see equatiori (12)) for three different cases: linear
velocity profile corresponding to a HB law (black solid linejompacton adiacent to the upper wall of
the channel (see also bottom panel) with stress 1.4 (blue dot-dashed line) and = 1.5 (red dashed
line). At a given stresg, the size of the compacton is changed in order to satisfy dhstraint [2D). The
free-energy of the compactons is smaller than the linearcitgl profile up to a critical shear where the
size of the compacton becomes equal to the channel widthoBgianel: free-energy densitieég, ;)
defined in equatiori(12) as a function of the channel posaidmposed shed8= 0.1 (subscripts indicate
the compact (c) and the Herschel-Bulkley (HB) solutionshe Thosen compact solution (red solid line)

corresponds to a stress= 1.5. In the inset we report the corresponding velocity profilesboth compact

and HB solutions.
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correspond to the functions reported in Figulre 2.

Given the time dynamic$ (24), one can verify that the congreog: are stable against pertur-
bations of the order parameter. In particular, one can coendle = F ¢ + 0¢| — F[¢] up to

the second order term id¢, and show thadF is positive defined for an enerdy sufficiently
close tonP(a) /20 (see AppendikA). However, the non-flowing stagein (I4) is unstable, and
the overall stability of the system must take into accouhlmompact and vacuum components.
The compacton is thus expected to grow and “eat up” the ulestedn-flowing stateg. By this
process, a critical situation is attained whenever the @mtgm hits the size of the channel: at that
point, the HB solution is energetically favored again arelcbmpacton yields to an extended HB
profile, going back to a situation with a global bulk rheologhder such conditions, and consis-
tently with the fact that compact regions evolve at a fasigg than the “vacuum?”, it is apparent
that the time-relaxation of the overall compact+vacuuntesysbecomes heterogeneous not only
in space but also in time.e., the systems shows aging. To highlight this effect we havelgoted
numerical simulations: the intervé, 1] has been discretized with 512 collocation points and an
Euler-Cauchy scheme with integration step=dt0—2 has been used for the time dynamics of the
free-energy. The parametérhas been fixed t§ = 0.04. At timet = 0, we start with an initial
conditiong = 0.2 in the region0 : 0.8] andg = 0.5in [0.8: 1], i.e,, we start with a non-uniform
initial fluidity. Next, we apply a shea& = 0.04 after a timd,, and we compute the resulting stress
o(t,tw). In Figure[3, we shovo (t,ty): after an almost linear growth, the stress reaches a max-
imum ow (ty) and then eventually decays to the HB value /2 at timet, (tw). Note thatoy
andt_ depend on the waiting timig,, in particular there is an overshoot that depends on the age
tw of the sampleEg]. Similar results have been reported exyatally in ,] and in MD
simulations of Lennard-Jones glasslg @ 43]. In the iofsEtgure[3, we showi as a function

of ty. It is apparent how it is very well fitted by a logarithmic fuaion of t,,. We remark that the

same effect does not appear if we consider the dynamic equiati the fluidity as

oF
of = 37 (29)
In fact, upon multiplying equatio_(24) by, we can rewrite equation (P4) in the form
oF
of = _fﬂ' (30)

The comparison between equations| (29) (30) highligjetphysical meaning of the relation
f = @% upon the assumption of a simple first order steepest-desgaamics[(24), the trans-

formation fromf to ¢ implies that the former evolves on a typical configurati@pendent time

12
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FIG. 3: The behavior of(t,t,) under the effect of the she8k 0.1 applied to the system after the waiting
time ty. The initial condition forg are: ¢ = 0.2 fory € [0: 0.8] and¢@ = 0.5 for y € [0.8,1]. The black
arrow indicates the time (t,,) at which the value of the stress reaches the HB valu&1?. In the inset we
showt, as a function of,,: a clear logarithmic dependence is observed. Details ofemigad simulations

are reported in the text (see sectian V).

scale ¥ f (30), so that non-flowing statds~ O take a virtually infinite time to relax, as opposed to
the flowing ones. This configuration-dependent time-sagpaation lies at the heart of the aging

phenomena described in Figlide 3.

