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Abstract

Cooperativity effects have been proposed to explain the non-local rheology in the dynamics of soft

jammed systems. Based on the analysis of the double well free-energy model proposed by L. Bocquet,

A. Colin & A. Ajdari (Phys. Rev. Lett. 103, 036001 (2009)), we show that cooperativity effects result-

ing from the non-local nature of the fluidity (inverse viscosity), are intimately related to the emergence of

shear-banding configurations. This connection materializes through the onset of inhomogeneous compact

solutions (compactons), wherein the fluidity is confined to finite-support subregions of the flow and strictly

zero elsewhere. Compactons coexistence with regions of zero fluidity (“non-flowing vacuum”) is shown to

be stabilized by the presence of mechanical noise, which ultimately shapes up the equilibrium distribution

of the fluidity field, acting as an order parameter for the flow-noflow transitions occurring in the material.
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I. INTRODUCTION

Soft amorphous materials, including emulsions and foams, display complex flow properties,

intermediate between the solid and the liquid state of matter [1–3]. The response of such systems

to an external shear stress is characterized by two regimes:for a stressσ below the yield stress

σY , they remain jammed and respond elastically, whereas when the stress is aboveσY , they tend

to flow as liquids. Rheometric measurements have shown that the shear stressσ and the shear rate

S obey an empirical Herschel-Bulkley (HB) flow-curve:

σ = σY +ASn (1)

with A the plastic viscosity andn an exponent generally lower than 1, and often close to 0.5 [4–6],

depending somehow on the surfactants used [6]. The yieldingbehavior makes such systems as

much interesting for applications as challenging from the fundamental point of view of out-of-

equilibrium statistical mechanics [1–3]. Developing predictive theories for the deformation and

flow of amorphous materials as well as identifying the correct structural variables for these systems

remains an ongoing challenge: in the absence of a comprehensive microscopic theory, various

mesoscopic models have been vigorously pursued in the literature [7–19]. A major question in the

study of soft-glassy materials concerns the formation of space heterogeneous features: it is now

generally agreed that as soon as the flow becomes heterogeneous, a description of the rheological

behaviour solely in terms of the flow curve is insufficient [19–27]. This has been illustrated in the

experimental work of Goyonet al. [20], who showed that a single flow curve is not able to account

for the flow profile of a concentrated emulsion in a microfluidic channel. That finding triggered

the need to properly bridge betweenlocal and global rheology of the soft-glassy. Specifically,

Goyonet al. [20] introduced the concept ofspatial cooperativity lengthξc, by postulating that the

fluidity, f = S/σ , defined as the ratio between shear rateS and shear stressσ , follows a non-local

diffusion-relaxation equation when it deviates from its bulk value

ξ 2
c ∆ f (~r)+ fb(σ(~r))− f (~r) = 0. (2)

The quantityfb = fb(σ(~r)) is the bulk fluidity,i.e., the value of the fluidity in the absence of spatial

heterogeneities. The bulk fluidity depends upon the local stressσ , whereasf = f (~r) depends upon

the position in space. Its value is equal tofb without the effect of cooperativity (ξc = 0). The

spatial cooperativityξc has been shown to be in the order of few times the size of the elementary
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microstructural constituents [20, 22, 23, 27, 28]. The non-local equation (2) has been justified [21]

by using a kinetic model for the elastoplastic dynamics of a jammed material, which takes the form

of a nonlocal kinetic equation for the stress distribution function. Such model predicts nonlocal

equations of the form (2), plus an equation predicting a proportionality between the fluidity and

the rate of plastic eventsΓ,

f =
S
σ

∝ Γ. (3)

An interesting interpretation of the diffusion equation (2) has been put forward in [21]. Such

equation can indeed be seen as the minimum of the square gradient “free-energy” for the rate of

plastic eventsΓ

F(Γ) =
∫

(

ω(Γ,σ)+
ξ 2

2
|∇Γ|2

)

d3x (4)

where the bulk potentialω(Γ,σ) embeds the information about the non-linear rheology, whereas

aninhomogeneity parameter ξ appears as a multiplicative factor in front of the gradient terms and

may be directly related to the cooperativity lengthξc. As pointed out in [21], the square-gradient

expression of the free-energy (4) opens up a far-reaching connection toshear-banding, namely

the coexistence of multiple regions with different piece-wise constant values of the shear rate for

a given value of the shear stress [29–32]. This is a common feature of disordered materials, in-

cluding emulsions [33], granular matter [34], soils, rocks[35], and metallic glasses [36, 37]. In

the above picture, shear-banding would correspond to a firstorder phase-transition scenario:i.e.,

the spatial coexistence of two states of different fluidity for the same shear stress. This idea has

been further explored in a recent paper by Mansardet al. [17], who used the kinetic elastoplas-

tic description, supplemented by a phenomenological equation, to take into account the coupling

between the flow and the structure: the authors show that viscosity bifurcation occurs due to a

weakening of the structure caused by the flow.

In the present paper, we further elaborate on these conceptsand develop a new scenario whereby

shear-banding is linked to the onset of compact configurations of the fluidity field (compactons),

which correspond to the local minima of a suitable free-energy functional associated with the

aforementioned elastoplastic description. More specifically, we start from the non-local formula-

tion due to Bocquetet al. [21], whose main idea is to introduce the fluidity as the orderparameter

of a corresponding free-energy. Free-energy minimizationleads to a non-linear Helmoltz equation,

whose solutions describe spatial relaxation to a uniform background fluidity, corresponding to ho-

mogeneous bulk rheology, typically in HB form. We also inspect the dynamics of the system sub-
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ject to stochastic perturbations, arguably related to a form of mechanical noise in the system. None

of these concepts is brand new in the literature, although the deep and non trivial consequences

shown in this paper definitely are. We are going to show that the cooperative effects, resulting

from the non-local nature of the fluidity, are intimately related to the emergence of shear-banding

configurations. This connection materializes through the onset of inhomogeneous compact solu-

tions, wherein the fluidity is confined to finite-support sub-regions of the flow and zero elsewhere

(non-flowing vacuum). In the absence of noise, compactons attain lower free-energy minima than

the homogeneous HB solution, thereby realizing metastableshear-bands. Indeed, since the non-

flowing region is unstable, such shear-bands cannot surviveindefinitely: depending on the initial

conditions, shear-bands may or may not occur, but even when they do, in the time-asymptotic limit

they surrender to homogeneous HB configurations. The picture takes a drastic upturn once noise

is taken into account. Here, a new qualitative effect arises: the effective free-energy, including

renormalized fluctuations, develops two local minima, corresponding to a stable coexistence of

compactons and non-flowing vacua. Under such conditions, permanent shear-banding solutions

can indeed be observed. The emerging picture is conceptually sound and appealing: compactons

represent natural carriers of shear-bands. They attain local minimization of the free-energy func-

tional, but in the absence of noise they ultimately surrender to homogeneous configurations due to

the instability of non-flowing vacuum.

