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Abstract

We consider a single stock point for a repairable item. The repairable item is a critical component that is

used in a fleet of technical systems such as trains, planes or manufacturing equipment. A number of spare

repairables is purchased at the same time as the technical systems they support. Demand for those items is

a Markov modulated Poisson process of which the underlying Markov process can be observed. Backorders

occur when demand for a ready-for-use item cannot be fulfilled immediately. Since backorders render a system

unavailable for use, there is a penalty per backorder per unit time. Upon failure, defective items are sent to

a repair shop that offers the possibility of expediting repair. Expedited repairs have shorter lead times than

regular repairs but are also more costly. For this system, two important decisions have to be taken: How many

spare repairables to purchase initially and when to expedite repairs. We formulate the decision to use regular

or expedited repair as a Markov decision process and characterize the optimal repair expediting policy for the

infinite horizon average and discounted cost criteria. We find that the optimal policy may take two forms. The

first form is to never expedite repair. The second form is a type of threshold policy. We provide necessary

and sufficient closed-form conditions that determine what form is optimal. We also propose a heuristic repair

expediting policy which we call the world driven threshold (WDT) policy. This policy is optimal in special

cases and shares essential characteristics with the optimal policy otherwise. Because of its simpler structure,

the WDT policy is fit for use in practice. We show how to compute optimal repairable stocking decisions in

combination with either the optimal or a good WDT expediting policy. In a numerical study, we show that

the WDT heuristic performs very close to optimal with an optimality gap below 0.76% for all instances in

our test bed. We also compare it to more naive heuristics that do not explicitly use information regarding

demand fluctuations and find that the WDT heuristic outperforms these naive heuristics by 11.85% on average

and as much as 63.67% in some cases. This shows there is great value in leveraging knowledge about demand

fluctuations in making repair expediting decisions.
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1. Introduction

Both service and manufacturing industries depend on the availability of expensive equipment to deliver

their products. Examples of such equipment include aircraft, rolling stock and manufacturing equipment.

When this equipment is not working, the primary processes of their owners come to an immediate stop.

To reduce the downtime of equipment, companies stock critical components such that the equipment

can be returned to an operational state quickly by replacing a defective component with a ready-for-use

component. Many components represent a significant financial investment and so they are repaired rather

than discarded after a defect occurs. Consider for example, aircraft engines, bogies, or lenses for wafer

steppers; these are components of aircraft, rolling stock, and integrated circuit manufacturing equipment,

respectively, and their prices range from several hundreds of thousands up to tens of millions of dollars.

These expensive components are very specific to the equipment they service. Consequently, the best time

for companies to buy these components is at the same time as when the original equipment is purchased,

because, at this time, it is possible to negotiate reasonable prices. In the literature, this is often referred

to as the initial spare parts supply problem and it occurs in many different environments (e.g. Rustenburg

et al., 2001; Pérès and Grenouilleau, 2002). Later in time, such components often have to be custom

made and prices are very steep, if the component can be purchased at all. An aggravating factor is that

demand intensity for these components typically fluctuates over time, reflecting the fluctuating need for

maintenance over time. Companies anticipate these demand fluctuations by leveraging the possibility of

expediting the repair of defective components, rather than buying new components. Expediting repair

comes at a price, either because an external repair shop charges more for expedited repairs or because

an internal repair shop can only handle a limited amount of expedited repairs. In the latter case, the

cost of expediting can be thought of as a Lagrange multiplier that enforces a constraint on the number of

expedited repairs that can be requested per time unit. In this situation, the model in the present paper

serves as a building block for a multi-item model.

Companies that operate in the environment described above face two major decisions related to their

inventory control, one at the tactical level, and another at the operational level:

1. How many repairable spare parts should the firm buy? (tactical)

2. When should the firm request that the repair of a part is expedited? (operational)

We refer to the first decision as the dimensioning decision and to the second as the expediting decision.

The spare repairables are usually purchased at the same time as the technical systems that they support.

After this time, the repairables are either no longer available in the market or prohibitively expensive.

Thus the decision to buy repairables is a tactical decision that occurs one time only. The S spare

repairables that are purchased at the time of the acquisition of the technical system are also called the

turn-around stock. After this initial tactical decision there is an operational recurring decision to either
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expedite or not expedite the repair of a spare part each time a demand occurs. These decisions should

take demand fluctuations as well as current inventory levels into account. The model in this paper is

intended to aid both the dimensioning and the expediting decision. Especially for the dimensioning

decision, it is important to consider the fact that expediting will occur later at the operational level.

We study the decision problem of the previous paragraph via a stochastic inventory model for re-

pairable items. In this model a defective item is replaced with a ready-for-use item and sent to a repair

shop immediately after the defect occurs. At this point in time, the inventory manager is faced with

the decision to either expedite or not expedite the repair of the part. Expediting repair is more costly

but has a shorter lead time. This expediting decision is informed by knowledge about the fluctuation of

demand intensity over time.

Our model runs in continuous time, and demand for the component is a Markov modulated Poisson

process (MMPP). The state of the Markov chain that drives the demand process can be observed directly

and is used to inform the expediting decision. This demand model is quite rich and can serve to model

such divers things as economic conditions, seasons of a year, the degradation of a fleet of equipment,

and knowledge about the maintenance program of equipment (Song and Zipkin, 1993). It has also been

observed empirically that demand for repairable spare parts behaves as a non-stationary Poisson process

(Slay and Sherbrooke, 1988). In any case, the MMPP offers the flexibility to model both stationary and

non-stationary demand processes and so it can be used to model a wide variety of demand models. In

particular it offers the possibility to model demand fluctuations.

We assume that inventory is replenished by an (S − 1, S)-policy, meaning that each defective item

is sent immediately to the repair shop. This replenishment policy is often used in practice and it is

optimal when there are no economies of scale in replenishment. We model the expedited lead time as

being deterministic and the regular lead time as being the sum of the expedited lead time and several

exponential phases, the passing of which is monitored. Modeling lead time as such is a convenient

device to investigate the value of tracking order progress information and the effect of different lead time

distributions. (Gaukler et al., 2008, use a very similar model of order progress information.) Many lead

time distributions can be modeled quite closely by this device and in particular deterministic lead times

can be approximated arbitrarily closely by letting the number of exponential phases approach infinity.

The main contributions of this paper are the following: Firstly, for the described setting, we charac-

terize the optimal repair expediting policy for the infinite horizon average and discounted cost criteria

by formulating the problem as a Markov decision process. We find that the optimal policy may take

two forms. The first form is simply to never expedite repair. The second form is a state dependent

threshold policy, where the threshold depends on both the state of the modulating chain of demand and

the pipeline of repair orders. We also provide monotonicity results for the threshold as a function of

the pipeline of repair orders. We give closed-form conditions that determine which of the two forms is

optimal. In analyzing the optimal policy, we confirm a conjecture of Song and Zipkin (2009) that the
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expediting policy they propose is optimal for some special cases.

Secondly, we show that for the joint problem of determining the turn-around stock and the expediting

policy, the cost function is submodular with respect to the turn-around stock and the expediting thresh-

olds. This means that the possibility to expedite repairs can act as a substitute for holding turn-around

stock. We also show how to optimally solve the joint problem of determining the turn-around stock and

the expediting policy.

Thirdly, we propose a heuristic that is computationally efficient, and is shown to perform well com-

pared to the optimal solution. In this heuristic, we replace the optimal expediting policy with a param-

eterized threshold policy that shares important monotony properties with the optimal expediting policy.

The thresholds depend on the available knowledge about the fluctuation of demand. Borrowing the ter-

minology of Zipkin (2000), we call this policy the world driven threshold (WDT) policy. In a numerical

study involving a large test bed, this heuristic has an average and maximum optimality gap of 0.15% and

0.76%, respectively.

Finally, we investigate the value of anticipating demand fluctuations by comparing optimal joint

stocking and expediting policy optimization against naive heuristics that do not explicitly model demand

fluctuations, or that separate the stocking and expediting policy decisions. These naive heuristics have

optimality gaps of 11.85% on average and range up to 63.67% in our numerical study. The comparison

with these naive heuristics show that:

1. There is great value in leveraging knowledge about demand fluctuations in making repair expediting

decisions.

2. Fluctuations of demand and the possibility to anticipate these through expediting repairs should

be considered explicitly in sizing the turn-around stock and can lead to substantial savings.

This paper is organized as follows. In §2, we review relevant literature and position our contribution

with respect to existing results. The model is described in §3 and analyzed exactly in §4. In general, the

exact analysis leads to algorithms that suffer from the curse of dimensionality. Therefore, in §5, we study

a heuristic informed by our exact analysis that is computationally tractable. In §6, we provide numerical

results on the performance of the heuristic we propose and we investigate the value of anticipating demand

fluctuations through the joint optimization of the turn-around stock and expediting policy. Concluding

remarks are provided in §7.

2. Literature review

Our model is situated at the intersection of two streams of literature. The first one deals with sizing the

turn-around stock of repairable item inventories and the second one with expediting, or inventory models

with two (or more) supply modes.
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An important characteristic of repairable item inventories is that inventory is replenished by repairing

defective items. Repairable item inventory systems thus form a closed loop system that implicitly dictates

base-stock levels. Often, the number of supported assets is large and the demand process is assumed to

be independent of the number of outstanding orders. A small stream of literature considers situations

where the number of supported technical systems is low and so the number of outstanding orders will

affect the demand process (e.g. Gross and Ince, 1978). We assume that demand for the repairable is not

affected by the number of outstanding repair orders. This is in line with the modeling assumptions of

most of the repairable item inventory literature that was started with the metric model introduced by

Sherbrooke (1968). Most of the important results in this stream of literature have been consolidated in

the books by Sherbrooke (2004) and Muckstadt (2005). This paper adds to the literature on repairable

item inventories by studying what happens when it is possible to expedite the repair of a defect part, and

in particular if this flexibility can be used to respond to a fluctuating demand environment. In doing this,

we relax the commonly held assumption that demand is a stationary Poisson process. Our assumption

of a Markov modulated Poisson process is more in line with empirical findings (Slay and Sherbrooke,

1988). Verrijdt et al. (1998) already studied simple heuristics for the case that demand is a stationary

Poisson process and emergency and regular repair lead times are both exponentially distributed. We relax

the assumptions that the demand process is stationary and consider a more general lead time structure.

Furthermore, we study optimal solutions as well as a new heuristic informed by the structure of the

optimal solution. We also remark that expediting repair is not the same as shipping a ready-for-use part

from a different stocking location which is commonly known as an emergency shipment (e.g. Alfredsson

and Verrijdt, 1999).

Inventory models with multiple supply modes have been reviewed by Minner (2003). Here we review

the important and more recent results. Most authors consider a periodic review setting where the regular

and expedited lead time differ by a single period and find that a base-stock policy is optimal for both the

regular and expedited supply modes (e.g. Fukuda, 1964). When the lead time of the regular and expedited

supply modes differ by more than a single period, optimal policies do not exhibit simple structure and

depend on the entire vector of outstanding orders (e.g. Whittmore and Saunders, 1977; Feng et al., 2006).

As a result, recent research considers heuristic policies for the control of dual supply systems, the most

notable of these being the dual-index policy and variations thereof (Veeraraghavan and Scheller-Wolf,

2008; Sheopuri et al., 2010; Arts et al., 2011). Under the dual-index policy, a regular and emergency

inventory position are tracked separately, and both are kept at or above their respective order-up-to

levels.

