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ve en derin özlemle Anneannem’e...

Long you live and high you fly
And smiles you’ll give and tears you’ll cry
And all you touch and all you see
Is all your life will ever be.

Pink Floyd





Acknowledgements

My life in OPAC department started in 2008 with my master studies so without a
doubt it would be unfair to consider my PhD as only completing a thesis or publishing
papers. This was a long road where my life and my perspectives changed in many
ways. This PhD research would not be colorful without the invaluable support of my
family, my supervisors, mentors and my friends.

Foremost, I owe my PhD research and this thesis to Tom van Woensel, my first
promotor and Nico Dellaert, my copromotor. Thank you Nico and Tom for your
encouragement, sharing your invaluable knowledge and experience with me and
giving your time endlessly. I really appreciate your valuable feedbacks to improve
my skills especially in writing which required patience. I learned a lot from you
by different perspectives you brought into the research which made this experience
richer and in harmony. Especially, I will always remember how we climbed to the
Chinese Wall together.

Tom, I would like to thank you for all your contributions of time, ideas, and funding
to make this PhD research productive and interesting. You provided me with gentle
encouragement and enough freedom to take initiatives which created a good working
environment and a motivation for me to finish. I admire your enthusiasm and
patience in dealing with me and teaching me how to do research. I am grateful
for mentoring me to understand the way of analyzing and solving routing problems.

Nico, I am indebted and extremely grateful to you for your endless support,
contribution and guidance. This thesis would not exist without your ideas and vision.
Thank you for all the fruitful discussions in general and ideas on the methodological
approaches. I am amazed with your knowledge and skills in operations research.
I hope I grasped even a little part of your knowledge and curiosity in exploring.
Besides, for me it was really valuable that you helped me whenever I came to your
office and shared your ideas and knowledge with me.

I also would like to express my gratitude to my second promotor Ton de Kok for
his invaluable feedback and ideas. In our monthly meetings, you brought a broader
perspective to this research. Especially in writing the thesis, your feedback improved
my perspective in writing and considering our research from a macro level.



I would like to deeply thank Lei Zhao for hosting my visit in Tsinghua University
in Beijing and his invaluable contribution to the Chapters 4 and 6 of this thesis.
During this visit, you ensured that I was feeling at home. You showed me the endless
hospitality of China. I owe the most of my knowledge on approximate dynamic
programming to your knowledge and experience. With your supervision, I learned
how to be more critical and detailed in analyzing and writing. This is really valuable
for me who needs improvement in different ways. I am extremely grateful for your
valuable feedback and spending your time for this research even in your holidays. I
would also like to thank Chen and Zhaoxia for helping me in Beijing and introducing
me to the Chinese culture.

I would like to thank Ivo Adan and Frits Spieksma for being part of my thesis
committee and for your insightful comments and invaluable feedback on my thesis.
Your feedback provided me to consider my thesis in a more rigorous way and helped
me to improve it substantially. Furthermore, I would like to thank Jan Fransoo for
being part of my defense committee.

I also gratefully acknowledge EyeFreight- Itude for funding my research and making
all of these moments possible.

I would like to express my gratitude to Carlo van de Weijer for sharing his invaluable
experiences and knowledge with me. With his help, I have a clearer vision on how
TomTom deals with uncertainties and the future of navigation.

I would like to thank all my current and former colleagues in OPAC who provided
me with a cool and relaxed working environment that facilitated doing research.
When I look back, I see that I had many roommates which made me lucky while
sharing and exchanging more stories. I would like to thank my roommates over
these years: Frank, Duygu, Kristina, Kristel, Maxi and Hande. Thanks for the friendly
atmosphere and dealing up with my high entropy. Also, I really appreciate the nice
conversations with Gönül, Anna, Kasper, Sjaña, Zümbül, İpek, Engin, Maryam, Chiel,
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Chapter 1

Introduction

Consider a delivery company delivering products to its customers who have high
penalties in case of late deliveries. The driver of the company travels every day
from The Hague to Utrecht to make a delivery to a set of customers via the highway
A12. The average speed of a vehicle detected on the highway A12 is shown for any
day in Figure 1.1. On the 26th September 2013 at one of the intersections of A12 an
accident took place at 14 : 30 where travelers were stuck at the road for about 2 hours
(Figure 1.2). These two figures show that the speed of vehicles changes dynamically
depending on random events such as accidents and time of the day such as rush
hours.

Figure 1.1 Average speed profile at
highway A12 on the 19th September 2013
(Regio Delft Project 2013)

Figure 1.2 Average speed profile at
highway A12 on the 26th September 2013
(Regio Delft Project 2013)

Planners of transportation companies and also drivers face such dynamic and
uncertain environments every day to figure out the fastest route and to deliver and/or
pick-up goods to customers in a timely fashion. As in the specific example, in real-
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life, neither traffic conditions nor customer profiles are known with certainty but
are rather dynamic and stochastic. They are dynamic because traffic conditions
as well as supply and demand fluctuate over space and time dimensions. These
dynamics occur due to random events such as road blockages from accidents,
weather conditions, uncertain demand, vehicle breakdowns, traveler choices, etc. The
information regarding the random events become available over time rather than at
once before departure. Transportation networks are characterized by uncertainty of
traffic conditions and/or customer demands on the networks. These stochastic and
fluctuating elements on transportation networks lead to stochastic travel times and
so uncertain travel costs for transportation companies and travelers. Therefore, when
we represent transportation networks as a network consisting of edges and nodes,
it is wiser to consider the edges as travel times rather than deterministic distances
and nodes as customers with random demands. These make networks stochastic.
This thesis considers an interesting and challenging problem on developing routing
policies at an operational level in such stochastic and dynamic network conditions
where travel times and/or demands fluctuate by random events.

In the European Union countries, the volume of passenger transport increased
by 24.68% and the freight transport increased by 36.24% from 1995 to 2005
(European Environment Agency 2013). The rising volumes of passenger and freight
transportation cause roads to be used more intensely, increasing both the individual
and the societal costs. For instance, a recent study by CE Delft shows that in 2008
the total external costs of transport (costs of emissions, congestion and accidents)
in the EU amounted to more than 4% of the total GDP (CE Delft 2013). Therefore,
improving the efficiency of passenger and freight transportation routing is needed for
reducing both the individual and the societal costs while considering dynamic and
stochastic nature of traffic conditions and customer profiles on the networks.

Traditionally, most routing algorithms and software consider networks in a static
way with deterministic or stochastic information, i.e. the route is determined
before going en-route with all model inputs known with certainty or the inputs
are random variables that follow certain probability distributions based on historical
characteristics, respectively. Obviously, the world is dynamic and stochastic and does
not fit into a deterministic and static straitjacket. All these dynamic and stochastic
phenomena are rarely considered or are treated in a static way in the current
transportation planning tools. Any schedule built on these unrealistic assumptions
results in higher transportation costs.

Today, for transportation companies the market is becoming competitive with
higher customer service expectations and drivers want to be on time at their
destinations in this dynamic and stochastic environment. Fortunately, the advances in
information technologies provide travelers and dispatchers with real-time information
on the location of the vehicles, traffic network conditions and customer demand
realizations. These present operations researchers an opportunity to tackle dynamic
and stochastic conditions on transportation networks to provide travelers and
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transportation companies low transportation costs via dynamic routing. Considering
high quality and frequently updated real-time information, planners can replan and
reroute travelers and vehicles during traveling. In other words, dynamic routing
allows planners to change their routing decisions during traveling as more accurate
information becomes available to handle fluctuating demands and travel times.

For example, consider a delivery company traveling from The Hague to Utrecht to
make a delivery to a set of customer with high delay penalties on the 26th September
2013. From The Hague, there are two alternative highways, i.e. A12 and A4,
(Figure 1.3). Normally, the navigation device suggests taking highway A12, which
is the fastest route and takes around on average 50 minutes. Regarding this a priori
information, the vehicle driver planned to depart at 15 : 00 that would make the
expected arrival time 15 : 50 (Figure 1.4). When the vehicle driver started the
journey, the navigation device showed that there was a disruption on A12 creating
a long traffic jam and the arrival time was expected to be delayed at least 90 minutes,
meaning that the driver would be too late (Figure 1.5). Considering the real-time
information and the probability distribution on the successor roads, the navigation
device suggested to take an alternative route at the Hague, A4 and then N11 (Figure
1.6). When the driver followed this alternative route, the total travel time was 55
minutes which would be 120 minutes if the static route (A12) was followed. The
rerouting in case of a disruption is an example of dynamic routing. This example
shows that dynamic routing reduces the transportation significantly via rerouting by
considering up-to-date information about the real-world. Obviously, this example is
also relevant for a driver company planning routes for the vehicle to deliver goods
to its customers where the random element can be stochastic customer demands that
fluctuate during traveling or new customer arrivals.

The
Hague

UtrechtA12

Figure 1.3 Alternative routes

The
Hague

UtrechtA12

Figure 1.4 Everyday route

The
Hague

A12 Utrecht

Figure 1.5 Accident

The
Hague

A12 Utrecht

Figure 1.6 Reroute

This thesis addresses routing problems in networks where the state of the network
changes regarding to stochastic and dynamic events which is motivated by real-life
settings. We develop dynamic and stochastic routing models at an operational level
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to handle the network conditions that are inherently dynamic and stochastic. We
limit our scope to networks where the stochasticity arises from either the travel time
changing due to traffic disruptions (event that increase the travel time significantly)
or stochastic customer demands that are realized upon arrival.

Dynamic routing models can capture real-life dynamics more realistically. According
to recent studies, dynamic decision making by considering uncertainty and real-time
information lead to significant cost savings (up to 47% cost savings when compared
to the routing decisions without real-time information, Lu et al. (2011), Kim et al.
(2005b)). However, these savings are at the expense of computational complexity
as the routing problem becomes combinatorial. According to Cordeau et al. (2002),
a good routing algorithm should be accurate, fast, simple to implement and flexible
enough to adapt to real life situations. Also, for practical purposes, we need fast
and simple dynamic routing algorithms that provide the travelers with high quality
routing decisions. In this thesis, balancing the trade-off between computational time
and solution quality is of particular importance because fast, simple and accurate
routing decisions prevent travelers wasting time for retrieving decisions with lower
transportation costs and higher customer service levels for transportation companies.

The rest of this chapter is organized as follows: In section 3.2, we describe how
transportation networks are modeled based on information and modeling type. In
Section 1.1.1, we further describe type of information being considered in routing
models. In Section 1.1.2, we explain how the routing decisions are made considering
these information types. Next, in Section 1.2, we present the dynamic routing
literature together with the models and solution methods being studied. Lastly, we
give an overview of the thesis with an outline.

1.1. Modeling the Dynamic and Stochastic Transporta-
tion Networks

As described in the previous section, real-world is complex and dynamic. To develop
high quality and fast routing decisions, we need to model the real-world in a realistic
but not too complex way (lower computation times). In this section, we provide the
types of input information used for the routing models. Then, we present both static
and dynamic routing models depending on the information being used.

1.1.1 Information in Routing Models
Before describing the information types considered in routing models, we start
with the information availability in transportation networks for developing routing
decisions.

For efficient routing decisions and reducing the effects of uncertainty during travel,
travelers need more information than the offline estimated knowledge of the
networks. Recent advances in communication, information and location technologies



1.1 Modeling the Dynamic and Stochastic Transportation Networks 5

allow travelers to get benefit from a wide variety of network information. In recent
years, Intelligent Transportation Systems (ITS) and Advanced Fleet Management
Systems (AFMS) provide real-time and historical information on the road networks
and customers (Pillac 2012). For example, Advanced Traveler Information Systems
(ATIS) provide travelers with updated information about the road network conditions.
In case of an incident on the road, with the information from ATIS travelers can adapt
their routes accordingly.

In stochastic networks, travelers or fleets for companies make their decisions (route,
mode, departure time) based on the information on the network conditions, retrieved
from ATIS and/or AFMS (Huang 2012). Specifically, the information on stochastic
networks can be classified in two main categories: a priori (offline) and real-time
information (online). A priori information provides travelers or companies with long-
term or short-term fluctuations in the network based on historical observations. This
can be a probability distribution of travel time on a specific road or customer demand
or the probability that a certain blockage on a road is repaired. For example, on
a specific day of the week, the travel time between The Hague and Utrecht is 50
minutes on average, but in the morning peak it becomes 55 minutes.

Real-time information consists of the network conditions on a specific day and time,
e.g. the real-time information about the accident when the traveler is en-route or
the realization of the customer demand during the visit. For example, on the 26th

September 2013 at 14 : 30, the real-time information about expected travel time from
The Hague to Utrecht using A12 is 120 minutes due to the specific disruption. ATIS
provides both the real-time information and historical information on the network
conditions.

Stochastic versus Deterministic Information
The transportation networks are uncertain environments where the planners may not
know with certainty customer demands, travel times or other network conditions.
According to the modeling choice, information about the state of the transportation
network is modeled as either stochastic or deterministic.

A stochastic process provides a mathematical representation of the states of the
physical system evolves over time. Consider Figure 1.2 where the speed of the
vehicle so the travel time on a road changes frequently over time. If one considers
the fluctuations and significant changes in travel time as states that have different
likelihood of occurrence or consider travel time as a random variable following
a specific probability distribution, then information is stochastic. Considering the
fluctuating speed profile, travel time has the following values with some known
probability of occurrence: 50 minutes when there is no disruption, 55 minutes during
rush hours and 120 minutes when there is a disruption. Stochastic processes are also
modeled in a routing network through which a vehicle distributes goods to customers
with uncertain demand. The demand information is stochastic when the demand
is represented with a probability distribution, where each value occurs with some
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likelihood.

When the travel time is seen as the average time over all fluctuations without
considering any fluctuations due to the disruptions in Figure 1.2, the travel time
information is deterministic. For instance, when we consider that travel time in the
road is always 5 minutes on average, then this information is deterministic. When
only realizations are considered, this type of information is also deterministic as
no probabilistic information about the future is used. Average customer demand
or considering demand realizations without any probabilistic information about the
future demands are also examples of deterministic information.

Mostly, the deterministic network assumption is unrealistic when the routing takes
place a priori and not adapted to the changes because it is obvious that world
is changing within time. However, in case of highly uncertain and unpredictable
networks, deterministic information may be used with real-time information to
represent the condition at the specific moment. This is intuitive because one may
hardly predict the range or probability distributions of the uncertain element. In the
literature, this is done via online optimization where only the real-time information
without any knowledge about the future is considered in the routing decisions
(Ferrucci 2013).

In this thesis, we focus on both deterministic information and stochastic information
for the routing models. We consider realization on uncertain elements without
exploiting any stochastic information for obtaining information on the current events.
For estimating values of uncertain elements in the future, we consider stochastic
information.

Dynamic versus Static Information
The networks are inherently dynamic due to the presence of an uncertain environ-
ment. In the routing model, the value of an uncertain element can be considered as
either a real-time realization or a constant value or a random variable following a
certain probability distribution. Information in routing models is either modeled as
dynamic or static depending on the modeling choice.

Considering our routing example, if the input travel time on the highway A12 is
used as an average over all fluctuations or the expected value with known variance
considering the uncertainty, we are able to suggest travelers an a priori path which
is to follow A12 from the origin to the destination. At each intersection, the travel
time on A12 will be considered as the same in the model. This type of information
is denoted as static. For instance, when the planner considers that the customer
demand is on average 20 units and this does not change over the planning horizon,
the demand information is also static. The static information to the routing model
does not change during the planning horizon.

Consider the routing example where realizations of travel times are used for the
routing model. In this case, the travel time as in Figure 1.2 changes during the



1.1 Modeling the Dynamic and Stochastic Transportation Networks 7

planning horizon. The travelers observe the travel time differently when they arrive
at different intersections in time. When the value of the uncertain element in the
network changes over the problem horizon, the input information on that uncertain
element is dynamic. Dynamic information can be in other forms. For instance, the
travel time on the road changes when a random accident happens and also the impact
of the accident decreases in time due to the repair activities. This means that the
travel time is different at the very next moment of the accident and after a long time
of the accident. Consider a vehicle filling ATM’s from a central bank or distributing
oil to individual houses. The amount of money each ATM needs or amount of oil for
each house is not precisely known in advance and it is possible that the demand is
more than the amount predicted before departure.

In the literature, dynamic information is also referred to time-dependent information
where environment changes with function of time but known in advance by configur-
ing historical data (Powell et al. 1995). Time-dependent data can be travel times on
particular days of the week and times of the day.

In this thesis, we do not focus on dynamic information due to time-dependency. We
focus on dynamic information where this information changes over the horizon with a
known probability distribution. We gather information and make decisions at specific
decision moments in the planning horizon. The dynamic input information follows an
a priori probability distribution that becomes deterministic and known when realized.
This means that we exclude the information on the events that happen instantly
and in an unpredictable manner. For example, when we consider incidents on road
transportation, we know the probability distribution of how the impact of an incident
is repaired and reduced within time. The information is dynamic in two aspects. First,
realizations on uncertain elements (deterministic information) change as we move to
different decision moments. Second, stochastic information on uncertain elements
change in the short-term horizon of the decision moment. For example, when there
is a disruption observed, the probability distribution of having the disruption changes
in time according to the repair time. In some of the routing models we develop,
we also use static information in terms of expected travel times or time-invariant
probability distributions for the long-term horizon of the decision moment. We should
note that in the routing models, the long-run probability distributions do not change
as we assume that the changes in the long-run probability distributions are very small
during the planning horizon. However, in another departure time, the information on
probability distributions may change depending on the dynamic network conditions.

1.1.2 Routing Models in Stochastic Networks
Routing models are classified based on which type of network information is
considered in the model as explained in Section 1.1.1. In Figure 1.7 represents a
matrix where routing models are represented according to the types of information
considered in the model. In this section, we will explain each quadrant of this matrix.

Traditionally, in most research and software, routing problems are modeled in a static
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Figure 1.7 Classification of routing models

way where a fixed a priori path is developed at the start of the trip and followed
no matter the realizations of the network. This type of routing is also referred
as a static routing or non-adaptive (fixed) routing. The static route is determined
before going en-route (in offline setting) with all static model inputs known with
certainty or with probabilistic information. In the thesis, we refer to a routing
algorithm as static, when the planned routes are not re-optimized and the routes
are determined from the information that is known before going en-route (Psaraftis
1995). Typically, in the offline setting, one can plan the static routes either taking
into account deterministic information (Type III) or stochastic information (Type IV).
Furthermore, the application of the static model is also static (Ferrucci 2013). In
a static routing, a single path is determined before departing according to a priori
probabilistic information. During travel even if there is real-time delay information,
the planned path is followed. Note that in the literature, there are also approaches
such as two-stage stochastic programming where static routes are determined at
offline level in the first stage. When the routes are executed in the second stage,
recourse actions are applied to the first stage solution by using real-time information
at online level.

The advances in availability of real-time and probabilistic information provide
planners/researchers new opportunities to develop efficient dynamic routing models.
Dynamic routing is the replanning of the routes based on the updated dynamic
information becoming available during the travel. In static routing, the output is a
set of routes determined at the offline level. However, in dynamic routing the output
is rather a policy where the routes are defined as a function of network state that
becomes known in real-time during the travel (Psaraftis 1988, Larsen and Madsen
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2000).

The vehicle routing problem with stochastic demand (VRPSD) is an example to both
static and dynamic routing depending on how we model the input information (static
or dynamic way). In VRPSD, customer demands are random variables with known
probability distributions. However, the exact demand is observed when the customer
is visited. So, the vehicle capacity may be insufficient to fulfill the customer demands.
If there is not enough capacity during service, a failure occurs and the vehicle needs to
return back to the depot for replenishment. In the static case, a fixed route is modeled
according to the static information on the known a priori demand distributions (Type
IV). There is a fixed sequence and in case there is a failure, the restocking decisions are
done either with predefined policies or with proactive restocking decisions (Gendreau
et al. 1995, Laporte et al. 2002, Christiansen and Lysgaard 2007). In the dynamic
routing approach, the demand of the customer becomes available during the visit and
these realizations are considered in the model. In other words, dynamic realizations
with stochastic information about the future events are considered in the model
(Type I). After serving the demand of a customer, the driver makes a routing and
a replenishment decision dynamically. This decision is based on the available vehicle
capacity and the set of not served customers. The realized demand and where to go
next can be communicated with the driver with AFMS technologies.

In the literature, there are two main classes of dynamic routing models:

Routing with dynamic and deterministic information (Type II): In case of highly
dynamic networks, the information is not known before the departure. When
the information is unknown from the beginning and learned with certainty during
travel, then the routes are planned and re-optimized at real-time repeatedly (online
optimization). The model considers real-time information and does not consider
the available stochastic knowledge about future expected changes. These are called
reactive, pure online or real-time approaches (Figure 1.8).

Routing with dynamic and stochastic information (Type I): When the realization
of an uncertain element is learned during travel and the real-time information is
exploitable with probability distributions, the problem is modeled in both dynamic
and stochastic way. This type of routing is called pro-active real time or adaptive
approaches (Figure 1.8). In the literature, there are two main classes of dynamic
and stochastic models. First one is making decisions and observing outcomes
on a continuous, rolling horizon basis based on non-stationary information while
exploiting the stochastic information on future events. Second one is based on a priori
(offline) optimization where routing policies are generated for stochastic problem
regarding the realization of the random elements prior to the real-time information
retrieval. The routing policy is determined at the offline level but the execution of the
routes depending on the realization of the random element is done at the online level
where real-time information is retrieved.

In this thesis, we focus on the latter type of dynamic and stochastic models (Type
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I). This modeling choice is valid with reality where we assume that the network is
stochastic and the random element follows a prescribed probability distribution which
is known beforehand. We do not consider any information on the non-stationary
fluctuations occurring within time. In other words, we exclude any information that
is totally unknown and that cannot be defined before going en-route. We assume
that either travel time or customer demand profiles that are inherently dynamic and
stochastic, are already configured and explicitly modeled via known probabilistic
information based on historical data. For instance, dynamism arising from changes
in travel times is nowadays also well predictable due to the advances in recent
technologies such as floating car data (Ehmke et al. 2009, 2010). Furthermore,
traffic congestions and traffic states with their impacts are detectable by traffic sensors
(Attanasio et al. 2007, Ferrucci 2013). Thus, in our dynamic and stochastic models,
the dynamic changes in the network are limited to network states that are defined
before going en-route. The network states consider the values of dynamic and
stochastic elements that may occur during travel. These states can change from one
departure time to another depending on the dynamic network conditions and updated
forecasts.

In the literature, mostly first type of dynamic routing models is considered. The
second type is much harder to solve due to the computational burden in computing
the policies for all realizations. One of the contributions of this thesis is to develop fast
and high quality algorithms to deal with computational challenges while developing
routing policies for all possible realizations.

To compare the effect of different routing modeling approaches, we focus on both
dynamic and static routing models. We develop dynamic routing models considering
a variety of information as explained in Section 1.1.1. We also model various static
(with static and deterministic or static and stochastic information) and dynamic
routing models (dynamic and deterministic information) as a benchmark to measure
the value of dynamic decision making in dynamic and stochastic routing problems
with computational time measure. Therefore, we consider the routing models: Type
I, II, III and IV.

In this thesis, we deal with two types of dynamic events: dynamic travel times and
stochastic customer demands realized upon the visits. We address two different types
of dynamic routing problems: dynamic shortest path problems and vehicle routing
problems with stochastic demands. (Eksioglu et al. 2009).

In Chapters 3-5, we tackle dynamic shortest path problems with stochastic network
disruptions. Before departure, travel time is only known with a probability distribu-
tion. The information on the disruption states and thus the travel time is realized
as the traveler travels along the network. The input travel information is dynamic
because the travel time on a road changes dynamically due to the stochastic events
over the planning horizon. The output is a policy that prescribes how the routes
evolve as a function of the state of the network.
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In Chapter 6, we tackle a vehicle routing problem with stochastic demands. The
demands of customers are realized as the vehicle visits the customers. The
randomness of the customer demand leads to failure where the capacity of the vehicle
is not sufficient to fulfill the demand. The vehicle then returns to the depot to
replenish. The information on customer demand and the remaining capacity of the
vehicle is dynamic as this information changes during the travel. The demands of
future customer demands are modeled as a stochastic process and follow a known
probability distribution. The output is a policy with set of decisions on which
customer to visit next or whether go back to depot to replenish based on the realized
demand information and remaining capacity.

1.2. Dynamic Routing Problems- a Literature Review
In this section, we briefly summarize the existing literature on routing in stochastic
networks that is relevant to the thesis. We address two different types of routing
problems: dynamic shortest path problems and stochastic vehicle routing problems.

Consider the routing example as a graph, G(N,A) where a traveler wants to traverse
G from an initial node, The Hague, to a destination Utrecht. The arcs are the roads
and the nodes are the intersections of multiple roads. We consider that the arc
traversal cost (travel time on a road) is stochastic and dynamic. Briefly, this means
that the cost of traversing an arc (i, j) on G is a known function: f(i,j)(e

i) of the state
ei of a certain environment variable at node i. The actual state of ei is revealed to the
traveler when it is at node i. Once departing from node i, the traveler incurs a cost
f(i,j)(e

i) depending on the state of the network. Based on this definition, dynamic
shortest path problem is to find a policy that minimizes the expected total cost of a
traversal from initial node to destination (Psaraftis and Tsitsiklis 1993). For example,
let ei denote the information on the occurrence of the disruption on the road and the
associated cost. Then, our problem becomes finding a routing policy with dynamic
decisions from The Hague to Utrecht with minimum expected total travel time.

The vehicle routing problem (VRP) is first introduced by Dantzig and Ramser (1959).
In general, a VRP considers finding a set of routes for a set of vehicles departing from
the depot, such that each of the customers is visited exactly once and the vehicles
return back to depot after serving all the customers. The objective is to minimize
the overall routing cost. When the customer demands and travel times are stochastic
the general VRP problem is denoted as stochastic Vehicle Routing problem (SVRP).
When the customer demands, arrival of customers and travel times becomes known
and evolve during travel and the routes are determined dynamically, we denote this
type of VRP as a dynamic vehicle routing problem.

We provide the literature review on DSPP and VRP based on two properties of the
problem: Types of Dynamic Event and Modeling Perspectives and Solution Methods.
We only focus on two types of dynamic events: dynamic travel time and stochastic
customer demand. For information on other type of dynamic events such as new



12 Chapter 1. Introduction

customer arrivals and vehicle breakdowns, we refer the reader the surveys by Psaraftis
(1995), Gendreau et al. (1996a), Gendreau and Potvin (1998), Ichoua et al. (2000),
Ghiani et al. (2003), Jaillet and Wagner (2008), Larsen and Madsen (2000), Pillac
et al. (2012), Ferrucci (2013).

Types of Dynamic Events

We first focus on the dynamic routing literature based on the typed of dynamic
events in the routing problem. In dynamic routing, dynamic events lead to change
in network information during travel. In the literature, four types of dynamic
events are considered (Ferrucci 2013, Pillac 2012): dynamic travel times due to
network disruptions, dynamically revealed demands, new customer arrivals and
vehicle availability. In this thesis, we focus on the first two types.

Dynamic travel times due to network disruptions: In traffic networks, disruptions
due to accidents, bad weather and road bottlenecks lead to a drastic increase in travel
times and decrease the probability of being on-time at the destination. In case of
freight transportation, the service level decreases due to late arrivals to customers.
The occurrence of disruptions becomes known during travel. The travel times given
the disruption information change during planning horizon with random disruptions.
To reduce travel time and increase the quality of passenger transportation, rerouting
the travelers to less disrupted roads based on the information about the network
disruptions is necessary. For VRP, to increase customer service level and decrease
transportation cost, rerouting of vehicles and reassignment of customers are essential.
In dynamic routing literature, this type of dynamic event is taken into account as ATIS
and AFMS technologies provide travelers network information with higher reliability
and availability. The literature considering dynamic travel times can be seen in Figure
1.8. The papers that are relevant with this thesis are on dynamic shortest path
problems with dynamic travel times. Gao and Huang (2012), Thomas and White
(2007) and Kim et al. (2005b) consider dynamic travel times in terms of dynamically
occurring disruptions in traffic such as accidents. Güner et al. (2012) explicitly
analyze both time-dependent travel times and uncertain events that change the travel
time. Psaraftis and Tsitsiklis (1993), Polychronopoulos and Tsitsiklis (1996), Cheung
(1998) consider the dynamic travel times via real-time information where the travel
time can change due to both dynamic disruptions and time-dependency.

Stochastic customer demands: In stochastic VRPs, stochastic customer demand is
considered with known probability distributions. Each customer has a given and
known demand distribution and the actual demand realization is unknown until the
vehicle arrives at the customer. The actual demand is known when the customer
is visited. We denote these problems as vehicle routing problems with stochastic
demands (VRPSD). In the VRPSD, the vehicle may be unable to satisfy the actual
customer’s demand realization when visiting the customer and the vehicle needs to
return to the depot for a refill and return back to the partially served customer. The
network state changes depending on the realized customer demands, current location
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of the vehicle and available capacity. The cost function depends on realization of
the customer demand, state of the remaining capacity of the vehicle and unvisited
customers that change in time. The dynamic decision is then whether to return
back to depot and which customer to visit next given the state of the system. The
real-life examples for this type of uncertainty are: beer distribution to retail outlets,
the re-supply of baked goods at food stores, replenishment of liquid gas at research
laboratories, local deposit collection from bank branches, less-than-truckload package
collection, garbage collection, home heating oil delivery, and forklift routing. The VRP
considering dynamically revealed stochastic demands are considered in Dror et al.
(1989, 1993), Secomandi (2000, 2001), Novoa (2005), Novoa and Storer (2009),
Secomandi and Margot (2009) and Goodson et al. (2013) where the realization of
customer demand is known when the customer is visited.

Modeling Perspectives and Solution Methods

In this section, we explain in general the modeling perspectives and related solution
methods for solving dynamic and stochastic problems. For this, we use the
categorization in the literature survey of Ferrucci (2013) based on whether the
dynamic routing model considers deterministic or stochastic information (Section
1.1.2). For a detailed review on solution methods used in dynamic routing problems,
we refer to the literature surveys by Ferrucci (2013), Ichoua et al. (2006, 2007),
Larsen and Madsen (2000) and Pillac et al. (2012).

Routing model without stochastic information

In dynamic and deterministic routing problems, routing models are built in the
absence of stochastic information. The information on the network is revealed over
time and used in the model without considering any probabilistic information on
future events.

The traveler observes the information by the time the vehicle arrives to a node and
then the information is used for optimization. However, the information may change
after making a decision. Therefore, the solution from the deterministic model is only
optimal at the current state and time and the solution may not be optimal at the next
decision epoch. Due to this, mostly re-optimization and meta-heuristics are used as
solution methodologies.

Re-optimization is the update and the sequential optimization of the model whenever
new information on the network is retrieved. The re-optimization algorithm
periodically solves a static optimization problem for the current state based on the
real-time information. This can be done in decision moments or time intervals. The
advantage of the re-optimization method is that it can benefit from the static methods
that are widely studied in the literature. The drawback of the method is that it heavily
depends on the availability of the real-time information and it does not involve the
stochastic information. The re-optimization is also needed frequently for updating
the routing plan. This creates the necessity for faster algorithms to prevent delays in
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routing decisions.

In vehicle routing literature, most of the re-optimization and meta-heuristics are used
for handling dynamic customer arrivals together with stochastic customer demands.
Chen and Xu (2006) consider a DVRP with dynamic customer arrivals to be picked
up within their time windows. The dispatcher does not have any deterministic or
probabilistic information on the location and size of a customer order until it arrives.
The objective is to minimize the sum of the total distance of the routes used to cover
all the orders. A dynamic approach is used for the problem where single-vehicle
trips are built over time in real-time at each decision epoch. Montemanni et al.
(2005) consider DVRP with dynamic customer arrivals using Ant Colony System
(ACS) with time buckets. The static VRP is solved repeatedly in the beginning of
each time bucket. In ACS, information about promising routing solutions are saved
when the optimization problem evolves. A parallel Tabu Search (TS) algorithm is
introduced by Gendreau et al. (1999). In TS, good routes are pooled in the adaptive
memory as the dynamic information evolves in time. The parallelization is done by
optimizing the routes in independent threads. The other variations of TS are also
applied in Attanasio et al. (2007) and Barceló et al. (2007). Brown et al. (1987) a
computer assisted dispatching system is designed for real-time dispatch of mobile tank
trucks. The customer requests are handled via this dispatching system considering the
customer order realizations. Fleischmann et al. (2004) consider a dynamic pickup
and delivery problem where dynamism is from newly arriving customers and travel
times. Insertion heuristics and modified Dijkstra’s algorithm are used to handle the
dynamism in the problem during execution of travel. Potvin et al. (2006) develop
reactive routing strategies with insertion heuristics for dynamic VRP with dynamic
travel times.

Routing model with stochastic information

In dynamic and stochastic routing problems, in addition to the real-time information,
stochastic information is also available in the input. In stochastic models the planners
take into account the transition probabilities and the expectations considering the
uncertain elements.

In the dynamic routing literature either sampling or stochastic modeling strategies are
used. In sampling strategies, scenarios are generated based on the realizations from
the random variable distributions (Pillac et al. 2012). Multiple Scenario Approach
(MSA) is a sampling approach where the scenarios are generated, re-optimized and
added to the scenario pool as time evolves. Bent and Van Hentenryck (2004b)
consider MSA algorithms in DVRP problems with dynamic arrival of customers by
selecting customers appearing first and most frequently. Additionally, Bent and
Van Hentenryck (2004a) approximate the cost of visiting each customer for all
scenarios to avoid re-optimization of all scenarios. Various algorithms are used for
defining how the information from the scenario pool is used to make a routing
decision. In Pillac (2012), an event driven optimization framework is applied based
on MSA.
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In the shortest path literature, Hall (1986) first shows that traditional shortest path
algorithms fail to find the minimum expected travel time path on a network with
random travel times. With this paper, stochastic and time-dependent shortest path
problems are introduced. It is shown that the optimal route choice is not a simple
path but an adaptive decision rule. Fu (1996) develops an optimal adaptive routing
algorithm that updates the travel times according to the real-time information and
perform re-optimization by finding the path with the minimum expected travel
time. Later, Fu and Rilett (1998) provide a heuristic approach where where arc
traversal times are continuous functions of time. Miller-Hooks and Mahmassani
(2000) develop an exact solution algorithm for finding the least expected time path
in stochastic time-dependent networks.

The papers on shortest path problems discussed above do not use real-time in-
formation. In these papers, only travel-time distributions are taken into account.
Polychronopoulos and Tsitsiklis (1996) relax the assumption of time-dependent
model and introduce dynamic shortest path problem (DSPP). In this problem, arc
costs are randomly distributed, but the realization becomes known once the vehicle
arrives to a node. The objective is to find the routing policy that has the minimum
cost. Given the location of the vehicle and the cumulative information, the arc to
traverse is selected. The shortest path algorithm is applied every time the cost of
the route is different than expected. Cheung (1998) develops an iterative algorithm
for DSPP. In Psaraftis and Tsitsiklis (1993), the arc travel times evolve over time
according to a Markovian Process. Davies and Lingras (2003) extend this model
by developing genetic algorithms for dynamical rerouting. Fu (2001) study DSPP
where travel time realizations are used for developing for adaptive routing strategies.
In this paper, the time-dependency of link travel times is not explicitly considered.
An efficient approximation is developed to solve the problem and the advantage of
adaptive routing systems is shown. Bander and White (2002) also develop adaptive
routing policy for stochastic shortest path problems where travel times are modeled as
a stochastic process. An optimal algorithm is developed to find routing decision which
is dependent on the (time, node) pair. Waller and Ziliaskopoulos (2002) deal with
disruptions by using online-recourse models where every time real-time information
becomes available, the remaining path until the destination is re-evaluated. They
proposed algorithms for the online shortest path problems with limited arc-cost
dependencies.

Gao and Chabini (2006) study optimal routing policies in the stochastic time-
dependent networks with with both time-wise and link-wise dependency and perfect
online information. They designed approximation algorithms for time and arc
dependent stochastic networks. Gao and Huang (2012) extend this research with
partial or no-online information case. They analyze generic forms of the real-time
information availability in the routing decisions. They also developed a heuristic
algorithm for the adaptive routing problem by using different online information
levels based on a set of necessary conditions for optimality. The dynamism in the
model arises from the link dependencies in case of traffic disruptions. When there is
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an accident on a road (learnt with real-time information), through correlations the
travel time distribution of the neighbor roads changes.

Most of the dynamic and stochastic routing problems are modeled by using a Markov
Decision Process (MDP). In this model, the dynamic routing policies are found based
on the state of the system at specified decision epochs by considering the expected
routing cost. An MDP formulation provides a practical framework to find dynamic
routing decisions for each decision epoch which becomes easier in practice. For
the solution procedure, dynamic programming (DP) algorithms are used. However,
for large scale networks with stochastic travel times, obtaining the optimal solution
faces the curses of dimensionality, i.e., states, outcomes, and decisions (Powell
2007, 2011). Therefore, in the dynamic routing problem literature with an MDP
formulation, either approximation algorithms are developed to deal with the curses
of dimensionality or the structure of the optimal solution is investigated to reduce the
state space. Approximate Dynamic Programming (ADP) algorithm is a well-known
approximation approach to effectively respond to the various levels of disruptions
while reducing the computation time significantly. ADP is a powerful method (Powell
2007, 2011) to solve large-scale stochastic problems.

Kim et al. (2005b) deal with dynamic shortest path problems with anticipation
using an MDP for the optimal vehicle routing problem. Here, whenever there is
new information about a disruption, the model takes into account the congestion
dissemination and anticipates the route accordingly. The travel time is stochastic and
time-dependent. The model used in this thesis for dynamic shortest path problems is
similar to the one used in this paper; however, we use time-invariant disruptions with
dynamically evolving probability distributions for travel time. For larger networks, as
the formulation becomes intractable, Kim et al. (2005a) propose state space reduction
techniques where they identified the traffic data that has no added value in decision
making process. Thomas and White (2007) also formulate the dynamic shortest
path problem as an MDP. They provided conditions on which the optimal routing
decision does not change even the network state changes. The MDP model in this
thesis is also similar to the model used in this paper. Yet, the authors only consider
unpredictable disruptions in their analysis. Bertsekas and Yu (2010) formulate the
stochastic shortest path problem as an MDP. For solving large scale problems, they
developed a Q-learning algorithm with a policy iteration technique. They showed that
their stochastic Q-learning algorithm is bounded and converges to the optimal at any
initial solution. Güner et al. (2012) considers non-stationary stochastic shortest path
problems with both recurrent and non-recurrent congestions using real time traffic
information. They formulated the problem as an MDP that generates a dynamic
routing policy based on the state of the system. To prevent the state explosion,
they limit the formulation to two-arc-ahead formulation where they retrieve the state
information for only two links ahead of the current location.

In DVRP literature, the stochastic modeling is considered mostly in the problems
with dynamically revealed demands (VRPSD). Dror et al. (1989, 1993) are the
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early papers that introduce the re-optimization strategies. They formulate a fully
dynamic, single-vehicle VRPSD as an MDP. They optimally re-sequence the unvisited
customers whenever a vehicle arrives at a customer and observes the demand.
Secomandi (2000) presents a stochastic vehicle routing problem formulation based
on an MDP, and develops two heuristics: a rollout algorithm and an approximate
policy iteration. Secomandi (2001) gives more details on the rollout algorithm,
which uses a nearest insertion and a 2-int heuristic as its base sequence, and a
cyclic heuristic to generate new partial routes. Novoa and Storer (2009) extend
the rollout algorithm by implementing different base sequences, two-step look-ahead
policies and pruning schemes. Secomandi and Margot (2009) also consider a VRPSD
under re-optimization. They formulate the problem as a finite horizon MDP for the
single vehicle case. They develop a partial re-optimization methodology to compute
suboptimal re-optimization policies for the problem. In this methodology, they select
a set of states for the MDP by using two heuristics: the partitioning heuristic and
the sliding heuristic. They compute an optimal policy on this restricted set of states
by a backward dynamic programming. Goodson et al. (2013) present a rollout policy
framework for general stochastic dynamic programs and apply the framework to solve
for VRPs with stochastic demands and duration limits.