The rest of the paper is organized as follows: in Section II wedescribe the basic features of the

free-energy model, specializing to the geometry of the Couette flow; in Section III we explore the

energy landscape of the model and we describe the compact solutions; in Section IV we study the

free-energy of both the HB and compact solutions and the resulting velocity profiles; the stabil-

ity of HB and compact solutions, as well as the aging properties of the model, are the subject of

Section V. In Section VI we analyze the behaviour of the system under stochastic perturbations

(noise). The far-reaching implications of the stochastic perturbations for the geometry of the Cou-

ette flow are illustrated in Section VII. Conclusions followin Section VIII. Technical details for

the stability of compact solutions and the self-consistentfield approximation in presence of noise

are reported in Appendices A-B.
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II. MODEL EQUATIONS

We are interested in the dynamics of a soft-glassy system within two walls aty = 0 andy = L

driven with a velocity difference∆U = SL at the boundaries, withS the imposed shear. Using a HB

relation withn= 1/2, we rescale the original variables according to the following transformations:

y → y
L

t →
(σY

A

)2
t σ → σ

σY
. (5)

As a consequence, the HB relation (1) retains a unitary yieldstress

σ = 1+S1/2. (6)

Following Bocquetet al. [21], we write equation (4) as

F [ f ] =
∫ 1

0

(

ω(Γ,σ)+
ξ 2

2
|∇Γ|2

)

Γ= f
dy =

∫ 1

0

[

−1
2

m(σ) f 2+
2
5

f 5/2+
1
2

ξ 2(∂y f )2
]

dy (7)

where

m(σ)≡ (σ −1)

σ1/2
. (8)

Equations (7)-(8) are the starting point of our investigations. In case of a spatially homogeneous

solution, the minimum ofF[ f ] is given by

f = m2 =
(σ −1)2

σ
(9)

that is the HB solution. For spatially non-homogeneous solutions, upon linearizing aroundfb ≡
m2, we get the equation

ξ 2
r ∂yy f − f + fb = 0 (10)

which directly maps into (2) with a squared cooperativity lengthξ 2
c = 2ξ 2/m diverging at the yield

stress (asσ → 1, m → 0) [21]. Let us remark that the value ofm = (σ −1)/σ1/2 in the above

equations is consistent with the definition of the fluidityf = S/σ . In a Couette flow, assuming as

usual that the stress is constant in space, we can obtain a constraint between the imposed shear and

the space-averaged fluidity

S = σ
∫ 1

0
f (y)dy. (11)
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III. ENERGY LANDSCAPE AT IMPOSED STRESS: HERSCHEL-BULKLEY VS. COMPACT

SOLUTIONS

Let us start with the analysis of the energy landscape in the system at an imposed constant stress

σ . We want to specialize our analysis to those situations where the “order parameter”f is positive

definite. The first request can be ensured if we setf = φ2 and use the corresponding free-energy

functional, directly obtained from (7) with the substitution f = φ2:

F[φ ] =
∫ 1

0
L(φ ,∂yφ)dy = 2

∫ 1

0

[

−1
4

m(σ)φ4+
1
5

φ4|φ |+ξ 2φ2(∂yφ)2
]

dy. (12)

Note that the termf 5/2 has been rewritten asφ4|φ | to guaranteeF[φ ] > 0 in the limit φ →±∞.

We then look for the local extrema of the free-energy functional (12). The variational equation
δF
δφ = 0 gives:

2ξ 2φ2∂yyφ +2ξ 2φ(∂yφ)2+m(σ)φ3−φ3|φ |= 0. (13)

Equation (13) exhibits solutions with constant order parameter (φm = m), i.e., the bulk HB solu-

tions. However, alsocompact solutions are possible

φc(y) =







φ0(y) y ≤ y0;y ≥ y1

φE(y) y0 ≤ y ≤ y1

(14)

with non zero values of the order parameter only in some compact sub-domain, say[y0,y1], and

zero elsewhere (see the top panel of Figure 1 for a sketch). Inthe above,φ0(y) = 0 is a “vacuum”

field, corresponding to a zero-fluidity (non-flowing) state.The structure of the compact solution

in the region where the order parameterφ is different from zero,i.e., the functionφE(y) (hereafter

namedcompacton), can be further characterized by taking one quadrature of equation (13)

ξ 2φ2(∂yφ)2 = E − m(σ)

4
φ4+

1
5

φ5 (15)

whereE is a positive constant and where, for the sake of simplicity,we assumeφ > 0. By increas-

ing φ from zero to larger values, and for sufficiently small valuesof E [56]

E ≤ EM(σ) =
1
20

(σ −1)5

σ5/2
(16)

the r.h.s. of (15) first becomes zero for a value of the order parameter denoted withφ = φ̄ < m.

Then, we can look for a solution of (15) localized in the interval [y0,y1], with φ(ȳ) = φ̄ and
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ȳ = (y0+ y1)/2. Based on the structure of the exact solution

∫ φ

0

ψ
√

E − m(σ)
4 ψ4+ 1

5ψ5
dψ =

y− y0

ξ
(17)

we obtain the characteristic size of the region,|y1−y0|= 2lc, where the order parameter is different

from zero

lc = ξ
∫ φ̄

0
dψ

ψ
√

E − m(σ)
4 ψ4+ 1

5ψ5
. (18)

It is easy to check that fory close toy0, i.e., for smallφ , we have

φ ∼
(

E
ξ 2

)1/4

(y− y0)
1/2 (19)

implying that∂yφ diverges as 1/(y− y0)
1/2 at smallφ . Importantly, equation (13) is well defined

even at the singular points since all the divergences cancelout. It is also important to highlight

that the characteristic size of the compact region (18) scales proportionally toξ , hence no compact

solution can be achieved without cooperativity. Since compact solutions do not overlap, superpo-

sitions of compactons still correspond to local extrema of the free-energy. This implies that the

energy in equation (15) takes the form of a piece-wise constant function, which attains distinct

non-zero values in different compactons and is zero elsewhere.

IV. FLOW PROFILES AT IMPOSED SHEAR: LINKING COMPACTONS TO SH EAR-BANDS

As discussed in the previous section, the energy landscape of our system is characterized

by various stationary solutions corresponding to both homogeneous (HB solution) and non-

homogeneous (compact) solutions. Now, we study the corresponding free-energy of those so-

lutions and the resulting velocity profiles. To that purposewe go back to the geometry of the

Couette flow at imposed shear and consider for simplicity thecase of a compact solution with a

compacton adiacent to the upper wall of the channel with the propertyφE(y) > 0 for lc ≤ y ≤ 1

and∂yφ = 0 aty = 1 (see bottom panel of Figure 2). This choice of boundary conditions makes

it easy to discuss the case of compact solutions close to the boundaries, although it differs from

the usual choice of Dirichelet boundary conditions, where anew parameter representing the wall

fluidity [19, 38] is introduced. In the Couette flow with imposed shearS, the overall free-energy of

both the compact and HB solutions depends on the shearS as follows: given the stressσ , the full
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FIG. 1: Properties of compact solutionsφc (14). Top panel: a sketch of a compact solution obtained from

equation (13): the order parameterφ is non zero only in some compact sub-domain[y0,y1] where the

profile is identified with the compactonφE (red dashed). The compactonφE has a maximumφ(ȳ) = φ̄

in ȳ = (y0+ y1)/2. Outside the compact sub-domain the order parameter is identically zero (blue dashed-

dotted). Bottom panel: the average fluidity associated withthe compactonφE , i.e.,
∫ 1

0 φ2
E(y)dy, for different

values of the imposed stressσ in the free-energy (12). The average fluidity is reported as afunction of

the constant of integrationE (see equation (15)) below its maximum allowed valueEM(σ) = 1
20