As opposed to the above mentioned papers, Moinzadeh and Schmidt (1991) consider a system running

in continuous time facing Poisson demand with deterministic emergency and regular replenishment lead

times. They show how to evaluate a given dual-index policy, although the name was not coined at the

time, and the structure was not recognized as such. Song and Zipkin (2009) reinterpret the model of
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Moinzadeh and Schmidt (1991) revealing the simple structure of the policy and show how the performance

of any such policy can be evaluated in closed form using an equivalence to a special type of queueing

network that has a product form solution. This equivalence also allows them to consider very general

lead time structures. Verrijdt et al. (1998) consider a similar system in the context of repairable items. In

their model, the regular and expedited supply/repair modes have independent exponentially distributed

lead times. They consider a different policy where repair is expedited when the inventory on hand drops

below a certain critical level.

While two different heuristic expediting policies have been suggested in the literature by Moinzadeh

and Schmidt (1991) and Song and Zipkin (2009), and Verrijdt et al. (1998), the optimal expediting policy

has not yet been investigated. Song and Zipkin (2009) conjecture that their policy is optimal in some

special cases. In this paper, we analyze the optimal repair expediting policy in the case of deterministic

expedited repair lead times and stochastic regular repair lead times. As it turns out, the form suggested

by Moinzadeh and Schmidt (1991) and Song and Zipkin (2009) is optimal in the special case that the

regular repair lead time has a shifted exponential distribution and demand is a Poisson process. For

more general lead time structures and demand processes, the optimal policy is a generalization of this

policy. We note that Song and Zipkin (2009) also considered Markov modulated Poisson demand as an

extension, but their expediting policy does not depend on the state of modulating chain of demand.

3. Model formulation

Our model supports two decisions: (i) How to dimension the turn-around stock S and (ii) what expediting

policy to follow. The two decisions we consider in this paper live in different time scales. For the analysis,

we will use a nested procedure that determines the optimal expediting policy for a given turn-around

stock, and use this to determine the optimal turn-around stock. Below we give an integrated description

of the model. In §3.1, we discuss the main assumptions of the model and their justifications.

We consider a repairable item stock-point operated in continuous time with an infinite planning

horizon [0,∞). The stock-point faces Markov modulated Poisson demand, i.e., demand is a Poisson

process whose intensity varies with the state of an exogenous Markov process Y (t). The Markov process

Y (t) is irreducible and has a finite state space Θ = {1, ..., |Θ|} with generator matrix Q whose elements

we denote by qij . For notational convenience, we also define qi = −qii and qmax = maxi∈Θ qi. When

Y (t) = y, the intensity of Poisson demand is given by λy ≥ 0; λ = (λ1, ..., λ|Θ|), λy > 0 for at least one

y ∈ Θ. For convenience, we also define λmax = maxy∈Θ λy. We denote demand in the time interval (t1, t2]

given Y (t1) = y as Dy
t1,t2

. Note that Y (t1) provides information about the distribution of demand in the

interval (t1, t2], t2 > t1. We assume that Y (t) can be observed by the decision maker and so it provides

a form of aggregated advance demand information.

The size of the turn-around stock, S ∈ N0, of the repairable is determined at time t = 0 and cannot
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Repair shop

λY(t)

Expedite?

ℓe
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Lr

…..

Exp(μ1)Exp(μ2) Exp(μm)

Figure 1: Repairable item inventory system with the possibility to expedite repair

be adapted afterwards. We assume that failed parts can always be repaired (no condemnation) and that

defective parts are sent to the repair shop immediately, i.e., we use an (S − 1, S) replenishment policy.

There exists a regular and an expedited repair option. The expedited repair lead time, `e, is deter-

ministic. The expedited repair lead time may represent things such as the transport time and the repair

time or a lead time agreed upon with an external company that provides emergency repair service. We

also refer to using the expedited repair mode as expediting repair.

The regular repair lead time consists of the emergency repair lead time `e, and a random component of

length Lr, with mean E[Lr] <∞. We shall also refer to Lr as the additional regular repair lead time. Lr

is used to model such things as the time that a part waits for resources to become available in the repair

shop or the lead time difference between regular and emergency repair lead times as contracted with an

external repair shop. We assume that this additional time is distributed as the sum of m exponential

phases, with mean 1/µi for the i-th exponential phase. We also let µmax = maxi∈{1,...,m} µi. The inventory

manager can observe the pipeline of outstanding orders and so she knows how many phases each part

in the pipeline has completed. In particular, the inventory manager knows when the last phase (m) is

completed and the remaining lead time of a regular order is `e. A graphical representation of the system

under study is given in Figure 1.

Turn-around stock holding (and depreciation) costs are incurred with a constant rate h > 0 for all

repairable spare parts, regardless of where they are in the supply chain. Repair expediting costs per item
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are ce > 0, i.e., ce represents the cost difference between using the regular and emergency repair modes.

A penalty cost rate p > 0 per item short per time unit for the repairable item inventory is also charged

(backordering). We are interested in minimizing the long run average cost rate by (i) deciding on the

turn-around stock, S, to be purchased at time t = 0 and (ii) implementing a repair expediting policy.

(As an extension, we shall also consider minimizing total discounted costs for the expediting policy in

§4.1.4.)

3.1 Main assumptions and justifications

In the model of §3, some assumptions require either a practical or analytical justification. Here we list

the main assumptions and their justifications.

• The turn-around stock S is determined at time t = 0, and remains fixed after that: Because

repairables are specific to the capital asset that they support, they are only produced in small series

when the capital asset is produced. After the particular capital asset is no longer produced, the

repairable is either no longer available or has to be custom made against a steep price. Thus, for

the user of the capital asset, it is most economical to purchase all spare repairables jointly with the

asset they support.

• We consider an infinite planning horizon. The lifetime of repairables considered in the model is

as long as the life cycle of the assets they support which is typically several decades. This is

long compared to other time characteristics in the problem such as lead times which are typically

measured in weeks, and justifies using infinite horizon models.

• Demand is a Markov modulated Poisson process: In spare parts literature, the Poisson demand

model is perhaps the most common (e.g. Sherbrooke, 2004; Muckstadt, 2005). For relatively short

periods of time, this demand model is often sufficiently accurate, and Markov modulated Poisson

demand can handle Poisson demand as a special case. For longer periods of time, the demand

intensity for repairables may be affected by things such as weather conditions (increased wear) and

periodic inspections. Slay and Sherbrooke (1988) observe that demand for aircraft components

behaves as a Poisson process for which the rate varies over time. There are many reasons for this

behavior such as weather, asset loading, and the fact that many capital assets undergo one or more

major revisions during their lifetime. During these revision periods, demand for repairables peaks,

as inspections reveal latent failures. Often, the exact timing of revision periods is uncertain when

the asset is acquired. The Markov modulated Poisson process offers the flexibility to model these

and many other demand scenarios.

• Repair of a part is always possible (no condemnation): Under normal operations, the expensive

repairables considered in our model only fail permanently in case of industrial accidents. Generally,
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the probability of this happening is negligible.

• The additional regular repair lead time, Lr, can be modeled by a sum of exponential phases, and

phase transitions can be observed. This assumption may appear to be quite strong. However, we

think of the m exponential phases of Lr primarily as a device to model order progress information.

A special case occurs as m → ∞ as this will approach deterministic replenishment lead times and

order progress is known exactly. We also note that if the first two moments of Lr are known (or

estimated from data) and satisfy c2
Lr

= Var[Lr]/E2[Lr] ≤ 1, then m and µi, i = 1, ...,m can be

chosen so as to match these moments. Such a fitting procedure will require that m ≥ b1/c2
Lr

+ 1c
(Aldous and Shepp, 1987). It is evident that as c2

Lr
decreases, more information is available on

when a repairable completes its additional regular repair lead time. Under the present model, this

is naturally matched by increasing m. Therefore, we may think of the parameter m as a modeling

device that conveys how closely one tracks, or is able to track, the progress of repairables through the

replenishment pipeline. In particular, as m → ∞, the regular replenishment lead time approaches

a deterministic lead time and order progress is known exactly. Thus, this assumption allows us to

gain insight on the added value of being able to track repairable order progress carefully. In §6, we

show that this added value is small. Therefore, we believe it is unnecessary to refine the model of

the additional regular repair lead time and order progress.

4. Exact Analysis

The analysis of the model benefits from first considering the optimization of the expediting policy sepa-

rately. That is, we use a nested procedure. Therefore in §4.1, we consider our model where the turn-around

stock, S, is fixed, and focus on finding an optimal expediting policy. We call this problem M(S). After

this, we turn our attention to the joint problem of sizing the turn-around stock and determining an

expediting policy in §4.2.

4.1 Expediting policy optimization

In this subsection, we consider the problem of finding optimal repair expediting policies for fixed S,

Problem M(S)). Since the holding costs depend linearly on S only, we need not consider holding cost in

finding an optimal expediting policy for a fixed S. We make several steps in our analysis. First, we give

the state space description and give closed form conditions under which the state space can be truncated

to yield a finite state space for the purpose of finding average optimal expediting policies. We also show

that when these conditions do not hold, the optimal policy is to never expedite repair. After that, we

formulate a finite horizon finite state space Markov decision process. The average optimal expediting

policy is characterized in §4.1.3 and the infinite horizon discounted version in §4.1.4.
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4.1.1 State space description

Let Xi(t) denote the number of items in regular repair at time t that are in the i-th phase of their

additional repair lead time (i = 1, ...,m), and let X(t) = (X1(t), ..., Xm(t)). The following observation

shows that X(t) and Y (t) contain all the information needed to make expediting decisions. Let cp(x, y)

denote the expected penalty cost rate at time t+`e conditional on
∑m

i=1Xi(t) = X(t)eT = x and Y (t) = y;

cp : N0 × Θ → R (N0 = N ∪ {0} and e = (1, 1, . . . , 1)). To find cp(x, y), note that S −X(t)eT = S − x
represents the number of parts that are on hand at the stockpoint at time t or will arrive at the stockpoint

before time t+ `e. Thus the expected number of backorders at time t+ `e given X(t)eT = x and Y (t) = y

is E
[(
D
Y (t)
t,t+`e

− (S −X(t)eT)
)+
∣∣∣∣ X(t)eT = x, Y (t) = y

]
. From this it is easily verified that

cp(x, y) = p E
[(
D
Y (t)
t,t+`e

−
(
S −X(t)eT

))+
∣∣∣∣ X(t)eT = x, Y (t) = y

]
= p

∞∑
k=S−x

(k − (S − x))P
{
Dy
t,t+`e

= k
}
. (1)

When convenient, we also use the notation cp(x, y|S) for cp(x, y) to make the dependence on S explicit.

We note that to use (1), one must be able to evaluate P
{
Dy
t,t+`e

= k
}

. This can be done numerically by

inverting the generating function of P
{
Dy
t,t+`e

= k
∣∣∣ Y (t+ `e) = y′

}
which is given in the form of a matrix

exponential (e.g. Fischer and Meier-Hellstern, 1992) and then un-conditioning on the event Y (t+`e) = y′.

We relegate further details of this to appendix A. Next, we note that whenever an item fails at time t,

and is not expedited, X1(t) increases by one. Thus, X(t) and Y (t) contain all information needed to do

cost accounting, and, in particular, to make optimal expediting decisions.

Let ∆ denote the difference operator with respect to the first argument of a function, i.e., ∆cp(x, y) =

cp(x+ 1, y)− cp(x, y). The following lemma establishes some useful properties of cp. The proof of Lemma

1, in Appendix B.1, is similar to the proof of these same properties for the cost function of a news-vendor

problem.

Lemma 1. cp(x, y) has the following properties:

(i) cp(x+ 1, y) ≥ cp(x, y) for all x ∈ N0 and y ∈ Θ, i.e., cp is non-decreasing in x.

(ii) ∆cp(x+ 1, y) ≥ ∆cp(x, y) for all x ∈ N0 and y ∈ Θ, i.e., cp is convex in x.