In this thesis, we model the stochastic routing problems with MDP for both DSPP with
dynamic travel times and SVRP with stochastic demands. MDP is chosen as it provides
a practical framework to find dynamic routing decisions for each decision epoch. For
the large instances, due to the curses of dimensionality, we develop efficient and fast
stochastic lookahead strategies and ADP algorithms.

1.3. Thesis Overview
This thesis addresses routing problems in stochastic networks with stochastic disrup-
tions on roads or stochastic customer demands. By considering the predictability of
these events, we propose a multi-stage stochastic dynamic programming model based
on a discrete-time, finite MDP formulation as in Kim et al. (2005b), Thomas and
White (2007), Güner et al. (2012). In our models, we couple the real-time network
information with probabilistic information on the stochastic elements to improve the
decision making process (Ichoua et al. 2006, Powell et al. 1995). In a real-time
setting, the network information (e.g. travel times, customer demands, disruption
realizations and current location) is realized during the execution of the routing
process. Before the departure, we develop fast and efficient algorithms to obtain
stationary routing policies based on network state realizations. As the traveler collects
information on the realizations during travel, the relevant policy is selected. In other
words, given the stochastic information, we develop dynamic decisions depending
on the realizations of the stochastic elements to minimize the total expected travel
time. These decisions may change from one departure to another based on changing
network conditions.

We solve the problem with a Dynamic Programming (DP) approach. For the
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routing decisions, the DP approach provides a practical framework to find routing
decisions for multiple stages. However, for large-scale networks, finding the optimal
solution suffers from the curse of dimensionality. Throughout the thesis, we provide
approximations to reduce the computation time significantly while providing high
quality solutions. In Chapters 3-5, we focus on dynamic shortest path problems in
stochastic networks where the stochasticity comes from travel time. In these chapters,
we develop dynamic routing policies and we compare various offline and online
algorithms as well. In the last chapter, we deal with vehicle routing problem where
we have stochastic customer demands.

In Chapter 2, we describe the traffic networks that we focus on for dynamic shortest
path problems. In this chapter, we explain how we implement the dynamic algorithms
from input information retrieval to output generation. This chapter is an introduction
for Chapters 3-5.

In Chapter 3, we consider dynamic shortest path problems where there are stochastic
disruptions in the network due to accidents and bottlenecks that cause congestions
that lead to significantly higher travel time. For developing routing policies, we both
consider real-time traffic information and stochastic information. Furthermore, we
also consider the probability distribution of the duration of a congestion caused by
a disruption. In this chapter, we analyze the effect of considering different types of
information used for different parts of the network on quality of routing decisions and
the computation time. We develop a framework based on a DP in which we formulate
and evaluate various online and offline routing policies in the literature. Next to this,
we develop computationally efficient hybrid routing policies using both real-time and
historical information. To test the efficiency of different routing policies, we develop
a test bed of networks based on a number of characteristics and analyze the results
in terms of routes, solution quality and calculation times. Our results show that a
significant part of the cost reduction can be obtained by considering only a limited
part of the network in detail at online level.

In Chapter 4, we consider the same dynamic shortest path problem considered in
Chapter 3. However, in this chapter we extend the problem for larger network sizes
with multiple levels of disruptions. We model this as a discrete time, finite MDP.
For large-scale networks with many levels of disruptions, MDP suffers from the curse
of dimensionality. To mitigate the curses of dimensionality, we apply Approximate
Dynamic Programming (ADP) algorithm. In this algorithm, instead of computing
exact value functions (computationally challenging), we consider value function
approximations. We develop a hybrid ADP algorithm with efficient value function
approximations based on a clustering approach. In this hybrid ADP algorithm, we
combine a deterministic lookahead policy with a value function approximation. We
provide various algorithmic design variations for the ADP where multiple initial
solutions and various update methods are used. We show insights about the
performance of these variations based on different network structures. Furthermore,
we develop a test bed of networks to evaluate the efficiency of our approximation with
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standard ADP algorithm and hybrid routing policy based on a stochastic lookahead
algorithm (developed in Chapter 3). The results show that the hybrid ADP algorithm
reduces the computational time significantly while providing high quality solutions.

In Chapter 5, we consider another dynamism in traffic networks which is the
propagation effect of disruptions on the dynamic shortest path problems. When a
disruption occurs at a certain link, due to limited capacity, the effect of the disruption
propagates to upstream links. We denote this as the spillback effect. To have
better routing decisions, we should capture the dynamics of spatial and temporal
correlations. In this chapter, we model the dynamic shortest path problem with
stochastic disruptions as a discrete time, finite MDP. To reduce the state-space, we
only use real-time information for a limited part of the network (Hybrid routing policy
developed in Chapter 3). We analyze the effect of considering and not considering
the spillback effect in our routing decisions.

Chapter 6 deals with the vehicle routing problem with stochastic demands, consid-
ering a single vehicle. In this problem, the actual demand realization is unknown
until we visit a customer. We build a stochastic dynamic programming model and
implement an ADP algorithm to overcome the curses of dimensionality. The ADP
algorithms are based on the Value Function Approximations (VFA) with a lookup
table. The standard VFA with lookup table is extended and improved for the VRP
with stochastic demands. The improved VFA algorithm reduces the computation time
significantly with good quality of solutions. A significant reduction of computational
time enables us to conduct systematic larger scale numerical experiments, important
for real-life decision making. Several test instances found in the literature are used to
validate and benchmark our obtained results.

1.4. Thesis Outline
In the thesis, we model all the dynamic routing problems using an MDP and solve
them using a DP. In Chapters 3-5, we consider dynamic travel times due to disruptions
in the network. Chapter 3, analyzes the value of information in DSPP where we
develop efficient stochastic lookahead strategies. In Chapter 4, we tackle DSPP
problems with higher levels of dynamism by developing ADP algorithms. In Chapter
5, we consider link correlations during traffic disruptions such as spillback effect in
DSPP. Considering stochastic and dynamically revealed demand is a focal element in
Chapter 6 where we develop ADP algorithms (Figure 1.9).

The chapters of the thesis are based on the following papers:

Chapters 3: Sever, D., Dellaert, N., van Woensel, T., de Kok, T. (2013) Dynamic
shortest path problems: Hybrid routing policies considering network disruptions.
Computers & Operations Research 40 (12), 2852− 2863.

Chapter 4: Sever, D., Zhao, L., Dellaert, N., van Woensel, T., de Kok, T. (2013)
Dynamic shortest path problems with stochastic network disruptions: Hybrid approx-
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imate dynamic programming algorithms with a clustering approach. Beta Working
Paper number wp 423, School of Industrial Engineering and Innovation Sciences,
Eindhoven University of Technology.

Chapter 5: Sever, D., Dellaert, N., van Woensel, T., de Kok, T. (2013) Influence
of spillback effect on dynamic shortest path problems with stochastic network
disruptions. Beta Working Paper number wp 424, School of Industrial Engineering
and Innovation Sciences, Eindhoven University of Technology.

Chapter 6: Zhang, C., Dellaert, N., Zhao, L., van Woensel, T., Sever, D. (2013) Single
vehicle routing with stochastic demands: Approximate dynamic programming. Beta
Working Paper number wp 425, School of Industrial Engineering and Innovation
Sciences, Eindhoven University of Technology.
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Chapter 2

A Prologue to Dynamic Routing
with Network Disruptions

Traffic congestions and longer travel times have become one of the major problems in
the world. According to IBM, traffic congestion costs more that 1% GDP of European
Union which is more than 100 billion Euros. The latest traffic data of TomTom
and Inrix show that traffic congestion due to disruptions in the European traffic
has enormously increased over the past years due to inefficient infrastructure and
planning. According to the traffic report of Inrix (Inrix, 2013), in 2012, an average
driver in the Netherlands wasted in total 51 hours in traffic congestion. Furthermore,
regarding the IBM’s survey on 20 global cities, 91% of the traffic commuters got stuck
in the traffic with 1.3 hours of delay on average (IBM, 2013). About 50% of the
commuters request for better routing to improve the quality of their lives. These
results show that we need efficient routing policies to tackle the increasing congestion
rates.

Most of the wasted time in traffic congestion is a result of uncertain traffic
environment because of traffic disruptions such as accidents, weather conditions
and breakdowns. The negative effect of these uncertain traffic disruptions can be
reduced by acquiring more information (Lu et al. 2011, Schrank et al. 2012). The
travelers using more information have better routing decisions while reducing their
commitment times in traffic. Traditional traffic information informs travelers only
average values. However, in real-life travel-times can be significantly higher than
the average due to unexpected disruptions (Figure 2.1). In this case, if the routing
decision is done based on the average historical value, delay time may increase
significantly. When the traveler has the right information at the right time, the traffic
delay can be reduced significantly with higher quality routing decisions.

As discussed in Chapter 1, the advances in the current technology provides travelers



24 Chapter 2. A Prologue to Dynamic Routing with Network Disruptions

a wider range of traffic information through Advanced Traveler Information Systems
(ATIS). ATIS provide users a priori (offline) information based on historical infor-
mation, real-time (online) information and predictive information considering the
prediction of disruptions in near future. The aim of Chapters 3-5 is to develop fast and
efficient dynamic routing policies in case of traffic disruptions such that the travelers
are less affected from the congestion by considering richer traffic information.

In this section, we present the traffic network properties that we focus on in Chapters
3-5. First, we give an overview of which types of disruptions we tackle and how we
model the travel time. Then, the traffic information and routing strategies provided by
the current navigation technologies will be explained. We also provide information on
how we model dynamic routing decisions considering network disruptions. In terms
of application, we will give the dynamic routing mechanism from input information
retrieval to how the routing policies are implemented.

2.1. Modeling Travel Time with Disruptions
In general, there are two sources of congestions in traffic networks: recurrent
congestions and non-recurrent congestions. Recurrent congestions occur due to
recurrent disruptions such as the insufficient capacity of the road during peak hours
and inefficient traffic management when the density on the roads increases. A good
example for a recurrent congestion is the travel time increase during peak hours.
When the traffic volume in the rush hours is greater than the road capacity, then a
traffic congestion occurs at specific time of the day and day of the week. Also, the
physical capacity of the roads such as number of lanes and merge areas influence
the recurrent congestion. On the other hand, non-recurrent congestion occurs under
network disruptions such as accidents, weather conditions, vehicle breakdowns, road
works and special events. Non-recurrent disruptions dramatically reduce the available
capacity and reliability of the entire transportation system.

In Snelder et al. (2012), the recurrent and non-recurrent congestions are analyzed

Figure 2.1 Perceiving travel time with average and real-time values (Schrank et al. 2012)
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in terms of the degree of recurrence by providing the information about the
predictability of the traffic disruptions (Table 2.1). Accordingly, both recurrent and
non-recurrent disruptions can be predicted with information about occurrence and
their impacts (e.g. peak hour congestions, maintenance activities, special transport,
holiday traffic, weather conditions). The non-predictable disruptions also cause both
recurrent and non-recurrent congestions. The occurrence and frequency of non-
predictable disruptions are either analyzed using mathematical formulations and
simulations or learnt though real-time information and their impact is estimated via
ATIS or traffic authorities.

Table 2.1 The classification of traffic disruptions

Predictable Non-Predictable

Recurrent Peak hour congestion, off peak
hours, weekend traffic, bridge
openings, small maintenance
activities.

Small incidents

Non-Recurrent Holiday traffic, big events, large
maintenance activities, special
transport, extreme weather
conditions

Calamities, big accidents,
defective infrastructures,
crisis, attacks, road
closures

The percentage occurrence of recurrent and non-recurrent congestions is different for
each country. In the Netherlands, the recurrent congestions account for on average
80% and non-recurrent congestions account for on average 20% of the total traffic
congestions (Rijkswaterstaat, 2013). The percentage of non-recurrent congestions
increase up to 64% and 55% in Germany and USA, respectively (Medina, 2010).
According to the studies (Medina 2010, Suson 2010), non-recurrent congestions
cause most of the delays in Germany. According to Suson (2010), using alternative
roads guided with the real-time information is the most useful when there are non-
recurrent congestions.

In this thesis, we tackle both recurrent and non-recurrent disruptions that can
be described with a known probability distribution. We assume that for these
disruptions, we are able to specify disruption types, their disruption transition
rates and their impacts on travel time through real-time, predictive and historical
information. Note that the consideration of the recurrent congestion is not in terms
of time-dependency which will be explained in the following section.

Time-dependency versus Travel-time Dependency

In most of the routing algorithms, the travel time is modeled as time-dependent. This
means that, travel time changes during the time of the day and even from one day
of the week to another (Figure 2.2). The recurrent congestions are modeled in terms
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of time-dependency where the traffic flow and average travel times at specific time
intervals (e.g. rush hours) can be estimated via the historical information and known
before going en-route.

Figure 2.2 Sample data for time-dependency

Another way to model travel time is to consider the probability distribution of the
duration of a congestion caused by a disruption. In the literature, when there is
a disruption on a road, the distribution of travel time considering disruptions is
modeled according to Increasing Failure Rate (IFR) and Decreasing Failure Rate
(DFR) models (Thomas and White 2007). The theory states that the longer a road
has been in congestion, the more likely the congestion will clear. For instance, the
disruptions are repaired in time due to incident maintenance activities and the length
and capacity of the road. Suppose that we observe a disruption in a successor road.
The sooner we arrive to that road, the probability of observing the road still in
disruption is high. The later we arrive at that road, the probability of finding the road
in disruption decreases and converges to the steady-state (Figure 2.3). In this sense,
the travel time distribution affected from disruptions is dependent on the current
travel time. We denote this as “travel-time-dependency”. In this thesis, we use this
property to model the impact of disruptions on the travel time distribution.

The travel-time-dependency enables us to predict the future disruption state in-
formation with transition rates to other disruption states when we arrive at each
intersection. In this thesis, we denote such information as “predictive information”.
This type of information depends on the current location of the traveler, the real-time
information on the current disruptions and the decision.

In Chapters 3-5, we focus only on travel-time-dependency for recurrent and non-
recurrent congestions. We do not consider recurrent congestions in terms of time-
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Figure 2.3 Travel-time-dependency

dependency. Rather, we model the system in terms of disruption states and transition
rates. We argue that by measuring the flows of the road depending on the disruption,
the delay time can be predicted (This will be discussed in Section 2.3). Furthermore,
we collect the travel time information real-time where we observe the actual
disruption state. In this way, the impact of each congestion is measured dependent
on the disruption type instead of being time-variant. Therefore, the routing model we
use is travel-time and state dependent.

Note that time-dependency can be adapted to the dynamic routing algorithms by
including a time dimension to the travel-time-dependent travel times and disruption
probabilities. In this case, the travel times, disruption types, steady state disruption
probabilities and transition probabilities will be dependent on the time that the
traveler passes the route.

2.2. Traffic Information in Practice
Advanced traveler information systems (ATIS) provide travelers updated information
about the network conditions for better routing decisions to reduce traffic conges-
tions. ATIS can both provide real-time and historical traffic information. The real-
time information consist of the network conditions at the time of traveling. It can be
either variable message signs on the roads (VMS), radio information or information
from navigation technologies. The historical information can be estimated in terms
of speed profiles considering time-dependent travel times with daily fluctuations.

The navigation technologies such as TomTom, Inrix and IBM provide travelers
historical and real-time information. Additionally, predictive data is also provided
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where the near-term traffic flows can be estimated. Recently, Inrix has offered
travelers dynamic predictive traffic information in the United States where flow
patterns in short intervals (15 minutes) to a longer horizon (1 year) can be predicted
(Inrix 2012). This type of information leads to better precision of the network
knowledge. Furthermore, IBM launched a traffic prediction tool to predict traffic
flows over pre-set durations of 10, 15, 30, 45 and 60 minutes (IBM 2013). Integration
of such information in the route planning can be used in new ways to build a smarter
transportation systems. These advances show that the availability and accuracy of
traffic information is getting better which presents researchers an opportunity to
develop intelligent routing algorithms to reduce delays wasted in traffic disruptions.

The navigation technologies also provide routing software to handle the increasing
rate of congestion on the roads. For instance, TomTom has launched a route planner
where both historical and real-time information are being used (TomTom 2013). The
historical information consists of speed profiles with expected travel times, analysis
of bottlenecks, time-dependent travel times and estimated traffic volumes. In this
route planner, historical information is considered to be a good approximation for the
roads that are far away from the current position when there is no predictive data
available. The real-time information considers data from GSM/ GPS probes with feed
on delays and incidents as well as flow conditions, travel time and delay information
on customer defined routes. The real-time information is used mostly when there is
a disruption.

In this thesis, we assume that we are able to use the traffic information from
ATIS as an input information. We use three types of traffic information. Real-
time information, historical information (time-invariant disruption probabilities) and
travel-time-dependent disruption information where we compute and predict the
probability of having a disruption when we arrive at any link. We assume that the
real-time information provided by ATIS is accurate and timely.

2.3. Dynamic Routing Mechanism
In this chapter, we develop dynamic and stochastic routing models to suggest travelers
routing policies for each network condition. For this, we need traffic information as an
input. As input information, traffic information about the disruption type, transition
probability and travel time based upon disruption types are considered. To solve these
complex dynamic and stochastic routing models, fast and efficient routing algorithms
are developed. The output of the routing algorithms is routing policies dependent on
each network condition. These policies can be computed at offline level as a table
of policies versus states. As travelers receive the real-time information, the relevant
routing policy can be chosen. Alternatively, the algorithms are computationally fast
enough to be implemented at online level as well.

In this chapter, first, we explain how to collect the traffic information for our routing
models and then, we will explain how we build the models and finally we will
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illustrate how to implement the routing policies.

2.3.1 Traffic Information Retrieval

As stated in Section 2.1, both recurrent and non-recurrent disruptions can be
predicted before going en-route. Furthermore, there are also disruptions that can
not be predicted in advance but occurring frequently like accidents. The research
papers that will be discussed in this section show that the likelihood of experiencing
non-predictable disruptions and their impacts on travel time can be estimated. The
practitioners from navigation industry also tell that the non-recurrent and non-
predictable disruptions information can be handled at real-time. In this case, when
these disruptions occur, real-time predictive information is received by considering
the capacity reductions (e.g. how long it will take and how fast it will be cleared, etc.).
In this section, we will explain how to retrieve information about these disruptions
that we use in our dynamic routing algorithms.

The traffic state is defined with three parameters: speed, flow and density. Within
time, these parameters change so the traffic state also changes. In this thesis, we
define each traffic state that changes the travel time as a “disruption level”. When
we define the disruption level with respect to the traffic state, we can retrieve the
impact of each disruption on travel time and also it becomes possible to compute the
transition probabilities from one disruption level to another (Wang et al. 2010).

When density on a road increases, due to the limited capacity, the speed of the vehicles
decreases leading to an increase in the travel time. For each road, there is a maximum
possible density that can be provided by the available capacity. When this boundary is
reached, the speed decreases even to zero. When we define the traffic states in terms
of various density intervals, the speed of vehicles will also determined accordingly. In
this way, we are able to determine the disruption levels and their impact on the speed
and so the travel time.

In the traffic literature, there are various theorems stating that the travel times change
in several boundaries of the density of a road. For instance, the three-phase theory
(Kerner 2004) states that on a road there is a free flow and two congestion phases.
When the density of a road reached its maximum boundary, then the travelers transit
from a free flow state into a congested state: first a synchronized flow then a wide
moving jam. The current empirical studies on the features of traffic congestion also
show that the highways can have multiple levels of disruption which are specified
according to the speed level and possible spillbacks (Helbing et al. 2009, Rehborn
et al. 2011).

There are also several papers on predicting the probabilities and impacts of non-
predictable disruptions such as accidents and road closures. In most of these
studies robust networks are developed. The methodologies and observations in
these studies provide route planners an opportunity to consider both recurrent and
non-recurrent disruptions for routing decisions. Hall (1993) models and simulates
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the probabilities and the delays caused by non-recurrent disruptions. It is found
out that the delays caused by non-recurrent disruption are significantly higher than
the ones from recurrent disruptions. Schreuder et al. (2008) develop a model to
estimate the probability of disruptions and compute the vulnerability of the network
by considering the total delay and the probability. In Immers et al. (2004) and
Snelder (2010), the probability of having disruptions is modeled by considering
vehicle kilometers driven and capacity reductions to develop robust networks. There
are also statistical techniques and simulation based models which are used to estimate
disruption types, impacts and durations (Knoop 2009, Miete 2011). Bottom et al.
(1999), Ben-Akiva et al. (1997) developed a simulation based software, DynaMIT,
for realtime guidance generation in an operational traffic information center. By
this software, network conditions are estimated, network states are estimated and
predictions of network conditions are executed and traveler information is generated.

As we model the routing algorithms in terms of a discrete time, finite Markov Decision
Process, we adapt the traffic state discretization procedure developed by Wang et al.
(2010). In this thesis, we refer this paper for the disruption probability retrieval
because the disruptions are considered as random events and traffic state transitions
are modeled with a discrete time Markov Chain. The traffic state mechanisms are
analyzed by using empirical observations. In this study, the disruption probabilities
are linked to how many vehicles are occupying a certain road depending on the state
of the road at the time of observation. Because we model travel time as time-invariant
and by considering state dependencies, the disruption transition probability retrieval
model used in this paper is appropriate for the discrete time, finite MDP model used
in this thesis. Therefore, the model is appropriate for modeling both recurrent and
non-recurrent disruptions in terms of traffic states. In this model, the density and
time ranges are partitioned into discrete intervals with specified density increase.
The upper limit of the interval is the jam density where the maximum density level is
reached and the cars are stopped.

In this study, M/G/C/C state dependent queuing theory is used to model disruption
mechanism. The model is mostly used for vehicular traffic flow. The details of the
model can be found in Jain and Smith (1997). In this model, speed is related to
the number of vehicles occupying the link and service rate is defined by the ratio
of average travel speed to free flow speed. Then, the transition probabilities are
computed, by using M/G/C/C state dependent queuing theory. In the queuing model,
the service rate can be computed by finding the ratio between the average travel speed
to the free flow speed. So, as the speed decreases with respect to the free flow speed,
the service rate decreases. It is intuitive that the increasing congestion on the link
results in decrease in the service level on that link. When we consider a congestion
model using a discrete Markov process with a link capacity, the rate of change in the
traffic flow on a link is defined as the ratio between the speed of the link at that stage
and the free flow speed (Jain and Smith 1997, Wang et al. 2010). For details, we
refer readers to Wang et al. (2010).
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For the routing models developed in Chapters 3-5, The steady state information and
the transition probability rates can be derived from the M/G/C/C queuing theory. This
information conversion is done at offline level by using the historical information.
This historical information and the real-time information for the current disruption
states, current travel time and disruption rates are used to compute the travel-time-
dependent disruption transitions. By this way, we derive the predictive information
at offline level.

The historical information may be updated and can be different from departure to
departure due to dynamic and stochastic road networks. Therefore, before computing
any offline decisions, the information should be updated according to the new
network conditions.

2.3.2 Dynamic and Stochastic Routing Model
In this section, we briefly explain how we model routing problems considering
network disruptions by considering travel information as described in Section 2.3.1.
Due to the structure of the network and our objective of minimizing expected total
travel time from origin to destination, we refer the problem as a dynamic shortest
path problem (DSPP) as described in Chapter 1. In Chapters 3-5, we propose a
multi-stage stochastic dynamic programming model based on a discrete-time, finite
Markov Decision Process (MDP) to formulate DSPP. MDP is a widely accepted model
for modeling dynamic and stochastic shortest path problems due to practical use for
online applications.

Consider a road network where the stochasticity is due to the occurrence of
disruptions on the roads. Let the graph G(N,A,Av) represent a road network,
where the set N represents the finite set of nodes (modeling road intersections),
A the set of arcs (modeling roads between nodes) and Av the set of vulnerable
arcs (vulnerable roads), potentially in disruption (Av ⊆ A). We now describe the
routing model considering the route network example in Figure 2.4 which depicts the
network presentation of the roads from The Hague to Utrecht in presence of traffic
disruptions. In this network, there are 7 road intersections (intersection of highways
or intersection of smaller roads), 8 roads, 2 of which are vulnerable (the dashed
roads) where the travel time increases due to stochastic disruptions. The vulnerable
roads are identified such that on these roads, the velocities of the vehicles and the
travel times significantly fluctuate depending on random disruptions.

The traveler wants to reach to Utrecht from The Hague with minimum expected total
travel time. The travel time on a road is assumed to be predictable from historical
data and follows a discrete distribution given the disruption status of the road. For
instance, the travel time to traverse the vulnerable road between intersections 3 and 4
is 5 minutes if there is no disruption; 8 minutes if there is a disruption level 1; and 90
minutes if there is a disruption level 2. From vulnerability analysis, disruption level
1 can be congestion due to rush hour and disruption level 2 can be congestion due to
an incident. As described in Section 2.3.1, the disruption levels are determined based
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Figure 2.4 A road network example

on the density of roads. For example, for the road 3 − 4, the disruption levels are
determined as follows:

Disruption level =


No disruption Density: (0, 25],

Disruption level 1 Density: (25, C),

Disruption level 2 Density: C∗.

(2.1)

∗ C is the capacity of the road and vehicles stop at this point.

Transition probabilities for these disruption levels are computed with historical obser-
vations by considering queueing theory as described in Section 2.3.1. Furthermore,
we receive the real-time information about the disruption statuses of all vulnerable
roads when we arrive at an intersection. This is exogenous input information to the
model.

The traveler arrives at an intersection and makes a decision at discrete time points
in the planning horizon which we denote as a “stage”. As traveler moves along the
network, the stage represent the number of intersections that have been visited so far
from the departure intersection, The Hague. The final stage is reached by arriving at
the destination, which is Utrecht in our example.

The network state at any stage, is evaluated by the current intersection and the
disruption information of the vulnerable roads. The disruption information consists
of which disruption level the vulnerable road is in at the specific stage. For example,
when we are at The Hague, we are at the first stage. We observe that the vulnerable
road, 3−4 is in the disruption level 3 and the vulnerable road 4−6 is in the disruption
level 1 (By retrieving the disruption information, we also retrieve the travel time
information).

At each intersection, the traveler observes the network state and makes a decision
about which intersection to travel next. For example, given the network state at
stage 1, we can either go to the intersection 2 or 3. When a decision is made to
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travel to an intersection, an immediate cost is incurred for traversing the current
road in the current network state. In Chapters 3 and 4, the immediate cost is the
travel time from the current intersection to the next intersection given the disruption
information at the stage where the decision is made. In The Hague, the traveler
receives the disruption information on the network and observes that the current
travel time between The Hague and the intersections 2 and 3 is 10 and 15 minutes,
respectively. It is assumed that this value does not change until the traveler arrives at
the next stage. Different from other chapters in Chapter 5, the immediate cost is the
expected travel time while considering the propagation effect of disrupted successor
links to the current road. For instance when the road 3 − 4 is disrupted, due to the
limited capacity of the roads, the congestion will spill back to the road between The
Hague and the intersection 3. Thus, the travel time of this road will be longer than
15 minutes due to the spillback effect.

Based on the information about the network state, a routing decision should be
made. While making a routing decision, the possible future outcomes should be
considered because what will happen to the network at the next stage is uncertain.
The disruption statuses of the vulnerable roads may change as we proceed to the
next stage due to traffic dynamics and travel-time-dependency. To obtain higher
solution quality, this stochastic process should be taken into account by computing
the expected travel time of each road in the future stages. As we receive real-
time information, depending on a priori information, expected travel times can be
computed by summing the product of the transition probabilities to different network
states with the resulting travel times. The transition probabilities are computed by
considering the travel-time-dependency. For instance, consider that the traveler is at
The Hague at stage 1 and observe the network state as: the vulnerable road, 3 − 4
is in the disruption level 3 and the vulnerable road 4 − 6 is in the disruption level
1. If the repair rate of the road 3 − 4 is low, within a short travel time it’s highly
probable that by the time traveler arrives at the intersection 3, the disruption will be
still there. If the travel time between The Hague and node 3 takes too long and/or
the repair rate of the road 3− 4 is high, it is quite likely that the disruption will clear
out. By considering these transitions and the probabilities of having these transitions,
an expected travel time can be computed for each vulnerable arc.

The objective is to minimize the expected total travel time from the origin until the
destination node over all stages. To solve this combinatorial problem, we develop
efficient algorithms where a stationary routing policy is found by mapping each
decision to a network state. In this policy, for each intersection according to the
realizations of network states, a decision is provided. The decisions are dynamic as
they change depending on the network state realizations. Finding routing policies
is done at offline level and during travel as real-time information is retrieved, the
relevant decision is selected according to the decision-network state mapping.

Table 2.2 shows the routing policy as an output of the dynamic and stochastic routing
algorithm for the described example. This routing policy is obtained before departure.
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Table 2.2 The routing policy for the network given in Figure 2.4

Int.\State (3,4)=ND*;
(5,6)= ND

(3,4)=D1*;
(5,6)= ND

(3,4)=D2*;
(5,6)= ND

(3,4)=ND;
(5,6)= D*

(3,4)=D1;
(5,6)= D

(3,4)=D2;
(5,6)= D

The Hague 3 3 2 3 3 2
2 4 4 4 4 4 4
3 4 4 5 4 4 5
4 6 6 6 6 6 6
5 6 6 6 6 6 6
6 Utrecht Utrecht Utrecht Utrecht Utrecht Utrecht

ND: Not in disruption.
D: In disruption.
D1: Disruption level 1.
D2: Disruption level 2.

2.3.3 Implementation of the Dynamic Routing Policies

Chapters 3-5 provide readers with dynamic routing algorithms that change the traffic
information into an output of routing policies. In this section, we will describe how
to implement these routing policies by considering the example in Figure 2.4.

Figure 2.5 shows how a routing policy is implemented before the departure until the
arrival at the destination. Before the departure, updated historical information about
the possible disruption levels on the roads, the estimated travel times based on the
determined states and the disruption transition rates are retrieved. Then, considering
these input information, routing algorithm provides the planners with a stationary
policy as shown in Table 2.2. The dynamic decisions in this thesis can be chosen at the
online level given a priori routing policy. The traveler receives real time information
from ATIS and then the dynamic routing policy is chosen accordingly.

If not all the network state information can be determined at the offline level and if
the steady-state probabilities change dynamically during travel, the routing policies
may also be determined at the online level. Then, the information is updated and
gathered each time the traveler arrives to an intersection and the intersection to travel
next is determined by the algorithm during the travel. In this thesis, we ensure that
the computational time is fast enough for also online implementation.

Figure 2.5 shows the time-line for the dynamic routing mechanism considering the
example in Figure 2.4. Before going en route, we have the routing policy which maps
each network state to a decision. The traveler starts traveling at The Hague at time
15 : 00. At this intersection, the real-time information is received considering the
network state of all roads. Assume that the traveler receives the information that the
road 3−4 is in disruption meaning that it is blocked and its travel time is 90 minutes.
Furthermore, the road 5 − 6 is also in disruption with travel time 30 minutes. All
the other links are not in disruption. The routing policy suggests that the traveler
next visits the intersection 2 given this information. When the traveler arrives the
intersection 2 at time 15 : 10, the real-time information is updated again and the
dynamic route is selected according to the new network state. This process continues
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until the destination. Considering the dynamic and stochastic routing algorithm the
travel time becomes 55 minutes.

If we use static routing algorithms, then no real-time and predictive information is
considered. The traveler follows a path computed by the expected values considering
stationary probabilities. By only considering the stationary probabilities given in
Figure 2.4, the policy would be to follow the path “ The Hague-3-4-6-Utrecht”. Under
the real-time information obtained on the day of implementation, this path causes
higher travel time (more than 135 minutes). If we consider only real-time information
for the disrupted roads, then the algorithm suggests to travel to the intersection
“3” and then “4-5-6” which then gives higher travel time (70 minutes) in total. In
this thesis, we show the value of considering real-time information while exploiting
the stochastic process in the routing networks by developing dynamic and stochastic
models. We also develop static and online models to compare the performances as
provided in this specific example.

In Chapters 3-5, we develop dynamic routing algorithms considering the mechanism
described above. In these chapters, we show under what network conditions which
type of information and routing algorithm provide higher performance. Considering
the dynamic and stochastic shortest path literature discussed in Chapter 1, the models
used in Chapters 3-5 are similar to the ones used in Kim et al. (2005b), Thomas
and White (2007) and Gao and Huang (2012). Kim et al. (2005b) consider only
time-dependency, Thomas and White (2007) focus on only non-recurrent disruptions
and Gao and Huang (2012) provide analysis on optimal policies in case of time-
dependency and link correlations due to non-recurrent disruptions. In this thesis,
considering a more advanced traffic data gathering mechanism as discussed above,
we extend these studies by modeling the non-recurrent and recurrent disruptions
with an MDP using discrete network states. Furthermore, we provide an analysis
on the efficient levels of real-time, historical and predictive traffic information for
higher solution quality and lower computational time (Chapter 3). In Chapter 4, we
develop approximation algorithms to handle large traffic states with many levels of
disruptions. In Chapter 5, we extend the concept of link-dependency in Gao and
Huang (2012) by providing a dynamic routing model where we consider explicitly
the propagation effect of disruptions.
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Chapter 3

DSPP: Hybrid Routing Policies
considering Network
Disruptions

As we mentioned in Chapter 1, in this thesis we focus on dynamic routing policies
in stochastic networks. For dynamic routing decisions, planners need network
information. In Chapter 2, it is shown that there is a wide variety of traffic
information due to advances in information systems. In practice, mostly historical
(offline) information and real-time (online) information are used to overcome the
negative impacts of traffic disruptions. However, it is crucial to analyze which type
of information is useful and efficient under which network types and conditions. In
Chapter 3, we start with investigating the efficient levels of network information to
consider in developing higher quality and computationally efficient dynamic routing
policies. Then, with the observations we make in this chapter, we will be able
to develop computationally efficient algorithms with high solution quality for more
complex networks.

3.1. Introduction
In traffic networks, link disruptions due to accidents, bad weather and traffic
congestion lead to a significant increase in travel times and decrease the probability
of being on-time at the final destination. As stated in Chapter 2, the statistics at
the Inrix Traffic Scorecard in 2012 (Inrix (2012)) shows that in European countries,
(especially at Belgium and Netherlands), an average driver annually experienced in
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total at least 50 hours of delay in congestion due to these disruptions. In practice,
navigation technologies (like TomTom Route Planner TomTom (2013)) respond
to these disruptions by using offline information (i.e. the historical data giving
information on the expected state of the network) and/or online information (i.e.
the information on the actual real-time state of the network) to create paths that are
less affected. As such, considering the stochastic nature of the network with real-
time information generates better solutions for the navigation systems. However, this
information does not come for free since this may need higher routing calculation
times and higher information retrieval costs. Therefore, it is essential to use routing
policies that effectively respond to the network disruptions and give high quality
solutions within acceptable calculation times. One important question to be answered
is thus how to balance the level of online information and historical information
needed to obtain higher solution quality with lower calculation times.

In this chapter, we focus on the dynamic stochastic shortest path problems with
stochastic disruptions at the network. We are interested in networks where a
single traveler has a certain origin-destination pair. We model the problem as a
discrete-time, finite Markov Decision Process (MDP). The traveler gets the real-time
information about the state of the network before arriving at each node which is an
intersection of roads and/or highways. At every intersection, the traveler decides
which next link to follow depending on the current state of the network. The
next link to travel is the link with the minimum expected travel time until the
destination given the current state of the network. The system transits to a new
state depending on the travel time of the chosen link. We denote this property as
travel-time-dependency (Chapter 2). We focus on networks that represent highways
where drivers are able to get online and historical information easily. We assume
that travel times can be predictable from historical data and retrieved from online
data. The state of the whole network can be retrieved from Intelligent Traffic Systems
(ITS). Considering these, we have three possible traffic information to use: online
information (real-time travel information of the links retrieved from ITS), travel-time-
dependent probability distributions for the links for which we have online information
and offline information (time-invariant data using the historical information). The
chapter addresses the advantage of using different information for different parts of
the network. To test the value of considering different levels of traffic information,
we develop various routing policies.

In the dynamic shortest path literature, various routing policies are discussed to
handle disruptions on the network. Routing policies can be categorized into offline
and online policies. In the offline policies, the generation of paths is done before
the traveler goes en-route. For instance, the naive policy considers the deterministic
travel times ignoring any disruptions. The disadvantage is that, in case of a disruption,
the cost of traveling the static route increases dramatically. The robust routing policy
(Chen et al. 2009, Donati et al. 2003, Ferris and Ruszczynski 2000) is an offline policy
that considers disruptions at the network. In this policy, a robust path is selected,
considering the disruption probabilities. One often-used robust policy is the worst-
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case scenario policy, where the robust path is constructed assuming that disruptions
occur with 100% certainty. The drawback of this policy is higher expected costs,
since the worst-case scenario is only realized with a small probability. Clearly, the
disadvantage of offline policies is their inability to efficiently respond to the real-
time dynamics resulting from the disruptions. By contrast, online policies update
the routes based on the realization of the disruptions, while traveling through the
network. Using online recourse policies (Kim et al. 2005b, Fu 2001, Polychronopoulos
and Tsitsiklis 1996), the shortest paths are generated and updated during the trip as
the online information is retrieved from an in-vehicle communication system. In
this case, re-optimization is potentially executed after each retrieval of the online
information.

This chapter extends the literature by providing a detailed analysis on the efficient
level of online versus offline information for the dynamic routing decisions which
has not been done in the literature to our knowledge. Moreover, we develop
hybrid policies for the dynamic shortest path problems which will be also considered
in Chapters 4 and 5. These hybrid policies combine different levels of real-time
information, time-dependent and time-invariant probability distributions of the link
travel times at the network. The hybrid policy limits the state-space explosion by
using both the time-dependent data (explodes the state space) and the time-invariant
data (has limited effect on the state space). The strength of the hybrid policies is the
ability to respond to the disadvantages of both the offline and the online routing.

The main contributions of this chapter are as follows:

1. We develop a generic framework based on dynamic programming to formulate
and evaluate different policies for the dynamic shortest path problem consider-
ing the link disruptions.

2. Using the dynamic programming framework, we model offline and online
policies. Next to this, we develop new hybrid policies that combine the strengths
of both the online and the offline policies. Specifically, these hybrid policies
take into account the online and the offline information about the state of the
network by using different levels of both the time-dependent and the time-
invariant probability distribution information.

3. We test the efficiency of our hybrid policies and compare this to the offline and
the online policies for different network structures. These network structures
vary in network size, number of vulnerable links and their disruption rates.
The numerical results show that, for more complex networks and under more
realistic conditions, where the detailed information about the network is more
effective, our hybrid policies perform outstanding. An overwhelming part of
the cost reduction can be obtained by only considering a limited amount of the
online information. The hybrid routing policies have thus crucial implications
for practice, as we do not need to collect the real-time information for the
complete network to obtain a good performance.
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The structure of the chapter is as follows. In Section 2, we provide a selected
literature review on dynamic shortest path problems. Section 3 provides the details
of our modeling framework based on dynamic programming. Section 4 discusses the
offline, online and hybrid policies within this framework in detail. In Section 5, the
experimental design, the numerical results and the important insights are discussed.
In Section 6, we provide an overview of the results and future directions.