(σ−1)5

σ5/2 (see

equation (16) and text for details). Notice that the averagefluidity is made dimensionless with respect to the

inhomogeneity parameterξ of the free-energy (12). In the inset we report the half widthlc of the compacton

calculated according to equation (18), again for differentvalues of the imposed stressσ .
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non linear solution of equation (13) must be found for a valueof m(σ) = (σ −1)/σ1/2 consistent

with

σ
∫ 1

0
φ2(y)dy = S. (20)

For the HB solution, corresponding toφ = φm = m, the constraint (20) imposesσ = S/m2 so that

the HB relation (8) impliesm(σ(S)) = S1/2

(1+S1/2)1/2 and the corresponding free-energy is given by

FHB(S)≡− 1
10

S5/2

(1+S1/2)5/2
. (21)

The free-energy for the compact solution is different. Given the shearS, the free-energy is not

uniquely determined, as multiple choices ofσ andE are compatible with the constraint (20). This

makes the free-energy dependent on bothσ andS: once these two parameters are fixed, we are

able to determine the appropriateE in (15) that makes possible to derive theφE that satisfies the

constraint (20). For a given stressσ , this obviously leads to a largerlc at increasingS, i.e., the

size of the compacton is increased to verify the constraint (20) (see the bottom panel of Figure

1). In the top panel of Figure 2 we show the free-energyFHB(S) of the HB solution and the free-

energy of the compact solutionFc(S,σ) as a function of the shearS. For the compact solution, we

choose two different values of the stress,σ = 1.4 andσ = 1.5. We see that the cases with compact

solutions show a free-energy smaller than the HB value up to acritical shearScr which is stress

dependent

Fc(S,σ)≤ FHB(S) S ≤ Scr(σ). (22)

In correspondence ofScr, the size of the compact region becomes of the order of the channel size.

Compact solutions iny imply that the shear, according to the definition of the fluidity f = φ2,

is different from zero only in a compact region. This suggests, by itself, an intriguing link to

shear-banding, since it permits coexistence of (compact) flowing and non-flowing states within

the same spatial flow configuration. This can be evinced from the bottom panel of Figure 2, where

we analyze a situation with imposed shearS = 0.1 and stressσ = 1.5.

Central to this free-energetic picture is the imposition ofthe global constraint (20), which is key to

tip the free-energy balance in favor of compact solutions versus HB solutions,Fc(σ ,S)≤ FHB(S),

in the proper range of the shearS, as reported in Figure 2. We wish to observe that, had we imposed

the stressσ , we would have obtained

Fc(σ) = 2
∫ y1

y0

[

−1
4

m(σ)φ4+
1
5

φ4|φ |+ξ 2φ2(∂yφ)2
]

dy ≥ FHB(σ) (23)
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meaning that the compact solutionφc has larger free-energy than the HB solution. In other words,

by imposing the stress instead of the shear, the HB solution would always show up.

V. STABILITY OF COMPACT SOLUTIONS: TIME DYNAMICS AND AGING

The connection between shear-bandings and the compact solutionsφc is extremely appealing,

but we hasten to remark important features about the stability of the shear-banding solutions thus

obtained. To this aim, we resort to the very simple equation

∂tφ =−δF
δφ

(24)

to define a time-evolution of the order parameter that is consistent with the attainment of local

extrema of the free-energy functional in the long-time. More sophisticated formulations of the

dynamics may eventually be considered.

As a matter of fact, much of the insight conveyed by Figure 2 can also be gained by analyzing the

scaling properties of the model. In particular, equations of motion (24) are invariant upon the scale

transformation:

y → λ ay φ → λ bφ ξ → λ b/2+aξ t → λ−3bt m → λ bm. (25)

By using (25) we determine the scaling properties of the free-energy as

F → λ 5b+aF. (26)

The choicea = 0 andb = 1, corresponding to a linear velocity profile with increasing amplitude

m and no shape change, implies a free-energy that scales asF ∼ AHBλ 5. The choicea = 1 and

b = 0 corresponds to compact solutions, namely increasing sizeof the shear-band with no increase

in amplitudem, and deliversF ∼ Acλ . Note that both constantsAHB andAc are negative, so that

the minimum corresponds to the larger absolute value. Finally, under the assumption thatS is

sufficiently small,i.e., σ ≈ 1, equation (20) deliversSHB ∼ λ 2 for a = 0 andb = 1 andSc ∼ λ for

a = 1 andb = 0. Based on the above scaling relations, we obtain:

FHB ∼ AHBS5/2 (27)

Fc ∼ AcS. (28)

The result is that, up to a critical valueS = Scr ≡ (Ac/AHB)
2/3, one hasFc ≤ FHB, so that the

compactons are favored with respect to the homogeneous configurations. Scaling laws (27)-(28)

10
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FIG. 2: Top panel: we show the global free-energyF[φ ] (see equation (12)) for three different cases: linear

velocity profile corresponding to a HB law (black solid line); compacton adiacent to the upper wall of

the channel (see also bottom panel) with stressσ = 1.4 (blue dot-dashed line) andσ = 1.5 (red dashed

line). At a given stressσ , the size of the compacton is changed in order to satisfy the constraint (20). The

free-energy of the compactons is smaller than the linear velocity profile up to a critical shear where the

size of the compacton becomes equal to the channel width. Bottom panel: free-energy densitiesL(φ ,∂yφ)

defined in equation (12) as a function of the channel positionat imposed shearS = 0.1 (subscripts indicate

the compact (c) and the Herschel-Bulkley (HB) solutions). The chosen compact solution (red solid line)

corresponds to a stressσ = 1.5. In the inset we report the corresponding velocity profiles, for both compact

and HB solutions.
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correspond to the functions reported in Figure 2.

Given the time dynamics (24), one can verify that the compactonsφE are stable against pertur-

bations of the order parameter. In particular, one can compute δF ≡ F [φE + δφ ]−F[φE ] up to

the second order term inδφ , and show thatδF is positive defined for an energyE sufficiently

close tom5(σ)/20 (see Appendix A). However, the non-flowing stateφ0 in (14) is unstable, and

the overall stability of the system must take into account both compact and vacuum components.

The compacton is thus expected to grow and “eat up” the unstable non-flowing stateφ0. By this

process, a critical situation is attained whenever the compacton hits the size of the channel: at that

point, the HB solution is energetically favored again and the compacton yields to an extended HB

profile, going back to a situation with a global bulk rheology. Under such conditions, and consis-

tently with the fact that compact regions evolve at a faster rate than the “vacuum”, it is apparent

that the time-relaxation of the overall compact+vacuum system becomes heterogeneous not only

in space but also in time,i.e., the systems shows aging. To highlight this effect we have conducted

numerical simulations: the interval[0,1] has been discretized with 512 collocation points and an

Euler-Cauchy scheme with integration step dt= 10−3 has been used for the time dynamics of the

free-energy. The parameterξ has been fixed toξ = 0.04. At timet = 0, we start with an initial

conditionφ = 0.2 in the region[0 : 0.8] andφ = 0.5 in [0.8 : 1], i.e., we start with a non-uniform

initial fluidity. Next, we apply a shearS = 0.04 after a timetw and we compute the resulting stress