(iii) ∆cp(x, y) ≤ p for all x and y ∈ Θ and ∆cp(x, y) = p for all x ≥ S and y ∈ Θ.

(iv) ∆cp(x, y | S) ≥ ∆cp(x, y | S + 1) for all x ∈ N0, y ∈ Θ and S ∈ N0, i.e., cp is submodular with

respect to x and S.

Proposition 1 below allows us to truncate the relevant state space if ce < pE[Lr], and fully characterizes

an optimal expediting policy if ce ≥ pE[Lr]. Proposition 1 can be understood intuitively by making the
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following casual observation: Whenever a repair is expedited, this may avert a backorder at most for the

additional regular repair lead time Lr. Thus, when the cost of expediting repair is more than or equal to

the expected backorder cost over the additional regular repair lead time, expediting is never beneficial.

Conversely, if expediting is cheaper than the cost of a backorder over the expected additional regular lead

time, then expediting is almost certainly beneficial if the number of parts already in repair that will not

arrive within the expedited lead time is sufficiently large.

Proposition 1. For the infinite horizon, average cost criterion, the following statements hold:

(i) If ce ≥ pE[Lr] then it is optimal to never expedite repair.

(ii) If ce < pE[Lr] then there is an M ∈ N such that whenever X(t)eT ≥ M it is optimal to expedite

repair upon failure of a part.

Proof. Here we prove part (i). The proof of part (ii) is in the appendix; that proof is more subtle,

involving the verification that several limits exist, but is based on a similar idea.

The proof is based on showing that any policy that expedites in some state when ce ≥ pE[Lr] can be

improved by a policy that is identical except that it does not expedite in that state. Let π denote an

arbitrary policy that expedites for some state (x, y). Suppose now that at time t′, the process is in state

(x, y) and a demand occurs. Let (X(t), Y (t)) denote the process under policy π. Next we construct a

coupled process, (X′(t), Y (t)), that is identical to (X(t), Y (t)) except that the failed part arriving at time

t′ is not expedited. Let X̃(t) denote the evolution of the part expedited at time t′ by policy π through

the pipeline, i.e., X̃(t) = ei if the part sent to regular repair at time t′ has completed its first i − 1

phases of the additional regular repair lead time at time t, and X̃(t) = 0 if the part has completed its

additional regular repair lead time. (ei is the i-th unit vector with dimension m.) With this notation, we

can write X′(t) = X(t) + X̃(t). Now let Tr = inf{t− t′|X̃(t) = 0, t ≥ t′} and note that Tr
d
=Lr, where

d
=

denotes equality in distribution. By construction, any cost difference between the processes (X′(t), Y (t))

and (X(t), Y (t)) must occur in the interval [t′, t′+ Tr), because these processes are identical outside that

interval. In [t′, t′ + Tr), X(t) incurs exactly ce more emergency repair costs due to the part expedited at

time t′, and X′(t) incurs more penalty costs because X′eT = X(t)eT + 1 for t ∈ [t′, t′+Tr). The expected

cost difference between the processes (X(t), Y (t)) and (X′(t), Y (t)) thus satisfies:

ce − ETr

{
E(X(t),Y (t))

[∫ t′+Tr

t=t′
∆cp(X(t)eT, Y (t))

∣∣∣∣∣ Tr
]}
≥ ce − ETr [pTr]

= ce − pE[Lr] ≥ 0 (2)

where the first inequality holds by lemma 1 (iii). Thus we see that when ce ≥ pE[Lr], any policy π that

expedites for some states, can be improved (in the weak sense) by changing the decisions to not expedite

in those states. This implies that when ce ≥ pE[Lr], the policy to never expedite is optimal.
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Proposition 1 has an important implication: When ce < pE[Lr], there is a finite M such that it is

optimal to expedite repair in all states (x, y) such that xeT ≥M . We can limit ourselves to such policies,

and then all states with xeT ≥M are transient. Consequently, for the purpose of finding average optimal

policies, we may restrict the state space of (X(t), Y (t)) to the finite set S = {(x, y) ∈ Nm0 ×Θ|xeT ≤M}
for some M ∈ N. We remark that in the proof of Proposition 1 (ii), it is shown how such an M can be

found.

4.1.2 MDP formulation with bounded transition rates

In this section, we consider the model M(S) with ce < pE[Lr], and state space S = {(x, y) ∈ Nm0 ×Θ|xeT ≤
M}, where M is chosen such that it is optimal to expedite whenever XeT ≥M . (By Proposition 1, such

a finite M ∈ N exists.) With a slight abuse of notation, we term the problem of finding an optimal

policy for this model as M(S,M). In this finite state space, transition rates are bounded and so we can

apply the technique of uniformization to transform the problem of finding an optimal expediting policy

to discrete time.

Remark 1. Without Proposition 1, uniformization would not have been possible. Thus, Proposition 1,

not only facilitates the computation of optimal policies, but is also essential in establishing the structure

of optimal policies using an inductive approach based on the dynamic programming recursion. ♦

In each state (x, y), we take a decision as to whether we expedite the repair of a part if the next

event happens to be the arrival of a defective part. We let 1 denote the decision to expedite if a part

arrives and let 0 be the decision to not expedite if a part arrives. Thus the action space in state (x, y)

is A(x, y) = {0, 1} when xeT < M and A(x, y) = {1} otherwise. Observe that if we take a decision 1 in

some state of the system, this does not necessarily imply we will expedite some part, because the next

event in the systems may not be the arrival of a defective part.

As uniform transition rate for this MDP, we choose Λ = λmax+M
∑m

i=1 µi+qmax. Let p((x′, y′)|(x, y), a)

denote the transition probability from state (x, y) ∈ S to (x′, y′) ∈ S when action a ∈ A(x, y) is taken

and note that the time between transitions has an exponential distribution with mean 1/Λ. Without loss
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of generality, we rescale time such that Λ = 1. Then we have:

p((x′, y′)|(x, y), a) =



λy, if x′ = x + e1, y′ = y, a = 0;

xmµm, if x′ = x− em, y′ = y, a ∈ {0, 1};
xiµi, if x′ = x− ei + ei+1, y′ = y,

a ∈ {0, 1}, i = 1, ...,m− 1;

qy,y′ , if x′ = x, y′ 6= y, a ∈ {0, 1};∑m
i=1(M − xi)µi+
qmax − qy + λmax − λy, if (x′, y′) = (x, y), a = 0;∑m
i=1(M − xi)µi+
qmax − qy + λmax, if (x′, y′) = (x, y) and a = 1;

0, otherwise,

(3)

where ei is the i-th unit vector in dimension m. Regardless of the decision taken, between transitions,

an expected penalty cost of cp(xe
T, y) is incurred. Additionally, a cost of ce is incurred if an arriving

defective part is rejected from the system.

Now let Vn(x, y) denote the optimal total cost function when in state (x, y) and having n transitions

to go and define V0(x, y) ≡ 0. The finite horizon dynamic programming recursion (Bellman equation) is

given by

Vn+1(x, y) = cp(xe
T, y) + λy1{xeT<M}min{ce + Vn(x, y), Vn(x + e1, y)}

+ λy1{xeT=M}(ce + Vn(x, y)) +
∑m−1

i=1 xiµiVn(x− ei + ei+1, y)

+ xmµmVn(x− em, y) +
∑m

i=1(M − xi)µiVn(x, y)

+
∑

y′∈Θ\{y} qyy′Vn(x, y′) + (qmax − qy + λmax − λy)Vn(x, y), (4)

where 1{·} is the indicator function.

Remark 2. Note that an alternate uniformization constant is given by Λ′ = λmax + Mµmax + qmax,

where µmax = maxi∈{1,...,m} µi. This uniformization constant is smaller, and therefore more suitable

if the dynamic programming recursion is used in value iteration algorithms. With this uniformization

constant the MDP recursion becomes (we again scale time such that Λ′ = 1):

Vn+1(x, y) = cp(xe
T, y) + λy1{xeT<M}min{ce + Vn(x, y), Vn(x + e1, y)}

+ λy1{xeT=M}(ce + Vn(x, y))

+
∑m−1

i=1 xiµiVn(x− ei + ei+1, y) + xmµmVn(x− em, y)

+
∑m

i=1 xi(µmax − µi)Vn(x, y) + (M −
∑m

i=1 xi)µmaxVn(x, y)

+
∑

y′∈Θ\{y} qyy′Vn(x, y′) + (qmax − qy + λmax − λy)Vn(x, y). (5)

In this section, we will work with the formulation with the computationally ‘less efficient’ Λ so that

we can reuse some results in the literature to prove structural properties of optimal policies. In the
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numerical section, §6, we use the formulation in because a smaller uniformization constant leads to

quicker convergence of value iteration algorithms (e.g Kulkarni, 1999). ♦

To analyze the value function Vn(x, y) in §4.1.3, we employ the event based dynamic programming

approach introduced by Koole (1998, 2006). To this end, let V denote the set of all functions v : S → R
and let f, f1, ..., fm+2 ∈ V. We define the following operators Tcost,TAC(i),TTD(i),TD(i),Tenv : V → V,

Tunif : Vm+2 → V.

Tcostf(x, y) = cp(xe
T, y) + f(x, y) (6)

TAC(i)f(x, y) = 1{xeT<M}min{ce + f(x, y), f(x + ei, y)} (7)

+ 1{xeT=M}(ce + f(x, y))

TTD(i)f(x, y) =
xi
M
f(x− ei + ei+1, y) +

M − xi
M

f(x, y) (8)

TD(i)f(x, y) =
xi
M
f(x− ei, y) +

M − xi
M

f(x, y) (9)

Tenvf(x, y) =
∑

y∈Θ\{y}

qyy′f(x, y′) + (qmax − qy + λmax − λy)f(x, y) (10)

Tunif(f1, · · · , fm+2)(x, y) = λyf1(x, y) +

m∑
i=1

Mµifi+1(x, y) + fm+2(x, y) (11)

These operators are variations to operators defined by Koole (1998, 2004, 2006) and are originally intended

to model various common queueing mechanisms such as arrival control (TAC(i)), transfer departures from

multi-server tandem queues (TTD(i)), and departures from multi-server queues (TD(i)), while the operators

Tcostf(x, y), Tenv and Tunif are mainly convenient for bookkeeping. The Bellman recursion for our MDP,

(4), can now be written succinctly as

Vn+1(x, y) = TcostTunif

[
TAC(1)Vn(x, y),TTD(1)Vn(x, y), · · · ,TTD(m−1)Vn(x, y),

TD(m)Vn(x, y),TenvVn(x, y)
]
. (12)

This formulation of the MDP recursion is convenient because the propagation of value function properties

over n can be analyzed through the propagation properties of operators, for which results are available

in literature.

We remark that the operators used to rewrite the MDP recursion reveal that the MDP we are dealing

with is equivalent to an admission control problem for a tandem line of ample exponential server queues. A

similar equivalence is exploited by Song and Zipkin (2009) in finding effective means to evaluate heuristic

policies.

4.1.3 Average optimal expediting policies

To characterize average optimal policies, we study properties of the value function and how these prop-

erties propagate through recursion (12). We define the first order difference operator with respect to xi,
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∆i, as ∆if(x, y) = f(x + ei, y)− f(x, y). We distinguish the following subsets of V:

I(i) = {f ∈ V|f(x, y) ≤ f(x + ei, y)} (13)

C(i) = {f ∈ V|∆if(x, y) ≤ ∆if(x + ei, y)} (14)

UI = {f ∈ V|f(x + ei+1, y) ≤ f(x + ei, y), i = 1, ...,m− 1} (15)

SM(i, j) = {f ∈ V|∆if(x, y) ≤ ∆if(x + ej , y)}. (16)

In (13)-(16), it is understood that the inequalities that characterize each set must hold when the arguments

on both sides of the inequality exist in S. I(i) and C(i) are the sets of non-decreasing and convex

functions with respect to xi respectively. UI is the set of upstream increasing functions as introduced

in Koole (2004) and renamed in Koole (2006). The set SM(i, j) consists of functions with a specific

supermodularity property. Finally, define F as

F =

(
m⋂
i=1

I(i)

)
∩

 m⋂
j=2

SM(1, j)

 ∩ UI ∩ C(1). (17)

Lemma 2. The following statements hold:

(i) The function g ∈ V defined by g(x, y) = cp(xe
T, y) is a member of F , i.e., g ∈ F .