3.2. Modeling Framework
We model the Dynamic Shortest Path Problem with real-time information on the
realizations of disruptions on the network as a discrete time, finite (finite state,
finite action and finite decision) Markov Decision Process (MDP). Consider a traffic
network represented by the graph G(N,E,Ev) where the set N represents nodes (or
intersections), E the set of undirected links (edges) and Ev the set of vulnerable
links (edges), potentially in disruption Ev ⊆ E. If we consider a real road network,
a node represents an intersection or a junction that connects highways such as an
entry/exit point. A link represents a segment of a highway. Figure 3.2 shows an
example highway network between an origin-destination pair in Netherlands. We
choose highways rather than roads because the online information is mostly available
for highways, and the number of highway disruptions is much higher. Each of the
vulnerable links at the network has a known probability of going into a disruption
and a known probability of recovering from this disruption.

We assume that the travel time is discretized. In this chapter, we propose a general
discrete time finite MDP where the edges can be both undirected and directed. In case
revisiting nodes is advantageous, we allow both forward and backward moves from
the current node. For the undirected case, we assume that the travel time between any
nodes is symmetric which means that the travel time is the same for both directions.
We also assume that waiting at a node is not allowed and does not provide travel
time savings. In other words, we assume a first-in-first-out property. We also assume
that the disrupted links are independent that indicates that there is no correlation
between travel times of neighbor edges.

We refer a decision epoch as stage k where we observe the state of the network and
make a decision. Stage k is equivalent to the number of nodes (intersections) that
are visited so far from the initial node. The process terminates when the destination
is reached, which is referred as the goal state. As the termination is defined by a
goal state (G), the end of horizon is a priori unknown but finite. Therefore, the time
horizon is a random variable which is represented by K where K <∞.
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Figure 3.1 Road network

The MDP Formulation

States

The state of the system at stage k, Sk ∈ S, is represented by two components:

• The current node at stage k, ik ∈ N .

• The disruption state vector at stage k is denoted by vector Dk. We represent
the generic random variable vector that includes the possible disruption states
for all vulnerable links at stage k as Dk = (D1

k, D
2
k, ..., D

R
k ) where R = ‖Ev‖.

Here, Dr
k represents the rth element of the disruption vector which is actually

the state of the rth vulnerable link at stage k. Each random variable can take
any value from the disruption scenario vector Ur at stage k. The disruption
levels for each vulnerable link are represented by the disruption level vector Ur
where Dr

k ∈ Ur. For each link, there can be Mr different types of disruption
levels: Ur = {U1, U2, ...uMr}. For example, if there are two disruption levels,
Mr = 2 and the disruption level vector becomes: Ur = {0, 1}. Note that at each
stage, we use a realization of the disruption state vector, D̂t because at each
stage we observe the realizations of the disruptions at the network (D̂r

k ∈ Ur).

The state of the system at each stage k is then: Sk = (ik, D̂k). The process terminates
when destination is reached. The possible goal states that include the pairs of
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destination and the possible disruption realizations is referred by the goal state set
G ∈ S. The goal state is assumed to be an absorbing and cost free state.

Actions

The action at stage k, xk, is to determine which node to travel next such that the total
expected travel time until the destination node, d, is minimized given the current
state. The action set is limited to the neighbors of the current node ik. Define
the neighborhood as Neighbor(ik). Then, xk ∈ Neighbor(ik) if there exists a link
between the nodes ik and xk.

Xπ
k (Sk) : Decision function that determines the node at stage k + 1, (ik+1) which is

determined at stage k under policy π given state Sk.
Π : Set of possible policies. Each π ∈ Π refers to a different policy where
{Xπ

k (Sk)}π∈Π is the set of decision functions.

The Cost Function

Traveling from node ik to xk with a transition from the state Sk to Sk+1 results in a
non-negative cost which is the deterministic travel time between the two nodes given
the current disruption state.

Denote tik,xk
(D̂k) as the known and discrete travel time between ik and xk given the

disruption state realization. At each node ik, an immediate cost occurs from choosing
action of traveling to xk. We refer to this cost as c̃(Sk, xk) where:

c̃(Sk, xk) = tik,xk
(D̂k). (3.1)

Upon arrival at node ik, the actual value of the travel time from the current node ik
to all neighbor nodes given the current disruption state is retrieved. In the model, we
assume that the travel time of the links emanating from the node ik is purely based
on the disruption state of the network at the moment we enter the link.

The State Transition Function

Given the state Sk and a selected action (e.g. travel to neighbor node xk), a transition
is made to the next state, Sk+1 = (ik+1, D̂k+1). The state transition involves the
following transition functions:

ik+1 = xk, (3.2)

Dk+1 = D̂k+1. (3.3)

The disruption status vector transits from D̂k to D̂k+1 according to a Markovian
transition matrix. Note that Dk+1 is the vector of random variables representing
the disruption status of each vulnerable arc in the network for the next stage.
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Let pr
u,u′

denote the unit-time transition probability between any two disruption levels

of the vulnerable arc r, pr
u,u′

= P{D̂r
t+1 = u

′ |D̂r
t = u}. As an input to the model,

we define the unit-time-transition matrix for a vulnerable link r, r ∈ Ev, with Mr

possible disruption scenarios as follows:

Φrt,t+1 =


pru1,u1 pru1,u2 ... pru1,uMr

pru2,u1 pru2,u2 ... pru2,uKr

.

.
pruMr ,u1 pruMr ,u2 ... pruMr ,uMr

 ∀t = 0, 1, 2, ..., ∀r ∈ Ev.

The transition from state Sk to Sk+1 depends on the discrete travel time between
nodes ik to xk given the disruption state, ti,xk

(D̂k). This is equal to the time between
two decisions at stage k and k + 1 which is an integer. Due to the nature of most
disruptions in traffic, if we know that the successor links are disrupted at stage k, the
longer it takes to arrive at those links, the more likely that the disruptions will be
cleared in the next stage k + 1. After sufficient long time, the probability of having a
disruption goes to the steady state as shown in the Appendix A. Accordingly, we define
the travel-time-dependent transition matrix for vulnerable link r (between nodes ik
and xk) from stage k to k + 1 as:

Θr(tik,xk
(D̂k)) =


pru1,u1 pru1,u2 ... pru1,uMr

pru2,u1 pru2,u2 ... pru2,uKr

.

.
pruMr ,u1 pruMr ,u2 ... pruMr ,uMr


(tik,xk

(D̂k))

∀k = 0, 1, 2..,∀r ∈ Ev.

The probability of having the new disruption status D̂t+1 given D̂t is then calcu-
lated as (Θr

u,u′
(t|St, xt) indicate the specific row and column index in the matrix

Θr(tik,xk
(D̂k))):

P (Sk+1|Sk) =

R∏
r=1

Θr
u,u′

(tik,xk
(D̂k)). (3.4)

The Objective Function

Our objective is to minimize the expected travel time from the initial node until the
goal state in a random but finite horizon K:
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min
π∈Π

E

K∑
k=1

c̃(Sk, X
π
k (Sk)), (3.5)

where xk = Xπ
k (Sk) is the decision made according to the decision function Xπ

k (Sk)
under policy π, given the current state Sk.

Bellman Equations

The optimization problem at Equation (3.5) can be solved by using a backward
recursion algorithm. For this reason, we formulate the problem in terms of Bellman
equations. We use the value function Vk(Sk) as the value of being in state Sk that
is the minimum expected travel time to go from the node Sk to the goal state at the
unknown horizon K. The next node to travel to has the state Sk+1 = (xk, D̂k+1).
Then, the total cost function for node ik given the current state Sk is:

Vk(Sk) = min
xk∈Xk

c̃(Sk, xk) +
∑
Sk+1

P (Sk+1|Sk)Vk+1(Sk+1), (3.6a)

VK(SK) = 0. (3.6b)

where SK is the goal state, SK ∈ G. Our solution becomes:

x∗k = arg min
xk∈Xk

c̃(Sk, xk) + E(Vk+1(Sk+1)). (3.7)

3.3. Solution Approach- Value Iteration Algorithm
The MDP formulation considered for the dynamic shortest path problem has a random
indefinite horizon. Therefore, there is no definite end horizon to apply a backward
recursion algorithm. However, as the states and actions are known and finite and
there is a absorbing cost-free goal state, we can still propagate information backwards
by considering a value iteration algorithm. The value iteration algorithm stops when
all states, S ∈ S have finite cost until the goal state, destination. This means that
we will iterate the values of each state (each node and disruption level pair) until
a stationary cost value until the destination is obtained. For this we define a value
function, Vt(S) that is the expected total cost starting from state S for a horizon of
t steps until the destination. Note that we search for stationary cost for termination,
the index for stage k as shown in Section 3.2 is no longer needed to find the optimal
policy.

The aim of the algorithm is to find a stationary optimal policy which minimizes the
expected travel time (over a finite but indefinite horizon) incurred to reach the goal
state. The algorithm is implemented offline by considering all possible known finite
states. For the stochastic shortest path problem, the value iteration is guaranteed to
converge to an optimal stationary value function if following conditions are satisfied
(Bertsekas and Tsitsiklis 1991, Bonet 2007):
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1. The state set contains a goal or a termination state (G ∈ S) which is cost free
and absorbing:
(P (d, D̂k+1|d, D̂k) = 1).

2. All non-goal states are free of absorbing cycles (self loops):
P (ik+1 = ik, D̂k+1|ik, D̂k) = 0, ∀S ∈ S \G.

3. There exists at least one proper policy which reaches the goal state with a finite
cost from each state with a probability of 1 (Vt(S) <∞, ∀S ∈ S). This is also
defined as connectivity assumption which assures that there is at least one path
connecting every state with the goal state.

4. Every improper policy incurs a cost of ∞ from every state that does not reach
to the goal state.

5. All the edge costs are nonnegative and discrete.

The general MDP formulation where the graph can be either directed or undirected
may bring about complexities in obtaining the optimal routing policy. First of all,
the graph considered in this chapter represents a general stochastic shortest path
problem which is not necessarily acyclic. This indicates that the optimal policy might
contain cycles because we allow detours and and we make decisions dependent on
the real-time information at each decision epoch. Retour to the previous node might
be profitable when the successor links travel times increases significantly due to
a disruption (Polychronopoulos and Tsitsiklis 1996, Bertsekas and Tsitsiklis 1991).
However, the value iteration is guaranteed to converge in finite number of stages by
satisfying these 5 conditions where the graph cannot contain absorbing cycles for the
non-goal states.

Proposition 3.1 If these conditions above are satisfied, the probability that the
dynamic shortest path contains a cycle infinitely many times is zero.

Proposition 3.2 If these conditions are met, the general stochastic shortest path
problem is shown to converge to an optimal policy with finite number of iterations
(Bertsekas and Tsitsiklis 1991, Bonet 2007).

Propositions 3.1 and 3.2 indicate that the value iteration algorithm converges to a
stationary cost function for each state. Due to random and indefinite horizon, we
consider ε-consistency rule for the termination condition where ε > 0 and small
(0.001). We do this to obtain a policy that is guaranteed within ε of optimum. The
proof for convergence is found in Appendix B. We refer the reader to Bonet (2007)
for a formal proof of finding a bound for the number of iterations for convergence.

Algorithm 1 describes how to find the optimal policy with the minimum expected
travel time to the destination from each state by using value iteration algorithm with
ε-consistency rule. The value iteration algorithm iteratively updates the value of being
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in state S ∈ S from any state S′ ∈ S by using the Bellman optimality equations. This
is called value update or Bellman update/back-up.

As the termination state is determined by arriving at the destination, we start
updating the value of each state from backwards which is from the destination. At
iteration t = 0, only the values of the goals states G = (d, D̂) are zero. The other
values of other non-goal states (S \G) are∞ as the destination is not reached in zero
steps and only the goal state is cost free. After the initialization of values of each
state, in each iteration, the cost value for each state S ∈ S is computed by using the
Bellman optimality Equations (3.8). Then, we compute the residual value between
the value of being in state S at iteration t and the minimum value of being in state
S among all iterations so far (Equation (3.10)). If for each state, this residual is less
than ε (ε-consistency is satisfied) and the value of being in each state is less that ∞
(the goal state is reachable from each state), the algorithm stops. Then the optimal
policy is computed for iteration t. With this algorithm, we satisfy the 5 conditions for
the convergence of value iteration in finite number of iterations.

Algorithm 1 Value Iteration Algorithm
Step 0: Initialize iteration t = 0.
Set ∀S ∈ S

V0(S) =

{
0 if node i is the destination node d, S is the goal state (S ∈ G),
∞ otherwise

Let t = 1.
Step 1: ∀S ∈ S
Step 1a:

Vt(S) = min
x∈N,x∈Neighbor(i)

c̃(i, D̂, x) +
∑
S′

P (S′|S)Vt−1(S′), (3.8)

V (S) = min
t
Vt(S). (3.9)

Step 1b: Compute residual at iteration t:

∆Vt(S) = |Vt(S)− V (S)| (3.10)

Step 2: If max ∆Vt(S) < ε and Vt(S) <∞ ∀S ∈ S, Stop and go to Step 4. Otherwise go to Step 3.
Step 3: t = t+ 1 and go to Step 1.
Step 4: The routing policy becomes:

πVt (S) = arg min
x∈N,x∈Neighbor(i)

c̃(i, D̂, x) +
∑
S′

P (S′|S)Vt(S
′) (3.11)
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3.4. Routing Policies
In this section, we define various routing policies within the dynamic programming
framework presented in Section 3.2. We consecutively discuss the optimal, offline,
online and our proposed hybrid routing policies. As one of the objectives of the
chapter is to compare the developed routing policies that use different levels of
online/offline information with respect to the optimal policy, we keep the number
of disruption levels constant with two levels: in disruption or not in disruption.
Increasing the number of disruption scenarios changes neither the formulation nor
the structure of the algorithm to solve the problem. The policies can be easily modeled
with more disruption scenarios by changing the one-time-period probability transition
matrix. However, the increase in disruption scenarios increases the computational
complexity. More complicated disruption scenarios are left for the future research.

3.4.1 The Optimal Routing Policy (Opt)
The optimal routing policy (Opt) takes the disruption state information of the whole
network as an input and uses the travel-time-dependent transition probabilities. The
state space at stage k is denoted by Sk = (ik, D̂k). The state space represents the
current node and the disruption state of all vulnerable links. The binary disruption
state of a vulnerable link r, r ∈ Ev, is denoted by D̂r

k.

D̂r
k =

{
1 if the link r is in disruption state at stage k,
0 otherwise.

Given the state is Sk, a transition is made to the next state, Sk+1 = (xk, D̂k+1) after
traveling to the next node xk. We define the transition matrix for a vulnerable link r
(between nodes ik and xk) from stage k to k+ 1 as Θr. The transition matrix for two
disruption states is assumed to be given. Here, αr is the one-time-period probability
of going into a disruption and βr is the one-time-period repair probability from the
disruption. Repair probability is defined as the probability of recovering from the
disruption.

Θr(tik,xk
(D̂k)) =

[
(1− αr) αr

βr (1− βr)

](tik,xk
(D̂k))

The transition probability function to state Sk+1 from the state Sk given travel-time-
dependent transition matrix Θr(tik,xk

(D̂k)) is:

P (Sk+1|Sk) =

R∏
r=1

Θr
D̂r

k,D̂
r
k+1

(tik,xk
(D̂k)). (3.12)

Note that for any vulnerable link r between the nodes ik+1 and xk+1 when
tik+1,xk+1

(D̂k+1) is multiplied by the probability transition function P (Sk+1|Sk), we
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obtain the travel-time-dependent distribution of travel time on the link r. In this way,
we obtain the travel-time-dependent probability distribution of the vulnerable links
for all possible states. When a policy uses the probability distribution with a travel-
time-dependent transition probability, it will be denoted as (PD, T ) in the remainder
of this chapter. Thus, the Bellman optimality equations for Opt becomes the same as
Equation (3.6), and it considers a probability distribution with travel-time-dependent
transition probability as in Equation (3.12). Then, we find the optimal solution by
using Algorithm 1.

3.4.2 Offline Routing Policies
We consider two offline routing policies: a naive policy and a robust policy. By
comparing the naive and the robust routing policies with the dynamic routing policies,
we evaluate the value of taking into account the link disruption information and
determining the routing policies dynamically.

Naive Routing Policy (Naive)

The naive routing policy (Naive) determines the optimal path minimizing the
deterministic travel times (minimum value) ignoring any disruptions. This policy
always follows the deterministic optimal route even if there is a disruption on the
path. In determining the route, we only consider the non-disruption state for all
vulnerable links. The transition probabilities for all vulnerable links have αr = 0
and βr = 1 and the no-disruption state becomes an absorbing state. The state at
stage k becomes Sk = (ik, D̂k = (0, 0, . . . , 0)). The travel time for each link (ik, xk) is
tik,xk

(D̂k = ~0). The transition matrix between the stage k and k + 1 is:

Φrk,k+1 :=

[
1 0
1 0

]
.

Bellman Equations (3.6) is modified into:

Vk(ik, D̂k) = min
xk∈Xk

c̃(Sk, xk) + Vk+1(Sk+1), (3.13)

VK(SK) = 0. (3.14)

The route is found by using Algorithm 1 and modifying Equation (3.8) to:

Vt(S) = min
xk∈Xk

c̃(S, xk) + Vt−1(S). (3.15)

Robust Routing Policy (Robust)

The robust policy (Robust) determines the optimal path assuming that all disruptions
will occur certainly. This policy is risk averse to any disruption. In this policy, the
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total travel time is minimized but using the maximum link travel times (see also
Wald’s minimax criterion (Wald 1945)). For the robust policy, there is only one state
vector that has a disruption state for all vulnerable links. The transition probabilities
for all vulnerable links have αn = 1 and βn = 0 and the state vector where all
links have disruption becomes the absorbing state. The state at stage k becomes
Sk = (ik, D̂k = (1, 1, . . . , 1)). The travel time for each link (ik, xk) is tik,xk

(D̂k = ~1)
and for each link the transition matrix between the stage k and k + 1 is:

Φrk,k+1 :=

[
0 1
0 1

]
.

Bellman Equations (3.6) is modified into:

Vk(ik, D̂k) = min
xk∈Xk

c̃(Sk, xk) + Vk+1(Sk+1), (3.16)

VK(SK) = 0. (3.17)

The route is found by using Algorithm 1 and modifying Equation (3.8) to:

Vt(S) = min
xk∈Xk

c̃(S, xk) + Vt−1(S). (3.18)

3.4.3 Online Routing Policies (Online(n))
Various online policies are used for dynamic shortest path problems. The policies
depend on the amount of real-time (online) information used. At each node, we have
the online information about the disruption realizations of the vulnerable links that
are maximum n links away from the current node ik. For the links not in the zone
of n-stages, no online information is considered and therefore, the expected values
based on steady-state probabilities are used.

The vector rik consists of the vulnerable links that are maximum n links away from the
current node ik. The cardinality of vector rik is denoted by Rik . The state space of the
online model is different for each node as the neighborhood of each node is different.
The state space of the hybrid policy for any node ik is modified as Sk = (ik, D̂

ik
k )

where D̂ik
k = (D̂1ik , .., D̂Rik ) with Rik ≤ R. Here, D̂rik represents the actual value

of the state of rth vulnerable link of the node ik which is at most n-stages away from
the node and where r ∈ rik . When a policy uses the expected values for a group of
vulnerable links, it will be denoted as EV . When a policy uses actual values, it will
be denoted as AV .

The steady-state probability to be in state D̂r for any link r is denoted by P (D̂r).
Please note that D̂r ∈ Ur. The expected value of the link r for traveling from node ik
to node xk is denoted by t̄ik,xk

:

t̄ik,xk
=
∑
D̂r

P (D̂r)tik,xk
(D̂r). (3.19)
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At each node ik, online information of the n-stages from the node plus the expected
values of the links until the destination node that are located farther from the n-stages
within the node are considered to determine the next node to travel to. The online
route can be found using Algorithm 1 and modifying Bellman Equations (3.6) into:

Vk(ik, D̂
ik
k ) =


min

xk∈Xk

c̃(ik, D̂
ik
k , xk) + Vk+1(xk, D̂

ik
k ) if Sk ∈ S \ G and link ik-xk is in n-stages

min
xk∈Xk

t̄ik,xk
+ Vk+1(xk, D̂

ik
k ) if Sk ∈ S \ G and link ik-xk is NOT in n-stages

0 if Sk ∈ G .
(3.20)

The routing decision is found by using Algorithm 1 after retrieving each state
information. This means that the algorithm is solved each time that a disruption
information is retrieved at each node until the termination. This is because the
cost function of successor states is dependent on the current disruption information.
Equation (3.8) is modified into:

Vt(ik, D
ik) =

 min
xk∈X

c̃(ik, D
ik , xk) + Vt−1(xk, D

ik) if link ik-xk is in n-stages

min
xk∈X

t̄ik,xk
+ Vt−1(xk, D

ik) otherwise.

Note that, when n = N , the online routing policy uses the online information for the
complete network which considers realized disruption information for all links. When
n = 0, no realized disruption information is used, but only the expected values.

3.4.4 Hybrid Policies (DP (n,H))
Offline policies lack responsiveness to the dynamic nature of disruptions. For instance,
when disruptions occur, the naive approach ignoring all disruptions gives higher
routing costs. The robust routing policy also gives higher costs as disruptions do not
always occur. Online routing policies depend highly on the availability of the needed
online information and do not consider transition probabilities between different
disruption states. In this section, we develop policies combining the different strong
elements from offline and online routing policies. We refer to these policies as
DP (n,H), where n denotes the number of stages with online information (with
n ∈ {0, 1, 2, . . . , N}). In the hybrid policy, we have online information for n-stages
from the node. Therefore, the state space of the hybrid policy for any node ik at any
stage k is modified as Sk = (ik, D̂

ik
k ) where D̂ik

k = (D̂1ik , D̂2ik , .., D̂Rik ) with Rik ≤ R
which is similar to the Online(n) policy.

Given the state is Sk, a transition is made to the next state at stage k + 1, Sk+1 =
(xk, D̂

xk

k+1). For hybrid policies, we use the travel-time-dependent state transition
matrix for the vulnerable links for which we have online information. The probability
transition function to the state Sk+1 from the state Sk is the same as the one given
in Equation (3.12) except we only consider the limited part of the transition matrix
where only the vulnerable links that are maximum n-stages away from the node are
included.
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For the links beyond the n-stages of the current node (links without any online
information), we compute the value of being in state, Sk+1 = (xk, D̂

xk

k+1) until the
destination with time-invariant (memoryless) transition probabilities. In other words,
for these links, we use probability distributions with time-invariant probabilities. The
unit-time transition probabilities of rth link are obtained from the matrix Φrt,t+1.
Please note that rth vulnerable link is an element of the vector rik . For the
formulation, we use time-invariant transition probabilities for the vulnerable links
at each node ik as (with two disruption levels):

Θrik =

[
(1− αrik ) αrik

βrik (1− βrik )

]
.

Then, the transition probability to the state Sk+1 considering time-invariant probabil-
ities is:

P (Sk+1|Sk) =

Rik∏
r=1

Θr
D̂r

k,D̂
r
k+1

. (3.21)

Now that the new transition matrix has been defined, we can apply Algorithm 1
using this matrix. Note that for any vulnerable link r between the nodes ik and xk,
when tik+1,xk+1

(D̂r
k+1) is multiplied by the time-invariant transition probability, i.e.

P (Sk+1|Sk), we obtain the distribution of traveling the link r. When a policy uses
the probability distribution with memoryless transition probabilities for a group of
vulnerable links, we denote this value as (PD,M) in the remainder of this chapter.

Note that, when n involves all stages until the destination node, the hybrid routing
policy uses the travel-time-dependent transition probabilities for all vulnerable links
at each node. So, it yields the same routing policy as the optimal policy. When n = 0,
only memoryless transition probabilities are used at each node.

3.5. Computational Results and Analysis
By comparing the routing policies’ performance for different networks, we identify
which routing policies lead to better performance under what conditions. Table
3.1 summarizes the characteristics of the routing policies discussed in Section 3.4.
Note that when a policy uses the expected values for a group of vulnerable links,
it is denoted as EV . When it uses actual values (or online travel times), it is
denoted as AV . When a policy uses a probability distribution with memoryless
(transition) probabilities (travel-time-dependent (transition) probabilities) for the
group of vulnerable links, we refer them as (PD,M) ((PD, T ) respectively). For
the naive routing policy, travel time is used ignoring disruptions for the vulnerable
links. Likewise, the robust routing policy assumes that the disruptions always occur
on the disruption prone links.
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Table 3.1 The different routing policies

Travel time information
Policy 1st Link 2nd Link 3rd Link . . . nth Link
Naive No

disruption
No
disruption

No
disruption

No
disruption

No
disruption

Robust disruption disruption disruption disruption disruption
Online(N) AV AV AV AV AV
Online(1) AV EV EV EV EV
Online(2) AV AV EV EV EV
Online(3) AV AV AV EV EV
DP (1, H) AV (PD,M) (PD,M) (PD,M) (PD,M)
DP (2, H) AV (PD, T ) (PD,M) (PD,M) (PD,M)
DP (3, H) AV (PD, T ) (PD, T ) (PD,M) (PD,M)
Opt AV (PD, T ) (PD, T ) (PD, T ) (PD, T )

In what follows, we first discuss our problem instances, then we give details for a
small worked-out example and finally, we give aggregate results over all networks for
each routing policy.

3.5.1 Problem Instances
We generate in total 12 different instance types using a number of properties to
characterize and construct these instances. We define the instance properties such
that they are relevant to the real-life highway networks, i.e. Dutch Road Network
(Figure 1). The properties considered are as follows:

Network size

The network size consists of small and large networks with 16 and 36 nodes
respectively. The network is designed such that the origin and destination nodes
are situated in the top-left corner and bottom-right corner respectively. With this
structure, we prevent evaluating unnecessary nodes far from the shortest path.
Clearly, this does not limit the applicability of our results, but merely reduces the
number of unnecessary calculations to be evaluated.

Furthermore, with this structure each node has at least two neighbor links such that
when there is a disruption the routing policies choose among a number of alternative
links to travel next. This is important for the dynamic routing decisions where making
an alternative decision may have a significant impact on the total cost. This network
structure is also relevant to the real networks. The number of nodes represents the
junctions of various highways. In highways, for each junction there is more than one
alternative route which is relevant to the random network structure.
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Network vulnerability

We measure the vulnerability by the number of vulnerable links in the network.
Vulnerable links are randomly assigned to the shortest paths that are found with
an iterative process where every iteration a new shortest path is found and a new
vulnerable links is added to the network until we reach the desired number of
vulnerable links. We have instances with low percentage (50%) and high percentage
(70%) of vulnerable arcs in the network which are denoted as low and high network
vulnerability respectively.

Travel times

Travel time of each arc for non-disrupted state is randomly selected from a discrete
uniform distribution U(1, 10). For example, in this uniform distribution a unit can
be 1, 3, 5 minutes. In this way, we provide variability in travel times due to the
structural differences among roads. Furthermore, we keep the range between 1− 10
units because when we analyze the Dutch Road Network, the ratio of the distances
between the highway segments is also similar.

The impact of disruption on the travel time is an another network parameter to decide
for the numerical experiments. When there is a disruption on a link, the travel time
increases at a certain rate. Therefore, we should identify the rate of increase for
the experimental study for disrupted links. In this chapter, we focus on higher impact
disruptions. So, the historical data on the high impact incidents at the Dutch Network
shows that when there is a disruption, the travel time increases more than 3 times of
the normal travel time (Snelder 2010). Furthermore, by considering a wider survey,
Eliasson (2004) showed that the travel times with disruptions are valued 3 to 5 times
higher than the travel time under normal conditions. We also performed preliminary
tests to investigate the effect of using different ratio parameters on the performance
of the optimal routing policy. The results show that when the impact gets higher
(> 5 times the regular travel time), the total expected travel time becomes similar
because the routing algorithms choose the risk aversive routes (Figure 2). Figure 2
shows that the average performances of the algorithms (except the Robust and the
Naive policy) with respect to each other are similar regardless of the impact of the
disruption. For instance, Online(2) performs the same or worse than the optimal
algorithm or DP (2, H) for all the cases. Considering these, we set the increase rate
in travel time when there is a disruption to 3. In this way, the disruption creates a
significant difference in total expected travel time and also this is relevant for the
real-life situations.

Disruption rate

We define low disruption rate by a low probability of having disruptions to be between
[0− 0.3], medium disruption rate by a medium probability in the range [0.4− 0.6] and
high disruption rate by a high probability between [0.7− 1]. We chose the probability
intervals such that each interval is not much scattered to represent the probability
category effectively.
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Figure 3.2 The effect of ratio of the travel time with a disruption over the travel time with
no disruption on the expected travel time

Evaluation of the policies

For each instance type, we generate 100 replications (1200 instances) and report the
average value. For each instance replication, the expected cost is found as follows:
using Algorithm 1, we obtain an array of routing policies considering each state.
Then, we compute the exact value function using these pre-determined policies with
an exhaustive evaluation for all possible states. This value gives the expected cost
of the specific routing policy considering all possible states. For each instance, the
percentage cost difference relative to the optimal policy for each routing policy is
calculated as follows:

∆(%) =
E[Cost Alternative Policy]− E[Cost Optimal Policy]

E[Cost Optimal Policy]
× 100 (3.22)

The algorithms presented in this chapter are programmed in Java programming
language. The computational results in this section are obtained by using IntelCore
Duo 2.8 Ghz Processor with 3.46 GB RAM.

3.5.2 An Illustrative Example
Consider a network consisting of 16 nodes and 4 vulnerable links. The vulnerable
links are shown in bold with their travel times and their disruption probabilities in
Figure 3.3, which also shows the routing decisions made by the different routing
policies. At each node, the arcs show the next node to travel to given the state of the
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network. From Figure 3.3, we observe that different routing policies lead to different
decisions. The online and hybrid policies are more complicated than the naive and the
robust policies in the sense that more information is taken into account. Clearly, this
extra complexity comes with the advantage of reducing the costs dramatically. Table
3.2 gives the costs for each policy for this specific network and the percentage cost
difference relative to the optimal policy. For this specific example, Table 3.2 shows
that hybrid policies perform better than the online and the offline policies.

Table 3.2 Overview of costs for each routing policy and the percentage cost difference
relative to the optimal policy for the example network

Opt Naive Robust Online(1) Online(2) Online(3) DP (1, H) DP (2, H) DP (3, H)

Cost 27.13 51.79 35.25 28.25 28.27 28.51 27.65 27.13 27.13
∆(%) n.a. 90.93 29.96 4.16 4.20 5.11 1.93 0 0

Figure 3.3 demonstrates that online and hybrid policies choose different routes
according to the number of stages in the network with online information. For
instance, at node 2, Online(1) chooses to go to node 3 even when the link 6 → 7
is not in disruption. This is because it takes into account the expected travel time on
the link 6→ 7 which is higher. However, Online(2), Online(3) andOnline(N) choose
to go to the node 6 when the link 6→ 7 is not in disruption, as these policies directly
take into account the actual value of 6→ 7 in the node 2. But, upon arrival at the link
6→ 7, there is a non-zero probability that it goes into disruption. Hybrid policies, on
the other hand, take into account this probability and consequently, choose not to go
to the node 6.

The difference between the effect of different levels of stages on the routing decisions
is seen at the node 5. When Online(3) and Online(N) observe the actual value of
the link 10→ 11 as not in disruption and 6→ 7 is in disruption, they choose to travel
to the node 9 next which decreases the total expected cost. However, Online(1) and
Online(2) do not observe the actual value of the link 10 → 11. DP (1, H) only sees
the probability of the link 6→ 7 going into disruption and chooses to go to the node 9
for all states. DP (2, H) and DP (3, H), however, consider the travel-time-dependent
probability distributions so they observe that probability to find 6 → 7 and 10 → 11
in disruption upon arrival is low when initially at node 5 they are not in disruption.
So, they choose to go to either node 9 or node 6. In this specific example, DP (2, H)
and DP (3, H) follow the same route as the optimal policy.

3.5.3 Computational Results for All Networks
Table 3.3 gives the average, minimum and maximum percentage cost difference
(∆(%)) for all policies relative to the optimal policy. We also provide the sign rankings
for each routing policy using the Wilcoxon rank test by using the software IBM SPSS
Statistics 20 (provided in Table 3.4). The Wilcoxon rank test compares two routing
policies by showing the percentage number of cases a policy is better, worse or equal
to another routing policy (Field 2009). In the Table 3.4, positive (%) indicates the
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percentage of how many cases the routing policy (at the row) gives higher total
expected cost than the other routing policy (at the column). Similarly, negative (%)
(ties (%)) indicates how many times a routing policy better (the same) than the other
routing policy. As such, this gives additional insights into the performance of the
different policies, next to the average cost differences.

Offline versus Online/Hybrid Routing policies

Looking at the offline policies (naive and robust), Table 3.3 demonstrates that these
policies systematically perform worse than the online or the hybrid policies. The
robust policy on average is better than the naive policy. The table also demonstrates
that the maximum difference between the costs of the offline policies and the cost of
the optimal policy is much higher than the one for the online and the hybrid policies.
Table 3.4 shows that, for 78% of the evaluated network instances, the robust policy is
better than the naive policy. Observe also that the robust policies become worse than
the naive policy when the disruption rate is low for this specific set of instances (the
robust policy chooses to travel the risk averse path).

Hybrid versus Online Routing policies

Across all network instances and network variants, the hybrid policies perform at least
the same or better than the online policies (Table 3.3). On average, the differences
between the online policies and the hybrid policies are around 1% to 3%, which
is not that large. However, comparing the average performance difference is not
revealing the real power of the hybrid policies versus the online policies. Analyzing
the maximum and the minimum percentage cost differences relative to the optimal
solution (Table 3.3), we see differences between the performances of hybrid versus
online policies. This performance difference is driven by the proximity of the locations
of the vulnerable links (as in Figure 3.3). When the vulnerable links are located close
to each other, online policies perform worse than the hybrid policies with the same
number of stages. In real-life, congested links also occur close to each other, as when
one link becomes blocked, the connected links are more likely to also become blocked.
Table 3.3 also shows that as the disruption rate increases, the difference between the
maximum percentage difference of hybrid policies relative to the optimal policy goes
up to 11% better than the one of the online policies.

When we compare the hybrid policies with the optimal policy, we see that the hybrid
policies perform only marginally worse than the optimal policy in this specific set
of instances. However, hybrid policies have significant calculation time savings
compared to the optimal policy. For example, the optimal policy finds the optimal
solution in average 201.9 seconds whereas as Table 3.3 demonstrates, hybrid policies
find the solutions in at most 0.5 seconds. The ranking results point out that the
optimal policy is at most in 66.67% of all cases better that the hybrid policies whereas
the online policies are at least in 78.58% of all the cases worse than the optimal policy
in this specific set of instances (Table 3.4). Furthermore, the relative range of the
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Table 3.3 Minimum, maximum and average values of the percentage cost difference
relative to the optimal policy and overall average computation times

Disruption
Rate

Naive Robust Online(1) Online(2) Online(3) DP (1, H) DP (2, H) DP (3, H)

Low Rate Min ∆(%) 12.88 3.55 0.00 0.00 0.00 0.00 0.00 0.00
Max ∆(%) 116.03 113.24 54.84 54.84 54.84 50.08 50.08 50.08
Average
∆(%)

28.64 19.92 2.55 2.07 2.01 1.35 1.08 1.06

Med Rate Min ∆(%) 9.87 0.79 0.00 0.00 0.00 0.00 0.00 0.00
Max ∆(%) 97.02 153.51 15.41 14.23 14.17 6.56 3.60 3.60
Average
∆(%)

27.37 13.92 1.89 1.37 1.29 0.68 0.17 0.17

High Rate Min ∆(%) 3.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
Max ∆(%) 132.99 137.67 34.51 34.63 34.68 26.32 26.23 26.23
Average
∆(%)

32.76 10.00 1.84 1.87 1.92 1.63 1.37 1.14

Size Naive Robust Online(1) Online(2) Online(3) DP (1, H) DP (2, H) DP (3, H)

Small Min ∆(%) 12.88 3.55 0.00 0.00 0.00 0.00 0.00 0.00
Max ∆(%) 132.99 73.31 24.02 24.02 24.28 20.15 20.15 20.15
Average
∆(%)

32.09 15.56 1.44 1.19 1.19 0.60 0.25 0.24

Large Min ∆(%) 10.64 2.73 0.00 0.00 0.00 0.00 0.00 0.00
Max ∆(%) 116.03 153.51 54.84 54.84 54.84 50.08 50.08 50.08
Average
∆(%)

28.09 13.54 2.50 2.15 2.10 1.65 1.29 1.16

Vulnerability Naive Robust Online(1) Online(2) Online(3) DP (1, H) DP (2, H) DP (3, H)

Low Min ∆(%) 6.80 1.52 0.00 0.00 0.00 0.00 0.00 0.00
Max ∆(%) 96.57 153.51 14.21 13.76 11.26 10.07 10.07 10.07
Average
∆(%)

23.65 12.43 1.11 0.91 0.86 0.46 0.18 0.17

High Min ∆(%) 12.88 3.55 0.00 0.00 0.00 0.00 0.00 0.00
Max ∆(%) 132.99 106.20 54.84 54.84 54.84 50.08 50.08 50.08
Average
∆(%)

35.43 16.17 2.99 2.58 2.56 1.96 1.54 1.38

CPU (Sec) Naive Robust Online(1) Online(2) Online(3) DP (1, H) DP (2, H) DP (3, H)

0.001 0.001 0.005 0.007 0.009 0.027 0.105 0.498

Table 3.4 The Wilcoxon rank test for the different routing policies

Robust Online(1) Online(2) Online(3) DP (1, H) DP (2, H) DP (3, H) Opt

Naive Positive(%) 78.42 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Negative
(%)

20.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Ties (%) 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Robust Positive (%) 90.83 92.83 93.83 94.50 96.42 96.50 98.58

Negative
(%)

1.84 4.92 5.08 0.00 0.00 0.00 0.00

Ties (%) 7.33 2.25 1.09 5.50 3.58 3.50 1.42
Online(1) Positive (%) 35.08 43.00 47.33 76.58 76.83 78.58

Negative
(%)

31.25 37.08 0.00 0.00 0.00 0.00

Ties (%) 33.67 19.92 52.67 23.42 23.17 21.42
Online(2) Positive (%) 25.00 54.42 77.42 77.67 78.67

Negative
(%)

24.33 16.50 0.00 0.00 0.00

Ties (%) 50.67 29.08 22.58 22.33 21.33
Online(3) Positive(%) 54.94 77.67 78.83 79.92

Negative
(%)

16.58 1.08 0.00 0.00

Ties (%) 28.48 21.25 21.17 20.08
DP (1, H) Positive (%) 57.50 58.33 66.67

Negative
(%)

0.00 0.00 0.00

Ties (%) 42.50 41.67 33.33
DP (2, H) Positive (%) 1.83 62.92

Negative
(%)

0.00 0.00

Ties (%) 98.17 37.08
DP (3, H) Positive (%) 62.08

Negative
(%)

0.00

Ties (%) 37.92
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online policy relative to the optimal policy becomes higher than the range of the
hybrid policy at high disruption rate network structures (Table 3.3).

In the numerical results, there are exceptional cases where the online and the hybrid
policies perform up to 54.84% and 50.08% worse than the optimal policy respectively.
For the extreme case, the expected travel time from the solution of the optimal
algorithm is 31.45 while the expected travel time from the solution of DP (3, H)
is 47.19. In these exceptional cases, the network size is large with high network
vulnerability and low disruption rate ([0- 0.3]). The first vulnerable links are located
at least 4 links away from the first node. It is observed that the optimal policy
outperforms the other policies by choosing different routes from the beginning of
the network. At the initial node, the alternative nodes are less so the horizon of the
travel-time-dependent disruption information is really crucial. When a vulnerable link
is in disruption, it takes a certain time period to return to its steady state probability.
If this time period for a vulnerable link is longer than the horizon for which the hybrid
policies consider the travel-time-dependent probabilities, then the vulnerable link will
not be in its steady state probability when we arrive there. This shows that we need
to include more stages with the travel-time-dependent disruption information in our
dynamic routing decision. Appendix A shows how to compute the time needed to
reach the steady state probability of being in disruption. In the extreme cases, it is
shown that we need at least 47 time units to find the vulnerable link in steady state
meaning that we need to use travel-time-dependent probability distributions for at
least 5 links. If the suggested information is used, the percentage gap relative to the
optimal solution decreases from 50.08% to 11.01%.