σ(t, tw). In Figure 3, we showσ(t, tw): after an almost linear growth, the stress reaches a max-

imum σM(tw) and then eventually decays to the HB value 1+ S1/2 at timetL(tw). Note thatσM

andtL depend on the waiting timetw, in particular there is an overshoot that depends on the age

tw of the sample [39]. Similar results have been reported experimentally in [40, 41] and in MD

simulations of Lennard-Jones glasses [42, 43]. In the insetof Figure 3, we showtL as a function

of tw. It is apparent how it is very well fitted by a logarithmic function of tw. We remark that the

same effect does not appear if we consider the dynamic equation for the fluidity as

∂t f =−δF
δ f

. (29)

In fact, upon multiplying equation (24) byφ , we can rewrite equation (24) in the form

∂t f =− f
δF
δ f

. (30)

The comparison between equations (29) and (30) highlights the physical meaning of the relation

f = φ2: upon the assumption of a simple first order steepest-descent dynamics (24), the trans-

formation from f to φ implies that the former evolves on a typical configuration-dependent time
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FIG. 3: The behavior ofσ(t, tw) under the effect of the shearS = 0.1 applied to the system after the waiting

time tw. The initial condition forφ are: φ = 0.2 for y ∈ [0 : 0.8] andφ = 0.5 for y ∈ [0.8,1]. The black

arrow indicates the timetL(tw) at which the value of the stress reaches the HB value 1+S1/2. In the inset we

showtL as a function oftw: a clear logarithmic dependence is observed. Details of numerical simulations

are reported in the text (see section V).

scale 1/ f (30), so that non-flowing statesf ∼ 0 take a virtually infinite time to relax, as opposed to

the flowing ones. This configuration-dependent time-scale separation lies at the heart of the aging

phenomena described in Figure 3.

VI. EFFECTS OF MECHANICAL NOISE AT IMPOSED STRESS

In the previous Section we have shown that in a Couette flow thecoupling between the external

shear and the stress is such that compactonsφE are stable states and the associated free-energy

Fc(S,σ) is smaller than the HB value up to a critical shearScr. However, the region where the

order parameter is zero (the non-fluidized band) is unstable, so that the formation of permanent

shear-bands is not possible and they can be observed only fora finite (possibly long) time. So

much for the deterministic picture. The next natural question, is to inspect the behavior of the

system under stochastic perturbations (noise). We shall refrain from identifying such noise with

any thermodynamic temperature [9, 44–46]. Actually, we rather think of it as a mechanical noise

due to dynamic heterogeneities. A naive expectation about the effect of the noise is that it raises
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the instability of the background fieldφ0 so that the system reaches the HB solution in a shorter

time. However, this expectation is not true and we will discover something unexpected,i.e., that

the vacuum solution - and hence the compact solutions - are stabilized by noise. For the sake of

simplicity, we leave aside the constraint (20) and just consider the time evolution (24):










∂tφ =−δF
δφ +

√
εw(y, t)

F[φ ] = 2
∫ 1

0

[

−1
4m(σ)φ4+ 1

5φ4|φ |+ξ 2φ2(∂yφ)2
]

dy
(31)

at imposed external stressσ , i.e., at imposedm(σ) = (σ − 1)/σ1/2. In the above w(y, t) is a

δ -correlated white noise in space and time

〈w(y1, t1)w(y2, t2)〉= δ (y1− y2)δ (t1− t2). (32)

It must be understood that the solution of equation (31) is defined with an ultraviolet cutoffλ ≡
1/kM needed for the regularization at small scales. A first, non trivial, consequence of the time

dynamics (31) is that form = 0 (i.e., σ < σY ), the space averaged fluidityf0 of the system does

not vanish. As discussed in the Appendix B, we have

f0 = 〈φ2〉 ∼
√

εkM

ξ kM
. (33)

These results can be tested quite accurately by using numerical simulations. In Figure 4 we show

the value of f0 as a function ofξ (main figure) forε = 10−8, whereas in the inset of the same

Figure we showf0 as a function ofε. In both cases, the scaling predicted by (33) is extremely

well verified supporting the theoretical results obtained in appendix B. With the interpretation of

the fluidity as the rate of plastic events in the system, equation (33) tells us that a non zero value of

the fluidity is still present at zero external forcing (i.e., S = 0 and/orσ < σY ). This is certainly the

case for systems like foams/emulsions, where the energy forplastic rearrangements can be made

available through time evolution in the coarsening dynamics, in which the total interfacial area

decreases as a consequence of the slow evolution of the dispersed phase from smaller to larger

droplets/bubbles [47–49].

Next, we discuss the effect of the noise form > 0. Some interesting insights can be gained by

using a self-consistent Hartree-like approximation [50–52], as discussed in detail in Appendix B.

This amounts to consider the free-energy

F[φ ] = 2
∫ 1

0

[

−1
4

m(σ)φ4+
1
5

φ4|φ |+R
2

φ2+
D
2
(∂yφ)2

]

dy (34)
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FIG. 4: We report the average fluidityf0 = 〈φ2〉 (see also equation (33)) obtained from numerical simula-

tions of the model equations (31). Main panel: the average fluidity as a function ofξ for ε = 10−8. Inset:

f0 as a function of the noise strengthε for ξ = 0.04. In both cases the scaling predictions of equation (33)

are verified. All simulations have been performed at constant stressσ = 1 (i.e., m = 0 in (31)). Details of

numerical simulations are reported in the text (see sectionV).

where

R ≡ 2ξ 2〈(∂yφ)2〉 D ≡ 2ξ 2〈φ2〉 (35)

need to be determined in a self-consistent way. Based on equation (31) and the results discussed

in Appendix B, we can formally write the model equations as










∂tφ =−2dVeff
dφ +2D∂yyφ +

√
εw(y, t)

Veff(φ) =−1
4m(σ)φ4+ 1

5φ4|φ |+R
2φ2.

(36)

Owing to renormalization effects, fluctuations turn the bare free-energy into an effective one,

whose properties may lead to qualitatively new phenomena not contained in the original formula-

tion. For the case in point, the potentialV flows into an effective oneVeff, supporting qualitatively

new extrema through a renormalized “mass” termR
2φ2. Besides, a new diffusion term arises with

no counterpart in the noise-free formulation. A full non-linear treatment would require thatR and

D were treated self-consistently,i.e., taking into account their functional dependence on the con-

figurational statistics of the system. However, as we shall see, significant insights can be gained

by provisionally treating both quantities as constant parameters, and deferring a self-consistency
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mc ∼ (27R/4)1/3, above which two local minima appear atφmin = φ0 = 0 and atφmin = φm ∼ m−R/m2+

O((R/m2)2).

check to a subsequent numerical solution. Thus, upon assuming R andD in (36) as “constant”

parameters, we look for local minima of the effective potential by solving (φ > 0):














dVeff
dφ

∣

∣

∣

φ=φmin

=
(

Rφ −mφ3+φ4
)
∣

∣

φ=φmin
= 0

d2Veff

dφ2

∣

∣

∣

φ=φmin

> 0.
(37)

It is easy to show that (37) has one solutionφmin = φ0 = 0 for m ≤ mc ∼ (27R/4)1/3, whereas for

m > mc, two local minima appear atφmin = φ0 = 0 andφmin = φm ∼ m−R/m2+O((R/m2)2) (see

Figure 5 for a sketch). The local minimumφm is nothing but the HB solution already discussed

in the previous sections: this state receives a normalization and its stability changes, since now

it appears as a local minimum only form ≥ mc. In other words, it is expected that the vacuum

φ0 is stabilized below a given stress threshold which depends on the intensity of the fluctuations.