(ii) If f ∈ F then Tcostf(x, y),TAC(1)f(x, y),TD(m)f(x, y),Tenvf(x, y) ∈ F and TTD(i)f(x, y) ∈ F for

i = 1, ...,m− 1.

(iii) If fj ∈ F for j = 1, ...,m+ 2, then Tunif(f1, ..., fm+2)(x, y) ∈ F .

The proof of this lemma is in Appendix B.3. The properties of functions in V that are shown to

propagate through operators (6)-(11) in Lemma 2, imply structure on the optimal policy. To state the

next lemma, we introduce some notation. Let x(−1) denote the vector x with its first component set to

0, i.e., x(−1) = (0, x2, . . . , xm). The next lemma explains how the optimal policy at transition epoch n is

related to properties of Vn−1.

Lemma 3. If Vn−1 ∈ F , then, at transition epoch n, there are state dependent thresholds Tn
(
x(−1), y

)
such that it is optimal to expedite the repair of an arriving part at transition epoch n if X1(tn) ≥
Tn
(
X(−1)(tn), Y (tn)

)
, where tn is the time corresponding to transition epoch n. Furthermore the thresh-

olds Tn
(
x(−1), y

)
satisfy the following monotonicity property: ∆iTn

(
x(−1), y

)
≤ 0, for i = 2, ...,m.

Proof. Let Vn−1 ∈ F . The fact that a state dependent threshold policy is optimal at decision epoch n

follows immediately from the fact that Vn−1 ∈ C(1) and Koole (2006), Theorem 8.1. Because Vn−1 ∈⋂m
i=2 SM(1, i), this threshold is non-increasing in x2 to xm, again by Koole (2006), Theorem 8.1. This

can be written as Tn(x + ei, y) ≤ Tn(x, y) for i = 2, ...,m, and by subtracting Tn(x, y) from both sides

we obtain ∆iTn(x, y) ≤ 0.
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Figure 2: Part (a) shows the state dependent threshold for n = 593 in the case where Lr has an Erlang(2) distribution (m = 2).

Part (b) shows the state dependent thresholds for n = 1513 when Lr is Erlang(3) distributed (m = 3). Both cases are based on

the problem instance with |Θ| = 1, λ1 = 1, E[Lr] = 4, `e = 2, ce = 8, p = 10, and S = 8. In both cases, n coincides with the

iteration in which average optimal policies are found within some precision.

An alternative interpretation of Lemma 3 is that the optimal policy at transition epoch n (under

the stated condition) is a switching curve between expediting and not expediting repair. This switching

curve is decreasing in xi for i = 2, ...,m. Figure 2 illustrates two such switching curves. In part (a) of

the figure, for a given x2, it is optimal to expedite repair if x1 is on or above the shown line. In part (b)

of the figure, for given (x2, x3) it is optimal to expedite repair if x1 is on or above the shown surface.

The policy described in Lemma 3 can also be reinterpreted as a state dependent expedite-up-to

policy. To see this, define IPe(t) = S −X(t)eT, and note that this can be interpreted as the expedited

inventory position: on-hand inventory minus backorders plus outstanding orders arriving within the

expedited lead time `e. The optimal policy is now to expedite parts to retain IPe(tn) at or above the

level S − Tn
(
X(−1)(tn), Y (tn)

)
. Thus the resulting policy is a state dependent version of the dual-index

policy (Veeraraghavan and Scheller-Wolf, 2008; Arts et al., 2011, consider state independent dual-index

policies), where regular and emergency inventory positions are both kept at or above their order-up-to

levels. Note however, that the regular order-up-to level was assumed to be S from the start as we are

dealing with a closed loop system. Without this fixed base-stock level, a state dependent dual-index

replenishment policy need not be optimal.

The main result of this section is that average optimal policies also have the structure described in
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Lemma 3.

Theorem 1. Consider the model M(S). If ce ≥ pE[Lr], then it is average optimal to never expedite

repair. If ce < pE[Lr], then there are state dependent threshold levels T
(
x(−1), y

)
∈ N0 such that it is

average optimal to expedite the repair of an arriving defective part at time t if X1(t) ≥ T
(
X(−1)(t), Y (t)

)
.

Furthermore these threshold levels T
(
x(−1), y

)
satisfy the property in Lemma 3, i.e., ∆iT

(
x(−1), y

)
≤ 0

for i = 2, ...,m.

Proof. The first part of the theorem is simply a restatement of part (ii) of Proposition 1. If ce < pE[Lr], we

may apply Proposition 1.(ii) to truncate the state space at a finite M and optimal solutions to M(S,M)

will coincide to optimal solutions to M(S) provided M is sufficiently large. Therefore, let us consider

M(S,M). Observe that state (0, y) for any y ∈ Θ is reachable from any other state for any policy, so

this MDP is unichain. Furthermore, since under any policy, there are transitions from state (0, y) to

itself, this MDP is aperiodic. By Theorem 8.5.4 of Puterman (1994), max(x,y)∈S(Vn+1(x, y)−Vn(x, y))−
min(x,y)∈S(Vn+1(x, y) − Vn(x, y)) converges to the optimal average costs as n → ∞. Now for each n, a

policy of the form described in Lemma 3 is optimal because V0 ∈ F and so, by induction using Lemma 2,

so are Vn for n ∈ N. Finally since both the state and action space of this MDP are finite, there are finitely

many policies that satisfy Lemma 3, and at least one of them will be found infinitely often throughout

recursion (12). Such a repair expediting policy is average optimal.

Theorem 1 also answers a question and conjecture posed by Song and Zipkin (2009, p. 371): “Are

there any systems for which some policy of the form above is in fact optimal?”. The policy Song and

Zipkin (2009) propose is exactly the policy described in Theorem 1 for the special case that m = 1. For

m ≥ 2 one obtains a generalized form of this policy.

4.1.4 Infinite horizon discounted optimal expediting policies

The same policy structure results hold for the case where we are interested in the infinite horizon dis-

counted cost criterion. Let β > 0 be the discount rate. Proposition 1 continues to hold with pE[Lr]

replaced by the expected discounted penalty costs over an interval of length Lr:

ELr

[∫ Lr

0
pe−βtdt

]
=
p

β
− p

β
E
[
e−βLr

]
.

This holds in general for all non-negative distributions that might model Lr. In our particular model,

the Laplace-Stieltjes transform of Lr is given by:

E
[
e−βLr

]
=

m∏
i=1

µi
µi + β

.
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The MDP recursion can be written in exactly the same manner as before except that Tcost, needs to be

changed to Tβcost : V → V with

Tβcostf(x, y) =
cp(xe

T, y)

Λ + β
+

Λ

Λ + β
f(x, y).

It is readily verified that Tβcost propagates the same properties as Tcost, that is, if f ∈ F then also

Tβcostf(x, y) ∈ F . With this change, it is easy to verify that Theorem 1 still holds, again with pE[Lr]

changed to p
β −

p
βE
[
e−βLr

]
.

Theorem 2. Consider the infinite horizon discounted cost criterion for model M(S) with discount rate

β. If ce ≥ p
β −

p
βE
[
e−βLr

]
= p

β −
p
β

∏m
i=1

µi
µi+β

, then it is β-discounted optimal to never expedite repair. If

ce <
p
β −

p
βE
[
e−βLr

]
= p

β −
p
β

∏m
i=1

µi
µi+β

, then there are state dependent threshold levels T
(
x(−1), y

)
∈ N0

such that it is β-discounted optimal to expedite repair at time t if X1(t) ≥ T
(
X(−1)(t), Y (t)

)
. Furthermore

these threshold levels T
(
x(−1), y

)
satisfy the property in Lemma 3, i.e., ∆iT

(
x(−1), y

)
≤ 0 for i = 2, ...,m.

4.2 Turn-around stock optimization

In the analysis in the previous sections, we have considered problem M(S), i.e., we have considered S

to be a fixed constant that was determined at t = 0, and have focussed on using the expedition decision

to minimize expedition and backorder penalty costs. Now, we focus on the joint optimization of the

turn-around stock S and the expediting policy. For brevity of exposition, we only discuss the average

cost criterion in this section.

To facilitate presentation, we first present some notation: We let C(S) denote the optimal average

expediting and backorder penalty costs per time unit for a turn-around stock of size S, i.e., C(S) =

limn→∞ Vn(0, 1)/n is the optimal cost associated with M(S). Furthermore, we let Ctot(S) := hS +C(S)

denote the total cost rate associated with a turn-around stock of S if an optimal repair expediting policy

is used.

Whenever we drop the time index of a stochastic process, we are referring to the process in steady

state, e.g. P{Y = y} = limt→∞ P{Y (t) = y}. We let the random variable D(L) denote demand in an

interval of length L ≥ 0 when the modulating chain of demand is in steady state, i.e.,

P{D(L) ≤ k} =
∑
y∈Θ

P{Y = y}P
{
Dy
t,t+L ≤ k

}
.

A lower bound of Ctot(S) is given by the average holding and backorder penalty cost rates of the system

with turn-around stock S under the feasible policy of expediting everything against zero expediting cost:

CLB(S) := hS + pE
[
(D(`e)− S)+] .

When we do include the expediting costs, we obtain an upper bound for Ctot(S):

CUB(S) := CLB(S) + ceλ̄.
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Here, λ̄ =
∑

y∈Θ λyP{Y = y} is the long run average demand per time period. Let S∗ := argminS∈N0
Ctot(S)

denote the optimal turn-around stock. An upper bound to Ctot(S
∗) is obtained by minimizing CUB(S).

The S that minimizes CUB(S) (as well as CLB(S)) can be easily found as CUB(S) is convex. We denote

this minimizer Ŝ and it is the smallest integer that satisfies the newsvendor inequality

P
{
D(`e) ≤ Ŝ

}
≥ p− h

p
. (18)

Since CLB(S) is convex, it is easy to find the greatest S ≤ Ŝ and smallest S ≥ Ŝ such that CLB(S) ≥
CUB(Ŝ). This will provide lower and upper bounds respectively on S∗.

Proposition 2. The optimal turn-around stock, S∗, that minimizes Ctot(S) is bounded as SLB ≤ S∗ <

SUB, where SLB and SUB are given by

SLB = max
{
{0} ∪min{x ∈ N0, x ≤ Ŝ : CLB(x) ≥ CUB(Ŝ)}

}
(19)

SUB = min{x ∈ N0, x ≥ Ŝ : CLB(x) ≥ CUB(Ŝ)}, (20)

Furthermore, if C(S) ≤ h for some S ∈ N0, then S∗ ≤ S.

Proof. The bounds established by SLB and SUB follow directly from the analysis preceding Proposition

2. To verify the last statement, observe that C(S) is non-negative and decreasing and that ∆Ctot(S) =

h+ ∆C(S). Combining these facts implies that if C(S) ≤ h, then ∆Ctot(S) ≥ 0 and so S∗ < S.

Proposition 2 gives us bounds that can be used to minimize Ctot(S) by enumeration.