The Number of Stages with Online Information

An important observation is that as higher number of stages with detailed information
is included, the performance of hybrid policies converges on average to the perfor-
mance of the optimal solution. This is a nice result for practice because it indicates
that we can save calculation time and information retrieval costs. When we compare
lower level hybrid policies with higher level online policies, i.e. Online(3) versus
DP (1, H); Online(3) versus DP (2, H), the percentage that the higher level online
policies are better decreases as the hybrid policies get more information, i.e. 17.58%
and 10.92% respectively as shown in Table 3.4.

When we compare DP (1, H) versus DP (2, H); DP (2, H) versus DP (3, H), the value
of using travel-time-dependent disruption information for more stages is observed.
Table 3.4 shows that DP (2, H) performs better than DP (1, H) for 57.50% of the
cases while DP (3, H) performs better than DP (2, H) for only 1.83% of the cases.
This shows that value of of using travel-time-dependent disruption information for
more stages increases at a decreasing rate such that DP (2, H) and DP (3, H) perform
the same for most of the cases.
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3.6. Conclusions
In this chapter, we analyzed different routing policies dealing with network dis-
ruptions. To build and evaluate various routing policies, we developed a modeling
framework based on dynamic programming. We analyzed some well-known offline
and online policies. In addition to this, we developed hybrid policies that use different
levels of online and offline information. We formulated the hybrid routing policies in
terms of dynamic programming models. We compared the performance of the current
known heuristics, such as the offline and the online policies, with the hybrid routing
policies. By testing different policies using different levels of stages, we analyzed the
effect of having a sufficient level of online and offline information about the network
for different networks. Moreover, we gained insights into the network conditions in
which it is better to use what type of policies.

We found that the usage of only limited online information leads to a significant
decrease in computation time compared to the policies that use higher levels of
information. We observed that the performance of hybrid policies only deteriorates
marginally compared to the optimal solution. We showed that a large part of the cost
reduction can already be obtained by considering just a part of the network in detail.
This result is beneficial when availability and reliability of online information is low
and the cost of retrieving this information is high. This can be an implementation
direction for the current navigation systems, i.e. usage of online and historical data
to develop probabilistic information on travel time. Furthermore, we observed that
under more complex networks, the more detailed information about the disruption’s
state becomes effective and cost efficient even if the network knowledge is limited
with few stages with online information for the hybrid policies. This chapter has
practical relevance as the results show that using a moderate level of network
knowledge is generally sufficient to have acceptable performance compared to the
optimal policy while computation time and information retrieval cost decrease
significantly. The drivers can benefit from this finding in reducing the computation
and information retrieval costs. Furthermore, the developed hybrid policies can be
implemented easily by using the navigation technologies. In practice, the disruption
scenarios can be determined by using threshold speed levels. If the speed is under the
threshold level, the link is blocked otherwise not. The transition probabilities can be
dealt by using these threshold levels.

Future research includes the analysis of the policies with many disruption scenarios,
considering more than two disruption scenarios and considering link dependencies.
As discussed above, the computation effort increases exponentially with the number
of disruption scenarios. In order to handle this complexity, space reduction techniques
and approximations could be used.
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3.A. Appendix

A A note on the time needed to find a vulnerable link in steady
state

Consider a a two state Markov Chain with a unit-time transition probability matrix
for a vulnerable link r:

Θr =

[
(1− αr) αr

βr (1− βr)

]
For this matrix, the eigen values are (1− αr − βr) and 1. So, it is shown that:

Θr(t) = U

[
1 0
0 (1− αr − βr)t

]
U−1

We are interested in the time that a disrupted link will be found in its steady state
when we arrive there. So, we need the transition probability to a disrupted state
at time t given that it is disrupted at time t = 0. This can be written as pt22 =
a+b((1−αr−βr)t) where p0

22 = a+b = 1 and p1
22 = 1−βr. So, 1−βr = a+b(1−αr−βr)

and a = αr

αr+βr and b = βr

αr+βr . So, pt22 is:

P (wrt = 2|wr1 = 2) = pt22 =
αr

αr + βr
+

βr

αr + βr
(1− αr − βr)t (A1)

Note that this converges exponentially to αr

αr+βr which is the steady state probability

of being in disruption. So, βr

αr+βr (1 − αr − βr)t converges to zero when t → ∞.
Consider that the expression approaches to a very small number ε:

βr

αr + βr
(1− αr − βr)t = ε (A2)

If we solve the Equation (A2) for t:

t = log(1−αr−βr)(
ε(αr + βr)

β
) (A3)

Equation (A3) indicates that what determines this time period is the probability to go
into a disruption and the probability to recover from the disruption. Figure 3.4 shows
the effect of the steady state probability of being in disruption on the time needed to
converge to the steady state. It is shown that as the probability to go into a disruption
decreases, it takes longer to be in steady state probability.
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Figure 3.4 The time to reach the steady state probability versus the steady state
probability to be in disruption

B Proof: Termination of value iteration algorithm
Proposition 3.3 For any ε > 0 there exists a finite number of iterations N such that
‖Vt − V ∗‖ < ε for all t > N.

Proof: If the value iteration algorithm in Algorithm 1 terminates after a finite number
of iterations and toward a fixed point, then ∆Vt(S) should be decreasing in t.

Let TV (S) be the dynamic programming operator that maps value functions into
value functions:

TV (S) = min
x∈N,x∈Neighbor(i)

c̃(i, D̂, x) +
∑
S′

P (S′|S)V (S′)). (B1)

We define that a value function estimate converges if it reaches a fixed point (∆Vt−1

is really small and converges to zero). Then:
Vt = TVt−1 = Vt−1 + ∆Vt−1

We prove the convergence of any dynamic programming operator that is a contraction
mapping and it satisfies the equations below:

‖Tv − Tu‖ ≤ γ‖v − u‖ (B2)
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where ‖.‖ is the max norm, γ = 1 as in the stochastic shortest path problem and
the termination is guaranteed with the goal state. For conciseness, we modify the
value function into vector and matrix notation (d ∈ D is the Markovian decision rule
mapping each state into an action (Puterman 2009)):

Vt = min
d∈D

c̃d + PdVt−1. (B3)

Now, we show that value iteration is a contraction mapping for any state (the max-
norm of a probability matrix (Pd) is one, and the max-norm of scalar immediate cost
(Cd) is again a scalar):

‖TVt − TVt+1‖ ≤ ‖Vt − Vt+1‖ (B4)

‖Vt+1 − Vt+2‖ ≤ ‖Vt − Vt+1‖ (B5)

‖c̃d + PdVt − c̃d − PdV(t+1)‖ ≤ ‖Vt − Vt+1‖ (B6)

‖Pd‖‖Vt − V(t+1)‖ ≤ ‖Vt − Vt+1‖ (B7)

‖Vt − V(t+1)‖ ≤ ‖Vt − Vt+1‖ (B8)

This indicates that ‖Vt+1 − Vt+2‖ ≤ ‖Vt − Vt+1‖ is monotonically decreasing. These
equations show that as the dynamic programming operator is applied with certain
amount of iterations, then the largest difference between two value function shrinks.
This means that the contraction mapping tends towards a fixed point:
Vt = Vt−1 + ∆Vt−1 = TVt−1 ⇒ Vt = V ∗ where V ∗ is the optimal value.

Next we show that by considering relatively small ε > 0, the value iteration converges
to the optimal value, V ∗ in a finite number of iterations. We refer the reader to Bonet
(2007) for the formal proof of number of exact iterations for convergence.

‖V ∗ − Vt‖ = ‖V ∗ − TVt−1‖ (B9)

= ‖V ∗ − Vt−1 −∆Vt−1‖ (B10)

= ‖V ∗ − Vt−1‖ − ‖∆Vt−1‖ (B11)

(B12)

This indicates that ‖V ∗ − Vt‖ ≤ ‖V ∗ − Vt−1‖, which is the gap with respect to the
optimal, is monotonically decreasing. 2
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Chapter 4

DSPP: Hybrid Approximate
Dynamic Programming
Algorithms with a Clustering
Approach

In Chapter 3, we investigated the efficient levels of network information for higher
quality and computationally efficient dynamic routing policies. However, we focused
on only two disruption levels: in disruption or not in disruption. As it is described in
Chapter 2, in traffic there are multiple types of disruption levels leading to different
impacts on travel time. In this chapter, we analyze dynamic shortest path problem for
large-scale networks with multiple disruption levels. In this problem, as the state- and
outcome-space increases exponentially with disruption levels, we develop efficient
approximate dynamic programming algorithms (ADP) to reduce computational time
and improve solution quality.

4.1. Introduction
In traffic networks, disruptions due to accidents and traffic bottlenecks cause traffic
congestions that lead to a drastic increase in travel times and decrease the probability
of being on-time at the destination. The travel time in traffic networks depends on
the disruption levels (types). Furthermore, as the uncertainty in traffic networks
increases due to recurrent and non-recurrent incidents, the planners need to take into
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account many disruption levels. Having real-time traffic information from intelligent
navigation systems and taking into account the stochastic nature of disruptions
for the dynamic routing decisions can significantly reduce delays. As a trade-off,
for networks with many disruption levels, computing dynamic routing decisions
considering detailed information takes very long. Note that in real-life applications
(as in navigation devices), low computation times enabling fast and high quality
routing decisions are very important. Therefore, we need to develop fast and efficient
techniques to make the dynamic routing decisions considering stochastic disruptions.

In this paper, we consider dynamic shortest path problems with stochastic disruptions
on a subset of arcs. We develop dynamic routing policies by using both historical
information and real-time information of the network. We observe the disruption
status of the network when we arrive at each node. The disruption status of the
following stage is dependent on the travel time of the current arc. We denote this
property as travel-time-dependency. We model the problem as a discrete-time, finite
Markov decision process (MDP). In our model, the dynamic routing policies are found
based on the state of the system which can be retrieved with real time information.

MDP formulation provides a practical framework to find dynamic routing decisions
at each decision epoch. However, for large scale networks with many disruption
levels, obtaining the optimal solution faces the curses of dimensionality, i.e., states,
outcomes, and decisions (Powell 2007, 2011). Therefore, in the dynamic shortest
path problem literature with a MDP formulation, either approximation algorithms
are developed or the structure of the optimal solution is investigated to deal with the
curses of dimensionality .

The approximations or reduction techniques in the dynamic shortest path literature
were shown to deal with binary levels of disruption, i.e., congested or not congested.
The current empirical studies on the features of traffic congestion show that highways
can have more than two levels of disruption which are specified according to the
speed level and possible spillbacks (Helbing et al. 2009, Rehborn et al. 2011).
However, increase in disruption levels leads to an exponential state- and outcome-
space growth causing the well-known curses of dimensionality. Therefore, we need
efficient approximation techniques to deal with many disruption levels.

In this paper, we focus on networks with many disruption levels which are similar
to the real-life situations. We use an Approximate Dynamic Programming (ADP)
algorithm which is a well-known approximation approach to effectively deal with
the curses of dimensionality. In the literature, ADP is shown to be a powerful method
to solve large-scale stochastic problems (e.g., Powell et al. 2002, Powell and Van Roy
2004, Simão et al. 2009).

The ADP algorithms in this paper are based on value function approximations
with a lookup table representation. First, we employ a standard value function
approximation algorithm with various algorithmic design variations for updating
state values with efficient exploration/exploitation strategies. Then, we improve the
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standard value function approximation algorithm by developing a hybrid ADP with a
clustering approach. In this hybrid algorithm, we combine a deterministic lookahead
policy with a value function approximation (Powell et al. 2012). We exploit the
structure of disruption transition function to apply the deterministic lookahead policy.
We form a cluster at each stage consisting of the nodes that are within the two-arc-
ahead neighborhood of the current node. The decision is chosen from the cluster
depending on an exploration/exploitation strategy. Then, we apply value function
approximation until the destination.

Hybrid ADP algorithms with a lookahead policy and value function approximation are
suggested by Powell et al. (2012). Similar approaches can be found in the literature
on the hierarchal solution for large MDPs and using factored MDPs. In the factored
representation of MDP, the states and/or decisions are clustered according to their
specific properties. The value functions are then computed by using these compact
representations (Boutilier et al. 2000, Givan et al. 2003, Kim and Dean 2002, Barry
et al. 2011).

In this paper, instead of clustering the states, we expand the action set from the
neighboring nodes into the set of nodes in a cluster. By a learning process, the hybrid
algorithm clusters the nodes such that the approximate value until the destination
is lower given the current disruption status. The state variables considered in the
value function approximation are then visited and updated more frequently such that
their state values become more accurate. This leads to higher quality state values and
reduces the computational cost significantly by eliminating the steps for updating
and exploring the states that are already included in the lookahead policy. To our
knowledge, the hybrid ADP algorithm with the clustering approach has not been
investigated so far for the dynamic shortest path problems.

The main contributions of this paper are as follows:

1. We construct a hybrid ADP with a clustering approach considering a lookahead
policy and a value function approximation to solve for traffic networks with
many disruption levels. The results show that the hybrid ADP algorithm with a
clustering approach reduces the computational time significantly. Furthermore,
the quality of the solution is higher compared to the standard ADP algorithm.
We also provide a test bed consisting of random networks to compare the
performance of the ADP algorithms with a stochastic lookahead policy shown to
perform well in binary disruption levels with significantly lower computational
times.

2. We provide various algorithmic design variations for the ADP where multiple
initial solutions and both single and double pass algorithms are used with
efficient exploration/exploitation strategies. We provide insights about the
performance of these variations based on different network structures.
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4.2. The Model Formulation
We model the dynamic shortest path problem with stochastic disruptions as a discrete-
time, finite Markov decision process (MDP). Consider a traffic network represented
by the graph G(N,A,Av) where N represents the set of nodes (or intersections), A
the set of directed arcs and Av the set of vulnerable arcs, potentially in disruption
(Av ⊆ A). The number of vulnerable arcs is R: R = |Av|. Each of these vulnerable
arcs has a known unit-time transition probability matrix for each disruption level.
Each vulnerable arc, r ∈ Av, can take any value from the disruption level vector, Ur,
whose dimension depends on the specific vulnerable arc.

The travel time on an arc is assumed to be predictable from historical data and follows
a discrete distribution, given the disruption level of the arc. We receive the real-time
information about the disruption statuses of all vulnerable arcs when we arrive at a
node. At each node, we make a decision on the next node to visit. Our objective is
to travel from the origin node to the destination node with the minimum expected
travel time. We derive the optimal routing decision using the discrete-time, finite
MDP formulation. Stage k represents the number of nodes that have been visited so
far from the origin node. The end of horizon is reached by arriving at the destination.
The end of horizon is represented by K where K is a random variable depending on
the network states and is not known before the departure.

States

The state of the system at stage k, Sk, is represented by two components:

• The current node, ik ∈ N .

• The disruption status vector, D̂k, gives the disruption statuses of all vulnerable
arcs. Each vulnerable arc, r, can take any value from the disruption level vector
Ur. For each vulnerable arc, there can beMr different types of disruption levels:
D̂k(r) ∈ Ur: Ur = {u1, u2, ...uMr},∀r ∈ Av. Note that at each stage, we use a
realization of the disruption vector, D̂k.

The state of the system at stage k is then: Sk = (ik, D̂k). We set the initial state
as: S0 = (origin node, D̂0) and the final goal state as: SK = (destination node, D̂K),
where D̂0 and D̂K are the realizations of the disruptions for all vulnerable arcs at the
initial and final stage, respectively. Note that the goal state is absorbing and cost free.

Actions

The action, xk, is the next node to visit given the state Sk. We note that each action,
xk, is an element of the set of all possible actions X (Sk) which is the neighbor set of
the current node:

xk = ik+1. (4.1)
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Exogenous Information

The disruption statuses of the vulnerable arcs may change as we proceed to the next
stage. The exogenous information consists of the realization of the disruption statuses
of all the vulnerable arcs. Let D̂k+1 denote the disruption status realization that
becomes known between stages k and k + 1.

Wk+1 = D̂k+1. (4.2)

Cost Function

The cost is calculated as the travel time from the current node, ik, to the next node,
xk = ik+1, given the realized disruption status, D̂k:

C(Sk, xk) = tik,xk
(D̂k). (4.3)

State Transition Function

At stage k, the system is in state Sk, we make a decision xk and then observe the
exogenous information Wk+1. The system transits to a new state Sk+1 according to
the transition function: Sk+1= SM (Sk, xk,Wk+1). Note that “M” represents model in
Powell (2007). The state transition involves the following transition functions:

ik+1 = xk, (4.4)

Dk+1 = D̂k+1. (4.5)

The disruption status vector transits from D̂k to D̂k+1 according to a Markovian
transition matrix. Note that Dk+1 is the vector of random variables representing the
disruption status of each vulnerable arc in the network for the next stage. We define
the transition matrix of a vulnerable arc r from stage k to k + 1 as Θr(k|Sk, xk). This
transition matrix is dependent on the state and the travel time of the current arc:
the probability of being in the disruption status of the next stage D̂k+1 depends on
the travel time between ik and ik+1 given the disruption status realization D̂k. Note
that the travel time given disruption status is a positive integer. Let pr

u,u′
denote the

unit-time transition probability between any two disruption levels of the vulnerable
arc r, pr

u,u′
= P{D̂k+1(r) = u

′ |D̂k(r) = u}. Θr(k|Sk, xk) is the transition matrix of
the vulnerable arc r considering the travel-time-dependency given the current travel
time based on the disruption status realization, D̂k:

Θr(k|Sk, xk) =


pru1,u1 pru1,u2 ... pru1,uMr

pru2,u1 pru2,u2 ... pru2,uMr

.

.
pruMr ,u1 pruMr ,u2 ... pruMr ,uMr


tik,xk

(D̂k)

. (4.6)
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The probability of having the new disruption status D̂k+1 given D̂k is then calculated
as (Θr

u,u′
(k|Sk, xk) indicate the specific row and column index in the matrix

Θr(k|Sk, xk)):

P (D̂k+1|D̂k) =

R∏
r=1

Θr
u,u′

(k|Sk, xk). (4.7)

Objective Function

The objective is to minimize the expected total travel time from the origin node until
the destination node (where K is reached by arriving at the destination):

min
π∈Π

E(

K∑
k=1

C(Sk,X π(Sk))), (4.8)

where π denotes a policy or decision rule and Π denotes the set of all policies.

4.3. Approximate Dynamic Programming Approach
The optimization problem in Equation (4.8) can be solved using the Bellman
Equations:

Vk(Sk) = min
xk∈Xk

C(Sk, xk) +
∑
Sk+1

P (Sk+1|Sk)Vk+1(Sk+1), (4.9a)

VK(SK) = 0. (4.9b)

Here, Vk(Sk) is the value of being in state Sk. Our solution becomes:

x∗k = arg min
xk∈Xk

C(Sk, xk) + E(Vk+1(Sk+1)). (4.10)

The MDP faces the curses of dimensionality (states, outcomes and decisions) with the
increase in the number of disruption levels and the number of nodes. To solve large
scale problems with many disruption levels, the dynamic programming approach
for solving the Bellman’s equations becomes computationally intractable. In the
literature, many techniques such as state-reduction techniques (Kim et al. 2005a,
Thomas and White 2007) and stochastic lookahead algorithms (Güner et al. 2012,
Sever et al. 2013) are used to solve for the MDP problems with reduced computational
time. As an alternative the Approximate Dynamic Programming (ADP) approach is
a powerful tool to overcome the curses of dimensionality, especially for complex and
large scale problems (Powell 2007, 2011).

In this paper, we use an ADP approach with value iteration (Powell 2007, 2011).
The essence of this approach is to replace the actual value function Vk(Sk) with an
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approximation V̄k(Sk). ADP proceeds by estimating the approximate value V̄k(Sk)
iteratively. For our problem, this means that we traverse the roads repeatedly to
estimate the value of being in a specific state. Let V̄ n−1

k+1 (Sk+1) be the value function
approximation after n− 1 iterations. Instead of working backward through time as in
the traditional DP approach, ADP works forward in time.

The optimization problem using the ADP approach is given in Equation (4.11):

v̂nk = arg min
xk∈Xk

C(Snk , x
n
k ) +

∑
Sk+1

P (Sk+1|Sk)V̄ n−1
k+1 (Sk+1). (4.11)

Post-decision State Variable

The approximate value of being in state Snk at iteration n, V̄ nk (Snk ), contains the
expectation over all possible states at the next stage. For large scale problems with
many disruption levels, the state- and outcome-space explodes and optimization with
the expectation can be computationally intractable. We adopt the post-decision state
variable as suggested by Powell (2007) and Powell (2011). We define the post-
decision state as Sxk which represents the state immediately after we make a decision.

Sxk = SM,x(Sk, xk) = (xk, D̂k) = (ik+1, D̂k), (4.12)

where M represents model (Powell 2011). The post-decision state eliminates the
expectation in Equation (4.11) by using the deterministic value of choosing an action,
xk, given the current state Sk.

Value Function Approximation with Lookup Table Representation

We use lookup table representation for the value function approximation. This means
that for each discrete state Sk, we have an estimate V̄k(Sk). We, then, update our
estimate when we visit the particular state. As we use a post-decision state, we should
update the value of being in the post-decision state of the previous stage by using v̂nk :

V̄ nk−1(Sx,nk−1) = (1− αn−1)V̄ n−1
k−1 (Sx,nk−1) + αn−1v̂

n
k . (4.13)

The Equation 4.13 represents the harmonic step size rule where the state value is
updated by using a weighted average of the current estimate and the estimate from
the previous iteration.

Exploration/Exploitation Strategy

In the ADP algorithm, we estimate a value function by visiting states to estimate
the value of being in a certain state. If we explore, we visit states to improve
the estimates of the value of being in the state regardless the decision gives the
best value. However, if we exploit, we use our best estimate values and we make
the decision that gives the best value given the current information. One of the
challenges in ADP is that we should determine a right balance between exploration
and exploitation when making a decision given a certain state. If we only exploit, we
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may trap into the local optima by choosing the decision that “appears” to have the
best value. If we only explore, then we visit every state randomly that may increase
the computation time while leading to poor value estimates. Therefore, we need an
efficient exploration/exploitation strategy for higher quality estimates.

In the early iterations, the value of being in a state is highly dependent on the sample
path and the initial solution. Therefore, we need to use the exploration more in
the early iterations to improve the quality of the state values. For this purpose, we
use a mixed exploration/exploitation strategy (Powell 2007). To do this, we select a
random probability of choosing the best action or choosing alternative actions. We
ensure that the probability of choosing the best action increases as we visit the state
more. Therefore, we choose to use exploration rate, ρk, for choosing the next best
alternative as ρk = b/n′(Sk). We should note that the exploration rate decreases with
the number of visits to the particular state, n′(Sk), and increases with the parameter
“b”.

Initialization Heuristics

According to Powell (2007) and Powell (2011), initial values play an important role in
the accuracy of the approximate values and the computational performance of an ADP
algorithm. For this purpose, we investigate the effect of two initialization heuristics:
a deterministic approach and a stochastic two-arc-ahead policy with memoryless
probability transitions (denoted as DP (2,M)).

In the deterministic approach, we determine initial state values by solving a
deterministic shortest path problem, assuming that the probability of having a
disruption is zero. In determining the route, we only consider the non-disruption
state for all vulnerable arcs. In the transition probabilities of all vulnerable arcs, the
no-disruption state becomes an absorbing state in Equation (4.6). Then, we solve
Equation (4.9) (The output from this initialization heuristic is independent of the
disruption state).

However, the dynamic shortest path problem is travel-time-dependent, so including
disruption status dependent initial values in the ADP algorithm may improve the
quality of the solutions. As the problem involves disruption that may occur during
travel, solving for the stochastic shortest path problem with the time-invariant
(memoryless) probability transitions “for all vulnerable arcs” in the network may
provide lower solution quality. Therefore, we use a lookahead policy. According to
results of preliminary tests, we observe that considering lookahead policy considering
the detailed information of only the two-arc-ahead neighborhood reduces the
expected total travel time by the range 0.5% − 0.8% on average for the networks
with 16 and 36 nodes (We refer the reader to Chapter 3 for more information on the
effect of travel information on the quality of routing policies).

In this policy, we have real-time information of only two-arc-ahead from the current
node. Therefore, the state space of the current node ik is modified as Sk = (ik, D̂

ik
k )

where D̂ik
k = {urik1

k , u
rik2

k , .., u
ritRik

k } with rik , the vector of the vulnerable arcs that
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are in the two-arc-ahead neighborhood of node ik and Rik = |rik |, Rik ≤ R. For the
rest of the arcs, we calculate expected travel times. The transition probability vector,
in Equation (4.6) is no longer travel-time-dependent and we only consider the part of
the transition matrix with only the vulnerable arcs in the two-arc-ahead neighborhood
(The output from this initialization heuristics is dependent on the disruption state).

Updating the value function

In this paper, we investigate the computational effect of both single-pass and double-
pass approaches to update the state values (Powell et al. 2012).

4.3.1 The Generic Approximate Dynamic Programming Algorithm
In the generic ADP, we adopt the value function approximation algorithm with the
post-decision state variable. We use a mixed exploration/exploitation strategy to
update the value function approximations. In this paper, we denote the generic ADP
algorithm as “Standard ADP” algorithm.

ADP Algorithm: Single-Pass Version (ADPS)
In the ADP algorithm with single-pass, updating the value function takes place as the
algorithm progresses forward in time. According to the Algorithm 2, in Step 2a, at
stage k, we obtain an updated estimate of the state value of being in state Sk. In
Step 2b, we update the estimate of V̄ nk−1 by using the state value from the previous
iteration, V̄ n−1

k−1 , and the current value estimate v̂nk . Note that we collect information
as we proceed in time due to the fact that the disruption transition rates for the future
stage is dependent on the current travel time.

ADP Algorithm: Double-Pass Version (ADPD)
As an alternative to the single-pass value iteration algorithm, we also use a double-
pass algorithm (Algorithm 3). In this algorithm, we step forward in time by creating
a trajectory of states, actions and outcomes (Step 2). Then, we update the value
function by stepping backwards through the stages (Step 3). The update of the value
function is conditional on whether we exploit or explore. If we exploit at stage k
(choosing the action with the minimum value), then we update the value function of
the state at stage k. If we explore at stage k, then we update the value function only
if the explored action improves the value function compared to the exploitation (Step
3b).
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Algorithm 2 ADP algorithm with single-pass
Step 0: Initialization

Step 0a: Initialize V̄ 0
k , ∀k by using the value from the initialization heuristic.

Step 0b: Set n=1.
Step 1: Choose a sample disruption vector with Monte Carlo simulation for n and for k = 0, and
initialize Sn

0 = (origin node, D̂n
0 ).

Step 2: Do for all k = 0, ...,K − 1 (where K is reached by arriving at the destination node)
Step 2a: Choose a random probability p and exploration rate ρk as ρk = 0.2/n′(Sk)

v̂nk = min
xk∈N,xk∈Xk

C(Sn
k , x

n
k ) + V̄ n−1

k (xk, D̂
n
k ). (4.14)

The node xk that gives the optimal value is denoted as x∗nk .

v̂nk =

{
solve Equation (4.14) for xk ∈ N if p ≥ ρk,
solve Equation (4.14) for xk ∈ N \ x∗nk o.w.

The node that is chosen is denoted as xnk and becomes the next node to visit.
Step 2b: If k > 0, update V̄ n

k−1(Sx,n
k−1) using:

V̄ n
k−1(Sx,n

k−1) = (1− αn−1)V̄ n−1
k−1 (Sx,n

k−1) + αn−1v̂
n
k . (4.15)

We use the harmonic stepsize: αn−1 = a
a+n′(Sk)−1

and n′(Sk) is the total number of visits to state Sk.

Step 2c: Find the post-decision state: Sx,n
k = (ik+1, D̂

n
k ).

Step 2d: Find the next pre-decision state: Sn
k+1 = (ik+1,W

n
k+1).

Step 3: Increment n. If n ≤ N go to Step 1. Note that N denotes the pre-set maximum number of
iterations.
Step 4: Return the value functions (V̄ Nk )Kk=1.
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Algorithm 3 ADP algorithm with double-pass
Step 0: Initialization

Step 0a: Initialize V̄ 0
k , ∀k by using the value from the initialization heuristic.

Step 0b: Set n=1.
Step 1: Choose a sample disruption vector with Monte Carlo simulation for n and for k = 0, and
initialize Sn

0 = (origin node, D̂n
0 ).

Step 2: (Forward pass) Do for all k = 0, 1, ...,K − 1 (where K is reached by arriving at the destination
node)

Step 2a: Solve:
v̂nk = min

xk∈N,xk∈Xk

C(Sn
k , x

n
k ) + V̄ n−1

k (xk, D̂
n
k ). (4.16)

The node xk that gives the optimal value is denoted as x∗nk .

v̂nk =

{
solve Equation (4.16) for xk ∈ N if p ≥ ρk,
solve Equation (4.16) for xk ∈ N \ x∗nk o.w.

The node xk that gives the optimal value is denoted as x∗nk and x∆n
k if it is from the exploration.

Step 2b: If we choose exploration with x∆n
k compute :

V̄ ∗nk−1(Sx,n
k−1) = (1− αn−1)V̄ n−1

k−1 (Sx,n
k−1) + αn−1v̂

∗n
k , (4.17)

v̂∗nk = C(Sn
k , x
∗n
k ) + V̄ n−1

k (x∗nk , D̂n
k ). (4.18)

Step 2c: Find the post-decision state: Sx,n
k = (ik+1, D̂

n
k ).

Step 2d: Find the next pre-decision state: Sn
k+1 = (ik+1,W

n
k+1).

Step 3: (Backward pass) Do for all k = K − 1, ..., 1
Step 3a: Compute v̂nk using the decision xnk from the forward pass:

v̂nk = C(Sn
k , x

n
k ) + v̂nk+1. (4.19)

Step 3b: If k > 1, update V̄ n
k−1(Sx,n

k−1) using:

V̄ n
k−1(Sx,n

k−1) =

{
(1− αn−1)V̄ n−1

k−1 (Sx,n
k−1) + αn−1v̂nk if x∗nk ,

(1− αn−1)V̄ n−1
k−1 (Sx,n

k−1) + αn−1v̂nk if x∆n
k & V̄ ∆n

k−1(Sx,n
k−1) < V̄ ∗

n
k−1(Sx,n

k−1).

We compute V̄ ∆n
k−1(Sx,n

k−1) if we have explored at stage k with action x∆n
k :

V̄ ∆n
k−1(Sx,n

k−1) = (1− αn−1)V̄ n−1
k−1 (Sx,n

k−1) + αn−1v̂
n
k . (4.20)

Where we use the harmonic stepsize: αn−1 = a
a+n′(Sk)−1

and n′(Sk) is the number of visits to the
current state.
Step 4: Increment n. If n ≤ N go to Step 1. Note that N denotes the pre-set maximum number of
iterations.
Step 5: Return the value functions (V̄ Nk )Kk=1.
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4.3.2 Hybrid ADP with a Clustering Approach : a Deterministic
lookahead policy with Value Function Approximations

The state variable in our MDP formulation is a representation of the nodes and the
disruption statuses of the vulnerable arcs. When the network size and the number of
disruption levels increase, the number of states and estimated state values in the
lookup table also increase. To reduce the computational time while maintaining
good solution quality for large size instances, we need to improve the standard ADP
algorithm. To do this, we exploit the structure of the disruption transition function
in Equation (4.6) which is travel-time-dependent. The structure of the disruption
transition function shows that the shorter the travel time between two nodes, the
disruption statuses of the vulnerable arcs at the next stage remain similar to the
disruption statuses at the current stage. In other words, in a close neighborhood
of the current node, ik, the disruption statuses of the observed vulnerable arcs at
stage k do not change much as compared to those at stage k − 1. This structure is a
good motivation to cluster the nodes that are close to each other. Using this clustering
idea, we develop a hybrid ADP algorithm. In this hybrid algorithm, we first apply a
deterministic lookahead policy within the cluster and we estimate the cost outside the
cluster until the destination using value function approximations.

Figure 4.1 illustrates how we cluster and perform the hybrid ADP algorithm. At stage
k, we have the state variable Sk = (ik, D̂k). We form the cluster of the current node
ik by simply considering the nodes that are two-arc-ahead from ik. We denote the
cluster of ik as clik . We assume that the disruption status D̂k does not change within
the cluster and we apply a deterministic lookahead policy within the cluster. The
lookahead policy consists of solving the Dijkstra’s algorithm (Dijkstra 1959) within
the cluster. In this way, we determine the shortest path from ik until the next node
i
clik
k+1 in the cluster clik . The cost from the current node to the selected next node

given the disruption status is determined by the Dijkstra’s shortest path algorithm
and is denoted as C̃k(ik, i

clik
k+1, D̂k). Then, we estimate the cost outside the cluster

from the node i
clik
k+1 until the destination using value function approximations.

We find the next node to visit with the exploration/exploitation strategy defined in
Sections 4.3.1 and 4.3.1. Then, we approximate the current state value, V̄k(Sk), using
the harmonic stepsize rule. Then, we continue to find the next cluster consisting of
the two-arc-ahead nodes of the next node and approximate its value. We always
go further towards the destination node. We apply the same process until arriving
at the destination node. By a learning process, the hybrid algorithm clusters the
nodes such that the approximate value until the destination is lower given the current
disruption status. The state variables considered in the value function approximation
are then visited and updated more frequently such that their state values become
more accurate. This leads to higher quality approximate values for the state variables
and reduces the computational cost significantly by eliminating the steps for updating
and exploring the states that are already included in the lookahead policy.
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Figure 4.1 Hybrid ADP with a clustering approach
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The hybrid ADP algorithm with the clustering approach has three types of algorithmic
variations: by the size of the cluster, by deciding on which nodes to update when
we determine a shortest path within the cluster and whether we use single-pass or
double-pass to update state values.

Hybrid ADP with Clustering Approach: Algorithmic Variations

The size of the cluster
In this paper, we analyze the effect of cluster size by developing hybrid ADP
algorithms with clusters considering two-arc-ahead neighborhood and three-arc-
ahead neighborhood of the current node. We refer the hybrid ADP algorithms with
different network sizes as CLx where x ∈ 2, 3. In the hybrid ADP with the clustering
approach CL2, the clusters are formed by considering the nodes that are two-arc-
ahead from the current node. Similarly in CL3, the cluster contains the nodes within
the three-arc-ahead neighborhood of the current node.

We apply the deterministic lookahead policy to obtain the cost between ik and i
clik
k+1,

C̃k(ik, i
clik
k+1, D̂

n
k ). i

clik
k+1 is an element from the cluster of two-arc-ahead or three-

arc-ahead neighborhood of the node ik for hybrid ADP algorithms CL2 and CL3,
respectively. We then add the approximate value from the node i

clik
k+1 to the destination

node. Here, we should note that we take the deterministic travel time within the
cluster.

The update of the state values in a shortest path within the cluster
Another variation of the hybrid algorithm is to decide whether to update the state
values of the nodes on the shortest path or not. For each shortest path consisting of
nodes to travel until i

clik
k+1, we also investigate whether updating the state values of the

path obtained from the lookahead policy improves our solution or not. For instance,
our current node is ik and we choose to go to node i

clik
k+1 by using the shortest path

ik−z− i
clik
k+1. If we only update the state value of node ik, we call this as “No-Update”,

NU . If we also update the state value of node z, then we call this as “Update”, U .

The update of the state values
We study both single-pass and double-pass approach to update the state values. For
the single-pass algorithm with CL2 and CL3 approach with or without updating the
values of the nodes on shortest path within the cluster (CL(x,S,U), CL(x,S,NU) and
x ∈ 2, 3), we use algorithm 2. Similarly, for the double-pass algorithm with CL2 and
CL3 approach (CL(x,D,U), CL(x,D,NU)), we use algorithm 3. For the algorithms, the
value function in Equations (4.14) and (4.16) becomes:

v̂∗nk = min
i
clik
k+1

C̃k(ik, i
clik
k+1, D̂

n
k ) + V̄ n−1

k (i
clik
k+1, D̂

n
k ). (4.21)
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A Benchmark Heuristic: Dynamic Programming with Stochastic
Two-arc-ahead Policy (DP (2, H))

For large instances, where the optimal solution are not obtainable, we benchmark
with the stochastic two-arc-ahead policy (DP (2, H)) as proposed in Chapter 3, which
is shown to perform only slightly worse than the optimal algorithm. This algorithm
considers limited online information for each stage which reduces the computational
time significantly. In DP (2, H) it is assumed that by the time we arrive at the further
arcs, we will experience the time-invariant probabilities. Therefore, we eliminate the
computational burden to calculate the transition probabilities for all vulnerable arcs.

In this policy, we retrieve online information of the arcs that are two-arc-ahead from
the current node. Therefore, the state space of the hybrid policy for any current node
ik is modified as Sk = (ik, D̂

i
k) where D̂i

k = {u1ik

k , u
1ik

k , .., u
Rik

k } only includes the
vector of the vulnerable arcs that are in the two-arc-ahead neighborhood of node ik
and Rik = |rik |. In this heuristic, we use the same travel-time-dependent transition
matrix in Equation (4.6) except we only consider the limited part of the transition
matrix where only the vulnerable arcs that are maximum two-arc-ahead from the
current node are included. For the vulnerable arcs outside the neighborhood, we
calculate the time-invariant probability distributions. We solve Equation (4.9) by
using a backward recursion algorithm given in Chapter 3.

4.4. Computational Experiments and Analysis
In our computational experiments, we analyze the performance of various algorithms
with different network instances. In what follows, we first describe our test instances.
Then, we analyze the effect of algorithmic design variations of ADP algorithms (the
standard and the hybrid ADP algorithms) in Section 4.4.3. At the end of the analysis,
we choose the design variations for both the standard ADP and the hybrid ADP
algorithms that provide high quality solutions. Considering these design variations,
in Section 4.4.4, we compare the performance of the hybrid ADP algorithms with the
standard ADP algorithms, the benchmark heuristic and the optimal algorithm with
respect to the total realized travel time and the computational time.

Throughout the experiments, we fix the parameters used in the ADP algorithms. After
performing several preliminarily tests, we set the constant in the harmonic stepsize
rule to a = 5. We also set the exploration rate as 0.2/n′(Sk), where n′(Sk) is the
number of visits to the state. Also, we fix the total number of iterations to N =
100, 000.
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4.4.1 Design of Test Instances

We generate our test instances based on the following network properties:

Network size: We generate small, medium and large size networks with 16, 36 and
64 nodes, respectively. The network is designed such that the origin-destination pairs
are situated from the top-left to the bottom-right corners. With this structure, we
prevent evaluating unnecessary nodes far from the shortest path. Clearly, this does
not limit the applicability of our algorithms.

Network vulnerability: We measure the vulnerability by the percentage of vulnerable
arcs in the network. Vulnerable arcs are randomly assigned to the shortest paths that
are found with an iterative process where every iteration a new shortest path is found
and a new vulnerable arc is added to the network. We have instances with low (50%)
and high percentage (up to 80%) of vulnerable arcs which are denoted as low and
high network vulnerability, respectively.

Number of disruption levels: The vulnerable arcs on a network have either K = 2,
3 or 5 disruption levels. Note that the disruption levels also include the non-disrupted
case where there is no disruption at all. (For each vulnerable arc the possible
disruption levels are kept the same).

Disruption rate: Disruption rate is defined by the steady state probability of having
a disruption on a vulnerable arc. We use a low probability of having disruptions to be
between [0.1 − 0.5) and a high probability between [0.5 − 0.9) which are denoted as
low and high disruption rates, respectively.