VI. EFFECTS OF MECHANICAL NOISE AT IMPOSED STRESS

In the previous Section we have shown that in a Couette flowdhpling between the external
shear and the stress is such that compactgnare stable states and the associated free-energy
Fe(S, o) is smaller than the HB value up to a critical sh&r. However, the region where the
order parameter is zero (the non-fluidized band) is unstabl¢hat the formation of permanent
shear-bands is not possible and they can be observed ondyfioite (possibly long) time. So
much for the deterministic picture. The next natural questis to inspect the behavior of the
system under stochastic perturbations (noise). We sHadimefrom identifying such noise with
any thermodynamic temperatu @—46]. Actually, waeathink of it as a mechanical noise

due to dynamic heterogeneities. A naive expectation atheueffect of the noise is that it raises

13



the instability of the background fielgh so that the system reaches the HB solution in a shorter
time. However, this expectation is not true and we will dissrosomething unexpecteide., that
the vacuum solution - and hence the compact solutions - abdiged by noise. For the sake of

simplicity, we leave aside the constraintl(20) and just mershe time evolutioi (24):

dtq): _g_('; + \/EW(y,t)
Flo] =23 [-im(0)¢* + Lo* 0|+ E22(0,0)%] dy

(31)

at imposed external stress i.e, at imposedm(o) = (g — 1)/c¥/2. In the above Wy,t) is a

o-correlated white noise in space and time

(W(y1,t)W(y2,t2)) = 8(y1—Y2)0(t1 — t2). (32)

It must be understood that the solution of equation (31) fsndd with an ultraviolet cutoff =
1/km needed for the regularization at small scales. A first, niwmtr consequence of the time
dynamics[(3l) is that fom= 0 (i.e., 0 < gy), the space averaged fluidify of the system does
not vanish. As discussed in the Appendix B, we have
fo=(¢%) ~ \éﬁ

These results can be tested quite accurately by using ncaheiinulations. In Figurgl 4 we show

(33)

the value offy as a function of (main figure) fore = 108, whereas in the inset of the same
Figure we showfg as a function of. In both cases, the scaling predicted byl (33) is extremely
well verified supporting the theoretical results obtainedppendixB. With the interpretation of
the fluidity as the rate of plastic events in the system, egng83) tells us that a non zero value of
the fluidity is still present at zero external forcinge(, S= 0 and/oro < ay). This is certainly the
case for systems like foams/emulsions, where the energyldstic rearrangements can be made
available through time evolution in the coarsening dynamic which the total interfacial area
decreases as a consequence of the slow evolution of thergksphase from smaller to larger
droplets/bubblteELQ].

Next, we discuss the effect of the noise for- 0. Some interesting insights can be gained by
using a self-consistent Hartree-like approximat@ @,—Es discussed in detail in Appendik B.

This amounts to consider the free-energy
17 1 1 R D
_ - 4~ 4 Ro Y 2
Flo —2/0 [ 2 M0)¢" + =@l + 50"+ 5 (9y9) } dy (34)
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FIG. 4: We report the average fluiditiy = (¢?) (see also equatiof (33)) obtained from numerical simula-
tions of the model equations {31). Main panel: the averagditiuas a function of for € = 10~8. Inset:
fo as a function of the noise strengtior & = 0.04. In both cases the scaling predictions of equafioh (33)
are verified. All simulations have been performed at constirsso = 1 (i.e., m= 0 in (31)). Details of

numerical simulations are reported in the text (see sejon

where
R=28%((6yp)?) D =28%(¢?) (35)

need to be determined in a self-consistent way. Based ortiequ&l) and the results discussed

in AppendiXB, we can formally write the model equations as

O p = —2e + 2Dy @+ /EW(y,)

Vei(@) = —3m(0)¢* + 2 ¢ o+ 5 2.

(36)

Owing to renormalization effects, fluctuations turn theebfree-energy into an effective one,
whose properties may lead to qualitatively new phenomenhaardained in the original formula-
tion. For the case in point, the potentiaflows into an effective on¥,,, supporting qualitatively
new extrema through a renormalized “mass” t@m’-. Besides, a new diffusion term arises with
no counterpart in the noise-free formulation. A full nondar treatment would require tHatand

D were treated self-consistentlyg., taking into account their functional dependence on the con-
figurational statistics of the system. However, as we skea| significant insights can be gained

by provisionally treating both quantities as constant pesizrs, and deferring a self-consistency
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Veff((p)

FIG. 5: The effective potential,; defined in equation$ (B6) witR = 1. A bifurcation is present anh=
me ~ (27R/4)Y/3, above which two local minima appear @, = @ = 0 and at@,, = @n ~ m— R/m? +
O((R/m?)?).