A natural question is whether C(S) is convex in S as this would make optimization easy. Unfortunately

C(S) is not convex in S as can be verified by considering the problem instance with Poisson demand

with rate λ = 10, `e = 1, E[Lr] = 3, m = 1, p = 10 and ce = 15. In this case, C(S) can be obtained

exactly without dynamic programming using the results in Moinzadeh and Schmidt (1991) and Song and

Zipkin (2009). (In §5.1.1, we also show how to compute C(S) without dynamic programming for this

special case.) For this instance it can be verified that C(20) − 2C(19) + C(18) ≤ −0.03, showing that

C(S) is not convex in general; see also Figure 3. The non-convexity of C(S) does affect the unimodality

of Ctot(S) but only in rather extreme cases. Figure 4 presents such a case. In §6 we present numerical

work for instances as they are typically encountered in practice. For all these instances, C(S) is convex

and Ctot(S) is unimodal. In fact, a cursory look at Figures 3 and 4.a does not immediately reveal that

C(S) and Ctot(S) are not convex. This is typical for all counterexamples we have found.

4.2.1 Trading off safety stock and safety time

In this subsection, we formally show that as the turn-around stock increases, the need for expediting

decreases and vice versa. To formalize this, we need some additional notation. Let W be set of all

functions w : S × N0 → R. The extra argument corresponds to the turn-around stock. We make the
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Figure 3: Consider the problem instance with Poisson demand with rate λ = 10, `e = 1, m = 1, E[Lr] = 3, p = 10 and

ce = 15. This figure shows the optimal cost for expediting and backordering as a function of the turn-around stock C(S). Note

in particular the non-convexity around S = 19.

dependence of Vn(x, y) on S explicit by writing Vn(x, y, S). Note that operators (6)-(11) are also mappings

from W →W. We start with a sub-modularity of Vn(x, y, S) with respect to x1 and S.

Lemma 4. For all n ∈ N0, Vn is submodular with respect to x1 and S, i.e., for all (x, y) ∈ S, and

S < SUB,

∆1Vn(x, y, S) ≥ ∆1Vn(x, y, S + 1) (21)

where S is chosen with an appropriate M that is common for all S < SLB

The proof of this lemma is in the appendix and follows an inductive approach. Now we can formally

state that as the turn-around stock increases, the need for expediting decreases and vice versa.

Proposition 3. Let TS
(
x(−1), y

)
denote the expediting threshold that is average optimal under a turn-

around stock level of S at (x, y) ∈ S. Then TS
(
x(−1), y

)
≤ TS+1

(
x(−1), y

)
for all (x, y) ∈ S and S ∈ N0,

that is, when the turn-around stock increases, the need for expediting decreases.

Proof. Because the expediting decision is taken whenever min{Vn(x, y, S)+ce, Vn(x+e1, y, S)} = Vn(x, y)+

ce, which is equivalent to ∆1Vn(x, y, S) ≥ ce, it is clear that Lemma 4 implies the result.

The interpretation of Proposition 3 is that the possibility to expedite acts as kind of safety time, that

can be used in stead of (safety) stock to lower the risk of backorders.
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Figure 4: Consider the problem instance with Poisson demand with rate λ = 3.43, `e = 8, m = 1, E[Lr] = 15, p = 37.2 and

ce = 116. This figure shows Ctot(S) for this instance. Although the fact that Ctot(S) is not unimodal is not immediately apparent

from sub-figure (a), it is apparent from sub-figure (b). Any small deviation of any of the problem parameters will make Ctot(S)

unimodal.

5. E-WDT Heuristic

In the previous section, we have analyzed an exact solution to our problem. However, finding the optimal

solution involves solving an MDP that suffers from the curse of dimensionality for each S between SLB

and SUB. Furthermore, the optimal expediting policy is rather intricate, depending on the entire vector

of repair that will not arrive within the expedited lead time. In this section, we describe a heuristic for

our model that involves an expediting policy that is much easier to interpret and that does not impose

the same computational burden. We call this heuristic the E-WDT heuristic for reasons that will become

clear later. This section is organized in the same fashion as the previous section: First we discuss heuristic

expediting policies in §5.1 and then we discuss the heuristic optimization of the turn-around stock in §5.2.

5.1 World driven threshold policies

Computing the state dependent optimal threshold levels quickly becomes computationally prohibitive

as m increases. A plausible heuristic policy is to aggregate all orders in X(t) and to put a threshold

expediting level, T (y), on their sum X(t)eT. This threshold will then only depend on Y (t) and so,

borrowing the terminology of Zipkin (2000), we call such a policy a world driven threshold (WDT)

policy. It is readily verified that the WDT policy satisfies the monotonicity property in Theorem 1 that

∆iT
(
x(−1), y

)
≤ 0. Indeed, observe that the thresholds (TWDT (x, y)) of a WDT policy satisfy:

∆iT
WDT (x, y) =

{
−1, if T (x, y) > 0;

0, otherwise.
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Figure 5: Optimal and heuristic policies. Part (a) shows the optimal state dependent threshold in conjunction with the best

WDT policy for the case with λ = 1, E[Lr] = 4, `e = 2, p = 10, ce = 8, S = 8 and m = 2. Part (b) shows the optimal state

dependent threshold for in conjunction with the best heuristic policy for the same case except S = 12.

This is shown graphically in Figure 5, where the optimal thresholds are shown with the best WDT

thresholds. As before, the most convenient way to interpret Figure 5 is to think of it as a switching curve:

If x1 is on or above the shown line for some x2, then expedite the repair, otherwise do not expedite repair.

For m > 1, finding the best WDT policy is about as difficult as finding an optimal policy since the

stationary distribution of X(t) under such a policy still requires the evaluation of an m+ 1 dimensional

Markov chain. A notable exception, that we discuss in §5.1.1, occurs when demand is a stationary Poisson

process, i.e., |Θ| = 1.

In general, for |Θ| > 1 and ce < pE[Lr], we propose the following heuristic way of finding a good

WDT policy. In stead of working with the (m+ 1)-dimensional space, move to two-dimensional space by

approximating Lr by a single exponential phase with the same mean µ1 = µ = 1/E[Lr]. Then we are left

with a two-dimensional space for which we can easily solve the resulting MDP to optimality using any

common algorithm to solve finite state and action space MDPs such as value iteration, policy iteration

or linear programming.

The WDT policies that result from this procedure are not necessarily optimal within the class of

WDT policies and the computed cost is not exact but an approximation. Since the system under study

is equivalent to a type of ample server queue, we may expect this approximation to be quite accurate.

In the next subsection, we show that this approach is exact for Poisson demand and in §6, we provide
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numerical evidence that WDT policies that are found in this manner perform exceptionally well compared

to optimal policies under Markov modulated Poisson demand. Furthermore, the cost approximations of

this method are also very accurate.

5.1.1 Special case: Poisson demand

Now we briefly consider the evaluation of WDT policies for the special case where |Θ| = 1, and we are

dealing with stationary Poisson demand. In this case, the evaluation of a WDT policy can be done exactly

for any distribution of Lr in closed form using the results of Song and Zipkin (2009). (In this context,

it might be appropriate to refer to a WDT policy, simply as a threshold policy. For convenience, we use

the name WDT policy also in this context.) Alternatively, one may simply observe that X(t)eT, under

such a policy, has the same stationary distribution as the number of customers in a M/G/c/c queue,

where the number of servers c is set equal to the threshold T and the service time is distributed as Lr.

In this equivalence, a customer being blocked from the queue because all T servers are busy corresponds

to a repair being expedited because there are T or more parts that will not arrive within `e. The average

expediting and backorder penalty cost rate for such a policy with threshold level T and base-stock level

S, C(T |S) is therefore given by:

C(T |S) = λceB(T, λE[Lr]) +
T∑
x=0

cp(x|S)
(λE[Lr])

x/x!∑T
k=0(λE[Lr])k/k!

(22)

where B(c, ρ) = ρc/c!∑c
k=0 ρ

k/k!
is the Erlang loss function with c servers and traffic intensity ρ, λ is the

intensity of the Poisson demand process, and cp(x|S) = cp(x, 1|S). Expression (22) also reveals that

the performance of a WDT policy is insensitive to the distribution of Lr for the special case of Poisson

demand. This insensitivity does not hold for Markov modulated Poisson demand. In the numerical section

however, we provide evidence that the performance evaluation of a WDT policy is nearly insensitive to

the exact distribution of Lr for Markov modulated Poisson demand processes.

5.2 Heuristic optimization of the turn-around stock:

The E-WDT heuristic

In §5.1, we discussed a heuristic to obtain a good WDT policy for a given turn-around stock S, namely

by finding the optimal expediting policy after replacing Lr by a single exponential phase with the same

mean. (This is of course exact if Lr happens to be exponentially distributed.) The heuristic for joint

optimization is based on this idea.

Let CE(S) denote the optimal expediting and penalty cost rate when Lr has an exponential distribu-

tion with mean µ−1 and the turn-around stock is S. (The E stands for exponential distribution, as Lr

has an exponential distribution in CE.) The heuristic we propose is to minimize CE-tot(S) = hS +CE(S)

with µ−1 = E[Lr] using a greedy algorithm such as golden section search. We call this heuristic the
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E-WDT heuristic. (E stands for exponential and WDT stands for world driven threshold.) There is no

guarantee that a greedy search of CE-tot(S) yields the global optimum of CE-tot(S) because CE(S) need

not be convex as shown in §4.2. We let SE denote the base-stock level that is found by applying the

E-WDT heuristic and TE(y) denote the corresponding expediting thresholds that depend only on y ∈ Θ.

We emphasize that in general CE(SE) does not represent the real backordering and expediting cost

of applying the WDT policy with TE(y), because these costs are not insensitive to the distribution of

Lr unless demand is a Poisson process. Let CR(S) denote the real backordering and expediting costs

when applying the WDT policy found by assuming Lr is exponential to the real system where Lr is not

necessarily exponential. Similarly, let CR-tot(S) = hS + CR(S). We provide numerical evidence in §6.3

that CE(SE) ≈ CR(SE).

6. Numerical results

The numerical section is divided in four subsections. In §6.1, we present the test bed that is used for

all numerical experiments. In §6.2, we benchmark the performance of the WDT policy described in §5.1

against the optimal expediting policy for fixed turn-around stock. We benchmark the performance of the

E-WDT heuristic against optimal joint optimization of turn-around stock and expediting policy in §6.3.

This section also investigates how accurate the performance estimates are when Lr is approximated by an

exponential distribution. Finally in 6.4, we present results that shed light on the value of leveraging the

possibility to expedite repair in anticipating demand fluctuations. We do this in a setting with exponential

lead times where WDT expediting policy is optimal. We compare with two naive heuristics that assume

demand is a Poisson process. We also compare the E-WDT heuristic to a heuristic that determines the

size of the turn-around stock and expediting policy separately.

6.1 Test bed and set-up

For all experiments, the backorder penalty cost is fixed at p = 10. The other problem parameters are

varied as a full factorial experiment. The expected additional regular repair lead time was either low or

high, E[Lr] ∈ {2, 4}, and takes on an Erlang distribution, i.e., µ1 = µ2 = . . . = µm. The level of detail

with which order progress is tracked, as modeled by m, is varied between 1 and 6, depending on what

is computationally feasible. (For example the computational burden is higher when demand is a MMPP

as opposed to a stationary Poisson process.) The parameter m is shown when results are presented so

that it is always clear exactly how m was varied. The expedited repair lead time is either low or high,

`e ∈ {1, 2}. By Proposition 1, we know that expediting is only useful when ce < pE[Lr]. Therefore, we

chose ce = νpE[Lr] for ν ∈ {0.2, 0.4}.
Demand is a stationary Poisson process or a MMPP. The long run average demand intensity λ̄ ∈ {1, 2}.