Travel times: Travel time of each arc for the non-disrupted level is randomly selected
from a discrete uniform distribution U(1, 10). The steady state probability of the non-
disrupted level for each vulnerable arc is randomly selected based on the disruption
rate. If there is a disruption, the travel time for the non-disrupted level is multiplied
by a scalar depending on the disruption level.

The probabilities of the disrupted levels are computed to make sure that the expected
travel time of the vulnerable arc is the same for all K. For example, the expected
travel time of a vulnerable arc in a network with 2 disruption levels is kept the same
in the same network with 3 and 5 disruption levels with the same disruption rate.

We define an “instance type” as the networks that have the same set of network
properties as described above. For instance, small size network with low network
vulnerability and low disruption rate is a unique instance type. In this paper,
we generate 36 different instance types with properties as in Table 4.1. For each
instance type, we randomly generate 50 replications and in total we generate 1800
test instances.

In the experimental analysis, we report the results by aggregating them according to
these network properties: disruption rate, network size, vulnerability of the network
and number of disruption levels.
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Table 4.1 Summary of instance types

Number of Nodes Number of vulnerable arcs Disruption rate Number of
disruption
levels

Low High Low High K

16 3 5 [0.1 - 0.5) [0.5 - 0.9) 2, 3, 5∗

36 5 7 [0.1 - 0.5) [0.5 - 0.9) 2, 3, 5∗

64 7 9 [0.1 - 0.5) [0.5 - 0.9) 2, 3, 5∗

(*) In the first experimental analysis where we analyze the effect of different algorithmic variations, we
exclude the network instances with K = 5 due to computational issues.

4.4.2 Evaluation of the Algorithms
We analyze the performance of the standard ADP algorithms, the Hybrid ADP
algorithms, the dynamic programming algorithm with stochastic two-arc-ahead policy
(DP (2, H)) and the optimal algorithm via an MDP. For the evaluation of the
algorithms, we use two procedures: exact evaluation and evaluation via simulation.

We perform an exact evaluation for the networks where the optimal algorithm is
computationally tractable within the computational time limit of 1 hour. This specific
time limit is selected due to practical reasons because in real-life before departure it is
too long and impractical to wait for an offline policy more than an hour. In the exact
evaluation, for each algorithm, we obtain routing policies considering each possible
state. Then, we compute the exact value function with these pre-determined policies
by enumerating for all states via a backward recursion. This value gives the expected
cost of the algorithm considering all possible states.

For the networks where MDP is not tractable within the time limit of 1 hour (so the
exact evaluation), we simulate each algorithm with a sample size of 5000 for each
test instance. We ensure that each algorithm uses the same sample of transition
probabilities for each instance. For each test instance, we find the average travel time
and computational time by calculating the average values of the simulation.

For each instance type, we report the average travel time, which is the average values
of the 50 replications, the standard deviation of the 50 replications and the percentage
gap with respect to the benchmark heuristic, i.e., DP (2, H).

The algorithms presented in this paper are programmed in Java. All experiments are
conducted on a personal computer with an IntelCore Duo 2.8 Ghz Processor and 3.46
GB RAM.
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4.4.3 Experimental Results and Discussion- Effect of Algorithmic
Design Variations of ADP Algorithms

In this section, we compare the performance of the ADP algorithms that use different
algorithmic design variations: initialization heuristics, updating state values with
either single-pass or double-pass and the update or no-update of the state values in a
shortest path within the cluster. The ADP algorithms with respect to the relevant
design variations are summarized in Table 4.2. The analysis is done considering
the total realized cost for different network sizes, vulnerabilities and disruption
levels. As the observations show that disruption rate has no distinctive effect on
these variations, for conciseness we do not make a separate analysis for the effect
of disruption rate. Rather, we analyze all the test instances with both low and high
disruption rate depending on network sizes, vulnerabilities and disruption levels. The
cost for each algorithm (C[ADP algorithm]) represents the realized cost which is the
total travel time computed from the relevant evaluation method (expected total travel
time or average travel time over simulation replications). To analyze the statistical
performance differences, we also apply paired samples t-test using SPSS and we
report mean differences between ADP algorithms with different design variations and
its confidence interval with the significance level of 0.05 (Ross 1999). Note that due
to the computational purposes and conciseness, for the algorithmic design variations
experiments we leave out the instance types with 5 disruption levels. After choosing
a good algorithmic design variation, we will provide a thorough analysis over all test
instances.

Table 4.2 The ADP algorithms and algorithmic design variations

Single-pass Double-pass

Standard ADP ADPS ADPD

(a) Standard ADP algorithms

Cluster Size

Two-arc-ahead Three-arc-ahead

No-update Update No-update Update

Single-pass CL(2,S,NU) CL(2,S,U) CL(3,S,NU) CL(3,S,U)

Double-pass CL(2,D,NU) CL(2,D,U) CL(3,D,NU) CL(3,D,U)

(b) Hybrid ADP algorithms
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Effect of Initialization Heuristics

In the ADP algorithms, we use two different initialization heuristics for obtaining
initial value function estimates: a deterministic approach and a stochastic two-arc-
ahead policy with memoryless probability transitions (DP (2,M)).

To analyze whether there is a significant performance difference between the deter-
ministic approach and DP (2,M), we applied paired samples t-test with significance
level of 0.05 (Ross 1999). In this test, we analyze the realized cost difference between
ADP algorithms considering deterministic approach and DP (2,M) as the initial-
ization heuristic ((C[ADP with deterministic approach] − C[ADP with DP (2,M)])).
Figure 4.2 shows the mean difference and the variation of the mean difference
with a 95% confidence interval. A positive mean difference values and a positive
confidence interval indicate that the ADP algorithms considering the initialization
heuristic DP (2,M) on average outperform the ones using initial values from the
deterministic approach. The test instances are analyzed depending on the number of
disruption levels and network sizes.

Note that the ADP algorithms with double-pass approach considering the initialization
heuristic DP (2,M) perform significantly different from the ADP algorithms using the
initial values from the deterministic approach (Appendix Table A1). This is not the
case in for the single-pass approach. For instance, in ADPS (small network with K=3
and medium network with K=2) and CL(2,S,NU) (small network with K=3, medium
and large network with K=2) algorithms, there is no significant difference between
the two initialization heuristics. This shows that the update of state values in the
backward-pass (only if there is an improvement) exposes the benefits of considering
state-dependent initial values with DP (2,M).

The positive mean difference values in Figure 4.2 indicate that the ADP algorithms
considering the initialization heuristic DP (2,M) on average outperform the ones
using initial values from the deterministic approach. In Figure 4.2, we observe that
the confidence interval is strictly positive in the cases where the two initialization
heuristics perform significantly different from each other. This shows that regard-
less of network properties ADP algorithms considering the initialization heuristic
DP (2,M) either significantly outperform the ones using initial values from the
deterministic approach or perform without any significant difference. When we
compare Figure 4.2-(a), (b) and (c), we observe that as disruption level and network
size increase, the performance of ADP algorithms using the initialization heuristic
DP (2,M) significantly increases. This indicates that when we have more states,
starting with the state-dependent initial values (as in DP (2,M)) provides more
efficient exploration/exploitation such that we obtain higher quality value function
estimates.

For the rest of the numerical analysis, we adopt DP (2,M) as the initialization
heuristic for the ADP algorithms because it gives significantly higher solution quality.
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(b) Large network

Figure 4.2 Mean difference between ADP algorithms with deterministic and DP (2, H)
initialization heuristics (with different network size). The error bars represent the 95%
confidence interval around the mean difference.
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Single-Pass versus Double-Pass

To investigate the effect of how we update value functions, we use both the single-
pass and the double-pass procedures in ADP algorithms. Figure 4.3 and Figure 4.4
illustrate the percentage cost improvement of ADP algorithms considering the double-
pass relative to the single-pass approach for different network sizes and different
network vulnerability, respectively. First, the percentage cost improvement for each
test instance is computed as follows:

∆(%)instance =
(C[ADP with single-pass]− C[ADP with double-pass])

C[ADP with single-pass]
∗ 100 (4.22)

Then, we report the average value of ∆(%)instance’s over the test instances (∆(%))
based on the given network property. The positive ∆(%) indicates that ADP
algorithms with double-pass approach outperform the single-pass approach.

Note that in ADPy (medium network with K=2), CL(2,y,NU) (large network with
K=2) and CL(2,y,U) (large network with K=3) algorithms, there is no significant
difference between the two update procedures (Appendix Table A2). For the other
ADP algorithms in the remaining network instances, double-pass algorithms perform
significantly different from single-pass algorithms.

Considering the significant differences, Figure 4.3 shows that the hybrid ADP
algorithms with double-pass significantly outperform their single-pass counterparts
for all network sizes. When the network size is smaller and the number of disruption
levels is lower, in the hybrid ADP algorithms the double-pass approach perform much
better than the single-pass approach. Furthermore, when we compare Figure 4.3-
(a) and (b), the performance difference between the double-pass and the single-pass
algorithms decreases. This indicates that as there are more disruption levels and
as the number of states increases, the performance of the double-pass and single-
pass approaches becomes similar. This is not necessarily true for the standard ADP
algorithms where the double-pass approach for the standard ADP algorithm does not
perform well on large size networks and the networks with low and high vulnerability.

The effect of using single-pass and double-pass approaches in our ADP algorithms is
also visible when we aggregate the networks according to the network vulnerability.
We do this by taking the average over all different network sizes with respect to the
network vulnerability. Figure 4.4 shows that the hybrid ADP algorithms with double-
pass again significantly outperform their single-pass counterparts for all types of
network vulnerability where ∆(%) values are always positive. On the other hand, the
standard ADP with double-pass performs worse than its counterpart with single-pass
approach in both high and low network vulnerability. For all of the ADP algorithms
as the network vulnerability and/or disruption levels increases, the performance
difference between double-pass and single-pass decreases.

For the rest of the numerical analysis, we adopt the double-pass approach for the
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Figure 4.3 Average percentage cost improvement of ADP algorithms with double-pass
procedure relative to single-pass (with different network sizes). Note that “y” stands for
single-pass or double-pass approach.
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Figure 4.4 Average percentage cost improvement of ADP algorithms with double-pass
procedure relative to single-pass (with different network vulnerability)

hybrid ADP algorithms as the algorithms with this design variation give consistently
higher solution quality. For the standard ADP algorithms we adopt both the single-
pass and the double-pass approaches.

The update or no-update of the state values in a shortest path within the cluster

In the hybrid algorithms, we either update the state values within the deterministic
lookahead policy or not. Figures 4.3 and 4.4 show that the performance of the double-
pass approach is significantly higher than the single-pass approach for the hybrid ADP
algorithms. Therefore, in this analysis, we focus on the effect of the update of state
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values considering only the double-pass approach.

Figure 4.5 and 4.6 illustrate the percentage cost improvement of the hybrid ADP
algorithms with double-pass approach considering the update of the state values
within the deterministic lookahead policy relative to their counterpart with the no-
update approach. This is done for different network sizes and different network
vulnerability, respectively. First, the percentage cost improvement of the hybrid ADP
algorithms with update relative to their no-update counter parts for each test instance
is computed as in Equation (4.22).

Then, we report the average value of ∆(%)instance’s over the test instances (∆(%))
based on the given network property. The positive ∆(%) indicates that hybrid
ADP algorithms with double-pass and update approach outperform the no-update
approach.

To analyze whether there is a significant performance difference between the no-
update and update procedures, we also applied paired samples t-test. In this
test, we analyze the cost value difference between CL(x,D,NU) and CL(x,D,U)

((C[CL(x,D,NU)] − C[CL(x,D,U)])). CL(2,D,U) on average performs significantly
different from CL(2,D,NU) regardless of network size and disruption levels (Appendix
Table A3). This is not necessarily true for CL(3,D,z) because there is no significant
difference between CL(3,D,U) and CL(3,D,NU) in medium and large networks with 2
disruption levels and networks with 3 disruption levels. Yet, in small networks with 2
disruption levels, CL(3,D,U) significantly outperforms CL(3,D,NU).

In Figures 4.5 and 4.6, the positive percentage relative cost considering the significant
differences indicate that CL(2,D,U) algorithm significantly outperforms CL(2,D,NU)

for all of the network sizes, disruption levels and vulnerability (Except for the case
where CL(2,D,U) and CL(2,D,NU) performs similar in low network vulnerability with
3 disruption levels, Appendix Table A4). Similarly, CL(3,D,U) either significantly
outperforms CL(3,D,NU) or there is no significant difference between the two
algorithms (in the cases where ∆(%) is really small, Appendix Tables A3 and A4).

Not that the percentage relative improvements are relatively small on average for
double-pass algorithms with no-update and update. This because in the double-pass
approach, we update the states values in the path, only if they improve the solution.
Therefore, on average a decision considered with no-update procedure leading to
higher state values, most probably is not chosen. Note that there are also test-
instances for which the improvement of update procedure relative to the no-update
procedure is more than 10%.

For the rest of the numerical analysis, we adopt the double-pass with update approach
for the hybrid ADP algorithms as the algorithms with this design variation give
consistently higher solution quality (considering the significant cases).
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Figure 4.5 Average percentage cost improvement of the hybrid ADP algorithms with
update relative to no-update of the state values in the shortest path (with different
network size). Note that “z” stands for no-update or update approach.
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Figure 4.6 Average percentage cost improvement of the hybrid ADP algorithms with
update relative to no-update of the state values in the shortest path (with different
network vulnerability).

4.4.4 Experimental Results and Discussion- Comparison of Algo-
rithms

In this section, we analyze the hybrid ADP algorithms (with the selected algorithm
design) with the standard ADP, MDP (the optimal algorithm when tractable within
1 hour of computational time limit), and the benchmark heuristic DP (2, H). The
comparison is done with respect to their estimated total cost defined by the total travel
time computed according to the relevant evaluation method. We also provide the
percentage gap of each algorithm with respect to the benchmark heuristic, DP (2, H).
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To analyze the statistical performance differences, we also apply paired samples t-test
using SPSS and we report mean differences between ADP algorithms with different
design variations and confidence intervals with the significance level of 0.05 (Ross
1999). We show the average results over all 1800 test instances depending on the
network size, the disruption rate and the network vulnerability. For each of these
network properties, we investigate the performance of the algorithms on the networks
with different sizes, disruption rates and vulnerability.

Tables 4.3 and 4.4 show the average realized cost values of algorithms based on the
total travel time, standard deviation of the cost values and the percentage gap with
respect to DP (2, H) in test instances with 2, 3 and 5 disruption levels for different
network vulnerability considering all network sizes (Negative sign in the percentage
gap means that the algorithm outperforms the benchmark heuristic).

We also provide the paired samples t-test results to analyze the significance between
the performance of algorithms (Appendix B). Here, 95% confidence intervals (lower
and upper bounds) are given with the significance level (p-value). The t-test is
executed for the cost differences between the hybrid ADP, standard ADP, DP (2, H)
and MDP algorithms of each test instance based on the specific instance type.
p − value < 0.05 indicates that there is a significant difference between the given
algorithm pairs. If not, we conclude that there is no significant difference between
them.

The hybrid ADP algorithm with clusters considering two-arc-ahead (CL(2,D,U))
versus three-arc-ahead (CL(3,D,U)) neighborhood

When we compare the hybrid ADP algorithms with different clustering sizes, we
observe that in most of the network sizes CL(2,D,U) significantly outperforms
CL(3,D,U). Note that solution quality of CL(2,D,U) is higher than or equal to the
solution quality of CL(3,D,U) for all network sizes (Tables 4.3, 4.4 and Appendix
Tables B1-B3). As the network size increases, the performance of CL(2,D,U) increases.
When we consider small networks with low disruption rate, there is no significant
difference between CL(2,D,U) and CL(3,D,U) with 2 disruption levels. However, as the
network size is large, CL(2,D,U) outperforms CL(3,D,U) by 0.56% with 2 disruption
levels (Table 4.3 and Appendix Tables B1, B3). Note that these percentages are
computed from the gap differences.

Similar to the results regarding the network size, the solution quality of CL(2,D,U)

algorithm is significantly higher than or equal to the solution quality of CL(3,D,U)

algorithm for both low and high vulnerable networks (Table 4.3). When we compare
Tables 4.3 and 4.4, we observe that as network vulnerability becomes high, the
performance difference between two algorithms decreases. Significance results
also support this such that the significant differences in low vulnerability become
insignificant in high vulnerability considering the same networks size, disruption rate
and disruption level.
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Table 4.3 The estimated total cost value, standard deviation (Std) and percentage gap
with respect to DP (2, H) in different network sizes with low network vulnerability

Network Size Disruption Rate Algorithms DP (2, H) MDP ADPS ADPD CL(2,D,U) CL(3,D,U)

Small

Low

Cost Value 25.37 25.29 26.16 26.08 25.48 25.48
Std 5.21 5.23 5.34 5.23 5.23 5.28
Gap(%) – -0.29% 3.12% 2.81% 0.43% 0.44%

High

Cost Value 28.22 28.15 28.87 28.70 28.28 28.42
Std 5.32 5.28 5.41 5.42 5.29 5.30
Gap(%) – -0.25% 2.32% 1.69% 0.21% 0.69%

Medium

Low

Cost Value 39.48 39.41 41.07 41.00 39.61 39.66
Std 6.38 6.39 6.38 6.38 6.36 6.35
Gap(%) – -0.17% 4.02% 3.86% 0.32% 0.45%

High

Cost Value 42.94 42.90 43.27 44.08 43.07 43.21
Std 6.26 6.27 6.22 6.24 6.24 6.25
Gap(%) – -0.11% 0.76% 2.65% 0.30% 0.62%

Large

Low

Cost Value 54.88 54.46 56.56 57.59 54.69 55.00
Std 6.84 6.55 6.34 6.84 6.62 6.61
Gap(%) – -0.76% 3.07% 4.95% -0.33% 0.23%

High

Cost Value 56.89 56.63 58.61 59.03 56.90 57.41
Std 7.31 7.17 7.19 7.33 6.99 7.14
Gap(%) – -0.46% 3.04% 3.76% 0.03% 0.92%

(a) 2 disruption levels

Network Size Disruption Rate Algorithms DP (2, H) MDP ADPS ADPD CL(2,D,U) CL(3,D,U)

Small

Low

Cost Value 24.46 24.31 25.13 24.89 24.56 24.57
Std 5.41 5.40 5.48 5.53 5.40 5.40
Gap(%) – -0.61% 2.74% 1.79% 0.41% 0.45%

High

Cost Value 27.38 27.33 28.01 27.76 27.46 27.63
Std 5.71 5.67 5.79 5.81 5.59 5.74
Gap(%) – -0.16% 2.32% 1.40% 0.31% 0.91%

Medium

Low

Cost Value 39.59 39.42 42.03 40.86 39.68 39.89
Std 6.13 6.03 6.57 6.30 6.21 6.23
Gap(%) – -0.45% 6.16% 3.19% 0.21% 0.74%

High

Cost Value 41.24 41.19 42.89 42.23 41.35 41.65
Std 6.28 6.17 6.31 6.33 6.41 6.48
Gap(%) – -0.14% 3.99% 2.40% 0.25% 0.99%

Large

Low

Cost Value 53.23 N/A 56.28 56.30 53.07 53.12
Std 6.22 N/A 6.15 6.11 6.07 6.02
Gap(%) – N/A 5.73% 5.77% -0.31% -0.20%

High

Cost Value 55.38 N/A 58.21 59.18 55.47 55.54
Std 6.15 N/A 6.35 6.35 6.23 6.26
Gap(%) – N/A 5.11% 6.87% 0.17% 0.29%

(b) 3 disruption levels

Network Size Disruption Rate Algorithms DP (2, H) MDP ADPS ADPD CL(2,D,U) CL(3,D,U)

Small

Low

Cost Value 26.72 26.62 27.30 27.09 26.78 26.95
Std 5.60 5.57 5.46 5.63 5.59 5.53
Gap(%) – -0.37% 2.16% 1.40% 0.22% 0.86%

High

Cost Value 28.33 28.25 29.04 28.63 28.37 28.55
Std 5.47 5.47 5.73 5.54 5.48 5.42
Gap(%) – -0.27% 2.51% 1.06% 0.16% 0.79%

Medium

Low

Cost Value 40.20 N/A 43.05 42.97 40.68 40.87
Std 7.54 N/A 7.74 7.86 7.77 7.90
Gap(%) – N/A 7.09% 6.89% 1.19% 1.66%

High

Cost Value 42.01 N/A 44.86 44.69 42.34 42.59
Std 5.38 N/A 5.53 5.35 5.73 5.83
Gap(%) – N/A 6.77% 6.36% 0.77% 1.38%

Large

Low

Cost Value 53.46 N/A 56.85 57.73 53.33 54.06
Std 6.15 N/A 6.37 6.44 6.36 6.80
Gap(%) – N/A 6.34% 7.99% -0.24% 1.12%

High

Cost Value 56.30 N/A 59.40 60.41 56.15 56.90
Std 6.16 N/A 6.44 6.30 6.32 6.32
Gap(%) – N/A 5.51% 7.31% -0.27% 1.06%

(c) 5 disruption levels
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Table 4.4 The estimated total cost value, standard deviation (Std) and percentage gap
with respect to DP (2, H) in different network sizes with high network vulnerability

Network Size Disruption Rate Algorithms DP (2, H) MDP ADPS ADPD CL(2,D,U) CL(3,D,U)

Small

Low

Cost Value 26.56 26.38 27.86 27.80 26.65 26.66
Std 5.39 5.38 5.66 5.84 5.41 5.42
Gap(%) – -0.71% 4.87% 4.63% 0.33% 0.34%

High

Cost Value 30.90 30.81 31.16 30.82 30.81 30.90
Std 5.51 5.83 5.44 5.41 5.57 5.63
Gap(%) – -0.29% 0.84% -0.24% -0.29% -0.01%

Medium

Low

Cost Value 40.38 40.28 42.57 42.39 40.62 40.64
Std 6.34 6.32 6.40 6.48 6.34 6.34
Gap(%) – -0.24% 5.44% 4.98% 0.61% 0.65%

High

Cost Value 45.12 45.04 46.65 46.63 45.42 45.61
Std 6.65 6.66 6.94 6.87 6.86 6.85
Gap(%) – -0.16% 3.40% 3.34% 0.68% 1.09%

Large

Low

Cost Value 57.01 56.46 59.48 61.46 56.87 56.90
Std 6.34 6.55 6.62 6.73 6.53 6.46
Gap(%) – -0.97% 4.32% 7.80% -0.25% -0.20%

High

Cost Value 59.97 59.63 62.33 63.57 59.52 60.22
Std 7.70 7.17 7.55 7.49 7.08 7.18
Gap(%) – -0.57% 3.94% 6.00% -0.74% 0.42%

(a) 2 disruption levels

Network Size Disruption Rate Algorithms DP (2, H) MDP ADPS ADPD CL(2,D,U) CL(3,D,U)

Small

Low

Cost Value 26.70 26.38 28.10 27.47 26.81 26.91
Std 5.26 5.17 5.43 5.59 5.36 5.28
Gap(%) – -1.22% 5.21% 2.85% 0.39% 0.78%

High

Cost Value 28.60 28.43 28.94 28.74 28.39 28.54
Std 5.66 5.63 5.75 5.79 5.79 5.71
Gap(%) – -0.59% 1.18% 0.51% -0.73% -0.20%

Medium

Low

Cost Value 40.30 N/A 43.15 42.14 40.51 40.62
Std 6.20 N/A 6.29 6.29 6.21 6.23
Gap(%) – N/A 7.07% 4.56% 0.51% 0.80%

High

Cost Value 44.03 N/A 45.19 45.06 44.12 44.41
Std 6.10 N/A 6.03 6.06 6.22 6.25
Gap(%) – N/A 2.64% 2.34% 0.21% 0.87%

Large

Low

Cost Value 54.21 N/A 57.02 57.48 53.91 53.99
Std 5.61 N/A 5.88 5.86 5.83 5.88
Gap(%) – N/A 5.19% 6.04% -0.55% -0.40%

High

Cost Value 57.48 N/A 60.21 60.84 57.42 57.63
Std 6.07 N/A 6.48 7.00 6.52 6.67
Gap(%) – N/A 4.75% 5.85% -0.11% 0.26%

(b) 3 disruption levels

Network Size Disruption Rate Algorithms DP (2, H) ADPS ADPD CL(2,D,U) CL(3,D,U)

Small

Low

Cost Value 28.12 30.00 29.91 28.39 28.51
Std 5.95 6.33 6.42 6.46 6.36
Gap(%) – 6.67% 6.38% 0.96% 1.38%

High

Cost Value 29.45 30.95 30.09 29.69 29.87
Std 5.94 6.11 6.05 6.14 6.19
Gap(%) – 5.08% 2.18% 0.82% 1.44%

Medium

Low

Cost Value 41.18 43.85 43.22 41.41 41.63
Std 6.56 6.88 6.72 6.67 6.84
Gap(%) – 6.48% 4.94% 0.55% 1.08%

High

Cost Value 44.16 46.37 46.09 44.31 44.61
Std 5.40 5.35 5.38 5.33 5.34
Gap(%) – 5.00% 4.37% 0.34% 1.02%

Large

Low

Cost Value 54.42 56.49 56.92 54.03 54.44
Std 6.63 7.35 7.28 6.79 7.68
Gap(%) – 3.81% 4.60% -0.72% 0.03%

High

Cost 58.50 59.63 60.37 58.44 58.53
Std 7.48 8.58 8.82 8.02 8.75
Gap(%) – 1.94% 3.20% -0.09% 0.06%

(c) 5 disruption levels
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In both low and high network vulnerability, as disruption rate increases, CL(2,D,U)

performs significantly better than CL(3,D,U) at a higher rate. For example, in high
vulnerability with 3 disruption levels and small network size, there is no significant
difference between two algorithms (Appendix Table B1). However, as disruption rate
becomes higher, CL(2,D,U) significantly outperforms CL(3,D,U) by 0.53% (Table 4.4).

Although, the average percentage improvement of CL(2,D,U) relative to CL(2,D,U) is
relatively small (less than 2%), we observe that there are also test instances (with 3
and 5 disruption levels in small size, high disruption rate instance types) for which
the percentage improvement increases up to 29%.

These results indicate that considering shorter horizon for the deterministic looka-
head policy increases the performance of the hybrid ADP algorithms especially for
higher number of disruption rates, larger network sizes and higher disruption levels.
Thus, considering clusters of two-arc-ahead neighborhood provides higher quality
solutions than considering three-arc-ahead neighborhood. In the following algorithm
comparisons, we will focus on CL(2,D,U) as it gives consistently higher quality
solutions than CL(3,D,U).

The hybrid ADP algorithm with clusters considering two-arc-ahead neighbor-
hood (CL(2,D,U)) versus the benchmark heuristic (DP (2, H))

Tables 4.3 and 4.4 show that the hybrid ADP algorithm with clusters considering
two-arc-ahead neighborhood (CL(2,D,U)) performs within −0.73% and 0.96% away
from the benchmark heuristic (DP (2, H)). As the network size becomes larger, the
significant difference between CL(2,D,U) and DP (2, H) decreases such that in large
size networks the significant solution quality of CL(2,D,U) is higher than or equal to
DP (2, H) (Appendix Table B3). As vulnerability and network size increase, CL(2,D,U)

outperforms DP (2, H). For instance, in networks with low network vulnerability and
low disruption rate, the performance of CL(2,D,U) relative toDP (2, H) increases from
small to large networks by the following gap percentages: 0.43% to −0.33%, 0.41%
to −0.31% and 0.22% to −0.24% for 2, 3 and 5 disruption levels, respectively (Tables
4.3).

This is also true for high network vulnerability as shown in Table 4.4. As
network vulnerability becomes higher, the performance of CL(2,D,U) relative to
DP (2, H) increases. For large and highly vulnerable networks, on average CL(2,D,U)

outperforms DP (2, H) for all disruption levels and disruption rates.

In the networks with high disruption rates, in general the performance gap between
CL(2,D,U) and DP (2, H) on general diminishes when compared to the networks with
low disruption rates. For instance, in Table 4.3, in small networks with 2 disruption
levels, DP (2, H) outperforms CL(2,D,U) by 0.43% (with significant difference) in low
disruption rate and by 0.21% (with no significant difference) in high disruption rate.
This is because as disruption rate increases, the routing algorithms tend to make
similar routing decisions considering more risk aversive links.
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The hybrid ADP algorithm with clusters considering two-arc-ahead neighbor-
hood (CL(2,D,U)) versus the MDP

The comparison between CL(2,D,U) and MDP is limited to the instance types where
we can compute the optimal policy within 1 hour. Tables 4.3-(a) and 4.4-(a) show
that as disruption rate increases, the performance gap between CL(2,D,U) and MDP
decreases. In high network vulnerability and small network size, the performance
gap decreases from 1.04% (significant difference) to 0% (no significant difference)
for low and high disruption rates, respectively (Tables 4.4-(a) and Appendix B1-(a)).
On the other hand, as the network vulnerability becomes higher, the performance
gap between CL(2,D,U) and MDP increases. For instance, in small networks with low
disruption rate with 3 disruption levels, the performance gap increases from 1.02%
to 1.61% for low and high network vulnerability, respectively (Tables 4.3-(b) versus
Tables 4.4-(b)). Note that these percentages are computed from the percentage gap
differences.

The hybrid ADP algorithm with clusters considering two-arc-ahead neighbor-
hood (CL(2,D,U)) versus the standard ADP algorithms

The paired samples t-test results show that with 95% confidence CL(2,D,U) performs
statistically different than the standard ADP algorithms for all the test instances
regardless of network size and vulnerability (Appendix Tables B1- B3). Tables
4.3 and 4.4 show that CL(2,D,U) outperforms the standard ADP algorithms in all
of the network types regardless of network size, vulnerability, disruption rate and
disruption level. This shows that the combination of deterministic lookahead policy
with the value function approximation provides better updates of the value functions.
This performance change is more significant when the number of disruption levels
increases.

As the network size increases, the performance gap between CL(2,D,U) and standard
ADP algorithms increases. For instance, Table 4.3-(a) shows that CL(2,D,U) outper-
forms ADPS (ADPD) by 2.69% (2.38%) (small network, low disruption rate) and
3.40% (5.28%) (large network, low disruption rate). The difference increases even
more as the disruption level increases from K = 2 to K = 5. Table 4.3-(c) shows
that CL(2,D,U) outperforms ADPS (ADPD) by 1.94% (1.18%) (small network, low
disruption rate) and 6.60% (8.33%) (large network, low disruption rate). This result
is also true for high network vulnerability (Table 4.4). The paired samples t-test
results show that these differences are all significant with 0.05.

Tables 4.3 and 4.4 also indicate that in high disruption rate networks, on average
the performance gap between the hybrid algorithms and the standard algorithms is
lower when compared to low disruption rate networks. This is because the ADP
algorithms find similar risk aversive routing policies as the vulnerable links become
highly disrupted. For instance, Table 4.4-(a) shows that CL(2,D,U) outperformsADPS
(ADPD) by 5.20% (4.93%) (small network, low disruption rate) and 1.13% (0.05%,
no significant difference) (small network, high disruption rate). The is also true for
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3 and 5 disruption levels. Table 4.4-(c) shows that CL(2,D,U) outperforms ADPS
(ADPD) by 4.13% (5.32%) (large network, low disruption rate) and 2.03% (3.29%)
(large network, high disruption rate).

Computational Time

Figure 4.8 shows the computational times (in minutes) of the standard ADP algorithm
(ADPD), the hybrid ADP algorithm (CL(2,D,U)) and the benchmark heuristic
DP (2, H) with respect to different network sizes with the given disruption level
(considering both low and high vulnerability). When the network size increases
from small to large with 2 disruption levels, Figure 4.8-(a) shows that the hybrid
ADP algorithm is slower (still less than 0.1 minutes) than the standard ADP and
DP (2, H) due to search in clusters and update of the state values in the deterministic
shortest path. As disruption level increases, the hybrid ADP mitigates the effect of the
increase in the network size better than the standard ADP and DP (2, H) with lower
computational times. Figure 4.8-(c) shows that when the network size increases
with higher disruption levels, the computational time for the hybrid ADP algorithm
increases at a slower rate than the standard ADP and DP (2, H).
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Figure 4.7 Computational time for MDP in instances with different disruption levels and
network sizes (within CPU limit of 1 hour)

The computational time is also significantly affected from the number of disruption
levels as the state- and outcome-space increases exponentially with the increase in
disruption levels. For instance, Figure 4.7 shows the computational times (in minutes)
of the MDP with respect to different disruption levels with the given network size
where we can solve MDP in an hour (the non-existent data for medium network
3 and 5 disruption levels indicates that CPU is more than an hour). We observe
that the computational time increases exponentially with the increase in disruption
levels and network size. Figure 4.9 shows the computational times (in minutes) of
the standard ADP algorithm (ADPD), the hybrid ADP algorithm (CL(2,D,U)) and
the benchmark heuristic DP (2, H) with respect to different disruption levels with
the given network size. The figure illustrates that both the ADP algorithms and
DP (2, H) significantly reduces the computational time significantly. However, we
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also observe that the hybrid ADP algorithm with the clustering approach’s (CL(2,D,U))
computational time has the lowest rate of increase as the number of disruption levels
increases (Figure 4.9-(a) and (c)). The computational time of DP (2, H) increases
at a higher rate when the number of disruption levels increases. This is true for all
network sizes. However, as the network size increases with the increase in disruption
level the difference between the hybrid ADP and DP (2, H) increases even more. This
shows that the hybrid ADP with clustering approach mitigates the effect of state-
and outcome-space explosion when compared to DP (2, H). Although DP (2, H) has
relatively good solution quality as discussed in Section 4.4.4, for large scale networks
with many disruption levels the hybrid ADP algorithms with the clustering approach
becomes more attractive with lower computational time and high solution quality for
practical implementation.
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4.5. Conclusion
In this paper, we consider dynamic shortest path problems with stochastic disruptions
on a subset of arcs. Both historical and real-time information for the network are
used in dynamic routing decisions. The disruption states of the following stages are
dependent on the travel time on the current arc. We denote this property as travel-
time-dependency. We model the problem as a discrete-time, finite Markov decision
process (MDP).

MDP formulation provides a theoretical framework to find dynamic routing decisions
for each decision epoch. However, for large scale networks with disruption
levels, obtaining the optimal solution faces the curses of dimensionality, i.e., states,
outcome, and decisions. Therefore, we use an Approximate Dynamic Programming
(ADP) algorithm. First, we employ a standard value function approximation
algorithm with various algorithmic design variations for updating the state values
with efficient exploration/exploitation strategies. Then, we improve the value
function approximation algorithm by developing a hybrid ADP with a deterministic
lookahead policy and value function approximations using a clustering approach. We
develop two types of hybrid ADP algorithms considering a shorter horizon (two-arc-
ahead neighborhood) and a longer horizon (three-arc-ahead neighborhood) for the
deterministic lookahead policy.

We develop a test bed of networks to evaluate the efficiency (both in computational
time and solution quality) of our algorithms. The generated networks vary in network
size, network vulnerability, number of disruption levels, and disruption rate on the
vulnerable arc. We use a benchmark heuristic, a stochastic limited lookahead policy
(DP (2, H)), shown to perform well in binary disruption levels as shown in Chapter 3.
In our numerical analysis, we show that the hybrid ADP algorithms with the clustering
approach significantly outperforms the standard ADP algorithms. The solution quality
of hybrid ADP algorithms is higher than or equal to the solution quality of the
benchmark heuristic when the network size gets large and the disruption level gets
higher. The computational time of the hybrid ADP algorithms shows the slowest
rate of increase with respect to the increase in network size and disruption level.
The computational time of DP (2, H) increases at a higher rate when the number of
disruption levels increases. Although DP (2, H) has relatively good solution quality,
for large scale networks with many disruption levels the hybrid ADP algorithms
become more attractive with lower computational time and high solution quality for
practice.