Clearly, such stable minimum disappears in the limitR → 0, i.e., there are no renormalization

effects due to fluctuations, smoothly recovering the deterministic picture of an unstable vacuum.

If the vacuumφ0 is stabilized, the co-existence of flowing and non-flowing stable states discloses

the possibility to support stable shear-band configurations. This is a major, qualitative, effect of

fluidity fluctuations.

However, this is what we formally expect, based on the form ofVeff, by treatingR andD as
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constant parameters. As mentioned earlier on, the complexity arises from the fact that bothR and

D depend on the fluctuations themselves (37). More importantly, R andD arestate dependent, as

can be seen by perturbative calculations (i.e., assumingε to be small) and by properly linearizing

the potential near the local minima. In particular, an explicit computation (see Appendix B) shows

that the scaling with respect to the noise strengthε is different, depending on the local minima (φ0

or φm) around which they are computed:

R0 ∼ ξ kM

√

εkM Rm ∼ εkM/(2m2). (38)

Consequently, the bifurcation pointm = mc is different, depending on whether one linearizes

aroundφ0 or φm. We label these two bifurcation pointsm(0) andm(1), so defining also the corre-

sponding critical stresses,σ (0) andσ (1), based on (8)

m(0)(ε) =
σ (0)−1

(σ (0))1/2
∼ k1/2

M ε1/6 (39)

m(1)(ε) =
σ (1)−1

(σ (1))1/2
∼ k1/5

M ε1/5. (40)

Due to the different scaling properties inε, we find thatm(1) ≤ m(0), or equivalently thatσ (1) ≤
σ (0). The above picture implies hysteresis in the system in the region [σ (1),σ (0)]. Indeed, any

initial state close toφ0 is expected to attain the only stable solution of the system up to m = m(0),

i.e., up to a maximum stressσ (0). Similarly, starting with an initial state close toφm, the system

remains close to this state only form > m(1), i.e., only above a given stressσ (1). Therefore,

once the stress falls within the rangeσ ∈ [σ (1),σ (0)], two stable solutions are expected, depending

on the initial conditions. As a matter of fact, these expectations are confirmed by the results of

numerical simulations shown in Figure 6. The system is initialized in the stateφ0 and we then

consider the time dynamics based on equation (31) with the noise in the range[10−8,5×10−7].

We slowly change - step by step - the stressσ by increasingm and wait for the system to reach a

stationary (in statistical sense) state, where we compute the apparent shear based onS = σ〈φ2〉.
In the top panel of Figure 6, we report the stress/shear relation obtained withε = 10−8: the red

circles correspond to the simulations starting with the stateφ0 and slowly increasing the stress; the

blue squares correspond to the case where we start from stateφm and a relatively large value of

the stress, and then decrease the stress. In the bottom panelof Figure 6, we show similar results

obtained with the noise amplitudeε = 5×10−7. Both figures support a well defined hysteresis

effect, which is amplified by increasing the noise amplitude. Note that in the regionσ < σ (1),

only one stable solution is attained.
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FIG. 6: Top panel: Stress shear relation obtained by the numerical simulations of (31) withε = 10−8.

Starting with an homogeneous initial conditionφ = φ0 = 0 we increase - step by step - the stress (red

circles) up to the value where a clear HB behavior (solid line) is detected. Next we decrease the stress

starting withφ = φm = m (blue circles). A clear hysteresis cycle is observed. Arrows indicate the points

where the values ofm(0)(ε) andm(1)(ε) are extracted. Correspondingly, the critical values of thestresses

can be obtained based on (39)-(40). Bottom panel: same as thetop panel withε = 5×10−7.

From the shear-stress curves we can also determine the corresponding values of the stresses at

which the transition occurs. These are reported in Figure 7,where we plot bothm(0) (red circles)

andm(1) (blue squares) as a function ofε. The scaling predictions from equations (39)-(40) are

also reported: note that although the two scaling laws are close to each other, it is clear that the
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FIG. 7: We report the values ofm(0)(ε) (red circles) andm(1)(ε) (blue squares) computed from the numer-

ical integrations of (31) with noise amplitude in the range[10−8 : 5× 10−7]. The numerical procedure to

determine the transition values,m(0)(ε) andm(1)(ε), is highlighted in Figure 6.

numerical results cannot be fitted with the same scaling exponents inε. Our simulations therefore

indicate that our analytical results (39)-(40) are in very good agreement with the complex non

linear dynamics of the system. The existence of a hysteresiseffect in the system is an important

point since it is one of the many puzzling results obtained inlaboratory experiments in soft glasses

(see [53, 54] and references therein). Here, we can state that the hysteresis effect is due to the

noise in the system and to the renormalization effects in thedynamics.

We can also use our findings to study some of the peculiar facets of the phenomenon of viscosity

bifurcation. To this aim, we consider an initial pre-sheared state with fixed shearSa ≡ φ2
a σ = 0.01

at timet = 0. This is realized with a homogeneous initial conditionφ(y,0) = φa =
√

Sa/σ . We

then vary the applied stressσ and study the behavior of the apparent shearS(t) = σ
∫ 1

0 φ2(y, t)dy

as a function of time. In the top panel of Figure 8, we showS(t) for different values of the applied

stressσ with ε = 10−8, ξ = 0.04. There is a clear bifurcation between the values of the stress

below a critical valueσ (c), at which the shear tends to vanish, and those aboveσ (c), where the

shear goes asymptotically to a non zero value. Similarly, inthe bottom panel of Figure 8, we show

S(t) for different values of the initial shearSa with ε = 10−8, ξ = 0.04 and fixed applied stress

σ = 1.2. For small values ofSa, the apparent shear tends to vanish whereas forSa greater than

some critical value, the shear goes asymptotically to a non zero value.
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FIG. 8: Top panel: time dynamics of a pre-sheared state underthe influence of a constant stressσ based on

equation (31). We consider an initial homogeneous stateφ(y,0) = φa corresponding to a pre-sheared state

with shearS(0) = Sa ≡ φ2
a σ = 0.01. We then study the behavior of the apparent shearS(t) = σ

∫ 1
0 φ2(y, t)dy

for different values of the applied stressσ . There is a clear bifurcation between the values of the stress

below a critical valueσ (c), at which the shear tends to vanish, and those aboveσ (c), where the shear goes

asymptotically to a non zero value. Bottom panel: we showS(t) for different values of the initial shearSa at

fixed applied stressσ = 1.2. For small values ofSa, the apparent shear tends to vanish whereas forSa greater

than some critical value, the shear goes asymptotically to anon zero value. The numerical simulations are

based on the model equations (31) withε = 10−8, ξ = 0.04.

Before closing this section, we would like to remark that there is a simple argument to obtain the
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scaling laws reported in equations (39)-(40). To this aim, let us consider the probability distribution

P[φ ] given by:

P[φ ] = Z
−1exp

[

−1
ε

∫ 1

0

(

−m
4

φ4+
φ4

5
|φ |+ξ 2φ2(∂yφ)2

)

dy

]

. (41)

It is easy to verify that (41) is invariant under the scale transformation

y → λ ay φ → λ bφ ξ → λ b/2+aξ m → λ bm ε → λ 5b+aε. (42)

For a = 0 the scale transformation (42) ignores spatial structuresin the system and we obtain a

scaling given bym ∼ ε1/5. For b = 1 the scale transformation (42) takes into account the spatial

structure and we obtain the scalingm ∼ ε1/6. Therefore the scale transformation (42) makes it

possible to understand why there exists two different scaling regimes (39)-(40). It is important

to remark that the identification ofP as the probability distribution implies that the system is in

equilibrium.