For the Markov modulated Poisson demand, we use two basic ‘modulating processes’ that we refer to as



Arts, Basten and Van Houtum: Optimal and heuristic repairable stocking and expediting in a fluctuating demand environment 25

the cyclic and erratic MMPP respectively. They are specified by the generator matrices and intensity

vectors

Qcyclic = ·


−1 1 0 0

0 −1 1 0

0 0 −1 1

1 0 0 −1

 , λcyclic =
(

1
2 1 3

2 1
)

Qerratic = ·


−3

2 1 1
2

1 −3
2

1
2

2
5

2
5 −4

5

 , λerratic =
(

1
4

1
2 2

)

It is readily verified that both these MMPPs have a long run average demand of 1 per time unit. Therefore,

by multiplying λ by λ̄ we obtain a MMPP with a long run average demand of λ̄ per time unit. Secondly,

we scale how quickly the modulating chain of demand evolves by pre-multiplying the generator of Y (t),

Q, by a scalar q̄. For our experiment, q̄ ∈
{

1
20 ,

1
10

}
so that the demand environment fluctuates either

quickly or slowly relative to the replenishment lead times. Note that q̄ does not affect the stationary

distribution of the modulating chain of demand, and so it does not affect the long run average demand

per time unit. However, it does affect the variability of demand over any finite time horizon.

In §6.2, we investigate the performance of the WDT policy for fixed turn-around stock. In this section,

the fixed turn-around stock is set as

S :=
⌈
λ(E[Lr] + `e) + k

√
λ(E[Lr] + `e)

⌉
with k ∈ {0, 1, 2}. (dxe denotes x rounded up to the nearest integer.) We refer to k as the safety factor

and turn-around stock is tight for k = 0 up to ample for k = 2.

In §6.3, we optimize the expediting policy jointly with the turn-around stock. In this section, the test

bed has two levels of holding cost, h ∈
{

1
2 , 1
}

.

A summary of the test bed is given in Table 1.

In the numerical experiments, we use value iteration to determine C(S), CE(S), and CR(S). (We

used Bellman equation (2) with the smaller uniformization constant in our algorithm). All value iteration

algorithms are implemented in C and the value iteration is terminated when the relative error is less then

10−4, i.e., value iteration to find optimal policies stops after n+ 1 iterations if

max(x,y)∈S(Vn+1(x, y)− Vn(x, y))−min(x,y)∈S(Vn+1(x, y)− Vn(x, y))
1
2 [max(x,y)∈S(Vn+1(x, y)− Vn(x, y)) + min(x,y)∈S(Vn+1(x, y)− Vn(x, y))]

< 10−4.

To evaluate a given WDT policy exactly when m 6= 1 (i.e. evaluate CR(S)), we use value iteration with

the same stopping criterion.
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Parameter # Values

Long run average demand per period (λ̄) 2 1,2

Expected additional regular lead time (E[Lr]) 2 2,4

Expedited lead time (`e) 2 1,2

Per unit expediting costs (ce) 2 0.2 · pE[Lr], 0.4 · pE[Lr]

Holding costs per time unit (h) 2 0.5,1

Average transition rate of modulating chain (q̄) 2 0.1, 0.05

Turn-around stock safety factor (k) 3 0,1,2

Backorder penalty costs (p) 1 10

Basic demand process type 3 Poisson, MMPP-erratic, MMPP-cyclic

Table 1: Description of instances in our test bed

6.2 Performance of the WDT policy for fixed turn-around stock

In this section, we investigate how the WDT policy performs relative to the optimal expediting policy

for fixed turn-around stock. The turn-around stock is fixed so that the expediting policy can be studied

in isolation from the stocking decision. To this end, we investigate the relative difference of the WDT

obtained by assuming Lr is exponential with respect to the optimal expediting policy. Formally this is

defined as:

δC =
CE(S)− C(S)

C(S)
· 100%,

Tables 2 and 3 show the average and maximum optimality gaps for this situation over the test bed in §6.1.

In both cases, the optimality gaps increase as m increases, meaning that order progress information does

have added value, especially for more predictable demand (Poisson demand and cyclic MMPP demand).

When demand is not very predictable (erratic MMPP demand), the variance of demand increases and

so do the costs. The value of order progress information remains relatively steady and so the relative

value of this information decreases. However, the magnitude of all optimality gaps is small especially

considering the fact that turn-around stock holding cost hS is not included in the costs. The larger gaps

occur when k is large (Table 4), and consequently the turn-around stock is large. The reason for this is

that when the turn-around stock is large, expediting is rarely necessary and backorders seldom occur so

that penalty and expediting costs are small. In this situation, small absolute deviations from optimality

can constitute large relative deviations.

The computation times for determining an optimal policy are in the order of a week when m = 6

and demand is a Poisson process on a machine with 2.4 GHz CPU and 4 GB of RAM. For m = 6 and

MMPP demand, computation was no longer practical and so these results are missing from Tables 2

and 3. Throughout, when ‘-’ appears in a table, it indicates that computation was not feasible for these

instances.
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Table 2: Average optimality gaps δC in backorder and expediting costs for fixed turn-around stocks

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP AVG

2 0.52% 0.45% 0.43% 0.16% 0.13% 0.34%

3 0.92% 0.80% 0.76% 0.32% 0.26% 0.61%

4 1.22% 1.07% 1.02% 0.43% 0.36% 0.82%

5 1.45% 1.28% 1.22% 0.53% 0.44% 0.98%

6 1.64% - - - - 1.64%

AVG 1.15% 0.90% 0.86% 0.36% 0.30% 0.88%

Table 3: Maximum optimality gaps δC in backorder and expediting costs for fixed turn-around stocks

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP MAX

2 1.92% 1.35% 1.62% 1.38% 0.84% 1.92%

3 2.76% 2.10% 2.39% 2.03% 1.24% 2.76%

4 3.38% 2.63% 2.91% 2.49% 1.58% 3.38%

5 3.86% 3.03% 3.29% 2.84% 1.89% 3.86%

6 4.25% - - - - 4.25%

MAX 4.25% 3.03% 3.29% 2.84% 1.89% 4.25%

Table 4: Average and maximum optimality gaps δC for different fixed turn-around stock sizes

k 0 1 2

AVG 0.42% 0.83% 0.96%

MAX 2.59% 4.25% 3.29%
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6.3 Performance of the E-WDT heuristic

Now we consider the joint optimization of expediting policy and turn-around stock. In this situation the

optimality gap is defined as

δCtot =
CR-tot(SE)− Ctot(S

∗)

Ctot(S∗)
· 100%,

where SE = argminS∈N0
CE-tot(S) and S∗ = argminS∈N0

Ctot(S). Tables 5-6 show that the average and

maximum optimality gaps δCtot have the same trends as in the case where optimization over S is not

included. However, since the costs of holding repairables is now included, the optimality gaps are very

small, never exceeding 0.76%. In all but 35 out of 480 instances, S∗ and SE coincide, and the absolute

difference is never more than 1.

Table 5: Average optimality gaps δCtot when optimization over S is included

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP AVG

2 0.08% 0.09% 0.09% 0.08% 0.07% 0.08%

3 0.14% 0.17% 0.16% 0.16% 0.13% 0.15%

4 0.19% 0.23% 0.21% 0.21% 0.17% 0.20%

AVG 0.14% 0.17% 0.15% 0.15% 0.12% 0.15%

Table 6: Maximum optimality gaps δCtot when optimization over S is included

q̄ NA 0.1 0.05 0.1 0.05

m Poisson cyclic MMPP erratic MMPP MAX

2 0.22% 0.23% 0.29% 0.39% 0.23% 0.39%

3 0.36% 0.34% 0.43% 0.63% 0.31% 0.63%

4 0.46% 0.44% 0.53% 0.76% 0.41% 0.76%

MAX 0.46% 0.44% 0.53% 0.76% 0.41% 0.76%

Recall that CR-tot(S)(S) 6= CE-tot(S), because the function CE-tot(S) assumes that Lr has an expo-

nential distribution. Now we investigate how closely CE-tot(S) approximates CR-tot(S) by looking at the

relative error

εE =
CE-tot(SE)− CR-tot(SE)

CR-tot(SE)
· 100%.

The relative error εE is always positive and the averages and maxima are shown in Tables 7 and 8. This

observation can be explained by observing that the variability of the exponential distribution is higher
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than that of the Erlang distribution. Since lead time variability generally degrades performance, we

should expect that εE is generally positive.

Note that the approximation errors are larger than the optimality gaps shown in Tables 5 and 6,

but still very acceptable. This is an important observation: The insensitivity of the WDT policies

with regard to the distribution of Lr is not only in performance evaluation, but even more so in policy

optimality. Furthermore, this approximation leads to a slight overestimation of the real costs which, from

the managers perspective, is usually a safer deviation than an underestimation.

Table 7: Average error εE made by approximating Lr as having an exponential distribution when optimization over S is included

q̄ 0.1 0.05 0.1 0.05

m cyclic MMPP erratic MMPP AVG

2 0.46% 0.26% 0.89% 0.52% 0.53%

3 0.63% 0.35% 1.23% 0.71% 0.73%

4 0.73% 0.40% 1.42% 0.81% 0.84%

AVG 0.61% 0.33% 1.18% 0.68% 0.70%

Table 8: Maximum error εE made by approximating Lr as having an exponential distribution when optimization over S is included

q̄ 0.1 0.05 0.1 0.05

m cyclic MMPP erratic MMPP MAX

2 1.13% 0.66% 1.70% 1.01% 1.70%

3 1.57% 0.89% 2.38% 1.39% 2.38%

4 1.81% 1.02% 2.76% 1.60% 2.76%

MAX 1.81% 1.02% 2.76% 1.60% 2.76%

6.4 Value of anticipating demand fluctuations

In this section, we discuss three simple heuristics that either ignore the fact that demand is a Markov

modulated Poisson process, or that separate the expediting policy and turn-around stock sizing decisions.

Thus these heuristics fail to anticipate demand fluctuations.

In the context of repairables, the Poisson process has traditionally been used to model demand

(Muckstadt, 2005; Sherbrooke, 2004). Our experience and that of Slay and Sherbrooke (1988) indicates

that this model is usually accurate for short periods of time (say up to several lead times) but is not

accurate for extended periods of time as demand intensity fluctuates. This effect is captured in the
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present model by using the MMPP to model demand. Nevertheless, it is convenient to use the Poisson

demand model as the evaluation CE-tot(S) can be done exactly in closed form using (22). Consequently,

an easy heuristic is to use the Poisson demand model with demand intensity either equal to the long

run average demand or, to be on the safe side, equal to the demand intensity in peak periods, λmax. We

refer to these two heuristics as POIS-AVG and POIS-MAX respectively when average and peak demand

intensities are used.

Another common approach is to use a traditional news-vendor inventory model without expediting

to determine the turn-around stock. A simple approach would be to select S to minimize

hS + pE
[(
DY
t,t+`e+E[Lr] − S

)+
]
. (23)

The S that minimizes (23) is the smallest integer that satisfies the newsvendor inequality∑
y∈Θ

P
{
Dy
t,t+`e+E[Lr] ≤ S

}
P{Y = y} ≥ p− h

p
, (24)

and we denote this minimizer by SNV F . (NVF is short for newsvendor fractile.) After determining SNV F

using (24), we determine the optimal expediting policy for SNV F . We refer to this heuristic as NVF-D∞.

We consider the case that Lr has an exponential distribution so that the optimal expediting policy is

a WDT policy. The POIS-AVG and POIS-MAX coincide with the optimal and E-WDT solution when

demand is a Poisson process for all the instances in our test bed. Therefore, Tables 9 and 10 show the

average and maximum optimality gaps only for the cases that demand is an MMPP for all three naive

heuristics: POIS-AVG, POIS-MAX and NVF-D∞.