check to a subsequent numerical solution. Thus, upon asgURandD in (38) as “constant”

parameters, we look for local minima of the effective potriiy solving @ > 0):

dVe _ _

d(pﬁ O=hin N <R(p— m(ps + (p4) ‘q):(pmin - O (37)
d?Ve

d(pZﬁ @O=Chin - O

It is easy to show thaE(37) has one solutign = @ = 0 for m < m¢ ~ (27R/4)Y/3, whereas for
m> me, two local minima appear at,, = @ = 0 and@,, = @ ~ m— R/m? + O((R/n?)?) (see
Figure[® for a sketch). The local minimugr, is nothing but the HB solution already discussed
in the previous sections: this state receives a normabzatnd its stability changes, since now
it appears as a local minimum only far> m.. In other words, it is expected that the vacuum
¢ is stabilized below a given stress threshold which dependb®intensity of the fluctuations.
Clearly, such stable minimum disappears in the liRit> 0, i.e,, there are no renormalization
effects due to fluctuations, smoothly recovering the det@stic picture of an unstable vacuum.
If the vacuumg, is stabilized, the co-existence of flowing and non-flowirebst states discloses
the possibility to support stable shear-band configuratidrhis is a major, qualitative, effect of
fluidity fluctuations.

However, this is what we formally expect, based on the fornv,gfby treatingR andD as
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constant parameters. As mentioned earlier on, the contplarises from the fact that bofRand
D depend on the fluctuations themseleg (37). More impogtaR&ndD arestate dependent, as
can be seen by perturbative calculations,(assuming to be small) and by properly linearizing
the potential near the local minima. In particular, an esiptiomputation (see AppendiX B) shows
that the scaling with respect to the noise strerggthdifferent, depending on the local minimgy(

or @y) around which they are computed:

Ro~ Ekm/eky R~ gk /(2mP). (38)

Consequently, the bifurcation poimt = m. is different, depending on whether one linearizes
aroundgy or @. We label these two bifurcation points? andm(Y), so defining also the corre-
sponding critical stresseg(? andoV, based or({8)

0@ -1 12 16

m%(g) = GOz~ Ky

(39)
m(g) = (00(27);1/12 ~ k515, (40)
Due to the different scaling propertiesénwe find thatm® < m©, or equivalently thao? <
o®. The above picture implies hysteresis in the system in tgndo™, 0(9)]. Indeed, any
initial state close tap is expected to attain the only stable solution of the systpriom = m(@,
i.e, up to a maximum stress(?). Similarly, starting with an initial state close tg, the system
remains close to this state only far > m®%, i.e,, only above a given stressY). Therefore,
once the stress falls within the range= [0V, 0(9)], two stable solutions are expected, depending
on the initial conditions. As a matter of fact, these expates are confirmed by the results of
numerical simulations shown in Figuré 6. The system isah#ed in the statenh and we then
consider the time dynamics based on equafioh (31) with tigerio the rangé10—8 5 x 1077].
We slowly change - step by step - the streslky increasingn and wait for the system to reach a
stationary (in statistical sense) state, where we comgt@pparent shear based ®&: g (¢?).
In the top panel of Figurl 6, we report the stress/shearioalabtained withe = 10-8: the red
circles correspond to the simulations starting with théesggand slowly increasing the stress; the
blue squares correspond to the case where we start from¢gtated a relatively large value of
the stress, and then decrease the stress. In the bottomgdrigure[6, we show similar results
obtained with the noise amplitude= 5 x 10~/. Both figures support a well defined hysteresis
effect, which is amplified by increasing the noise amplituti®te that in the regiom < o,

only one stable solution is attained.
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FIG. 6: Top panel: Stress shear relation obtained by the rioatesimulations of [(311) withe = 1078,
Starting with an homogeneous initial conditigh= @ = 0 we increase - step by step - the stress (red
circles) up to the value where a clear HB behavior (solid)lisedetected. Next we decrease the stress
starting withg = @, = m (blue circles). A clear hysteresis cycle is observed. Agdndicate the points
where the values afh(® (g) andm® (¢) are extracted. Correspondingly, the critical values ofdinesses

can be obtained based én¥308)J(40). Bottom panel: same &sqtipanel withe =5x 1077,

From the shear-stress curves we can also determine theponeing values of the stresses at
which the transition occurs. These are reported in Fighrehgre we plot bottm© (red circles)
andm) (blue squares) as a function ef The scaling predictions from equations](39)}(40) are

also reported: note that although the two scaling laws argeclo each other, it is clear that the
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FIG. 7: We report the values of(®) () (red circles) anan™ (¢) (blue squares) computed from the numer-
ical integrations of[(31) with noise amplitude in the rarig@ 2 : 5 x 10~/]. The numerical procedure to

determine the transition valuas( (¢) andm(V (), is highlighted in Figur&l6.

numerical results cannot be fitted with the same scalingmaapis ine. Our simulations therefore
indicate that our analytical resulfs {39)-[40) are in veopd agreement with the complex non
linear dynamics of the system. The existence of a hysteeffeist in the system is an important
point since it is one of the many puzzling results obtainddloratory experiments in soft glasses
(see I[EEBA] and references therein). Here, we can stat¢hihdnysteresis effect is due to the
noise in the system and to the renormalization effects irymamics.