VII. EFFECTS OF MECHANICAL NOISE AT IMPOSED SHEAR

Given the findings reported in section VI, we now consider thedynamics given by equation

(31), together with the constraint (20) in a Couette flow. We aim at discussing the way that noise

affects the stability of the compact solutionφc described in section III. Obviously, the results

reported in section VI are only applicable to the region where the solution is close toφ = 0. How-

ever, as already remarked in section III, we know that compactonsφE correspond to a minimum

of the free-energy and we can argue that this property does not change because of the external

noise. These expectations are indeed borne out by numericalsimulations as hereafter detailed. We

consider the dynamics of the system at an imposed shearS = 0.04 with “weak” and “sufficiently

strong” noise,ε = 10−8 and 10−7. By “strong” we imply fluidity fluctuations in the order of a

few percent of the deterministic valuef = m, whereas fluctuations induced by a “weak” noise are

below such threshold. For each noise strength, we consider two initial band sizes below and above

the half size of the channel,lc(0) = 0.2 andlc(0) = 0.75. Using (39) and the analysis presented in

the previous Section, we estimate thatσ (0)(ε = 10−8) ≈ 1.2 andσ (0)(ε = 10−7) ≈ 1.4. For the

imposed shearS = 0.04, the values ofσ (0) should then correspond to a situation where the shear-

banding solution is either stable (ε = 10−7) or unstable (ε = 10−8), as explained in the following.
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The numerical results obtained using the four possible combinations (initial conditions and noise

strengths) are shown in the top panel of Figure 9, where we plot the time evolution of the shear-

bandlc(t). Let us begin by discussing the results with “strong” noise,ε = 10−7. With lc(0) = 0.75,

the initial stress is belowσ (0)(ε = 10−7) ≈ 1.4. In order to minimize the global free-energy (see

also Figure 2), the systemincreases the stress,i.e., it decreases the size of the shear-bandlc, based

on (20). This shrinking process goes on untillc becomes short enough to takeσ close toσ (0).

At this stage, any further narrowing of the compacton would takeσ beyond the thresholdσ (0),

thus destabilizing the regionφ = 0. Under such conditions, the shear-band solution increases its

size again tolc. In other words,lc is pinned down as the size compatible with the stressσ = σ (0),

based on (20). The same reasoning carries on to the caselc(0) = 0.20, in which caseσ > σ (0),

so thatlc increases untilσ reaches the valueσ (0). Either ways, the only stable solution of the

system corresponds to a shear-band withσ = σ (0). Let us now turn to the “weak-noise” scenario,

ε = 10−8. In this case, no shear-band solution is expected becauseσ (0) ≈ 1.2, which is very close

to the HB value forS = 0.04,i.e., σ = 1+S1/2 = 1.2. Therefore, the shearS = 0.04 would select a

point on the curveFc(σ = σ (0),S) whose free-energy becomes comparable with the one of the HB

solution,Fc(σ = σ (0),0.04)≈ FHB(0.04), which means no shear-banding. Indeed, from Figure 9,

we observe that, starting withlc(0) = 0.75, the system evolves towards metastable shear-bands,

which disappear as soon as the compacton hits the size of the domain, after about 3000−4000

time units. The caselc(0) = 0.20 presents however a different scenario. In this case, the numer-

ical simulations show thatlc remains basically constant, at least in the time span covered by the

simulations. The reasons is that, even though that band is unstable, one must wait for a longer

time before reaching the statelc = 1. Upon decreasinglc(0), the value of the initial stressσ due to

(20) increases, and so it does the energy barrier protectingthe asymptotic statelc = 1, leading to

an even longer waiting time before the band is destabilized.This is appreciated from the bottom

panel of Figure 9, where we observe that, in the initial stage, lc increases through a sequence of

steps, each signaling the crossing of a corresponding barrier. Since the energy barrier decreases at

increasinglc, the overall process speeds up as time unfolds. Summarizing, for ε large enough to

guarantee that the equilibrium probability distribution is given by (41), the non linear effect due

to (20) and the metastability of the regionφ = 0, conspire to drive the system to a stable band

compatible with a value of the stressσ = σ (0)(ε). It follows that, upon increasingS, the system

sustains the stressσ = σ (0), up to the point wherelc = 1 and the shear-banding is lost. Thus, upon

increasing the shear, we should observe a linear decrease ofthe free-energy with the shearS (see
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equation (28)), up to the point when the shear-band sizelc becomes of the order of the system

size. This is again confirmed by the numerical simulations: in the top panel of Figure 10 we show

the value of the free-energy for a Couette flow as a function ofthe apparent imposed shearS. We

compare the space-averaged free-energy evaluated from thenumerical simulations (red bullets),

the free-energy for compact solutions (28) (red dashed line), and the free-energy of the linear HB

velocity profile (21) (black solid line). The value of the noise amplitude isε = 5×10−7. In the

inset of the same figure, we show the stress/shear relation obtained through the numerical simula-

tions. A clear plateau atσ ≈ 1.5 is observed, corresponding to the valueσ (0) given in (39). The

velocity profiles are reported in the bottom panel of Figure 10. Figure 10 also demonstrates that

the model defined by equations (20)-(31) showsstable shear-bands forσ ≤ σ (U)
Y , whereσ (U)

Y is the

value of stress in the upper plateau of the shear-stress relation, i.e., basicallyσ (0) in (39). In other

words, the stability of shear-bands as a local minimum of thefunctionalF[φ ] and the noise am-

plitudeε cooperate in such a way as to increase the value of the yield stress at whichφ0 becomes

unstable. This cooperative effect highlights the subtle and somewhat counterintuitive role of the

mechanical noise.

Before closing this section, a few comments on the role ofξ are in order. All of the above results

have been obtained using the same valueξ = 0.04 and it is natural to ask how the picture dis-

cussed so far would change upon changingξ . According to (39), one would naively expect that by

increasingξ the value ofσ (0) should also increase. However, a subtler analysis reveals that this is

not the case. SinceR ∼ ξ 2〈(∂yφ)2〉, there are two competing mechanisms which concur to fix the

value ofm(0) ∼ R1/3: the prefactorξ 2 and the spatial average inherent to the definition ofR. The

former obviously increases withξ , the latter however has just the opposite effect. Indeed, since

the system is split in two regions, the stateφ0 and the compactonφE , the spatial average involves a

factor(1− lc) which is apparently decreasing upon increasinglc via an increase ofξ . As a result,

the system develops a much weaker dependence onξ than one would expect.

VIII. CONCLUSIONS AND OUTLOOK

It is know that the experimental phenomenology of shear-bandings shows many intriguing ef-

fects to be explained [17, 29, 29, 30, 30, 31, 31–37]. Modeling such a phenomenology is defini-

tively a challenging task for theories [29–31]. In this paper we have explored the connection be-

tween shear-bandings and fluidity models [20–23], which have been proposed in the literature to
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FIG. 9: Top panel: we show the band sizelc(t) as a function of time in a Couette flow with two different

initial conditions,lc(0) = 0.20 andlc(0) = 0.75, and 2 different noise strengths,ε = 10−7 andε = 10−8.