Table 9: Average optimality gaps of naive heuristics

q̄ 0.1 0.05 0.1 0.05

Heuristic cyclic MMPP erratic MMPP AVG

POIS-AVG 2.41% 3.04% 19.48% 23.26% 12.05%

POIS-MAX 12.07% 11.32% 12.64% 11.17% 11.80%

NVF-D∞ 11.61% 10.99% 11.93% 12.26% 11.69%

AVG 8.70% 8.45% 14.68% 15.56% 11.85%

When demand is relatively steady, as is the case in the cyclic MMPP demand proces, POIS-AVG does

not perform very bad, but when demand is more erratic, the performance deteriorates dramatically with

optimality gaps up to 63.67%. The POIS-MAX policy avoids these extreme optimality gaps (although

24.21% is still quite substantial), but this occurs at the expense of cost performance when demand follows

the more moderate cyclic MMPP process. The NVF-D∞ solution performs similarly for all demand

scenario’s. In general, however all naive heuristics performs quite poorly with an average optimality gap
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Table 10: Maximum optimality gaps for naive heuristics

q̄ 0.1 0.05 0.1 0.05

Heuristic cyclic MMPP erratic MMPP MAX

POIS-AVG 6.14% 8.07% 51.78% 63.67% 63.67%

POIS-MAX 15.38% 15.35% 24.21% 23.43% 24.21%

NVF-D∞ 29.44% 29.40% 29.72% 34.15% 34.15%

MAX 29.44% 29.40% 51.78% 63.67% 63.67%

of more than 11.69% for each heuristic and maximum optimality gaps above 24.21% for each heuristic.

Consequently, we conclude that

1. There is great value in leveraging knowledge about demand fluctuations, as contained in Y (t) for

making repair expediting decisions.

2. Fluctuations of demand and the possibility to anticipate these through expediting repairs should

be considered explicitly in sizing the turn-around stock and can lead to substantial savings.

7. Conclusion

In this paper, we have considered the joint problem of finding the best turn-around stock and expediting

policy for repairables that experience fluctuating demand. With regard to expediting policies, we have

characterized the structure of optimal policies, confirming a conjecture by Song and Zipkin (2009). Since

computing optimal expediting policies suffers from the curse of dimensionality, we proposed the use of

WDT policies. These policies have an intuitive appeal and share important monotonicity properties with

optimal policies.

We have shown that the joint problem can be solved to optimality, even though it is not convex

in general. We have also shown that the possibility to expedite repair can be used as a substitute for

inventory in buffering uncertainty in demand. Solving the full problem to optimality suffers from the

curse of dimensionality so we proposed the E-WDT heuristic that inherits all the structural results of

optimal solutions. In a numerical study, we have shown that the E-WDT heuristic performs very close

to optimal with an optimality gap of 0.15% on average and 0.76% at most across our test bed.

Finally, we investigated the value of anticipating demand fluctuations by proper joint optimization of

the turn-around stock and expediting policy by comparing the E-WDT heuristic with more naive heuris-

tics that do not anticipate demand fluctuations or that separate the stocking and expediting problems.

With optimality gaps of 11.85% on average and of at most 63.67%, we have shown that
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1. There is great value in leveraging knowledge about demand fluctuations when making repair expe-

diting decisions.

2. Fluctuations of demand and the possibility to anticipate these through expediting repairs should

be considered explicitly in sizing the turn-around stock and can lead to substantial savings.

Acknowledgements

The authors thank NedTrain for funding this research and in particular, Bob Huisman of NedTrain for

useful discussions on the real-life situation that led to the model in this paper. The second author

gratefully acknowledges the support of the Lloyds Register Foundation (LRF). LRF helps to protect

life and property by supporting engineering-related education, public engagement and the application of

research.

References

J. Abate and W. Whitt. Numerical inversion of probability generating functions. Operations Research
Letters, 12:245–251, 1992.

D. Aldous and L. Shepp. The least variable phase type distribution is Erlang. Communications in
Statistics: Stochastic Models, 3(3):467–473, 1987.

P. Alfredsson and J. Verrijdt. Modeling emergency supply flexibility in a two-echelon inventory system.
Management Science, 45(10):1416–1431, 1999.

E. Altman and G. Koole. On submodular value functions and complex dynamic programming. Stochastic
Models, 14(5):1051–1072, 1998.

J. Arts, M. Van Vuuren, and G.P. Kiesmüller. Efficient optimization of the dual index policy using
Markov chains. IIE Transactions, 43(8):604–620, 2011.

Q. Feng, S.P. Sethi, H. Yan, and H. Zhang. Are base-stock policies optimal in inventory problems with
multiple delivery modes? Operations Research, 54(4):801–807, 2006.

W. Fischer and K. Meier-Hellstern. The Markov-modulated Poisson process (MMPP) cookbook. Perfor-
mance Evaluation, 18:149–171, 1992.

Y. Fukuda. Optimal policies for the inventory problem with negotiable leadtime. Management Science,
10(4):690–708, 1964.
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A. Determining P{Dy
t,t+`e

= k}

In this appendix, we show how P
{
Dy
t,t+`e

= k
}

can be determined numerically. To this end, let py,y′(k, `e) =

P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}

be the (y, y′)-entry of the matrix P(k, `e). Then the matrix generating function

P̃(z, `e) =
∑∞
k=0 P(k, `e)z

k satisfies (e.g Fischer and Meier-Hellstern, 1992):

P̃(z, `e) = exp ([Q− (1− z) diag(λ)]`e) .

A plethora of numerical methods to compute the matrix exponential are discussed in Moler and Van Loan (2003).

For the numerical work in this paper, we use the scaling and squaring algorithm with a Padé approximation.

The probabilities P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}

can be obtained from P̃(z, `e) by numerical inversion using the

LATTICE-POISSON algorithm of Abate and Whitt (1992) which uses the approximation

P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}

≈ 1

2krk

{
P̃(r, `e) + (−1)kP̃(−r, `e) + 2

k−1∑
n=1

(−1)n Re(P̃(r exp(nπi/k), `e))

}
,

where i =
√
−1, 0 < r < 1 and Re(x) denotes the real part of the complex number x. The absolute error in this

approximation is bounded by r2k

1−r2k and so by choosing r = 10−γ/(2k), we obtain an accuracy of approximately

10−γ . Then the needed probability, P
{
Dy
t,t+`e

= k
}

, can be found by un-conditioning:

P
{
Dy
t,t+`e

= k
}

=
∑
y′∈Θ

P
{
Dy
t,t+`e

= k|Y (t+ `e) = y′
}
P{Y (t+ `e) = y′|Y (t) = y}

The probabilities P{Y (t+ `e) = y′|Y (t) = y} are found from the transient analysis of Y (t). In particular, if we let

ry,y′ = P{Y (t+ `e) = y′|Y (t) = y} be the (y, y′)-th element of the matrix R(`e), then R(`e) = exp(`eQ).
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B. Proofs

B.1 Proof of Lemma 1

Proof. The proof is a direct proof. Note that P
{
Dy
t,t+`e

= k
}

= 0 for k < 0. For part (i) we have:

∆cp(x, y) = cp(x+ 1, y)− cp(x, y)

= p
[∑∞

k=S−(x+1)(k − S + x+ 1)P
{
Dy
t,t+`e

= k
}

−
∑∞
k=S−x(k − S + x)P

{
Dy
t,t+`e

= k
}]

= p
[∑∞

k=S−x−1(k − S + x)P
{
Dy
t,t+`e

= k
}

+
∑∞
k=S−x−1 P

{
Dy
t,t+`e

= k
}

−
∑∞
k=S−x(k − S + x)P

{
Dy
t,t+`e

= k
}]

= p
∑∞
k=S−x P

{
Dy
t,t+`e

= k
}
≥ 0. (25)

For part (ii) we have:

∆2cp(x, y) = ∆cp(x+ 1, y)−∆cp(x, y)

= p
[∑∞

k=S−(x+1) P
{
Dy
t,t+`e

= k
}
−
∑∞
k=S−x P

{
Dy
t,t+`e

= k
}]

= pP
{
Dy
t,t+`e

= S − x− 1
}
≥ 0. (26)

Part (iii) follows immediately from (25) and noting that P
{
Dy
t,t+`e

= k
}

= 0 for k < 0.

Finally for part (iv), we can write using (25)

∆cp(x, y|S)−∆cp(x, y|S + 1)

= p
[∑∞

k=S−x P
{
Dy
t,t+`e

= k
}
−
∑∞
k=S+1−x P

{
Dy
t,t+`e

= k
}]

= pP
{
Dy
t,t+`e

= S − x
}
≥ 0 (27)

B.2 Proof of Proposition 1 (ii)

Proof. Here we present the proof of part (ii), the proof of part (i) is in the main text. The proof is based on

constructing two coupled processes and showing that expediting repair is expected to dominate using regular repair

when there are many parts still undergoing additional regular repair.

Let ε = (pE[Lr]− ce)/3 > 0. We denote the probability density function of Lr as fLr and fix α <∞ to verify∫ ∞
t=α

tfLr
(tr)dt ≤ ε/p. (28)

Such an α exists because tfLr (t) > 0 for t ∈ (0,∞) so that
∫∞
t=α

tfLr (t)dt is strictly decreasing in α and furthermore

limα→∞
∫∞
t=α

tfLr
(t)dt = 0. Let Eµ denote an exponential random variable with mean µ−1. We fix an integer M ′

to verify

P {Eµm
< α}M

′
E[Lr] ≤ ε. (29)
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Such an M ′ ∈ N exists because α <∞ and so P {Eµm
< α} < 1.

Now we consider an arbitrary policy π that does not expedite when xeT ≥ S + M ′ = M for some (x, y) ∈ S.

Consider an arbitrary moment in time, t′, when a failed part arrives to the system and
∑m
i=1Xi(t

′) ≥ S+M ′ = M

and policy π stipulates that the part should not be expedited. Denote this process Xπ(t). We let X̃(t) denote the

evolution of the part sent to regular repair at time t′ by policy π, so X̃(t) = ei if the part sent to repair at time

t′ has completed its first i − 1 phases of the additional regular repair, and X̃(t) = 0 if the part has completed its

additional regular repair lead time. Next, we consider an alternate process which is identical to Xπ(t) except that it

does expedite the unit arriving at t′. We denote this process Xe(t), and formally define it as Xe(t) = Xπ(t)− X̃(t).

We let Tr = inf{t− t′|X̃(t) = 0, t ≥ t′} and note that Tr
d
=Lr.

Analogous to the proof of part (i), Xπ(t)eT = Xe(t)eT +1 for t ∈ [t′, t′+Tr), and Xπ(t) = Xe(t) for t ≥ t′+Tr.

Also both processes make exactly the same expediting decisions for all t > t′. Thus any cost differences between

Xe(t) and Xπ(t) occur in the time interval [t′, t′ + Tr). Denote the expectation of this cost difference Ξ. Then we

have:

Ξ = ce − ETr

E(Xe(t),Y (t))

 t′+Tr∫
t=t′

∆cp(X
e(t)eT, Y (t))dt

∣∣∣∣∣∣∣ Tr



= ce −
∞∫

tr=0

E(Xe(t),Y (t))

 t′+Tr∫
t=t′

∆cp(X
e(t)eT, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr

 fLr
(tr)dtr

= ce −
∞∫

tr=0

E(Xe(t),Y (t))

 t′+Tr∫
t=t′

∆cp(X
e(t)eT, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr, X
e(t)eT ≥ S for all t ∈ (t′, t′ + Tr)


× P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)}fLr

(tr)dtr

−
∞∫

tr=0

E(Xe(t),Y (t))

 t′+Tr∫
t=t′

∆cp(X
e(t)eT, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr, X
e(t)eT < S for some t ∈ (t′, t′ + Tr)


× P{Xe(t)e

T < S for some t ∈ (t′, t′ + tr)}fLr
(tr)dtr

≤ ce −
∞∫

tr=0

E(Xe(t),Y (t))

 t′+Tr∫
t=t′

∆cp(X
e(t)eT, Y (t))dt

∣∣∣∣∣∣∣ Tr = tr, X
e(t)eT ≥ S for all t ∈ (t′, t′ + Tr)


× P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)}fLr (tr)dtr

= ce −
∞∫

tr=0

ptrfLr
(tr)P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)}dtr (30)

The third equality is obtained by conditioning on whether or not Xe(t)eT stays above S on the interval [t′, t′+Tr).