We can also use our findings to study some of the peculiarda¢&ie phenomenon of viscosity
bifurcation. To this aim, we consider an initial pre-shekstate with fixed she&, = cp§a =0.01
at timet = 0. This is realized with a homogeneous initial conditip(y,0) = @ = \/%- We
then vary the applied stressand study the behavior of the apparent st&tr= o fol @?(y,t)dy
as a function of time. In the top panel of Figlte 8, we st®ty for different values of the applied
stresso with € = 1078, £ = 0.04. There is a clear bifurcation between the values of thesstr
below a critical values(©, at which the shear tends to vanish, and those alod% where the
shear goes asymptotically to a non zero value. Similarlhétbottom panel of Figufe 8, we show
S(t) for different values of the initial she&, with € = 1078, & = 0.04 and fixed applied stress
o = 1.2. For small values 0%&,, the apparent shear tends to vanish whereaSfgreater than

some critical value, the shear goes asymptotically to a eon zalue.
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FIG. 8: Top panel: time dynamics of a pre-sheared state uthdénfluence of a constant stresdased on
equation[(3ll). We consider an initial homogeneous péye0) = @, corresponding to a pre-sheared state
with shearS(0) = S, = @20 = 0.01. We then study the behavior of the apparent sB@ae= afol @?(y,t)dy

for different values of the applied stress There is a clear bifurcation between the values of the stres
below a critical valueg(®), at which the shear tends to vanish, and those abd¥Yewhere the shear goes
asymptotically to a non zero value. Bottom panel: we sBayfor different values of the initial she&; at
fixed applied stresg = 1.2. For small values d&,, the apparent shear tends to vanish whereaS,fgreater
than some critical value, the shear goes asymptoticallyrtorezero value. The numerical simulations are

based on the model equatiofs](31) witk: 108, & = 0.04.

Before closing this section, we would like to remark that#his a simple argument to obtain the
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scaling laws reported in equationsi(39)4(40). To this agtus consider the probability distribution
P[] given by:

Plg] = 2 ‘1exp{—% /0 1 (—?cp‘“r %rmﬂ‘ zrpz(ﬁyw)z) dy} : (41)

It is easy to verify that (41) is invariant under the scal@s$farmation
Yy A%y 90— APp & 5 AP/2HaE m_y APm g 5 APt (42)

For a = 0 the scale transformatioh (42) ignores spatial structurdise system and we obtain a
scaling given bym~ €/5. Forb = 1 the scale transformation (42) takes into account theapati
structure and we obtain the scaling~ £1/6. Therefore the scale transformatiénl(42) makes it
possible to understand why there exists two different sgalegimes[(39)E(40). It is important
to remark that the identification ¢t as the probability distribution implies that the systemnis i

equilibrium.

VIl. EFFECTS OF MECHANICAL NOISE AT IMPOSED SHEAR

Given the findings reported in sectibnl VI, we now considerdiipamics given by equation
(31), together with the constraint (20) in a Couette flow. \ive at discussing the way that noise
affects the stability of the compact solutign described in sectiop_lll. Obviously, the results
reported in section VI are only applicable to the region wthée solution is close t¢ = 0. How-
ever, as already remarked in section I, we know that corguesag= correspond to a minimum
of the free-energy and we can argue that this property doeshamge because of the external
noise. These expectations are indeed borne out by numsincalations as hereafter detailed. We
consider the dynamics of the system at an imposed shead.04 with “weak” and “sufficiently
strong” noiseg = 1078 and 10°7. By “strong” we imply fluidity fluctuations in the order of a
few percent of the deterministic valde= m, whereas fluctuations induced by a “weak” noise are
below such threshold. For each noise strength, we considenttial band sizes below and above
the half size of the channé}(0) = 0.2 andl¢(0) = 0.75. Using [[(39) and the analysis presented in
the previous Section, we estimate tiad?) (¢ = 108) ~ 1.2 ando(? (¢ = 10 7) ~ 1.4. For the
imposed shea®= 0.04, the values o(%) should then correspond to a situation where the shear-

banding solution is either stable £ 10~ ") or unstable £ = 10-8), as explained in the following.
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The numerical results obtained using the four possible @oations (initial conditions and noise
strengths) are shown in the top panel of Fidure 9, where wetlpdotime evolution of the shear-
bandl¢(t). Let us begin by discussing the results with “strong” nogse,10~’. With 1¢(0) = 0.75,

the initial stress is belowr(o)(e = 10"7) ~ 1.4. In order to minimize the global free-energy (see
also FiguréR), the systeimcreasesthe stressi,.e,, it decreasesthe size of the shear-baiy] based

on (20). This shrinking process goes on uitibecomes short enough to takeclose tog?.