Bottom panel: we report the band sizelc(t) as a function of time with initial conditions chosen in the range

[0.18 : 0.22] and noise strengthε = 10−8. The inset reports the early stages of the time dynamics for the case

with lc(0) = 0.18, showing the increase of the band through a sequence of steps. In all cases the imposed

shear isS = 0.04.

explain the cooperative flow of complex fluids in confined systems. Based on the simple observa-

tion that the fluidity is a non-negative definite order parameter, we have reformulated Bocquetet al.

free-energy functional [21] in terms of its square rootφ ≡ ± f 1/2, which is a signed quantity. For

the geometry of a Couette flow, it is shown that once the stress-strain constraint
∫ 1

0 φ2(y)dy = S/σ

is taken into account, this functional is minimized by inhomogeneous compact solutions (com-
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state obtained from numerical simulations of the model equations (31); the red dashed line is the value of

F for compact solutions (28); the black solid line is the valueof F corresponding to the linear HB velocity

profile (21). In the inset we show the stress/shear relation obtained by the numerical simulations. A clear

plateau atσ ≈ 1.5 is observed corresponding to the valueσ (0) of equation (39). Bottom panel: the velocity

profiles corresponding to the shear-band region of the top panel are reported.

pactons), which coexist with regions of zero-fluidity (vacuum). Since the latter are unstable, the

compactons increase their size at the expense of the vacuum,until they reach the size of the full

system, at which point no further decrease of the energy can be achieved, other than by recovering

the homogeneous HB solution, namely a linear Couette profile. This leads to a host of remarkable
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dynamical effects, primarily aging. Given the highly non-trivial dynamics of the fluidity field, we

have further investigated how such dynamics is affected by the presence of stochastic fluctuations,

typically in the form of mechanical noise. We wish to emphasize that such noise is inherently non-

thermal in character and must be regarded as spontaneous fluidity fluctuations which occur also in

the absence of any external load. To be noted that, since the fluidity is non-negative, so must be

its average, which implies non-trivial restrictions on thenoise strength. Such restrictions do not

apply to the square-root fluidity, which, being signed, is free to fluctuate around zero. It is shown

that, owing to non-trivial renormalization effects, if thenoise is sufficiently strong, the unstable

vacuum is stabilized, thereby paving the route to stable shear-band configurations. This qualitative

picture is confirmed by numerical simulations of steepest-descent dynamics under different initial

conditions and noise amplitudes. The two starting ingredients of the present picture,i.e., fluidity

as an order parameter and mechanical noise as a promoter of escapes from free-energy minima, are

not new. The emerging picture, however, definitely is. In particular, it provides a transparent link

between shear-bands and compactons, as well as a subtle stabilization mechanism via non-trivial

noise renormalization effects. Finally, we wish to point out that the above rich picture depends

only on two free parameters: the cooperative lengthξ and the noise strengthε. Many further di-

rections for future research can be envisaged: for instance, it would be of interest to investigate the

effects of shear-dependent fluidity fluctuations, and/or tostudy the behavior of the system under

second order dynamics instead of the simple first-order steepest-descent model.

The authors kindly acknowledge funding from the European Research Council under the Euro-

pean Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No.

279004.

Appendix A: Stability of Compactons

To simplify matters in the stability analysis we rescale thespace and order parameter variables

as

y =
ξ ỹ√

m
φ = mφ̃ (A1)

so that the free-energy becomes

F[φ̃ ] = 2m9/2ξ
∫ y0+2lc

y0

[

−1
4

φ̃4+
1
5

φ̃4|φ̃ |+φ̃2(∂ỹφ̃)2
]

dỹ. (A2)
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Then equations (13) and (15) become, respectively:










2φ̃2∂ỹỹφ̃ +2φ̃ (∂ỹφ̃)2+ φ̃3− φ̃3|φ̃ |= 0

φ̃2(∂ỹφ̃)2 = Ẽ − 1
4φ̃4+ 1

5φ̃5
(A3)

where the constantE has been rescaled by a factorm5, i.e., Ẽ = E/m5. To assess the stability of

the compactons̃φE(ỹ), we computeδF ≡ F[φ̃E + δ φ̃ ]−F[φ̃E ] up to second order terms inδ φ̃ .

Based on (24), stability is guaranteed ifδF is positive defined. After a rather straightforward

computation we obtain (̃φE > 0)

δF = 2m9/2ξ
∫ ỹ0+2l̃c

ỹ0

(δ φ̃)2
[

(∂ỹφ̃E)
2− 1

2
φ̃2

E + φ̃3
E

]

dỹ+F+ (A4)

whereF+ includes all positive defined terms

F+ = 2m9/2ξ
∫ ỹ0+2l̃c

ỹ0

φ̃2(∂ỹδ φ̃)2dỹ.

The integral in (A4) is computed in the interval[ỹ0, ỹ0+2l̃c] where the localized solution is de-

fined. Because of symmetry, it is enough to show that the integral between[ỹ0, ỹ0+ l̃c] is positive

defined. Furthermore, we can always choose the origin of integration with the position ˜y0 where

the localized solutioñφE becomes zero and write

φ̃E(ỹ) = (4Ẽ)1/4A(ỹ)ỹ1/2

whereA is an analytic function of ˜y. SinceA∂ỹA+ ỹ(∂ỹA)2 ≥ 0 for 0≤ ỹ ≤ l̃c andF+ is positive

defined, we obtain

δF

4m9/2ξ
≥
∫ l̃c

0
(δ φ̃)2A2

√

4Ẽ

[

1
4ỹ

− ỹ
2
+ ỹ3/2(4Ẽ)1/4A(ỹ)

]

dỹ.

We have then studied the properties ofA(ỹ), finding a lower bound for it:A(ỹ)≥ 1/
√

2. Hence

δF

4m9/2ξ
≥
∫ l̃c

0
(δ φ̃)2A2

√

4Ẽ

[

1
4ỹ

− ỹ
2
+

ỹ3/2
√

2
(4Ẽ)1/4

]

dỹ. (A5)

Because the function[ 1
4ỹ −

ỹ
2+ ỹ3/2(4Ẽ)1/4 1√

2
] is positive defined for̃E ≥ Ec ≡ 0.01, it follows that

all localized solutions with integration constantẼ in the rangeẼ ∈ [0.01,0.05] are local minima of

F[φ ], whereẼ = 0.05 corresponds to the upper boundEM = m5/20 discussed in section III, above

which no compact solution can be found. It is clear from our result that the number of possible

stable compactons is still very large.
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Appendix B: Self-Consistent Field approximation

In this appendix, we derive the expressions (39)-(40) discussed in section (III). We start with

equation (31)










∂tφ =−δF
δφ +

√
εw(y, t)

F[φ ] = 2
∫ 1

0

[

−1
4mφ4+ 1

5φ4|φ |+ξ 2φ2(∂yφ)2
]

dy
(B1)

which we rewrite in the form










∂tφ =−2dV
dφ +4ξ 2φ2∂yyφ +4ξ 2φ(∂yφ)2+

√
ε w(y, t)

V (φ) =−1
4mφ4+ 1

5φ4|φ |.
(B2)

Our aim is to show that, because of the noise,V is renormalized and, moreover, the renormalization

is state dependent. The difficult terms to be estimated are those proportional toξ 2 in equation