The first inequality follows from dropping the last term and the last equality follows from Lemma 1 (iii).

Next we observe that P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)} is bounded below by the probability that there are

fewer than M ′ parts already in additional regular repair at time t′, finish additional regular repair before t′ + tr.

Since the remaining time in regular repair for any of these parts is at least an Eµm random variable (by the lack
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of memory property), we conclude that

P{Xe(t)eT ≥ S for all t ∈ (t′, t′ + tr)} ≥ 1− P{Eµm < tr}M
′
. (31)

Now continuing from (30) and using (31) we obtain:

Ξ ≤ ce −
∫ ∞
tr=0

ptrfLr
(tr)

(
1− P{Eµm

< tr}M
′
)
dtr

= ce − pE[Lr] +

∫ ∞
tr=0

ptrfLr (tr)P{Eµm < tr}M
′
dtr

= ce − pE[Lr] +

∫ α

tr=0

ptrfLr
(tr)P{Eµm

< tr}M
′
dtr

+

∫ ∞
tr=α

ptrfLr (tr)P{Eµm < tr}M
′
dtr

≤ ce − pE[Lr] + P{Eµm
< α}M

′
∫ α

tr=0

ptrfLr
(tr)dtr +

∫ ∞
tr=α

ptrfLr
(tr)dtr (32)

≤ ce − pE[Lr] + P{Eµm < α}M
′
E[Lr] +

∫ ∞
tr=α

ptrfLr (tr)dtr

≤ −3ε+ ε+ ε = −ε < 0. (33)

Inequality (32) follows because P{Eµm
< tr} is increasing in tr and the final inequalities follow from the choice of

ε, α and M ′. Since Ξ < 0, we conclude that the expected cost of process Xπ(t) is greater than the cost of Xe(t).

Thus, we have shown that any policy that does not expedite when X(t)eT ≥ M and ce < pE[Lr] can be strictly

improved by expediting whenever X(t)eT ≥M . That is, if ce < pE[Lr], then there is a M ∈ N such that whenever

X(t)eT ≥M it is optimal to expedite.

B.3 Proof of Lemma 2

To facilitate the presentation of the proof we introduce the following shorthand:

I =

m⋂
i=1

I(i), SM(1) =

m⋂
j=2

SM(1, j)

Furthermore, when f ∈ X implies TYf(x, y) ∈ X , we say that TY propagates X .

Proof. Part (i) of the lemma can be verified directly by using Lemma 1.

For part (ii) we consider each operator separately. Let f ∈ F . For operator Tcost the results hold because of

part (i) of this lemma and Theorem 7.1 in Koole (2006). For Tenv the result hold trivially as this operator produces

linear combinations of functions in F .

By Theorems 7.3 and 7.4 of Koole (2006) we have that TTD(i) propagates F for i = 1, ...,m − 1 and TD(m)

propagates F .

For TAC(1), the inequalities that characterize I ∩ UI are propagated whenever xeT < M − 1 by Theorem 7.2

of Koole (2006). When xeT = M − 1 we have for i = 1, . . . ,m:

∆iTAC(1)f(x, y) = ce + f(x + ei, y)−min(ce + f(x, y), f(x + e1, y))

≥ ce + f(x + ei, y)− ce − f(x, y)

= f(x + ei, y)− f(x, y) ≥ 0, (34)
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where the second inequality holds because f ∈ I. This shows TAC(1) propagates I. Similarly, and again for

xeT = M − 1, we find for i = 1, . . . ,m− 1:

TAC(1)f(x + ei, y)− TAC(1)f(x + ei+1, y) = ce + f(x + ei, y)− ce − f(x + ei+1, y) ≥ 0, (35)

where the inequality holds because f ∈ UI. Thus we have shown that TAC(1) propagates UI. (Recall that the case

xeT = M need not be considered because, in this case, the inequalities do not exist in S. A similar observation

will hold for the other inequalities in F .) Also by Theorem 7.2 of Koole (2006), for all x that satisfy xeT < M − 2

it holds that TAC(1)f(x, y) ∈ C(1) ∩ SM(1). Consider the case that xeT = M − 2. To show TAC(1) preserves

convexity, we consider three cases:

(a) Case: min{ce+f(x+e1, y), f(x+2e1, y)} = f(x+2e1, y). This case implies that ce ≥ f(x+2e1, y)−f(x+e1, y)

and furthermore as f ∈ C(1) we have min{ce + f(x, y), f(x + e1, y)} = f(x + e1, y). Thus we have:

∆2
1TAC(1)f(x, y) = ce + f(x + 2e1, y)− 2f(x + 2e1, y) + f(x + e1, y)

= ce − f(x + 2e1, y) + f(x + e1, y) ≥ 0. (36)

The inequality holds because ce ≥ f(x + 2e1, y)− f(x + e1, y).

(b) Case: min{ce+f(x+e1, y), f(x+2e1, y)} = ce+f(x+e1, y) and min{ce+f(x, y), f(x+e1, y)} = ce+f(x, y).

Now we have

∆2
1TAC(1)f(x, y) = ce + f(x + 2e1, y)− 2ce − 2f(x + e1, y) + ce + f(x, y)

= f(x + 2e1, y)− 2f(x + e1, y) + f(x, y) ≥ 0, (37)

where the inequality holds because f ∈ C(1).

(c) Case: min{ce+f(x+e1, y), f(x+2e1, y)} = ce+f(x+e1, y) and min{ce+f(x, y), f(x+e1, y)} = f(x+e1, y).

Now we have:

∆2
1TAC(1)f(x, y) = ce + f(x + 2e1, y)− 2ce − 2f(x + e1) + f(x + e1, y)

= f(x + 2e1, y)− f(x + e1, y)− ce ≥ 0. (38)

The inequality holds because the case implies that ce ≤ f(x + 2e1, y)− f(x + e1, y).

Thus we have shown that TAC(1) propagates C(1) if f ∈ F . To show TAC(1) also propagates SM(1), we distinguish

2 cases.

(a) Case: min{ce + f(x, y), f(x + e1, y)} = ce + f(x, y). In this case we have

∆1TAC(1)f(x + ej , y)−∆1TAC(1)f(x, y)

= ce + f(x + e1 + ej , y)−min{ce + f(x + ej , y), f(x + e1 + ej , y)}

−min{ce + f(x + e1, y), f(x + 2e1)}+ min{ce + f(x, y), f(x + e1, y)}

≥ 2ce + f(x + e1 + ej)− 2ce − f(x + ej , y)− f(x + e1, y) + f(x, y)

= f(x + e1 + ej)− f(x + ej , y)− f(x + e1, y) + f(x, y) ≥ 0. (39)

The second inequality holds because f ∈ SM(1, j).
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(b) Case: min(ce + f(x, y), f(x + e1, y)) = f(x + e1, y) Now we find that:

∆1TAC(1)f(x + ej , y)−∆1TAC(1)f(x, y)

= ce + f(x + e1 + ej , y)−min{ce + f(x + ej , y), f(x + e1 + ej , y)}

−min{ce + f(x + e1, y), f(x + 2e1)}+ min{ce + f(x, y), f(x + e1, y)}

≥ ce + f(x + e1 + ej , y)− f(x + e1 + ej , y)

− ce − f(x + e1, y) + f(x + e1, y) = 0. (40)

Thus we have shown that TAC(1) propagates SM(1) if f ∈ F .

Part (iii) holds trivially as Tunif produces linear combinations of functions in F .

B.4 Proof of Lemma 4

Proof. The property in (21) is submodularity (c.f. Altman and Koole, 1998). In this proof, we actually prove a

slightly stronger property, namely that (21) also holds with ∆1 replaced by ∆i for i = 1, . . . ,m. We define SB as:

SB = {f ∈ W|∆if(x, y, S) ≥ ∆if(x, y, S + 1) for i = 1, . . . ,m}.

Because of (12) and the fact that V0(x, y, S) ∈ SB, we only need to show that if f ∈ SB and fj ∈ SB for

j = 1, . . . ,m+ 2, then also

Tcostf(x, y, S),TAC(1)f(x, y, S)TD(m)f(x, y, S),Tenvf(x, y, S) ∈ SB

TTD(j)f(x, y, S) ∈ SB for j = 1, . . . ,m− 1 and

Tunif(f1, . . . fm+2)(x, y, S) ∈ SB.

For Tcost, this follows from Lemma 1 (iv) and Theorem 7.1 of Koole (2006). For Tenv and Tunif this follows because

these operators take linear combinations of functions in SB. For TAC(1) and TD(m) this follows from Theorems 7.2

and 7.3 of Koole (2006) respectively. For TTD(j), we distinguish two cases:

(a) Case: j 6= i. We have

∆iTTD(j)f(x, y, S)−∆iTTD(j)f(x, y, S + 1)

=
xj
M
f(x + ei − ej + ej+1, y, S) +

M − xj
M

f(x + ei, y, S)

− xj
M
f(x− ej + ej+1, y, S)− M − xj

M
f(x, y, S)

− xj
M
f(x + ei − ej + ej+1, y, S + 1)− M − xj

M
f(x + ei, y, S + 1)

+
xj
M
f(x− ej + ej+1, y, S + 1) +

M − xj
M

f(x, y, S + 1)

=
xj
M

(∆if(x− ej + ej+1, y, S)−∆if(x− ej + ej+1, y, S + 1))

M − xj
M

(∆if(x, y, S)−∆if(x, y, S + 1)) ≥ 0

The inequality holds because f ∈ SB.
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(b) Case j = i. We have

∆iTTD(i)f(x, y, S)−∆iTTD(i)f(x, y, S + 1)

=
xi + 1

M
f(x + ei − ei + ei+1, y, S) +

M − xi − 1

M
f(x + ei, y, S)

− xi
M
f(x− ei + ei+1, y, S)− M − xi

M
f(x, y, S)

− xi + 1

M
f(x + ei − ei + ei+1, y, S + 1)− M − xi − 1

M
f(x + ei, y, S + 1)

+
xi
M
f(x− ei + ei+1, y, S + 1) +

M − xi
M

f(x, y, S + 1)

≥ xi
M
f(x + ei+1, y, S) +

M − xi − 1

M
f(x + ei, y, S)

− xi
M
f(x− ei + ei+1, y, S)− M − xi − 1

M
f(x, y, S)

− xi
M
f(x + ei+1, y, S + 1)− M − xi − 1

M
f(x + ei, y, S + 1)

+
xi
M
f(x− ei + ei+1, y, S + 1) +

M − xi − 1

M
f(x, y, S + 1)

=
xi
M

(∆if(x− ei + ei+1, y, S)−∆if(x− ei + ei+1, y, S + 1))

M − xi − 1

M
(∆if(x, y, S)−∆if(x, y, S + 1)) ≥ 0

The first inequality follows by adding 1
M (∆i+1f(x, y, S + 1) − ∆i+1f(x, y, S)) which is less than 0 because

f ∈ SB. (Note that ∆i+1f(x, y, S) is well defined here because because j < m and so i+ 1 ≤ m because i = j

by assumption.) The final inequality also follows from the induction hypothesis.
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