At this stage, any further narrowing of the compacton woakktos beyond the threshold?,
thus destabilizing the regiop = 0. Under such conditions, the shear-band solution incseigse
size again tdc. In other words|. is pinned down as the size compatible with the stressc(@,
based on[(20). The same reasoning carries on to thelg@e= 0.20, in which caser > o,

so thatl. increases untib reaches the valug(©). Either ways, the only stable solution of the
system corresponds to a shear-band with (9. Let us now turn to the “weak-noise” scenario,
€ = 1078, In this case, no shear-band solution is expected beaddse: 1.2, which is very close

to the HB value foiS= 0.04,i.e., 0 = 1+ SY2 = 1.2. Therefore, the she&= 0.04 would select a
point on the curvé(o = 0(0),8) whose free-energy becomes comparable with the one of the HB
solution,F.(o = 0'9,0.04) ~ Fyp(0.04), which means no shear-banding. Indeed, from Fiflre 9,
we observe that, starting wit(0) = 0.75, the system evolves towards metastable shear-bands,
which disappear as soon as the compacton hits the size obthaid, after about 3000 4000
time units. The cask(0) = 0.20 presents however a different scenario. In this case,uheen

ical simulations show thdt remains basically constant, at least in the time span cdveyehe
simulations. The reasons is that, even though that bandsisble, one must wait for a longer
time before reaching the stdte= 1. Upon decreasinig(0), the value of the initial stress due to
(20) increases, and so it does the energy barrier protetttngsymptotic state = 1, leading to

an even longer waiting time before the band is destabiliZéuis is appreciated from the bottom
panel of Figuré19, where we observe that, in the initial sthgmcreases through a sequence of
steps, each signaling the crossing of a correspondingeiba8ince the energy barrier decreases at
increasingd., the overall process speeds up as time unfolds. Summarizing large enough to
guarantee that the equilibrium probability distributiengiven by [(41), the non linear effect due
to (20) and the metastability of the regign= 0, conspire to drive the system to a stable band
compatible with a value of the stress= 0% (¢). It follows that, upon increasing, the system
sustains the stress= 0(©), up to the point wherk. = 1 and the shear-banding is lost. Thus, upon

increasing the shear, we should observe a linear decredise fsree-energy with the she8i(see
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equation[(ZB)), up to the point when the shear-band Isibecomes of the order of the system
size. This is again confirmed by the numerical simulationshée top panel of Figufe 10 we show
the value of the free-energy for a Couette flow as a functiahefpparent imposed shearWe
compare the space-averaged free-energy evaluated fronutherical simulations (red bullets),
the free-energy for compact solutions|(28) (red dashed, laved the free-energy of the linear HB
velocity profile [21) (black solid line). The value of the seiamplitude i€ =5 x 10~7. In the
inset of the same figure, we show the stress/shear relattaimel through the numerical simula-
tions. A clear plateau ar ~ 1.5 is observed, corresponding to the vatl@ given in [39). The
velocity profiles are reported in the bottom panel of Figube Eigure 10 also demonstrates that
the model defined by equations {20)4(31) shetable shear-bands for < a\((“), wherea\((”) is the
value of stress in the upper plateau of the shear-stresrelae., basicallyg© in (33). In other
words, the stability of shear-bands as a local minimum offtimetional F [¢] and the noise am-
plitude € cooperate in such a way as to increase the value of the yrelskssat whichyy becomes
unstable. This cooperative effect highlights the subtié smmewhat counterintuitive role of the
mechanical noise.

Before closing this section, a few comments on the rolé& afe in order. All of the above results
have been obtained using the same vaue 0.04 and it is natural to ask how the picture dis-
cussed so far would change upon chandindccording to[(39), one would naively expect that by
increasing? the value ofo(? should also increase. However, a subtler analysis reveat$tis is
not the case. Sind® ~ &2((d,p)?), there are two competing mechanisms which concur to fix the
value ofm@ ~ R1/3: the prefacto€? and the spatial average inherent to the definitioRoThe
former obviously increases with, the latter however has just the opposite effect. Indeedtesi
the system is split in two regions, the stgteand the compactog:, the spatial average involves a
factor (1—I¢) which is apparently decreasing upon increasinga an increase of. As a result,

the system develops a much weaker dependenéetban one would expect.