This paper provides an exploratory study on solving the dynamic shortest path
problems using hybrid ADP algorithms in large scale networks with many disruption
levels. Furthermore, we provide an extensive analysis on the effect of using different
algorithmic design variations of ADP algorithms for the problem on hand. Future
research involves integrating the hybrid ADP algorithms for the dynamic shortest path
problems into the stochastic vehicle routing problem with dynamic travel times.
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4.A. Appendix

A Paired samples t-test results for ADP algorithmic design varia-
tions analysis

Table A1 Paired significance t-test for the difference between ADP algorithms with
deterministic and DP (2, H) initialization heuristics with different network sizes

Small Network Medium Network Large Network
K=2 K=3 K=2 K=3 K=2 K=3
p-value p-value p-value p-value p-value p-value

ADPS : Deterministic - DP(2,M) 0.00 0.09 0.38 0.00 0.00 0.00
ADPD : Deterministic - DP(2,M) 0.00 0.00 0.00 0.00 0.00 0.00
CL(2,S,NU): Deterministic - DP(2,M) 0.00 0.21 0.52 0.00 0.42 0.00
CL(2,S,U): Deterministic - DP(2,M) 0.00 0.05 0.00 0.00 0.26 0.00
CL(3,S,NU): Deterministic - DP(2,M) 0.00 0.00 0.00 0.00 0.00 0.00
CL(3,S,U): Deterministic - DP(2,M) 0.00 0.00 0.00 0.00 0.00 0.00
CL(2,D,NU): Deterministic - DP(2,M) 0.00 0.00 0.00 0.00 0.00 0.00
CL(2,D,U): Deterministic - DP(2,M) 0.00 0.00 0.00 0.00 0.00 0.00
CL(3,D,NU): Deterministic - DP(2,M) 0.00 0.00 0.00 0.00 0.00 0.00
CL(3,D,U): Deterministic - DP(2,M) 0.00 0.00 0.00 0.00 0.00 0.00

Table A2 Paired significance t-test for the differences between ADP algorithms with single-
pass and double-pass approach with different network sizes

Small Network Medium Network Large Network
Mean Std p-value Mean Std p-value Mean Std p-value

ADPS − ADPD 0.16 0.06 0.01 -0.13 0.10 0.18 -1.17 0.18 0.00
CL(2,S,NU) − CL(2,D,NU) 0.21 0.03 0.00 0.24 0.04 0.00 0.05 0.09 0.63
CL(2,S,U) − CL(2,D,U) 0.37 0.05 0.00 0.84 0.08 0.00 0.43 0.07 0.00
CL(3,S,NU) − CL(3,D,NU) 0.58 0.06 0.00 0.59 0.05 0.00 0.23 0.08 0.00
CL(3,S,U) − CL(3,D,U) 1.18 0.09 0.00 1.64 0.11 0.00 0.56 0.10 0.00

(a) 2 disruption levels
Small Network Medium Network Large Network

Mean Std p-value Mean Std p-value Mean Std p-value
ADPS − ADPD 0.33 0.06 0.00 0.74 0.10 0.00 -0.52 0.13 0.00
CL(2,S,NU) − CL(2,D,NU) 0.14 0.04 0.00 0.11 0.03 0.00 0.14 0.07 0.04
CL(2,S,U) − CL(2,D,U) 0.14 0.03 0.00 0.13 0.02 0.00 0.09 0.38 0.81
CL(3,S,NU) − CL(3,D,NU) 0.37 0.06 0.00 0.46 0.04 0.00 0.31 0.06 0.00
CL(3,S,U) − CL(3,D,U) 0.78 0.08 0.00 0.69 0.07 0.00 0.35 0.07 0.00

(a) 3 disruption levels

Table A3 Paired significance t-test for the differences between hybrid ADP algorithms with
no-update and update approach with different network sizes

Small Network Medium Network Large Network
Mean Std p-value Mean Std p-value Mean Std p-value

CL(2,D,NU) − CL(2,D,U) 0.05 0.02 0.01 0.14 0.02 0.00 0.36 0.06 0.00
CL(3,D,NU) − CL(3,D,U) 0.06 0.03 0.03 0.00 0.01 0.72 0.09 0.07 0.22

(a) 2 disruption levels
Small Network Medium Network Large Network

Mean Std p-value Mean Std p-value Mean Std p-value
CL(2,D,NU) − CL(2,D,U) 0.04 0.02 0.02 0.15 0.03 0.00 0.14 0.04 0.00
CL(3,D,NU) − CL(3,D,U) 0.01 0.01 0.22 0.00 0.01 0.66 0.01 0.01 0.69

(b) 3 disruption levels
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Table A4 Paired significance t-test for the differences between hybrid ADP algorithms with
no-update and update approach with different network vulnerability

Low Vulnerability High Vulnerability
Mean Std p-value Mean Std p-value

CL(2,D,NU) − CL(2,D,U) 0.13 0.02 0.00 0.17 0.03 0.00
CL(3,D,NU) − CL(3,D,U) 0.07 0.03 0.03 0.01 0.02 0.58

(a) 2 disruption levels
Low Vulnerability High Vulnerability

Mean Std p-value Mean Std p-value
CL(2,D,NU) − CL(2,D,U) 0.03 0.02 0.20 0.10 0.02 0.00
CL(3,D,NU) − CL(3,D,U) 0.00 0.01 0.58 0.00 0.01 0.83

(a) 3 disruption levels

B Paired samples t-test results for comparison of algorithms

Table B1 95% Confidence interval (95% Lower bound (LCI), 95% Upper bound (UCI)) for
the differences between the algorithms in small network instances

Low Vulnerability High Vulnerability
Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.18 -0.04 0.00 -0.14 0.02 0.14 -0.14 -0.05 0.00 -0.16 0.37 0.41

MDP −
CL(2,D,U)

-0.29 -0.07 0.00 -0.19 -0.07 0.00 -0.38 -0.18 0.00 -0.21 0.21 1.00

ADPS −
CL(2,D,U)

0.47 0.90 0.00 0.33 0.87 0.00 0.94 1.47 0.00 0.02 0.68 0.04

ADPD −
CL(2,D,U)

0.35 0.86 0.00 0.22 0.62 0.00 0.86 1.42 0.00 -0.19 0.21 0.89

CL(3,D,U) −
CL(2,D,U)

-0.06 0.06 0.89 0.03 0.24 0.01 -0.05 0.05 1.00 -0.01 0.18 0.07

(a) 2 disruption levels
Low Vulnerability High Vulnerability

Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate
95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.17 -0.03 0.01 -0.14 -0.04 0.00 -0.25 0.04 0.16 0.05 0.36 0.01

ADPS −
CL(2,D,U)

0.38 0.76 0.00 0.26 0.84 0.00 0.94 1.64 0.00 0.36 0.73 0.00

ADPD −
CL(2,D,U)

0.14 0.53 0.00 0.12 0.47 0.00 0.42 0.89 0.00 0.21 0.49 0.00

CL(3,D,U) −
CL(2,D,U)

-0.04 0.06 0.65 -0.05 0.37 0.12 -0.02 0.23 0.10 0.05 0.25 0.00

(b) 3 disruption levels
Low Vulnerability High Vulnerability

Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate
95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.20 0.08 0.39 -0.13 -0.02 0.00 -0.07 0.62 0.00 -0.39 -0.10 0.00

ADPS −
CL(2,D,U)

0.31 0.73 0.00 0.33 1.00 0.00 1.42 1.81 0.00 0.83 1.68 0.00

ADPD −
CL(2,D,U)

0.20 0.43 0.00 0.09 0.42 0.00 1.32 1.73 0.00 0.22 0.58 0.00

CL(3,D,U) −
CL(2,D,U)

0.03 0.31 0.01 0.05 0.31 0.01 0.05 0.19 0.00 0.09 0.27 0.00

(c) 5 disruption levels
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Table B2 95% Confidence interval (95% Lower bound (LCI), 95% Upper bound (UCI)) for
the differences between the algorithms in medium network instances

Low Vulnerability High Vulnerability
Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.21 -0.05 0.00 -0.20 -0.05 0.00 -0.31 -0.19 0.00 -0.44 -0.17 0.00

MDP −
CL(2,D,U)

-0.28 -0.11 0.00 -0.25 -0.09 0.00 -0.42 -0.27 0.00 -0.51 -0.25 0.00

ADPS −
CL(2,D,U)

1.20 1.72 0.00 -0.45 0.85 0.01 1.68 2.22 0.00 0.98 1.47 0.00

ADPD −
CL(2,D,U)

1.10 1.69 0.00 0.77 1.25 0.00 1.51 2.02 0.00 0.98 1.42 0.00

CL(3,D,U) −
CL(2,D,U)

-0.03 0.13 0.21 0.06 0.23 0.00 -0.06 0.09 0.69 0.05 0.33 0.01

(a) 2 disruption levels
Low Vulnerability High Vulnerability

Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate
95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.21 0.04 0.17 -0.22 0.01 0.07 -0.40 -0.01 0.04 -0.33 0.14 0.43

ADPS −
CL(2,D,U)

1.82 2.89 0.00 1.12 1.96 0.00 2.19 3.09 0.00 0.66 1.48 0.00

ADPD −
CL(2,D,U)

0.91 1.45 0.00 0.70 1.08 0.00 1.39 1.88 0.00 0.70 1.18 0.00

CL(3,D,U) −
CL(2,D,U)

0.08 0.34 0.00 0.18 0.43 0.00 -0.03 0.26 0.11 0.18 0.40 0.00

(b) 3 disruption levels
Low Vulnerability High Vulnerability

Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate
95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.67 -0.30 0.00 -0.45 -0.20 0.00 -0.48 -0.06 0.02 -0.49 -0.11 0.00

ADPS −
CL(2,D,U)

1.71 2.72 0.00 2.18 2.87 0.00 1.79 3.09 0.00 2.52 3.61 0.00

ADPD −
CL(2,D,U)

1.84 2.62 0.00 1.92 2.78 0.00 1.43 2.18 0.00 1.42 2.15 0.00

CL(3,D,U) −
CL(2,D,U)

0.01 0.35 0.04 0.19 0.34 0.02 0.05 0.39 0.02 0.10 0.50 0.01

(c) 5 disruption levels
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Table B3 95% Confidence interval (95% Lower bound (LCI), 95% Upper bound (UCI)) for
the differences between the algorithms in large network instances

Low Vulnerability High Vulnerability
Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.19 0.56 0.33 -0.36 0.33 0.93 -0.34 0.49 0.55 -0.14 1.02 0.13

ADPS −
CL(2,D,U)

1.33 2.40 0.00 1.17 2.25 0.00 2.20 3.02 0.00 2.35 3.26 0.00

ADPD −
CL(2,D,U)

2.11 3.69 0.00 1.54 2.72 0.00 3.91 5.27 0.00 3.43 4.66 0.00

CL(3,D,U) −
CL(2,D,U)

0.09 0.54 0.01 0.19 0.82 0.00 -0.29 0.21 0.77 0.42 0.98 0.00

(a) 2 disruption levels
Low Vulnerability High Vulnerability

Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate
95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.20 0.53 0.37 -0.31 0.12 0.11 -0.07 0.68 0.30 -0.73 0.87 0.00

ADPS −
CL(2,D,U)

2.77 3.66 0.00 2.34 3.14 0.00 2.58 3.66 0.00 2.35 3.24 0.00

ADPD −
CL(2,D,U)

2.66 3.80 0.00 3.17 4.25 0.00 3.06 4.09 0.00 2.91 3.94 0.00

CL(3,D,U) −
CL(2,D,U)

-0.07 0.19 0.36 -0.06 0.20 0.27 -0.28 0.13 0.43 -0.08 0.51 0.15

(b) 3 disruption levels
Low Vulnerability High Vulnerability

Low Disruption Rate High Disruption Rate Low Disruption Rate High Disruption Rate
95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

95%
LCI

95%
UCI

p-
value

DP (2, H) −
CL(2,D,U)

-0.25 0.51 0.51 -0.56 0.86 0.02 -0.38 1.17 0.65 -1.19 1.32 0.01

ADPS −
CL(2,D,U)

2.76 4.27 0.00 2.71 3.81 0.00 1.71 3.22 0.00 0.83 1.55 0.00

ADPD −
CL(2,D,U)

3.63 5.17 0.00 3.72 4.82 0.00 2.09 3.69 0.00 1.38 2.47 0.00

CL(3,D,U) −
CL(2,D,U)

0.09 1.37 0.03 0.55 0.95 0.02 0.72 2.13 0.00 -0.04 0.22 0.16

(c) 5 disruption levels





103

Chapter 5

Influence of Spillback Effect on
DSPP with Network Disruptions

In Chapters 3 and 4, we focused on dynamic shortest path problems assuming that
the disruptions in the neighboring arcs do not propagate. Though, in every day life,
due to the limited capacity of the roads, we observe that when the road in front of
us (downstream road) is blocked, the queue propagates backwards to the road we
are travelling (upstream road). In traffic engineering this is called as spillback effect.
In this chapter, we investigate the impact of considering or ignoring the spillback
phenomenon on the quality of routing decisions. We consider the optimal, the online,
the offline and two-arcs-lookahead hybrid routing approach used in Chapter 1 with
the spillback effect.

5.1. Introduction
In traffic networks, travelers experience disruptions due to accidents, road closures
and road bottlenecks. These dynamic disruptions in traffic networks cause a
drastic increase in travel times and decrease the probability of being on-time at the
destination as stated in Chapter 1 and 2. Dynamic routing algorithms are emerging
to reduce the impact of these disruptions by taking into account the stochastic and
dynamic nature of the travel times. However, in case of a disruption, an efficient
routing model also requires a good description of the congestion dynamics. One of
these dynamics is the spillback effect, a congestion propagation to an upstream road.
When there is a congestion at a route, due to the limited capacity, the queue at this
route spills back to the upstream roads in time. In this phenomenon, a queue on a
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downstream road affects the possible output rate of the upstream roads.

In the literature, several studies have been done to analyze the impact of spillback
effect on travel time variability (Gentile et al. 2007, Knoop et al. 2007, Knoop
2009, Osorio et al. 2011). These studies show that the travel time distributions
and the patterns obtained with and without modeling the spillback phenomenon are
considerably different, especially when the congestion level is high. For instance,
Knoop (2009) shows that when spillback effects are not considered, the delay
increases significantly. The high impact of the spillback phenomenon in highly
disrupted networks provides an opportunity to analyze the effect of the spillback in
dynamic routing decisions.

Furthermore, several studies focus on the effect of spillback modeling in adaptive
routing. Knoop et al. (2008) investigates the value of considering the spillback
information in fixed route choice and adaptive route choice models via a simulation
model. They show that the effect of not considering the spillback information is higher
in fixed route choice models. In adaptive routing as the drivers choose alternative
routes, the spillback effect decreases due to lower densities at downstream arcs.
In Huang and Gao (2012) and Huang (2012) the effect of spillback is considered
implicitly by modeling travel times as a multivariate normal distribution with random
coefficient of correlations. In these studies, it is shown that the correlations between
arc travel times decrease with temporal and spatial distances. When arc dependency
is not taken into account, travelers underestimate the risk of vulnerable arcs and
hence delays increase.

In this chapter, we analyze the influence of considering or ignoring the spillback effect
on the quality of routing decisions for dynamic shortest path problems. For this,
we model the dynamic shortest path problem with travel-time-dependent stochastic
disruptions (see Chapter 2) as a discrete-time, finite Markov Decision Process (MDP).
We incorporate the spillback effect into the MDP formulation. To analyze the effect
of the spillback, we also formulate the MDP ignoring the spillback effect. Comparing
both results shows how much delay can be avoided by using the spillback information.

We model the spillback effect by using the simplified Kinematic Wave Model (KWM)
(Lighthill and Whitham 1955, Newell 1993)). We find an approximate value for the
shockwave speed which is the rate of decrease in speed of the vehicles in the upstream
roads. Then, we integrate the rate of decrease in speed to the state transition
probability functions in the MDP formulation. We choose to use KWM as the queue
dynamics are realistic and the computation is efficient (Knoop 2009).

This chapter analyzes the effect of considering or ignoring the spillback information
also for different routing algorithms. First, we provide the optimal algorithms
considering the spillback model or ignoring it. However, for increasing network size
and disruption levels, the computational complexity increases causing the MDP to
become computationally intractable. Therefore, to reduce the state-space, we use a
hybrid dynamic programming algorithm using the detailed disruption and spillback
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information for a limited part of the network only (Chapter 3). We also provide online
and static routing algorithms mostly used in practice. We use a test bed of different
network structures with different levels of disruption rates and spillback rates. Then,
we compare the solution quality and the computational time of different algorithms
in case of the spillback effect in the network.

The main contributions of this chapter are as follows:

1. We model the dynamic shortest path problem as a discrete-time, finite Markov
Decision Process. We model the spillback effect by using the well known
Kinematic Wave Model. We explicitly integrate the spillback effect into the
MDP formulation by modifying the state transition function. Using this
framework, we model a stochastic dynamic programming approach using
dynamic disruption and spillback information for a limited part of the network.
We also model an online and an offline routing algorithm that are mostly used
in practice.

2. We analyze the value of considering the spillback information on the dynamic
routing decisions by comparing the algorithms considering the spillback effect
and ignoring the spillback effect. Numerical results show that considering
the spillback effect in the dynamic routing decisions significantly improves
the solution quality for the networks with higher number of vulnerable arcs.
Moreover, the hybrid dynamic programming approach with the disruption and
the spillback information for the limited part of the network, significantly
reduces the computational time while providing on average significantly higher
solution quality than the full information model that ignores the spillback effect.

The structure of the chapter is as follows. Section 2 provides the details of the
spillback model and Section 3 describes our modeling framework based on dynamic
programming. Section 4 discusses the offline, online and dynamic programming
algorithms within this framework in detail. In Section 5, the experimental design,
the numerical results and the important insights are discussed. In Section 6, we
conclude the chapter by providing an overview of the results and future directions.

5.2. Modeling the Spillback Effect
In disrupted networks with limited capacities, spillbacks occur when the growing
queues at the downstream arcs block the departures from the upstream arc. Spillback
is the phenomenon that a queue on a downstream arc affects the possible output
volume of the upstream arc or arcs connected to it. In the traffic theory literature,
several analytical models are used to analyze the spillback dynamics: finite capacity
queueing models (Jain and Smith 1997, Van Woensel and Vandaele 2007, Osorio
and Bierlaire 2009, Osorio et al. 2011) and kinematic wave model (Ziliaskopoulos
2000, Skabardonis and Geroliminis 2005, Gentile et al. 2007, Knoop et al. 2007,
Hoogendoorn et al. 2008, Knoop et al. 2008, Knoop 2009).
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Direction of  shockwave

qa=1500 vph   ρa=20 vpm qb=500 vph   ρb=40 vpmqb < qa and  ρb > ρa

a b

Figure 5.1 Shockwave in traffic (qa and qb represent flow of vehicles per hour (vph) on
roads “a” and “b”; qa and qb represent density of vehicles per metersquare (vpm))

In this chapter, we choose to use the kinematic wave model (KWM) as it is widely
accepted in the literature for modeling the spillback effect where the evolution of
queues are modeled in a realistic manner and it is computationally efficient and
simple (Knoop et al. 2007, Knoop 2009, Qian et al. 2012). Furthermore, we formulate
the problem in terms of a Markov Decision Process (MDP) where we use average
travel times as inputs to the model. So, KWM is more suitable for our model as it is
a first-order-model using average traffic variables such as average flow and average
speed on a road.

KWM is based on a wave phenomenon where it is applied to highway traffic
flows (Lighthill and Whitham 1955, Newell 1993). Daganzo (1994) and Daganzo
(1995) also explain the kinematic wave theory for traffic flow as a discretized cell
transmission model which can be used to predict the evolution of traffic over time
and space. The theory states that the traffic states are separated by boundaries.
The speed at which these boundaries propagate can be computed using the shock
wave speed. The shock wave speed is the rate of change in the speed of vehicles at
the upstream arcs. Figure 5.1 illustrates that at the downstream of the road (“part
b”) there is a higher density of vehicles due to a disruption. Due to the limited
capacity of the road and the outflow of the upstream road (“part a”), the density
will move to the upstream road creating a shockwave between the boundary of the
roads. This shockwave speed moves in the opposite direction of the traffic slowing
down the vehicles at the upstream. We consider this type of spillback effect where
the shockwave occurs between two arcs.

To use the shock wave speed theory, it is assumed that the number of vehicles is
conserved and the flow of vehicles depends on the density in an arc. In this thesis,
we consider the shockwave speed depending on the realizations of flow and density
variables observed at stage k where we make routing decisions. The rate of change
in speed, ωk at stage k, is formulated by the ratio of the difference between the flows
of vehicles at these arcs to the difference between the densities of the two arcs given
in Equation (5.1):

ωk = (qdk − quk)/(ρdk − ρuk). (5.1)
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qik is the vehicle flow at arc i observed at stage k (where u is the upstream arc and
d is the downstream arc) and ρik is the density of arc i observed at stage k. We only
make routing decisions decisions at the nodes and we approximate this equation using
only the travel time and the distance, which are the inputs to the MDP formulation.
For simplicity, we use first-order-models based on average values and assume that
the flow of vehicles at non-congested state is the same for all arcs. Considering the
fundamentals of traffic theory (Daganzo 2006), we use the equation below: (vik:
speed at arc i at stage k, vfi: free flow speed at arc i, Li: length of the arc i, tik: the
observed travel time to travel arc i at stage k and tfi: travel time during the free flow
speed at arc i)

ρik =
qik
vik

. (5.2)

When we replace variable ρ in Equation (5.1) with the Equation (5.2), we obtain the
rate of change in the speed of the upstream arc as:

ωk =
(qdk − quk)

( qdkvdk
− quk

vuk
)
. (5.3)

The above formulation can be easily calculated with traffic data. However, in this
chapter the input to the model is the average travel time or average speeds for each
arc. Thus, we investigate relating the traffic flow to the average speed and to the
average travel time. It is intuitive that increasing congestion on an arc results in a
decrease in the average speed on that arc. When we consider a congestion model
using a discrete Markov process with an arc capacity, the rate of change in the traffic
flow on an arc is defined as the ratio between the speed of the arc at that stage and
the free flow speed: vik

vfi
(Jain and Smith 1997, Wang et al. 2010).

By using the fundamentals of the traffic theory (Daganzo 1994, Rakha and Zhang
2005)), the average travel time observed at stage k for an arc i during the congestion
can be computed as the ratio of the length of the arc, Li and the average speed during
traveling on the arc, vik:

vik =
Li
tik
. (5.4)

Using these equations, Equation (5.3) is approximated to: (tfd and tfu: travel time
during the free flow speed at the downstream and the upstream arc respectively; Ld:
length of the downstream arc)

ωk u
(
tfd

tdk
− tfu

tuk
) ∗ aLd

(a ∗ tfd − tfu)
. (5.5)

“a” is the ratio of the distance of the upstream to the downstream arc (Lu

Ld
). So when

a ≥ 1, the spillback effect is higher at the upstream arc because the queue at the
shorter and congested downstream arc spill to the upstream arc at a higher rate.
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The rate of change in travel time for the upstream arc (γrk) is then the ratio of the
travel time observed at stage k to the new travel time with modified speed due to the
spillback effect becomes:

γrk u
tdk ∗ (a ∗ tfd − tfu)

tdk ∗ (a ∗ tfd − tfu) + (tfd ∗ tuk − tfu ∗ tdk)
. (5.6)

Osorio et al. (2011) argues that KWM captures average deterministic traffic condi-
tions. Our problem is stochastic and transient. So, in our model, we use KWM to
determine the shock wave speed for each disruption state. Then, we incorporate the
rate of change in travel time due to the spillback to our probability transition matrix
in the MDP formulation. In this way, we modify the spillback model such that it is
state dependent and transient.

To model the arc dependency and the approximate effect of propagation from
downstream arcs, we use a linear relationship between the one-step-transition
function for the upstream arcs at stage k. We consider spillback phenomenon as
an effect that increases the probability of having disruptions. Because of this, we
incorporate the spillback effect in the probability transition function.

We assume that the downstream arcs, affecting the travel time of an upstream arc,
i.e. r, are limited to the arcs that are two-arcs ahead of arc r which is denoted by
the neighborhood vector: Zone(r). Note that in Huang (2012), it is shown that the
correlations between arc travel times decrease with temporal and spatial distances.

We also define a constant α to control the rate of the propagation which can change
from network to network. We calculate the ratio of the increase in unit-time-transition
probability for the vulnerable arc r, (βrk) by rate of the change in the travel time
of upstream arc calculated using Equation (5.7) (if there is a decrease in speed,
otherwise βrk = 0):

βrk = max(0, γrk). (5.7)

Let pr
u,u′

(k) denote the one-stage disruption transition probability between any two

disruption levels for vulnerable arc r, pr
u,u′

(k) = P{D̂k+1(r) = u
′ |D̂k(r) = u}.

Transition rate to higher disruption scenarios is modeled as:
λru,u′(k) = pru,u′(k)(1 + α ∗

∑
r′∈Zone(r) βr′k).

Repair rate to lower disruption scenarios is modeled as:
µru,u′(k) = pru,u′(k)/(1 + α ∗

∑
r′∈Zone(r) βr′k).

The Markov Process is uniformizable if there exists a constant, δ, such that
for disruption state u given the time at stage k, we have (

∑
u′;u′>u λ

r
u,u′(k) +∑

u′;u′<u µ
r
u,u′(k)) ≤ δ. The uniformization constant is chosen as follows: in each

disruption state u, we choose δ such that it is equal to the maximum jump rate out
of disruption state u. For each disruption state u where the total jump rate is smaller
than δ, we add dummy transitions such that the rates out of a disruption state sums
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up to δ (Puterman 2009, Blok 2011). This process has the expected transition times
as 1/δ for all u′. Then we can define the related discrete-time process with transition
probabilities for going into disruption: p′ru,u′(k):

p′ru,u′(k) =


λru,u′(k)/δ, if u′ > u,

µru,u′(k)/δ, if u′ < u,

1− (
∑
u′;u′>u λ

r
u,u′(k) +

∑
u′;u′<u µ

r
u,u′(k))/δ, otherwise.

(5.8)

5.3. Model Formulation- Markov Decision Process
We model the Dynamic Shortest Path Problem with the disruptions in the network
as a discrete-time, finite Markov Decision Process (MDP). Consider a traffic network
represented by the directed graph G(N,A,Av) where the set N represents nodes (or
intersection of roads), A the set of directed arcs (arcs) and Av the set of vulnerable
arcs, potentially in disruption (Av ⊆ A). The number of vulnerable arcs is R: R =
|Av|. Each of these vulnerable arcs has a known probability of going into a disruption
and a known probability of recovery from the disruption.

In this paper, we assume that the travel times are affected by spillback phenomena
for the travelers who are already traveling on the arc. The spillback effect is caused
by the backward propagation of the congestion at the downstream arcs towards the
upstream arcs due to limited capacity of the arcs. We model the spillback effect by
the Kinematic Wave Theory and we integrate the spillback effect into the transition
function of the MDP.

The travel time on an arc follows a discrete distribution (predictable from the
historical data) given the disruption level at each arc. We assume that the actual travel
time for the current arc can change due the spillback effect from the downstream arcs.
We only know after traveling which actual travel time has been realized. We learn the
information about the disruption status for all the vulnerable arcs when we arrive at
a node. At each node, we make a decision to which node to travel next. Our objective
is to travel from the initial node to the destination node with the minimum total
expected travel time. We derive the optimal routing decision by the MDP formulation
with finite number of stages where stage k represents the number of nodes that have
been visited so far from the start node. The end of horizon, i.e. K, is reached by
arriving to the destination node. The state including the destination node is the goal
state which is absorbing and zero cost. All the other states have positive cost and free
of dead locks. The total number of stages, i.e. K, is unknown a priori but finite as the
process terminates by arriving at the goal state.

In this section, we formulate the problem as an MDP.
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States

The state of the system at stage k, Sk, is represented by two components:

• The current node at stage k, ik ∈ N .

• The disruption status information at stage k is denoted by D̂k which gives the
disruption level realizations for all vulnerable arcs. Each vulnerable arc can
take any value from the disruption level vector Ur. For each arc there can be
Mr different types of disruption levels: D̂k(r) ∈ Ur: Ur = {u1, u2, ...uMr}.
Note that at each stage, we use a realization of the disruption vector, D̂k and
Dk represents the random variable for disruption vector.

The state of the system at stage k is then: Sk = (ik, D̂k). The final state, SK , is
reached by arriving to the destination node.

Actions

Our action, xk, is the next node to travel given the state Sk. We note that each action
xk is an element of the set of all possible actions X (Sk) which is the neighbor set of
the current node. So, the node in the next stage is actually the action decided at the
previous state:

xk = ik+1. (5.9)

The Exogenous Information

The disruption status of the vulnerable arcs change as we proceed to the next stage.
The exogenous information consists of the realization of the disruption status of all
the vulnerable arcs. Let D̂k+1 denote the disruption status realization that becomes
known when stage k + 1 is reached:

Wk+1 = D̂k+1. (5.10)

The State Transition Function

At stage k, if the system is in state Sk, we make a decision xk and then observe the
new exogenous information Wk+1. The system transition occurs to a new state Sk+1

according to the transition function: Sk+1= SM (Sk, xk,Wk+1)
The state transition involves the following transition functions:

ik+1 = xk, (5.11)

Dk+1 = D̂k+1. (5.12)

The Cost Function

The cost of traveling from current node at stage k, i.e. ik, to the next node, xk, given
D̂k is denoted by C(Sk, xk) = tik,xk

(D̂k). In traffic, in general the travel time on the
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Downstream
Link

Upstream  Link
Current Link at Stage k

Direction of Shockwave
Block 4 Block 3 Block 2 Block 1

pu,u'(k) p'u,u'(k)‐2Δ p'u,u'(k)‐Δ p'u,u'(k)

Δ=(p'u,u'(k)‐ pu,u'(k))/ (# Blocks‐1)

Figure 5.2 The cost function considering the spillback effect on the current arc

current arc changes due to the spillback effect. The sections of the current arc located
at different distances from the downstream arc are affected from the spillback at a
different rate. To model this, we divide the current arc in blocks of time units. So,
that for each block, we compute the relative spillback effect and related increase in
travel time. In our model, changes in travel time depend on how the disruption at the
vulnerable arcs in Zone(r) spills back to the current arc (Figure 5.2). We model this
behavior as follows: we divide the current arc into B blocks. Then, we compute the
rate of increase in unit transition probabilities after considering the spillback effect.
For each block, we add the weighted effect of the spillback such that the spillback
effect increases as the block is located nearer to the congested downstream road. As
the number of blocks increases, the estimated travel time will be more accurate as the
travel time increase will be much slower through the end of the upstream link.

Let p′r
u,u′

(k) denote the unit-time-transition probability between any two disruption
levels for vulnerable arc r after considering the spillback effect from the downstream
arcs at its zone. The immediate traveling cost is also dependent on the disruption
status of its zone due to the spillback effect:
C(Sk, xk) = C(Sk, xk|D̂k(Zone(r))).

The cost function becomes:

C(Sk, xk|D̂k(Zone(r))) =

B∑
j=1

u′=Mr∑
u′=1

(p′r
u,u′

(k)− (j − 1) ∗∆) ∗ tik,xk
(D̂k+1(r) = u′)/B,

(5.13)

∆ = (p′r
u,u′

(k)− pr
u,u′

(k))/(B − 1). (5.14)

In this way, we decrease gradually the transition probability considering the spillback
effect through the beginning of the upstream arc. In these equations the ∆ is the
difference between unit transition probability for the arc r considering the spillback
effect (p′r

u,u′
(k)) and not considering at all (pr

u,u′
(k)) relative to the number of blocks.
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As the block is near to the downstream arc, we multiply the travel time with a
higher transition probability which is controlled by ∆. The block very next to the
downstream arc (B=1) has the transition probability considering the spillback rate
(p′r
u,u′

(k)). The next block has a lower transition rate by p′r
u,u′

(k)−∆. This goes until
the last block (beginning of the upstream arc) has the transition probability pr

u,u′
.

Then, we calculate the expected travel time for each block. Note that the travel time
on each block is computed by dividing the total travel time on the arc to the total
number of blocks given the disruption realization.

For simplification, the rate of travel time increase in the blocks are only calculated
depending on the disruption state of the downstream at stage k. Here, we do not
calculate what will happen to the downstream arcs when we reach the next block in
the current arc.

The Transition Probability for Travel-Time Dependency

The disruption status vector transits from D̂k to D̂k+1 according to a Markovian
transition matrix. We define the transition matrix for a vulnerable arc r from stage k
to k+1 as Θr(k|Sk, xk, D̂k(Zone(r))). This transition matrix is travel-time-dependent:
the probability of being in the disruption status of the next stage Dk+1, depends on
the travel time between the current node at stage k and the next node at stage k + 1
given the disruption status at stage k and the ones in the relevant zone. As its is
discussed in the cost function, we include the effect of spillback on the current arc.
The travel time for the current arc after calculating the effect of spillback is denoted
as C(Sk, xk|D̂k(Zone(r))).

p′r
u,u′

(k) denotes the one-stage disruption transition probability between any two
disruption levels for vulnerable arc r after considering the spillback effect:
p′r
u,u′

(k) = P{D̂k+1(r) = u
′ |D̂k(r) = u}.

Let Φr(k|Sk, xk, D̂k(Zone(r))) represent a unit-time transition matrix considering the
spillback effect.

Φr(k|Sk, xk, D̂k(Zone(r))) =


p
′r
u1,u′1(k) . p

′r
u1,u′Mr (k)

p
′r
u2,u′1(k) . p

′r
u2,u′Mr (k)

.

p
′r
uMr ,u′1

(k) . p
′r
uMr ,u′Mr (k)

 (5.15)

Θr(k|Sk, xk, D̂k(Zone(r))) is the transition matrix for a vulnerable arc r from a
disruption level realization, D̂k(r) = u, to any disruption realization at stage (k + 1),
D̂k+1(r):

Θ
r

(k|Sk, xk, D̂k(Zone(r))) =

t=tmax∑
t=1

P (tik,xk
(D̂k|D̂k(Zone(r)) = t)Φ

r
(k|Sk, xk, D̂k(Zone(r)))

t
.

(5.16)



5.3 Model Formulation- Markov Decision Process 113

Here tmax is determined by the maximum possible travel time of an arc given the
disruption state and the spillback effect from its zone. Note that t is an integer.

The probability of having the new state Sk+1 given Sk is then calculated as
(Θr

u,u′
(k|Sk, xk, D̂k(Zone(r))) indicates the specific row and column index in the

matrix Θr(k|Sk, xk, D̂k(Zone(r)))):

P (Sk+1|Sk) =

R∏
r=1

Θr
u,u′

(k|Sk, xk, D̂k(Zone(r))). (5.17)

The Objective Function

The objective is to minimize the expected total travel time from the initial state until
the final state:

min
π∈Π

E

K∑
k=1

C(Sk,X π(Sk)), (5.18)

where π denotes a policy or decision rule and Π denotes the set of all policies.

Bellman Equations

The optimization problem in Equation (5.18) can be solved using the Bellman
Equations:

Vk(Sk) = min
xk∈Xk

C(Sk, xk|D̂k(Zone(r))) +
∑
Sk+1

P (Sk+1|Sk)Vk+1(Sk+1), (5.19a)

VK(SK) = 0. (5.19b)

The solution to the MDP formulation gives the optimal solution (OptS). We refer the
reader the optimal algorithm used in Chapter 3.

To investigate the effect of not using spillback in our routing decisions, we also
solve the MDP without including the spillback effect. The optimal solution without
considering the effect of the spillback is denoted as OptNS . The cost function
becomes: C(Sk, xk) = ti,xk

(D̂k). Furthermore, we replace the transition matrix for
the vulnerable arc r in Equation (5.16), as:

Θr(k|Sk, xk) =


pru1,u1 pru1,u2 ... pru1,uMr

pru2,u1 pru2,u2 ... pru2,uMr

.

.
pruMr ,u1 pruMr ,u2 ... pruMr ,uMr


C(Sk,xk)

. (5.20)
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5.4. Routing Algorithms
In this section, we describe the algorithms used for the routing decisions with or
without considering the spillback effect.

5.4.1 Dynamic Programming with Two-arcs Ahead Look Policy
with Spillback Effect (DP (2, H))

The number of state variables increases exponentially with the number of disruption
levels. Because of this, the MDP faces the curses of dimensionality. To solve large
scale problems with many disruption levels, the dynamic programming approach for
solving the Bellman’s equations becomes computationally intractable. To reduce the
computational time, we use the travel-time-dependent probability distributions for
a limited part of the network. For the vulnerable arcs that are far from the current
node, it is intuitive to assume that we experience the long run averages without the
spillback effect. We use a Dynamic Programming Approach with Two-Arcs Ahead
Policy, (DP (2, H)) developed in Chapter 3.

(DP (2, H)) considers limited online information for each stage. The intuition
behind this is that due to the structure of the disruptions (where the probability
of experiencing the disruption decreases within time), by the time we arrive to
the further arcs, we will experience the time-invariant probabilities. Therefore, we
eliminate the computational burden to calculate the transition probabilities for all
vulnerable arcs.

In this policy, we have online information for two-arcs ahead from the decision node.
Therefore, the state space of the hybrid policy for any current node ik is modified as
Sk = (ik, D̂

ik
k ) where D̂ik

k = {urik1

k , u
rik2

k , .., u
rikRik

k } with rik which is the vector of the
vulnerable arcs that are two-arc-ahead neighborhood of the node ik and Rik = |rik |,
Rik ≤ R.

Given the state is Sk, a transition is made to the next decision state, Sk+1 =
(xk, D̂

xk

k+1). For the (DP (2, H)) policy, we use the travel-time-dependent state
transition matrix for the vulnerable arcs for which we have online information. The
probability distribution of being in state Sk+1 from the state Sk given travel-time-
dependent transition matrix is the same as the one given in Equation (5.17) except
we only consider the limited part of the transition matrix where only the vulnerable
arcs that are at most two-arcs ahead from ik are included. For the rest of the arcs, we
calculate the memoryless distributions. Note that we incorporate the spillback effect
into the model by considering the transition probabilities given in (5.16).

For the arcs that are beyond the two-arcs ahead neighborhood of ik, we use the
probability distributions with travel-time-independent memoryless probability. The
one-step transition probability for the rth vulnerable arc is denoted as pr

u,u′
=

P{D̂k+1(r) = u
′ |D̂k(r) = u}. Please note that rth vulnerable arc is an element of

the vector ri. For the formulation, we use memoryless transition probabilities for the
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vulnerable arcs at each node i as:

Θr(k|Sk, xk) =
[
pr
u,u′1

pr
u,u′2

... pr
u,u′Mr .

]
(5.21)

Then, the probability distribution of transition into state Sk+1 with memoryless
probabilities is:

P (Sk+1|Sk) =

R∏
r=1

Θr
u,u′

(k|Sk, xk). (5.22)

5.4.2 Expected Shortest Path (ESP )
In practice, if there is no real-time information available, only historical information
is used to determine the expected shortest path from the start node to the destination
node. As we use steady-state probabilities for the calculation of the expected travel
time, we do not involve the effect of spillback in our routing decisions. The output of
this strategy is a single offline route from the start node to the destination node.

The steady-state probability to be in state ur for any vulnerable arc r is denoted by
P (ur). Please note that ur ∈ Ur. The expected value of the arc r for traveling from
node ik to node xk is denoted by t̄ik,xk

:

t̄ik,xk
=
∑
ur

P (ur)tik,xk
(ur). (5.23)

For finding the minimum expected shortest path from xk to the destination node n,
Ṽxk

, the Bellman Equations in Equation (5.19) modified into:

Ṽik = min
xk∈I,xk∈Neighbor(ik)

t̄ik,xk
+ Ṽik+1

, (5.24)

ṼiK = 0. (5.25)

The immediate travel time in Equation (5.19) is replaced by the expected travel times
which makes the shortest path problem deterministic. Here, we backward recursion
algorithm where we do not consider any probability transitions.

5.4.3 Online Routing Policy (Online)
In practice, routing algorithms mostly use real-time information and historical
information. For representing these algorithms, we develop an online policy for
the dynamic shortest path problems. At each node, we have the complete online
information available for the neighbor arcs of the current node ik. For the arcs that
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are not in this zone, no online information is considered and therefore, the expected
values are used based on historical information.

The steady-state probability to be in state ur for any vulnerable arc r is denoted by
P (ur), with ur ∈ Ur. The expected value of the arc r for traveling from node ik to
node xk is denoted by t̄ik,xk

and computed by using the Equation (5.23).

At each decision node i, online information of the one-arc-ahead arcs of the current
node plus the expected values of the arcs until the destination node that are located
further from the one-arc-ahead-neighborhood are considered to determine xt. The
online route can be found by solving the following equation:

V (Sk, xk) = min
xk∈I,xk∈Neighbor(ik)

C(Sk, xk) + Ṽxk
. (5.26)

For finding the minimum expected shortest path from xk to the destination node n,
Ṽxk

, we apply a backward recursion to the following equations:

Ṽxk
= min
xk+1∈I,xk+1∈Neighbor(xk)

t̄xk,xk+1
+ Ṽxk+1

, where Ṽn = 0. (5.27)

5.5. Experimental Design
The experimental design in this chapter is similar to the network generation process
in Chapter 4. We generate different network instances using the same dimensions
used in Chapter 4, except we now have an additional spillback rate as a network
dimension. The dimensions considered are as follows:

Network size: The network size consists of small, medium and large networks with
16, 36 and 64 nodes respectively. The network is designed such that the origin
and destination nodes are situated in the top-left corner and bottom-right corner
respectively. With this structure, we prevent evaluating unnecessary nodes far from
the shortest path. Clearly, this does not limit the applicability of our results, but
merely reduces the number of unnecessary calculations to be evaluated.

Spillback rate: The parameter, α that changes the effect of spillback based on the
instance type. We use low and high spillback rates for each network. After preliminary
experiments for the generated networks, the low spillback rate is set to α = 1 and
high spillback rate is set to α = 15 to reflect a significant difference between low and
high spillback rate.

Disruption level: A vulnerable arc can have 2 and 3 different levels of disruptions.
We set the expected travel time for each vulnerable arc the same regardless of the
disruption level. For this, we adjust the steady state probabilities accordingly.

Network vulnerability: Vulnerable arcs are randomly assigned to the network with
an iterative process. At each iteration, a shortest-path is found by the current
vulnerable arcs list and a new vulnerable arc is assigned on the path of the current
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shortest path. This continues until we reach the total number of vulnerable arcs.
We have instances with low and high percentages of numbers of vulnerable arcs.
20% (low vulnerability) or up to 80% (high vulnerability) of the least-cost arcs in the
network are labeled to be vulnerable.

Disruption rate: Define low disruption rate by a low probability of having disruptions
to be between [0.2 − 0.5),and high disruption rate by a high probability in the range
[0.5− 0.8).

Travel times: Travel time of each arc for the non-disrupted level is randomly selected
from a discrete uniform distribution U(1, 10). The steady state probability of the non-
disrupted level for each vulnerable arc is randomly selected based on the disruption
rate. If there is a disruption, the travel time for the non-disrupted level is multiplied
by a scalar depending on the disruption level.

We define “instance type” as the instance that has specific network properties. For
instance, small size network with low number of vulnerable arcs with low disruption
probability is a unique instance type. In this chapter, we generate 24 different instance
types with the relevant properties as seen in Table 5.1. For each of the instance type,
we randomly generate 25 instances with random travel times and random locations
for vulnerable arcs along the actual shortest path.