(B2), i.e., φ2∂yyφ andφ(∂yφ)2. Starting from the free-energy, a self-consistent Hartree-like field

approximation [50–52] can be performed on the termφ2(∂yφ)2

F[φ ] = 2
∫

[

−1
4

mφ4+
1
5

φ4|φ |+R
2

φ2+
D
2
(∂yφ)2

]

dy (B3)

where

R ≡ 2ξ 2〈(∂yφ)2〉 D ≡ 2ξ 2〈φ2〉. (B4)

Note that formally we should apply the same approximation tothe termsφ4 andφ4|φ | but for our

purpose this would add only small perturbations to the results below described. Next, by using

equation (B3), we can rewrite equation (B2) as

∂tφ =−2
dVeff

dφ
+2D∂yyφ +

√
ε w(y, t) (B5)

where theeffective potentialVeff is given by

Veff(φ) =−1
4

mφ4+
1
5

φ4|φ |+R
2

φ2. (B6)

According to (B6), the effective potential has local minimawhich can be found by solving the

equation (φ > 0):














dVeff
dφ

∣

∣

∣

φ=φmin

=
(

Rφ −mφ3+φ4
)
∣

∣

φ=φmin
= 0

d2Veff

dφ2

∣

∣

∣

φ=φmin

> 0.
(B7)
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It is easy to show that (B7) has one solutionφmin = φ0 = 0 for m ≤ mc ∼ (27R/4)1/3, whereas for

m > mc there exist two local minima atφmin = φ0 = 0 andφmin = φm ∼ m−R/m2+O((R/m2)2)

(see Figure 5 for a sketch). To close the problem, we need to computeR = 2ξ 2〈(∂yφ)2〉. This

computation can be done perturbatively (i.e., assumingε to be small) by linearizing equation (B6)

near the minima.

We start with the minima atφ = φm ≈ m−R/m2+O((R/m2)2). As we shall see in following,R

is proportional toε and we can simplify the computation by assumingφ = m. Next, we consider

the fluctuationsδφ nearφ = m which obey the stochastic differential equation

∂tδφ = 4ξ 2m2∂yyδφ −2(m3+R)δφ +
√

ε w(y, t). (B8)

The above linear equation can be solved in Fourier Transformfor δφk and we obtain

∂tδφk = (−4ξ 2m2k2−2m3−2R)δφk +
√

ε w(k, t) (B9)

where now bothδφk ≡ 1√
2π

∫

exp(iky)δφ(y, t)dy and w(k, t) are complex variables and moreover

〈w(k1, t1)w∗(k2, t2)〉= δ (k1+ k2)δ (t1− t2). Equation (B9) is a linear Langevin equation for each

k whose asymptotic variance can be easily computed. After a simple algebra we obtain:

R = 2ξ 2
∫

k2〈δφkδφ∗
k 〉dk =

2ε
m2

∫ ξ 2k2

2ξ 2k2+m+R/m2 dk =
εkM

m2 (1+O(m/kM)+O(kMR/m2)).

(B10)

Upon recalling thatm3
c ∼ R and substituting forR the result obtained in (B10), we obtainm3

c ∼ εkM
m2

c
,

and thus

mc ∼ (εkM)1/5. (B11)

We refer to this value ofmc asm(1). Our derivation implies that form < m(1) the only minimum

of the effective potential isφ0 while for m > m(1) there exist two local minima, and in particular

the minimum nearφ = m is the global minimum of the potential.

Next we consider the minimaφ = 0. In this case the problem is more complicated sinceR should

be computed self-consistently withD. To solve the problem, we linearize equation (B6) nearφ = 0

obtaining:

∂tδφ = 2D∂yyδφ −2Rδφ +
√

ε w(y, t). (B12)

We next perform a Fourier transform obtaining a set of linearLangevin equations. A simple

algebra gives:

D = 2ξ 2
∫

〈δφkδφ∗
k 〉dk = 2εξ 2

∫

dk
Dk2+R

(B13)
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R = 2ξ 2
∫

k2〈δφkδφ∗
k 〉dk = 2εξ 2

∫

k2dk
Dk2+R

. (B14)

By multiplying equation (B13) byR and equation (B14) byD, and summing the two results, we

get

2DR = 2εξ 2kM. (B15)

Another relation betweenD andR can be explicitly obtained by solving exactly the integral in

(B13) and assumingkM large

D = 2εξ 2
∫

dk
Dk2+R

= 2
εξ 2

R

∫

dk
Dk2/R+1

= 2
εξ 2

R

√

R
D

atan

(

√

D
R

kM

)

≈ πεξ 2

R

√

R
D
. (B16)

The self-consistent solutions of (B15)-(B16) are given by:

D ∼ ξ
√

εkM

kM
; R ∼ ξ kM

√

εkM. (B17)

Equation (B17) implies that the fluctuations nearφ0 are given by

〈(δφ)2〉= D
ξ 2 ∼

√
εkM

ξ kM
(B18)

meaning that nearφ0 the average fluidityf0 is not zero, which is the result reported in (33). Finally,

we recall thatm3
c ∼ R, so that

mc ∼ (ξ kM

√

εkM)1/3 (B19)

and we refer to this value ofmc asm(0).

In order to gain a physical insight in the above approximations, it is expedient to consider again

equation (B2) and decomposeφ as follows:

φ = 〈φ〉+δφ (B20)

whereδφ are (small) fluctuations around the space average〈φ〉. Equation (B2) is then rewritten

as:

∂tφ = 2mφ3−2φ3|φ |+4ξ 2∂y[φ2(∂yφ)]−4ξ 2φ(∂yφ)2+
√

εw(y, t) (B21)

Upon performing the space average of (B21) and assuming self-averaging (i.e., ensemble average

is equal to space average), we obtain:

∂t〈φ〉= 2m〈φ〉3−2〈φ〉3|〈φ〉|−4ξ 2〈φ〉〈(∂yδφ)2〉 (B22)
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where we have neglected terms proportional to(δφ)(∂yδφ)2 and also terms coming from the

decomposition ofφ3 andφ3|φ |, which are supposedly much smaller than(∂yδφ)2. By linearizing

the rhs of (B21) around〈φ〉> 0, and subtracting equation (B22), we obtain (to the linear order in

δφ ) the following equation

∂tδφ = 2(3m〈φ〉2−4〈φ〉3)δφ +4ξ 2〈φ〉2∂yyδφ +
√

ε w(y, t). (B23)

Next, assuming that〈φ〉 ∼ m+O(ε), we can compute the quantityR = 2ξ 2〈(∂yδφ)2〉 from (B23):

the equation is linear and can be solved similarly to what we have done for (B8), obtaining the

O(ε) result in (B10).

Moreover, we can recover the results form(0) by writing equation (B2) for the fluidityf = φ2.

Upon using Ito calculus [55], we obtain:

∂t f = εkM +O( f 2)+ξ 2 f ∂yy f +
√

ε f w(y, t) (B24)

where the termsO( f 2) are neglected in the following since we are investigating the stability of the

stateφ = 0. Upon averaging in space (B24) and assuming self-averaging to hold, we find

∂t〈 f 〉=−ξ 2〈(∂y f )2〉+ εkM. (B25)

We then use the approximation〈(∂y f )2〉 = αk2
M〈 f 〉2, whereα is a constant of order 1. At the

stationary state, equation (B25) predicts

ξ 2αk2
M〈 f 〉2 = εkM (B26)

which is equivalent to

〈(δφ)2〉=
√

εkM

α1/2ξ kM
. (B27)

Equation (B27), apart for a numerical constant, gives exactly the same result reported in (B19).
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