VIIl. CONCLUSIONS AND OUTLOOK

It is know that the experimental phenomenology of sheadlays shows many intriguing ef-
fects to be explaine@h@ f_(;—_l B ,Eil—37]. Modetinch a phenomenology is defini-
tively a challenging task for theori&@:ﬂiln this pape have explored the connection be-

20

tween shear-bandings and fluidity mod@ —23], whickeHzeen proposed in the literature to

23



C(0) =0.20, = 10
1.(0)=0.75, &= 1o
C(0) =0.20, &= 10 -
1.(0)=0.75, £=10® -~

15 ¢

band disapperance ——> O-O-0-0-6-0-6

o
o

l.(t)

o0

05t --TT

-—— -
. -

g

0 1000 2000 3000 4000 5000

0.8 r

04 r

0.2 pasi

l(t)

0 L
02t C(0) 0.22, e= 10
1.(0)=0.21, &= 10
-04 r 1.(0)=0.20, &= 10
0 1x10* 2x10* C(O) 0.18, €= 108
-0.6 ‘
0 1x10* 2x10* 3x10* 4x10*

t

FIG. 9: Top panel: we show the band sizé&) as a function of time in a Couette flow with two different
initial conditions, |¢(0) = 0.20 andl¢(0) = 0.75, and 2 different noise strengtls= 10~" ande = 1078,
Bottom panel: we report the band sizé&) as a function of time with initial conditions chosen in thege
[0.18 : 0.22] and noise strength= 10~8. The inset reports the early stages of the time dynamichiéocase
with I¢(0) = 0.18, showing the increase of the band through a sequencepsf dteall cases the imposed

shear isS= 0.04.

explain the cooperative flow of complex fluids in confined eysd. Based on the simple observa-
tion that the fluidity is a non-negative definite order parsanmeve have reformulated Bocquetal.
free-energy functlona]__[il] in terms of its square rgot +f%/2, which is a signed quantity. For
the geometry of a Couette flow, it is shown that once the sram constrainf0 @’(y)dy=S/o

is taken into account, this functional is minimized by infmyeneous compact solutions (com-
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FIG. 10: Top panel: we show the free-energy for a Couette floa/fainction of the apparent imposed shear
Sand fore =5x 10~". The red bullets correspond to the space-averaged fregyeRfyp] in the stationary
state obtained from numerical simulations of the model #gos [31); the red dashed line is the value of
F for compact solutiong (28); the black solid line is the vadfi€& corresponding to the linear HB velocity
profile (21). In the inset we show the stress/shear relatiained by the numerical simulations. A clear
plateau ab ~ 1.5 is observed corresponding to the vatri@ of equation[(3D). Bottom panel: the velocity

profiles corresponding to the shear-band region of the topl@ae reported.

pactons), which coexist with regions of zero-fluidity (vaou). Since the latter are unstable, the
compactons increase their size at the expense of the vaauniiinthey reach the size of the full
system, at which point no further decrease of the energy eachieved, other than by recovering

the homogeneous HB solution, namely a linear Couette prdfiles leads to a host of remarkable

25



dynamical effects, primarily aging. Given the highly naoivitll dynamics of the fluidity field, we
have further investigated how such dynamics is affectedveytesence of stochastic fluctuations,
typically in the form of mechanical noise. We wish to emphaghat such noise is inherently non-
thermal in character and must be regarded as spontanealityffluictuations which occur also in
the absence of any external load. To be noted that, sinceuilléyflis non-negative, so must be
its average, which implies non-trivial restrictions on ti@se strength. Such restrictions do not
apply to the square-root fluidity, which, being signed, eefto fluctuate around zero. It is shown
that, owing to non-trivial renormalization effects, if theise is sufficiently strong, the unstable
vacuum is stabilized, thereby paving the route to stablarshand configurations. This qualitative
picture is confirmed by numerical simulations of steepestednt dynamics under different initial
conditions and noise amplitudes. The two starting ingradief the present picturee., fluidity

as an order parameter and mechanical noise as a promoteapkessfrom free-energy minima, are
not new. The emerging picture, however, definitely is. Irtipatar, it provides a transparent link
between shear-bands and compactons, as well as a subtlezat@m mechanism via non-trivial
noise renormalization effects. Finally, we wish to point that the above rich picture depends
only on two free parameters: the cooperative lerigind the noise strength Many further di-
rections for future research can be envisaged: for insténeeuld be of interest to investigate the
effects of shear-dependent fluidity fluctuations, and/asttmly the behavior of the system under
second order dynamics instead of the simple first-ordepsttadescent model.

The authors kindly acknowledge funding from the EuropeaseBech Council under the Euro-
pean Community’s Seventh Framework Programme (FP7/20Q3)2ERC Grant Agreement No.
279004.