Table 5.1 Summary of instance types

Number of Nodes Number of vulnerable arcs Disruption Rate Number of disruption levels

Low High Low High

16 3 5, 7 [0.2 - 0.5) [0.5 - 0.8) 2, 3
36 3 5, 7 [0.2 - 0.5) [0.5 - 0.8) 2, 3
64 3 5, 7 [0.2 - 0.5) [0.5 - 0.8) 2, 3

For the evaluation of the algorithms, we use an exact evaluation. In the exact
evaluation, for each algorithm, we obtain routing policies considering each possible
state and with/without the spillback effect. Then, with these pre-determined policies
for each instance, we compute the exact value function using the Equation (5.19)
considering that there is a spillback effect in the network. This value gives the
expected cost of the algorithm considering all possible states.

Furthermore, to evaluate the reliability of each algorithm, we calculate the variance
of travel times among different disruption scenarios. The variance is calculated as
follows (Here, S0 is the disruption state at time 0 at the origin):

σ2 =
∑
S0

probability(S0) ∗ (Cost Alternative Policy(S0))2

− [
∑
S0

(Cost Alternative Policy(S0) ∗ probability(S0))]2
(5.28)
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For each instance, the percentage cost difference(gap) relative to the optimal policy
for each routing policy is calculated as follows:

∆(%) =
(E[Alternative Policy] + σ(Alternative Policy))− (E[Optimal Policy] + σ(Optimal Policy))

(E[Optimal Policy] + σ(Optimal Policy))
∗ 100

(5.29)

The algorithms presented in this paper are programmed in Java. The computational
results in this section are obtained by using IntelCore Duo 2.8 Ghz Processor with
3.46 GB RAM.

5.6. Numerical Results
For each instance type, we compute the average of the 25 instances. Then, we
aggregate these results according to these network dimensions: the disruption rate,
the network size, the vulnerability and the spillback rate. In the numerical results,
the aggregated results for the expected travel time, the variance, the percentage gap
and the computational time are shown for the network size, the vulnerability and the
spillback rate. Note that for computing C(Sk, xk|D̂k(Zone(r))), we fix the number of
blocks (B) to 4 to observe the effect of the spillback rate more intensely.

Effect of the Network Size

To investigate the effect of considering the spillback information on different network
sizes, we compare the expected travel time and the variance of the routing algorithms
for small, medium and large networks with 16, 36 and 64 nodes respectively. On
small size networks, as the alternatives are limited, the effect of ignoring the spillback
effect and using the limited information is higher. For instance, Table 5.3 shows that
the percentage gap of the optimal algorithm without the spillback effect (OptNS) is
on average 7.035% worse than the optimal algorithm with the spillback effect (OptS)
under low disruption rate for small networks. This difference shows that the delay
caused by not considering the spillback information in our routing decisions is higher
for the small networks.

The performance of DP (2, H) is better than the OptNS , but still 2.236% worse than
OptS . This gap is the value of considering only a limited part of the network. Figure
5.3 shows that as the network size increases, the gap and the variance decrease.
Figure 5.3 shows that the performance difference between the DP (2, H) and the
OptNS and the Expected Shortest Path algorithms also decreases with the increase in
the network size. This shows that as the vulnerable arcs become scattered, the effect
of spillback rate in routing decisions decreases compared to the smaller networks. On
the other hand, the performance of the Online algorithm gets worse as the network
size increases. This is because considering the online but not spillback information for
high number of arcs leads to higher cost on average. The variance of total travel time
decreases for all algorithms as there are more alternatives in large networks. This
way, in case of a high effect disruption an alternative lower cost decision is made.
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When we compare the OptNS with the Online and the Expected Shortest Path
algorithm, we observe that using the full information by ignoring the spillback
effect gives similar performances as static and online algorithms both in small and
large size networks. This indicates that considering the spillback information has
on average higher impact on the quality of the routing decisions than considering
detailed disruption information for the whole network.
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Figure 5.3 The expected value and the variance of the algorithms evaluated with the
spillback effect for different network sizes
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Effect of the Disruption Rate

Tables 5.2, 5.3 and 5.4 show that as the disruption rate increases, the gap between the
algorithms in terms of the expected travel time decreases as they choose the similar
routes which are generally the risk aversive ones. As the spillback rate increases,
the transition probabilities to a higher disruption level increases at a higher rate.
Therefore, the algorithms considering the spillback effect in their routing decisions
choose the routes with lower expected travel times. Similarly, as the disruption
probabilities are higher and vulnerable arcs are consecutive each other, the algorithms
ignoring the spillback effect also choose alternative routes with lower expected travel
times.

Though, when we consider the variance, however, due to higher transition probabil-
ities the variance of the routes for each algorithm increases compared to the lower
disruption rate case.

Effect of Network Vulnerability

The expected travel time and the variance increases as there are more vulnerable
arcs in the network. The impact of taking into account the spillback effect also
increases with the number of vulnerable arcs. For instance, Table 5.3 shows that
the performance gap between the OptS and the OptNS increases from 3.905% to
5.759% from low vulnerable to highly vulnerable networks with low disruption rate.
This result is intuitive because as there are more vulnerable arcs consecutive to each
other, the transition rates and so the travel time increase due to the spillback effect.
Furthermore, the realized travel times on the current arc at stage k + 1 is more
different than the observed travel times at stage k due to the higher impact of the
spillback effect. Therefore, the algorithms using the spillback information choose risk
aversive routes. Figure 5.4 shows that the online algorithms performance on highly
vulnerable networks is much worse than the performance on the low vulnerable
networks. The intuition behind this is that the online algorithm uses the observed
travel times for the current arc and expected travel times for the rest of the vulnerable
arcs. When the observed value is much more different from the realized value due to
the spillback effect, the solution quality decreases significantly.

The percentage gap beween theOptNS and theDP (2, H) algorithm with the spillback
effect increases as the number of vulnerable arcs increases (Table 5.3 and Figure 5.4).
This shows that the value of using the spillback effect is more effective than the value
of using full network information for highly vulnerable networks.

For all of the routing algorithms (especially for OptNS and Online) the variance
increases with higher vulnerability. This shows that the route choice and its impacts
differ significantly among different network states.
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Figure 5.4 The expected value and the variance of the algorithms evaluated with the
spillback effect for low and high network vulnerability

Effect of Spillback Rate

As the spillback rate increases, the gap between algorithms using and ignoring
the spillback effect increases slightly (Figure 5.5). This is because the algorithms
considering spillback choose risk aversive routes as the transition rates changes at a
higher rate. This increases the expected travel time compared to low spillback rate.
Note that the rate of increase is higher for the Online algorithm because it does not
consider the spillback information.

Also, the gap between the optimal solution and the solution from the DP (2, H)
algorithm with the spillback decreases as both of the algorithms choose the risk
aversive routes in case of higher spillback rate (Table 4).

Computational Time

The computational time for the optimal algorithms via the MDP is increasing
exponentially with the increase in the number of vulnerable arcs and the disruption
levels (Table 5.3 and Table 5.5). The DP (2, H), on the other hand, is less affected
from the state space explosion as it considers limited part of the network while
providing good quality of solutions. The expected shortest path and online algorithms
are the fastest, but the performance of the routing decisions are much lower than the
other algorithms.
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Figure 5.5 The expected value and the variance of the algorithms evaluated with the
spillback effect for different spillback rates
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5.7. Conclusions
In this paper, we consider dynamic shortest path problems with travel-time-dependent
network disruptions and spillback effect. The spillback effect is a congestion
propagation to an upstream arc. We analyze the effect of ignoring and considering
the spillback effect in the dynamic routing decisions with network disruptions. We
model the stochastic dynamic routing problem with travel-time-dependent stochastic
disruptions as a discrete-time finite Markov Decision Process (MDP). We incorporate
the spillback effect into the MDP formulation. The spillback effect is modeled
with the kinematic wave model which is an accepted model in traffic theory. To
analyze the effect of spillback, we also formulate the MDP ignoring the spillback
effect. However, as the size of the network and the disruption levels increase,
the computational complexity increases causing the MDP become computationally
intractable. Therefore, to reduce the computational time, we consider a hybrid
dynamic programming algorithm using the detailed dynamic and stochastic traffic
information for the limited part of the network (Chapter 3). We also provide
online and static algorithms mostly used in practice for the routing decisions. These
algorithms do not include the spillback effect in their routing decisions.

We use a test bed of different network structures with different levels of disruption
rates and spillback rates. Then, we compare the solution quality and the computa-
tional time of different strategies in case of the spillback effect in the network. The
numerical results show that considering the spillback effect has the highest impact
on the solution quality when the network has higher number of vulnerable arcs.
Moreover, the hybrid dynamic programming approach with the disruption and the
spillback information for the limited part of the network, significantly reduces the
computational time while providing higher solution quality than the full information
model that ignores the spillback effect.

Future research involves the analysis of the spillback effect by using other traffic
models such as queueing theory to investigate the impact of the traffic models on
the routing decisions. The extension of the spillback effect model by using time-
dependent and second-order models will reflect the real dynamics even better.
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Chapter 6

Single VRPSD: Approximate
Dynamic Programming

In Chapters 3-5, we focused on developing dynamic routing policies for dynamic
shortest path problems. In Chapter 6, we extend our analysis on dynamic routing
with a dynamic vehicle routing problem. In this problem, we consider a single vehicle
delivery, where there is a set of customers to visit and a depot where we return at the
end of the day. The demands of customers are stochastic and realized upon arrival.
In this problem, the vehicle has a limited capacity and a failure is observed when
the remaining capacity is not enough to satisfy the customer demand. Therefore,
the vehicle returns to the depot for replenishment. In the literature, this problem is
denoted as vehicle routing problem with stochastic demands (VRPSD) (see Chapter
1). One of the interesting properties of this problem is that, it can be handled by both
static and dynamic routing approaches. In this chapter, we tackle the problem with
a dynamic approach where we develop dynamic policies for which customer to visit
next and whether to return to depot to replenish depending on the real-time state of
the current customer visited and the remaining capacity of the vehicle.

6.1. Introduction
Consider a vehicle starting at a central bank and filling up ATMs at different places.
For security reasons, it is not allowed to carry a large amount of money. Consequently,
the vehicle is forced to make several short tours during its operating period (e.g., a
working day) going back and forth to the central bank. Moreover, the needed cash in
the ATMs is not known beforehand. Other similar examples of this described problem
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family in real-life are: beer distribution to retail outlets, the re-supply of baked
goods at food stores, replenishment of liquid gas at research laboratories, stocking
of vending machines (Yang et al. 2000), local deposit collection from bank branches,
less-than-truckload package collection, garbage collection, home heating oil delivery,
and forklift routing (Ak and Erera 2007).

The above described problem is related to the well-known Vehicle Routing Problem
(VRP). The standard deterministic VRP is described extensively in the literature
(Laporte 2007). In contrast, this chapter studies a single vehicle routing problem
where stochastic demand is incurred (denoted as the VRPSD), very similar to
Secomandi (2001). In general, this problem is similar to the standard vehicle routing
problem where the aim is to construct a set of shortest routes for a fleet of fixed
capacity. In the stochastic case, however, each customer has a given and known
demand distribution and the actual demand realization is unknown until the vehicle
arrives at the customer, when the customer’s actual demand is observed. In the
VRPSD, the vehicle may be unable to satisfy the actual customer’s demand realization
when visiting the customer (denoted as a failure). As such, the vehicle needs to
return to the depot for a refill and return back to the partially served customer. In
general, the vehicle serves every customer once unless a failure occurs, in which case
a detour-to-depot is executed.

In this chapter, we formulate the VRPSD using a stochastic dynamic programming
model. Dynamic programming (DP) provides an elegant framework to model
stochastic optimization problems. However, DP faces the well-known three curses of
dimensionality (states, outcomes, and decisions) and cannot deal with practical size
problems. In addition, the single vehicle routing problem with stochastic demands is
a difficult and computationally demanding problem. Over the past years, computing
power has increased dramatically, giving a sound basis to efficiently handle stochastic
and dynamic vehicle routing problems. Our chapter employs an Approximate
Dynamic Programming (ADP) strategy. ADP emerges as an efficient and effective tool
in solving large scale stochastic optimization problems, combining the flexibility of
simulation with the intelligence of optimization. It is a powerful approach to model
and solve problems which are large, complex and with stochastic and/or dynamic
elements (Powell 2007). Referring to Pillac et al. (2012), ADP successfully solves
large-scale freight transport and fleet management problems while coping with the
scalability problems of DP (Godfrey and Powell 2002, Powell et al. 2002, Powell and
Van Roy 2004, Simão et al. 2009).

In this chapter, we develop ADP algorithms based on Value Function Approximations
(VFA) with lookup table representation. We first design a standard VFA algorithm by
using the ADP framework. To achieve good computational performance and solution
quality, several adaptations are needed. Using post-decision state variables in ADP
allows making decisions without having to compute the expectation. However, for the
VRPSD, post-decision state variables omit important information about the current
state and the decision. Therefore, we consider a Q-learning algorithm with lookup
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table representation in which we store the state-decision pairs and their values (i.e.,
Q-factors). However, the size of a standard lookup table increases exponentially
(as it depends on both the state and decision). For this reason, we improve the
standard Q-learning algorithm with bounded lookup tables and efficient maintenance
strategies. We also design effective exploration/exploitation strategies such that we
obtain higher quality solutions with lower computational time, as compared to the
rollout algorithm in Secomandi (2001). We denote this improved VFA algorithm as
VFA+.

The contribution of this chapter to the literature is as follows. First, we formulate
the vehicle routing problem with stochastic demands using a unified stochastic
dynamic programming modeling framework (Powell 2007, 2011, Powell et al. 2012),
which allows for flexible extensions of the problem in real-life applications. Second,
we design efficient ADP algorithms that allow us to solve large scale problems in
reasonable time. The standard VFA with lookup table representation is improved
using a Q-learning algorithm with bounded lookup tables and efficient maintenance.
Our algorithm comparisons on test instances from the literature (Secomandi 2001,
Solomon 1987) show that, for small size test instances, the VFA+ algorithm on
average covers more than 50% of the performance gap between the Rollout and
the optimal solution; for large size test instances, VFA+ consistently outperforms
the Rollout algorithm with better solution quality and less computational time. The
significant reduction in computational time enables solving larger scale instances,
which is important for real-life decision making. Further, we analyze the effect
of the depot location on the relative performances of the algorithms. Last, this
chapter provides important insights on applying ADP to deal with stochastic and
combinatorial problems such as VRPSD, using bounded lookup tables with efficient
maintenance and exploration-and-exploitation strategies.

The chapter is structured as follows. The literature review is given in Section 6.2.
The problem formulation is presented in Section 6.3, and the ADP algorithms are
described in Section 6.4. The experiment design and numerical results are given in
Sections 6.5 and 6.6. Section 6.7 concludes this chapter.

6.2. Literature Review
Stochastic vehicle routing problems are characterized by some random elements
in their problem definition (Gendreau et al. 1996a). In the literature, researchers
consider stochastic demands (Bertsimas 1992, Dror et al. 1993), stochastic customers
(Bent and Van Hentenryck 2004b), stochastic demand and customers (Gendreau et al.
1995, 1996b) and stochastic travel times (Laporte et al. 1992, Kenyon and Morton
2003)). Gendreau et al. (1996a) review the literature on stochastic VRPs and their
different flavours.

There are a number of papers closely related to this chapter such as Secomandi
(2000, 2001), Novoa and Storer (2009), Goodson et al. (2013) dealing with the
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VRPSD, considering detour-to-depot schemes and allowing for early replenishment
(see Chapter 1 for a detailed review).

This chapter can also be situated in the family of re-optimization algorithms for the
VRP with stochastic demands. Dror et al. (1989, 1993) are the early papers that
introduce the re-optimization strategies. They optimally re-sequence the unvisited
customers whenever a vehicle arrives at a customer and observes the demand.
Secomandi and Margot (2009) also considers a VRPSD under re-optimization. They
formulate the problem in terms of a finite horizon MDP for the single vehicle
case. They develop a partial re-optimization methodology to compute suboptimal
re-optimization policies for the problem. In this methodology, they select a set
of states for the MDP by using two heuristics: the partitioning heuristic and the
sliding heuristic. They compute an optimal policy on this restricted set of states
by a backward dynamic programming. Pillac et al. (2011) also considers the same
problem with a re-optimization approach. They adapt a multiple scenario approach
where pool of scenarios are maintained based on customer demand realizations. The
scenarios are optimized during the travel.

In the VRPSD literature, there are a number of papers dealing with developing an
optimal restocking policy with a predefined customer sequence. Yang et al. (2000)
study strategies of planning preventive returns to the depot at strategic points along
the vehicle routes. They prove that for each customer, there exists a threshold number
such that the optimal decision is to continue to next customer if the remaining load
is greater than or equal to the threshold number or otherwise to return to the depot
for replenishment.

Tatarakis and Minis (2009) study the multi-product delivery routing with stochastic
demands. They develop a dynamic programming algorithm to solve a compartmen-
talized case of multi-product delivery to derive the optimal policy in a reasonable
amount of time. Minis and Tatarakis (2011) extend the problem to a pickup and
delivery case of the VRPSD. They provide an algorithm to determine the minimum
expected routing cost and a policy to make the optimal decisions including the
detour-to-depot decisions for the stock replenishment. Recently, Pandelis et al. (2012)
prove the optimal structure of the same problem for any positive number of multiple
products.

The VRPSD is also studied with additional constraints. Erera et al. (2010) consider
VRP with stochastic demands and constraints on the travel time durations of the
tours. The authors define and study various restocking detour policies in the paper.
Lei et al. (2011) study the VRP problem with stochastic customers with time windows.
The problem is modeled using stochastic programming with recourse and the solution
strategy is proposed as a large neighborhood search heuristic.

In this chapter, we model and solve the VRPSD using an ADP framework. Powell
(2007, 2011) provide a comprehensive introduction to the basic ideas of ADP and
address key algorithmic issues when designing ADP algorithms. For the dynamic VRP
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problems, a unified framework is presented in Powell et al. (2012) where various
polices including the ADP approach are explained.

6.3. Problem Description and Model Formulation
We study a single vehicle routing problem with stochastic customer demands
(VRPSD). On an undirected graph G = (V,E), V = {0, . . . , N} is the vertex set and
E is the edge set. Vertex 0 denotes the depot, whereas vertices i = 1, . . . , N denote
the customers to be served. A nonnegative distance dij is associated with each edge
(i, j) ∈ E, representing the travel distance (or cost, time, etc.) between vertices i and
j.

A single vehicle with full capacity Q starts from the depot, serves all the customers to
perform only deliveries (or only pick-ups), and returns to the depot at the end of the
tour. Each customer i ∈ V is associated with a stochastic demand Di, the true value
of which is revealed upon the arrival of the vehicle at the customer. If the vehicle does
not have sufficient capacity to serve a customer (a “failure” occurs), it partially serves
the customer, returns to the depot to replenish, and comes back to the customer to
fulfill the remaining demand. The vehicle then continues its tour to the next customer
or the depot (at the end of the tour). The objective is to minimize the expected total
travel distance. We assume that the depot has plenty quantity of the commodity and
the maximum possible demand of each customer is smaller than the vehicle capacity.

If early replenishment is allowed, the vehicle can return to the depot to replenish
before encountering a failure. In the offline planning version of the problem, the
vehicle always follows a predetermined order to visit the customers, while in the
online planning version, the vehicle is allowed to re-route (re-optimize) after serving
each customer. In this chapter, our focus is on the online planning problem with early
replenishment (as in Secomandi (2000, 2001)).

Next, we formulate the problem as a stochastic dynamic program, using the notation
as described in Powell (2007, 2011).

The problem is divided into t = 0, 1, . . . , N,N + 1 stages. t = 0 represents the start
of the tour at the depot, t = N + 1 represents the end of the tour back to the depot,
and t = 1, . . . , N represents the number of customers that have been visited during
the tour.
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State

The state variable is defined as:

St = (it, lt, Jt), t = {0, 1, . . . , N,N + 1}, (6.1)

where
it: the current customer being served (or the depot when t = 0 and t = N+1);
lt: the current capacity in the vehicle after serving the current customer (0 ≤

lt ≤ Q);
Jt: the vector (jt,1, . . . , jt,N) that represents the customers’ service status: jt,i =

1, if customer i has already been served; jt,i = 0, otherwise.

Therefore, when the vehicle starts at the depot, the initial state is S0 = (0, Q, 0, . . . , 0),
and when the vehicle returns to the depot after serving all the customers, the final
state becomes SN+1 = (N + 1, lN+1, 1, . . . , 1). Note that lN+1 = lN is the vehicle’s
remaining capacity after serving the last customer.

Decision Variables

After serving the current customer, two types of decisions are to be made: which
customer to serve next and whether to return to the depot before visiting the next
customer. The decision variables are defined as:

xt = (it+1, rt), t = {0, 1, . . . , N}, (6.2)

where
it+1: the next customer to be served;
rt: rt = 1 indicates returning to the depot before visiting the next customer;

rt = 0 otherwise.

Further, we define Xπ
t (St) as the decision function that determines decision xt at stage

t under policy π, given state St. Each π ∈ Π refers to a different policy and Π denotes
the set of all implementable policies.

Exogenous Information

The customer demand Dit+1
has a customer specific discrete distribution. The actual

customer demand D̂it+1
is only revealed after the vehicle arrives at customer it+1.

Wt+1 = D̂it+1
, t = {0, 1, . . . , N − 1}. (6.3)

State Transition Function

Given the current state St = (it, lt, Jt), the decision xt = (it+1, rt), and the
exogenous information Wt+1 = D̂it+1 , the state transition function is defined as, for
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t = {0, 1, . . . , N},

St+1 = SM (St, xt,Wt+1)

=


(it+1, Q− D̂it+1

, Jt+1), if rt = 1,

(it+1, lt − D̂it+1
, Jt+1), if rt = 0 and lt ≥ D̂it+1

,

(it+1, lt +Q− D̂it+1
, Jt+1), if rt = 0 and lt < D̂it+1

,

(6.4)

where the service status vector Jt+1 is updated as: jt+1,i = 1, if i = it+1; jt+1,i = jt,i,
otherwise. That is, the service status of customer it+1 is changed to 1 (being served)
and the service statuses of other customers remain unchanged. Note the letter “M”
in the first equation of Equation (6.4) represents “model” as in Powell (2007, 2011).

If the vehicle returns to the depot to replenish after serving customer t (rt = 1), it
arrives at the next customer it+1 with full capacity Q. Therefore, the capacity after
serving customer it+1 becomes Q− D̂it+1

. If the vehicle travels to the next customer
iit+1

without returning to the depot (rt = 0), it arrives at customer it+1 with capacity
lt. If lt is sufficient to serve the realized demand D̂it+1

, lt+1 becomes lt − D̂it+1
;

otherwise, the vehicle encounters a failure and needs to replenish at the depot to
satisfy demand D̂it+1 , thus lt+1 becomes lt +Q− D̂it+1 .

Cost Function
The vehicle’s actual travel distance or cost depends on both the decision and realized
demand at the next customer Wt+1 = D̂it+1

. Therefore, the (expected) cost function
ct(St, xt) can be decomposed into a deterministic and a stochastic parts, as below.

ct(St, xt) = Ct(St, xt) + E[∆Ct+1(St, xt,Wt+1)], (6.5)

where

Ct(St, xt) =

{
dit,0 + d0,it+1 , if rt = 1,

dit,it+1
, if rt = 0,

(6.6)

and

∆Ct+1(St, xt,Wt+1) =


0 if rt = 1,

0, if rt = 0 and lt ≥ D̂it+1
,

dit+1,0 + d0,it+1
, if rt = 0 and lt < D̂it+1

.

(6.7)

The calculations of (6.6) and (6.7) follow the same logic as in the state transition
function (6.4).

Objective Function
The objective of the stochastic dynamic program is to find the optimal policy π ∈ Π
to minimize the expected total cost (travel distance) to serve all the customers, that
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is,

min
π∈Π

N∑
t=0

ct(St, X
π
t (St)), (6.8)

where xt = Xπ
t (St) is the decision made according to the decision function Xπ

t (St)
under policy π, given the current state St. Note that the expectation is embedded in
the calculation of the cost function ct(St, xt).

6.4. Approximate Dynamic Programming
If the state, decision, and outcome spaces are finite discrete, the stochastic dynamic
program (6.8) can be solved recursively using Bellman’s equations,

Vt(St) = min
xt∈Xt

(Ct(St, xt) + E[Vt+1(St+1)]). (6.9)

The value function Vt(St) specifies the value of being in a state St, in which Ct(St, xt)
accounts for the immediate cost associated with the current state St and decision xt,
while the value function Vt+1(St+1) = Vt+1(SM (St, xt,Wt+1)) evaluates the future
impact of the decision xt under the realized exogenous information Wt+1.

To overcome the three curses of dimensionality (states, decisions, and outcomes)
associated with the classical DP approach, in approximate dynamic programming
(ADP), we replace the exact value function Vt+1(·) in Equation (6.9) with an
approximation V̄t+1(·) as in Equation (6.10). Instead of the exact evaluation of Vt+1(·)
often in a backward manner, V̄t+1(·) can be evaluated via step-forward simulation,
by integrating a variety of rich classes of stochastic optimization and simulation
methodologies.

V̄t(St) = min
xt∈Xt

(Ct(St, xt) + E[V̄t+1(St+1)]). (6.10)

While the approximate value function V̄t+1(·) can take a variety of forms (such as
weighted sum of basis functions, piecewise linear functions, regression models, neural
networks), the lookup table representation is a generic model-free form that is often
used when the value function structure can hardly be clearly defined, which is the
case of the VRPSD under study. In this section, we first introduce a generic value
function approximation (VFA) with lookup table representation, and then describe an
improved version (VFA+), which addresses the problem characteristics of the VRPSD.
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6.4.1 Value Function Approximation Algorithm (VFA)

Algorithm 4 depicts a generic value function approximation approach with lookup
table representation. In Step 0a, we use the Rollout algorithm (Secomandi 2001) as

Algorithm 4 A generic VFA approach with lookup table representation.
Step 0. Initialization.

Step 0a. Initialize V̄ 0
t (St) for all states St.

Step 0b. Choose an initial state S1
0 .

Stap 0c. Set the iteration counter n = 1.
Step 1. Choose a sample path ωn.
Step 2. For t = 0, 1, . . . , N , do:

Step 2a. If exploitation, solve
v̂nt = minxt∈Xt

(Ct(St, xt) + E[V̄ n−1
t+1 (St+1)]), (∗)

and let xnt be the solution.
If exploration, randomly choose a solution xnt ∈ Xt.

Step 2b. Update V̄ nt (St) using

V̄ nt (St) =

{
(1− αn−1)V̄ n−1

t (Snt ) + αn−1v̂
n
t , if St = Snt ,

V̄ n−1
t (St), otherwise.

Step 2c. State transition.
Snt+1 = SM (Snt , x

n
t ,Wt+1(ωn)).

Step 3. Let n = n+ 1. If n ≤ N, go to step 1.
Note that N denotes the pre-set maximum number of iterations.

Step 4. Output the value function, {V̄ Nt (Sxt )}N−1
t=0 .

the heuristic to initialize the state values.

Striking a good balance between exploration and exploitation remains an important
and cutting-edge research question in ADP and other related research areas such as
simulation optimization and machine learning. In our VFA algorithm, we use the
fixed exploration rate strategy. That is, with probability ρ (for example, 0.10), we
explore the impact of a randomly selected decision; otherwise, we stick to the optimal
decision based on the current value function (Step 2a). In Section 6.4.2, we describe
an improvement on the exploration and exploitation strategy using preventive returns
and restocking.

In step 2b, we use the exponential smoothing function to update the value function
approximation V̄t(St) with the observed value v̂t(St). That is,

V̄ nt (St) = (1− αn−1)V̄ n−1
t (Snt ) + αn−1v̂

n
t , (6.11)

where αn−1 is the stepsize.

For calculating αn−1, we apply the Bias-adjusted Kalman Filter (BAKF) stepsize rule
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(George and Powell 2006, Powell 2007), which is given by

αn−1 = 1− (σ̄2)n

(1 + λ̄n−1)(σ̄2)n + (β̄n)2
. (6.12)

(σ̄2)n denotes the estimate of the variance of the value function V̄ nt (Snt ) and β̄n

denotes the estimate of bias due to smoothing a nonstationary data series. The BAKF
stepsize rule adaptively balances the estimate of the noise (σ̄2)n and the estimate of
the bias β̄n that is attributable to the transient nature of the data in the ADP solution
process. We refer to George and Powell (2006) and Section 6.5.3 in Powell (2007)
for more details.

In Equation (6.10), the approximate value function V̄t(St) is associated with the
pre-decision state St. Solving for Equation (∗) in Step 2a requires the calculation of
the expected value of V̄t+1(St+1) within the min operator, which is computationally
demanding. To improve the computational efficiency in ADP, Powell (2007)
introduces the notion of post-decision state Sxt = SM,x(St, xt), which captures the
state of the system immediately after the decision making, but before new information
arrives. With the approximate value function around post-decision state V̄ n−1

t (Sxt ),
we can solve for v̂nt (St) in Step 2a with

v̂nt (St) = min
xt∈Xt

(Ct(St, xt) + V̄ n−1
t (Sxt )), (6.13)

which avoids the expectation within the min operator, but normally requires more
effort in estimating V̄ n−1

t (Sxt ).

In VRPSD, the post-decision state omits certain critical information. For example,
besides knowing the next customer to visit, the actual cost or travel distance depends
on both the realized demand of the next customer D̂it+1

and the current capacity lt,
which can vary significantly (refer to equation (6.7)). Further, the tradeoff between
traveling directly to the next customer or detour-to-depot also depends on the relative
distances between the current customer and the next customer or depot, respectively.
Consequently, we somehow lose the “memoryless” property in VRPSD. Our numerical
experiments also show that the approximate value function around post-decision state
does not work very well, which confirms our observation.

Q-learning is another algorithm that has certain similarities to DP using the value
function around post-decision states. In Q-learning, a Q-factor, Qt(St, xt), stores the
value of a state-decision pair and it captures the value of being in a state and taking
a particular decision (Bertsekas and Tsitsiklis 1995, Sutton and Barto 1998, Powell
2007, Bertsekas 2012). However, a potential problem with Q-learning is that the size
of the lookup table increases exponentially because it depends on both the state and
the decision. In the next section, we describe how to better utilize the lookup tables
with Q-factors via efficient maintenance and exploration/exploitation strategies in
our improved algorithm (VFA+).
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6.4.2 Improved Value Function Approximation Algorithm (VFA+)
The value function approximation (VFA) with lookup table representation as de-
scribed in Algorithm 4 is a generic ADP approach. As previously mentioned, an
alternative way to store the value function is to use Q-factors. Q-factors, Qt(St, xt),
store the value of a state-decision pair in the lookup table. The state-decision pair at
stage t is: (St, xt) = ((it, lt, Jt), (it+1, rt)). We should note that the decision consists
of the next customer to visit at stage t+ 1 and whether to return to the depot before
visiting the next customer.

For the VRPSD, we improve the computational performance and the solution quality
of the standard VFA algorithm with Q-learning by considering the approximate values
of the Q-factors. We define Q̄nt (St, xt) as the approximate value of Qt(St, xt) after
n iterations. We use a double pass algorithm to update Q̄t(St, xt), as shown in
Algorithm 5. At each iteration, we first find a customer sequence based on the values
of the state-decision pairs (Q-factors) from the past iterations in the forward pass.
Then, we update the Q-factors using the realized cost in the backward pass.

Algorithm 5 Q-learning approach for the V FA+ algorithm with double pass
Step 0. Initialization.

Step 0a. Initialize Q̄0
t (St, xt) for all states St and decisions xt ∈ Xt.

Step 0b. Choose an initial state (S1
0).

Stap 0c. Set the iteration counter n = 1.
Step 1. Choose a sample path ωn.
Step 2. (Forward pass) For t = 0, 1, . . . , N , do:

Step 2a. If exploitation, find
xnt = argmin

xt∈Xt

(Q̄n−1
t (St, xt) + SD(St, S

n
t )),

If exploration, choose a solution xnt ∈ Xt
based on the exploration-and-exploitation strategies described.

Step 2b. Compute the next state Snt+1 = SM (Snt , x
n
t ,Wt+1(ωn)).

Step 3. (Backward pass) Set q̂nN+1 = 0 and do for all t = N,N − 1, . . . , 0:
Step 3a. Calculate:

q̂nt = Ct(S
n
t , x

n
t ) + q̂nt+1

Step 3b. Update Q̄nt (St, x
n
t ) using

Q̄nt (Snt , x
n
t ) = (1− αn−1)Q̄n−1

t (Snt , x
n
t ) + αn−1q̂

n
t .

Step 4. Let n = n+ 1. If n ≤ N, go to step 1.
Note that N denotes the pre-set maximum number of iterations.

Step 5. Return the Q-factors, {Q̄Nt }N−1
t=0 .

As the size of the lookup table with Q-factors grows exponentially with both state and
decision, we limit the number of stored Q-factors in the lookup table (bounded lookup
table). At each iteration, we mostly visit the state-decision pairs that are already in
the lookup table. Consequently, the values of the state-decision pairs (Q-factors) in
the lookup table are more frequently updated, and therefore more accurate.
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In Step 2a of Algorithm 5, one important notion is the state difference, SD(St, S
′
t).

Due to the limited size of the bounded lookup table, we may frequently come into
states that are not contained in the lookup table. In this case, we look at the most
similar states. To determine these most similar states, we define the state difference
SD between two states with identical it value as (where c1 is a constant):

SD(St, S
′
t) =

∑
|jt − j′t|+ c1 × |lt − l′t| (6.14)

As the number of states-decision pairs grows with the vehicle capacity and with the
number of customers, then, we consider a bounded lookup table with a subset of
state-decision pairs. When we arrive at a state-decision pair that is not contained in
the bounded lookup table, we identify the “nearest” state-decision pair according to
Equation (6.14). Accordingly, we update the value of the nearest state-decision pair,
already in the bounded lookup table with the minimum state difference, instead of
the state-decision pair that is not in the bounded lookup table.

Further, the exponential growth in the state and decision space in the VRPSD forces
us to find a good balance between exploration and exploitation. In VFA+, the
exploitation is obtained by focusing on a limited number of state-decision pairs, such
that good cost estimates can be found by frequent visits to these pairs. The exploration
is obtained by using a variety of randomized heuristics for our travel decisions.

Further, we improve the performance in terms of solution quality and computational
time by considering the following algorithmic strategies:

1. Use different initialization heuristics;

2. Organize and maintain the bounded lookup table;

3. Explore and exploit using preventive returns and restocking.

We give more details on the algorithmic strategies below.

Use Different Initialization Heuristics

We use a mix of three simple initialization heuristics. The first one is based on the
cyclic tours that Secomandi (2001) derives in his a priori approach. By considering
all the possible customers being visited first in the route, we obtain Q-factor values
associated with each customer visited at stage t, i.e., it. The second heuristic is
a randomized nearest neighbor heuristic, where early replenishments are only done
when this gives an immediate advantage. In the third heuristic, we use a variation of
the cone covering method, introduced by Fisher and Jaikumar (1981) and then applied
by Fan et al. (2006) to a similar problem. The advantage of the third heuristic lies
in that it considers both the geographic location and the expected demand of each
customer, thus generates routes with approximately the same expected total demand.
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For the initialization of the Q-factors, we first cluster the customers into a few groups
(depending on the expected number of replenishments). Then, we apply the nearest
neighbor heuristic to the clusters to create one tour per group. Finally, we create
one tour for all customers by applying a savings algorithm to the customers linked
to the depot, until there are no intermediate visits to the depot in the tour. For the
resulting customer sequence, we determine the optimal replenishment visits similar to
Secomandi (2001). In the clustering, we apply randomization to get a larger solution
set. For each of the heuristics, we find 600 sample paths to create an initial set of
state-decision pairs and their values (Q-factors) in the lookup table. For state-decision
pairs that are visited multiple times, we take the minimum of the Q-factors.

Organize and Maintain the Bounded Lookup Table
We denote the set of state-decision pairs that have the same it as an “it set”, i.e.,
{(St, xt)|St = (it, ·, ·)}, and let |it| denote its size. That is, an it set consists of
all possible combinations of the state-decision variables: (it, lt, Jt) and the decision:
(it+1, rt) with the same it. We provide a detailed illustration of it sets in the Appendix.
To control the exponential growth of the lookup table, we limit the number of stored
Q-factors in each it set to a maximum (denoted as |it|max).

We use a three-level pruning to maintain the bounded lookup table. Pruning
Procedure I examines and maintains the size of each it set at each iteration, while
Pruning Procedures II and III provide additional maintenance and value update of
the it set every fixed number of iterations.

Pruning Procedure I:

When the size of an it set reaches |it|max, we perform the pruning procedure I
(Algorithm 6). We remove the state-decision pairs that have been visited only once.
In addition, we remove the state-decision pairs that have a value higher than the
average value and also a number of visits less than the average number of visits in
the it set. Usually, about half of the state-decision pairs is removed in this procedure.
Note that, apart from the Q-factor, we also record the number of visits to each state-
decision pair, n′(St, xt), which is used in Pruning Procedure I as well as in Equation
(6.15) of the value updating procedure.

Based on our numerical evaluation, we set |it|max as 150 state-decision pairs
for instances with less than 20 customers and 250 state-decision pairs for larger
instances. Higher |it|max values lead not only to longer computational time but also
to poorer results, because the most relevant Q-factors will be updated less often.

Pruning Procedures II and III:

Different from Pruning Procedure I, Pruning Procedures II and III limit the number of
potential next customers in the it set. These two procedures are implemented every
fixed number of iterations.

In Pruning Procedure II (Algorithm 7), we look at the decision on the next customer to
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Algorithm 6 Pruning Procedure I
Step 1. Check the size of the it set.
Step 2. Keep the state-decision pairs in the it set, if |it| < |it|max.
Step 3. If the size of the it set reaches its maximum (|it| ≥ |it|max), remove the
state-decision pairs
from the it set under the following criteria:

Step 3a. If their value is greater than the average Q-factor value of the it set,
that is,

Q(St, xt) ≥ (
∑
{(St,xt)|St=(it,·,·)}Q(St, xt))/|it|;

and if also their number of visits is less than the average number of visits of the
it set, that is,

n′(St, xt) ≤ (
∑
{(St,xt)|St=(it,·,·)} n

′(St, xt))/|it|.

visit (it+1) among the state-decision pairs in the it set. For each it+1, we calculate the
average Q-factor value of the state-decision pairs with xt = (it+1, ·), denoted as Q̄it+1

.
We only keep the state-decision pairs whose Q̄it+1

are among the best kt potential next
customers. The number kt depends on the stage t, and decreases during the ADP, to
gradually focus more on the best decisions on the potential next customer to visit.

Algorithm 7 Pruning Procedures II
Step 1. For each it+1 of the state-decision pairs in the it set, calculate the

average Q-factor
Q̄it+1 = (

∑
{(St,xt)|St=(it,·,·),xt=(it+1,·)}Q(St, xt))/n(it, it+1),

where n(it, it+1) denotes the number of state-decision pairs in the it set with
the same it+1.

Step 2. Sort the customers, it+1, according to an ascending order of Q̄it+1
.

Step 3. Select the first kt customers and remove all the state-decision pairs
(St, xt) whose

next customer, it+1, are not among these kt customers.

Pruning Procedure III uses the double pass DP approach, and at the same time updates
the Q-factors. In this procedure, we update the Q-factors in the backward pass while
pruning the lookup table in the forward pass.

When we have a sample path, we only update the values of the state-decision pairs
that we actually visit as in Algorithm 5. To obtain better estimates, we also update the
values of the state-decision pairs that use a part of the sample path. To achieve this,
we perform an update process every fixed number of iterations by using a backward
DP algorithm for all state-decision pairs in the bounded lookup table. For the update
process, we start from the last stage and compute the minimum expected cost for
each state-decision pair in the bounded lookup table. The values of the state-decision
pairs, including the ones using a part of the sample path, are updated using the
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minimum expected cost, and recursively, the updated values are used for the update
of the Q-factors in previous stages.

After the backward DP, we remove the state-decision pairs with the same next
customer, it+1 that never give the minimum expected value, Qmin(St), in the
backward DP procedure. The update and the pruning procedure is described in
Algorithm 8.

Algorithm 8 Pruning Procedures III
Step 1. (Backward DP) For all t = N,N − 1, . . . , 0:

Step 1a. Find the minimum state value among the possible next customers:
Qmin(St) =

minit+1 [E[(Ct(St, xt)] + minxt+1∈Xt+1(SD(St+1, S
′
t+1) +Q(St+1, xt+1))].

Step 1b. Update all Qt(St, xt) in the lookup table with the decision xt using:
Qt(St, xt) = (1− αn−1)Qt(St, xt) + αn−1Qmin(St).

Step 2. (Forward DP) Pruning: do for all t = 0, 1, . . . , N + 1:
Remove the state-decision pairs with the same it+1 that are never qualified

for Qmin(St).

Updating Procedure:

In every sample path simulation, we update the value of the visited state-decision
pairs using the harmonic stepsize rule.

αn−1 =
a

a+ n′(St, xt)− 1
, (6.15)

where a is a constant. Note that the stepsize αn−1 depends on the number of visits to
the state-decision pair, n′(St, xt), rather than the iteration counter n.

In VFA+, the value of a depends on the decision. If all decisions taken after the visit
of a state-decision pair in the sample path are optimal (exploitation decisions), we
assign a high value to a. If however after the visit of a state-decision pair, we take
an exploration decision, we either assign a low value to a (in case of improvement)
or set a equal to zero (in case of non-improvement). In this way, we avoid that the
state-decision pair becomes unattractive by not considering the best route afterwards.

Exploration and Exploitation using Preventive Returns and Re-
stocking
In each step of the ADP algorithm, we may select the best decision based on the
current Q-factors in the bounded lookup table (exploitation), or we may select an
alternative decision in order to discover potentially better decisions (exploration). In
VFA+, the exploitation options are:

• the decision with the best Q-factor value in the lookup table (and perfect match
for remaining customers and capacity),
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• the decision with the lowest sum of the Q-factor and the state difference in the
lookup table.

The exploration options are:

• the decision with the second best Q-factor value (as this is the most promising
alternative),

• the decision where the next customer is randomly selected from the lookup
table, combined with a randomized early replenishment decision rt,

• the decision where the next customer, it+1 is randomly selected from the set
of mt nearest (in distance) unvisited customers, combined with a randomized
early replenishment decision rt. The value of mt may be different for different
stages.

The options above are considered with different probabilities. Note that once we
have applied an exploration decision, the further decisions are preferably exploitation
decisions, in order to obtain good cost estimates for this explorative decision.

At the end of the tour, when the vehicle capacity gets scarcer, it makes sense to
return to the depot for early replenishment if the vehicle is close to the depot.
Using the demand probability distribution of the non-visited customers, we determine
the minimum expected number of remaining depot visits, both with and without
returning to the depot. If the difference between the two values exceeds 0.9, we first
return to the depot and then serve the remaining customers.

Parameter Settings

The algorithmic strategies in VFA+ described above are all designed to improve
the computational performance, but they also create a large number of parameter
settings, such as probabilities in the sample path selection, updating parameters,
parameters in the maintenance of the bounded lookup table, etc.

We conduct a number of preliminary tests to set the parameter settings to be used.
Based on our preliminary computational evaluation, we fix some of the parameter
settings and limit the possibilities for others to two or three options. For instance, the
total duration of the ADP is fixed on 250, 000 iterations; Pruning Procedures II and
III are performed every 10, 000 iterations; the value a in the harmonic stepsize rule,
Equation (6.15) is set to 0 (exploration without improvement), 1 (exploration with
improvement), or 5 (exploitation). We use this setting for all instances and report the
results in the chapter.
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6.5. Experimental Design
In this section, we describe the test instances used in the numerical experiments and
our methodology to evaluate the algorithms.

6.5.1 Test Instances

We use two sources of instance generation in the literature, from Secomandi (2001)
and Solomon (1987). In both sets of test instances, we consider delivery to customers
from the depot. We use the test instances of Secomandi (2001) to compare our value
function approximation algorithms (VFA and VFA+) with the Rollout algorithm in
Secomandi (2001). We also test the algorithms with the Solomon instances which is
a standard reference in the VRP literature. Two different sets of Solomon instances
are generated to evaluate the effect of the depot location, which is either at the center
or at the corner.

The first set of instances are based on Secomandi (2001). The instances are generated
with different number of customers. Specifically, the instances with 5 to 19 customers
are denoted as the “small size instances,” and the instances with 20, 30, . . . , 60
customers are denoted as the “large size instances.” The test instances also differ
in the values of the expected fill rate f̄ =

∑N
i=1E(Di)/Q. f̄ ′ ≡ max{0, f̄ − 1}

can be viewed as the expected number of route failures, and f̄ ′ is in the set
{0.75, 1.25, 1.75}. Therefore, there are 3 variants for each small size and large size
instances. The values of Q for all possible (f̄ ′, N) pairs are computed by rounding
3N/f̄ to the nearest integer. For each instance, the customer demands are divided
into low, medium, and high categories, following three discrete uniform probability
distributions. Every customer is assigned to one of these demand categories with
equal probability (1/3). For the small size instances (N < 20), the demand categories
are U(1, 3), U(2, 4), U(3, 5), and for the large size instances (N ≥ 20), they are
U(1, 5), U(6, 10), U(11, 15). The depot is fixed at the corner. For each (f̄ ′, N) pair,
10 replications are generated for each of the small size instances and 5 replications
are generated for each of the large size instances. We refer to these instances as the
“Secomandi instances” in the rest of the chapter.

The Solomon instances are based on the RC instances (RC101 to RC105 and RC201
to RC205) from Solomon (1987). As the number of the customers and the demand
distributions in Solomon (1987) are not comparable to the Secomandi instances,
we modify the Solomon instances in two ways: the demand distribution and the
customer selection. The demand distributions are modified as follows. Originally,
the customer demands in the Solomon instances are between 0 and 40. We denote
the demand types in the Solomon instances between the intervals (0, 10], (10, 20],
(20, 30], (30, 40] as 1, 2, 3, 4, respectively. We then assign the demand distributions
U(0, 4), U(2, 6), U(4, 8) and U(6, 10) to the four demand types respectively. The
customer selection process is based on the customer ready times. The customers are
ordered based on their ready times without using their time windows. We pick the
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first N customers to construct our instances. For the small size instances, we select
the first 5 to 15 customers. The vehicle capacity Q is then set to [8N/1.75]. After the
modification, we generate two instance sets according to the location of the depot:
Solomon A, where the depot is located at the center, and Solomon B, where the depot
is located at the corner. For Solomon A instances, the depot is located at (40, 50),
which is approximately at the center of the customers. For Solomon B instances, we
swap the depot located at (40, 50) and the customer located at (5, 5). We generate 10
replications for each of the Solomon instances.

6.5.2 Evaluation Methodology

We study three algorithms for the VRPSD: the Rollout algorithm, the VFA, and the
VFA+. The solution quality is evaluated by policy simulation and the solution time is
measured by the central processing unit (CPU) time. We evaluate the policy of each
algorithm using simulation with a sample size of 2000 and report the mean of the
evaluated objective values and solution times.

In the simulation, the same set of random seeds are used such that the different
algorithms use the same demand samples. We report the improvements of VFA and
VFA+ relative to the solution from the Rollout algorithm. For small size instances, we
find the optimal objective values by solving a standard backward MDP using Equation
(6.9). We also report the optimal objective values and their improvements compared
to the Rollout algorithm. Note that we choose the Rollout algorithm as the benchmark
because the optimal policy can only be obtained for small size instances.

6.6. Numerical Results
This section provides the numerical results and analysis. All evaluations are run
on a computer with an Intel Xeon CPU X7560 (2.27GHz) and 63.9GB RAM. The
programming language is Java.

Algorithm Comparison: Solution Quality

We first compare the solutions quality of the algorithms for the VRPSD. Specifically,
we compare the evaluated objective values of the Rollout algorithm, the VFA, the
VFA+, as well as the optimal values (for small size instances). Further, we also provide
the improvements of the latter three algorithms relative to the Rollout algorithm.

Table 6.1 summarizes the results for the Secomandi instances for both small and
large size instances. The entries are the averages of all variants of the fill rate and
demand distribution for each instance size. When we consider the instances with
N ≤ 15, the optimal algorithm performs on average 3.78% better than the Rollout
algorithm. On the same instances with N ≤ 15, we see that both the VFA and the
VFA+ on average perform better than the Rollout algorithm. For instance, the VFA+
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on average improves the solution of the Rollout algorithm by 1.97%, covering the
performance gap between the Rollout and the optimal solution by more than 50%.

Table 6.1 also demonstrates that the difference between the solution quality of the
VFA+ and VFA is on average not very large for small size instances with N ≤ 15.
However, as the problem size increases from N > 8, the performance of the VFA
algorithm gets worse whereas the VFA+ algorithm still outperforms the Rollout
algorithm.

When the number of customers increases from 16 to 19, obtaining the optimal solution
becomes computationally intractable. For these instances, the performance of the
VFA gets worse than the Rollout algorithm. The VFA+, however, still outperforms the
Rollout algorithm.

For large size instances (N ≥ 20), both the optimal algorithm and the VFA become
computationally intractable. The VFA+ algorithm outperforms the Rollout algorithm
and the percentage improvement of the VFA+ algorithm increases from 1.87% (small
size instances) to 2.97% (large size instances).

Table 6.1 Overview of the performance of the Rollout, VFA, VFA+ and the Optimal
Algorithm on Secomandi instances

Secomandi Rollout VFA VFA+ Opt VFA VFA+ Opt
N Value Value Value Value Imprv.*% Imprv.*% Imprv.*%
5 5.51 5.37 5.55 5.34 2.41% -0.75% 3.07%
6 5.40 5.28 5.29 5.21 2.24% 2.08% 3.55%
7 5.27 5.13 5.13 5.07 2.76% 2.67% 3.90%
8 5.54 5.44 5.40 5.31 1.82% 2.57% 4.12%
9 5.36 5.29 5.25 5.16 1.36% 2.10% 3.62%
10 5.44 5.35 5.33 5.26 1.59% 2.09% 3.41%
11 6.08 6.01 5.97 5.84 1.10% 1.88% 3.90%
12 6.27 6.20 6.11 5.95 1.26% 2.56% 5.10%
13 6.20 6.10 6.11 6.00 1.56% 1.42% 3.19%
14 6.21 6.14 6.08 6.01 1.22% 2.08% 3.29%
15 6.22 6.10 6.04 5.95 1.92% 2.91% 4.31%

Average 5.77 5.67 5.66 5.56 1.73% 1.97% 3.78%
16 6.64 6.61 6.51 0.40% 1.89%
17 6.36 6.41 6.28 -0.71% 1.27%
18 6.23 6.27 6.12 -0.54% 1.89%
19 6.66 6.72 6.57 -0.98% 1.36%

Average (Small size instances) 5.96 5.89 5.85 1.10% 1.87%
20 6.86 6.73 6.61 1.81% 3.64%
30 7.51 7.52 7.21 -0.10% 4.04%
40 8.14 7.98 1.98%
50 8.49 8.29 2.29%
60 9.07 8.79 3.09%

Average (Large size instances) 8.01 7.78 2.97%
Grand Average 6.47 6.33 2.21%

* Percentage cost improvement relative to the Rollout algorithm.
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Tables 6.2 and 6.3 present the results of the Solomon A and the Solomon B instances
with the number of customers: N ≤ 15. The results represented are the average
values for each instance size. The left part of the table shows the results when the
depot is approximately at the center of the customers (Solomon A) and the right
part of the table presents the results when the depot is approximately at the corner
(Solomon B). We use these two sets of instances to analyze the effect of the depot
location on the performance of the algorithms.

Table 6.2 Overview of the performance of the Rollout, VFA, VFA+ and the Optimal
Algorithm on Solomon A instances

Solomon A (The Depot at the Center)
Rollout VFA VFA+ Opt VFA VFA+ Opt

N Value Value Value Value Imprv.*% Imprv.*% Imprv.*%
5 1.423 1.406 1.391 1.387 1.23% 2.31% 2.57%
6 1.645 1.652 1.623 1.612 -0.44% 1.35% 2.01%
7 1.854 1.849 1.862 1.836 0.22% -0.44% 0.96%
8 2.090 2.079 2.106 2.065 0.54% -0.75% 1.21%
9 2.290 2.292 2.285 2.257 -0.08% 0.20% 1.43%

10 2.358 2.350 2.336 2.323 0.32% 0.92% 1.47%
11 2.502 2.513 2.487 2.468 -0.41% 0.60% 1.38%
12 2.662 2.673 2.642 2.633 -0.39% 0.77% 1.09%
13 2.714 2.717 2.693 2.673 -0.10% 0.80% 1.51%
14 2.905 2.921 2.892 2.874 -0.56% 0.44% 1.04%
15 3.014 3.017 2.981 2.954 -0.12% 1.09% 1.99%

Average 2.314 2.315 2.300 2.280 -0.05% 0.63% 1.47%

* Percentage cost improvement relative to the Rollout algorithm.

Table 6.3 Overview of the performance of the Rollout, VFA, VFA+ and the Optimal
Algorithm on Solomon b instances

Solomon B (The Depot at the Corner)
Rollout VFA VFA+ Opt VFA VFA+ Opt

N Value Value Value Value Imprv.*% Imprv.*% Imprv.*%
5 2.811 2.799 2.791 2.779 0.43% 0.74% 1.14%
6 2.817 2.776 2.775 2.766 1.46% 1.49% 1.81%
7 2.789 2.718 2.712 2.699 2.56% 2.76% 3.22%
8 3.047 2.911 2.935 2.890 4.48% 3.70% 5.16%
9 3.146 3.031 3.060 3.007 3.63% 2.73% 4.42%

10 3.086 3.054 3.038 2.996 1.04% 1.58% 2.92%
11 3.261 3.230 3.217 3.169 0.95% 1.36% 2.83%
12 3.387 3.369 3.334 3.300 0.53% 1.57% 2.55%
13 3.358 3.335 3.331 3.283 0.67% 0.79% 2.22%
14 3.605 3.558 3.590 3.489 1.31% 0.43% 3.22%
15 3.673 3.607 3.627 3.519 1.78% 1.25% 4.18%

Average 3.180 3.126 3.128 3.082 1.69% 1.64% 3.09%

* Percentage cost improvement relative to the Rollout algorithm.

The results for Solomon A instances show that when the depot is at the center, the
relative performance of the VFA, the VFA+ algorithm and the optimal algorithm is
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on average not much different from the performance of the Rollout algorithm. This
suggests that the Rollout algorithm performs good and also the VFA algorithms and
the optimal algorithm behaves similarly with the central depot.

When we look at Solomon B instances, the results are similar to the results of the
Secomandi instances with N ≤ 15. Both the VFA and the VFA+ algorithm improve
the solution of the Rollout algorithm by covering on average more than 50% of
the performance gap between the Rollout and the optimal solution. Intuitively,
moving the depot from the center to the corner increases the average customer-depot
distance. Therefore, when the depot is at the corner, the penalty of a failure is higher
as we have to travel on average longer distance back to the depot. This indicates that
in value function algorithms, the decisions for which customer to go next and for the
early replenishment are made efficiently such that the overall cost decreases.

Algorithm Comparison: Computational Times
Figure 6.1 shows the normalized computational times (in logarithmic scale) for the
different algorithms in solving the Secomandi instances. The normalized time is
calculated as the computational time relative to solving the instances with N = 5
customers. Figure 6.1 shows that the MDP solution time increases at a much
higher rate than other algorithms. The VFA+ has the slowest rate of increase as
the number of the customers increases. This shows that the VFA+ algorithm reduces
the computational time significantly when compared to the optimal algorithm, the
Rollout algorithm and the VFA while providing good quality solutions by using
bounded lookup tables with efficient maintenance.

In Figure 6.1, there is a sudden jump up in the computational time of the VFA and
Rollout algorithms from the small size (≤ 19 customers) to the large size instances (≥
20 customers). This is because, in the experimental design of the large size instances,
we use demand categories with a wider range that increases the number of the state-
decision pairs (see Section 6.5.1). However, due to the use of bounded lookup tables
with efficient maintenance, the VFA+ algorithm successfully mitigates this increase in
the state-decision space (see “state difference” explanation in Section 6.4.2).
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Figure 6.1 Computational times for different algorithms based on the Secomandi
instances
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6.7. Conclusions
This chapter deals with the single vehicle routing problem with stochastic demands
(VRPSD). The VRPSD is a difficult stochastic combinatorial optimization problem
that becomes intractable for large size instances. In this chapter, we formulate
a multi-stage stochastic dynamic programming model and implement Approximate
Dynamic Programming (ADP) algorithms to overcome the curses of dimensionality
for the VRPSD. The ADP algorithms are based on Value Function Approximations
(VFA) with a lookup table representation. The standard VFA is improved for VRPSD
with a Q-learning algorithm with bounded lookup tables and efficient maintenance
(VFA+), as well as exploration-and-exploitation strategies using preventive returns
and restocking.

We validate and benchmark our proposed algorithms using test instances in the liter-
ature. The VFA+ algorithm obtains good quality solutions with shorter computational
time, especially for large size instances. For small size instances where the optimal
solutions are available, VFA+ improves the Rollout algorithm by covering on average
more than 50% of the performance gap between the Rollout and the optimal solutions.
For large size instances, VFA+ outperforms both VFA and the Rollout algorithm. This
demonstrates the effectiveness in the algorithm design of VFA+.

In Approximate Dynamic Programming, the use of post-decision states helps to
capture the state of the system immediately after the decision making but before
the new (exogenous) information arrives. It also helps to avoid the expectation
within the min or max operator. However, in a stochastic combinatorial optimization
problem such as VRPSD, we need both the state and the decision information to
evaluate the impact of the decision, where the practice of post-decision states appears
to be inappropriate. Therefore, we improve the ADP algorithm with a Q-learning
algorithm where we store the values of state-decision pairs, i.e., Q-factors. It however
suffers more from the curses of dimensionality. We design bounded lookup tables
with efficient maintenance to overcome this. Further, we design exploration-and-
exploitation strategies using preventive returns for VRPSD. The combination of the
above algorithmic strategies appear to play an important role in making better routing
and restocking decisions in VRPSD. This chapter provides an exploratory algorithmic
research on the application of Q-learning algorithms with bounded lookup table and
efficient maintenance as well as exploration-and-exploitation strategies in dealing
with difficult stochastic and combinatory problems. More in-depth research is called
for along this line.
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6.A. Appendix

A The illustration for state-decision pairs and it sets
In Figure 6.1, an illustration for the state-decision pairs and it sets is given for a
small single vehicle routing problem. In this example, there are only 3 customers, the
capacity of the vehicle is 4 units and the demand of each customer follows a discrete
uniform distribution U(1,2). Here, we only show the branch from the customer 1 at
state 1 until the termination state which ends at the depot. The it sets are grouped
according to the current customer.

Stage 1 Stage 2 Stage 3

i2=2  set  i3=3  set 
((2,3,{1,1,0}),(3,0)) ((3,3,{1,1,1}),(0,0))
((2,2,{1,1,0}),(3,0)) ((3,2,{1,1,1}),(0,0))
((2,1,{1,1,0}),(3,0)) ((3,1,{1,1,1}),(0,0))
((2,0,{1,1,0}),(3,0)) ((3,0,{1,1,1}),(0,0))
((2,3,{1,1,0}),(3,1))
((2,2,{1,1,0}),(3,1))

i1=1 set  ((2,1,{1,1,0}),(3,1))
((1,3,{1,0,0}),(2,0)) ((2,0,{1,1,0}),(3,1))
((1,2,{1,0,0}),(2,0))
((1,3,{1,0,0}),(2,1))
((1,2,{1,0,0}),(2,1))
((1,3,{1,0,0}),(3,0))
((1,2,{1,0,0}),(3,0))
((1,3,{1,0,0}),(3,1)) i2=3  set  i3=2  set 
((1,2,{1,0,0}),(3,1)) ((3,3,{1,0,1}),(2,0)) ((2,3,{1,1,1}),(0,0))

((3,2,{1,0,1}),(2,0)) ((2,2,{1,1,1}),(0,0))
((3,1,{1,0,1}),(2,0)) ((2,1,{1,1,1}),(0,0))
((3,0,{1,0,1}),(2,0)) ((2,0,{1,1,1}),(0,0))
((3,3,{1,0,1}),(2,1))
((3,2,{1,0,1}),(2,1))
((3,1,{1,0,1}),(2,1))
((3,0,{1,0,1}),(2,1))

i1=2 set 
((2,3,{0,1,0}),(1,0))
((2,2,{0,1,0}),(1,0))
((2,3,{0,1,0}),(1,1))
((2,2,{0,1,0}),(1,1))
((2,3,{0,1,0}),(3,0))
((2,2,{0,1,0}),(3,0))
((2,3,{0,1,0}),(3,1))
((2,2,{0,1,0}),(3,1))

i1=3 set 
((3,3,{0,0,1}),(1,0))
((3,2,{0,0,1}),(1,0))
((3,3,{0,0,1}),(1,1))
((3,2,{0,0,1}),(1,1))
((3,3,{0,0,1}),(2,0))
((3,2,{0,0,1}),(2,0))
((3,3,{0,0,1}),(2,1))
((3,2,{0,0,1}),(2,1))

Depot Depot

i2=2  

i2=3  

i3=2  

i3=3  

i2=1  

i2=3  

i2=1  

i2=2  

i4=0  

i4=0  

Figure 6.1 The illustration for state-decision pairs and it sets
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Conclusions

This chapter presents the conclusions of the research presented in this thesis. First,
we provide the results from the research in Section 7.1. Section 7.2 concludes this
chapter with directions for future research.

7.1. Results
The traffic conditions and customer profiles in transportation networks are dynamic
and stochastic where travel times are non-stationary due to random traffic disruptions
and customer demands are uncertain. Today’s information system technology
provides the planners a wide range of information including real-time information.
This creates an opportunity for researchers to develop algorithms using dynamic
information. Providing routing algorithms that are simple, fast, accurate and
feasible for real-life situations becomes crucial as the traffic networks become more
dynamic and congested. In the coming future, the dynamic routing algorithms
will be frequently used with the advances in in-car navigation systems. According
to Van De Weijer and Rutten (2012), travelers tend to follow information from
in-car navigation systems rather than central signals. Therefore, the implications
from the thesis play an important role for determining the value of using real-time
and probabilistic information to be used in-car navigation systems. The research
presented in this thesis aims to develop fast and efficient dynamic routing algorithms
both for dynamic shortest path problems with network disruptions and vehicle routing
problems with stochastic demands. In this way, with the advancements of traffic
information predictions, these dynamic routing algorithms can be implemented in
navigation technologies such as TomTom.

In the thesis, our objective is to minimize the total expected travel time. This choice
is due to the high value of travel time for both passenger and freight transportation.
We provide the experimental results by discussing the percentage decrease in travel
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time. For freight transportation, this indicates reduction in fuel costs, less over-
time work for employees due to uncertainty and higher service levels. For passenger
transportation, it indicates lower fuel costs and improvement in societal effects such
as less stress due to traffic. However, in real-life, the implications of the travel time
reduction is, however more. According to the traffic studies (Hansen 2001, Koopmans
and Kroes 2003) time spent in traffic congestion causes external costs such as air
pollution and accidents which are more costly than the fuel costs, etc. Therefore, the
magnitude of savings for unit travel time will be more if we also consider societal and
environmental costs.

As discussed in Chapter 1, we aim to develop dynamic routing policies that
are accurate, simple and fast. First of all, the numerical results show that
the algorithms provide good quality solutions with small percentage gaps from
the optimal solutions. Furthermore, considering Markov Decision Process (MDP)
provides a simple framework for real-time usage by developing routing policies
depending on the network state. The travelers observe the network states and choose
the relevant policy. The dynamic routing policies developed in this thesis are fast and
can be computed in feasible amount of time to be used in practice. The computational
time differs from less than a second to less than a minute for small networks with low
network states (hundred states) to large networks with higher network states (million
states). Following, we shortly summarize our findings.

In Chapter 3, we analyzed the influence of using different levels of traffic information
on the performance of routing policies in case of network disruptions. We compared
the performance of the current known heuristics such as the offline and the online
policies, with the hybrid routing policies. By testing different policies using different
levels of stages, we analyzed the effect of having a sufficient level of online and offline
information about the network for different networks. Moreover, we gained insights
into the network conditions in which it is better to use what type of policies. We
found that the usage of only limited online and predictive information leads to a
significant decrease in computation time compared to the policies that use higher
levels of information. We observed that the performance of hybrid policies only
deteriorates marginally compared to the optimal solution. The average percentage
gap between the optimal solution and the solution from the best hybrid dynamic
algorithm is at most 1.38% with more that 100% computational time reductions.
This shows that for practice, we do not need to collect real-time information for
the complete network to obtain good performance. This result is beneficial when
availability and reliability of online information are low and the cost of retrieving this
information is high. Furthermore, we observed that under more complex networks,
the more detailed information about the disruption’s state becomes effective and cost
efficient even if the network knowledge is limited with few stages with online and
probabilistic information for the hybrid policies. Compared to traditional routing
algorithms that do not consider the disruptions, the hybrid algorithms provides at
least 30% cost reductions.
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In Chapter 4, we extended the dynamic shortest path problems presented in Chapter
3 for larger networks with many disruption states. For large scale networks with many
levels of disruptions, obtaining the optimal solution faces the curses of dimensionality,
i.e., states, outcome, and decisions. Therefore, we used an Approximate Dynamic
Programming (ADP) algorithm which is a well-known approximation approach. The
ADP algorithms used in this chapter are based on the value function approximations
using a lookup table representation. First, we employed a standard value function
approximation algorithm with various algorithmic design variations for updating
the state values with efficient exploration/ exploitation strategies. Then, we
improved the value function approximation algorithm by developing a hybrid ADP
with a deterministic lookahead policy and value function approximations using a
clustering approach. We also used the hybrid algorithms developed in Chapter 3
as a benchmark. We developed a test bed of networks to evaluate the efficiency
(both in computational time and solution quality) of our algorithms. In our
numerical analysis, we showed that the hybrid ADP algorithms with the clustering
approach outperforms the standard ADP algorithms. Furthermore, we observed
that considering a shorter horizon for the deterministic lookahead policy improves
the solution quality. The hybrid ADP algorithms outperforms the hybrid dynamic
algorithm as the network size gets larger and the disruption rate gets higher. The
computational time of the hybrid ADP algorithms shows the slowest rate of increase
with respect to the exponential increases in the state space. The computational
time of the benchmark heuristic increases at a higher rate when the number of
disruption levels increases. Although the benchmark heuristic has relatively good
solution quality, for large scale networks with many disruption levels the hybrid
ADP algorithms with the clustering approach becomes more attractive with lower
computational time and high solution quality for practice.

In Chapters 3 and 4, we assumed that there is no propagation of disruptions and
there is no link-dependency. In Chapter 5, we removed this constraint and considered
the effect of backward propagation of disruptions in downstream roads to upstream
roads due to limited capacity of roads. We denote this as the spillback effect.
The spillback effect is a congestion propagation to an upstream link. We analyze
the effect of ignoring and considering the spillback effect in the dynamic routing
decisions with network disruptions. We incorporated the spillback effect into the MDP
formulation. However, as the size of the network and the disruption levels increase,
the computational complexity increases causing the MDP become computationally
intractable. Therefore, to reduce the computational time, we used a hybrid dynamic
programming algorithm developed in Chapter 3. We also provided online and static
algorithms mostly used in practice for the routing decisions. We used a test bed of
different network structures with different levels of disruption rates and spillback
rates. The numerical results show that considering the spillback effect has the highest
impact on the solution quality when the network has higher number of vulnerable
links. Moreover, the hybrid dynamic programming approach with the disruption and
the spillback information for the limited part of the network significantly reduces the
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computational time while providing higher solution quality than the full information
model that ignores the spillback effect.

In Chapter 6, we dealt with the single vehicle routing problem with stochastic
demands (VRPSD). The VRPSD is a difficult stochastic combinatorial optimization
problem that becomes intractable for large size instances. In this chapter, we
formulated a stochastic dynamic programming model and implement Approximate
Dynamic Programming (ADP) algorithms to overcome the curses of dimensionality
for the VRPSD. The ADP algorithms are based on Value Function Approximations
(VFA) with a lookup table representation. The standard VFA was extended and
improved for the single VRP with stochastic demands (VFA+) with a Q-learning
algorithm where we store the values of state-decision pairs, i.e., Q-factors. It however
suffers more from the curses of dimensionality. We designed bounded lookup tables
with efficient maintenance to overcome this. Further, we design exploration-and-
exploitation strategies using preventive returns for VRPSD. The combination of the
above algorithmic strategies appear to play an important role in making better routing
and restocking decisions in VRPSD. We validated and benchmarked our proposed
algorithms using test instances in the literature. The VFA+ algorithm obtains good
quality solutions with shorter computational time, especially for large size instances.
For small size instances where the optimal solutions are available, VFA+ improves
the Rollout algorithm by covering on average more than 50% of the performance
gap between the Rollout and the optimal solutions. For large size instances, VFA+

outperforms both VFA and the Rollout algorithm. This demonstrates the effectiveness
in the algorithm design of VFA+.

7.2. Future Research Directions
The research presented here can be extended in several directions.

In Chapters 3-5, we focus on time-invariant and travel-time-dependent traffic
information. The dynamic shortest path algorithms presented can be extended
by considering time-dependent travel times. This can be done by adding a time
dimension in the network state definition. By this way, one can also incorporate
the effect of daily fluctuations explicitly into the model. Furthermore, in Chapters 3
and 4 we assumed only travel-time-dependency based on the travel time of the link
being traversed. The models can be extended with whole network dependency. For
instance, when the weather conditions are extreme, all of the links in the network are
affected.

The input information processing and availability are crucial for the dynamic shortest
path problems. In this thesis, we generate random networks that represent highway
road networks in the Netherlands with wide variety of network properties. However,
for the future research performing the routing algorithms with real-life data is also
essential. Fortunately, there are new projects such as Daipex (Dutch Institute for
Advanced Logistics 2013) that will create the opportunity to develop real-time traffic
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data processing mechanism. By this way, the logistics information can be retrieved
in real-time. In addition to this, the effect of receiving delayed real-time information
and low quality of information can be investigated.

In the dynamic shortest path problems, we focused on minimizing the cost of a single
traveler. However, in terms of system equilibrium, considering travelers as a system is
a way to improve the overall traffic. For instance, when the routing softwares suggest
most of the travelers to travel to the same road, then also that road will become
congested. This research can be further extended for traffic equilibrium.

The results for the dynamic shortest path problems in Chapters 3-5 provide im-
plications for improving the passenger transportation. For the future research,
the dynamic routing algorithms can be implemented to freight transportation by
developing dynamic vehicle routing algorithms with dynamic and stochastic travel
times. The approximate dynamic programming algorithms and limited lookahead
policies can be extended to the vehicle routing problems.

Chapter 6 can be extended by considering multiple vehicle case. This will increase
the state-space compared to the single vehicle case. It is interesting to investigate the
performance of the Rollout and ADP algorithms with Q-learning with this problem
setting. Furthermore, the developed Q-learning algorithm can also be implemented
for the dynamic vehicle routing algorithms with dynamic travel times.

Throughout the thesis, we used total expected travel time as the performance
measure. The performance measure may also include travel-time reliability and also
societal costs such as reducing CO2 emissions. Furthermore, in dynamic routing
algorithms, the preference of the travelers such as not visiting a specific intersection
or having a priority in visiting the customers can be considered as a future direction.
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Pillac, V., M. Gendreau, C. Guéret, A. L. Medaglia. 2012. A review of dynamic vehicle routing
problems. European Journal of Operational Research 225(1) 1–11.
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Summary

Routing in Stochastic Networks

In real-life, road networks are congested due to random events such as accidents,
travel times depend upon the moment one leaves the distribution center, demand
varies, etc. Neither traffic conditions nor customer demands are known with certainty
but are rather dynamic and stochastic. They are dynamic because traffic conditions
as well as supply and demand fluctuate over space and time dimensions. These
dynamics occur due to stochastic events such as road blockages from accidents,
weather conditions, uncertain demand, vehicle breakdowns, traveler choices, etc.
Transportation networks are characterized by uncertainty of traffic conditions and/or
customer demands on the networks. These stochastic and fluctuating elements on
transportation networks lead to stochastic travel times and so uncertain travel costs
for transportation companies and drivers.

Traditionally, most routing algorithms and software consider networks in a static
way with deterministic or stochastic information, i.e. the route is determined
before going en-route with all model inputs known with certainty or the inputs are
random variables that follow certain probability distributions based on historical
characteristics, respectively. Obviously, the world is dynamic and stochastic and
does not fit into a deterministic and static straitjacket. Any schedule built on these
unrealistic assumptions results in higher transportation costs.

Today, for transportation companies the market is becoming competitive with higher
customer service expectations and drivers want to be on time at their destinations in
this dynamic and stochastic environment. Fortunately, the advances in information
technologies provide travelers and dispatchers with real-time information on the
location of the vehicles, traffic network conditions and customer demand realizations.
These present operations researchers an opportunity to tackle dynamic and stochastic
conditions on transportation networks to provide travelers and transportation compa-
nies with low transportation costs via dynamic routing. Considering high quality and
frequently updated real-time information, planners can replan and reroute travelers
and vehicles during traveling. In other words, dynamic routing allows planners to
change their routing decisions during traveling as more accurate information becomes
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available to handle fluctuating demands and travel times.

Dynamic routing models can capture real-life dynamics more realistically. According
to recent studies, dynamic decision making by considering uncertainty and real-
time information lead to significant cost savings. However, these savings are at the
expense of computational complexity as the routing problem becomes combinatorial.
For practical purposes, we need fast and simple dynamic routing algorithms that
provide the travelers with high quality routing decisions. In this thesis, balancing the
trade-off between computational time and solution quality is of particular importance
because fast, simple and accurate routing decisions prevent drivers wasting time for
retrieving decisions with lower transportation costs and higher customer service levels
for transportation companies.

This thesis addresses routing problems in networks where the state of the network
changes regarding to stochastic and dynamic events such as traffic accidents,
congestions due to bottlenecks and random customer demands, etc. We limit
our scope to networks where the stochasticity arises from either the travel time
changing due to traffic disruptions (event that increase the travel time significantly)
or stochastic customer demands that are realized upon arrival. We do not focus on
unpredictable disruptions on roads and new customer arrivals.

By considering the predictability of these events, we propose a multi-stage stochastic
dynamic programming model based on a discrete-time, finite MDP formulation. In
our models, we couple real-time network information with probabilistic information
on the stochastic elements to improve the decision making process. In a real-time
setting, the network information (e.g. travel times, customer demands, disruption
realizations and current location) is realized during the execution of the routing
process. Before the departure, we develop fast and efficient algorithms to obtain
stationary routing policies based on network state realizations. As the traveler collects
information on the realizations during travel, the relevant policy is selected. In other
words, given the stochastic information, we develop dynamic decisions depending on
the realizations of the stochastic elements to minimize the total expected travel time.

We solve the problem with a Dynamic Programming (DP) approach. For the
routing decisions, the DP approach provides a practical framework to find routing
decisions for multiple stages. However, for large-scale networks, finding the optimal
solution suffers from the curse of dimensionality. Throughout the thesis, we provide
approximations to reduce the computation time significantly while providing high
quality solutions.

In Chapters 3-5, we focus on dynamic shortest path problems in stochastic networks
where the uncertainty comes from travel time. In these chapters, we develop dynamic
routing policies and we compare various offline and online algorithms as well. In the
last chapter, we deal with vehicle routing problem where we have stochastic customer
demands. In Chapter 2, we describe the traffic networks that we focus on for dynamic
shortest path problems. In this chapter, we explain how we implement the dynamic
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algorithms from input information retrieval to output generation. This chapter is a
prologue to Chapters 3-5.

In Chapter 3, we consider dynamic networks where there are stochastic disruptions
due to accidents, and bottlenecks that cause congestions that lead to significantly
higher travel time. For developing routing policies, we both consider real-time
traffic information and stochastic information. Furthermore, we also consider the
probability distribution of the duration of a congestion caused by a disruption. In
this chapter, we analyze the effect of considering different types of information of
different parts of the network on quality of routing decisions and the computation
time. We develop a framework based on a DP in which we formulate and evaluate
various online and offline routing policies in the literature. Next to this, we develop
computationally efficient hybrid lookahead policies considering both real-time and
historical probabilistic information. To test the efficiency of different routing policies,
we develop a test bed of networks based on a number of characteristics such as
network size, network vulnerability and disruption rate. We analyze the results in
terms of routes, solution quality and calculation times. Our results show that a
significant part of the cost reduction can be obtained by considering only a limited
part of the network in detail at online level.

In Chapter 4, we consider the same dynamic shortest path problem considered in
Chapter 3. However, in this chapter we extend the problem for larger network sizes
with multiple levels of disruptions. We model this as a discrete-time, finite MDP.
For large-scale networks with many levels of disruptions, the formulation suffers
from the curse of dimensionality. To mitigate the curses of dimensionality, we apply
Approximate Dynamic Programming (ADP) algorithm. In this algorithm, instead of
computing exact value functions (computationally challenging), we consider value
function approximations. We develop a hybrid ADP algorithm with efficient value
function approximations based on a clustering approach. In this hybrid algorithm,
we combine a deterministic lookahead policy with a value function approximation.
We provide various algorithmic design variations for the ADP where multiple initial
solutions and various update methods are used with efficient exploration/exploitation
strategies. We show insights about the performance of these variations based on
different network structures. Furthermore, we develop a test bed of networks to
evaluate the efficiency of our approximation with the standard ADP algorithm and the
hybrid routing policy based on stochastic lookahead algorithm (developed in Chapter
3). The results show that the hybrid ADP algorithm reduces the computational time
significantly. Furthermore, the hybrid ADP outperforms the standard ADP algorithm.
We also show that the hybrid ADP algorithm outperforms the stochastic lookahead
algorithm in large size networks with many disruption levels.

In Chapter 5, we consider another dynamism in traffic networks which is the
propagation effect of disruptions on the dynamic shortest path problems. When
a disruption occurs at a certain link, due to the limited capacity, the effect of the
disruption propagates to upstream links. We denote this as the spillback effect. To
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have better routing decisions, we should capture the dynamics of spatial and temporal
correlations. In this chapter, we model the dynamic shortest path problem with
stochastic disruptions as a discrete-time, finite MDP. To reduce the state-space, we
only use real-time information for a limited part of the network (Hybrid routing
policy from Chapter 3). We analyze the effect of considering and not considering the
spillback effect in our routing decisions. Numerical results show that considering the
spillback effect in the dynamic routing decisions significantly improves the solution
quality for the networks with higher number of vulnerable arcs. Moreover, the hybrid
routing policy with the disruption and the spillback information for the limited part of
the network, significantly reduces the computational time while providing on average
significantly higher solution quality than the full information model that ignores the
spillback effect.

Chapter 6 deals with the vehicle routing problem with stochastic demands, consid-
ering a single vehicle. In this problem, the actual demand realization is unknown
until we visit a customer. We build a stochastic dynamic programming model and
implement an ADP algorithm to overcome the curses of dimensionality. The ADP
algorithms are based on the Value Function Approximations (VFA) with a lookup
table. The standard VFA with lookup table is extended and improved for the DVRP
with stochastic demands. The improved VFA algorithm reduces the computation time
significantly with good quality of solutions. A significant reduction of computational
time enables us to conduct systematic larger scale numerical experiments, important
for real-life decision making. Several test instances found in the literature are used to
validate and benchmark our obtained results.
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