Appendix A: Stability of Compactons

To simplify matters in the stability analysis we rescalespace and order parameter variables

as

Il
3
S

(A1)

h
Si=
S

so that the free-energy becomes

~ Yo+2c 1~ 1eg ~  ~ ~ .
Flg) = 2m”/2¢ /y [—Z¢4+§¢4I¢I+¢2<0y¢)2 dy. (A2)
0



Then equation$ (13) and (15) become, respectively:

2920559+ 29(59)% + ¢> — ¢%|p|=0
Pyp)?=E-1¢*+1¢°

(A3)

where the constarf has been rescaled by a factot, i.e,, E = E /. To assess the stability of
the compactongk (¥), we computedF = F[¢= + 5¢] — F[@] up to second order terms .
Based on[(24), stability is guaranteeddif is positive defined. After a rather straightforward
computation we obtainge > 0)
Yot+2ic . 1- .
5F = 2?2 [ (5¢)2 [(07%)2 —SE+ @] dj+Fy (Ad)
Yo

whereF; includes all positive defined terms

yo+2|c
Fr=2m”?%¢ | @*(356¢)2dy.
Yo
The integral in[(A%) is computed in the intervigh, o + 2ic] where the localized solution is de-
fined. Because of symmetry, it is enough to show that the iatdgtweenyo, Yo + I}] is positive
defined. Furthermore, we can always choose the origin ofjiaten with the positioryg where

the localized solutio= becomes zero and write
¢e(9) = (4E)*AG)F2

whereA is an analytic function of.”SinceAdyA+ (dyA)? > 0 for 0< § < ic andF. is positive

defined, we obtain

6F I 2 2 ~ = ~ ~
A /2(4E)Y4A } dy.
A VAE | o T 4948 A | 0y
We have then studied the propertiesd¥), finding a lower bound for itA(Y) > 1/+/2. Hence
oF ' )22 y3/ 1/4| 4o
A2\/4E (4E)V/4| dy. A5
4m9/2<r [ \@ Y (A3)

Because the functiofg; — J +}73/2(4I§)1/4%] is positive defined foE > E. = 0.01, it follows that
all localized solutions with integration constanin the rangee < [0.01,0.05] are local minima of
F[¢], whereE = 0.05 corresponds to the upper bougd = mP/20 discussed in sectiénllll, above
which no compact solution can be found. It is clear from osutethat the number of possible

stable compactons is still very large.
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Appendix B: Self-Consistent Field approximation

In this appendix, we derive the expressidnd (89)-(40) dised in sectiori_(lll). We start with

equation[(31)
qQ=—35 +VEW(Y,t)

(B1)
Flol =23 [~ imeg* + Lo o +&20%(3,9)?] dy
which we rewrite in the form
O = —255 + 4E2 020y, 0+ 452 9(9y9)? + VEW(Y,1) 62)

V(p) = —3me*+ Lo g
Our aim is to show that, because of the noisé renormalized and, moreover, the renormalization

is state dependent. The difficult terms to be estimated asetproportional t&? in equation
B2), i.e., ¢*dyp and(dy¢)?. Starting from the free-energy, a self-consistent Hasileefield

approximation 2] can be performed on the terttd, @)?
1 1 R D
Flo =2 [—Zm¢4+§<p“|¢l+§rp2+§(0ycp)2 dy (B3)
where
R=2¢%((dyp)?) D=28%(¢"). (B4)

Note that formally we should apply the same approximaticiméstermsp* and@®|¢| but for our
purpose this would add only small perturbations to the teaglow described. Next, by using

equation[(BB), we can rewrite equatign {B2) as
dVeff

Q=25 + 2D+ VEW(Y) (B5)
where theeffective potentialV,; is given by
1 1 R
Ver(@) = —7m0" + 209+ 507 (B6)

According to [B6), the effective potential has local minimvhich can be found by solving the

equation ¢ > 0):

Ve — *+ ¢! -

o o™ (Rp—mg°+¢ )\(p:mmn =0 (B7)
dzveff

de? ©=hin -0
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It is easy to show thaE{B7) has one solutign = @ = 0 form < mc ~ (27R/4)Y/3, whereas for
m > m there exist two local minima ag,, = @ = 0 and@,,, = @n ~ m— R/m? + O((R/n¥)?)
(see Figurél5 for a sketch). To close the problem, we needrtpoteR = 282((dy¢)?). This
computation can be done perturbativelg.(assuming to be small) by linearizing equatiopn (B6)
near the minima.

We start with the minima ap = @, ~ m— R/n? + O((R/n?)?). As we shall see in followingR

is proportional tae and we can simplify the computation by assuming m. Next, we consider

the fluctuation® @ neargp = mwhich obey the stochastic differential equation

03P = 4E°mPay 3¢ — 2(MP + R) 3@+ VEW(y,t). (B8)
The above linear equation can be solved in Fourier Transforrdg and we obtain

3 Oq = (—4E%mPk? — 2m® — 2R) 3¢+ vVEw(k,t) (B9)

where now botP g = \/%Tfexp(iky)égo(y,t) dy and w(k,t) are complex variables and moreover
(W(ks,t1)W* (k2,t2)) = d(ky1 + k2)d(t1 —t2). Equation[(B9) is a linear Langevin equation for each
k whose asymptotic variance can be easily computed. Aftanplsialgebra we obtain:

2 2K2 k
R:2§2/k2<5gq(5gqj>dk: ﬁe 2€2szm+ R/ dk = SFM(HO(m/kM)JrO(kMR/mZ)).

(B10)
Upon recalling thaing ~ Rand substituting foR the result obtained i (B10), we obtaig ~ %

and thus
me ~ (gkw) /. (B11)

We refer to this value of. asm(Y). Our derivation implies that fom < m the only minimum
of the effective potential igy while for m > m(D) there exist two local minima, and in particular
the minimum neap = mis the global minimum of the potential.
Next we consider the minim@ = 0. In this case the problem is more complicated siRshould
be computed self-consistently with To solve the problem, we linearize equationl(B6) ngar0
obtaining:

0@ = 2DAy 09— 2ROP+ v/ eW(Y,t). (B12)

We next perform a Fourier transform obtaining a set of lineangevin equations. A simple

algebra gives:
dk

. 2 * . 2
D = 2¢ /(6(;](6([]( )dk = 2¢¢ /7Dk2 = (B13)
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k2dk
_oz2 (12 N\ Al g2
R=2¢ / KR53 dk = 2¢& / SR (B14)
By multiplying equation[(BIB) byr and equation (B14) bip, and summing the two results, we
get

2DR = 2£&%ky. (B15)

Another relation betweeDd andR can be explicitly obtained by solving exactly the integral i
(BI3) and assuminky large

dk £&? dk e&? |R /D neé? R
— g&2 — = — — N — =
D =28t /Dk2+R_2 R /Dke/R+1 2R VD™ RH r Vo 19

The self-consistent solutions ¢f (B1%)-(B16) are given by:

DNEVk;kM; R~ Eku\/2ku. (B17)

Equation[[B1V) implies that the fluctuations negrare given by
_D  Veku

&2 &ku
meaning that neam the average fluidityfg is not zero, which is the result reported[inl(33). Finally,
we recall thaimg ~ R, so that

((59)2) (B18)

me ~ (Ekm/eku )3 (B19)

and we refer to this value ofi. asm(©).

In order to gain a physical insight in the above approxinrajat is expedient to consider again

equation[(BR) and decompogeas follows:

o= (p)+00 (B20)

whered g are (small) fluctuations around the space avergge Equation[(B2) is then rewritten

as:
0 = 2m@> — 20| | +4E %0y (97 (3yp)] — A& p(Byp)* + V/EW(Y, 1) (B21)

Upon performing the space averagelof (B21) and assuminggetaiging i¢e., ensemble average

is equal to space average), we obtain:

(@) = 2m()° — 2(9)°|{ @) |- 4E%(9) (9,0 9)%) (B22)
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where we have neglected terms proportional &) (d,6¢)? and also terms coming from the
decomposition ofp® and¢q®| @

, Which are supposedly much smaller tk(a?;;écp)z. By linearizing
the rhs of [B21L) aroundy) > 0, and subtracting equatidn (B22), we obtain (to the linedeoin

0¢) the following equation
KhSP = 2(3m()” — 4(9)°) 59+ 4E(9)? 0y, 00+ VEW(Y, ). (B23)

Next, assuming thap) ~ m+ O(¢), we can compute the quanti®= 2£2((3,6¢)?) from (B23):

the equation is linear and can be solved similarly to what exelrdone for[(BB), obtaining the

O'(€) result in [B10).
Moreover, we can recover the results fof® by writing equation[(BR) for the fluidityf = ¢

Upon using Ito calculusl,ES], we obtain:
0 f = ek +O(F2) + E2fayy f +/efw(y,t) (B24)

where the term®( f2) are neglected in the following since we are investigatirgsttability of the

stategp = 0. Upon averaging in spade (B24) and assuming self-avagagihold, we find
a(f) = —&2((0yF)?) + ek (B25)

We then use the approximatidiody f)?) = akZ (f)2, wherea is a constant of order 1. At the

stationary state, equatidn (B25) predicts

E%akgy ()% = ekw (B26)
which is equivalent to
2y VEkm
((09)%) = a2k (B27)

Equation[[B2V), apart for a numerical constant, gives dx#oe same result reported in (B19).
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